WO2009087876A1 - 有機エレクトロルミネッセンス素子及びその製造方法 - Google Patents

有機エレクトロルミネッセンス素子及びその製造方法 Download PDF

Info

Publication number
WO2009087876A1
WO2009087876A1 PCT/JP2008/072983 JP2008072983W WO2009087876A1 WO 2009087876 A1 WO2009087876 A1 WO 2009087876A1 JP 2008072983 W JP2008072983 W JP 2008072983W WO 2009087876 A1 WO2009087876 A1 WO 2009087876A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
underlayer
light emitting
organic underlayer
Prior art date
Application number
PCT/JP2008/072983
Other languages
English (en)
French (fr)
Inventor
Kouichi Rokuhara
Satoshi Amamiya
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/811,458 priority Critical patent/US20100295033A1/en
Priority to CN200880124294.1A priority patent/CN101911333B/zh
Priority to EP08869573A priority patent/EP2234186A4/en
Publication of WO2009087876A1 publication Critical patent/WO2009087876A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter sometimes referred to as “organic EL element”) and a method for producing the same.
  • the thickness of the hole injection layer of the organic EL element is There is a problem that the light emission characteristics and, consequently, the display quality are impaired.
  • An object of the present invention is to provide an organic EL element that has good light emission characteristics and, in turn, good display quality, and a manufacturing method that can easily form the organic EL element.
  • the present inventor has intensively studied.
  • the organic underlayer is not provided even if a bank (lattice-like partition wall that partitions the pixel region) is provided on the organic underlayer.
  • the present inventors have found that an organic EL element capable of obtaining good light emission characteristics with little variation in light emission intensity and consequently display quality can be easily formed, and the present invention has been completed.
  • a substrate a first electrode layer provided on at least a part of the surface of the substrate, and provided on at least a part of the surface of the first electrode layer, and are insoluble in water.
  • An organic underlayer made of an organic material, a bank provided on the organic underlayer, the organic underlayer having a plurality of pixel regions thereon, and the organic underlayer on the organic underlayer
  • An organic electroluminescence device comprising an organic light emitting layer provided in a pixel region and a second electrode layer provided on the organic light emitting layer.
  • the organic underlayer As the organic underlayer, a first organic underlayer and a second organic underlayer laminated thereon are provided, the first organic underlayer is a hole injection layer, and the second organic underlayer is a hole injection layer.
  • the organic electroluminescence device according to any one of [1] to [4], wherein the water-insoluble organic material is a crosslinked polymer compound.
  • Providing an organic underlayer on at least a partial region of the first electrode layer providing a bank on the organic underlayer, providing an organic light emitting layer in a pixel region defined by the bank, and The manufacturing method of an organic electroluminescent element which provides a 2nd electrode layer on an organic light emitting layer.
  • the organic EL device of the present invention has an organic underlayer as a part of the laminated structure of the light emitting device under the bank. Further, an organic material insoluble in water is used as the organic underlayer. Therefore, the light emission characteristics of the organic EL element, and thus the display quality can be improved. Moreover, according to the manufacturing method of the organic EL element of this invention, the organic EL element of this invention which has the structure mentioned above can be manufactured easily.
  • FIG. 1 is a cross-sectional view showing a manufacturing process in an example of a method for manufacturing an organic EL element of the present invention.
  • FIG. 2 is a cross-sectional view showing a manufacturing process subsequent to the manufacturing process shown in FIG.
  • FIG. 3 is a cross-sectional view showing a partial structure of an example of the organic EL element of the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration of a part of another example of the organic EL element of the present invention.
  • FIG. 5 is a perspective view showing the positional relationship between a substrate and electrodes in an example of the organic EL element of the present invention.
  • FIG. 6 is a cross-sectional view showing a partial configuration of another example of the organic EL element of the present invention.
  • the organic EL element of the present invention is provided on a substrate, a first electrode layer provided on at least a part of the surface of the substrate, and at least part of a surface of the first electrode layer.
  • Substrate As the substrate used in the present invention, various substrates used for organic EL elements can be employed. In the description of the layer structure of the organic EL element, unless otherwise specified, the “upper”, “lower” and “horizontal” directions are positions when the substrate is placed horizontally and the light emitting layer and other layers are provided above the substrate. Show the relationship.
  • the organic EL device of the present invention includes, as electrodes, a first electrode layer provided on the substrate, and a second electrode layer provided on the organic underlayer and the light emitting layer.
  • a first electrode layer provided on the substrate
  • a second electrode layer provided on the organic underlayer and the light emitting layer.
  • One of these is an anode and the other is a cathode.
  • the first electrode layer is often used as an anode, but the present invention is not limited to this, and the second electrode layer can be used as an anode.
  • the specific shape of the electrode layer is not particularly limited, and can be various shapes suitable for a segment display element, a dot matrix display element, and the like. Preferably, it can be a shape constituting a dot matrix display element such as an active matrix display element or a passive matrix display element.
  • the first electrode layer may be provided on the entire surface of the substrate, but is usually provided on a partial region on the surface of the substrate in accordance with a pattern for forming a large number of pixels.
  • FIG. 5 shows an outline of an example of the shape of the electrode layer constituting the passive matrix.
  • FIG. 5 is a perspective view showing a positional relationship between a substrate and a passive matrix electrode in an example of the organic EL element of the present application.
  • the first electrode layer 121 is provided in a linear shape parallel to each other, and the second electrode layer 122 is provided so as to intersect therewith.
  • a circuit (not shown) for driving the display device by applying a voltage can be provided in connection with each electrode.
  • a pixel region (not shown in FIG. 5) defined by a bank described later can be provided.
  • the organic underlayer is provided on at least a part of the surface of the first electrode layer.
  • the organic underlayer is provided “on at least a part of the region” of the first electrode layer, that is, there is a region where the organic underlayer exists in at least a part of the region on the upper surface of the first electrode layer. That means. Therefore, the organic underlayer may cover the entire upper surface of the first electrode layer, or the organic underlayer may cover only a part of the upper surface of the first electrode layer.
  • a portion of the first electrode layer belonging to a pixel region to be described later is configured so that the organic underlayer covers the entire surface. Further, a portion of the substrate surface that is not covered with the first electrode layer may be covered with an organic underlayer or may not be covered.
  • the organic underlayer may be in a state where a part or all of the region on the surface of one substrate is occupied by only the organic underlayer consisting of one region, and the surface of one substrate is divided into a plurality of regions.
  • a plurality of, for example, island-shaped partial regions of the organic underlayer occupy each divided region, that is, the organic underlayer may be provided including a plurality of partial regions separated from each other.
  • the organic underlayer is provided so as to cover the entire region including a plurality of pixel regions on the substrate, more preferably to cover the entire region including all the pixel regions on the substrate.
  • the structure of such an organic underlayer will be described again with reference to FIG. 5.
  • the organic underlayer (not shown) is formed in the region 111 ⁇ / b> C including the entire pixel region indicated by the intersections of the electrodes 121 and 122.
  • the first electrode layer 121 on the surface and the portion where the first electrode layer on the surface of the substrate 111 is not formed are preferably provided as an integrated layer.
  • FIG. 3 is a cross-sectional view showing a partial configuration of an example of the organic EL element of the present invention having a passive matrix type electrode similar to FIG.
  • a plurality of first electrode layers 121 are provided on the substrate 111, and the organic layers are formed over both the first electrode layer 121 and the surface of the substrate 111 not covered with the first electrode layer 121 in the gap.
  • the underlayer 141 is continuously formed as an integrated layer.
  • the organic EL element of the present invention may be composed of only one organic underlayer having no laminated structure. However, as shown in FIG. 6, it may have two or more organic underlayers having a laminated structure, and may further have three or more organic underlayers.
  • FIG. 6 is a cross-sectional view showing a partial configuration of another example of the organic EL element of the present invention.
  • the organic EL element includes two layers, a first organic base layer 641 ⁇ / b> A covering both the substrate 111 and the first electrode layer 121, and a second organic base layer 641 ⁇ / b> B stacked thereon. Have.
  • the organic underlayer is provided as three or more layers, the distance between the electrode and the bank is increased, and there is a risk of causing crosstalk between adjacent pixel regions. it can.
  • each region is occupied by a separate organic underlayer (partial region), and an organic underlayer including a plurality of partial regions is provided
  • the organic underlayer in the organic EL device of the present invention is a layer necessary for constituting the organic EL device and can have a function of any layer other than the first electrode layer.
  • a part or all of the layers formed between the electrode and the light emitting layer can be used.
  • the organic underlayer can be one or more of a hole injection layer, an interlayer, and a hole transport layer.
  • the organic EL device of the present invention has only one layer which is a hole injection layer as the organic underlayer, or the first organic underlayer and the second organic underlayer laminated thereon.
  • the first organic underlayer can be a hole injection layer and the second organic underlayer can be an interlayer.
  • the organic underlayer can be one or more of an electron injection layer, an interlayer, and an electron transport layer.
  • the organic EL device of the present invention has only one layer that is an electron injection layer as an organic underlayer, or a first organic underlayer and a second organic underlayer laminated thereon.
  • the first organic underlayer can be an electron injection layer and the second organic underlayer can be an interlayer.
  • the resistivity of the organic underlayer is preferably 1 ⁇ 10 10 ⁇ cm or more.
  • the resistivity of the organic underlayer can be measured with a resistivity meter (for example, Loresta GP MCP-T610 manufactured by Dia Instruments).
  • the organic underlayer is made of an organic material that is insoluble in water.
  • the organic underlayer is composed of a plurality of layers, at least the layer in contact with the uppermost bank, preferably all the layers, are made of water-insoluble organic material. Since the organic underlayer used in the present invention is made of an organic material insoluble in water, even when a solution containing water is applied on the organic underlayer, the film thickness of the layer is not substantially reduced.
  • the amount dissolved in 1 g of water is preferably 0.1 mg or less, more preferably 0.01 mg or less, and further preferably 0.001 mg or less.
  • the present invention by providing one or more layers constituting the element under the bank as an organic underlayer, it is possible to enjoy the advantage that it can be formed by a simple film formation method such as a spin coating method, By adopting a water-insoluble material as the base layer, the organic underlayer is not damaged in the subsequent bank formation process, and as a result, good light emission characteristics and consequently high-quality display performance can be obtained. .
  • a bank is provided on an organic underlayer, and when the organic underlayer is partitioned into a plurality of partial regions, a plurality of pixel regions are defined on each of the organic underlayers.
  • defining “a plurality of pixel regions on each” of the organic underlayer means that the organic underlayer provided on the substrate has a plurality of partial regions separated from each other. It means that a plurality of pixel regions are defined above. If the organic underlayer exists on the substrate as only one region, of course, all the pixel regions are defined thereon.
  • the organic base layer in a several adjacent pixel will be formed integrally. That is, in a region where a plurality of adjacent pixels on the substrate surface, preferably all the pixels on the substrate surface exist, the organic underlayer does not have a separate partial region, Become.
  • the bank 131B surrounds the periphery of the bank 121B so that the pixel region is defined in the rectangular region 132R in which the electrodes 121 and 121 exist above and below.
  • Organic Light-Emitting Layer the organic light-emitting layer is provided in the pixel region defined by the bank. And an organic EL element can be comprised by forming the 2nd electrode layer described above further on the organic light emitting layer provided in this way.
  • the organic light emitting layer 142 is provided so as to be filled in the pixel region 132 ⁇ / b> R defined by the bank 131 ⁇ / b> B, and the organic base layer 141 is formed on the first electrode layer 121.
  • the organic EL device of the present invention can further have a member for sealing on the opposite side of the substrate with the layers interposed therebetween.
  • FIG. 5 is a perspective view showing the positional relationship between a substrate and electrodes in an example of the organic EL element of the present invention.
  • the sealing member can seal each layer constituting the element by bonding to the substrate 111 via an adhesive layer provided in a region 111S around the region 111C including the pixel region, for example.
  • the organic EL element of the present invention can further include other components in addition to the above components.
  • FIG. 4 is a cross-sectional view showing a configuration of a part of another example of the organic EL element of the present invention. Specifically, for example, one or more other layers may be provided in addition to the organic light emitting layer in the pixel region defined by the bank.
  • the laminated structure 140 between the first electrode layer 121 and the second electrode layer 122 is added to the organic underlayer 141 and the organic light emitting layer 142, and another layer 143 is further provided. It consists of three layers.
  • an organic EL element has at least one pair of electrodes (anode and cathode), and has at least an organic light emitting layer therebetween.
  • a hole injection layer can optionally be provided between the anode and the organic light emitting layer, and further, the organic light emitting layer and the hole injection layer (when a hole injection layer is present) or the anode (the hole injection layer is In the case where it does not exist, it can optionally have one or more of an interlayer and a hole transport layer.
  • an electron injection layer can optionally be provided between the cathode and the organic light emitting layer, and further, the organic light emitting layer and the electron injection layer (when an electron injection layer is present) or the cathode (there is no electron injection layer).
  • the organic EL device can have the following layer configuration a) or omit one or more of the hole injection layer, hole transport layer, interlayer, electron transport layer, and electron injection layer from the layer configuration a). It is also possible to have a layered structure.
  • (Hole transport layer and / or interlayer) means a layer consisting of only a hole transport layer, a layer consisting only of an interlayer, a layer structure of a hole transport layer-interlayer, an interlayer-hole transport layer The layer configuration or any other layer configuration including one or more hole transport layers and interlayers is shown.
  • (Electron Transport Layer and / or Interlayer) means a layer consisting only of an electron transport layer, a layer consisting only of an interlayer, a layer configuration of an electron transport layer-interlayer, a layer configuration of an interlayer-electron transport layer, or The other arbitrary layer structure containing one or more each of an electron carrying layer and an interlayer is shown. The same applies to the description of the layer structure below.
  • the organic EL element can have two light emitting layers in one laminated structure.
  • the organic EL device can have the following layer configuration b), or from the layer configuration b) one or more of a hole injection layer, a hole transport layer, an interlayer, an electron transport layer, and an electron injection layer. It is also possible to have a layer structure in which is omitted.
  • the organic EL element can have three or more light emitting layers in one laminated structure.
  • the organic EL device can have the following layer configuration c), or from the layer configuration c) one or more of a hole injection layer, a hole transport layer, an interlayer, an electron transport layer, and an electron injection layer. It is also possible to have a layer structure in which is omitted.
  • Repeating unit A is composed of electrode—hole injection layer— (hole transport layer and / or interlayer) —light emitting layer— (electron transport layer and / or interlayer) —electron injection layer. Indicates the unit.
  • the organic EL element of the present invention can have the same layer structure as that of the above-described general organic EL element.
  • the first electrode layer is used as an anode
  • one or more layers preferably one or two layers closer to the anode can be used as an organic underlayer, and a layer farther from the anode can be used as a bank.
  • a layer farther from the anode can be used as a bank.
  • the first electrode layer is a cathode
  • one or more layers, preferably one or two layers close to the cathode can be used as the organic underlayer.
  • Preferred specific examples of the layer structure of the organic EL device of the present invention include the following.
  • an element surrounded by the symbol ⁇ > indicates a layer provided as an organic underlayer, and other elements other than electrodes indicate layers provided in a pixel region defined by a bank.
  • an interlayer-electron transport layer is further provided between the organic light emitting layer and the electron injection layer.
  • the interlayer is preferably adjacent to the light emitting layer.
  • the organic EL device of the present invention is further provided with an insulating layer having a thickness of 2 nm or less adjacent to the electrode in order to improve adhesion with the electrode and improve injection of electric charges (that is, holes or electrons) from the electrode.
  • an insulating layer having a thickness of 2 nm or less adjacent to the electrode in order to improve adhesion with the electrode and improve injection of electric charges (that is, holes or electrons) from the electrode.
  • a thin buffer layer may be inserted at the interface of the charge transport layer (that is, the hole transport layer or the electron transport layer) or the organic light emitting layer in order to improve the adhesion at the interface or prevent mixing.
  • the order and number of layers to be laminated, and the thickness of each layer can be appropriately used in consideration of light emission efficiency and element lifetime.
  • the organic EL element of the present invention is configured as an element for a bottom emission type display device that emits light from the substrate side, at least all the layers on the substrate side than the organic light emitting layer can be transparent or translucent. .
  • the organic EL element of the present invention when it is configured as an element for a top emission type display device that emits light from the surface opposite to the substrate, at least all layers closer to the second electrode layer than the organic light emitting layer should be transparent or translucent. Can do.
  • the organic EL element shown in FIG. 3 when the organic EL element shown in FIG. 3 is an element for a bottom emission type display device, all the layers closer to the substrate than the organic light emitting layer 142, that is, the organic underlayer 141, the first electrode layer 121, and the substrate 111.
  • the elements can be configured to be all transparent or translucent.
  • the organic EL element shown in FIG. 3 when the organic EL element shown in FIG. 3 is an element for a top emission type display device, all layers closer to the second electrode layer than the organic light emitting layer 142, that is, the second electrode layer 122 and the sealing member ( The element can be configured such that all of the (not shown) is transparent or translucent.
  • the term “transparent or translucent” means that the visible light transmittance from the light emitting layer to the layer emitting light is preferably 40% or more. In the case of an element that requires light emission in the ultraviolet region or infrared region, it is preferable that the region has a transmittance of 40% or more.
  • the organic EL element of the present invention can further have optional components for constituting a display element, such as a filter such as a color filter or a fluorescence conversion filter, and a wiring necessary for driving a pixel, as necessary. .
  • the substrate constituting the organic EL device of the present invention may be any substrate as long as it does not change when an electrode is formed and an organic layer is formed, for example, glass, plastic, polymer film, silicon substrate, or a laminate of these. Etc. are used.
  • a commercially available substrate is available as the substrate, or can be manufactured by a known method.
  • a transparent or translucent electrode As the anode of the organic EL element of the present invention, it is preferable to use a transparent or translucent electrode because an element that emits light through the anode can be configured.
  • a transparent electrode or a semi-transparent electrode a metal oxide, metal sulfide or metal thin film having high electrical conductivity can be used, and a high transmittance can be suitably used.
  • a film (NESA) made of conductive glass made of indium oxide, zinc oxide, tin oxide, and a composite thereof such as indium tin oxide (ITO) and indium zinc oxide.
  • Etc. gold, platinum, silver, copper and the like are used, and ITO, indium / zinc oxide, and tin oxide are preferable.
  • the manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • a material that reflects light may be used for the anode, and the material is preferably a metal, metal oxide, or metal sulfide having a work function of 3.0 eV or more.
  • the film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity. For example, it is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. is there.
  • the hole injection layer can be provided between the anode and the hole transport layer or between the anode and the light emitting layer.
  • the material for forming the hole injection layer includes phenylamine, starburst amine, phthalocyanine, vanadium oxide, tantalum oxide, tungsten oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, etc. Oxide, amorphous carbon, polyaniline or a derivative thereof, polyfluorene or a derivative thereof, polyarylamine or a derivative thereof, polythiophene or a derivative thereof, and the like.
  • the film thickness of the hole injection layer differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. At least a thickness that does not generate pinholes is required. If it is too thick, the drive voltage of the element may be increased. Therefore, the thickness of the hole injection layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the method for forming the hole injection layer is not limited, but for a low molecular hole injection material, a method of forming a film from a mixed solution with a polymer binder is exemplified. In the case of a polymer hole injection material, a method by film formation from a solution is exemplified.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole injection material.
  • the solvent include chlorine solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, Examples are ester solvents such as ethyl cellosolve acetate.
  • film formation methods from solution include spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, carrier Coating methods such as a coating method such as a pillar coating method, a spray coating method, a nozzle coating method, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method may be used. It can.
  • a printing method such as a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an ink jet printing method is preferable in that the pattern formation is easy.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the hole injection layer when the hole injection layer is provided as a water-insoluble organic underlayer, a polymer linked from the group consisting of polyaniline or a derivative thereof, polyfluorene or a derivative thereof, polyarylamine or a derivative thereof, polythiophene or a derivative thereof It is preferable to use a high molecular compound which is a compound and does not have a hydrophilic group as a material for the hole injection layer.
  • Particularly preferred hole injection layer materials include a polymer compound having a repeating unit represented by the following formula (1), a polymer compound having a repeating unit represented by the following formula (2), and the following formula (1): And a polymer compound having a repeating unit represented by the following formula (2).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • R 1 and R 2 may be bonded to each other to form a ring. Any two substituents selected from R 3 to R 7 may be bonded to each other to form a ring.
  • the alkyl group usually has 1 to 20 carbon atoms, may be linear or branched, and may be a cycloalkyl group.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, s-butyl group, 3-methylbutyl group, n -Pentyl group, n-hexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-lauryl group and the like.
  • the aryl group usually has 6 to 60 carbon atoms and may have a substituent.
  • substituent that the aryl group has include a linear or branched alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 1 to 20 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a C 1 -C 12 alkylphenyl group (C 1 -C 12 represents 1 to 12 carbon atoms, the same shall apply hereinafter), and a 1-naphthyl group.
  • a 2-naphthyl group, an aryl group having 6 to 20 carbon atoms is preferred, and a C 1 to C 12 alkylphenyl group is more preferred.
  • R 1 and R 2 may be bonded to each other to form a ring, or any two substituents selected from R 3 to R 7 may be bonded to each other to form a ring.
  • the ring include a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cyclohexene ring, a cyclohexadiene ring, and a cyclooctatriene ring.
  • ⁇ Hole transport layer Materials constituting the hole transport layer include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine. Derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polyfluorene or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene) Vinylene) or a derivative thereof.
  • the method for forming the hole transport layer is not limited, but for a low molecular hole transport material, a method of forming a film from a mixed solution with a polymer binder is exemplified.
  • a method of film formation from a solution is exemplified.
  • the solvent used for the film formation from the solution include the same solvents as those used for the film formation of the hole injection layer.
  • the film formation method from a solution include the same film formation method as the above-described method of forming a hole injection layer from a solution.
  • the film thickness of the hole transport layer differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If it is too thick, the driving voltage of the element may be increased. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole transport layer when the hole transport layer is provided as an organic underlayer insoluble in water, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a polyaniline or a derivative thereof , Polyfluorene or derivatives thereof, polyarylamine or derivatives thereof, polythiophene or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof It is preferable to use a polymer compound selected from the group consisting of the polymer compounds having no hydrophilic group as the material for the hole transport layer.
  • Particularly preferable hole transport layer materials include a polymer compound having a repeating unit represented by the formula (1), a polymer compound having a repeating unit represented by the formula (2), and the formula (1). And a polymer compound having a repeating unit represented by the formula (2).
  • Interlayer> examples of the material constituting the interlayer include polyarylamine or a derivative thereof, polyfluorene or a derivative thereof, and the like.
  • the method of forming the interlayer is not limited, but a method of forming a film from a solution is exemplified.
  • the solvent used for the film formation from the solution include the same solvents as those used for the film formation of the hole injection layer.
  • Examples of the film formation method from a solution include the same film formation method as the above-described method of forming a hole injection layer from a solution.
  • the film thickness of the interlayer the optimum value varies depending on the material used, and it may be selected so that the driving voltage and the light emission efficiency are appropriate values, but at least a thickness that does not cause pinholes is required, If it is too thick, the drive voltage of the element may be increased. Accordingly, the thickness of the interlayer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 20 nm.
  • a polymer compound selected from the group consisting of polyfluorene or a derivative thereof, polyarylamine or a derivative thereof and having no hydrophilic group It is preferable to use a compound as an interlayer material.
  • Particularly preferable hole transport layer materials include a polymer compound having a repeating unit represented by the formula (1), a polymer compound having a repeating unit represented by the formula (2), and the formula (1). And a polymer compound having a repeating unit represented by the formula (2).
  • the organic underlayer used in the present invention is preferably made of a crosslinked polymer compound that is insoluble in water.
  • the crosslinked polymer compound may be produced by curing a polymer compound having a crosslinking group, or may be produced by curing a mixture of a polymer compound and a crosslinking agent.
  • the bank can be formed using, for example, photosensitive polyimide as a material.
  • the bank is formed so as to substantially surround the lower electrode.
  • the thickness of the bank is preferably about 0.1 to 5 ⁇ m.
  • As the material for the bank it is desirable to use an organic material that is hardly changed by heating, that is, excellent in heat resistance.
  • an acrylic (methacrylic) or novolac resin material may be used. These resin materials are desirably provided with photosensitivity in order to facilitate patterning.
  • a bank can be formed by a series of processes including material application, pre-baking, exposure, development, and post-baking.
  • the exposure light may be a mixed light of UV light g, h and i rays, or may be a single wavelength of g, h and i rays.
  • an organic or inorganic alkali aqueous solution can be used as the developer.
  • the light emitting layer is preferably an organic light emitting layer, and usually contains organic substances (low molecular compounds and high molecular compounds) that mainly emit fluorescence or phosphorescence. Further, a dopant material may be further included. Examples of the material for forming the light emitting layer that can be used in the present invention include the following.
  • Dye-type material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, Examples include a thiophene ring compound, a pyridine ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, a trifumanylamine derivative, an oxadiazole dimer, and a pyrazoline dimer.
  • Metal complex materials examples include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, and benzothiazoles.
  • Zinc complex, azomethylzinc complex, porphyrin zinc complex, europium complex, etc. the central metal has Al, Zn, Be, etc. or rare earth metal such as Tb, Eu, Dy, etc.
  • the ligand is oxadiazole, thiadiazole
  • Examples thereof include metal complexes having phenylpyridine, phenylbenzimidazole, quinoline structure, and the like.
  • Polymeric materials include polyparaphenylene vinylene or derivatives thereof, polythiophene or derivatives thereof, polyparaphenylene or derivatives thereof, polysilane or derivatives thereof, polyacetylene or derivatives thereof, polyfluorene or derivatives thereof, polyvinylcarbazole or The derivative
  • guide_body the thing which polymerized the said pigment-type material and metal complex-type material, etc. are mentioned.
  • materials emitting blue light include distyrylarylene or derivatives thereof, oxadiazole or derivatives thereof, polymers thereof, polyvinylcarbazole or derivatives thereof, polyparaphenylene or derivatives thereof, and polyfluorene. Or the derivative
  • polymer materials such as polyvinyl carbazole or derivatives thereof, polyparaphenylene or derivatives thereof, and polyfluorene or derivatives thereof are preferable.
  • materials that emit green light include quinacridone or a derivative thereof, coumarin or a derivative thereof, a polymer thereof, polyparaphenylene vinylene or a derivative thereof, polyfluorene or a derivative thereof, and the like.
  • polymer materials such as polyparaphenylene vinylene or a derivative thereof, polyfluorene or a derivative thereof are preferable.
  • Examples of materials that emit red light include coumarin or derivatives thereof, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene or derivatives thereof, polythiophene or derivatives thereof, polyfluorene or derivatives thereof, and the like. Of these, polymer materials such as polyparaphenylene vinylene or derivatives thereof, polythiophene or derivatives thereof, and polyfluorene or derivatives thereof are preferable.
  • Dopant material A dopant can be added in the light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • Examples of such a dopant include perylene or a derivative thereof, coumarin or a derivative thereof, rubrene or a derivative thereof, quinacridone or a derivative thereof, squalium or a derivative thereof, a porphyrin or a derivative thereof, a styryl dye, a tetracene or a derivative thereof, a pyrazolone or a derivative thereof.
  • Derivatives thereof, decacyclene, phenoxazone and the like can be mentioned.
  • the thickness of such a light emitting layer is usually about 20 to 2000 mm (2 to 200 nm).
  • a method for forming a light emitting layer containing an organic substance As a method for forming a light emitting layer containing an organic substance (organic light emitting layer), a method of applying a solution containing a light emitting material on or above a substrate, a vacuum deposition method, a transfer method, or the like can be used. Specific examples of the solvent used for the film formation from the solution include the same solvents as those for dissolving the hole transport material when forming the hole transport layer from the above solution.
  • Coating methods such as slit coating method, capillary coating method, spray coating method, nozzle coating method, gravure printing method, screen printing method, flexographic printing method, offset printing method, reverse printing method, inkjet printing method, etc.
  • a printing method such as gravure printing method, screen printing method, flexographic printing method, offset printing method, reverse printing method, inkjet printing method and the like is preferable in that pattern formation and multi-coloring are easy.
  • a vacuum deposition method can be used.
  • a method of forming a light emitting layer only in a desired region by laser transfer or thermal transfer can be used.
  • ⁇ Electron transport layer> As the material constituting the electron transport layer, known materials can be used, such as oxadiazole derivatives, anthraquinodimethane or its derivatives, benzoquinone or its derivatives, naphthoquinone or its derivatives, anthraquinone or its derivatives, tetracyanoanthraquinodi. Examples include methane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc.
  • oxadiazole derivatives anthraquinodimethane or its derivatives
  • benzoquinone or its derivatives naphthoquinone or its derivatives
  • anthraquinone or its derivatives tetracyanoanthraquinodi
  • oxadiazole or a derivative thereof benzoquinone or a derivative thereof, anthraquinone or a derivative thereof, or a metal complex of 8-hydroxyquinoline or a derivative thereof, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • a vacuum deposition method from powder or a method by film formation from a solution or a molten state is used. Each method is exemplified by film formation from a molten state.
  • a polymer binder may be used in combination. Examples of the method for forming an electron transport layer from a solution include the same film formation method as the method for forming a hole transport layer from a solution described above.
  • the film thickness of the electron transport layer differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If it is too thick, the driving voltage of the element may be increased. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the electron injection layer is provided between the electron transport layer and the cathode, or between the light emitting layer and the cathode.
  • the electron injection layer may be an alkali metal or alkaline earth metal, an alloy containing one or more of the metals, or an oxide, halide and carbonate of the metal, or a mixture of the substances.
  • alkali metals or oxides, halides, and carbonates thereof include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, and rubidium oxide.
  • the electron injection layer may be a laminate of two or more layers. Specifically, LiF / Ca etc. are mentioned.
  • the electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • ⁇ Cathode material> As a material for the cathode used in the organic EL device of the present invention, a material having a small work function and easy electron injection into the light emitting layer and / or a material having high electrical conductivity and / or a material having high visible light reflectivity are preferable.
  • As the metal an alkali metal, an alkaline earth metal, a transition metal, or a Group 13 metal can be used.
  • a metal such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, or the above metal Or an alloy of one or more of them with one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, or a graphite or graphite layer A compound or the like is used.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy, and the like.
  • a transparent conductive electrode can be used as a cathode, for example, a conductive metal oxide, a conductive organic substance, etc. can be used.
  • indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) and indium zinc oxide (IZO) which are composites thereof as conductive metal oxides, and polyaniline as conductive organic substances
  • ITO indium oxide
  • tin oxide indium tin oxide
  • IZO indium zinc oxide
  • an organic transparent conductive film such as a derivative thereof, polythiophene or a derivative thereof may be used.
  • the cathode may have a laminated structure of two or more layers. In some cases, the electron injection layer is used as a cathode.
  • the film thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, but is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a vacuum deposition method As a method for producing the cathode, a vacuum deposition method, a sputtering method, a laminating method for bonding a metal thin film, or the like is used.
  • An insulating layer having a film thickness of 2 nm or less that can be optionally included in the organic EL device of the present invention has a function of facilitating charge injection.
  • the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • Organic EL elements having an insulating layer having a thickness of 2 nm or less are provided with an insulating layer having a thickness of 2 nm or less adjacent to the cathode, and those having an insulating layer having a thickness of 2 nm or less adjacent to the anode. Can be mentioned.
  • the organic EL element of the present invention can be used as a backlight for a planar light source, a segment display device, a dot matrix display device, and a liquid crystal display device.
  • FIG. 1 is a cross-sectional view showing a manufacturing process in an example of a method for manufacturing an organic EL element of the present invention.
  • FIG. 2 is a cross-sectional view showing a manufacturing process subsequent to the manufacturing process shown in FIG.
  • FIG. 3 is a cross-sectional view showing a partial structure of an example of the organic EL element of the present invention.
  • the organic base layer 141 is provided so as to cover at least a part of the first electrode layer 121, preferably the whole.
  • the organic underlayer is composed of only one layer.
  • the organic underlayer 141 can be formed according to a desired pattern, but a coating film of the composition of the organic underlayer material is continuously formed on the substrate 111 and the first electrode layer 121 by a method such as spin coating. Easily by removing the layer (for example, the peripheral region 111S shown in FIG. 5) where the organic underlayer is not provided as necessary, and then curing the coating as necessary. Can be provided.
  • a photoresist layer 131A for forming a bank is provided on the organic underlayer 141.
  • a portion of the photoresist layer 131A where the pixel region is to be formed is removed by photolithography or the like to form a bank 131B that defines the pixel region 132R.
  • an organic light emitting layer 142 is provided in the pixel region 132R defined by the bank 131B.
  • the organic light emitting layer 142 can be formed by providing a coating film of the material composition of the organic light emitting layer in the pixel region and curing it as necessary.
  • an ink jet method can be preferably exemplified.
  • the material composition of the organic light emitting layer can be provided on one side by a spin coating method or the like.
  • the second electrode layer 122 is provided on the organic light emitting layer 142 in accordance with a desired pattern, so that the laminate having the substrate-first electrode layer-organic underlayer-organic light emitting layer-second electrode layer is provided. Is obtained. Furthermore, an organic EL element can be obtained by adding arbitrary components, such as a sealing member and wiring required for driving a pixel, as necessary.
  • Example 1> Formation of organic underlayer
  • the said mixture was melt
  • the organic underlayer forming ink was spin-coated on the entire surface of the flat glass substrate having an ITO pattern as an anode on the side having the pattern, to prepare a coating film having a thickness of about 60 nm.
  • the coating film in the area where the display element such as the sealing area and the extraction electrode part around the substrate is not prepared is wiped off, heat-treated on a hot plate at 200 ° C. for 10 minutes, dried and insolubilized as a hole injection layer A functional organic underlayer was obtained.
  • the organic underlayer is made of a crosslinked polymer compound that is insoluble in water.
  • the resistivity of the organic underlayer was 2 ⁇ 10 14 ⁇ cm or more.
  • a photoresist (TELR-P003 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated at a rotation speed of 1000 rpm on the organic underlayer obtained in 1-1 to obtain a photoresist layer.
  • This layer is exposed to light using an exposure machine (manufactured by Dainippon Screen, MA-1200) through a photomask in which a desired pattern is formed, and then developed with a 1% by weight aqueous solution of KOH. The desired pattern was obtained.
  • the obtained film was dried in an oven at 230 ° C. for 20 minutes to obtain a bank.
  • the obtained bank had a thickness of 1.5 ⁇ m.
  • the opening of the element region where the organic underlayer was exposed was a rectangle of 70 ⁇ 210 ⁇ m, and the distance from the adjacent element region was 20 ⁇ m.
  • a cathode composed of two layers of barium having a thickness of about 5 nm and aluminum having a thickness of about 100 nm thereon. It formed by the vapor deposition method.
  • the shape of the cathode was defined using a shadow mask, and the shape was orthogonal to the ITO anode and the light emitting layer, and a passive matrix was composed of the anode and the cathode.
  • a UV curable sealing material (XNR5516Z manufactured by Nagase ChemteX Corporation) was applied to the peripheral portion of one surface of the sealing glass substrate using a dispenser. With this coated surface as the lower side, it was aligned with the substrate having the laminated structure obtained in (1-4) and bonded under reduced pressure ( ⁇ 25 KPa). Thereafter, the pressure was returned to atmospheric pressure, and the sealing material was cured by irradiating UV light to seal the layers obtained in (1-1) to (1-4) to obtain an organic EL element.
  • Example 2 The light emitting layer polymer (Lumation G1302 (manufactured by Sumation)) was dissolved in the same organic solvent as the organic underlayer ink at a ratio of 0.8% by mass to prepare an ink having a viscosity of 8 cP.
  • the ink was applied to produce a light emitting layer.
  • the ink application was performed by using 7 ink droplets in each of the pixel areas defined by the bank using an inkjet apparatus 120L manufactured by Litrex.
  • Example 1 After applying the ink, heat treatment was performed in a vacuum at about 100 ° C. for 60 minutes, and then the same operation as in steps (1-4) to (1-5) of Example 1 was performed to obtain an organic EL display element.
  • the leak current of one pixel was 0.1 ⁇ A or less at ⁇ 10V. Further, the resistivity of the organic underlayer was 2 ⁇ 10 14 ⁇ cm.
  • the organic EL element according to the present invention is useful as, for example, a light source of a lighting device and a display element of a display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基板(111)と、基板の面上に設けられた第1電極層(121)と、第1電極層の少なくとも一部を覆って設けられており、水に不溶性の材料からなる有機下地層(141)と、有機下地層の一部を覆って設けられ、有機下地層がその上に複数の画素領域(132B)を有するように配置されたバンク(131B)と、画素領域内に設けられた有機発光層(142)と、有機発光層の上に設けられた第2電極層(122)とを備える有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子及びその製造方法
 本発明は、有機エレクトロルミネッセンス素子(以下、「有機EL素子」ということがある。)及びその製造方法に関する。
 従来、画素として多数の有機EL素子を有する表示装置の製造において、基板上にポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホネートを含む溶液をスピンコーティングし、正孔注入層としての有機下地層を設けた後、該有機下地層上にバンクを設けた有機エレクトロルミネッセンス素子が開示されている(特許文献1)。
特開2004-235128号公報
 しかしながら、フォトリソグラフィ法でバンクを形成する場合、即ちフォトレジスト層を設けた後その層を露光、現像して層の一部を除去する工程において、有機EL素子の正孔注入層の厚さが不均一になり、発光特性、ひいては表示品質が損なわれるという課題がある。
 本発明の目的は、発光特性が良好であり、ひいては表示品質を良好とすることができる有機EL素子及び当該有機EL素子を容易に形成できる製造方法を提供することにある。
 上記課題を解決するため本願発明者は鋭意検討したところ、特定の有機下地層を用いれば、有機下地層の上にバンク(画素領域を区画する格子状の隔壁)を設けても有機下地層が損なわれず、その結果として、発光強度のばらつきの少ない良好な発光特性、ひいては表示品質を得ることができる有機EL素子を容易に形成しうることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、下記のものが提供される:
〔1〕 基板と、前記基板の面の少なくとも一部の領域上に設けられた第1電極層と、前記第1電極層の面の少なくとも一部の領域上に設けられており、水に不溶性の有機材料からなる有機下地層と、前記有機下地層上に設けられ、前記有機下地層がその上に複数の画素領域を有するように配置されたバンクと、前記有機下地層上であって前記画素領域内に設けられた有機発光層と、前記有機発光層上に設けられた第2電極層とを備える、有機エレクトロルミネッセンス素子。
〔2〕 前記有機下地層が正孔注入層である、〔1〕に記載の有機エレクトロルミネッセンス素子。
〔3〕 前記有機下地層として、第1の有機下地層及びその上に積層された第2の有機下地層を有し、前記第1の有機下地層が正孔注入層であり、前記第2の有機下地層がインターレイヤーである、〔1〕に記載の有機エレクトロルミネッセンス素子。
〔4〕 前記有機下地層の抵抗率が1×1010Ωcm以上である、〔1〕から〔3〕のいずれか1つに記載の有機エレクトロルミネッセンス素子。
〔5〕 前記水に不溶性の有機材料が架橋高分子化合物である、〔1〕から〔4〕のいずれか1つに記載の有機エレクトロルミネッセンス素子。
〔6〕 〔1〕から〔5〕のいずれか1つに記載の有機エレクトロルミネッセンス素子の製造方法であって、基板を準備し、前記基板の面の少なくとも一部の領域上に第1電極層を設け、前記第1電極層の少なくとも一部の領域上に有機下地層を設け、前記有機下地層上にバンクを設け、前記バンクによって規定された画素領域内に有機発光層を設け、及び前記有機発光層の上に第2電極層を設ける、有機エレクトロルミネッセンス素子の製造方法。
 本発明の有機EL素子は、バンクの下に発光素子の積層構造の一部として有機下地層を有する。さらに当該有機下地層として水に不溶性の有機材料を用いる。したがって、有機EL素子の発光特性、ひいては表示品質をより良好にすることができる。また本発明の有機EL素子の製造方法によれば、前述した構成を有する本発明の有機EL素子を容易に製造することができる。
図1は、本発明の有機EL素子の製造方法の一例における製造工程を示す断面図である。 図2は、図1に示す製造工程に続く製造工程を示す断面図である。 図3は、本発明の有機EL素子の一例の一部分の構成を示す断面図である。 図4は、本発明の有機EL素子の別の一例の一部分の構成を示す断面図である。 図5は、本発明の有機EL素子の一例における基板及び電極の位置関係を示す斜視図である。 図6は、本発明の有機EL素子の別の一例の一部分の構成を示す断面図である。
符号の説明
 111 基板
 121 第1電極層
 122 第2電極層
 131A フォトレジスト層
 131B バンク
 132R 画素領域
 141、641A、641B 有機下地層
 142 発光層
 以下において、図を参照して、本発明の実施形態につき詳細に説明する。なお、各図は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。また以下の説明に用いる各図において、同様の構成要素については同一の符号を付して示し、重複する説明を省略する場合がある。
 本発明の有機EL素子は、基板と、前記基板の面の少なくとも一部の領域上に設けられた第1電極層と、前記第1電極層の面の少なくとも一部の領域上に設けられた有機下地層と、前記有機下地層上に設けられ、前記有機下地層がその上に複数の画素領域を有するように配置されたバンクと、前記有機下地層上であって前記画素領域内に設けられた有機発光層と、前記有機発光層上に設けられた第2電極層とを備える。
1.基板
 本発明に用いる基板としては、有機EL素子に用いられる各種の基板を採用することができる。有機EL素子の層の構成に関する記載においては、特に断らない限り「上」「下」及び「水平」方向は、基板を水平に置き、その上方に発光層及び他の層を設けた場合の位置関係を示す。
2.電極層
 本発明の有機EL素子は、電極として、基板上に設けられる第1電極層、及び有機下地層及び発光層の上に設けられる第2電極層を含む。これらの一方を陽極、他方を陰極とする。第1電極層を陽極とすることが多いがこれに限られず第2電極層を陽極とすることもできる。
 電極層の具体的な形状は、特に限定されず、セグメント表示素子、ドットマトリックス表示素子などに適した各種の形状とすることができる。好ましくは、アクティブマトリックス表示素子又はパッシブマトリックス表示素子などのドットマトリックス表示素子を構成する形状とすることができる。第1電極層は、基板の面の全面に設けられていてもよいが、通常、多数の画素を構成するためのパターンに従い、基板の面上の一部の領域上に設けられる。
 パッシブマトリクスを構成する電極層の形状の一例の概略を、図5に示す。図5は、本願の有機EL素子の一例における基板及びパッシブマトリクス型電極の位置関係を示す斜視図である。この例においては、基板111の面上に、第1電極層121を互いに平行な線状に設け、それに交差する態様で、第2電極層122を設けている。各電極に接続して、電圧を印加して表示装置を駆動するための回路(不図示)を設けることができる。第1電極層121及び第2電極層122の交点のそれぞれにおいて、後述するバンクにより規定される画素領域(図5において不図示)を設けることができる。
3.有機下地層
 本発明の有機EL素子において、有機下地層は、前記第1電極層の面の少なくとも一部の領域上に設けられる。
 有機下地層が第1電極層の「少なくとも一部の領域上」に設けられるとは、第1電極層の上側の面上の少なくとも一部の領域に有機下地層が存在している領域があることをいう。従って、第1電極層の上面の全てを有機下地層が覆っていてもよく、第1電極層の上面の一部のみを有機下地層が覆っていてもよい。ただし、通常、第1電極層のうち、後述する画素領域に属する部分は、その全面を有機下地層が覆うよう構成される。また、基板の面上の、前記第1電極層で覆われていない部分については、有機下地層で覆われていてもよく、覆われていなくてもよい。
 有機下地層は、1枚の基板の面上の一部又は全部の領域を、1つの領域からなる有機下地層のみが占めている状態でもよく、また1枚の基板の面が複数の領域に区分され、それぞれの区分された領域を、有機下地層の複数の例えば島状の部分領域が占める、即ち有機下地層が互いに分離された複数の部分領域を含んで設けられている状態でもよいことをいう。
 本発明の好ましい態様においては、有機下地層は、基板上の複数の画素領域を包含する領域全面を覆うよう、より好ましくは基板上の全ての画素領域を包含する領域全面を覆うよう設けられる。このような態様で有機下地層を設けることにより、均一な有機下地層を、スピンコート法などの簡便な方法で形成することができる。
 このような有機下地層の構造を、再び図5を参照して説明すると、有機下地層(不図示)は、電極121及び122の交点で示される画素領域全てを含む領域111Cにおいて、基板111の表面上の第1電極層121、及び基板111の表面上の第1電極層が形成されていない部分の両方にわたって、一体となった層として設けられることが好ましい。
 さらに、このような有機下地層の構造を、図3を参照して説明する。図3は、図5と同様のパッシブマトリクス型の電極を有する本発明の有機EL素子の一例の一部の構成を示す断面図である。この例において、基板111上の上には複数の第1電極層121が設けられ、第1電極層121、及びその間隙の第1電極層121で覆われていない基板111表面の両方にわたり、有機下地層141が一体となった層として連続的に形成されている。このような構成とすることにより、第1電極層の上に、第1電極層上において均一な厚さを有し、且つ画素領域間における厚さのばらつきの少ない有機下地層を、スピンコート法などの簡便な手法で容易に設けることができる。
 図3に示す通り、本発明の有機EL素子は、積層構造を有しない1層の有機下地層のみからなってもよい。
 しかしながら、図6に示す通り、積層構造を有する2層以上の有機下地層を有していてもよく、さらに3層以上の有機下地層を有していてもよい。図6は、本発明の有機EL素子の別の一例の一部分の構成を示す断面図である。
 図6に示す例においては、有機EL素子は、基板111及び第1電極層121の両方を覆う第1の有機下地層641A及びその上に積層された第2の有機下地層641Bの2層を有している。有機下地層は、3層以上の層として設けると、電極とバンクとの間隔が大きくなり、隣接する画素領域とのクロストークを招くおそれがあるので、好ましくは1層又は2層とすることができる。
 上で述べたように、基板の面が複数の領域に区分され、それぞれの領域をそれぞれ別の有機下地層(部分領域)が占め、複数の部分領域を含む有機下地層が設けられている場合は、その区分された部分領域のそれぞれにおいて、1層の有機下地層又は2層以上の積層された有機下地層を有することができる。
 本発明の有機EL素子における有機下地層は、有機EL素子を構成するために必要な層であって第1電極層以外のいずれかの層の機能を有することができる。通常は、有機EL素子において電極と発光層との間に形成される層の一部の層又は全ての層とすることができる。
 例えば、第1電極層が陽極である場合、有機下地層は、正孔注入層、インターレイヤー及び正孔輸送層のうちの1層以上とすることができる。より好ましい態様において、本発明の有機EL素子は、有機下地層として正孔注入層である1層のみを有するか、又は第1の有機下地層及びその上に積層された第2の有機下地層を有し、第1の有機下地層を正孔注入層とし第2の有機下地層をインターレイヤーとすることができる。
 一方、第1電極層が陰極である場合、有機下地層は、電子注入層、インターレイヤー及び電子輸送層のうちの1層以上とすることができる。より好ましい態様において、本発明の有機EL素子は、有機下地層として電子注入層である1層のみを有するか、又は第1の有機下地層及びその上に積層された第2の有機下地層を有し、第1の有機下地層を電子注入層とし第2の有機下地層をインターレイヤーとすることができる。
 本発明において、有機下地層の抵抗率は、好ましくは1×1010Ωcm以上である。
ここで、有機下地層の抵抗率は、抵抗率計(例えばダイアインスツルメンツ社製 ロレスタGP MCP-T610型)により測定することができる。
 本発明において、有機下地層は、水に不溶性の有機材料からなる。有機下地層が複数の層からなる場合、少なくとも最上のバンクと接する層が、好ましくは全ての層が、水に不溶性の有機材料からなる。本発明に用いられる有機下地層は、水に不溶性の有機材料からなるため、有機下地層上に水を含む溶液を塗布した場合でも、当該層の膜厚が実質的に減少しない。水に不溶性の有機材料としては、水1gに溶解する量が0.1mg以下であることが好ましく、0.01mg以下であることがより好ましく、0.001mg以下であることがさらに好ましい。
 本発明においては、素子を構成する層の1層以上を有機下地層としてバンクの下に設けることにより、スピンコート法などの簡易な成膜方法で形成しうるという利点を享受すると共に、有機下地層として水に不溶性の材料を採用することにより、この後のバンクの形成の工程においても有機下地層が損なわれず、その結果として、良好な発光特性、ひいては高品質な表示性能を得ることができる。
4.バンク
 本発明において、バンクは、有機下地層上に設けられ、有機下地層が複数の部分領域に区画されている場合には、有機下地層のそれぞれの上に複数の画素領域を規定する。ここで、有機下地層の「それぞれの上に複数の」画素領域を規定するとは、基板上に設けられた有機下地層が、互いに分離された複数の部分領域を有する場合は、それぞれの部分領域上に複数の画素領域が規定されることを意味する。基板上に有機下地層が1つの領域のみとして存在する場合は、勿論その上に全ての画素領域が規定される。このような構成とすることにより、本発明の有機EL素子においては、隣接する複数の画素における有機下地層が一体に形成されることとなる。即ち、基板表面上の隣接する複数の画素、好ましくは基板表面上の全ての画素の存在する一領域において、有機下地層が別個の部分領域を有するのではなく連続して一体となった層となる。
 上記構成を、再び図3の例を参照して説明すると、バンク131Bは、電極121及び121が上下に存在する矩形の領域132R内に画素領域が規定されるよう、その周囲を囲んで、有機下地層141上に設けられる。即ち、バンクに周囲を囲まれ、バンクが存在しない領域132Rが画素領域となり、有機下地層141の互いに分離された複数の部分領域のうちの1つの上に、複数の画素領域132Rが規定される。
5.有機発光層
 本発明において、有機発光層は、バンクによって規定された画素領域内に設けられる。そして、このように設けられた有機発光層の上にさらに、上に述べた第2電極層を形成することにより有機EL素子を構成することができる。図3の例を参照して説明すると、有機発光層142は、バンク131Bで規定された画素領域132R内に充填される形で設けられ、第1電極層121の上に、有機下地層141を介して積層されている。この上に、第1電極層121と直交するように第2電極層122を設けることにより、第1電極層及び第2電極層の間に有機下地層及び発光層が積層された有機EL素子を構成することができる。
6.封止部材
 図5に示す通り、本発明の有機EL素子はさらに、前記各層を挟んで基板と反対側に、封止のための部材を有することができる。図5は、本発明の有機EL素子の一例における基板及び電極の位置関係を示す斜視図である。
 封止部材は、例えば、画素領域を含む領域111Cの周辺の領域111Sに設けられた接着層を介して、基板111と貼り合わせることにより、素子を構成する各層を封止することができる。
7.その他の構成要素
 図4に示す通り、本発明の有機EL素子は、上記構成要素に加えて、さらに他の構成要素を有することができる。図4は、本発明の有機EL素子の別の一例の一部分の構成を示す断面図である。
 具体的には例えば、バンクにより規定される画素領域内に、有機発光層に加えてさらに1層以上の他の層を有していてもよい。本発明の有機EL素子は、例えば第1電極層121と第2電極層122との間の積層構造140を、有機下地層141及び有機発光層142に加えて、さらに他の層143を設けた3層で構成している。
 上記必須の構成要素及び任意の構成要素による本発明の有機EL素子の層の構成について、以下により具体的に説明する。
 一般に、有機EL素子は、少なくとも1対の電極(陽極及び陰極)を有し、その間に少なくとも有機発光層を有する。陽極と有機発光層との間には任意に正孔注入層を有することができ、さらに、有機発光層と正孔注入層(正孔注入層が存在する場合)又は陽極(正孔注入層が存在しない場合)との間に任意にインターレイヤー、正孔輸送層のうちの1層以上を有することができる。一方、陰極と有機発光層との間には任意に電子注入層を有することができ、さらに、有機発光層と電子注入層(電子注入層が存在する場合)又は陰極(電子注入層が存在しない場合)との間に任意にインターレイヤー、電子輸送層のうちの1層以上を有することができる。即ち有機EL素子は下記の層構成a)を有することができ、又は、層構成a)から正孔注入層、正孔輸送層、インターレイヤー、電子輸送層、電子注入層の1層以上を省略した層構成を有することもできる。
 a)陽極-正孔注入層-(正孔輸送層及び/又はインターレイヤー)-発光層-(電子輸送層及び/又はインターレイヤー)-電子注入層-陰極
 ここで、符号「-」は各層が隣接して積層されていることを示す。「(正孔輸送層及び/又はインターレイヤー)」は、正孔輸送層のみからなる層、インターレイヤーのみからなる層、正孔輸送層-インターレイヤーの層構成、インターレイヤー-正孔輸送層の層構成、又はその他の、正孔輸送層及びインターレイヤーをそれぞれ一層以上含む任意の層構成を示す。「(電子輸送層及び/又はインターレイヤー)」は、電子輸送層のみからなる層、インターレイヤーのみからなる層、電子輸送層-インターレイヤーの層構成、インターレイヤー-電子輸送層の層構成、又はその他の、電子輸送層及びインターレイヤーをそれぞれ一層以上含む任意の層構成を示す。以下の層構成の説明においても同様である。
 さらに、有機EL素子は、一つの積層構造中に2層の発光層を有することができる。この場合、有機EL素子は下記の層構成b)を有することができ、又は、層構成b)から正孔注入層、正孔輸送層、インターレイヤー、電子輸送層、電子注入層の1層以上を省略した層構成を有することもできる。
 b)陽極-正孔注入層-(正孔輸送層及び/又はインターレイヤー)-発光層-(電子輸送層及び/又はインターレイヤー)-電子注入層-電極-正孔注入層-(正孔輸送層及び/又はインターレイヤー)-発光層-(電子輸送層及び/又はインターレイヤー)-電子注入層-陰極
 さらに、有機EL素子は、一つの積層構造中に3層以上の発光層を有することができる。この場合、有機EL素子は下記の層構成c)を有することができ、又は、層構成c)から正孔注入層、正孔輸送層、インターレイヤー、電子輸送層、電子注入層の1層以上を省略した層構成を有することもできる。
 c)陽極-正孔注入層-(正孔輸送層及び/又はインターレイヤー)-発光層-(電子輸送層及び/又はインターレイヤー)-電子注入層-繰返し単位A-繰返し単位A・・・-陰極
 ここで「繰返し単位A」は、電極-正孔注入層-(正孔輸送層及び/又はインターレイヤー)-発光層-(電子輸送層及び/又はインターレイヤー)-電子注入層の層構成の単位を示す。
 本発明の有機EL素子も、上記の一般的な有機EL素子がとりうるものと同様の層構成とすることができる。そして、第1電極層を陽極とした場合は、陽極に近い側の1層以上、好ましくは1層又は2層を、有機下地層とすることができ、それよりも陽極から遠い層を、バンクにより規定された画素領域内に設けることができる。一方、第1電極層を陰極とした場合は陰極に近い側の1層以上、好ましくは1層又は2層を、有機下地層とすることができる。
 本発明の有機EL素子の層構成の好ましい具体的としては、下記のものが挙げられる。下記において、記号< >で囲まれた要素は有機下地層として設けられる層を示し、その他のもので且つ電極以外のものはバンクにより規定された画素領域内に設けられる層を示す。
 d)陽極-<正孔注入層>-有機発光層-陰極
 e)陽極-<正孔輸送層>-有機発光層-陰極
 f)陽極-<インターレイヤー>-有機発光層-陰極
 g)陽極-<正孔注入層-正孔輸送層>-有機発光層-陰極
 h)陽極-<正孔注入層-インターレイヤー>-有機発光層-陰極
 i)陽極-<正孔注入層>-正孔輸送層-インターレイヤー-有機発光層-陰極
 j)陽極-<正孔輸送層>-インターレイヤー-有機発光層-陰極
 k)陽極-<正孔注入層-正孔輸送層>-インターレイヤー-有機発光層-陰極
 d2)~k2) 上記d)~k)において、有機発光層と陰極との間に、さらに電子注入層を有するもの。
 d3)~k3) 上記d)~k)において、有機発光層と陰極との間に、さらにインターレイヤー-電子輸送層を有するもの。
 d4)~k4) 上記d2)~k2)において、有機発光層と電子注入層との間に、さらにインターレイヤー-電子輸送層を有するもの。
 なお、上記の例示に示されるとおり、インターレイヤーが存在する場合は、インターレイヤーは発光層に隣接することが好ましい。
 本発明の有機EL素子は、さらに電極との密着性向上や電極からの電荷(即ち正孔又は電子)の注入の改善のために、電極に隣接して膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止などのために電荷輸送層(即ち正孔輸送層又は電子輸送層)又は有機発光層の界面に薄いバッファー層を挿入してもよい。
 積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
 本発明の有機EL素子を、基板側から出光するボトムエミッション型の表示装置用の素子として構成する場合、少なくとも有機発光層よりも基板側の全ての層を、透明又は半透明とすることができる。一方、基板と反対の面側から出光するトップエミッション型の表示装置用の素子として構成する場合は、少なくとも有機発光層よりも第2電極層側の全ての層を、透明又は半透明とすることができる。
 例えば図3に示す有機EL素子がボトムエミッション型の表示装置用の素子である場合、有機発光層142よりも基板側の全ての層、即ち有機下地層141、第1電極層121及び基板111の全てが透明又は半透明となるよう素子を構成しうる。一方、図3に示す有機EL素子がトップエミッション型の表示装置用の素子である場合、有機発光層142よりも第2電極層側の全ての層、即ち第2電極層122及び封止部材(不図示)の全てが透明又は半透明となるよう素子を構成しうる。ここで透明又は半透明とは、発光層から光を放出する層までの可視光透過率が40%以上であることが好ましい。紫外領域又は赤外領域の発光が求められる素子の場合は、当該領域において40%以上の透過率を有することが好ましい。
 本発明の有機EL素子は、さらに必要に応じて、カラーフィルター又は蛍光変換フィルターなどのフィルター、画素の駆動に必要な配線などの、表示素子を構成するための任意の構成要素を有することができる。
8.各層を構成する材料
 次に、本発明の有機EL素子を構成する各層の材料及び形成方法について、より具体的に説明する。
<基板>
 本発明の有機EL素子を構成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板、これらを積層したものなどが用いられる。前記基板としては、市販のものが入手可能であり、又は公知の方法により製造することができる。
<陽極>
 本発明の有機EL素子の陽極としては、透明又は半透明の電極を用いることが、陽極を通して発光する素子を構成しうるため好ましい。かかる透明電極又は半透明電極としては、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いることができ、透過率が高いものが好適に利用でき、用いる有機層により適宜、選択して用いる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ酸化物(ITO)、インジウム・亜鉛酸化物などからなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅などが用いられ、ITO、インジウム・亜鉛酸化物、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などが挙げられる。また、該陽極として、ポリアニリン又はその誘導体、ポリチオフェン又はその誘導体などの有機の透明導電膜を用いてもよい。
 陽極には、光を反射させる材料を用いてもよく、該材料としては、仕事関数3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
<正孔注入層>
 正孔注入層は、陽極と正孔輸送層との間、又は陽極と発光層との間に設けることができる。
 本発明の有機EL素子において、正孔注入層を形成する材料としては、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウムなどの酸化物、アモルファスカーボン、ポリアニリン又はその誘導体、ポリフルオレン又はその誘導体、ポリアリールアミン又はその誘導体、ポリチオフェン又はその誘導体などが挙げられる。
 正孔注入層の膜厚は、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが非発生となる厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなってしまうおそれがある。従って、該正孔注入層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔注入層の成膜の方法に制限はないが、低分子正孔注入材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔注入材料では、溶液からの成膜による方法が例示される。
 溶液からの成膜に用いる溶媒としては、正孔注入材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒が例示される。
 溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キヤピラリーコート法、スプレーコート法、ノズルコート法などのコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法などの印刷法といった塗布法を用いることができる。パターン形成が容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法などの印刷法が好ましい。
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどが例示される。
 本発明において、正孔注入層を水に不溶性の有機下地層として設ける場合、ポリアニリン又はその誘導体、ポリフルオレン又はその誘導体、ポリアリールアミン又はその誘導体、ポリチオフェン又はその誘導体からなる群から連ばれる高分子化合物であって親水基を有さない高分子化合物を正孔注入層の材料として用いることが好ましい。特に好ましい正孔注入層の材料としては、下記式(1)で表される繰り返し単位を有する高分子化合物、下記式(2)で表される繰り返し単位を有する高分子化合物、下記式(1)で表される繰り返し単位及び下記式(2)で表される繰り返し単位を有する高分子化合物があげられる。
Figure JPOXMLDOC01-appb-C000001
[式(1)及び(2)中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立に、水素原子、アルキル基又はアリール基を表す。R1とR2とは互いに結合して環を形成していてもよい。R3~R7から選ばれる任意の2個の置換基が互いに結合して環を形成していてもよい。]
 前記アルキル基は、炭素数が通常1~20であり、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、s-ブチル基、3-メチルブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n一ラウリル基などが挙げられる。
 前記アリール基は、炭素数が通常6~60であり、置換基を有していてもよい。アリール基が有している置換基としては、炭素数1~20の直鎖状、分岐状のアルキル基又は炭素数1~20のシクロアルキル基があげられる。アリール基の具体例としては、フェニル基、C1~C12アルキルフェニル基(C1~C12は、炭素数1~12であることを示
す。以下も同様である。)、1-ナフチル基、2-ナフチル基などが挙げられ、炭素数6~20のアリール基が好ましく、C1~C12アルキルフェニル基がより好ましい。
 R1とR2とは互いに結合して環を形成していてもよく、R3~R7から選ばれる任意の
2個の置換基が互いに結合して環を形成していてもよい。当該環としては、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロヘキセン環、シクロヘキサジエン環、シクロオクタトリエン環などが挙げられる。
<正孔輸送層>
 正孔輸送層を構成する材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリフルオレン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などが例示される。
 正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。溶液からの成膜に用いる溶媒は前述の正孔注入層の成膜に用いる溶媒と同様の溶媒が挙げられる。溶液からの成膜方法としては、前述の正孔注入層を溶液から成膜する方法と同様の成膜方法が挙げられる。
 正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなるおそれがある。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 本発明において、正孔輸送層を水に不溶性の有機下地層として設ける場合、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリフルオレン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体からなる群から選ばれる高分子化合物であって親水基を有さない高分子化合物を正孔輸送層の材料として用いることが好ましい。特に好ましい正孔輸送層の材料としては、前記式(1)で表される繰り返し単位を有する高分子化合物、前記式(2)で表される繰り返し単位を有する高分子化合物、前記式(1)で表される繰り返し単位及び前記式(2)で表される繰り返し単位を有する高分子化合物があげられる。
<インターレイヤー>
 インターレイヤーを構成する材料としては、ポリアリールアミン又はその誘導体、ポリフルオレン又はその誘導体などが例示される。
 インターレイヤーの成膜の方法に制限はないが、溶液からの成膜による方法が例示される。溶液からの成膜に用いる溶媒は前述の正孔注入層の成膜に用いる溶媒と同様の溶媒が挙げられる。溶液からの成膜方法としては、前述の正孔注入層を溶液から成膜する方法と同様の成膜方法が挙げられる。
 インターレイヤーの膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなるおそれがある。従って、該インターレイヤーの膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~20nmである。
 本発明において、インターレイヤーを水に不溶性の有機下地層として設ける場合、ポリフルオレン又はその誘導体、ポリアリールアミン又はその誘導体からなる群から選ばれる高分子化合物であって親水基を有さない高分子化合物をインターレイヤーの材料として用いることが好ましい。特に好ましい正孔輸送層の材料としては、前記式(1)で表される繰り返し単位を有する高分子化合物、前記式(2)で表される繰り返し単位を有する高分子化合物、前記式(1)で表される繰り返し単位及び前記式(2)で表される繰り返し単位を有する高分子化合物があげられる。
 本発明に用いられる有機下地層は、水に不溶性の架橋高分子化合物からなることが好ましい。該架橋高分子化合物は、架橋基を有する高分子化合物を硬化させて製造してもよく、高分子化合物と架橋剤との混合物を硬化させて製造してもよい。
<バンク>
 バンクは、例えば感光性ポリイミドを材料として用いて形成することができる。バンクは、下部電極を実質的に包囲するように形成される。バンクの厚みとしては、0.1~5μm程度がよい。バンクの材料としては、加熱による変化が少ない、即ち耐熱性に優れた有機材料を用いるのが望ましく、ポリイミドの他に、アクリル系(メタクリル系)やノボラック系の樹脂材料を用いてもよい。これらの樹脂材料には、パターニングを容易にするため、感光性が付加されていることが望ましい。感光性を有する有機材料を用いると、材料の塗布、プリベーク、露光、現像、ポストベークという一連のプロセスで、バンクを形成できる。露光光としてはUV光のg、h、i線の混合光であってもよく、g、h、i線の単波長であってもよい。現像液としては、有機、無機アルカリの水溶液を使用できる。
<発光層>
 発光層は、本発明においては有機発光層であることが好ましく、通常、主として蛍光又はりん光を発光する有機物(低分子化合物及び高分子化合物)を有する。なお、さらにドーパント材料を含んでいてもよい。本発明において用いることができる発光層を形成する材料としては、例えば以下のものが挙げられる。
色素系材料
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。
金属錯体系材料
 金属錯体系材料としては、例えば、イリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体など、中心金属に、Al、Zn、Beなど、又はTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体などを挙げることができる。
高分子系材料
 高分子系材料としては、ポリパラフェニレンビニレン又はその誘導体、ポリチオフェン又はその誘導体、ポリパラフェニレン又はその誘導体、ポリシラン又はその誘導体、ポリアセチレン又はその誘導体、ポリフルオレン又はその誘導体、ポリビニルカルバゾール又はその誘導体、上記色素系材料や金属錯体系材料を高分子化したものなどが挙げられる。
 上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン又はその誘導体、オキサジアゾール又はその誘導体、及びそれらの重合体、ポリビニルカルバゾール又はその誘導体、ポリパラフェニレン又はその誘導体、ポリフルオレン又はその誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール又はその誘導体、ポリパラフェニレン又はその誘導体やポリフルオレン又はその誘導体などが好ましい。
 また、緑色に発光する材料としては、キナクリドン又はその誘導体、クマリン又はその誘導体、及びそれらの重合体、ポリパラフェニレンビニレン又はその誘導体、ポリフルオレン又はその誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン又はその誘導体、ポリフルオレン又はその誘導体などが好ましい。
 また、赤色に発光する材料としては、クマリン又はその誘導体、チオフェン環化合物、及びそれらの重合体、ポリパラフェニレンビニレン又はその誘導体、ポリチオフェン又はその誘導体、ポリフルオレン又はその誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン又はその誘導体、ポリチオフェン又はその誘導体、ポリフルオレン又はその誘導体などが好ましい。
ドーパント材料
 発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加することができる。このようなドーパントとしては、例えば、ペリレン又はその誘導体、クマリン又はその誘導体、ルブレン又はその誘導体、キナクリドン又はその誘導体、スクアリウム又はその誘導体、ポルフィリン又はその誘導体、スチリル系色素、テトラセン又はその誘導体、ピラゾロン又はその誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約20~2000Å(2~200nm)である。
<発光層の成膜方法>
 有機物を含む発光層(有機発光層)の成膜方法としては、発光材料を含む溶液を基体の上又は上方に塗布する方法、真空蒸着法、転写法などを用いることができる。溶液からの成膜に用いる溶媒の具体例としては、前述の溶液から正孔輸送層を成膜する際に正孔輸送材料を溶解させる溶媒と同様の溶媒があげられる。
 発光材料を含む溶液を基体の上又は上方に塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法などのコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法といった印刷法などの塗布法を用いることができる。パターン形成や多色の色分けが容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法などの印刷法が好ましい。また、昇華性の低分子化合物の場合は、真空蒸着法を用いることができる。さらには、レーザーによる転写や熱転写により、所望の領域のみに発光層を形成する方法も用いることができる。
<電子輸送層>
 電子輸送層を構成する材料としては、公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などが例示される。
 これらのうち、オキサジアゾール若しくはその誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
 電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、又は溶液若しくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液又は溶融状態からの成膜による方法がそれぞれ例示される。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法があげられる。
 電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなるおそれがある。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
<電子注入層>
 電子注入層は、電子輸送層と陰極との間、又は発光層と陰極との間に設けられる。電子注入層としては、発光層の種類に応じて、アルカリ金属やアルカリ土類金属、又は前記金属を1種類以上含む合金、又は前記金属の酸化物、ハロゲン化物及び炭酸化物、又は前記物質の混合物などが挙げられる。アルカリ金属又はその酸化物、ハロゲン化物、炭酸化物の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどが挙げられる。また、アルカリ土類金属又はその酸化物、ハロゲン化物、炭酸化物の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどが挙げられる。電子注入層は、2層以上を積層したものであってもよい。具体的には、LiF/Caなどが挙げられる。電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。電子注入層の膜厚としては、1nm~1μm程度が好ましい。
<陰極材料>
 本発明の有機EL素子で用いる陰極の材料としては、仕事関数の小さく発光層への電子注入が容易な材料かつ/もしくは電気伝導度が高い材料かつ/もしくは可視光反射率の高い材料が好ましい。金属では、アルカリ金属やアルカリ土類金属、遷移金属や第13族金属を用いることができる。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、又は上記金属のうち2つ以上の合金、又はそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、又はグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などが挙げられる。また、陰極として透明導電性電極を用いることができ、例えば導電性金属酸化物や導電性有機物などを用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ酸化物(ITO)やインジウム・亜鉛酸化物(IZO)、導電性有機物としてポリアニリン又はその誘導体、ポリチオフェン又はその誘導体などの有機の透明導電膜を用いてもよい。なお、陰極を2層以上の積層構造としてもよい。なお、電子注入層が陰極として用いられる場合もある。
 陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極の作製方法としては、真空蒸着法、スパッタリング法、金属薄膜を圧着するラミネート法などが用いられる。
<絶縁層>
 本発明の有機EL素子が任意に有しうる、膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料などが挙げられる。膜厚2nm以下の絶縁層を設けた有機EL素子としては、陰極に隣接して膜厚2nm以下の絶縁層を設けたもの、陽極に隣接して膜厚2nm以下の絶縁層を設けたものが挙げられる。
 本発明の有機EL素子は面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライトとして用いることができる。
9.製造方法
 次に、本発明の有機EL素子の好ましい製造方法の例を、図1~図3を参照して説明する。図1は、本発明の有機EL素子の製造方法の一例における製造工程を示す断面図である。図2は、図1に示す製造工程に続く製造工程を示す断面図である。図3は、本発明の有機EL素子の一例の一部分の構成を示す断面図である。
 まず、図1に示す通り、基板111を準備して、基板111の面上に第1電極層121を設ける。第1電極層121は、所望のパターンに従って設けることができる。
 次に、第1電極層121の少なくとも一部、好ましくは全部を覆うように有機下地層141を設ける。図1に示す例においては、有機下地層は1層のみからなるが、2層以上の有機下地層を設ける場合は、ここで2層以上の積層を行なうことができる。有機下地層141は、所望のパターンに従って形成することも可能であるが、スピンコートなどの方法で基板111及び第1電極層121の上に、有機下地層材料の組成物の塗膜を連続した一枚の塗膜として設け、その後必要に応じて有機下地層を設けない部分(例えば図5に示す周辺領域111S)の層を除去し、さらに必要に応じて塗膜を硬化させることにより、容易に設けることができる。
 続いて、有機下地層141の上に、バンクを形成するためのフォトレジスト層131Aを設ける。
 次に、図2に示す通り、フォトレジスト層131Aのうちの画素領域を形成する領域の部分を、フォトリソグラフィなどにより取り除き、画素領域132Rを規定するバンク131Bを形成する。
 さらに、図3に示す通り、バンク131Bにより規定された画素領域132R内に、有機発光層142を設ける。有機発光層142は、有機発光層の材料組成物の塗膜を画素領域内に設け、必要に応じて硬化させることで形成することができる。材料組成物の塗膜を画素領域内に設ける方法としては、インクジェット法を好ましく挙げることができる。また、単色表示の表示素子を構成する場合は、有機発光層の材料組成物をスピンコート法などで一面に設けることもできる。
 有機発光層142を設けた後、その上に、所望のパターンに従って第2電極層122を設けることで、基板-第1電極層-有機下地層-有機発光層-第2電極層を有する積層物が得られる。これにさらに必要に応じて封止部材及び画素の駆動に必要な配線などの任意の構成要素を加えることにより、有機EL素子を得ることができる。
 以下において、本発明を実施例及び比較例を参照してより詳細に説明するが、本発明はこれらに限定されない。
 <実施例1>
 (1-1:有機下地層の形成)
 正孔注入材料である水に不溶性の高分子材料、架橋剤であるジペンタエリスリトールヘキサアクリレート、重合開始剤であるイルガキュアー360(チバガイギー社製)を重量比で1:0.25:0.01の割合で混合し、混合物を得た。有機溶剤に、前記混合物を1質量%の割合で溶解し、有機下地層形成用インクを得た。
 陽極としてのITOパターンを有する平板状のガラス基板の、当該パターンを有する側の面全面に、前記有機下地層形成用インクをスピンコートし、約60nmの厚さの塗膜を作製した。その後、基板周辺部の封止エリア及び取り出し電極部分などの表示素子を作製しない領域の塗膜を拭き取り、ホットプレート上で200℃、10分間熱処理し、乾燥して不溶化し、正孔注入層として機能する有機下地層を得た。本有機下地層は、水に不溶性の架橋高分子化合物からなる。有機下地層の抵抗率は2×1014Ωcm以上であった。
 (1-2:バンクの形成)
 1-1で得た有機下地層の上に、フォトレジスト(東京応化製TELR-P003)を、回転数1000rpmでスピンコートし、フォトレジスト層を得た。この層に、所望のパターンが形成されているフォトマスクを介して、露光機(大日本スクリーン製、MA-1200)を用いて露光処理を施し、続いてKOH 1質量%水溶液で現像することで、所望のパターンを得た。得られた膜を230℃×20分間オーブンで乾燥し、バンクを得た。得られたバンクは、厚さが1.5μmであった。また、バンクを上面から観察すると、有機下地層が露出している素子領域の開口が、70×210μmの矩形であり、隣接する素子領域との距離が20μmであった。
 (1-3:発光層の形成)
 1-2で得た陽極、有機下地層及びバンクを有する基板の上に、赤色発光有機EL材料(Lumation RP158(Sumation社製))のキシレン溶液(1質量%)を、スピンコートし、その後、キシレンを浸した布で基板周辺部、及びバンク頂部上などの不要部分を拭き取った後、減圧下80℃で1時間乾燥し、厚さ80nmの発光層をバンク内の画素領域に得た。
 (1-4:陰極の形成)
 (1-3)で得た陽極、有機下地層、バンク及び発光層を有する基板の上に、厚さ約5nmのバリウムと、その上の厚さ約100nmのアルミニウムの2層からなる陰極を、蒸着法により形成した。陰極の形状は、シャドーマスクを用いて規定し、ITO陽極と、発光層上で直交する形状とし、陽極と陰極とでパッシブマトリクスを構成した。
 (1-5:封止)
 封止用ガラス基板の一面の周辺部に、UV硬化性封止材(ナガセケムテックス社製XNR5516Z)を、ディスペンサーを用いて塗布した。この塗布面を下側として、(1-4)で得た積層構造を有する基板と位置合わせして、減圧下(-25KPa)で貼り合わせた。その後大気圧に戻し、UV光を照射して封止材を硬化することにより(1-1)~(1-4)で得た層を封止し、有機EL素子を得た。
 (1-6:評価)
 (1-5)で得られた素子の電極に電源を接続し駆動させたところ、単色(赤色)の画像が表示されることが確認された。画素中の発光は均一であった。
 <実施例2>
 発光層ポリマー(Lumation G1302(Sumation社製))を、有機下地層用インクと同じ有機溶媒に0.8質量%の割合で溶解し、粘度8cPのインクを調製した。
 実施例1の工程(1-1)~(1-2)と同様にして得た陽極、有機下地層及びバンクを有する基板の上に、上記インクを塗布し、発光層を作製した。
 インクの塗布は、Litrex社製インクジェット装置120Lを用い、バンクにより規定された画素領域のそれぞれに7滴ずつ吐出した。
 インク塗布後、真空中で約100℃、60分間加熱処理し、続いて実施例1の工程(1-4)~(1-5)と同様に操作し、有機EL表示素子を得た。
 得られた素子の電極に電源を接続し駆動させたところ、クロストークの無い明瞭な動画像が表示されることを確認した。一画素のリーク電流は、-10Vにおいて0.1μA以下であった。また、有機下地層の抵抗率は2×1014Ωcmであった。
 <比較例1>
 (1-1:有機下地層の形成)
 有機下地層形成用インクとして、水溶性である(ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(略称PEDOT/PSS、バイエル社製、商品名;Baytron P CH 8000)を含む水溶液を用いた他は、実施例1の工程(1-1)と同様にして、ITO陽極及び有機下地層を有する基板を得た。
 得られた有機下地層上に、実施例1の工程(1-2)と同様にバンクを形成しようとしたところ、バンク形成のためのフォトリソグラフィの過程で有機下地層の厚さが不均一となった。
 以上のように、本発明にかかる有機EL素子は、例えば照明装置の光源、表示装置の表示素子として有用である。

Claims (6)

  1.  基板と、
     前記基板の面の少なくとも一部の領域上に設けられた第1電極層と、
     前記第1電極層の面の少なくとも一部の領域上に設けられており、水に不溶性の有機材料からなる有機下地層と、
     前記有機下地層上に設けられ、前記有機下地層がその上に複数の画素領域を有するように配置されたバンクと、
     前記有機下地層上であって前記画素領域内に設けられた有機発光層と、
     前記有機発光層上に設けられた第2電極層と
    を備える、有機エレクトロルミネッセンス素子。
  2.  前記有機下地層が正孔注入層である、請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記有機下地層として、第1の有機下地層及びその上に積層された第2の有機下地層を有し、前記第1の有機下地層が正孔注入層であり、前記第2の有機下地層がインターレイヤーである請求項1に記載の有機エレクトロルミネッセンス素子。
  4.  前記有機下地層の抵抗率が1×1010Ωcm以上である、請求項1に記載の有機エレクトロルミネッセンス素子。
  5.  前記水に不溶性の有機材料が架橋高分子化合物である、請求項1に記載の有機エレクトロルミネッセンス素子。
  6.  請求項1に記載の有機エレクトロルミネッセンス素子の製造方法であって、
     基板を準備し、
     前記基板の面の少なくとも一部の領域上に第1電極層を設け、
     前記第1電極層の少なくとも一部の領域上に有機下地層を設け、
     前記有機下地層上にバンクを設け、
     前記バンクによって規定された画素領域内に有機発光層を設け、及び
     前記有機発光層の上に第2電極層を設ける、有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2008/072983 2008-01-08 2008-12-17 有機エレクトロルミネッセンス素子及びその製造方法 WO2009087876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/811,458 US20100295033A1 (en) 2008-01-08 2008-12-17 Organic electroluminescence element and method for manufacturing the same
CN200880124294.1A CN101911333B (zh) 2008-01-08 2008-12-17 有机电致发光元件及其制造方法
EP08869573A EP2234186A4 (en) 2008-01-08 2008-12-17 ORGANIC ELECTROLUMINESCENCE ELEMENT AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008001630A JP5192828B2 (ja) 2008-01-08 2008-01-08 有機エレクトロルミネッセンス表示素子及びその製造方法
JP2008-001630 2008-01-08

Publications (1)

Publication Number Publication Date
WO2009087876A1 true WO2009087876A1 (ja) 2009-07-16

Family

ID=40853000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072983 WO2009087876A1 (ja) 2008-01-08 2008-12-17 有機エレクトロルミネッセンス素子及びその製造方法

Country Status (7)

Country Link
US (1) US20100295033A1 (ja)
EP (1) EP2234186A4 (ja)
JP (1) JP5192828B2 (ja)
KR (1) KR20100111684A (ja)
CN (1) CN101911333B (ja)
TW (1) TW200942071A (ja)
WO (1) WO2009087876A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004824A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 発光素子の製造方法、並びに発光素子を用いた有機表示パネル、有機発光装置、及び有機表示装置
US20120319089A1 (en) * 2011-06-16 2012-12-20 Samsung Mobile Display Co., Ltd. Organic Light Emitting Structures, Methods of Forming Organic Light Emitting Structures, Organic Light Emitting Display Devices and Methods of Manufacturing Organic Light Emitting Display Devices

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381391B1 (ko) * 2015-04-16 2022-03-31 삼성디스플레이 주식회사 표시 장치
KR101084263B1 (ko) * 2009-12-14 2011-11-16 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR102080731B1 (ko) * 2013-05-28 2020-02-25 삼성디스플레이 주식회사 유기전계 발광장치의 제조방법
JP6375600B2 (ja) * 2013-09-03 2018-08-22 セイコーエプソン株式会社 有機el素子の製造方法、有機el素子、有機el装置、電子機器
CN108535907B (zh) * 2014-12-25 2021-07-20 上海天马微电子有限公司 一种显示面板、显示器及其制作方法
US10395615B2 (en) * 2014-12-25 2019-08-27 Shanghai Tianma Micro-electronics Co., Ltd. Display panel and method for manufacturing the same cross-references to related applications
US10062860B2 (en) * 2016-07-20 2018-08-28 Joled Inc. Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus
CN107134543B (zh) * 2017-04-24 2019-05-07 深圳市华星光电半导体显示技术有限公司 阵列基板及制造方法、显示装置
KR102314655B1 (ko) * 2017-05-17 2021-10-20 애플 인크. 측방향 누설이 감소된 유기 발광 다이오드 디스플레이
WO2019035930A1 (en) * 2017-08-15 2019-02-21 Bidirectional Display Inc. IMAGE DETECTION PANEL AND METHOD FOR MANUFACTURING SAME
CN110858629B (zh) * 2018-08-23 2023-06-16 上海新微技术研发中心有限公司 一种有机发光二极管结构及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329744A (ja) * 1998-04-13 1999-11-30 Hewlett Packard Co <Hp> 画素化したポリマ―有機発光デバイスの作製方法
JP2004234901A (ja) * 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
JP2004235128A (ja) 2002-12-04 2004-08-19 Dainippon Printing Co Ltd 有機el素子およびその製造方法
JP2007177225A (ja) * 2005-12-01 2007-07-12 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2007242272A (ja) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd エレクトロルミネッセント素子の製造方法
JP2007533104A (ja) * 2004-04-12 2007-11-15 イーストマン コダック カンパニー 短絡が減少したoledデバイス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663876B2 (ja) * 1998-01-08 2005-06-22 松下電器産業株式会社 有機エレクトロルミネセンス素子及びその製造方法
WO2000001203A1 (fr) * 1998-06-26 2000-01-06 Idemitsu Kosan Co., Ltd. Dispositif luminescent
US6656611B2 (en) * 2001-07-20 2003-12-02 Osram Opto Semiconductors Gmbh Structure-defining material for OLEDs
JP4182467B2 (ja) * 2001-12-27 2008-11-19 セイコーエプソン株式会社 回路基板、電気光学装置及び電子機器
JP4126996B2 (ja) * 2002-03-13 2008-07-30 セイコーエプソン株式会社 デバイスの製造方法及びデバイス製造装置
US7629061B2 (en) * 2004-01-16 2009-12-08 Osram Opto Semiconductors Gmbh Heterostructure devices using cross-linkable polymers
JP4378186B2 (ja) * 2004-02-06 2009-12-02 キヤノン株式会社 有機el素子アレイ
JP2007016226A (ja) * 2005-06-10 2007-01-25 Sumitomo Chemical Co Ltd 芳香族重合体
US20070241665A1 (en) * 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
CN101803463B (zh) * 2007-09-28 2011-10-12 夏普株式会社 有机电致发光显示装置及其制造方法
JP2009123696A (ja) * 2007-10-26 2009-06-04 Mitsubishi Chemicals Corp 有機電界発光素子、画像表示装置、及び有機電界発光素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329744A (ja) * 1998-04-13 1999-11-30 Hewlett Packard Co <Hp> 画素化したポリマ―有機発光デバイスの作製方法
JP2004235128A (ja) 2002-12-04 2004-08-19 Dainippon Printing Co Ltd 有機el素子およびその製造方法
JP2004234901A (ja) * 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
JP2007533104A (ja) * 2004-04-12 2007-11-15 イーストマン コダック カンパニー 短絡が減少したoledデバイス
JP2007177225A (ja) * 2005-12-01 2007-07-12 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2007242272A (ja) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd エレクトロルミネッセント素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2234186A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004824A1 (ja) * 2010-07-05 2012-01-12 パナソニック株式会社 発光素子の製造方法、並びに発光素子を用いた有機表示パネル、有機発光装置、及び有機表示装置
CN102440071A (zh) * 2010-07-05 2012-05-02 松下电器产业株式会社 发光元件的制造方法,使用发光元件的有机显示面板、有机发光装置及有机显示装置
JP5330545B2 (ja) * 2010-07-05 2013-10-30 パナソニック株式会社 発光素子の製造方法
US8642360B2 (en) 2010-07-05 2014-02-04 Panasonic Corporation Method for manufacturing light-emitter, organic display panel using light-emitter, organic light-emitting device and organic display device
CN102440071B (zh) * 2010-07-05 2014-09-03 松下电器产业株式会社 发光元件的制造方法,使用发光元件的有机显示面板、有机发光装置及有机显示装置
US20120319089A1 (en) * 2011-06-16 2012-12-20 Samsung Mobile Display Co., Ltd. Organic Light Emitting Structures, Methods of Forming Organic Light Emitting Structures, Organic Light Emitting Display Devices and Methods of Manufacturing Organic Light Emitting Display Devices
US9349957B2 (en) * 2011-06-16 2016-05-24 Samsung Display Co., Ltd. Method for forming OLED devices with patterned hole or electron transport layers

Also Published As

Publication number Publication date
CN101911333B (zh) 2012-12-19
US20100295033A1 (en) 2010-11-25
JP2009164428A (ja) 2009-07-23
KR20100111684A (ko) 2010-10-15
TW200942071A (en) 2009-10-01
CN101911333A (zh) 2010-12-08
EP2234186A1 (en) 2010-09-29
JP5192828B2 (ja) 2013-05-08
EP2234186A4 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5192828B2 (ja) 有機エレクトロルミネッセンス表示素子及びその製造方法
JP5417732B2 (ja) 親液撥液パターンの形成方法および有機エレクトロルミネッセンス素子の製造方法
JP5572942B2 (ja) 発光装置およびその製造方法
JP5199772B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2009135053A (ja) 電子デバイス、表示装置および電子デバイスの製造方法
US9356251B2 (en) Light-emitting device including a first resistance layer with a creeping-up portion
JP2010108851A (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2010013641A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、発光装置および表示装置
JP2010080086A (ja) パターン塗布用基板および有機el素子
JP4983940B2 (ja) 有機エレクトロルミネッセンス装置の製造方法
EP2536256A1 (en) Method for producing light-emitting device
WO2009122870A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP5185007B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
US20110018433A1 (en) Method of producing organic electroluminescence element, organic electroluminescence element, and display device
JP4893839B2 (ja) 発光装置の製造方法
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP5184938B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124294.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12811458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008869573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE