WO2009151473A1 - Chlorine detection - Google Patents

Chlorine detection Download PDF

Info

Publication number
WO2009151473A1
WO2009151473A1 PCT/US2008/083378 US2008083378W WO2009151473A1 WO 2009151473 A1 WO2009151473 A1 WO 2009151473A1 US 2008083378 W US2008083378 W US 2008083378W WO 2009151473 A1 WO2009151473 A1 WO 2009151473A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
hemt
agcl
gate electrode
anodization
Prior art date
Application number
PCT/US2008/083378
Other languages
French (fr)
Inventor
Fan Ren
Stephen John Pearton
Original Assignee
University Of Florida Research Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Florida Research Foundation, Inc. filed Critical University Of Florida Research Foundation, Inc.
Priority to US12/997,163 priority Critical patent/US8836351B2/en
Publication of WO2009151473A1 publication Critical patent/WO2009151473A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the subject invention was made with government support under a research project supported by Office of Naval Research (ONR) Grant No. NOOO 140710982. The government has certain rights in this invention.
  • Chlorine is widely used in the manufacture of many products and items directly or indirectly, i.e. in paper product production, antiseptic, dye-stuffs, food, insecticides, paints, petroleum products, plastics, medicines, textiles, solvents, and many other consumer products. Chlorine is a poisonous gas that is soluble in water. It is used to kill bacteria and other microbes in drinking water supplies and waste water treatment. However, excess residual chlorine in the water also reacts with organics and forms toxic chemicals and carcinogens, such as the carcinogenic chloroform and trichloro-methane. Thus, to ensure the safety of public health, it is very important to accurately and effectively monitor chlorine residues, typically in the form of chloride ion concentration, during the treatment and transport of drinking water.
  • chloride ion is an essential mineral for humans, and is maintained to a total body chloride balance in body fluids such as scrum, blood, urine, exhaled breath condensate etc., by the kidneys.
  • Chloride can be found in the body mainly in the extracellular fluid along with sodium. Some of the body chloride is found inside the cells, with the highest amounts within the red blood cells. As one of the mineral electrolytes, chloride works closely with sodium and water to help the distribution of body fluids. Chloride is easily absorbed from the small intestine. It is eliminated through the kidneys, which can also retain chloride as part of their finely controlled regulation of acid-base balance.
  • Chloride is also found along with sodium in perspiration. Variations in the chloride ion concentration in serum may serve as an index of renal diseases, adrenalism, and pneumonia. Thus, the measurement of this parameter is clinically important.
  • analytical methods such as colorimetry, ion-selective electrodes, activation analysis, X-ray fluorescence spectrometry, and ion chromatography, have been used for the analysis of chloride in various samples. However, these methods are not portable and require expensive instrumentation. Accordingly, an accurate and fast determination of the inorganic ion content of various aqueous samples at low detection limits is of great interest.
  • Embodiments of the present invention relate to a high electron mobility transistor (HEMT) capable of performing chloride detection.
  • the HEMT can be used for the detection of chloride in environment applications.
  • the HEMT can be used for the detection of chloride for medical applications.
  • a chloride recognition layer can be provided on a gate region of the HEMT.
  • Ag/AgCl can be provided on the gate region of the HEMT to detect Cl " ions.
  • InN can be provided on the gate region of the HEMT to detect CF ions.
  • a portable, low cost, continuous Cl ion monitor can be provided for environmental and medical applications.
  • Embodiments of the disclosed sensors can be integrated with a wireless transmitter for monitoring and reporting.
  • Embodiments of the subject chloride sensor can provide accurate and fast determination of the inorganic ion content of various aqueous samples at low detection limits.
  • Figure IA shows a plan view photomicrograph of a Ag/AgCl gated AlGaN/GaN HEMT according to an embodiment of the present invention.
  • Figure IB shows a schematic cross sectional view of a Ag/AgCl gated HEMT according to an embodiment of the present invention.
  • Figure 1C shows a schematic cross sectional view of an InN gated HEMT according to an embodiment of the present invention.
  • Figure 2A shows an energy dispersive spectroscopy spectrum of anodized AgCl thin film.
  • Figure 2B shows a SEM image of AgCl before anodization.
  • Figure 2C shows a SEM image of AgCl after anodization.
  • Figure 3 shows a time-dependent drain current of a Ag/AgCl gated AlGaN/GaN HEMT exposed to different concentrations of NaCl solutions according to an embodiment.
  • Figure 4 shows a plot of drain current change of a Ag/AgCl gated AlGaN/GaN HEMT as a function of chloride concentration according to an embodiment.
  • Figures 5A-5F show cross-sectional views illustrating a process sequence of fabricating an AlGaN/GaN HEMT sensor with an Ag/AgCl gated electrode according to an embodiment.
  • Figure 6 shows a plot of time dependent potentio static behaviors of AgCl films anodized at 0.5 V, IV and 5 V.
  • Figure 7 shows SEM images of anodized AgCl film surface morphologies at different stages of the anodization process in accordance with an embodiment
  • the left column represents a surface anodized with the bias voltage of 5 V
  • the middle column represents a surface anodized with the bias voltage of 1 V
  • the right column represents a surface anodized with the bias voltage of 0.5 V.
  • Figure 8 shows a plot of sheet resistance of anodized AgCl films in accordance with embodiments of the present invention measured with a four point probe resistance measurement system as a function of anodizing bias.
  • Embodiments of the present invention provide design and fabrication of chemically functionalized high electron mobility transistor (HEMT) devices for chloride sensing. Specific sensitivity can be achieved by employing a chloride sensitive layer on the gate area of the HEMT.
  • the chloride sensitive layer can include a metal chloride.
  • the metal chloride can include silver-chloride.
  • the chloride sensitive layer can be indium nitride.
  • the AlGaN/GaN HEMT is an exemplary HEMT that can be used for chloride sensing.
  • AlGaN/GaN HEMTs have high electron sheet carrier concentration channel induced by both piezoelectric polarization and spontaneous polarization. Unlike conventional semiconductor field effect transistors, the intentional dopant does not need to be included in the AlGaN/GaN HEMT structure. Instead, electrons in the two-dimensional electron gas (2DEG) channel are located at the interface between the AlGaN layer and GaN layer. In addition, there are positive counter charges at the HEMT surface layer induced by the 2DEG. Slight changes in the ambient can affect the surface charge of the HEMT, thus changing the 2DEG concentration in the channel.
  • 2DEG two-dimensional electron gas
  • HEMTs can operate over a broad range of temperatures and form the basis of next- generation microwave communication systems. Accordingly, embodiments of the present invention can be implemented as an integrated sensor/wireless chip.
  • Embodiments utilizing the HEMT sensor can provide a fast response time.
  • the subject device can be used as a wireless based sensor to send testing results to a display or separate device.
  • a chloride sensor can include an HEMT formed on a substrate 100.
  • An electrode can be formed on the gate region of the HEMT.
  • the electrode can include a titanium (Ti) thin film 106 and a silver (Ag) thin film 107.
  • a chloride selective film 108 can be provided on the electrode.
  • the chloride selective film can be silver chloride (AgCl).
  • the HEMT can be an AlGaN/GaN HEMT formed as a GaN layer 101 and an AlGaN layer 102 on a silicon substrate 100.
  • a source electrode 103 and a drain electrode 104 can be disposed on the AlGaN layer 102.
  • a passivation layer 105 can be provided to encapsulate the source and drain regions 103 and 104.
  • An HEMT with a Ag/AgCl gate can exhibit significant changes in channel conductance upon exposing the gate region to various concentrations of chloride ion solutions.
  • the Ag/AgCl gate electrode changes electrical potential when it encounters chlorine ions. This gate potential changes lead to a change of surface charge in the gate region of the HEMT, inducing a higher positive charge on the AlGaN 102 surface, and increasing the piezo-induccd charge density in the HEMT channel.
  • These anions create an image positive charge on the Ag gate metal 107/108 for the required neutrality, thus increasing the drain current of the HEMT.
  • Embodiments of the present invention can use these behaviors to provide a chloride sensing device.
  • a chloride sensor can include an HEMT formed on a substrate 100.
  • a chlorine selective film 109 can be provided on the gate region of the HEMT.
  • the HEMT can be an AlGaN/GaN HEMT formed as a GaN layer 101 and an AlGaN layer 102 on a silicon substrate 100.
  • a source electrode 103 and a drain electrode 104 can be disposed on the AlGaN layer 102.
  • a passivation layer 105 can be provided to encapsulate the source and drain regions 103 and 104.
  • an indium nitride (InN) layer 109 can be epitaxially grown on the surface of the AlGaN layer 102 in the gate area of the HEMT.
  • the positively charged surface donor states of the InN layer allow negatively charged chlorine ions to be selectively attracted to the InN surface.
  • the presence of chlorine creates a potentiometric response from the InN layer, which in turn affects the current of the HEMT.
  • the InN layer can be grown on the AlGaN surface using a molecular-beam epitaxy system equipped with a radio frequency (RF) nitrogen plasma source.
  • InN epilayers can be grown by a two-stage growth method using an aluminum nitride (AlN) buffer layer on the surface of the AlGaN layer in the gate region of the HEMT.
  • AlN aluminum nitride
  • Embodiments of the subject sensors can be used to measure chloride ion concentration in water.
  • embodiments of the subject sensors can be used for measurement of analytes and other bio-sensing applications.
  • the subject chlorine sensor can be recycled.
  • the chloride sensor can be used for multiple chlorine tests by performing a resetting operation.
  • the resetting operation can be a dc-ionized (DI) water rinse.
  • the subject sensor can sense chloride having a IxIO "8 M concentration in a sample.
  • embodiments are not limited to this size of a gate sensing area and can be provided to achieve test results having even more sensitivity.
  • the HEMT for the aforementioned embodiments has been described as an AlGaN/GaN HEMT
  • other HEMTs such as an AlGaAs/GaAs HEMT, an InGaP/GaAs HEMT, or an InAlAs/InGaAs HEMT can be used in place of the AlGaN/GaN HEMT.
  • the HEMT has been described as being grown on a silicon substrate, other substrates, such as sapphire and SiC can be utilized. All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
  • the HEMT structures used for the following examples have a 2 ⁇ m thick undoped GaN buffer and a 250 A thick undoped AIo 25 Ga O 75 N cap layer.
  • Figures 5A-5F illustrate the process sequence used to form the Ag/AgCl gated electrode AlGaN/GaN HEMT sensor according to embodiments of the present invention.
  • the epi-layers were grown by metal- organic chemical vapor deposition on a 100 mm (111) Si substrate.
  • the sheet carrier concentration was ⁇ l ⁇ l ⁇ ⁇ cm "2 with a mobility of 980 cm 2 /V-s at 300K.
  • ICP Inductively Coupled Plasma
  • the titanium can improve the adhesion of the silver to the nitride surface of the gate region of the HEMT. Then, a photolithography process was performed using an AZ resist to open a window on the Ti/Ag thin film for AgCl potentiostatic anodization.
  • Ti/Ag layers were also deposited on Si (100) samples, which were used to study the anodization rate and composition of the anodized films.
  • An Agilent 4156C parameter analyzer was utilized to supply constant DC voltage and also monitor the current during anodization.
  • the first set of example tests illustrates the effect of exposing the gate region of Ag/AgCl gated GaN/ AlGaN HEMTs with different concentrations of Cl " ion solutions.
  • the sensitivity, the temporal resolution, and the limit of detection (LOD) of the HEMT sensor for Cl " ion detection were also studied.
  • the effects of chlorine concentration on sensing sensitivity were investigated using the above described devices.
  • the drain current characteristics of the HEMT sensor were measured at 25 0 C using Agilent 4156C parameter analyzer when the gate region was exposed to water and different concentrations of NaCl solutions.
  • the composition of the as-prepared Ag/AgCl thin film was characterized using energy dispersive x-ray spectroscopy (EDS) with a silicon substrate deposited with the same Ti (10nm)/Ag (lOOnm) thin film as on the gate area of the HEMT sample.
  • EDS energy dispersive x-ray spectroscopy
  • the atomic ratio of Cl to Ag was estimated to be 0.35 to 0.65, consistent with the intentional partial anodization of the Ag thin film.
  • the signals for Ti and Si element in the EDS spectrum were attributed to the Ti adhesion layer under the Ag thin film and the silicon substrate.
  • Figures 2B and 2C show the surface morphology of the Ag thin film before anodization and the AgCl layer after anodization, respectively, for the first set of examples.
  • the grain size and the anodization rate of the AgCl appear to depend on the applied bias voltage during the anodization process.
  • Figure 3 shows the time dependence of Ag/AgCl HEMT drain current at a constant drain bias voltage of 50OmV during exposure to solutions with different chlorine ion concentrations.
  • the HEMT sensor was first exposed to DI water. Here, no change of the drain current was detected with the addition of DI water at 100 seconds. This stability indicates that noise from the mechanical change of the NaCl solution can be excluded. By sharp contrast, there was a rapid response of HEMT drain current observed in less than 30 seconds when a target of 1 x 10 " M NaCl solution was switched to the surface at 175 seconds. The abrupt current change due to the exposure of chlorine in NaCl solution stabilized after the chlorine thoroughly diffused into the water to reach a steady state.
  • Figure 4 shows the drain current change of Ag/AgCl gated HEMT as a function of the CF ion concentration. As illustrated by Figure 4, the presence of the Ag/AgCl gate leads to a logarithmic dependence of current on the concentration of NaCl.
  • the subject sensor can be used for measurements of analytes. This electronic approach can be used to supplement methods such as enzyme immunoassay (EIA) and enzyme-linked immunosorbent assay (ELISA) for the measurements of analytes.
  • EIA enzyme immunoassay
  • ELISA enzyme-linked immunosorbent assay
  • compositions of the anodized Ag/AgCl thin film were characterized using EDS, where Figure 2A shows the EDS spectrum of the AgCl film on the Si substrate anodized at IV for 10 seconds.
  • Figure 2A shows the EDS spectrum of the AgCl film on the Si substrate anodized at IV for 10 seconds.
  • the normalized atomic ratios of Cl to AgCl for anodized films at three different supplied voltages during the anodization process are listed in Table I.
  • the scanning electron microscopy (SEM) pictures of anodized AgCl film surface morphologies at different stages of the anodization process are illustrated in Figure 7.
  • the left column shows the surface morphologies of anodized films with bias voltage of 5 V during the anodization. There was no obvious change of the surface morphology observed for the entire anodization process.
  • the grain size of the AgCl was around 500 nm, which was much larger than those anodized at 0.5 V or 1 V. The grains were separate from each other and no apparent grain growth occurred in the period after 1 second of the anodization process. This observation is consistent with the fairly constant chloride composition in the AgCl film in Table I.
  • the middle column in Figure 7 shows surface morphologies of the anodized films with bias voltage of 1 V. There was no obvious change after 2 seconds of the anodization process. However, the grain size of the anodized AgCl film with the bias voltage of 1 V was smaller than the films anodized at 5 V. The grains form a continuous film.
  • the right column in Figure 7 shows the surface morphology of the films anodized at 0.5 V. There was grain growth observed in the early stages of the anodization. After the 16 seconds of the anodization, the grain growth stopped and the AgCl film became continuous. This result was also consistent with the chloride composition changes shown in Table I.
  • the 4-point probe sheet resistance measurements for the anodized Ag/AgCl thin films were conducted with a Veeco FRR-100 system. Solid tungsten carbide tips were used and the contact tips were separated by 0.125 cm.
  • the Ag thin films were grown large area Si wafers, then anodized with the same conditions as described with respect to the above device fabrication. For the films anodized at 5V, the AgCl grains were separated from each other, as shown in the Figure 7, and the sheet resistance measurements hit the compliance of the system except for the films anodized after 1 sec, as shown in Figure 8. Some residual Ag may remain on the surface of the Si substrate.
  • the sheet resistances of AgCl films anodized at 0.5 and IV reached a saturated sheet resistance around 150 ohm/P.
  • a selective area AgCl anodization process can be implemented to provide a chloride recognition layer on a gate region of a HEMT.
  • the effects of anodization bias voltage and time were studied. Based on the example experiments, a continuous anodized AgCl film was achieved with the bias voltage of 0.5 V - I V. The AgCl films anodized at 5 V was not continuous and larger grain size was obtained. This anodization procedure can be integrated with the fabrication of a HEMT sensor.
  • the HEMT source-drain current showed a clear dependence on the chlorine concentration.
  • the limit of detection achieved was 1 x10 " M using a 20 ⁇ m x 50 ⁇ m gate sensing area.
  • Ag/AgCl gated HEMTs prepared by potentiostatic anodization in the solution of HCl in accordance with certain embodiments of the present invention, provide rapid changes in their drain currents depending on the concentrations of CF ion solution.

Abstract

A high electron mobility transistor (HEMT) capable of performing as a chlorine sensor is disclosed. In one implementation, a silver chloride layer can be provided on a gate region of the HEMT. In one application, the HEMTs can be used for the measurement and detection of chloride in bio-sensing applications. In another application, the HEMTs can be used for the detection of chloride in water for environmental and health applications.

Description

DESCRIPTION
CHLORINE DETECTION
Government Support
The subject invention was made with government support under a research project supported by Office of Naval Research (ONR) Grant No. NOOO 140710982. The government has certain rights in this invention.
Cross-reference to Related Applications
The present application claims the benefit of U.S. Provisional Application Serial No. 60/060,327, filed June 10, 2008, which is incorporated by reference in its entirety.
Background of Invention
Chlorine is widely used in the manufacture of many products and items directly or indirectly, i.e. in paper product production, antiseptic, dye-stuffs, food, insecticides, paints, petroleum products, plastics, medicines, textiles, solvents, and many other consumer products. Chlorine is a poisonous gas that is soluble in water. It is used to kill bacteria and other microbes in drinking water supplies and waste water treatment. However, excess residual chlorine in the water also reacts with organics and forms toxic chemicals and carcinogens, such as the carcinogenic chloroform and trichloro-methane. Thus, to ensure the safety of public health, it is very important to accurately and effectively monitor chlorine residues, typically in the form of chloride ion concentration, during the treatment and transport of drinking water.
In addition, in the body, chlorine exists primarily as the chloride ion. The chloride ion is an essential mineral for humans, and is maintained to a total body chloride balance in body fluids such as scrum, blood, urine, exhaled breath condensate etc., by the kidneys. Chloride can be found in the body mainly in the extracellular fluid along with sodium. Some of the body chloride is found inside the cells, with the highest amounts within the red blood cells. As one of the mineral electrolytes, chloride works closely with sodium and water to help the distribution of body fluids. Chloride is easily absorbed from the small intestine. It is eliminated through the kidneys, which can also retain chloride as part of their finely controlled regulation of acid-base balance. Chloride is also found along with sodium in perspiration. Variations in the chloride ion concentration in serum may serve as an index of renal diseases, adrenalism, and pneumonia. Thus, the measurement of this parameter is clinically important. Several analytical methods, such as colorimetry, ion-selective electrodes, activation analysis, X-ray fluorescence spectrometry, and ion chromatography, have been used for the analysis of chloride in various samples. However, these methods are not portable and require expensive instrumentation. Accordingly, an accurate and fast determination of the inorganic ion content of various aqueous samples at low detection limits is of great interest.
Brief Summary
Embodiments of the present invention relate to a high electron mobility transistor (HEMT) capable of performing chloride detection. According to an embodiment, the HEMT can be used for the detection of chloride in environment applications. In another embodiment, the HEMT can be used for the detection of chloride for medical applications.
In an embodiment, a chloride recognition layer can be provided on a gate region of the HEMT. In one specific embodiment, Ag/AgCl can be provided on the gate region of the HEMT to detect Cl" ions. In another specific embodiment, InN can be provided on the gate region of the HEMT to detect CF ions.
According embodiments of the disclosed sensors, a portable, low cost, continuous Cl ion monitor can be provided for environmental and medical applications.
Embodiments of the disclosed sensors can be integrated with a wireless transmitter for monitoring and reporting.
Embodiments of the subject chloride sensor can provide accurate and fast determination of the inorganic ion content of various aqueous samples at low detection limits.
Brief Description of Drawings
Figure IA shows a plan view photomicrograph of a Ag/AgCl gated AlGaN/GaN HEMT according to an embodiment of the present invention.
Figure IB shows a schematic cross sectional view of a Ag/AgCl gated HEMT according to an embodiment of the present invention.
Figure 1C shows a schematic cross sectional view of an InN gated HEMT according to an embodiment of the present invention. Figure 2A shows an energy dispersive spectroscopy spectrum of anodized AgCl thin film.
Figure 2B shows a SEM image of AgCl before anodization.
Figure 2C shows a SEM image of AgCl after anodization.
Figure 3 shows a time-dependent drain current of a Ag/AgCl gated AlGaN/GaN HEMT exposed to different concentrations of NaCl solutions according to an embodiment.
Figure 4 shows a plot of drain current change of a Ag/AgCl gated AlGaN/GaN HEMT as a function of chloride concentration according to an embodiment.
Figures 5A-5F show cross-sectional views illustrating a process sequence of fabricating an AlGaN/GaN HEMT sensor with an Ag/AgCl gated electrode according to an embodiment.
Figure 6 shows a plot of time dependent potentio static behaviors of AgCl films anodized at 0.5 V, IV and 5 V.
Figure 7 shows SEM images of anodized AgCl film surface morphologies at different stages of the anodization process in accordance with an embodiment; the left column represents a surface anodized with the bias voltage of 5 V, the middle column represents a surface anodized with the bias voltage of 1 V, and the right column represents a surface anodized with the bias voltage of 0.5 V.
Figure 8 shows a plot of sheet resistance of anodized AgCl films in accordance with embodiments of the present invention measured with a four point probe resistance measurement system as a function of anodizing bias.
Detailed Disclosure
Embodiments of the present invention provide design and fabrication of chemically functionalized high electron mobility transistor (HEMT) devices for chloride sensing. Specific sensitivity can be achieved by employing a chloride sensitive layer on the gate area of the HEMT. In an embodiment, the chloride sensitive layer can include a metal chloride. In one embodiment, the metal chloride can include silver-chloride. In another embodiment, the chloride sensitive layer can be indium nitride.
The AlGaN/GaN HEMT is an exemplary HEMT that can be used for chloride sensing. AlGaN/GaN HEMTs have high electron sheet carrier concentration channel induced by both piezoelectric polarization and spontaneous polarization. Unlike conventional semiconductor field effect transistors, the intentional dopant does not need to be included in the AlGaN/GaN HEMT structure. Instead, electrons in the two-dimensional electron gas (2DEG) channel are located at the interface between the AlGaN layer and GaN layer. In addition, there are positive counter charges at the HEMT surface layer induced by the 2DEG. Slight changes in the ambient can affect the surface charge of the HEMT, thus changing the 2DEG concentration in the channel.
HEMTs can operate over a broad range of temperatures and form the basis of next- generation microwave communication systems. Accordingly, embodiments of the present invention can be implemented as an integrated sensor/wireless chip.
Embodiments utilizing the HEMT sensor can provide a fast response time. In a further embodiment, the subject device can be used as a wireless based sensor to send testing results to a display or separate device.
Referring to Figure IB, a chloride sensor can include an HEMT formed on a substrate 100. An electrode can be formed on the gate region of the HEMT. The electrode can include a titanium (Ti) thin film 106 and a silver (Ag) thin film 107. Then, a chloride selective film 108 can be provided on the electrode. The chloride selective film can be silver chloride (AgCl). By forming the silver thin film for the electrode, the silver chloride can be formed through selective area potentiostatic anodization. The HEMT can be an AlGaN/GaN HEMT formed as a GaN layer 101 and an AlGaN layer 102 on a silicon substrate 100. A source electrode 103 and a drain electrode 104 can be disposed on the AlGaN layer 102. In a further embodiment, a passivation layer 105 can be provided to encapsulate the source and drain regions 103 and 104.
An HEMT with a Ag/AgCl gate can exhibit significant changes in channel conductance upon exposing the gate region to various concentrations of chloride ion solutions. The Ag/AgCl gate electrode changes electrical potential when it encounters chlorine ions. This gate potential changes lead to a change of surface charge in the gate region of the HEMT, inducing a higher positive charge on the AlGaN 102 surface, and increasing the piezo-induccd charge density in the HEMT channel. These anions create an image positive charge on the Ag gate metal 107/108 for the required neutrality, thus increasing the drain current of the HEMT. Embodiments of the present invention can use these behaviors to provide a chloride sensing device.
Referring to Figure 1 C, according to another embodiment, a chloride sensor can include an HEMT formed on a substrate 100. A chlorine selective film 109 can be provided on the gate region of the HEMT. The HEMT can be an AlGaN/GaN HEMT formed as a GaN layer 101 and an AlGaN layer 102 on a silicon substrate 100. A source electrode 103 and a drain electrode 104 can be disposed on the AlGaN layer 102. In a further embodiment, a passivation layer 105 can be provided to encapsulate the source and drain regions 103 and 104. According to an embodiment, an indium nitride (InN) layer 109 can be epitaxially grown on the surface of the AlGaN layer 102 in the gate area of the HEMT. The positively charged surface donor states of the InN layer allow negatively charged chlorine ions to be selectively attracted to the InN surface. The presence of chlorine creates a potentiometric response from the InN layer, which in turn affects the current of the HEMT.
In one embodiment, the InN layer can be grown on the AlGaN surface using a molecular-beam epitaxy system equipped with a radio frequency (RF) nitrogen plasma source. InN epilayers can be grown by a two-stage growth method using an aluminum nitride (AlN) buffer layer on the surface of the AlGaN layer in the gate region of the HEMT.
Embodiments of the subject sensors can be used to measure chloride ion concentration in water.
In addition, embodiments of the subject sensors can be used for measurement of analytes and other bio-sensing applications.
In an embodiment, the subject chlorine sensor can be recycled. For example, the chloride sensor can be used for multiple chlorine tests by performing a resetting operation. The resetting operation can be a dc-ionized (DI) water rinse.
Advantageously, in certain embodiments utilizing a 20 μm x 50 μm gate sensing area, the subject sensor can sense chloride having a IxIO"8 M concentration in a sample. Of course, embodiments are not limited to this size of a gate sensing area and can be provided to achieve test results having even more sensitivity.
Although the HEMT for the aforementioned embodiments (and example provided below) has been described as an AlGaN/GaN HEMT, other HEMTs, such as an AlGaAs/GaAs HEMT, an InGaP/GaAs HEMT, or an InAlAs/InGaAs HEMT can be used in place of the AlGaN/GaN HEMT. Furthermore, although the HEMT has been described as being grown on a silicon substrate, other substrates, such as sapphire and SiC can be utilized. All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
EXAMPLES
The HEMT structures used for the following examples have a 2 μm thick undoped GaN buffer and a 250 A thick undoped AIo 25GaO 75N cap layer. Figures 5A-5F illustrate the process sequence used to form the Ag/AgCl gated electrode AlGaN/GaN HEMT sensor according to embodiments of the present invention. The epi-layers were grown by metal- organic chemical vapor deposition on a 100 mm (111) Si substrate. The sheet carrier concentration was ~lχlθπ cm"2 with a mobility of 980 cm2/V-s at 300K. Mesa isolation was performed by Inductively Coupled Plasma (ICP) etching with Cl2ZAr based discharge at -90V dc self-bias, ICP power of 300W at 2 MHz and a process pressure of 5 mTorr. Ohmic contacts, each having an area of 50x50 μm and separated with gaps of 20 μm, were formed of e-beam deposited Ti/Al/Pt/Au patterned by lift-off. The contacts were annealed at 850 0C for 45 seconds under flowing N2 ambient. E-bcam deposited Ti/Au based metallization was used for the final metal interconnections. Ti (10nm)/Ag (lOOnm) thin film was deposited as the gate metal. The titanium can improve the adhesion of the silver to the nitride surface of the gate region of the HEMT. Then, a photolithography process was performed using an AZ resist to open a window on the Ti/Ag thin film for AgCl potentiostatic anodization.
For the first set of examples, prior to anodization, samples were cleaned with acetone, isopropanol and DI water. The selective area Ag was anodized in 0.1 N HCl solution stirred continuously at 25 0C with a constant bias voltage of 1 V for 5 seconds. According to these examples, only a part of the Ag thin film was anodized into AgCl. The AgCl thickness was measured to be 320 nm with scanning electron microscopy (SEM). A 500 nm thick polymethyl methacrylate (PMMA) was used to encapsulate the source/drain regions, with only the Ag/AgCl gate region opened using e-beam lithography. A plan view photomicrograph and a schematic device cross sectional view of the Ag/AgCl gated HEMT are shown in Figures IA and IB.
For the second set of examples, after performing the photolithography process, a portion of the Ti/Ag thin film was exposed for anodization and a platinum foil was used as the counter electrode. The anodization was conducted with 0.1N HCl electrolyte stirred continuously at room temperature at 1 V for 10 seconds at a frequency of 1 Hz. At the anode electrode, Ag reacted with hydrogen chloride and formed AgCl as the following half-cell equation: 2 Ag + 2HCl — > 2 AgCl + 2H+ + 2e~. Hydrogen bubbles formed at the reference Pt electrode. After anodization, the samples were rinsed with DI-water and dried with filtered nitrogen. The same thickness of Ti/Ag layers was also deposited on Si (100) samples, which were used to study the anodization rate and composition of the anodized films. An Agilent 4156C parameter analyzer was utilized to supply constant DC voltage and also monitor the current during anodization.
The first set of example tests illustrates the effect of exposing the gate region of Ag/AgCl gated GaN/ AlGaN HEMTs with different concentrations of Cl" ion solutions. The sensitivity, the temporal resolution, and the limit of detection (LOD) of the HEMT sensor for Cl" ion detection were also studied. The effects of chlorine concentration on sensing sensitivity were investigated using the above described devices. For these examples, the drain current characteristics of the HEMT sensor were measured at 250C using Agilent 4156C parameter analyzer when the gate region was exposed to water and different concentrations of NaCl solutions.
The composition of the as-prepared Ag/AgCl thin film was characterized using energy dispersive x-ray spectroscopy (EDS) with a silicon substrate deposited with the same Ti (10nm)/Ag (lOOnm) thin film as on the gate area of the HEMT sample. There were Ag, Cl, Ti and Si signals detected with EDS, as shown in Figure 2A. The atomic ratio of Cl to Ag was estimated to be 0.35 to 0.65, consistent with the intentional partial anodization of the Ag thin film. The signals for Ti and Si element in the EDS spectrum were attributed to the Ti adhesion layer under the Ag thin film and the silicon substrate. Figures 2B and 2C show the surface morphology of the Ag thin film before anodization and the AgCl layer after anodization, respectively, for the first set of examples. The grain size and the anodization rate of the AgCl appear to depend on the applied bias voltage during the anodization process.
Figure 3 shows the time dependence of Ag/AgCl HEMT drain current at a constant drain bias voltage of 50OmV during exposure to solutions with different chlorine ion concentrations. The HEMT sensor was first exposed to DI water. Here, no change of the drain current was detected with the addition of DI water at 100 seconds. This stability indicates that noise from the mechanical change of the NaCl solution can be excluded. By sharp contrast, there was a rapid response of HEMT drain current observed in less than 30 seconds when a target of 1 x 10" M NaCl solution was switched to the surface at 175 seconds. The abrupt current change due to the exposure of chlorine in NaCl solution stabilized after the chlorine thoroughly diffused into the water to reach a steady state. When Ag/AgCl gate metal encountered chlorine ions, the electrical potential of the gate was changed, inducing a higher positive charge on the AlGaN surface, and increased the piezo-induced charge density in the HEMT channel. Then, I xIO"7 M of NaCl solution was applied at 382 seconds. As shown in Figure 3, the addition was accompanied with a larger signal corresponding to the higher chlorine concentration. Further real time tests were carried out to explore the detection of higher CF ion concentrations. The sensors were exposed to 10"8 M, 10~7 M, 10"6 M, 10"5 M, and 10~4 M solutions continuously. The tests were also repeated five times to obtain the standard deviation of source-drain current response for each concentration. The limit of detection of this test device was l χ 10~8 M chlorine in DI- water. Between each test, the device was rinsed with DI water. According to these results, embodiments of the subject HEMT sensors can be made recyclable with a simple DI water rinse.
Figure 4 shows the drain current change of Ag/AgCl gated HEMT as a function of the CF ion concentration. As illustrated by Figure 4, the presence of the Ag/AgCl gate leads to a logarithmic dependence of current on the concentration of NaCl. According to embodiments, the subject sensor can be used for measurements of analytes. This electronic approach can be used to supplement methods such as enzyme immunoassay (EIA) and enzyme-linked immunosorbent assay (ELISA) for the measurements of analytes.
As described above, the compositions of the anodized Ag/AgCl thin film were characterized using EDS, where Figure 2A shows the EDS spectrum of the AgCl film on the Si substrate anodized at IV for 10 seconds. The normalized atomic ratios of Cl to AgCl for anodized films at three different supplied voltages during the anodization process are listed in Table I.
Table I
1 sec. 2 sec. 4 sec. 8 sec. 16 sec. 32 sec. 64 sec.
0.5V 11.92% 10.25% 14.63% 14.63% 40.27% 39.65% 41.9%
IV 19.35% 38.59% 40.27% 41% 42.99% 41.77% 40.87%
5V 42.99% 41.07% 41.6% 43.36% 43.54% 43.54% 41.07% All the anodized films show slightly chloride deficiency. The composition of the AgCl film anodized at 5V stayed constant, within the EDS measurement error of 5%, throughout the entire monitored time, indicating the completion of anodization process was achieved in less than 1 sec. By contrast, it took 16 seconds and 4 seconds for the anodization process to reach constant composition of anodized AgCl films for the samples biased at 0.5 and IV, respectively.
Time dependent potentiostatic behaviors of AgCl films anodized at 0.5V, IV and 5V, are shown in Figure 6. Higher current provided higher anodization rate, and the anodization rate increased with higher supplied voltage. The anodization rate at a voltage of 5V decreased significantly within a few seconds. This is consistent with the EDS analysis listed in Table I that there was almost no change of composition of the AgCl layer after a couple of seconds. For the anodization at 0.5 V and 1 V, there was a constant current plateau observed in the beginning of the anodization. This was due to the anodization starting at the top surface of the Ag thin film. The Ag layer provided a low resistance path for the electrons. Once the Ag layer was gradually consumed and eventually became discontinuous, the anodization current and rate decreased considerably. The length of the plateau for the condition of 0.5 V supplied voltage was much longer than the process with 1 V applied due to slower anodization rate. These rate changes of the anodization process at 0.5 V and IV were also consistent with the chloride composition changes shown in Table I.
The scanning electron microscopy (SEM) pictures of anodized AgCl film surface morphologies at different stages of the anodization process are illustrated in Figure 7. The left column shows the surface morphologies of anodized films with bias voltage of 5 V during the anodization. There was no obvious change of the surface morphology observed for the entire anodization process. The grain size of the AgCl was around 500 nm, which was much larger than those anodized at 0.5 V or 1 V. The grains were separate from each other and no apparent grain growth occurred in the period after 1 second of the anodization process. This observation is consistent with the fairly constant chloride composition in the AgCl film in Table I. The middle column in Figure 7 shows surface morphologies of the anodized films with bias voltage of 1 V. There was no obvious change after 2 seconds of the anodization process. However, the grain size of the anodized AgCl film with the bias voltage of 1 V was smaller than the films anodized at 5 V. The grains form a continuous film. The right column in Figure 7 shows the surface morphology of the films anodized at 0.5 V. There was grain growth observed in the early stages of the anodization. After the 16 seconds of the anodization, the grain growth stopped and the AgCl film became continuous. This result was also consistent with the chloride composition changes shown in Table I.
The 4-point probe sheet resistance measurements for the anodized Ag/AgCl thin films were conducted with a Veeco FRR-100 system. Solid tungsten carbide tips were used and the contact tips were separated by 0.125 cm. The Ag thin films were grown large area Si wafers, then anodized with the same conditions as described with respect to the above device fabrication. For the films anodized at 5V, the AgCl grains were separated from each other, as shown in the Figure 7, and the sheet resistance measurements hit the compliance of the system except for the films anodized after 1 sec, as shown in Figure 8. Some residual Ag may remain on the surface of the Si substrate. The sheet resistances of AgCl films anodized at 0.5 and IV reached a saturated sheet resistance around 150 ohm/P. These were consistent with the results shown in the Figure 7, where the grain size of AgCl films anodized at 0.5 and IV were very similar and the AgCl film was continuous for both cases. In the beginning of the anodization, the sheet resistances were lower for both conditions due to the existence of very conductive un-anodized Ag layer beneath the anodized AgCl layer.
Accordingly, a selective area AgCl anodization process can be implemented to provide a chloride recognition layer on a gate region of a HEMT. In addition, the effects of anodization bias voltage and time were studied. Based on the example experiments, a continuous anodized AgCl film was achieved with the bias voltage of 0.5 V - I V. The AgCl films anodized at 5 V was not continuous and larger grain size was obtained. This anodization procedure can be integrated with the fabrication of a HEMT sensor.
In summary, The HEMT source-drain current showed a clear dependence on the chlorine concentration. In addition, for the experiments, the limit of detection achieved was 1 x10" M using a 20 μm x 50μm gate sensing area.
Accordingly, Ag/AgCl gated HEMTs, prepared by potentiostatic anodization in the solution of HCl in accordance with certain embodiments of the present invention, provide rapid changes in their drain currents depending on the concentrations of CF ion solution.

Claims

Claims What is claimed is:
1. A chloride sensor, comprising: a high electron mobility transistor (HEMT); and a chloride recognition layer on a gate region of the HEMT.
2. The chloride sensor according to claim 1, wherein the chloride recognition layer comprises metal chloride.
3. The chloride sensor according to claim 1 , wherein the metal chloride comprises silver-chloride.
4. The chloride sensor according to claim 3, wherein the HEMT further comprises a titanium thin film electrode on the gate region and a silver thin film on the titanium thin film, wherein the silver chloride is provided on the silver thin film through potentio static anodization.
5. The chloride sensor according to claim 1, wherein the chloride recognition layer comprises indium nitride.
6. The chloride sensor according to claim 1, wherein the HEMT comprises an AlGaN/GaN HEMT.
7. The chloride sensor according to claim 1, wherein the HEMT comprises an AlGaAs/GaAs HEMT.
8. The chloride sensor according to claim 1, wherein the HEMT comprises an InGaP/GaAs HEMT.
9. The chloride sensor according to claim 1, wherein the HEMT comprises an InAlAs/InGaAs HEMT.
10. A method of detecting chloride, comprising: providing a high electron mobility transistor (HEMT) chloride sensor comprising a chloride recognition layer on the gate region of the HEMT in contact with a fluid under test, wherein the chloride recognition layer causes the drain current of the HEMT to increase upon exposure to chloride.
1 1. The method according to claim 10, wherein the chloride recognition layer comprises metal chloride.
12. The method according to claim 11, further comprising: resetting the chloride sensor by rinsing a surface of the metal chloride with deionized water.
13. A method of manufacturing a chloride sensor, comprising: preparing a substrate comprising a high electron mobility transistor (HEMT), wherein a gate electrode of the HEMT comprises a Ti/Ag film; performing a photolithography process to expose the gate electrode of the HEMT; and performing an anodization process to form AgCl on a surface of the exposed gate electrode.
14. The method according to claim 13, wherein performing the anodization process comprises: subjecting the exposed gate electrode of the HEMT to hydrogen chloride.
15. The method according to claim 14, wherein subjecting the exposed gate electrode of the HEMT to hydrogen chloride comprises: applying a voltage between the exposed gate electrode and a counter electrode.
16. The method according to claim 15, wherein the voltage applied between the exposed gate electrode and the counter electrode is in the range of 0.5 V to 1 V.
17. The method according to claim 15, wherein the voltage applied between the exposed gate electrode and the counter electrode is 5 V or less.
18. The method according to claim 15, wherein the counter electrode comprises a platinum foil.
PCT/US2008/083378 2008-06-10 2008-11-13 Chlorine detection WO2009151473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/997,163 US8836351B2 (en) 2008-06-10 2008-11-13 Chloride detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6032708P 2008-06-10 2008-06-10
US61/060,327 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151473A1 true WO2009151473A1 (en) 2009-12-17

Family

ID=41416987

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/083378 WO2009151473A1 (en) 2008-06-10 2008-11-13 Chlorine detection
PCT/US2009/037767 WO2009151705A2 (en) 2007-09-18 2009-03-20 Sensors using high electron mobility transistors

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2009/037767 WO2009151705A2 (en) 2007-09-18 2009-03-20 Sensors using high electron mobility transistors

Country Status (2)

Country Link
US (2) US8836351B2 (en)
WO (2) WO2009151473A1 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151473A1 (en) * 2008-06-10 2009-12-17 University Of Florida Research Foundation, Inc. Chlorine detection
WO2010005738A1 (en) * 2008-06-16 2010-01-14 Duke University Chemical sensors and methods for making and using the same
US9958442B2 (en) 2009-02-11 2018-05-01 Duke University Sensors incorporating antibodies and methods of making and using the same
US8729486B2 (en) 2010-06-23 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University MODFET active pixel X-ray detector
JP6132242B2 (en) * 2011-07-12 2017-05-24 パナソニックIpマネジメント株式会社 Nitride semiconductor device and manufacturing method thereof
CN102313765A (en) * 2011-07-17 2012-01-11 北京科技大学 Biosensor base on zinc oxide and high electron mobility transistor and its preparation method
EP2589958B1 (en) * 2011-11-04 2016-10-26 Stichting IMEC Nederland Chemical sensing
US9766199B2 (en) * 2012-03-06 2017-09-19 Life Science Biosensor Diagnostics Pty. Ltd. Organic thin film transistors and the use thereof in sensing applications
JP5991018B2 (en) 2012-05-16 2016-09-14 ソニー株式会社 Semiconductor device
US9366153B2 (en) 2012-11-30 2016-06-14 General Electric Company Method and system for steam purity monitoring through use of high electron mobility transistors
US9178032B2 (en) * 2013-02-15 2015-11-03 Electronics And Telecommunications Research Institute Gas sensor and manufacturing method thereof
JP6136573B2 (en) * 2013-05-27 2017-05-31 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2015077632A1 (en) * 2013-11-21 2015-05-28 Avails Medical, Inc. Electrical biosensor for detecting a substance in a bodily fluid, and method and system for same
CN103760206B (en) * 2014-01-14 2016-07-06 江苏新广联科技股份有限公司 Blood glucose test chip based on gallium nitride material
CN104880558A (en) * 2014-02-28 2015-09-02 中国科学院半导体研究所 InP-based HEMT tumor marker sensor and manufacturing method thereof
WO2015187227A2 (en) 2014-03-13 2015-12-10 Duke University Electronic platform for sensing and control of electrochemical reactions
US20150355129A1 (en) * 2014-06-05 2015-12-10 Avails Medical, Inc. Systems and methods for detecting substances in bodily fluids
EP2990785B1 (en) * 2014-08-25 2016-10-05 Honeywell International Inc. Method and system for diamond-based oxygen sensor
US11262354B2 (en) 2014-10-20 2022-03-01 Boston Scientific Scimed, Inc. Disposable sensor elements, systems, and related methods
US9810661B2 (en) * 2015-02-18 2017-11-07 Sensor Kinesis Corporation Carbon nanotube biofet with a local amplifier in a system array for analysis of biomarkers and method of analysis of same
US10309922B2 (en) * 2015-03-19 2019-06-04 National University Corporation Toyohashi University Of Technology Device for detecting chemical/physical phenomenon
CN105004774B (en) * 2015-07-10 2017-10-13 仲恺农业工程学院 The preparation method of modified electrode and the measure application of free copper ion in feed addictive Copper lysinate
EP3341464A4 (en) 2015-08-25 2019-03-06 Avails Medical, Inc. Devices, systems and methods for detecting viable microorganisms in a fluid sample
US9726631B1 (en) * 2016-02-09 2017-08-08 International Business Machines Corporation Ultra-sensitive biosensor based on lateral bipolar junction transistor having self-aligned epitaxially grown base
US20190145926A1 (en) * 2016-04-29 2019-05-16 Stc. Unm Wafer level gate modulation enhanced detectors
US10174356B2 (en) 2016-05-31 2019-01-08 Avails Medical, Inc. Devices, systems and methods to detect viable infectious agents in a fluid sample and susceptibility of infectious agents to anti-infectives
EP3439544A1 (en) 2016-06-15 2019-02-13 Boston Scientific Scimed Inc. Gas sampling catheters
WO2018075731A1 (en) 2016-10-21 2018-04-26 Boston Scientific Scimed, Inc. Gas sampling device
CN106384749A (en) * 2016-10-31 2017-02-08 杭州迦美信芯通讯技术有限公司 Pressure sensor and making method thereof
RU178317U1 (en) * 2017-02-17 2018-03-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) FIELD TRANSISTOR FOR DETERMINING BIOLOGICALLY ACTIVE COMPOUNDS
JP6868126B2 (en) 2017-05-19 2021-05-12 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Systems and methods for assessing patient health
WO2019005296A1 (en) 2017-06-27 2019-01-03 Avails Medical, Inc. Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives
US10852264B2 (en) 2017-07-18 2020-12-01 Boston Scientific Scimed, Inc. Systems and methods for analyte sensing in physiological gas samples
KR101989977B1 (en) * 2017-09-26 2019-06-17 (재)한국나노기술원 Gallium nitride-based sensor having heater structure and manuturing method thereof
EP3668650A4 (en) 2017-10-03 2021-06-02 Avails Medical, Inc. Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions
CN107831202B (en) * 2017-11-16 2023-11-24 中山大学 Sensor chip with shading packaging structure and preparation method thereof
CN108120752B (en) * 2017-12-26 2023-11-24 中山大学 Sensor chip with air bridge reference electrode shading structure and preparation method
EP3755220B1 (en) 2018-02-20 2022-08-10 Regents of the University of Minnesota Breath sampling mask and system
US11442056B2 (en) 2018-10-19 2022-09-13 Regents Of The University Of Minnesota Systems and methods for detecting a brain condition
WO2020112825A1 (en) 2018-11-27 2020-06-04 Boston Scientific Scimed, Inc. Systems and methods for detecting a health condition
CN113196047A (en) 2018-12-18 2021-07-30 波士顿科学国际有限公司 System and method for measuring the kinetic response of a chemical sensor element
US11016055B2 (en) 2019-07-09 2021-05-25 Globalfoundries Singapore Pte. Ltd. Sensors with a front-end-of-line solution-receiving cavity
EP4028758A2 (en) 2019-09-10 2022-07-20 Boston Scientific Scimed Inc. Gas measurement device and method
CN113009127B (en) * 2019-12-19 2023-07-07 北京中医药大学 Application of biosensor combined protein immune response method in detecting schizandrin A treating oligospermia signal path
CN113340965B (en) * 2020-03-03 2022-12-16 北京中医药大学 Artificial intelligence biosensor detection method for detecting chlorpheniramine
CN114509480A (en) * 2020-11-16 2022-05-17 北京中医药大学 Application of artificial intelligent biosensor in detection of 5-O-methylvisammioside antiallergic activity
CN112881485B (en) * 2021-01-14 2021-12-17 西安电子科技大学 GaN sensor for detecting hypochlorite and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167951A (en) * 1982-03-29 1983-10-04 Hitachi Ltd Chlorine ion sensor
US4816118A (en) * 1986-01-24 1989-03-28 Terumo Corporation Ion-sensitive FET sensor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147284A (en) * 1981-03-06 1982-09-11 Fujitsu Ltd Semiconductor device
US4892834A (en) * 1986-08-07 1990-01-09 Eic Laboratories, Inc. Chemical sensor
US5217594A (en) 1992-01-15 1993-06-08 Enzyme Technology Research Group, Inc. Convenient determination of trace lead in whole blood and other fluids
US5394094A (en) * 1993-05-13 1995-02-28 Industrial Scientific Corporation Portable gas sensor utilizing fault protective battery cap
JP3376078B2 (en) * 1994-03-18 2003-02-10 富士通株式会社 High electron mobility transistor
US6485905B2 (en) 1998-02-02 2002-11-26 Signature Bioscience, Inc. Bio-assay device
US6368795B1 (en) 1998-02-02 2002-04-09 Signature Bioscience, Inc. Bio-assay device and test system for detecting molecular binding events
US6338968B1 (en) 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
US20040014158A1 (en) * 1999-03-08 2004-01-22 Adelbert Bacher Protein conjugates, methods, vectors, proteins and DNA for producing them, their use, and medicaments and vaccines containing a certain quantity of said protein conjugates
FR2795871B1 (en) * 1999-07-01 2001-09-14 Picogiga Sa HETEROJUNCTION TRANSISTOR III-V, IN PARTICULAR HEMT FIELD-EFFECT TRANSISTOR OR BIPOLAR HETEROJUNCTION TRANSISTOR
JP3428962B2 (en) 2000-12-19 2003-07-22 古河電気工業株式会社 GaN based high mobility transistor
US6676752B1 (en) * 2002-02-26 2004-01-13 The United States Of America As Represented By The Secretary Of The Air Force Forming metal nitrides
TW569077B (en) * 2003-05-13 2004-01-01 Univ Nat Chiao Tung Method for fabricating nanometer gate in semiconductor device using thermally reflowed resist technology
US7403113B2 (en) 2004-05-17 2008-07-22 California Institute Of Technology GaN-based sensor nodes for in situ detection of gases
US7692219B1 (en) * 2004-06-25 2010-04-06 University Of Hawaii Ultrasensitive biosensors
DE102005046944A1 (en) * 2005-09-30 2007-04-05 Micronas Gmbh Gas-sensitive field-effect transistor for the detection of chlorine
US20070194225A1 (en) * 2005-10-07 2007-08-23 Zorn Miguel D Coherent electron junction scanning probe interference microscope, nanomanipulator and spectrometer with assembler and DNA sequencing applications
CA2645041A1 (en) * 2006-03-07 2007-09-13 University Of Florida Research Foundation, Inc. Drug adherence monitoring system
US8878245B2 (en) * 2006-11-30 2014-11-04 Cree, Inc. Transistors and method for making ohmic contact to transistors
WO2009151473A1 (en) * 2008-06-10 2009-12-17 University Of Florida Research Foundation, Inc. Chlorine detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167951A (en) * 1982-03-29 1983-10-04 Hitachi Ltd Chlorine ion sensor
US4816118A (en) * 1986-01-24 1989-03-28 Terumo Corporation Ion-sensitive FET sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUNG S.C. ET AL.: "Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors", APPLIED PHYSICS LETTERS, vol. 92, 14 May 2008 (2008-05-14), pages 193903-1 - 193903-3 *
HUNG S.C. ET AL.: "Integration of Selective Area Anodized AgCl Thin Film with AlGaN/GaN HEMTs for Chloride Ion Detection", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 11, 18 June 2008 (2008-06-18), pages H241 - H244 *
YEN-SHENG LU ET AL.: "Anion detection using ultrathin InN ion selective field effect transistors", APPLIED PHYSICS LETTERS, vol. 92, 27 May 2008 (2008-05-27), pages 212102-1 - 212102-3 *

Also Published As

Publication number Publication date
US20110084713A1 (en) 2011-04-14
US20110068372A1 (en) 2011-03-24
US8835984B2 (en) 2014-09-16
WO2009151705A3 (en) 2010-03-04
WO2009151705A2 (en) 2009-12-17
US8836351B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
US8836351B2 (en) Chloride detection
CN105424780B (en) A kind of gallium nitride sensor, preparation method and multisensor syste
US20170273608A1 (en) Ionic barrier for floating gate in vivo biosensors
Knopfmacher et al. Nernst limit in dual-gated Si-nanowire FET sensors
Dong et al. AlGaN/GaN heterostructure pH sensor with multi-sensing segments
CN104950023B (en) TFT ion transducer, the TFT ion transducer device using the TFT ion transducer
EP1801886A2 (en) Structure and method for surface-passivated zinc-oxide based sensor
Chen et al. On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment
US20170336347A1 (en) SiNW PIXELS BASED INVERTING AMPLIFIER
Zhang et al. Optimization of gate geometry towards high-sensitivity AlGaN/GaN pH sensor
Yang et al. Rapid detection of cardiac troponin I using antibody-immobilized gate-pulsed AlGaN/GaN high electron mobility transistor structures
Wei et al. Extended gate ion-sensitive field-effect transistors using Al2O3/hexagonal boron nitride nanolayers for pH sensing
Lo et al. Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors
Chaturvedi et al. AlGaN/GaN HEMT based sensor and system for polar liquid detection
Truong et al. Reduced graphene oxide field-effect transistor with indium tin oxide extended gate for proton sensing
Son et al. Bilayer indium gallium zinc oxide electrolyte-gated field-effect transistor for biosensor platform with high reliability
Pal et al. Open gate AlGaN/GaN HEMT biosensor: Sensitivity analysis and optimization
Kang et al. Role of gate oxide in AlGaN/GaN high-electron-mobility transistor pH sensors
US8008691B2 (en) Ion sensitive field effect transistor and production method thereof
Kaczmarski et al. IGZO MESFET with enzyme-modified Schottky gate electrode for glucose sensing
Rabbaa et al. Validation of a triangular quantum well model for GaN-based HEMTs used in pH and dipole moment sensing
Chang et al. Impedimetric phosphorene field-effect transistors for rapid detection of lead ions
Jha et al. Integrated nanorods and heterostructure field effect transistors for gas sensing
CN205193005U (en) Gallium nitride sensor and multisensor syste
Pletschen et al. CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12997163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874650

Country of ref document: EP

Kind code of ref document: A1