WO2009084544A1 - Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same - Google Patents

Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same Download PDF

Info

Publication number
WO2009084544A1
WO2009084544A1 PCT/JP2008/073464 JP2008073464W WO2009084544A1 WO 2009084544 A1 WO2009084544 A1 WO 2009084544A1 JP 2008073464 W JP2008073464 W JP 2008073464W WO 2009084544 A1 WO2009084544 A1 WO 2009084544A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
organic
Prior art date
Application number
PCT/JP2008/073464
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yamamoto
Takashi Arakane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2009084544A1 publication Critical patent/WO2009084544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to a novel nitrogen-containing heterocyclic derivative, a material for an organic electroluminescence element (organic EL element) using the same, and an organic EL element, and particularly, a nitrogen-containing heterocyclic derivative useful as a component of the organic EL element.
  • organic EL element organic electroluminescence element
  • a nitrogen-containing heterocyclic derivative useful as a component of the organic EL element Is used for at least one of the organic compound layers, which relates to an organic EL element having high luminous efficiency while being low in voltage.
  • an organic EL element using an organic substance is considered to be promising for use as an inexpensive large-area full-color display element of a solid light emitting type, and many developments have been made.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Furthermore, this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 discloses an element using a compound having a benzimidazole structure as a light-emitting material, and describes that the element emits light with a luminance of 200 cd / m 2 at a voltage of 9 V.
  • Patent Documents 2 and 3 describe compounds having a benzimidazole ring and an anthracene skeleton. However, those having higher emission luminance and emission efficiency than those of organic EL devices using these compounds are demanded.
  • the present invention has been made to solve the above-described problems, and provides a novel nitrogen-containing heterocyclic derivative useful as a component of an organic EL device, and this nitrogen-containing heterocyclic derivative is added to at least one layer of an organic compound layer. It is an object of the present invention to realize an organic EL element having high emission luminance and high emission efficiency while being at a low voltage.
  • the present inventors have used a novel nitrogen-containing heterocyclic derivative having a specific structure in at least one organic compound layer of an organic EL device, The present inventors have found that it is possible to achieve a low voltage and high efficiency of an organic EL element, and have completed the present invention.
  • the present invention provides a nitrogen-containing heterocyclic derivative (benzimidazole compound) represented by the following general formula (1).
  • R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
  • R 1a to R 10a are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 60 ring atoms.
  • Heteroaryl group (excluding substituted or unsubstituted carbazolyl group and azacarbazolyl group), substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms , A halogen atom, a cyano group, or a nitro group, and adjacent groups of R 1a to R 10a may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated linking group constituting a ring structure. .
  • the present invention also provides an organic electroluminescent device comprising one or more organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers contains the nitrogen-containing heterocyclic derivative. Is.
  • the nitrogen-containing heterocyclic derivative of the present invention and the organic EL device using the same have a high luminous efficiency, an excellent electron transport property and a high luminous efficiency while being at a low voltage.
  • the nitrogen-containing heterocyclic derivative of the present invention is represented by the following general formula (1).
  • R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1- Examples include a norbornyl group and a 2-norbornyl group.
  • the hydrogen atom of the alkyl group having 1 to 50 carbon atoms is substituted with a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Groups such as trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2- Dichloroethyl group, 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl group, 1,2,3-trichloropropyl group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl Group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2,3-dibromo-t-butyl group, 1,2,3- Libromopropyl group, iodomethyl group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobut
  • Examples of the substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m -Terphenyl-4-yl group, m-terphenyl-3-
  • phenyl group naphthyl group, biphenyl group, anthracenyl group, A phenanthryl group, a pyrenyl group, a chrycenyl group, a fluoranthenyl group, and a fluorenyl group are preferred.
  • Substituted or unsubstituted heteroaryl groups having 5 to 20 ring atoms include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, Pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7- Indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2- Benzofuranyl group, 3-benzofur
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Two adjacent groups of R 1 to R 6 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated group constituting a ring structure.
  • a linking group may be formed.
  • At least one of R 1 to R 6 preferably at least one of R 1 , R 2 and R 4 is a group derived from a condensed ring compound represented by the following general formula (2).
  • R 1a to R 10a are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted hetero atom having 5 to 60 ring atoms.
  • An aryl group (excluding a substituted or unsubstituted carbazolyl group and azacarbazolyl group), a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A halogen atom, a cyano group, or a nitro group;
  • R 1a to R 10a represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms, a substituted or unsubstituted carbon number of 1 to 50
  • the alkyl group, the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms and the halogen atom are each selected from the groups exemplified as the substituents represented by R 1 to R 6 .
  • R 1a to R 10a may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated linking group constituting a ring structure.
  • R 9a and R 10a may be bonded to each other to form a linking group constituting a ring structure, and may form a spiro structure together with the 5-membered ring in the fluorene structure to which R 9a and R 10a are bonded.
  • the bond may be on any carbon forming the fluorene skeleton.
  • -FL is directly bonded to any atom of the benzimidazole skeleton.
  • the bond may be on any atom contained in R 1a to R 10a (except in the case of a hydrogen atom, a halogen atom, a cyano group, and a nitro group).
  • R 1a to R 10a is an aryl group
  • the bond may be on any carbon of the aryl group.
  • the fluorene skeleton is bonded to any atom of the benzimidazole skeleton via the arylene group.
  • the nitrogen-containing heterocyclic derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (3) to (5).
  • R 1 to R 6 are the same as described above, and FL is a group derived from the condensed ring compound represented by the general formula (2).
  • the group (—FL) derived from the condensed ring compound represented by the general formula (2) is particularly preferably represented by the following general formula (6).
  • Ar 1 is a single bond or an arylene group.
  • the arylene group include a phenylene group (preferably a p-phenylene group).
  • Ar 2 represents a hydrogen atom or an aryl group.
  • the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1,2 or 4-pyrenyl group.
  • -(Fluorene structure)- is selected from the following divalent groups.
  • substituents include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and a ring forming carbon atom having 6 to 20 carbon atoms.
  • the compound represented by the general formula (1) includes a corresponding halogen substituted benzimidazole (including the following BI-X, including a halogen-substituted aryl substituted) and a corresponding fluorene boronic acid or boron.
  • a coupling reaction with an acid ester derivative (FL-B (OR) 2 below), or a halogenated fluorene derivative corresponding to a boronic acid or boronic acid ester derivative of benzimidazole (BI-B (OR) 2 below) ( The following FL-X, including halogen-substituted aryl substituents) and general Suzuki coupling reactions, Tetrahedron Lett., 38, 3447 (1997), Tetrahedron Lett., 38, 3841 (1997), Tetrahedron Lett , 38, 1197 (1997), etc., and the reaction conditions are easily selected and determined by those skilled in the art. It can be.
  • X is a halogen atom
  • R, n and L are substituents selected so as to satisfy the definitions of R 1 to R 6 in formula (1) and R 1a to R 10a in formula (2). And an integer.
  • the nitrogen-containing heterocyclic derivative of the present invention is preferably used as an organic EL device material, particularly as a light emitting material, an electron injection material or an electron transport material.
  • the organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between the cathode and the anode, and at least one of the organic thin film layers contains the nitrogen-containing heterocyclic derivative of the present invention.
  • the organic thin film layer has an electron injection layer or an electron transport layer, and the electron injection layer or the electron transport layer contains the nitrogen-containing heterocyclic derivative of the present invention.
  • the electron transport layer preferably contains a nitrogen-containing heterocyclic derivative, and more preferably, the electron injection layer or the electron transport layer further contains a reducing dopant.
  • the light emitting layer contains the nitrogen-containing heterocyclic derivative of the present invention.
  • the light emitting layer can further contain at least one of a phosphorescent dopant and a fluorescent dopant in addition to the nitrogen-containing heterocyclic derivative of the present invention. By including such a dopant, it can function as a phosphorescence emission layer and a fluorescence emission layer.
  • the nitrogen-containing heterocyclic derivative of the present invention may be used in any organic thin film layer of an organic EL device, but can be preferably used in a light emission band or an electron transport band, and particularly preferably an electron injection layer, an electron transport layer, and Used for the light emitting layer.
  • Fig. 1 shows the configuration (8).
  • the organic EL element 1 includes a cathode 10 and an anode 20, and a hole injection layer 31, a hole transport layer 32, a light emitting layer 33, and an electron injection layer 34 sandwiched therebetween.
  • the hole injection layer 31, the hole transport layer 32, the light emitting layer 33, and the electron injection layer 34 correspond to a plurality of organic thin film layers. At least one of these organic thin film layers 31 to 34 contains the nitrogen-containing heterocyclic derivative of the present invention.
  • the organic EL element is usually produced on a substrate, and the substrate supports the organic EL element. It is preferable to use a smooth substrate. When light is extracted through this substrate, it is desirable that the substrate is translucent and that the transmittance of light in the visible region with a wavelength of 400 to 700 nm is 50% or more.
  • substrate a glass plate, a synthetic resin board, etc. are used suitably, for example.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the synthetic resin plate include plates made of polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, polysulfone resin, and the like.
  • anode It is effective for the anode to inject holes into the hole injection layer, the hole transport layer, or the light emitting layer and to have a work function of 4.5 eV or more.
  • anode materials include indium tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), a mixture of ITO and cerium oxide (ITCO), a mixture of IZO and cerium oxide (IZCO), and indium oxide and oxide. Examples thereof include a mixture of cerium (ICO), a mixture of zinc oxide and aluminum oxide (AZO), tin oxide (NESA), gold, silver, platinum, and copper.
  • the anode can be formed from these electrode materials by vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer has the following functions.
  • Injection function a function capable of injecting holes from the anode or hole injection layer when an electric field is applied, and a function capable of injecting electrons from the cathode or electron injection layer
  • transport function injected charge (electrons
  • Light emission function Function to recombine electrons and holes and connect them to light emission
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a film formed by depositing a material compound in a gas phase state or a film formed by solidifying a material compound in a solution state or a liquid phase state.
  • this molecular deposited film is an LB.
  • the thin film (molecular accumulation film) formed by the method can be classified by the difference in aggregated structure and higher order structure, and the functional difference resulting therefrom.
  • the light emitting layer can also be formed by dissolving a binder such as a resin and a material compound in a solvent to form a solution, and then thinning the solution by a spin coating method or the like.
  • Examples of the light emitting material or the doping material that can be used for the light emitting layer include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, Coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine , Merocyanine, imidazole chelating oxinoid compounds, quinacrid
  • Ar 001 is a substituted or unsubstituted condensed aromatic group having 10 to 50 ring carbon atoms.
  • Ar 002 is a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms.
  • X 001 to X 003 are each independently a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted group;
  • A, b, and c are each
  • R 001 to R 010 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms.
  • Ar 005 and Ar 006 are each a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms.
  • L 001 and L 002 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • m is an integer from 0 to 2
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • a 001 and A 002 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 ring carbon atoms.
  • Ar 007 and Ar 008 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms.
  • R 011 to R 020 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms.
  • Ar 007 , Ar 008 , R 019 and R 020 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
  • R 021 to R 030 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted Unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted An alkylamino group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring atom number 5 to show the 50 heterocyclic group,
  • R 031 to R 040 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted, Unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted An alkylamino group having 1 to 50 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms; c, d , E and f each represent an integer of 1 to 5, and when they are 2 or
  • L 004 may be a single bond, —O—, —S—, —N (R) — (where R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted ring carbon number.
  • R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • a 005 to A 008 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.
  • a 011 to A 013 are each independently a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • a 014 to A 016 are each independently a hydrogen atom, An unsubstituted aryl group having 6 to 50 ring carbon atoms, each of R 041 to R 043 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, carbon An alkoxyl group having 1 to 6 carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 6 to 16 ring carbon atoms, a nitro group, a cyano group, and a carbon number 2 to 6 ester groups or halogen atoms, and at least one of A 011 to A 016 is a group having three or more condensed aromatic rings.
  • a fluorene compound represented by the following formula (ix) is represented by the following formula (ix).
  • R 051 and R 052 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted ring-forming carbon; An aryl group having 6 to 50 atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted amino group having 1 to 50 carbon atoms, a cyano group, or a halogen atom.
  • R 051 together, R 052 together to bind to may be different even in the same, R 051 and R 052 bonding to the same fluorene group may .
  • R 053 and be different even in the same R 054 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • each other R 053 which bonded to different fluorene groups R 054 may be different even in the same, bind to the same fluorene group R 053 and R 054 may be the same or different,
  • Ar 011 and Ar 012 may be a substituted or unsubstituted condensed polycyclic aromatic group having a total of three or more benzene rings or a benzene ring.
  • the light emitting layer may contain a phosphorescent dopant and / or a fluorescent dopant in addition to the light emitting material of the present invention, if desired. Moreover, you may laminate
  • a phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from triplet excitons, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os and Re, and is preferably a porphyrin metal complex or ortho Metalated metal complexes are preferred.
  • the phosphorescent compounds may be used alone or in combination of two or more.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • ligands that form ortho-metalated metal complexes.
  • Preferred ligands include compounds having a phenylpyridine skeleton, bipyridyl skeleton or phenanthroline skeleton; 2-phenylpyridine derivatives; 7,8- Benzoquinoline derivatives; 2- (2-thienyl) pyridine derivatives; 2- (1-naphthyl) pyridine derivatives; 2-phenylquinoline derivatives and the like.
  • These ligands may have a substituent as needed.
  • a fluorinated compound or a compound having a trifluoromethyl group introduced is preferable as a blue dopant.
  • you may have ligands other than the said ligands, such as an acetylacetonate and picric acid, as an auxiliary ligand.
  • metal complexes include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, etc.
  • An appropriate complex is selected depending on the device performance and the host compound to be used.
  • content in the light emitting layer of a phosphorescent dopant there is no restriction
  • Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc. It is preferable to select a compound according to the emission color, and a styrylamine compound, a styryldiamine compound, an arylamine compound, and an aryldiamine compound are more preferable. Moreover, the condensed polycyclic aromatic compound which is not an amine compound is also preferable. These fluorescent dopants may be used alone or in combination.
  • styrylamine compound and styryldiamine compound those represented by the following formula (A) are preferable.
  • Ar 101 is a p-valent group derived from benzene, naphthalene, biphenyl, terphenyl, stilbene, or distyrylaryl
  • Ar 102 and Ar 103 are aromatic carbon atoms having 6 to 20 carbon atoms, respectively.
  • a hydrogen group, Ar 101 , Ar 102 and Ar 103 may be substituted, and any one of Ar 101 to Ar 103 is substituted with a styryl group, more preferably at least Ar 102 or Ar 103 One is substituted with a styryl group, and p is an integer of 1 to 4, preferably an integer of 1 to 2.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound and the aryldiamine compound those represented by the following formula (B) are preferable.
  • Ar 111 is a q-valent substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms;
  • Ar 112 , Ar 113 Each represents a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms, q is an integer of 1 to 4, preferably 1 It is an integer of ⁇ 2.
  • the aryl group and heteroaryl group include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a coronyl group, a biphenyl group, a terphenyl group, a pyrrolyl group, a furanyl group, a thiophenyl group, and
  • Preferred substituents for the aryl group and heteroaryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, isopropyl group, n-propyl group, s-butyl group, t-butyl group, pentyl group, Hexyl group, etc.), C3-C6 cycloalkyl group (cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, isopropoxy group, n-propoxy group, s- Butoxy group, t-butoxy group, pentoxy group, hexyloxy group, etc.), cycloalkoxy group having 3 to 6 carbon atoms (cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 6 to 40 ring carbon atoms, ring An amino group substituted with an aryl group having 6 to 40 carbon atoms, an
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
  • the hole injection layer and the hole transport layer help to inject holes into the light emitting layer and transport to the light emitting region, and have a high hole mobility and a small ionization energy of usually 5.5 eV or less.
  • a material for such a hole injection layer and a hole transport layer a material that transports holes to the light emitting layer with lower electric field strength is preferable, and the hole mobility is, for example, 10 4 to 10 6 V / cm. When an electric field is applied, it is preferably 10 ⁇ 4 cm 2 / V ⁇ sec or more.
  • the material for the hole injection layer and the hole transport layer is not particularly limited, and is conventionally used as a charge transport material for holes in optical transmission materials, and the hole injection layer and holes for organic EL devices. An arbitrary thing can be selected and used from the well-known things used for the transport layer.
  • an aromatic amine derivative represented by the following formula can be used.
  • Ar 211 to Ar 213 and Ar 221 to Ar 223 are each a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • Ar 203 to Ar 208 are each a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, a to c and p to r is an integer of 0 to 3.
  • Ar 203 and Ar 204 , Ar 205 and Ar 206 , Ar 207 and Ar 208 may be connected to each other to form a saturated or unsaturated ring.
  • substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4 -Pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl Group, m-terphenyl-4-yl group, m-terphenyl-3-yl,
  • substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzo
  • substituted or unsubstituted heteroarylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the heteroaryl group.
  • the hole injection layer and the hole transport layer may contain a compound represented by the following formula.
  • Ar 231 to Ar 234 are each a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • L is a linking group.
  • Ar 232 and Ar 233 may combine with each other to form a saturated or unsaturated ring.
  • substituted or unsubstituted aryl group and arylene group having 6 to 50 ring carbon atoms and the substituted or unsubstituted heteroaryl group and heteroarylene group having 5 to 50 ring atoms are as described above. The same can be mentioned.
  • the material for the hole injection layer and the hole transport layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives. And amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (particularly thiophene oligomers).
  • the above materials can be used for the hole injection layer and the hole transport layer, but porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds should be used. Is preferred.
  • NPD 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl
  • MTDATA triphenylamine unit 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine
  • each of R 201 to R 206 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted carbon group having 7 to 50 carbon atoms.
  • R 201 and R 202, R 203 and R 204, R 205 and R 206, R 201 and R 206, R 202 and R 203, or R 204 and R 205 may form a condensed ring.
  • R 211 to R 216 are substituents, preferably each an electron withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, and a halogen.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as materials for the hole injection layer and the hole transport layer.
  • the hole injection layer and the hole transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually 5 nm to 5 ⁇ m.
  • the hole injection layer and the hole transport layer may be composed of one or more layers made of the above-mentioned materials, or a plurality of hole injection layers and hole transport layers made of different compounds are laminated. There may be.
  • the electron barrier layer is a layer that improves luminous efficiency by confining electrons injected from the cathode in the light emitting layer.
  • an aromatic tertiary amine compound or the like is used among the compounds used for the hole transport layer.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 ⁇ 10 S / cm or more.
  • a conductive oligomer such as a thiophene-containing oligomer or an arylamine oligomer, a conductive dendrimer such as an arylamine dendrimer, or the like can be used.
  • the electron injection layer and the electron transport layer are layers that assist the injection of electrons into the light emitting layer and transport them to the light emitting region, and have a high electron mobility and an electron affinity of usually 2.5 eV or more. .
  • a material that transports electrons to the light emitting layer with a lower electric field strength is preferable.
  • an electron mobility is 10 4 to 10 6 V / cm, for example, At least 10 ⁇ 6 cm 2 / V ⁇ sec is preferable.
  • the nitrogen-containing heterocyclic derivative of the present invention alone may form an electron injection layer or an electron transport layer, or may be mixed with other materials.
  • the material for forming the electron injecting layer and the electron transporting layer by mixing with the nitrogen-containing heterocyclic derivative of the present invention is not particularly limited as long as it has the above-mentioned preferable properties.
  • An arbitrary material can be selected and used from those commonly used as a transport material and known materials used for an electron injection layer and an electron transport layer of an organic EL element.
  • the adhesion improving layer is a layer made of a material that is particularly good in adhesion to the cathode among the electron injection layer.
  • the compound of the present invention is preferably used as an electron injection layer, an electron transport layer, and an adhesion improving layer.
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the organic EL element which contains a reducing dopant in this invention compound is preferable.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV).
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb, A combination of Cs, Na and K is preferred.
  • Cs the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound which comprises an electron carrying layer is a microcrystal or an amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the cathode in order to inject electrons into the electron injecting layer, the electron transporting layer, or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • Organic EL elements apply an electric field to an ultra-thin film, so pixel defects are likely to occur due to leaks or shorts.
  • an insulating thin film layer between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, and oxide. Germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like may be used, and a mixture or laminate of these may be used.
  • an organic EL element By forming an anode, a light emitting layer, if necessary, a hole injection layer, a hole transport layer, and if necessary, an electron injection layer, an electron transport layer, and further forming a cathode by the materials and formation methods exemplified above An organic EL element can be produced. Moreover, an organic EL element can also be produced from the cathode to the anode in the reverse order.
  • an example of manufacturing an organic EL element having a structure in which an anode / a hole injection layer / a light emitting layer / an electron injection layer / a cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a uniform film can be easily obtained and pinholes are hardly generated. From the point of view, it is preferable to form by vacuum deposition.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure of the target hole injection layer, the recombination structure, etc.
  • the source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 ⁇ 7 to 10 ⁇ 3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of ⁇ 50 to 300 ° C., and the film thickness of 5 nm to 5 ⁇ m. .
  • the formation of the light emitting layer in which the light emitting layer is provided on the hole injection layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • the light emitting layer is formed by the vacuum vapor deposition method, the vapor deposition condition varies depending on the compound used, but it can be generally selected from the same condition range as that of the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • an organic EL element can be obtained by laminating a cathode.
  • the cathode is made of metal, and vapor deposition or sputtering can be used.
  • vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • each layer of the organic EL element of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by vacuum evaporation, molecular beam evaporation (MBE), a solution dipping method dissolved in a solvent, spin It can be formed by a known method such as a coating method, a casting method, a bar coating method, a roll coating method or the like.
  • the film thickness of each organic layer of the organic EL device of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur.
  • the range of several nm to 1 ⁇ m is usually preferable.
  • a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to a negative polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an alternating voltage is applied, uniform light emission is observed only when the anode has a positive polarity and the cathode has a negative polarity.
  • the waveform of the alternating current to be applied may be arbitrary.
  • Intermediate A2 was obtained by performing the same operation as in the synthesis of intermediate A1, except that 1-naphthaleneboronic acid was used instead of phenylboronic acid. Yield 55%.
  • Example 1 preparation of an organic EL device using the compound of the present invention for an electron injection layer
  • a glass substrate manufactured by Geomat Co.
  • an ITO transparent electrode anode
  • UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and N, N ′ having a film thickness of 60 nm is first covered so that the transparent electrode is covered on the surface on which the transparent electrode line is formed.
  • TPD232 film N, N'-diphenyl-4-aminophenyl
  • NPD4,4'-diamino-1,1'-biphenyl film (hereinafter abbreviated as "TPD232 film") was formed. .
  • This TPD232 film functions as a hole injection layer.
  • NPD film 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film having a thickness of 20 nm is formed on the TPD232 film.
  • NPD film 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film having a thickness of 20 nm is formed on the TPD232 film.
  • NPD film 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film having a thickness of 20 nm is formed on the TPD232 film.
  • NPD film
  • the compound (1) was deposited as an electron transport layer with a film thickness of 20 nm by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that the compound (3) was used instead of the compound (1).
  • Example 3 An organic EL device was produced in the same manner as in Example 1 except that the compound (4) was used instead of the compound (1).
  • Example 4 In Example 1, an organic EL device was produced in the same manner except that the compound (7) was used instead of the compound (1).
  • Example 5 An organic EL device was produced in the same manner as in Example 1 except that the compound (8) was used instead of the compound (1).
  • Example 6 an organic EL device was produced in the same manner except that the compound (9) was used instead of the compound (1).
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that the following compound A described in International Publication No. WO 2004/080975 A1 was used instead of the compound (1).
  • Example 2 an organic EL device was produced in the same manner except that the following compound B described in JP-A-2002-38141 was used instead of the compound (1).
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 1 except that Alq (aluminum complex of 8-hydroxyquinoline) was used instead of the compound (1).

Abstract

Disclosed is a novel nitrogen-containing heterocyclic derivative having a specific structure, which is useful as a constituent of an organic EL device. Also disclosed is an organic electroluminescent device having one or more organic thin film layers including a light-emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers contains the nitrogen-containing heterocyclic derivative. The organic electroluminescent device has high emission luminance and high luminous efficiency even at a low voltage.

Description

含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
 本発明は、新規な含窒素複素環誘導体及びそれを用いたに有機エレクトロルミネッセンス素子(有機EL素子)用材料、有機EL素子に関し、特に、有機EL素子の構成成分として有用な含窒素複素環誘導体を有機化合物層の少なくとも一層に用いることにより、低電圧でありながら発光効率が高い有機EL素子に関するものである。 The present invention relates to a novel nitrogen-containing heterocyclic derivative, a material for an organic electroluminescence element (organic EL element) using the same, and an organic EL element, and particularly, a nitrogen-containing heterocyclic derivative useful as a component of the organic EL element. Is used for at least one of the organic compound layers, which relates to an organic EL element having high luminous efficiency while being low in voltage.
 有機物質を使用した有機EL素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。
 従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、さらに低電圧での、高発光輝度及び高発光効率が要求されている。
 これらを解決するものとして、例えば、特許文献1に、ベンゾイミダゾール構造を有する化合物を発光材料として用いた素子が開示され、この素子が電圧9Vにて200cd/m2の輝度で発光することが記載されている。また、特許文献2および特許文献3には、ベンゾイミダゾール環及びアントラセン骨格を有する化合物が記載されている。しかしながら、これらの化合物を用いた有機EL素子よりもさらに高い発光輝度及び発光効率のものが求められている。
An organic EL element using an organic substance is considered to be promising for use as an inexpensive large-area full-color display element of a solid light emitting type, and many developments have been made. In general, an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Furthermore, this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic light-emitting diodes. Further, the characteristic deterioration has been remarkably not put into practical use. Although recent organic EL devices have been gradually improved, higher light emission luminance and higher light emission efficiency are required at a lower voltage.
As a solution to these problems, for example, Patent Document 1 discloses an element using a compound having a benzimidazole structure as a light-emitting material, and describes that the element emits light with a luminance of 200 cd / m 2 at a voltage of 9 V. Has been. Patent Documents 2 and 3 describe compounds having a benzimidazole ring and an anthracene skeleton. However, those having higher emission luminance and emission efficiency than those of organic EL devices using these compounds are demanded.
特開平10-092578号公報(米国特許第5,645,948号明細書)Japanese Patent Laid-Open No. 10-092578 (US Pat. No. 5,645,948) 特開2002-38141号公報JP 2002-38141 A 国際公開WO2004/080975号公報(米国公開2006/147747号)International Publication WO 2004/080975 (US Publication 2006/147747)
 本発明は、前記の課題を解決するためになされたもので、有機EL素子の構成成分として有用な新規な含窒素複素環誘導体を提供し、この含窒素複素環誘導体を有機化合物層の少なくとも一層に用いることにより、低電圧でありながら発光輝度及び発光効率が高い有機EL素子を実現することを目的とする。 The present invention has been made to solve the above-described problems, and provides a novel nitrogen-containing heterocyclic derivative useful as a component of an organic EL device, and this nitrogen-containing heterocyclic derivative is added to at least one layer of an organic compound layer. It is an object of the present invention to realize an organic EL element having high emission luminance and high emission efficiency while being at a low voltage.
 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の構造を有する新規な含窒素複素環誘導体を、有機EL素子の有機化合物層の少なくとも一層に用いることにより、有機EL素子の低電圧化と高効率化を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have used a novel nitrogen-containing heterocyclic derivative having a specific structure in at least one organic compound layer of an organic EL device, The present inventors have found that it is possible to achieve a low voltage and high efficiency of an organic EL element, and have completed the present invention.
 すなわち、本発明は、下記一般式(1)で表される含窒素複素環誘導体(ベンゾイミダゾール化合物)を提供するものである。
Figure JPOXMLDOC01-appb-C000004
That is, the present invention provides a nitrogen-containing heterocyclic derivative (benzimidazole compound) represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
[前記一般式(1)において、R1~R6はそれぞれ独立に水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の環形成原子数5~20のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、ハロゲン原子、シアノ基、ニトロ基であり、R1~R6の互いに隣り合う2個の基が互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成していてもよく、また、R1~R6の少なくとも1つは下記一般式(2)で示される縮合環化合物から誘導される一価の基である。
Figure JPOXMLDOC01-appb-C000005
[In the general formula (1), R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms. A substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms (provided that A substituted or unsubstituted carbazolyl group or azacarbazolyl group), a halogen atom, a cyano group, or a nitro group, wherein two adjacent groups of R 1 to R 6 are bonded to each other to form a ring structure or it may form a linking group of unsubstituted, saturated or unsaturated, also at least one of R 1 ~ R 6 is derived from the fused ring compound represented by the following general formula (2) It is a monovalent group.
Figure JPOXMLDOC01-appb-C000005
(前記一般式(2)において、R1a~R10aはそれぞれ独立に水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基であり、R1a~R10aの隣り合う基が互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成していてもよい。) (In the general formula (2), R 1a to R 10a are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 60 ring atoms. Heteroaryl group (excluding substituted or unsubstituted carbazolyl group and azacarbazolyl group), substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms , A halogen atom, a cyano group, or a nitro group, and adjacent groups of R 1a to R 10a may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated linking group constituting a ring structure. .)
 また、本発明は、陰極と陽極間に発光層を含む一層以上の有機薄膜層を有し、前記有機薄膜層の少なくとも一層が、前記含窒素複素環誘導体を含有する有機エレクトロルミネッセンス素子を提供するものである。 The present invention also provides an organic electroluminescent device comprising one or more organic thin film layers including a light emitting layer between a cathode and an anode, wherein at least one of the organic thin film layers contains the nitrogen-containing heterocyclic derivative. Is.
 本発明の含窒素複素環誘導体及びそれを用いた有機EL素子は、低電圧でありながら発光効率が高く、電子輸送性が優れ、高発光効率なものである。 The nitrogen-containing heterocyclic derivative of the present invention and the organic EL device using the same have a high luminous efficiency, an excellent electron transport property and a high luminous efficiency while being at a low voltage.
本発明の有機エレクトロルミネッセンス素子の好ましい層構成を示す概略断面図である。It is a schematic sectional drawing which shows the preferable layer structure of the organic electroluminescent element of this invention.
 本発明の含窒素複素環誘導体は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000006
The nitrogen-containing heterocyclic derivative of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
 前記一般式(1)において、R1~R6はそれぞれ独立に水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の環形成原子数5~20のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、ハロゲン原子、シアノ基、または、ニトロ基である。 In the general formula (1), R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms. Substituted or unsubstituted haloalkyl groups having 1 to 50 carbon atoms, substituted or unsubstituted aryl groups having 6 to 20 ring carbon atoms, substituted or unsubstituted heteroaryl groups having 5 to 20 ring atoms (provided that A substituted or unsubstituted carbazolyl group and azacarbazolyl group), a halogen atom, a cyano group, or a nitro group.
 置換もしくは無置換の炭素数1~50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、アミノメチル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノ-t-ブチル基、1,2,3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基等が挙げられる。 Examples of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group. N-hexyl group, n-heptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3- Dihydroxyisopropyl group, 2,3-dihydroxy-t-butyl group, 1,2,3-trihydroxypropyl group, aminomethyl group, 1-aminoethyl group, 2-aminoethyl group, 2-aminoisobutyl group, 1, 2-diaminoethyl group, 1,3-diaminoisopropyl group, 2,3-diamino-t-butyl group, 1,2,3-triaminopropyl group, Anomethyl group, 1-cyanoethyl group, 2-cyanoethyl group, 2-cyanoisobutyl group, 1,2-dicyanoethyl group, 1,3-dicyanoisopropyl group, 2,3-dicyano-t-butyl group, 1,2, 3-tricyanopropyl group, nitromethyl group, 1-nitroethyl group, 2-nitroethyl group, 2-nitroisobutyl group, 1,2-dinitroethyl group, 1,3-dinitroisopropyl group, 2,3-dinitro-t- Examples thereof include a butyl group and a 1,2,3-trinitropropyl group.
 置換もしくは無置換の環形成炭素数3~50のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。 Examples of the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1- Examples include a norbornyl group and a 2-norbornyl group.
 置換もしくは無置換の炭素数1~50のハロアルキル基としては、前記炭素数1~50のアルキル基の水素原子をフッ素原子、塩素原子、臭素原子、および、ヨウ素原子から選ばれるハロゲン原子で置換した基が挙げられ、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基などが例示される。 As the substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, the hydrogen atom of the alkyl group having 1 to 50 carbon atoms is substituted with a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Groups such as trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, chloromethyl group, 1-chloroethyl group, 2-chloroethyl group, 2-chloroisobutyl group, 1,2- Dichloroethyl group, 1,3-dichloroisopropyl group, 2,3-dichloro-t-butyl group, 1,2,3-trichloropropyl group, bromomethyl group, 1-bromoethyl group, 2-bromoethyl group, 2-bromoisobutyl Group, 1,2-dibromoethyl group, 1,3-dibromoisopropyl group, 2,3-dibromo-t-butyl group, 1,2,3- Libromopropyl group, iodomethyl group, 1-iodoethyl group, 2-iodoethyl group, 2-iodoisobutyl group, 1,2-diiodoethyl group, 1,3-diiodoisopropyl group, 2,3-diiodo-t-butyl group 1,2,3-triiodopropyl group and the like.
 置換もしくは無置換の環形成炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-テルフェニル-4-イル基、p-テルフェニル-3-イル基、p-テルフェニル-2-イル基、m-テルフェニル-4-イル基、m-テルフェニル-3-イル基、m-テルフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-テルフェニル-4-イル基、フルオランテニル基、フルオレニル基等が挙げられる。これらの中では、フェニル基、ナフチル基、ビフェニル基、アントラセニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、および、フルオレニル基が好ましい。 Examples of the substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m -Terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p-tolyl group p-t-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4′-methyl Biphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group, fluoranthenyl group, fluorenyl group and the like. Among these, phenyl group, naphthyl group, biphenyl group, anthracenyl group, A phenanthryl group, a pyrenyl group, a chrycenyl group, a fluoranthenyl group, and a fluorenyl group are preferred.
 置換もしくは無置換の環形成原子数5~20のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル-1-インドリル基、4-t-ブチル-1-インドリル基、2-t-ブチル-3-インドリル基、4-t-ブチル-3-インドリル基等が挙げられる。 Substituted or unsubstituted heteroaryl groups having 5 to 20 ring atoms (excluding substituted or unsubstituted carbazolyl groups and azacarbazolyl groups) include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, Pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7- Indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2- Benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuran group Nyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-isobenzofuranyl group, 4-isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7- Isobenzofuranyl group, quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4 -Isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-quinoxalinyl group, 5-quinoxalinyl group, 6-quinoxalinyl group, 1-phenanthridinyl group, 2-phenanthridinyl group Nantridinyl group, 3-phenanthridinyl group, 4-phenanthridinyl group, 6-phenanthridinyl group, 7-phenanthridinyl group, 8-phenanthridinyl group N-tridinyl group, 9-phenanthridinyl group, 10-phenanthridinyl group, 1-acridinyl group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group, 9-acridinyl group, 1,7-phenanthroline- 2-yl group, 1,7-phenanthroline-3-yl group, 1,7-phenanthroline-4-yl group, 1,7-phenanthroline-5-yl group, 1,7-phenanthroline-6-yl group, 1 , 7-phenanthroline-8-yl group, 1,7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-phenanthroline-2-yl group, 1,8-phenanthroline-3 -Yl group, 1,8-phenanthroline-4-yl group, 1,8-phenanthroline-5-yl group, 1,8-phenanthroline-6-yl group, 1,8-phenanthroline-7-yl group, 1,8-phenanthroline-9-yl group, 1,8-phenanthroline-10-yl group, 1,9-phenanthroline-2-yl group, 1,9-phenanthroline- 3-yl group, 1,9-phenanthroline-4-yl group, 1,9-phenanthroline-5-yl group, 1,9-phenanthroline-6-yl group, 1,9-phenanthroline-7-yl group, 1 , 9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 1,10-phenanthroline-4 -Yl group, 1,10-phenanthroline-5-yl group, 2,9-phenanthroline-1-yl group, 2,9-phenanthroline-3-yl group, 2,9- Enanthroline-4-yl group, 2,9-phenanthroline-5-yl group, 2,9-phenanthroline-6-yl group, 2,9-phenanthroline-7-yl group, 2,9-phenanthroline-8-yl group 2,9-phenanthroline-10-yl group, 2,8-phenanthroline-1-yl group, 2,8-phenanthroline-3-yl group, 2,8-phenanthroline-4-yl group, 2,8-phenanthroline -5-yl group, 2,8-phenanthroline-6-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-9-yl group, 2,8-phenanthroline-10-yl group, 2,7-phenanthroline-1-yl group, 2,7-phenanthroline-3-yl group, 2,7-phenanthroline-4-yl group, 2,7-phenanthroline 5-yl group, 2,7-phenanthroline-6-yl group, 2,7-phenanthroline-8-yl group, 2,7-phenanthroline-9-yl group, 2,7-phenanthroline-10-yl group, 1 -Phenazinyl group, 2-phenazinyl group, 1-phenothiazinyl group, 2-phenothiazinyl group, 3-phenothiazinyl group, 4-phenothiazinyl group, 10-phenothiazinyl group, 1-phenoxazinyl group, 2-phenoxazinyl group, 3 -Phenoxazinyl group, 4-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3-furazanyl group, 2-thienyl group, 3 -Thienyl group, 2-methylpyrrol-1-yl group, 2-methylpyrrol-3-yl Group, 2-methylpyrrol-4-yl group, 2-methylpyrrol-5-yl group, 3-methylpyrrol-1-yl group, 3-methylpyrrol-2-yl group, 3-methylpyrrol-4- Yl group, 3-methylpyrrol-5-yl group, 2-t-butylpyrrol-4-yl group, 3- (2-phenylpropyl) pyrrol-1-yl group, 2-methyl-1-indolyl group, 4 -Methyl-1-indolyl group, 2-methyl-3-indolyl group, 4-methyl-3-indolyl group, 2-t-butyl-1-indolyl group, 4-t-butyl-1-indolyl group, 2- Examples thereof include a t-butyl-3-indolyl group and a 4-t-butyl-3-indolyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R1~R6の互いに隣り合う2個の基、特に、R3~R6から選ばれる隣り合う2個の基は互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成していてもよい。 Two adjacent groups of R 1 to R 6 , in particular, two adjacent groups selected from R 3 to R 6 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated group constituting a ring structure. A linking group may be formed.
 R1~R6の少なくとも1つ、好ましくはR1、R2及びR4の少なくとも1つは下記一般式(2)で表される縮合環化合物から誘導される基である。
Figure JPOXMLDOC01-appb-C000007
At least one of R 1 to R 6 , preferably at least one of R 1 , R 2 and R 4 is a group derived from a condensed ring compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
 前記一般式(2)において、R1a~R10aはそれぞれ独立に水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、または、ニトロ基である。 In the general formula (2), R 1a to R 10a are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted hetero atom having 5 to 60 ring atoms. An aryl group (excluding a substituted or unsubstituted carbazolyl group and azacarbazolyl group), a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A halogen atom, a cyano group, or a nitro group;
 R1a~R10aが表す置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子は、R1~R6が表す置換基として例示した基からそれぞれ選択される。 R 1a to R 10a represent a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms, a substituted or unsubstituted carbon number of 1 to 50 The alkyl group, the substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms and the halogen atom are each selected from the groups exemplified as the substituents represented by R 1 to R 6 .
 R1a~R10aの隣り合う2個の基は互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成してもよい。特に、R9aとR10aは互いに結合して環構造を構成する連結基を形成し、R9aとR10aが結合するフルオレン構造中の5員環と共にスピロ構造を形成してもよい。 Two adjacent groups of R 1a to R 10a may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated linking group constituting a ring structure. In particular, R 9a and R 10a may be bonded to each other to form a linking group constituting a ring structure, and may form a spiro structure together with the 5-membered ring in the fluorene structure to which R 9a and R 10a are bonded.
 一般式(2)で表される縮合環化合物から誘導される基(-FL)において、結合手はフルオレン骨格を形成するいずれの炭素上にあってもよい。この場合、-FLはベンゾイミダゾール骨格のいずれかの原子に直接結合する。また、結合手はR1a~R10a(水素原子、ハロゲン原子、シアノ基、および、ニトロ基の場合は除く)に含まれるいずれの原子上にあってもよい。例えば、R1a~R10aのいずれかがアリール基である場合、該結合手はアリール基のいずれの炭素上にあってもよい。この場合、フルオレン骨格はアリーレン基を介してベンゾイミダゾール骨格のいずれかの原子に結合する。 In the group (—FL) derived from the condensed ring compound represented by the general formula (2), the bond may be on any carbon forming the fluorene skeleton. In this case, -FL is directly bonded to any atom of the benzimidazole skeleton. Further, the bond may be on any atom contained in R 1a to R 10a (except in the case of a hydrogen atom, a halogen atom, a cyano group, and a nitro group). For example, when any of R 1a to R 10a is an aryl group, the bond may be on any carbon of the aryl group. In this case, the fluorene skeleton is bonded to any atom of the benzimidazole skeleton via the arylene group.
 一般式(1)で表される含窒素複素環誘導体は、好ましくは、下記一般式(3)~(5)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000008
The nitrogen-containing heterocyclic derivative represented by the general formula (1) is preferably represented by any one of the following general formulas (3) to (5).
Figure JPOXMLDOC01-appb-C000008
 前記一般式(3)~(5)において、R1~R6は前記と同様であり、FLは前記一般式(2)で表される縮合環化合物から誘導される基である In the general formulas (3) to (5), R 1 to R 6 are the same as described above, and FL is a group derived from the condensed ring compound represented by the general formula (2).
 一般式(2)で表される縮合環化合物から誘導される基(-FL)は特に好ましくは下記一般式(6)で表される。
       -Ar1-(フルオレン構造)-Ar2    (6)
The group (—FL) derived from the condensed ring compound represented by the general formula (2) is particularly preferably represented by the following general formula (6).
-Ar 1- (fluorene structure) -Ar 2 (6)
 式(6)において、Ar1は単結合またはアリーレン基である。アリーレン基としてはフェニレン基(好ましくはp-フェニレン基)などが挙げられる。Ar2は水素原子またはアリール基を表す。アリール基としてはフェニル基、1-ナフチル基、2-ナフチル基、1,2または4-ピレニル基などが挙げられる。-(フルオレン構造)-は下記の2価の基から選ばれる。
Figure JPOXMLDOC01-appb-C000009
In Formula (6), Ar 1 is a single bond or an arylene group. Examples of the arylene group include a phenylene group (preferably a p-phenylene group). Ar 2 represents a hydrogen atom or an aryl group. Examples of the aryl group include phenyl group, 1-naphthyl group, 2-naphthyl group, 1,2 or 4-pyrenyl group. -(Fluorene structure)-is selected from the following divalent groups.
Figure JPOXMLDOC01-appb-C000009
 上記の「置換もしくは無置換の・・・基」などにおいて、任意の置換基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、環形成炭素数6~20のアリール基、環形成炭素数3~20のヘテロアリール基(カルバゾリル基、アザカルバゾリル基は除く)、炭素数1~20のアルコキシ基、炭素数3~20のシクロアルコキシ基、環形成炭素数6~30のアリールオキシ基、炭素数7~31のアラルキル基、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル基などが挙げられる。 In the above-mentioned “substituted or unsubstituted... Group” and the like, optional substituents include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and a ring forming carbon atom having 6 to 20 carbon atoms. An aryl group, a heteroaryl group having 3 to 20 ring carbon atoms (excluding carbazolyl group and azacarbazolyl group), an alkoxy group having 1 to 20 carbon atoms, a cycloalkoxy group having 3 to 20 carbon atoms, and 6 to 30 ring carbon atoms Aryloxy groups, aralkyl groups having 7 to 31 carbon atoms, halogen atoms, nitro groups, cyano groups, hydroxyl groups, and the like.
 一般式(1)であらわされる化合物(下記BI-FL)は、対応するベンズイミダゾールのハロゲン置換体(下記BI-X、ハロゲン置換されたアリール置換体を含む)と対応するフルオレンのボロン酸もしくはボロン酸エステル誘導体(下記FL-B(OR)2)とのカップリング反応、または、ベンズイミダゾールのボロン酸もしくはボロン酸エステル誘導体(下記BI-B(OR)2)と対応するフルオレンのハロゲン置換体(下記FL-X、ハロゲン置換されたアリール置換体を含む)とを、一般的な鈴木カップリング反応、Tetrahedron Lett., 38, 3447 (1997)、Tetrahedron Lett., 38, 3841 (1997)、Tetrahedron Lett., 38, 1197 (1997)に記載されている方法等によって反応させることにより合成することができ、その反応条件等は当業者であれば容易に選択、決定することができる。
Figure JPOXMLDOC01-appb-C000010
The compound represented by the general formula (1) (the following BI-FL) includes a corresponding halogen substituted benzimidazole (including the following BI-X, including a halogen-substituted aryl substituted) and a corresponding fluorene boronic acid or boron. A coupling reaction with an acid ester derivative (FL-B (OR) 2 below), or a halogenated fluorene derivative corresponding to a boronic acid or boronic acid ester derivative of benzimidazole (BI-B (OR) 2 below) ( The following FL-X, including halogen-substituted aryl substituents) and general Suzuki coupling reactions, Tetrahedron Lett., 38, 3447 (1997), Tetrahedron Lett., 38, 3841 (1997), Tetrahedron Lett , 38, 1197 (1997), etc., and the reaction conditions are easily selected and determined by those skilled in the art. It can be.
Figure JPOXMLDOC01-appb-C000010
(上記式中、Xはハロゲン原子であり、R、nおよびLは式(1)のR1~R6、式(2)のR1a~R10aの定義を満たすように選択される置換基および整数である。) (In the above formula, X is a halogen atom, and R, n and L are substituents selected so as to satisfy the definitions of R 1 to R 6 in formula (1) and R 1a to R 10a in formula (2). And an integer.)
  本発明の含窒素複素環誘導体は、有機EL素子用材料として、特に、発光材料、電子注入材料又は電子輸送材料として好ましく用いられる。 The nitrogen-containing heterocyclic derivative of the present invention is preferably used as an organic EL device material, particularly as a light emitting material, an electron injection material or an electron transport material.
 本発明の一般式(1)で表される含窒素複素環誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Specific examples of the nitrogen-containing heterocyclic derivative represented by the general formula (1) of the present invention are shown below, but are not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 次に、本発明の有機EL素子について説明する。
 本発明の有機EL素子は、陰極と陽極間に発光層を含む一層以上の有機薄膜層を有し、この有機薄膜層の少なくとも一層が、本発明の含窒素複素環誘導体を含有する。
 本発明の好ましい態様において、前記有機薄膜層は電子注入層又は電子輸送層を有し、該電子注入層又は該電子輸送層が、本発明の含窒素複素環誘導体を含有する。さらに、前記電子輸送層が、含窒素複素環誘導体を含有するのが好ましく、前記電子注入層又は前記電子輸送層が還元性ドーパントをさらに含有するのがより好ましい。
 本発明の他の好ましい態様において、前記発光層は、本発明の含窒素複素環誘導体を含有する。また、前記発光層は、本発明の含窒素複素環誘導体に加えて、さらに、りん光性ドーパント及び蛍光性ドーパントの少なくとも1つを含有することができる。このようなドーパントを含むことにより、りん光発光及び蛍光発光層として機能することができる。
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention has one or more organic thin film layers including a light emitting layer between the cathode and the anode, and at least one of the organic thin film layers contains the nitrogen-containing heterocyclic derivative of the present invention.
In a preferred embodiment of the present invention, the organic thin film layer has an electron injection layer or an electron transport layer, and the electron injection layer or the electron transport layer contains the nitrogen-containing heterocyclic derivative of the present invention. Furthermore, the electron transport layer preferably contains a nitrogen-containing heterocyclic derivative, and more preferably, the electron injection layer or the electron transport layer further contains a reducing dopant.
In another preferred embodiment of the present invention, the light emitting layer contains the nitrogen-containing heterocyclic derivative of the present invention. The light emitting layer can further contain at least one of a phosphorescent dopant and a fluorescent dopant in addition to the nitrogen-containing heterocyclic derivative of the present invention. By including such a dopant, it can function as a phosphorescence emission layer and a fluorescence emission layer.
 本発明の有機EL素子の代表的な構成として、
  (1)陽極/発光層/陰極
  (2)陽極/正孔注入層/発光層/陰極
  (3)陽極/発光層/電子注入層/陰極
  (4)陽極/正孔注入層/発光層/電子注入層/陰極
  (5)陽極/有機半導体層/発光層/陰極
  (6)陽極/有機半導体層/電子障壁層/発光層/陰極
  (7)陽極/有機半導体層/発光層/付着改善層/陰極
  (8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
  (9)陽極/絶縁層/発光層/絶縁層/陰極
  (10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
  (11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
  (12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
  (13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
等を挙げることができるが、これらに限定されない。これらの中で通常(8)の構成が好ましく用いられる。
As a typical configuration of the organic EL element of the present invention,
(1) Anode / light emitting layer / cathode (2) Anode / hole injection layer / light emitting layer / cathode (3) Anode / light emitting layer / electron injection layer / cathode (4) Anode / hole injection layer / light emitting layer / electron Injection layer / cathode (5) Anode / organic semiconductor layer / light emitting layer / cathode (6) Anode / organic semiconductor layer / electron barrier layer / light emitting layer / cathode (7) Anode / organic semiconductor layer / light emitting layer / adhesion improving layer / Cathode (8) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode (9) Anode / insulating layer / light emitting layer / insulating layer / cathode (10) Anode / inorganic semiconductor layer / insulating layer / Light emitting layer / insulating layer / cathode (11) Anode / organic semiconductor layer / insulating layer / light emitting layer / insulating layer / cathode (12) Anode / insulating layer / hole injection layer / hole transport layer / light emitting layer / insulating layer / Cathode (13) Anode / insulating layer / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode But, but it is not limited to these. Of these, the configuration of (8) is preferably used.
 本発明の含窒素複素環誘導体は、有機EL素子のどの有機薄膜層に用いてもよいが、好ましくは発光帯域又は電子輸送帯域に用いることができ、特に好ましくは電子注入層、電子輸送層及び発光層に用いる。 The nitrogen-containing heterocyclic derivative of the present invention may be used in any organic thin film layer of an organic EL device, but can be preferably used in a light emission band or an electron transport band, and particularly preferably an electron injection layer, an electron transport layer, and Used for the light emitting layer.
 図1に(8)の構成を示す。有機EL素子1は、陰極10及び陽極20と、その間に挟持されている、正孔注入層31、正孔輸送層32、発光層33、電子注入層34からなる。正孔注入層31、正孔輸送層32、発光層33、電子注入層34が、複数の有機薄膜層に相当する。これら有機薄膜層31~34の少なくとも一層が、本発明の含窒素複素環誘導体を含有する。 Fig. 1 shows the configuration (8). The organic EL element 1 includes a cathode 10 and an anode 20, and a hole injection layer 31, a hole transport layer 32, a light emitting layer 33, and an electron injection layer 34 sandwiched therebetween. The hole injection layer 31, the hole transport layer 32, the light emitting layer 33, and the electron injection layer 34 correspond to a plurality of organic thin film layers. At least one of these organic thin film layers 31 to 34 contains the nitrogen-containing heterocyclic derivative of the present invention.
 以下有機EL素子の各部材について説明する。
 有機EL素子は、通常基板上に作製し、基板は有機EL素子を支持する。平滑な基板を用いるのが好ましい。この基板を通して光を取り出すときは、基板は透光性であり、波長400~700nmの可視領域の光の透過率が50%以上であるものが望ましい。
 このような透光性基板としては、例えば、ガラス板、合成樹脂板等が好適に用いられる。ガラス板としては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等の板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルスルフィド樹脂、ポリスルホン樹脂等の板が挙げられる。
Hereinafter, each member of the organic EL element will be described.
The organic EL element is usually produced on a substrate, and the substrate supports the organic EL element. It is preferable to use a smooth substrate. When light is extracted through this substrate, it is desirable that the substrate is translucent and that the transmittance of light in the visible region with a wavelength of 400 to 700 nm is 50% or more.
As such a translucent board | substrate, a glass plate, a synthetic resin board, etc. are used suitably, for example. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the synthetic resin plate include plates made of polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, polysulfone resin, and the like.
 陽極は、正孔を正孔注入層、正孔輸送層又は発光層に注入し、4.5eV以上の仕事関数を有することが効果的である。陽極材料の具体例としては、酸化インジウム錫(ITO)、酸化インジウムと酸化亜鉛の混合物(IZO)、ITOと酸化セリウムの混合物(ITCO)、IZOと酸化セリウムの混合物(IZCO)、酸化インジウムと酸化セリウムの混合物(ICO)、酸化亜鉛と酸化アルミニウムの混合物(AZO)、酸化錫(NESA)、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質から蒸着法やスパッタリング法等で形成できる。
 発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率を10%より大きくすることが好ましい。また陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmである。
It is effective for the anode to inject holes into the hole injection layer, the hole transport layer, or the light emitting layer and to have a work function of 4.5 eV or more. Specific examples of anode materials include indium tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), a mixture of ITO and cerium oxide (ITCO), a mixture of IZO and cerium oxide (IZCO), and indium oxide and oxide. Examples thereof include a mixture of cerium (ICO), a mixture of zinc oxide and aluminum oxide (AZO), tin oxide (NESA), gold, silver, platinum, and copper. The anode can be formed from these electrode materials by vapor deposition or sputtering.
When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. Although the film thickness of the anode depends on the material, it is usually 10 nm to 1 μm, preferably 10 to 200 nm.
 発光層は、以下の機能を有する。
(i)注入機能:電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰極又は電子注入層より電子を注入することができる機能
(ii)輸送機能:注入した電荷(電子と正孔)を電界の力で移動させる機能
(iii)発光機能:電子と正孔の再結合させ、これを発光につなげる機能
The light emitting layer has the following functions.
(I) Injection function: a function capable of injecting holes from the anode or hole injection layer when an electric field is applied, and a function capable of injecting electrons from the cathode or electron injection layer (ii) transport function: injected charge (electrons (Iii) Light emission function: Function to recombine electrons and holes and connect them to light emission
 発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物を沈着して形成した膜や、溶液状態又は液相状態の材料化合物を固体化して形成した膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。また樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。 As a method for forming the light emitting layer, for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied. The light emitting layer is particularly preferably a molecular deposited film. The molecular deposited film is a film formed by depositing a material compound in a gas phase state or a film formed by solidifying a material compound in a solution state or a liquid phase state. Usually, this molecular deposited film is an LB. The thin film (molecular accumulation film) formed by the method can be classified by the difference in aggregated structure and higher order structure, and the functional difference resulting therefrom. The light emitting layer can also be formed by dissolving a binder such as a resin and a material compound in a solvent to form a solution, and then thinning the solution by a spin coating method or the like.
 発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及びこれらの誘導体や蛍光色素等が挙げられるが、これらに限定されるものではない。 Examples of the light emitting material or the doping material that can be used for the light emitting layer include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, Coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine , Merocyanine, imidazole chelating oxinoid compounds, quinacridone, rubrene and their derivatives And a fluorescent dye and the like, but not limited thereto.
 発光層に使用できるホスト材料の具体例としては、下記(i)~(ix)で表される化合物が挙げられる。
 下記式(i)で表される非対称アントラセン。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the host material that can be used for the light emitting layer include compounds represented by the following (i) to (ix).
Asymmetric anthracene represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000022
(式中、Ar001は置換もしくは無置換の環形成炭素数10~50の縮合芳香族基である。Ar002は置換もしくは無置換の環形成炭素数6~50の芳香族基である。X001~X003は、それぞれ独立に置換もしくは無置換の環形成炭素数6~50の芳香族基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。a、b及びcは、それぞれ0~4の整数である。nは1~3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。) (In the formula, Ar 001 is a substituted or unsubstituted condensed aromatic group having 10 to 50 ring carbon atoms. Ar 002 is a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms. X 001 to X 003 are each independently a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted group; An alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted ring forming carbon atom having 6 to 50 carbon atoms Aryloxy group, substituted or unsubstituted arylthio group having 6 to 50 carbon atoms, substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, carboxyl group, halogen atom, cyano group, nitro group, A, b, and c are each an integer of 0 to 4. n is an integer of 1 to 3. When n is 2 or more, [] is the same or different. May be.)
 下記式(ii)で表される非対称モノアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000023
An asymmetric monoanthracene derivative represented by the following formula (ii).
Figure JPOXMLDOC01-appb-C000023
(式中、Ar003及びAr004は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族環基であり、m及びnは、それぞれ1~4の整数である。ただし、m=n=1でかつAr003とAr004のベンゼン環への結合位置が左右対称型の場合には、Ar003とAr004は同一ではなく、m又はnが2~4の整数の場合にはmとnは異なる整数である。
 R001~R010は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50の芳香族環基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。)
(In the formula, Ar 003 and Ar 004 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, and m and n are each an integer of 1 to 4, provided that , M = n = 1, and Ar 003 and Ar 004 are symmetric with respect to the benzene ring, Ar 003 and Ar 004 are not the same, and m or n is an integer of 2 to 4 Where m and n are different integers.
R 001 to R 010 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms. Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted Aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, substituted or unsubstituted carbon number 2 to 50 alkoxycarbonyl groups, substituted or unsubstituted silyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups, and hydroxy groups. )
 下記式(iii)で表される非対称ピレン誘導体。
Figure JPOXMLDOC01-appb-C000024
An asymmetric pyrene derivative represented by the following formula (iii).
Figure JPOXMLDOC01-appb-C000024
(式中、Ar005及びAr006は、それぞれ置換もしくは無置換の環形成炭素数6~50の芳香族基である。
 L001及びL002は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
 mは0~2の整数、nは1~4の整数、sは0~2の整数、tは0~4の整数である。
( Wherein Ar 005 and Ar 006 are each a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms.
L 001 and L 002 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
m is an integer from 0 to 2, n is an integer from 1 to 4, s is an integer from 0 to 2, and t is an integer from 0 to 4.
 下記式(iv)で表される非対称アントラセン誘導体。
Figure JPOXMLDOC01-appb-C000025
An asymmetric anthracene derivative represented by the following formula (iv):
Figure JPOXMLDOC01-appb-C000025
(式中、A001及びA002は、それぞれ独立に、置換もしくは無置換の環形成炭素数10~20の縮合芳香族環基である。
 Ar007及びAr008は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50の芳香族環基である。
 R011~R020は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50の芳香族環基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシ基である。
 Ar007、Ar008、R019及びR020は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
(In the formula, A 001 and A 002 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 ring carbon atoms.
Ar 007 and Ar 008 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms.
R 011 to R 020 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 ring atoms. Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted Aralkyl group having 7 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, substituted or unsubstituted carbon number 2 to 50 alkoxycarbonyl groups, substituted or unsubstituted silyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups or hydroxy groups.
Ar 007 , Ar 008 , R 019 and R 020 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
 下記式(v)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000026
An anthracene derivative represented by the following formula (v).
Figure JPOXMLDOC01-appb-C000026
(式中、R021~R030は、それぞれ独立に水素原子,置換もしくは無置換の炭素数1~50のアルキル基,置換もしくは無置換の環形成炭素数3~50のシクロアルキル基,置換もしくは無置換の環形成炭素数6~50のアリール基,置換もしくは無置換の炭素数1~50のアルコキシル基,置換もしくは無置換の環形成炭素数6~50のアリールオキシ基,置換もしくは無置換の炭素数1~50のアルキルアミノ基,置換もしくは無置換の炭素数2~50のアルケニル基,置換もしくは無置換の環形成炭素数6~50のアリールアミノ基又は置換もしくは無置換の環形成原子数5~50の複素環基を示し、a及びbは、それぞれ1~5の整数を示し、それらが2以上の場合、R021同士又はR022同士は、それぞれにおいて、同一でも異なっていてもよく、また、R021同士又はR022同士が結合して環を形成していてもよいし、R023とR024,R025とR026,R027とR028,R029とR030がたがいに結合して環を形成していてもよい。L003は単結合、-O-,-S-,-N(R)-(Rは置換もしくは無置換の炭素数1~50のアルキル基又は置換もしくは無置換の環形成炭素数6~50のアリール基である)、置換もしくは無置換の炭素数1~50のアルキレン基又は置換もしくは無置換の環形成炭素数6~50のアリーレン基を示す。) Wherein R 021 to R 030 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted Unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted An alkylamino group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring atom number 5 to show the 50 heterocyclic group, a and b are each an integer of 1 to 5; when they are 2 or more, R 021 s or R 022 each other, in each be the same or different It may have, also, may have R 021 s or R 022 may combine with each other to form a ring, R 023 and R 024, R 025 and R 026, R 027 and R 028, R 029 and R 030 L 003 may be a single bond, —O—, —S—, —N (R) — (where R is a substituted or unsubstituted alkyl having 1 to 50 carbon atoms). A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms), a substituted or unsubstituted alkylene group having 1 to 50 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms. Is shown.)
 下記式(vi)で表されるアントラセン誘導体。
Figure JPOXMLDOC01-appb-C000027
An anthracene derivative represented by the following formula (vi).
Figure JPOXMLDOC01-appb-C000027
(式中、R031~R040は、それぞれ独立に水素原子,置換もしくは無置換の炭素数1~50のアルキル基,置換もしくは無置換の環形成炭素数3~50のシクロアルキル基,置換もしくは無置換の環形成炭素数6~50のアリール基,置換もしくは無置換の炭素数1~50のアルコキシル基,置換もしくは無置換の環形成炭素数6~50のアリールオキシ基,置換もしくは無置換の炭素数1~50のアルキルアミノ基,置換もしくは無置換の環形成炭素数6~50のアリールアミノ基、又は置換もしくは無置換の環形成原子数5~50の複素環基を示し、c,d,e及びfは、それぞれ1~5の整数を示し、それらが2以上の場合、R031同士,R032同士,R036同士又はR037同士は、それぞれにおいて、同一でも異なっていてもよく、またR031同士,R032同士,R036同士又はR037同士が結合して環を形成していてもよいし、R033とR034,R038とR039がたがいに結合して環を形成していてもよい。L004は単結合、-O-,-S-,-N(R)-(Rは置換もしくは無置換の炭素数1~50のアルキル基又は置換もしくは無置換の環形成炭素数6~50のアリール基である)、置換もしくは無置換の炭素数1~50のアルキレン基又は置換もしくは無置換の環形成炭素数6~50のアリーレン基を示す。) (Wherein R 031 to R 040 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted, Unsubstituted aryl group having 6 to 50 ring carbon atoms, substituted or unsubstituted alkoxyl group having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted An alkylamino group having 1 to 50 carbon atoms, a substituted or unsubstituted arylamino group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms; c, d , E and f each represent an integer of 1 to 5, and when they are 2 or more, R 031 , R 032 , R 036 or R 037 may be the same or different from each other, Also R 031 , R 032 , R 036, or R 037 may combine to form a ring, or R 033 and R 034 , or R 038 and R 039 combine to form a ring. L 004 may be a single bond, —O—, —S—, —N (R) — (where R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted ring carbon number. A substituted or unsubstituted alkylene group having 1 to 50 carbon atoms or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.)
 下記式(vii)で表されるスピロフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000028
Spirofluorene derivatives represented by the following formula (vii).
Figure JPOXMLDOC01-appb-C000028
(式中、A005~A008は、それぞれ独立に、置換もしくは無置換のビフェニリル基又は置換もしくは無置換のナフチル基である。) ( Wherein A 005 to A 008 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.)
 下記式(viii)で表される縮合環含有化合物。
Figure JPOXMLDOC01-appb-C000029
A condensed ring-containing compound represented by the following formula (viii):
Figure JPOXMLDOC01-appb-C000029
(式中、A011~A013は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。A014~A016は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。R041~R043は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシル基、環形成炭素数6~18のアリールオキシ基、炭素数7~18のアラルキルオキシ基、環形成炭素数6~16のアリールアミノ基、ニトロ基、シアノ基、炭素数2~6のエステル基又はハロゲン原子を示し、A011~A016のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。) ( Wherein A 011 to A 013 are each independently a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms. A 014 to A 016 are each independently a hydrogen atom, An unsubstituted aryl group having 6 to 50 ring carbon atoms, each of R 041 to R 043 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, carbon An alkoxyl group having 1 to 6 carbon atoms, an aryloxy group having 6 to 18 ring carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 6 to 16 ring carbon atoms, a nitro group, a cyano group, and a carbon number 2 to 6 ester groups or halogen atoms, and at least one of A 011 to A 016 is a group having three or more condensed aromatic rings.
 下記式(ix)で表されるフルオレン化合物。
Figure JPOXMLDOC01-appb-C000030
A fluorene compound represented by the following formula (ix).
Figure JPOXMLDOC01-appb-C000030
(式中、R051及びR052は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基,置換もしくは無置換の環形成原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアミノ基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR051同士、R052同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR051及びR052は、同じであっても異なっていてもよい。R053及びR054は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基または置換もしくは無置換の環形成原子数5~50の複素環基を表わし、異なるフルオレン基に結合するR053同士、R054同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR053及びR054は、同じであっても異なっていてもよい。Ar011及びAr012は、ベンゼン環の合計が3個以上の置換もしくは無置換の縮合多環芳香族基またはベンゼン環と複素環の合計が3個以上の置換もしくは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar011及びAr012は、同じであっても異なっていてもよい。nは1~10の整数を表す。) Wherein R 051 and R 052 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted ring-forming carbon; An aryl group having 6 to 50 atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted amino group having 1 to 50 carbon atoms, a cyano group, or a halogen atom. R 051 together, R 052 together to bind to may be different even in the same, R 051 and R 052 bonding to the same fluorene group may .R 053 and be different even in the same R 054 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Also A substituted or unsubstituted ring atoms 5-50 heterocyclic group, each other R 053 which bonded to different fluorene groups R 054 may be different even in the same, bind to the same fluorene group R 053 and R 054 may be the same or different, Ar 011 and Ar 012 may be a substituted or unsubstituted condensed polycyclic aromatic group having a total of three or more benzene rings or a benzene ring. A condensed polycyclic heterocyclic group in which the total number of heterocyclic rings is bonded to a fluorene group by 3 or more substituted or unsubstituted carbons, and Ar 011 and Ar 012 may be the same or different, and n is different. Represents an integer of 1 to 10.)
 本発明の有機EL素子においては、所望により発光層に、本発明の発光材料の他に、りん光性ドーパント及び/又は蛍光性ドーパントを含有してもよい。また、本発明の化合物を含む発光層に、これらのドーパントを含む発光層を積層してもよい。 In the organic EL device of the present invention, the light emitting layer may contain a phosphorescent dopant and / or a fluorescent dopant in addition to the light emitting material of the present invention, if desired. Moreover, you may laminate | stack the light emitting layer containing these dopants on the light emitting layer containing the compound of this invention.
 りん光性ドーパントは三重項励起子から発光することのできる化合物である。三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。りん光性化合物は単独で使用してもよいし、2種以上を併用してもよい。 A phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from triplet excitons, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os and Re, and is preferably a porphyrin metal complex or ortho Metalated metal complexes are preferred. The phosphorescent compounds may be used alone or in combination of two or more.
 ポルフィリン金属錯体としては、ポルフィリン白金錯体が好ましい。
 オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい配位子としては、フェニルピリジン骨格、ビピリジル骨格又はフェナントロリン骨格を有する化合物;2-フェニルピリジン誘導体;7,8-ベンゾキノリン誘導体;2-(2-チエニル)ピリジン誘導体;2-(1-ナフチル)ピリジン誘導体;2-フェニルキノリン誘導体等が挙げられる。これらの配位子は必要に応じて置換基を有してもよい。特に、フッ素化物、トリフルオロメチル基を導入したものが、青色系ドーパントとしては好ましい。さらに補助配位子としてアセチルアセトナート、ピクリン酸等の上記配位子以外の配位子を有していてもよい。
The porphyrin metal complex is preferably a porphyrin platinum complex.
There are various ligands that form ortho-metalated metal complexes. Preferred ligands include compounds having a phenylpyridine skeleton, bipyridyl skeleton or phenanthroline skeleton; 2-phenylpyridine derivatives; 7,8- Benzoquinoline derivatives; 2- (2-thienyl) pyridine derivatives; 2- (1-naphthyl) pyridine derivatives; 2-phenylquinoline derivatives and the like. These ligands may have a substituent as needed. In particular, a fluorinated compound or a compound having a trifluoromethyl group introduced is preferable as a blue dopant. Furthermore, you may have ligands other than the said ligands, such as an acetylacetonate and picric acid, as an auxiliary ligand.
 このような金属錯体の具体例は、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等が挙げられるが、これらに限定されず、要求される発光色、素子性能、使用するホスト化合物により適切な錯体が選ばれる。 Specific examples of such metal complexes include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2- Phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, etc. An appropriate complex is selected depending on the device performance and the host compound to be used.
 りん光性ドーパントの発光層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1~70質量%であり、1~30質量%が好ましい。りん光性化合物の含有量が0.1質量%未満では発光が微弱でありその含有効果が十分に発揮されない恐れがあり、70質量%を超える場合は、濃度消光と言われる現象が顕著になり素子性能が低下する恐れがある。 There is no restriction | limiting in particular as content in the light emitting layer of a phosphorescent dopant, Although it can select suitably according to the objective, For example, it is 0.1-70 mass%, and 1-30 mass% is preferable. If the content of the phosphorescent compound is less than 0.1% by mass, the light emission is weak and the effect of the content may not be sufficiently exhibited. If the content exceeds 70% by mass, a phenomenon called concentration quenching becomes prominent. The device performance may be degraded.
 蛍光性ドーパントとしては、アミン系化合物、芳香族化合物、トリス(8-キノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等から、要求される発光色に合わせて化合物を選択することが好ましく、スチリルアミン化合物、スチリルジアミン化合物、アリールアミン化合物、アリールジアミン化合物がさらに好ましい。また、アミン化合物ではない縮合多環芳香族化合物も好ましい。これらの蛍光性ドーパントは単独でもまた複数組み合わせて使用してもよい。 Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc. It is preferable to select a compound according to the emission color, and a styrylamine compound, a styryldiamine compound, an arylamine compound, and an aryldiamine compound are more preferable. Moreover, the condensed polycyclic aromatic compound which is not an amine compound is also preferable. These fluorescent dopants may be used alone or in combination.
 スチリルアミン化合物及びスチリルジアミン化合物としては、下記式(A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000031
As the styrylamine compound and styryldiamine compound, those represented by the following formula (A) are preferable.
Figure JPOXMLDOC01-appb-C000031
(式中、Ar101は、ベンゼン、ナフタレン、ビフェニル、ターフェニル、スチルベン、ジスチリルアリールから誘導されるp価の基であり、Ar102及びAr103はそれぞれ炭素数が6~20の芳香族炭化水素基であり、Ar101、Ar102及びAr103は置換されていてもよい。Ar101~Ar103のいずれか一つはスチリル基で置換されている。さらに好ましくはAr102又はAr103の少なくとも一方はスチリル基で置換されている。pは1~4の整数であり、好ましくは1~2の整数である。)
 ここで、炭素数が6~20の芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ターフェニル基等が挙げられる。
(In the formula, Ar 101 is a p-valent group derived from benzene, naphthalene, biphenyl, terphenyl, stilbene, or distyrylaryl, and Ar 102 and Ar 103 are aromatic carbon atoms having 6 to 20 carbon atoms, respectively. A hydrogen group, Ar 101 , Ar 102 and Ar 103 may be substituted, and any one of Ar 101 to Ar 103 is substituted with a styryl group, more preferably at least Ar 102 or Ar 103 One is substituted with a styryl group, and p is an integer of 1 to 4, preferably an integer of 1 to 2.)
Here, examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
 アリールアミン化合物及びアリールジアミン化合物としては、下記式(B)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000032
As the arylamine compound and the aryldiamine compound, those represented by the following formula (B) are preferable.
Figure JPOXMLDOC01-appb-C000032
(式中、Ar111はq価の置換もしくは無置換の環形成炭素数6~40のアリール基または置換もしくは無置換の環形成原子数5~40のヘテロアリール基であり、Ar112,Ar113はそれぞれ置換もしくは無置換の環形成炭素数6~40のアリール基または置換もしくは無置換の環形成原子数5~40のヘテロアリール基である。qは1~4の整数であり、好ましくは1~2の整数である。)
 前記アリール基およびヘテロアリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基、コロニル基、ビフェニル基、ターフェニル基、ピローリル基、フラニル基、チオフェニル基、ベンゾチオフェニル基、オキサジアゾリル基、ジフェニルアントラニル基、インドリル基、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテニル基、アセナフトフルオランテニル基、スチルベン基、ペリレニル基、クリセニル基、ピセニル基、トリフェニレニル基、ルビセニル基、ベンゾアントラセニル基、フェニルアントラニル基、ビスアントラセニル基等が挙げられ、ナフチル基、アントラニル基、クリセニル基、ピレニル基が好ましい。
(In the formula, Ar 111 is a q-valent substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms; Ar 112 , Ar 113 Each represents a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 40 ring atoms, q is an integer of 1 to 4, preferably 1 It is an integer of ~ 2.)
Examples of the aryl group and heteroaryl group include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a coronyl group, a biphenyl group, a terphenyl group, a pyrrolyl group, a furanyl group, a thiophenyl group, and a benzothiophenyl group. Oxadiazolyl group, diphenylanthranyl group, indolyl group, carbazolyl group, pyridyl group, benzoquinolyl group, fluoranthenyl group, acenaphthofluoranthenyl group, stilbene group, perylenyl group, chrysenyl group, picenyl group, triphenylenyl group, rubicenyl group, Examples include a benzoanthracenyl group, a phenylanthranyl group, and a bisanthracenyl group, and a naphthyl group, an anthranyl group, a chrycenyl group, and a pyrenyl group are preferable.
 前記アリール基およびヘテロアリール基の好ましい置換基としては、炭素数1~6のアルキル基(エチル基、メチル基、イソプロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、等)、炭素数3~6のシクロアルキル基(シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアルコキシ基(エトキシ基、メトキシ基、イソプロポキシ基、n-プロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基等)、炭素数3~6のシクロアルコキシ基(シクロペントキシ基、シクロヘキシルオキシ基等)、環形成炭素数6~40のアリール基、環形成炭素数6~40のアリール基で置換されたアミノ基、環形成炭素数6~40のアリール基を有するエステル基、炭素数1~6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。 Preferred substituents for the aryl group and heteroaryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, isopropyl group, n-propyl group, s-butyl group, t-butyl group, pentyl group, Hexyl group, etc.), C3-C6 cycloalkyl group (cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, isopropoxy group, n-propoxy group, s- Butoxy group, t-butoxy group, pentoxy group, hexyloxy group, etc.), cycloalkoxy group having 3 to 6 carbon atoms (cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 6 to 40 ring carbon atoms, ring An amino group substituted with an aryl group having 6 to 40 carbon atoms, an ester group having an aryl group having 6 to 40 ring carbon atoms, an aryl group having 1 to 6 carbon atoms An ester group having Kill group, a cyano group, a nitro group and a halogen atom.
 発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有してもよい。発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、最も好ましくは10~50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。 The light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary. The thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
 正孔注入層及び正孔輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔注入層及び正孔輸送層の材料としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば104~106V/cmの電界印加時に、10-4cm2/V・秒以上であるのが好ましい。
 正孔注入層及び正孔輸送層の材料としては、特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層及び正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。
The hole injection layer and the hole transport layer help to inject holes into the light emitting layer and transport to the light emitting region, and have a high hole mobility and a small ionization energy of usually 5.5 eV or less. As a material for such a hole injection layer and a hole transport layer, a material that transports holes to the light emitting layer with lower electric field strength is preferable, and the hole mobility is, for example, 10 4 to 10 6 V / cm. When an electric field is applied, it is preferably 10 −4 cm 2 / V · sec or more.
The material for the hole injection layer and the hole transport layer is not particularly limited, and is conventionally used as a charge transport material for holes in optical transmission materials, and the hole injection layer and holes for organic EL devices. An arbitrary thing can be selected and used from the well-known things used for the transport layer.
 正孔注入層及び正孔輸送層に、例えば、下記式で表される芳香族アミン誘導体が使用できる。
Figure JPOXMLDOC01-appb-C000033
For the hole injection layer and the hole transport layer, for example, an aromatic amine derivative represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000033
 (式中、Ar211~Ar213およびAr221~Ar223はそれぞれ置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、Ar203~Ar208はそれぞれ置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。a~c及びp~rはそれぞれ0~3の整数である。Ar203とAr204、Ar205とAr206、Ar207とAr208はそれぞれ互いに連結して飽和もしくは不飽和の環を形成してもよい。) (Wherein Ar 211 to Ar 213 and Ar 221 to Ar 223 are each a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms. Ar 203 to Ar 208 are each a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, a to c and p to r is an integer of 0 to 3. Ar 203 and Ar 204 , Ar 205 and Ar 206 , Ar 207 and Ar 208 may be connected to each other to form a saturated or unsaturated ring.
 置換もしくは無置換の環形成炭素数6~50のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-テルフェニル-4-イル基、p-テルフェニル-3-イル基、p-テルフェニル-2-イル基、m-テルフェニル-4-イル基、m-テルフェニル-3-イル基、m-テルフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-テルフェニル4-イル基が挙げられる。 Specific examples of the substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1 -Phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4 -Pyrenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl Group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p- Ryl group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4 Examples include a '-methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group.
 置換もしくは無置換の環形成炭素数6~50のアリーレン基の具体例としては、上記アリール基から1個の水素原子を除いて得られる基が挙げられる。 Specific examples of the substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
 置換もしくは無置換の環形成原子数5~50のヘテロアリール基の具体例としては、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、1-フェナントリジニル基、2-フェナントリジニル基、3-フェナントリジニル基、4-フェナントリジニル基、6-フェナントリジニル基、7-フェナントリジニル基、8-フェナントリジニル基、9-フェナントリジニル基、10-フェナントリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,9-フェナントロリン-2-イル基、1,9-フェナントロリン-3-イル基、1,9-フェナントロリン-4-イル基、1,9-フェナントロリン-5-イル基、1,9-フェナントロリン-6-イル基、1,9-フェナントロリン-7-イル基、1,9-フェナントロリン-8-イル基、1,9-フェナントロリン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル1-インドリル基、4-t-ブチル1-インドリル基、2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基が挙げられる。 Specific examples of the substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms include 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, pyrazinyl group, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 1-indolyl group, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7-indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-i Benzofuranyl group, 4-isobenzofuranyl group, 5-isobenzofuranyl group, 6-isobenzofuranyl group, 7-isobenzofuranyl group, quinolyl group, 3-quinolyl group, 4-quinolyl group, 5- Quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8- Isoquinolyl group, 2-quinoxalinyl group, 5-quinoxalinyl group, 6-quinoxalinyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group, 1-phenanthridinyl group 2-phenanthridinyl group, 3-phenanthridinyl group, 4-phenanthridinyl group, 6-phenanthridinyl group 7-phenanthridinyl group, 8-phenanthridinyl group, 9-phenanthridinyl group, 10-phenanthridinyl group, 1-acridinyl group, 2-acridinyl group, 3-acridinyl group, 4-acridinyl group Group, 9-acridinyl group, 1,7-phenanthroline-2-yl group, 1,7-phenanthroline-3-yl group, 1,7-phenanthroline-4-yl group, 1,7-phenanthroline-5-yl group 1,7-phenanthroline-6-yl group, 1,7-phenanthroline-8-yl group, 1,7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-phenanthroline -2-yl group, 1,8-phenanthroline-3-yl group, 1,8-phenanthroline-4-yl group, 1,8-phenanthroline-5-yl group, 1 , 8-phenanthroline-6-yl group, 1,8-phenanthroline-7-yl group, 1,8-phenanthroline-9-yl group, 1,8-phenanthroline-10-yl group, 1,9-phenanthroline-2 -Yl group, 1,9-phenanthroline-3-yl group, 1,9-phenanthroline-4-yl group, 1,9-phenanthroline-5-yl group, 1,9-phenanthroline-6-yl group, 1, 9-phenanthroline-7-yl group, 1,9-phenanthroline-8-yl group, 1,9-phenanthroline-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3- Yl group, 1,10-phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group, 2,9-phenanthroline-1-yl group, 2,9-phenyl group Nantrolin-3-yl group, 2,9-phenanthroline-4-yl group, 2,9-phenanthroline-5-yl group, 2,9-phenanthroline-6-yl group, 2,9-phenanthroline-7-yl group 2,9-phenanthroline-8-yl group, 2,9-phenanthroline-10-yl group, 2,8-phenanthroline-1-yl group, 2,8-phenanthroline-3-yl group, 2,8-phenanthroline -4-yl group, 2,8-phenanthroline-5-yl group, 2,8-phenanthroline-6-yl group, 2,8-phenanthroline-7-yl group, 2,8-phenanthroline-9-yl group, 2,8-phenanthroline-10-yl group, 2,7-phenanthroline-1-yl group, 2,7-phenanthroline-3-yl group, 2,7-phenanthroline- -Yl group, 2,7-phenanthroline-5-yl group, 2,7-phenanthroline-6-yl group, 2,7-phenanthroline-8-yl group, 2,7-phenanthroline-9-yl group, 2, 7-phenanthroline-10-yl group, 1-phenazinyl group, 2-phenazinyl group, 1-phenothiazinyl group, 2-phenothiazinyl group, 3-phenothiazinyl group, 4-phenothiazinyl group, 10-phenothiazinyl group, 1 -Phenoxazinyl group, 2-phenoxazinyl group, 3-phenoxazinyl group, 4-phenoxazinyl group, 10-phenoxazinyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-oxadiazolyl group, 5-oxadiazolyl group, 3 -Flazanyl group, 2-thienyl group, 3-thienyl group, 2-methylpyrrole-1 -Yl group, 2-methylpyrrol-3-yl group, 2-methylpyrrol-4-yl group, 2-methylpyrrol-5-yl group, 3-methylpyrrol-1-yl group, 3-methylpyrrole-2 -Yl group, 3-methylpyrrol-4-yl group, 3-methylpyrrol-5-yl group, 2-t-butylpyrrol-4-yl group, 3- (2-phenylpropyl) pyrrol-1-yl group 2-methyl-1-indolyl group, 4-methyl-1-indolyl group, 2-methyl-3-indolyl group, 4-methyl-3-indolyl group, 2-t-butyl 1-indolyl group, 4-t -Butyl 1-indolyl group, 2-t-butyl 3-indolyl group, 4-t-butyl 3-indolyl group.
 置換もしくは無置換の環形成炭素数6~50のヘテロアリーレン基の具体例としては、上記ヘテロアリール基から1個の水素原子を除いて得られる基が挙げられる。 Specific examples of the substituted or unsubstituted heteroarylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the heteroaryl group.
 さらに、正孔注入層及び正孔輸送層は下記式で表される化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000034
Furthermore, the hole injection layer and the hole transport layer may contain a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000034
(式中、Ar231~Ar234はそれぞれ置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。Lは連結基であり、単結合、もしくは置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。xは0~5の整数である。)
 Ar232とAr233は互いに連結して飽和もしくは不飽和の環を形成してもよい。ここで置換もしくは無置換の環形成炭素数6~50のアリール基およびアリーレン基、及び置換もしくは無置換の環形成原子数5~50のヘテロアリール基およびヘテロアリーレン基の具体例としては、前記と同様のものがあげられる。
(Wherein Ar 231 to Ar 234 are each a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms. L is a linking group. A single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms, where x is an integer of 0 to 5 is there.)
Ar 232 and Ar 233 may combine with each other to form a saturated or unsaturated ring. Specific examples of the substituted or unsubstituted aryl group and arylene group having 6 to 50 ring carbon atoms and the substituted or unsubstituted heteroaryl group and heteroarylene group having 5 to 50 ring atoms are as described above. The same can be mentioned.
 さらに、正孔注入層及び正孔輸送層の材料の具体例としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。 Furthermore, specific examples of the material for the hole injection layer and the hole transport layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives. And amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers (particularly thiophene oligomers).
 正孔注入層及び正孔輸送層の材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。 The above materials can be used for the hole injection layer and the hole transport layer, but porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds should be used. Is preferred.
 また2個の縮合芳香族環を分子内に有する化合物、例えば4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(以下NPDと略記する)や、トリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4’’-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を用いることが好ましい。 Further, compounds having two condensed aromatic rings in the molecule, such as 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (hereinafter abbreviated as NPD), triphenylamine unit 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA), etc., which are connected in a starburst type. preferable.
 この他に下記式で表される含窒素複素環誘導体も用いることができる。
Figure JPOXMLDOC01-appb-C000035
In addition, a nitrogen-containing heterocyclic derivative represented by the following formula can also be used.
Figure JPOXMLDOC01-appb-C000035
 式中、R201~R206はそれぞれ置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成原子数5~50の複素環基のいずれかを示す。R201とR202、R203とR204、R205とR206、R201とR206、R202とR203、又はR204とR205は縮合環を形成してもよい。 In the formula, each of R 201 to R 206 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted carbon group having 7 to 50 carbon atoms. An aralkyl group, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms. R 201 and R 202, R 203 and R 204, R 205 and R 206, R 201 and R 206, R 202 and R 203, or R 204 and R 205 may form a condensed ring.
 さらに、下記式の化合物も用いることができる。
Figure JPOXMLDOC01-appb-C000036
Furthermore, the compound of a following formula can also be used.
Figure JPOXMLDOC01-appb-C000036
 R211~R216は置換基、好ましくはそれぞれシアノ基、ニトロ基、スルホニル基、カルボニル基、トリフルオロメチル基、ハロゲン等の電子吸引基である。 R 211 to R 216 are substituents, preferably each an electron withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, and a halogen.
 また、p型Si、p型SiC等の無機化合物も正孔注入層及び正孔輸送層の材料として使用することができる。
 正孔注入層及び正孔輸送層は上述した化合物を、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入層及び正孔輸送層の膜厚は特に制限はないが、通常は5nm~5μmである。正孔注入層及び正孔輸送層は上述した材料の一種又は二種以上からなる一層で構成されてもよいし、異なる化合物からなる複数の正孔注入層及び正孔輸送層を積層したものであってもよい。
In addition, inorganic compounds such as p-type Si and p-type SiC can also be used as materials for the hole injection layer and the hole transport layer.
The hole injection layer and the hole transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually 5 nm to 5 μm. The hole injection layer and the hole transport layer may be composed of one or more layers made of the above-mentioned materials, or a plurality of hole injection layers and hole transport layers made of different compounds are laminated. There may be.
 電子障壁層は陰極から注入された電子を発光層内に閉じ込めることにより発光効率を向上させる層である。本発明の有機EL素子においては、上記正孔輸送層に使われる化合物のうち芳香族第三級アミン化合物などが用いられる。 The electron barrier layer is a layer that improves luminous efficiency by confining electrons injected from the cathode in the light emitting layer. In the organic EL device of the present invention, an aromatic tertiary amine compound or the like is used among the compounds used for the hole transport layer.
 有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、10-10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等を用いることができる。 The organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 −10 S / cm or more. As a material for such an organic semiconductor layer, a conductive oligomer such as a thiophene-containing oligomer or an arylamine oligomer, a conductive dendrimer such as an arylamine dendrimer, or the like can be used.
 電子注入層、電子輸送層(電子輸送帯域)は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、電子親和力が通常2.5eV以上と大きい。このような電子注入層、電子輸送層としては、より低い電界強度で電子を発光層に輸送する材料が好ましく、さらに電子の移動度が、例えば104~106V/cmの電界印加時に、少なくとも10-6cm2/V・秒であれば好ましい。
 本発明の含窒素複素環誘導体を電子輸送帯域に用いる場合、本発明の含窒素複素環誘導体単独で電子注入層、電子輸送層を形成してもよく、他の材料と混合してもよい。
 本発明の含窒素複素環誘導体と混合して電子注入層、電子輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において電子の電荷輸送材料として慣用されているものや、有機EL素子の電子注入層、電子輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
 また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる層である。本発明の有機EL素子においては、上記本発明化合物を電子注入層、電子輸送層、付着改善層として用いることが好ましい。
The electron injection layer and the electron transport layer (electron transport zone) are layers that assist the injection of electrons into the light emitting layer and transport them to the light emitting region, and have a high electron mobility and an electron affinity of usually 2.5 eV or more. . As such an electron injection layer and an electron transport layer, a material that transports electrons to the light emitting layer with a lower electric field strength is preferable. Further, when an electron mobility is 10 4 to 10 6 V / cm, for example, At least 10 −6 cm 2 / V · sec is preferable.
When the nitrogen-containing heterocyclic derivative of the present invention is used in the electron transport zone, the nitrogen-containing heterocyclic derivative of the present invention alone may form an electron injection layer or an electron transport layer, or may be mixed with other materials.
The material for forming the electron injecting layer and the electron transporting layer by mixing with the nitrogen-containing heterocyclic derivative of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. An arbitrary material can be selected and used from those commonly used as a transport material and known materials used for an electron injection layer and an electron transport layer of an organic EL element.
The adhesion improving layer is a layer made of a material that is particularly good in adhesion to the cathode among the electron injection layer. In the organic EL device of the present invention, the compound of the present invention is preferably used as an electron injection layer, an electron transport layer, and an adhesion improving layer.
 本発明の有機EL素子の好ましい形態に、電子を輸送する領域または陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。本発明では、本発明化合物に還元性ドーパントを含有する有機EL素子が好ましい。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物または希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
 また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)およびCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、およびBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、RbおよびCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、RbまたはCsであり、最も好ましのは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
A preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer. In this invention, the organic EL element which contains a reducing dopant in this invention compound is preferable. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. At least selected from the group consisting of oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complexes One substance can be preferably used.
More specifically, preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 .95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV). Particularly preferred are those having a work function of 2.9 eV or less, including at least one alkaline earth metal selected from the group consisting of: Among these, a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. . These alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, for example, Cs and Na, Cs and K, Cs and Rb, A combination of Cs, Na and K is preferred. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.
 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2SeおよびNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、およびCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KClおよびNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2およびBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、SbおよびZnの少なくとも一つの元素を含む酸化物、窒化物または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられる。
In the present invention, an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved. Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
Further, as a semiconductor constituting the electron transport layer, an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitrides or oxynitrides, or a combination of two or more thereof. Moreover, it is preferable that the inorganic compound which comprises an electron carrying layer is a microcrystal or an amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
 陰極としては、電子注入層、電子輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、好ましくは50~200nmである。
As the cathode, in order to inject electrons into the electron injecting layer, the electron transporting layer, or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used. . Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance with respect to the light emitted from the cathode is larger than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
 有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。 Organic EL elements apply an electric field to an ultra-thin film, so pixel defects are likely to occur due to leaks or shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes. Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, and oxide. Germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like may be used, and a mixture or laminate of these may be used.
 以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入層、正孔輸送層、及び必要に応じて電子注入層、電子輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
 以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
 まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3Torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~5μmの範囲で適宜選択することが好ましい。
By forming an anode, a light emitting layer, if necessary, a hole injection layer, a hole transport layer, and if necessary, an electron injection layer, an electron transport layer, and further forming a cathode by the materials and formation methods exemplified above An organic EL element can be produced. Moreover, an organic EL element can also be produced from the cathode to the anode in the reverse order.
Hereinafter, an example of manufacturing an organic EL element having a structure in which an anode / a hole injection layer / a light emitting layer / an electron injection layer / a cathode are sequentially provided on a translucent substrate will be described.
First, a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, to produce an anode. Next, a hole injection layer is provided on the anode. As described above, the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a uniform film can be easily obtained and pinholes are hardly generated. From the point of view, it is preferable to form by vacuum deposition. When forming a hole injection layer by vacuum deposition, the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure of the target hole injection layer, the recombination structure, etc. The source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 −7 to 10 −3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of −50 to 300 ° C., and the film thickness of 5 nm to 5 μm. .
 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層と同じような条件範囲の中から選択することができる。
 次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。
 本発明の含窒素複素環誘導体は、発光帯域や正孔輸送帯域のいずれの層に含有させるかによって異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含有させることができる。
 最後に陰極を積層して有機EL素子を得ることができる。
 陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
 この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
Next, the formation of the light emitting layer in which the light emitting layer is provided on the hole injection layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting. However, it is preferably formed by a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated. When the light emitting layer is formed by the vacuum vapor deposition method, the vapor deposition condition varies depending on the compound used, but it can be generally selected from the same condition range as that of the hole injection layer.
Next, an electron injection layer is provided on the light emitting layer. As with the hole injection layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film. Deposition conditions can be selected from the same condition range as the hole injection layer and the light emitting layer.
The nitrogen-containing heterocyclic derivative of the present invention varies depending on which layer in the light emission band or the hole transport band is contained, but when a vacuum vapor deposition method is used, it can be co-deposited with other materials. Moreover, when using a spin coat method, it can be made to contain by mixing with another material.
Finally, an organic EL element can be obtained by laminating a cathode.
The cathode is made of metal, and vapor deposition or sputtering can be used. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
The organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
 本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
 なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を-の極性にして、5~40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が-の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
The formation method of each layer of the organic EL element of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used. The organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by vacuum evaporation, molecular beam evaporation (MBE), a solution dipping method dissolved in a solvent, spin It can be formed by a known method such as a coating method, a casting method, a bar coating method, a roll coating method or the like.
The film thickness of each organic layer of the organic EL device of the present invention is not particularly limited. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur. Conversely, if it is too thick, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 μm is usually preferable.
When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to a negative polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an alternating voltage is applied, uniform light emission is observed only when the anode has a positive polarity and the cathode has a negative polarity. The waveform of the alternating current to be applied may be arbitrary.
 次に、本発明を実施例を用いてさらに詳しく説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
中間体A1の合成
Figure JPOXMLDOC01-appb-C000037
Synthesis of intermediate A1
Figure JPOXMLDOC01-appb-C000037
 アルゴン気流下300mL三口フラスコに、2-ブロモ-7-ヨード-9,9-ジメチル-9H-フルオレン20g(50mmol)、フェニルボロン酸6.6g(54mmol)、テトラキストリフェニルホスフィンパラジウム(0)1.2g(1.0mmol)、トルエン200mL、1,2-ジメトキシエタン100mL、2M炭酸ナトリウム水溶液80mLを加え、8時間加熱還流した。反応終了後、水を加え、析出した固体を水洗し、さらにメタノールで洗浄した。得られた固体を、トルエン-ヘキサンから再結晶により、精製し、白色粉末12.0gを得た。収率69% In a 300 mL three-necked flask under an argon stream, 20 g (50 mmol) of 2-bromo-7-iodo-9,9-dimethyl-9H-fluorene, 6.6 g (54 mmol) of phenylboronic acid, tetrakistriphenylphosphine palladium (0) 1. 2 g (1.0 mmol), 200 mL of toluene, 100 mL of 1,2-dimethoxyethane, and 80 mL of 2M aqueous sodium carbonate solution were added, and the mixture was heated to reflux for 8 hours. After completion of the reaction, water was added, and the precipitated solid was washed with water and further washed with methanol. The obtained solid was purified by recrystallization from toluene-hexane to obtain 12.0 g of a white powder. Yield 69%
中間体A2の合成
Figure JPOXMLDOC01-appb-C000038
Synthesis of intermediate A2
Figure JPOXMLDOC01-appb-C000038
 中間体A1の合成において、フェニルボロン酸の代わりに1-ナフタレンボロン酸を用いた以外は同様の操作を行うことにより、中間体A2を得た。収率55%。 Intermediate A2 was obtained by performing the same operation as in the synthesis of intermediate A1, except that 1-naphthaleneboronic acid was used instead of phenylboronic acid. Yield 55%.
合成例1(化合物1の合成)
Figure JPOXMLDOC01-appb-C000039
Synthesis Example 1 (Synthesis of Compound 1)
Figure JPOXMLDOC01-appb-C000039
 アルゴン気流下、100mL三口フラスコに、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール3.0g(8.6mmol)、ビス(ピナコラート)ジポロン2.2g(8.7mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)0.21g(0.29mmol)、酢酸カリウム2.5g(25mmol)、DMF50mlを加え、80℃で3時間加熱した。原料臭素化物の消失を確認後、室温まで冷却し、中間体A1を3.0g(8.6mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)0.21g(0.29mmol)、2M炭酸ナトリウム水溶液21mL加え、80℃で3時間加熱撹拌した。反応終了後、水を加えた後、析出した結晶を濾取し、水、メタノールで洗浄した後、減圧乾燥して、反応粗生成物を得た。カラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン)にて精製し、白色結晶を2.8g(収率61%)得た。このものは、FD-MS(フィールドディソプーションマススペクトル)の測定により、化合物1と同定した。 In a 100 mL three-necked flask under an argon stream, 3.0 g (8.6 mmol) of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole, 2.2 g (8.7 mmol) of bis (pinacolato) dipolone, [ 1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) 0.21 g (0.29 mmol), potassium acetate 2.5 g (25 mmol) and DMF 50 ml were added, and the mixture was heated at 80 ° C. for 3 hours. After confirming disappearance of the raw material bromide, the mixture was cooled to room temperature, and 3.0 g (8.6 mmol) of intermediate A1 and 0.21 g of [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) ( 0.29 mmol), 21 mL of 2M aqueous sodium carbonate solution was added, and the mixture was heated and stirred at 80 ° C. for 3 hours. After completion of the reaction, water was added, and the precipitated crystals were collected by filtration, washed with water and methanol, and then dried under reduced pressure to obtain a reaction crude product. Purification by column chromatography (silica gel, dichloromethane: hexane) gave 2.8 g (yield 61%) of white crystals. This was identified as Compound 1 by measurement of FD-MS (Field Desorption Mass Spectrum).
合成例2(化合物2の合成)
Figure JPOXMLDOC01-appb-C000040
Synthesis Example 2 (Synthesis of Compound 2)
Figure JPOXMLDOC01-appb-C000040
 合成例1において、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに1-(4-ブロモフェニル)-2-メチル-1H-ベンズイミダゾールを用いた以外は同様の操作を行うことにより、化合物2を得た。収率50%。 The same operation as in Synthesis Example 1 except that 1- (4-bromophenyl) -2-methyl-1H-benzimidazole was used instead of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole. To obtain compound 2. Yield 50%.
合成例3(化合物3の合成)
Figure JPOXMLDOC01-appb-C000041
Synthesis Example 3 (Synthesis of Compound 3)
Figure JPOXMLDOC01-appb-C000041
 合成例1において、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに5-ブロモ-1-メチル-2-フェニル-1H-ベンズイミダゾールを用いた以外は同様の操作を行うことにより、化合物3を得た。収率45%。 The same operation as in Synthesis Example 1 except that 5-bromo-1-methyl-2-phenyl-1H-benzimidazole was used instead of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole. This gave compound 3. Yield 45%.
合成例4(化合物4の合成)
Figure JPOXMLDOC01-appb-C000042
Synthesis Example 4 (Synthesis of Compound 4)
Figure JPOXMLDOC01-appb-C000042
 合成例1において、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに2-(4-ブロモフェニル)-1-メチル-1H-ベンズイミダゾールを用いた以外は同様の操作を行うことにより、化合物4を得た。収率40%。 The same operation as in Synthesis Example 1 except that 2- (4-bromophenyl) -1-methyl-1H-benzimidazole was used instead of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole. To obtain Compound 4. Yield 40%.
合成例5(化合物5の合成)
Figure JPOXMLDOC01-appb-C000043
Synthesis Example 5 (Synthesis of Compound 5)
Figure JPOXMLDOC01-appb-C000043
 合成例1において、1-フェニル-2-(4-ブロモフェニル)-1H-ベンズイミダゾールの代わりに2-(4-ブロモフェニル)-1-フェニル-1H-ベンズイミダゾールを用いた以外は同様の操作を行うことにより、化合物5を得た。収率55%。 The same operation as in Synthesis Example 1 except that 2- (4-bromophenyl) -1-phenyl-1H-benzimidazole was used instead of 1-phenyl-2- (4-bromophenyl) -1H-benzimidazole. To give compound 5. Yield 55%.
合成例6(化合物6の合成)
Figure JPOXMLDOC01-appb-C000044
Synthesis Example 6 (Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-C000044
 合成例1において、中間体A1の代わりに中間体A2を用いた以外は同様の操作を行うことにより、化合物6を得た。収率60%。 Compound 6 was obtained in the same manner as in Synthesis Example 1 except that Intermediate A2 was used instead of Intermediate A1. Yield 60%.
合成例7(化合物7の合成)
Figure JPOXMLDOC01-appb-C000045
Synthesis Example 7 (Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-C000045
 合成例1において、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに1-(4-ブロモフェニル)-2-メチル-1H-ベンズイミダゾールを、中間体A1の代わりに中間体A2を用いた以外は同様の操作を行うことにより、化合物7を得た。収率65%。 In Synthesis Example 1, instead of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole, 1- (4-bromophenyl) -2-methyl-1H-benzimidazole was used instead of intermediate A1. Compound 7 was obtained by carrying out the same operation except that Intermediate A2 was used. Yield 65%.
合成例8(化合物8の合成)
Synthesis Example 8 (Synthesis of Compound 8)
 合成例1において、中間体A1の代わりに2-ブロモ-9,9’-スピロビフルオレンを用いた以外は同様の操作を行うことにより、化合物8を得た。収率70%。 Compound 8 was obtained in the same manner as in Synthesis Example 1, except that 2-bromo-9,9'-spirobifluorene was used instead of intermediate A1. Yield 70%.
合成例9(化合物9の合成)
Figure JPOXMLDOC01-appb-C000047
Synthesis Example 9 (Synthesis of Compound 9)
Figure JPOXMLDOC01-appb-C000047
 合成例1において、中間体A1の代わりに2-ブロモ-9,9’-ジメチル-9H-フルオレンを用いた以外は同様の操作を行うことにより、化合物9を得た。収率60%。 Compound 9 was obtained in the same manner as in Synthesis Example 1, except that 2-bromo-9,9'-dimethyl-9H-fluorene was used instead of intermediate A1. Yield 60%.
実施例1(本発明化合物を電子注入層に用いた有機EL素子の作製)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmのN,N’-ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル膜(以下「TPD232膜」と略記する)を成膜した。このTPD232膜は、正孔注入層として機能する。TPD232膜の成膜に続けて、このTPD232膜上に膜厚20nmの4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル膜(以下「NPD膜」と略記する)を成膜した。このNPD膜は正孔輸送層として機能する。
 さらに、このNPD膜上に膜厚40nmで下記スチリル誘導体(DPVDPAN)と下記スチリルアミン誘導体(S1)を40:2の膜厚比で成膜し青色系発光層とした。
Figure JPOXMLDOC01-appb-C000048
Example 1 (Preparation of an organic EL device using the compound of the present invention for an electron injection layer)
A glass substrate (manufactured by Geomat Co.) with an ITO transparent electrode (anode) having a thickness of 25 mm × 75 mm × 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and N, N ′ having a film thickness of 60 nm is first covered so that the transparent electrode is covered on the surface on which the transparent electrode line is formed. -Bis (N, N'-diphenyl-4-aminophenyl) -N, N-diphenyl-4,4'-diamino-1,1'-biphenyl film (hereinafter abbreviated as "TPD232 film") was formed. . This TPD232 film functions as a hole injection layer. Following the formation of the TPD232 film, a 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film (hereinafter abbreviated as “NPD film”) having a thickness of 20 nm is formed on the TPD232 film. Was deposited. This NPD film functions as a hole transport layer.
Further, the following styryl derivative (DPVDPAN) and the following styrylamine derivative (S1) were formed on this NPD film at a film thickness ratio of 40: 2 to form a blue light emitting layer.
Figure JPOXMLDOC01-appb-C000048
 この膜上に電子輸送層として膜厚20nmで化合物(1)を蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを150nm蒸着させ金属陰極を形成し有機EL発光素子を形成した。 On this film, the compound (1) was deposited as an electron transport layer with a film thickness of 20 nm by vapor deposition. Thereafter, LiF was formed to a thickness of 1 nm. On the LiF film, metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
実施例2
 実施例1において、化合物(1)の代わりに、化合物(3)を用いた以外は同様にして有機EL素子を作製した。
Example 2
An organic EL device was produced in the same manner as in Example 1 except that the compound (3) was used instead of the compound (1).
実施例3
 実施例1において、化合物(1)の代わりに、化合物(4)を用いた以外は同様にして有機EL素子を作製した。
Example 3
An organic EL device was produced in the same manner as in Example 1 except that the compound (4) was used instead of the compound (1).
実施例4
 実施例1において、化合物(1)の代わりに、化合物(7)を用いた以外は同様にして有機EL素子を作製した。
Example 4
In Example 1, an organic EL device was produced in the same manner except that the compound (7) was used instead of the compound (1).
実施例5
 実施例1において、化合物(1)の代わりに、化合物(8)を用いた以外は同様にして有機EL素子を作製した。
Example 5
An organic EL device was produced in the same manner as in Example 1 except that the compound (8) was used instead of the compound (1).
実施例6
 実施例1において、化合物(1)の代わりに、化合物(9)を用いた以外は同様にして有機EL素子を作製した。
Example 6
In Example 1, an organic EL device was produced in the same manner except that the compound (9) was used instead of the compound (1).
比較例1
 実施例1において、化合物(1)の代わりに、国際公開番号WO 2004/080975 A1記載の下記化合物Aを用いた以外は同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000049
Comparative Example 1
An organic EL device was produced in the same manner as in Example 1 except that the following compound A described in International Publication No. WO 2004/080975 A1 was used instead of the compound (1).
Figure JPOXMLDOC01-appb-C000049
比較例2
 実施例1において、化合物(1)の代わりに、特開2002-38141号公報記載の下記化合物Bを用いた以外は同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000050
Comparative Example 2
In Example 1, an organic EL device was produced in the same manner except that the following compound B described in JP-A-2002-38141 was used instead of the compound (1).
Figure JPOXMLDOC01-appb-C000050
比較例3
 実施例1において、化合物(1)の代わりに、Alq(8-ヒドロキシキノリンのアルミニウム錯体)を用いた以外は同様にして有機EL素子を作製した。
Comparative Example 3
An organic EL device was produced in the same manner as in Example 1 except that Alq (aluminum complex of 8-hydroxyquinoline) was used instead of the compound (1).
有機EL素子の評価
 上記実施例1~6及び比較例1~3で得られた有機EL素子について、下記表1に記載された直流電圧を印加した条件で、発光輝度、発光効率及び色度を測定し、発光色を観察した。それらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000051
Evaluation of Organic EL Device The organic EL devices obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were measured for luminance, luminous efficiency, and chromaticity under the conditions of applying the DC voltage described in Table 1 below. Measured and observed the emission color. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000051
 上記表1の結果から、本発明の含窒素複素環誘導体を電子注入層に用いることで、極めて高い発光輝度及び発光効率の素子を製造できることがわかる。 From the results shown in Table 1, it can be seen that by using the nitrogen-containing heterocyclic derivative of the present invention for the electron injection layer, a device having extremely high light emission luminance and light emission efficiency can be produced.

Claims (10)

  1. 下記一般式(1)で表される含窒素複素環誘導体。
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(1)において、R1~R6はそれぞれ独立に水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の環形成炭素数6~20のアリール基、置換もしくは無置換の環形成原子数5~20のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、ハロゲン原子、シアノ基、または、ニトロ基であり、R1~R6の互いに隣り合う2個の基が互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成していてもよく、また、R1~R6の少なくとも1つは下記一般式(2)で表される縮合環化合物から誘導される基である。
    Figure JPOXMLDOC01-appb-C000002
    (前記一般式(2)において、R1a~R10aはそれぞれ独立に水素原子、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基(ただし、置換もしくは無置換のカルバゾリル基、アザカルバゾリル基は除く)、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、ハロゲン原子、シアノ基、ニトロ基であり、R1a~R10aの隣り合う2個の基が互いに結合して環構造を構成する置換もしくは無置換の飽和もしくは不飽和の連結基を形成していてもよい。)]
    A nitrogen-containing heterocyclic derivative represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 to R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms. A substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms (provided that A substituted or unsubstituted carbazolyl group and azacarbazolyl group), a halogen atom, a cyano group, or a nitro group, and two adjacent groups of R 1 to R 6 are bonded to each other to form a ring structure It may form a linking group of a substituted or unsubstituted, saturated or unsaturated be, also, the fused ring compound at least one of R 1 ~ R 6 is represented by the following general formula (2) A guide to the group.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 1a to R 10a are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 60 ring atoms. Heteroaryl group (excluding substituted or unsubstituted carbazolyl group and azacarbazolyl group), substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms , A halogen atom, a cyano group, and a nitro group, and two adjacent groups of R 1a to R 10a are bonded to each other to form a substituted or unsubstituted saturated or unsaturated linking group constituting a ring structure. It may be.)]
  2. 前記一般式(1)で表される化合物が、下記一般式(3)~(5)のいずれかで表される化合物である請求項1記載の含窒素複素環誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (前記一般式(3)~(5)において、R1~R6は前記と同様であり、FLは前記一般式(2)で表される縮合環化合物から誘導される基である。)
    The nitrogen-containing heterocyclic derivative according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by any one of the following general formulas (3) to (5).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formulas (3) to (5), R 1 to R 6 are the same as described above, and FL is a group derived from the condensed ring compound represented by the general formula (2).)
  3. 有機エレクトロルミネッセンス素子用材料である請求項1または2に記載の含窒素複素環誘導体。 The nitrogen-containing heterocyclic derivative according to claim 1 or 2, which is a material for an organic electroluminescence device.
  4. 有機エレクトロルミネッセンス素子用電子注入材料又は電子輸送材料である請求項1または2に記載の含窒素複素環誘導体。 The nitrogen-containing heterocyclic derivative according to claim 1, which is an electron injection material or an electron transport material for an organic electroluminescence device.
  5. 有機エレクトロルミネッセンス素子用発光材料である請求項1または2に記載の含窒素複素環誘導体。 The nitrogen-containing heterocyclic derivative according to claim 1 or 2, which is a light-emitting material for an organic electroluminescence device.
  6. 陰極と陽極間に発光層を含む一層以上の有機薄膜層を有し、前記有機薄膜層の少なくとも一層が、請求項1または2に記載の含窒素複素環誘導体を含有する有機エレクトロルミネッセンス素子。 The organic electroluminescent element which has one or more organic thin film layers containing a light emitting layer between a cathode and an anode, and at least one layer of the said organic thin film layer contains the nitrogen-containing heterocyclic derivative of Claim 1 or 2.
  7. 前記有機薄膜層が電子注入層又は電子輸送層を有し、該電子注入層又は該電子輸送層が前記含窒素複素環誘導体を含有する請求項6に記載の有機エレクトロルミネッセンス素子。 7. The organic electroluminescence device according to claim 6, wherein the organic thin film layer has an electron injection layer or an electron transport layer, and the electron injection layer or the electron transport layer contains the nitrogen-containing heterocyclic derivative.
  8. 前記発光層が前記含窒素複素環誘導体を含有する請求項6に記載の有機エレクトロルミネッセンス素子。 7. The organic electroluminescence device according to claim 6, wherein the light emitting layer contains the nitrogen-containing heterocyclic derivative.
  9. 前記電子注入層又は前記電子輸送層が還元性ドーパントをさらに含有する請求項7に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 7, wherein the electron injection layer or the electron transport layer further contains a reducing dopant.
  10. 前記還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上である請求項9に記載の有機エレクトロルミネッセンス素子。 The reducing dopant is an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxide. The organic electroluminescence according to claim 9, wherein the organic electroluminescence is one or more selected from the group consisting of a rare earth metal halide, an alkali metal organic complex, an alkaline earth metal organic complex, and a rare earth metal organic complex. element.
PCT/JP2008/073464 2007-12-27 2008-12-24 Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same WO2009084544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007337996 2007-12-27
JP2007-337996 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084544A1 true WO2009084544A1 (en) 2009-07-09

Family

ID=40824258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073464 WO2009084544A1 (en) 2007-12-27 2008-12-24 Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same

Country Status (2)

Country Link
TW (1) TW200936569A (en)
WO (1) WO2009084544A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044607A1 (en) * 2008-10-14 2010-04-22 Cheil Industries Inc. Benzimidazole compounds and organic photoelectric device with the same
CN106189363A (en) * 2016-07-01 2016-12-07 湘潭大学 One class closes polymer-metal complex dye sensitizing agent of Cd (II) and its production and use containing 2 (2 ' hydroxy phenyl) benzimidizole derivatives
CN109503466A (en) * 2018-12-24 2019-03-22 武汉天马微电子有限公司 Organic compound, display panel and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171279A (en) * 2010-01-25 2011-09-01 Fujifilm Corp Organic electric field light-emitting element

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011627A1 (en) * 1997-09-05 1999-03-11 Ortho-Mcneil Pharmaceutical, Inc. 2-substituted phenyl-benzimidazole antibacterial agents
JPH11349572A (en) * 1998-04-07 1999-12-21 Fujisawa Pharmaceut Co Ltd New amide derivative and salt thereof
WO2000015212A2 (en) * 1998-09-17 2000-03-23 The University Of North Carolina At Chapel Hill Antifungal activity of dicationic molecules
WO2001095910A1 (en) * 2000-06-13 2001-12-20 Bristol-Myers Squibb Company Imidazopyridine and imidazopyrimidine antiviral agents
WO2004080975A1 (en) * 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
US20050131017A1 (en) * 2003-12-11 2005-06-16 Degoey David A. HIV protease inhibiting compounds
WO2005097756A1 (en) * 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. Nitrogenous heterocycle derivative and organic electroluminescent element employing the same
US20060024522A1 (en) * 2004-05-18 2006-02-02 Thompson Mark E Luminescent compounds with carbene ligands
WO2006040646A1 (en) * 2004-10-14 2006-04-20 Pfizer, Inc. Benzimidazole or indole amides as inhibitors of pin1
WO2007007464A1 (en) * 2005-07-11 2007-01-18 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescence element using the same
WO2007018007A1 (en) * 2005-08-05 2007-02-15 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
JP2007049055A (en) * 2005-08-12 2007-02-22 Toyo Ink Mfg Co Ltd Material for organic electroluminescence element, and organic electroluminescence element
WO2007030080A1 (en) * 2005-09-08 2007-03-15 S*Bio Pte Ltd Heterocyclic compounds
WO2007046658A1 (en) * 2005-10-21 2007-04-26 Lg Chem. Ltd. New binaphthalene derivatives, preparation method thereof and organic electronic device using the same
JP2007217397A (en) * 2005-08-01 2007-08-30 Mitsubishi Chemicals Corp Method for producing transition metal complex
WO2008069586A1 (en) * 2006-12-06 2008-06-12 Lg Chem, Ltd. New fluorene derivatives and organic electronic device using the same
CN101200478A (en) * 2007-08-03 2008-06-18 上海拓引数码技术有限公司 Compound for preparing organic phosphorescent material and preparation method thereof
WO2008120957A1 (en) * 2007-04-03 2008-10-09 Jinwoong Industrial Co., Ltd. Light-emitting compound and organic light-emitting device using the same

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011627A1 (en) * 1997-09-05 1999-03-11 Ortho-Mcneil Pharmaceutical, Inc. 2-substituted phenyl-benzimidazole antibacterial agents
JPH11349572A (en) * 1998-04-07 1999-12-21 Fujisawa Pharmaceut Co Ltd New amide derivative and salt thereof
WO2000015212A2 (en) * 1998-09-17 2000-03-23 The University Of North Carolina At Chapel Hill Antifungal activity of dicationic molecules
WO2001095910A1 (en) * 2000-06-13 2001-12-20 Bristol-Myers Squibb Company Imidazopyridine and imidazopyrimidine antiviral agents
WO2004080975A1 (en) * 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
US20050131017A1 (en) * 2003-12-11 2005-06-16 Degoey David A. HIV protease inhibiting compounds
WO2005097756A1 (en) * 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. Nitrogenous heterocycle derivative and organic electroluminescent element employing the same
US20060024522A1 (en) * 2004-05-18 2006-02-02 Thompson Mark E Luminescent compounds with carbene ligands
WO2006040646A1 (en) * 2004-10-14 2006-04-20 Pfizer, Inc. Benzimidazole or indole amides as inhibitors of pin1
WO2007007464A1 (en) * 2005-07-11 2007-01-18 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescence element using the same
JP2007217397A (en) * 2005-08-01 2007-08-30 Mitsubishi Chemicals Corp Method for producing transition metal complex
WO2007018007A1 (en) * 2005-08-05 2007-02-15 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
JP2007049055A (en) * 2005-08-12 2007-02-22 Toyo Ink Mfg Co Ltd Material for organic electroluminescence element, and organic electroluminescence element
WO2007030080A1 (en) * 2005-09-08 2007-03-15 S*Bio Pte Ltd Heterocyclic compounds
WO2007046658A1 (en) * 2005-10-21 2007-04-26 Lg Chem. Ltd. New binaphthalene derivatives, preparation method thereof and organic electronic device using the same
WO2008069586A1 (en) * 2006-12-06 2008-06-12 Lg Chem, Ltd. New fluorene derivatives and organic electronic device using the same
WO2008120957A1 (en) * 2007-04-03 2008-10-09 Jinwoong Industrial Co., Ltd. Light-emitting compound and organic light-emitting device using the same
CN101200478A (en) * 2007-08-03 2008-06-18 上海拓引数码技术有限公司 Compound for preparing organic phosphorescent material and preparation method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHARTON, JULIE ET AL.: "Conversion of sterically hindered diacylated 1, 2-phenylenediamines into 2-substituted benzimidazoles", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 53, no. 5, 2005, pages 492 - 497 *
HUANG, WEI-SHENG ET AL.: "Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands", CHEMISTRY OF MATERIALS, vol. 16, no. 12, 2004, pages 2480 - 2488 *
KAUFFMAN, JOEL M. ET AL.: "Synthesis and photophysical properties of fluorescent 2-aryl- 1, 3-dialkylbenzimidazolium ions and a 1-alkyl-2 -arylbenzimidazole with excited state intramolecular proton-transfer", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 31, no. 4, 1994, pages 957 - 965, XP002608703 *
LATIF, NAZIH ET AL.: "Cyano esters and malononitriles.V.Cyano (fluorenyl) acetic esters, hydroxy nitriles and benzimidazolyl- acetonitriles", AUSTRALIAN JOURNAL OF CHEMISTRY, vol. 30, no. 10, 1977, pages 2263 - 2269 *
ROBL, JEFFREY A. ET AL.: "A Novel Series of Highly Potent Benzimidazole-Based Microsomal Triglyceride Transfer Protein Inhibitors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, no. 6, 2001, pages 851 - 856, XP001075043, DOI: doi:10.1021/jm000494a *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044607A1 (en) * 2008-10-14 2010-04-22 Cheil Industries Inc. Benzimidazole compounds and organic photoelectric device with the same
US9530970B2 (en) 2008-10-14 2016-12-27 Cheil Industries, Inc. Benzimidazole compound, organic photoelectric device including the same, and display element including the same
CN106189363A (en) * 2016-07-01 2016-12-07 湘潭大学 One class closes polymer-metal complex dye sensitizing agent of Cd (II) and its production and use containing 2 (2 ' hydroxy phenyl) benzimidizole derivatives
CN109503466A (en) * 2018-12-24 2019-03-22 武汉天马微电子有限公司 Organic compound, display panel and display device

Also Published As

Publication number Publication date
TW200936569A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
JP6318273B2 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
JP5286264B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICE
JP5305919B2 (en) Fluoranthene compound, organic electroluminescence device using the fluoranthene compound, and solution containing organic electroluminescence material
JP5317386B2 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
KR101408504B1 (en) Benzophenanthrene derivative and organic electroluminescent device employing the same
JP5663566B2 (en) Carbazole-based phosphine oxide compound and organic electroluminescent device containing the same
JPWO2007007463A1 (en) Nitrogen-containing heterocyclic derivative having electron-withdrawing substituent and organic electroluminescence device using the same
JP2007153778A (en) Nitrogen-containing heterocyclic derivative and organic electroluminescent (el) element using the same
JPWO2007111263A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
KR20080028424A (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence element using the same
JP5084208B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT
JPWO2007111262A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
WO2010076878A1 (en) Organic electroluminescent element material and organic electroluminescent element comprising same
JP2008115093A (en) Aminodibenzofluorene derivative and organic electroluminescent element using the same
JPWO2012105629A1 (en) Nitrogen-containing heterocyclic derivative, electron transport material for organic electroluminescence device, and organic electroluminescence device using the same
WO2010052885A1 (en) Organic electroluminescence element
WO2010010924A1 (en) Anthracene derivative, and organic electroluminescence element comprising same
JP2008162921A (en) Benzothiadiazole derivative and organic electroluminescent element using the same
WO2010050496A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence element using nitrogen-containing heterocyclic derivative
JP2010030973A (en) Stilbene derivative and organic electroluminescent element using the same
WO2010074181A1 (en) Organic electroluminescence element and compound
JP2008133241A (en) DIBENZO[c,g]TRIPHENYLENE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME
WO2009084544A1 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same
JP2009224604A (en) Solution containing organic electroluminescence material, and method of forming organic electroluminescence material thin film by using the same
JP5523486B2 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP