WO2011151484A1 - System for the neutralisation of acid mine water and the recovery of the metal load therefrom - Google Patents

System for the neutralisation of acid mine water and the recovery of the metal load therefrom Download PDF

Info

Publication number
WO2011151484A1
WO2011151484A1 PCT/ES2011/000173 ES2011000173W WO2011151484A1 WO 2011151484 A1 WO2011151484 A1 WO 2011151484A1 ES 2011000173 W ES2011000173 W ES 2011000173W WO 2011151484 A1 WO2011151484 A1 WO 2011151484A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
water
steam
amd
emptying
Prior art date
Application number
PCT/ES2011/000173
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel ANDUJAR MARQUEZ
José Antonio GRANDE GIL
Original Assignee
Universidad De Huelva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Huelva filed Critical Universidad De Huelva
Publication of WO2011151484A1 publication Critical patent/WO2011151484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/24Evaporating by bringing a thin layer of the liquid into contact with a heated surface to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • B01D1/0047Use of fluids in a closed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the main object of the present invention is a system and a procedure for the neutralization of acidic waters from the mines and the recovery of their metallic charge, by means of energy obtained from renewable sources.
  • This type of contamination originates when a sulphurous mineral comes into contact with oxygen and atmospheric moisture; on the surface of the mineral begins a complex mechanism that begins with the oxidation of sulfides, very insoluble, transforming them into sulfates with acid production.
  • the kinetics of this oxygen oxidation is very slow, between 1.08.10-15 to 1.8. 10-14 mol / (cm2. S), being able to increase its speed up to one hundred times by the presence of ferric ion and by the action of catalytic bacteria.
  • heavy metals those whose specific weight is greater than 4 or 5 g / cm3 are considered heavy metals, the most common being iron, copper, zinc, lead, manganese, chromium, nickel, arsenic, mercury and cadmium.
  • the toxicity of certain heavy metals at certain concentrations has caused numerous incidents. Heavy metal contamination of a water is serious based on three fundamental reasons:
  • heavy metals are not biodegradable, so they remain in the contaminated environment indefinitely, except for transport processes to other media.
  • Heavy metals from the point of view of their influence on animal physiology, can be classified as essential and non-essential; Thus, certain heavy metals such as copper, zinc and manganese are essential micronutrients for plants and animals, and only become lethal in high concentrations. The organism needs them within an optimal range, below which deficiency states occur and toxicity above. Similarly, non-essential heavy metals have a value for each individual, below which it is tolerable and above toxic.
  • the entry into force of regulations governing the chemical composition of mining spills has caused severe restrictions for mining companies that have resulted in millionaire restoration costs and have caused the closure of numerous sulphide farms.
  • Techniques used as preventive measures include barrier methods, chemical methods and bacterial inhibition methods, all of them conducive to water pollution.
  • the techniques most frequently used as corrective measures to remedy or alleviate the process are, among others, chemical neutralization plants, neutralization with uncontaminated water, reverse osmosis, ion exchange, treatments biological and in marshes, anoxic limestone traps, bioleaching of debris, electrocoagulation, and a host of variants and combinations of the above.
  • the common denominator of all of them can be summed up in a high cost of installation and maintenance, in the case of those that really achieve as a final result a water of discharge that complies with the regulations, or a low yield for others, cheaper, that cause spills with undesirable residual contaminants.
  • second evaporating means of water contaminated by AMD and extraction of its metallic charge and characterized in that (a) it comprises a mainland evaporator of water contaminated by AMD until it is brought to its boiling point, for which a heater through which a high temperature thermal fluid passes through said fluid coming from the first means of power generation and a plurality of ejectors or vacuum pumps configured to lower the boiling point of acidic water by generating vacuum inside the evaporator; and (b) once the water contaminated by AMD becomes steam, all the polluting materials that were dissolved in it precipitate to the bottom of the evaporator, being moved by a stirrer; and because when the level of the deposited material reaches a height predetermined by the plant's own operation, a sliding gate operated by a motor slides at the bottom of the evaporator, which allows the evaporator to be emptied with a closed filling valve; and where once the evaporator has been emptied, the gate closes, the valve opens and a new fill-
  • FIG. 1 shows a scheme of principle of one of the modules (the others up to the necessary number N - depending on the treatment flow - of the installation would be all similar) that form the acid mine neutralization plant and recovery of its metallic load .
  • FIG. 2 shows a field of renewable energy utilization systems, solar energy, that provide the necessary electrical energy for the systems that need it present in the scheme of FIG.l.
  • the object of the invention is to take advantage of renewable energy, such as solar energy, to evaporate acidic water from the mine and recover the dried ore.
  • a diagram of the principle of one of the modules is shown in Figure 1 (the others up to the necessary N number - depending on the treatment flow - of the installation would be all similar) that form the acid mine and recovery water neutralization plant of its metallic load.
  • the process consists of heating in an evaporator (1) the water contaminated by AMD (2) until it is brought to its boiling point, for which a heater (3) is used, through which a thermal fluid flows at a high temperature (approx. 400 ° C).
  • the boiling point of acidic water can be drastically lowered (up to around 40 ° C) by vacuuming inside the evaporator (1); for this, steam ejectors or vacuum pumps can be used (not drawn in the scheme in Figure 1).
  • the evaporator (1) has inside it an agitator (5) moved by a motor.
  • a sliding gate driven by a motor (6) slides, which allows the emptying of the evaporator (1) .
  • the evaporator base can be equipped with a shake table driven by an eccentric cam, the shaking movement being initiated at the time of opening to favor the fall of the decanted material outwards of the evaporator (1).
  • the filling valve (7) must be closed. Once the evaporator is empty, the gate (6) closes, the valve (7) opens and a new cycle begins.
  • N evaporators analogous to that described and schematized in Figure 1, so that the processes of filling with water contaminated by AMD and emptying of the materials dissolved in them, will be done in a synchronized manner, in order to that there are no waiting times; for this, the appropriate control system will be implemented.
  • the contaminants extracted from each of the N evaporators go to a conveyor belt (8) that runs through them everybody. This is continuously depositing the transported material (9) to the trays or containers enabled for it (10).
  • the second task of the steam produced will be to generate a steam line, of adequate pressure, for the entire installation (16).
  • Example 1 the system works only by day and is 100% renewable.
  • parabolic trough reflectors (18) in number M according to the energy needs of the installation.
  • the main components of the parabolic trough reflector are: the specular surface (19)
  • the parabolic cylinder is achieved through films of silver or aluminum deposited on a support that gives it sufficient rigidity. This surface reflects the sun's rays on an absorber tube (20) by heating it.
  • the absorber tube consists of two concentric tubes separated by a vacuum layer.
  • the interior, through which the thermal fluid that is heated (an oil for example) circulates, is metallic, and the exterior is glass.
  • the system consists of a solar tracker (21), a device that rotates the parabolic trough reflectors of the collector around A shaft
  • the mechanical structure (22) of the collector is intended to stiffen the set of elements that compose it.
  • valves (23) are closed and the recirculation of the thermal fluid occurs through the parabolic cylinder reflector, so that the heated fluid (up to 400 ° C) is driven by a pump (25) to the heater ( 3) to cause the boiling of water contaminated by AMD.
  • the cooled fluid (26) returns, by driving a pump (27) to the parabolic trough reflector to be heated again.
  • the circuit also includes an expansion vessel (28) in order to absorb the dilations and changes in volumes that originate, so that they are not created on pressures.
  • Example 2 the system works day and night continuously and is 100% renewable.
  • Figure 2 shows a field of solar panels that, during the day, provides the necessary electrical energy for the systems that need it present in the scheme of Figure 1 (depending on the degree of automation given to the plant, they will be fundamentally instrumentation and control systems, as well as motors and pumps).
  • the panel field feeds an electrolyzer, which generates hydrogen from water and is stored in a tank.
  • the steam from the installation circuit (16 in Figure 1) feeds a turbine that, together with the panels, generates electrical energy in a non-polluting way. In the event that the electricity generated is greater than that demanded by the installation, it can be sold to the electricity grid.
  • the hydrogen generated during the day serves to fuel a high temperature fuel cell (> 400 ° C). This generates electricity by hydrogen without producing polluting waste and, the exothermic reaction it produces, allows cogeneration, which feeds the steam line that moves the turbine.
  • the battery bank ( Figure 2) is a backup system only, in order to maintain critical systems in the event of any failure and guarantee the necessary electrical energy to start the battery (its electromechanical systems), since when it is running it supplies itself .
  • Example 3 the system works day or night and is partly renewable.

Abstract

The invention relates to a system for the neutralisation of acid mine water and the recovery of the metal load therefrom, consisting in harnessing renewable energy in order to evaporate the acid water originating from the mine and recover the dehydrated mineral. The invention comprises at least (i) first energy generating means (18, 19, 20, 21); and (ii) second evaporator means (1, 3, 4, 5, 6, 7) for evaporating the water contaminated with AMD (2).

Description

SISTEMA PARA LA NEUTRALIZACIÓN DE AGUAS ACIDAS DE MINA Y RECUPERACIÓN DE SU CARGA METÁLICA  SYSTEM FOR THE NEUTRALIZATION OF MINE ACID WATER AND RECOVERY OF ITS METAL LOAD
DESCRIPCIÓN DESCRIPTION
El objeto principal de la presente invención es un sistema y un procedimiento para la neutralización de aguas ácidas provenientes de las minas y la recuperación de su carga metálica, mediante energía obtenida de fuentes renovables. The main object of the present invention is a system and a procedure for the neutralization of acidic waters from the mines and the recovery of their metallic charge, by means of energy obtained from renewable sources.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
De todas las causas de contaminación de los cursos fluviales, quizás el drenaje ácido de minas, AMD, sea una de las más graves, por su naturaleza, extensión y dificultad de resolución. Los ríos afectados por este tipo de contaminación se caracterizan por su acidez, así como por el alto contenido en sulfatos y metales pesados de sus aguas. Of all the causes of pollution of river courses, perhaps the acid mine drainage, AMD, is one of the most serious, due to its nature, extent and difficulty of resolution. The rivers affected by this type of pollution are characterized by their acidity, as well as the high sulfate and heavy metal content of their waters.
Este tipo de contaminación se origina cuando un mineral sulfuroso entra en contacto con el oxígeno y la humedad atmosférica; en la superficie del mineral comienza entonces un complejo mecanismo que se inicia con la oxidación de los sulfuros, muy insolubles, transformándolos en sulfatos con producción de ácido. La cinética de esta oxidación por oxigeno es muy lenta, entre 1,08.10-15 a 1,8. 10-14 mol/(cm2. s) , pudiendo aumentar su velocidad hasta cien veces por la presencia de ión férrico y por la actuación de bacterias catalizadoras . Junto a la oxidación de la pirita finalmente, se producen reacciones secundarias entre los productos de las reacciones anteriores y los restantes minerales presentes en la roca, siendo el resultado final un conjunto de contaminantes solubles depositados sobre el mineral, que posteriormente son disueltos y arrastrados por el agua de lluvia o de escorrentía, produciéndose un caudal líquido contaminante que lleva su acidez, sus sulfatos y metales pesados hasta los cursos de agua . La contaminación de origen metálico en medios acuáticos tiene unas posibilidades de ocurrencia muy altas, dado que de los 106 elementos conocidos, 84 se clasifican como metales. Dentro de estos 84 metales, se consideran como metales pesados, aquellos cuyo peso especifico es mayor de 4 o 5 g/cm3, siendo los más comunes hierro, cobre, cinc, plomo, manganeso, cromo, níquel, arsénico, mercurio y cadmio. La toxicidad de ciertos metales pesados a determinadas concentraciones ha originado numerosos incidentes. La contaminación por metales pesados de un agua reviste gravedad en base a tres razones fundamentales: This type of contamination originates when a sulphurous mineral comes into contact with oxygen and atmospheric moisture; on the surface of the mineral begins a complex mechanism that begins with the oxidation of sulfides, very insoluble, transforming them into sulfates with acid production. The kinetics of this oxygen oxidation is very slow, between 1.08.10-15 to 1.8. 10-14 mol / (cm2. S), being able to increase its speed up to one hundred times by the presence of ferric ion and by the action of catalytic bacteria. Together with the oxidation of pyrite, finally, secondary reactions occur between the products of the previous reactions and the remaining minerals present in the rock, the final result being a set of soluble pollutants deposited on the mineral, which are subsequently dissolved and dragged by rainwater or runoff, producing a polluting liquid flow that takes its acidity, sulfates and heavy metals to the water courses. Contamination of metallic origin in aquatic environments has very high chances of occurrence, since of the 106 known elements, 84 are classified as metals. Within these 84 metals, those whose specific weight is greater than 4 or 5 g / cm3 are considered heavy metals, the most common being iron, copper, zinc, lead, manganese, chromium, nickel, arsenic, mercury and cadmium. The toxicity of certain heavy metals at certain concentrations has caused numerous incidents. Heavy metal contamination of a water is serious based on three fundamental reasons:
a) A diferencia de la materia orgánica, los metales pesados no son biodegradables, por lo que permanecen en el medio contaminado de forma indefinida, salvo procesos de transporte a otros medios.  a) Unlike organic matter, heavy metals are not biodegradable, so they remain in the contaminated environment indefinitely, except for transport processes to other media.
b) Los metales pesados, una vez que los microorganismos y la microflora los incorpora, pueden ser retenidos por los tejidos del organismo, produciéndose el fenómeno de la bioacumulación. Así, en organismos filtradores se han encontrado factores de concentración de 290.000 para el zinc, 100.000 para el plomo, 35.000 para el cobre y 500 y 100 para el cromo y níquel respectivamente. Los metales acumulados se pueden transmitir a otras especies situadas en un nivel superior de la cadena trófica, produciéndose el fenómeno conocido como biomagnificación . Mediante la bioacumulación y la biomagnificación, se llegan a alcanzar valores mucho más elevados que los encontrados en el medio líquido.  b) Heavy metals, once the microorganisms and the microflora incorporate them, can be retained by the tissues of the organism, producing the phenomenon of bioaccumulation. Thus, in filter organisms, concentration factors of 290,000 have been found for zinc, 100,000 for lead, 35,000 for copper and 500 and 100 for chromium and nickel respectively. The accumulated metals can be transmitted to other species located at a higher level of the trophic chain, producing the phenomenon known as biomagnification. Through bioaccumulation and biomagnification, much higher values are achieved than those found in the liquid medium.
c) Los metales pesados, desde el punto de vista de su influencia en la fisiología animal, pueden clasificarse en esenciales y no esenciales; así, ciertos metales pesados como cobre, zinc y manganeso son micronutrientes esenciales para plantas y animales, y sólo llegan a ser letales en elevadas concentraciones. El organismo los necesita dentro de un intervalo óptimo, por debajo del cual se produce estados carenciales y por encima toxicidad. Igualmente, los metales pesados no esenciales presentan para cada individuo un valor, por debajo del cual es tolerable y por encima tóxico. La entrada en vigor de normativas reguladoras de la composición química de los vertidos de origen minero, ha provocado severas restricciones para las empresas mineras que se han traducido en costes de restauración millonarios y que han provocado el cierre de numerosas explotaciones de sulfuros. De más de cien minas abiertas en el Suroeste de la Península Ibérica a mediados del siglo pasado, apenas quedaron tres en funcionamiento a finales del mismo. Por otra parte, el precio actual del cobre, en claro proceso de aumento, provocado, en buena parte, por la gran demanda desde países asiáticos, está permitiendo, bajo severas restricciones, y con elevados costes de prevención y restauración de la contaminación hídrica, el esperado resurgir de la minería metálica en Europa. c) Heavy metals, from the point of view of their influence on animal physiology, can be classified as essential and non-essential; Thus, certain heavy metals such as copper, zinc and manganese are essential micronutrients for plants and animals, and only become lethal in high concentrations. The organism needs them within an optimal range, below which deficiency states occur and toxicity above. Similarly, non-essential heavy metals have a value for each individual, below which it is tolerable and above toxic. The entry into force of regulations governing the chemical composition of mining spills has caused severe restrictions for mining companies that have resulted in millionaire restoration costs and have caused the closure of numerous sulphide farms. Of more than one hundred open mines in the Southwest of the Iberian Peninsula in the middle of the last century, there were barely three in operation at the end of it. On the other hand, the current price of copper, in clear process of increase, caused, in large part, by the great demand from Asian countries, is allowing, under severe restrictions, and with high costs of prevention and restoration of water pollution, the expected resurgence of metal mining in Europe.
Las técnicas preventivas y correctoras que se resumen vienen siendo empleadas en diferentes instalaciones, no existiendo un patrón común, y dependiendo la elección de cada sistema corrector de diferentes factores como, exigencias impuestas por las normativas nacionales, autonómicas y locales, tipo de mineral, tamaño de las explotaciones, caudal y composición química del efluente a tratar. The preventive and corrective techniques that are summarized are being used in different facilities, there is no common pattern, and depending on the choice of each correction system of different factors such as, requirements imposed by national, regional and local regulations, type of mineral, size of the holdings, flow and chemical composition of the effluent to be treated.
Entre las técnicas empleadas como medidas preventivas caben citar los métodos de barrera, los métodos químicos y los de inhibición bacteriana, todos ellos conducentes a la con contaminación de las aguas. Techniques used as preventive measures include barrier methods, chemical methods and bacterial inhibition methods, all of them conducive to water pollution.
Una vez contaminada el agua, las técnicas al uso más frecuentemente empleadas como medidas correctoras para remediar o paliar el proceso son, entre otras, las plantas de neutralización química, la neutralización con aguas no contaminadas, la osmosis inversa, el intercambio iónico, los tratamientos biológicos y en ciénagas, las trampas calizas anóxicas, la biolixiviación de escombreras, la electrocoagulación, y un sinfín de variantes y combinaciones de las anteriores. El denominador común de todas ellas puede resumirse en un elevado coste de instalación y mantenimiento, en el caso de las que realmente consiguen como resultado final un agua de vertido que cumpla la normativa, o un escaso rendimiento para otras, más baratas, que provocan vertidos con contaminantes residuales indeseables . Once the water is contaminated, the techniques most frequently used as corrective measures to remedy or alleviate the process are, among others, chemical neutralization plants, neutralization with uncontaminated water, reverse osmosis, ion exchange, treatments biological and in marshes, anoxic limestone traps, bioleaching of debris, electrocoagulation, and a host of variants and combinations of the above. The common denominator of all of them can be summed up in a high cost of installation and maintenance, in the case of those that really achieve as a final result a water of discharge that complies with the regulations, or a low yield for others, cheaper, that cause spills with undesirable residual contaminants.
EXPLICACIÓN DE LA INVENCIÓN Para evitar los problemas descritos, se ha desarrollado el sistema y método para la neutralización de aguas ácidas de mina y recuperación de carga metálica, objeto de la presente invención y que es del tipo que consiste en aprovechar una energía renovable para evaporar el agua ácida procedente de la mina y recuperar el mineral desecado, y que comprende, al menosEXPLANATION OF THE INVENTION To avoid the problems described, the system and method for the neutralization of acid mine waters and metal charge recovery has been developed, object of the present invention and which is of the type that consists of harnessing a renewable energy to evaporate acidic water from the mine and recover the dried ore, and which comprises at least
(i) unos primeros medios de generación de energía renovable; y(i) first means of generating renewable energy; Y
(ii) unos segundos medios evaporadores de agua contaminada por AMD y extracción de su carga metálica, y que se caracteriza porque (a) comprende un evaporador continente del agua contaminada por AMD hasta llevarla a su punto de ebullición, para lo cual se emplea un calentador por cuyo interior pasa un fluido térmico a elevada temperatura proviniendo dicho fluido de los primeros medios de generación de energía y una pluralidad de eyectores o bombas de vacío configuradas para bajar el punto de ebullición del agua ácida mediante la generación de vacío en el interior del evaporador; y (b) una vez que el agua contaminada por AMD se hace vapor, todos los materiales contaminantes que estaban disueltos en ella precipitan al fondo del evaporador, siendo movidos por un agitador; y porque cuando el nivel del material depositado alcance una altura prefijada por la propia operación de la planta, en el fondo del evaporador se desliza una compuerta de corredera accionada por un motor, la cual permite el vaciado del evaporador con una válvula de llenado cerrada; y donde una vez vaciado el evaporador, la compuerta se cierra, se abre la válvula y comienza un nuevo ciclo llenado-evaporación-vaciado. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. (ii) second evaporating means of water contaminated by AMD and extraction of its metallic charge, and characterized in that (a) it comprises a mainland evaporator of water contaminated by AMD until it is brought to its boiling point, for which a heater through which a high temperature thermal fluid passes through said fluid coming from the first means of power generation and a plurality of ejectors or vacuum pumps configured to lower the boiling point of acidic water by generating vacuum inside the evaporator; and (b) once the water contaminated by AMD becomes steam, all the polluting materials that were dissolved in it precipitate to the bottom of the evaporator, being moved by a stirrer; and because when the level of the deposited material reaches a height predetermined by the plant's own operation, a sliding gate operated by a motor slides at the bottom of the evaporator, which allows the evaporator to be emptied with a closed filling valve; and where once the evaporator has been emptied, the gate closes, the valve opens and a new fill-evaporation-empty cycle begins. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 muestra un esquema de principio de uno de los módulos (los demás hasta el número N necesario -dependiendo del caudal de tratamiento- de la instalación serían todos análogos) que forman la planta de neutralización de aguas ácidas de mina y recuperación de su carga metálica. FIG. 1 shows a scheme of principle of one of the modules (the others up to the necessary number N - depending on the treatment flow - of the installation would be all similar) that form the acid mine neutralization plant and recovery of its metallic load .
FIG. 2 muestra un campo de sistemas de aprovechamiento de energía renovable, energía solar, que proporcionan la energía eléctrica necesaria para los sistemas que lo necesiten presentes en el esquema de la FIG.l. FIG. 2 shows a field of renewable energy utilization systems, solar energy, that provide the necessary electrical energy for the systems that need it present in the scheme of FIG.l.
EXPOSICION DETALLADA DE MODOS DE REALIZACIÓN Y EJEMPLOS DETAILED EXHIBITION OF EMBODIMENTS AND EXAMPLES
El objeto de la invención consiste en aprovechar una energía renovable, como es la energía solar, para evaporar el agua ácida procedente de la mina y recuperar el mineral desecado. En la Figura 1 se muestra un esquema de principio de uno de los módulos (los demás hasta el número N necesario -dependiendo del caudal de tratamiento- de la instalación serían todos análogos) que forman la planta de neutralización de aguas ácidas de mina y recuperación de su carga metálica. El proceso consiste en calentar en un evaporador (1) el agua contaminada por AMD (2) hasta llevarla a su punto de ebullición, para lo cual se emplea un calentador (3) por cuyo interior pasa un fluido térmico a elevada temperatura (aprox. 400° C) . El punto de ebullición del agua ácida puede ser bajado drásticamente (hasta en torno a los 40 °C) realizando vacio en el interior del evaporador (1); para ello se pueden utilizar eyectores de vapor o bombas de vacio (no dibujados en el esquema de la Figura 1) . The object of the invention is to take advantage of renewable energy, such as solar energy, to evaporate acidic water from the mine and recover the dried ore. A diagram of the principle of one of the modules is shown in Figure 1 (the others up to the necessary N number - depending on the treatment flow - of the installation would be all similar) that form the acid mine and recovery water neutralization plant of its metallic load. The process consists of heating in an evaporator (1) the water contaminated by AMD (2) until it is brought to its boiling point, for which a heater (3) is used, through which a thermal fluid flows at a high temperature (approx. 400 ° C). The boiling point of acidic water can be drastically lowered (up to around 40 ° C) by vacuuming inside the evaporator (1); for this, steam ejectors or vacuum pumps can be used (not drawn in the scheme in Figure 1).
Una vez que el agua contaminada por AMD se hace vapor, todos los materiales contaminantes que estaban disueltos en ella precipitan al fondo (4) del evaporador (1) . Con objeto de que el material precipitado no se apelmace, el evaporador (1) tiene en su interior un agitador (5) movido por un motor. Cuando el nivel del material depositado alcance una altura prefijada por la propia operación de la planta, en el fondo del evaporador (1) se desliza una compuerta de corredera accionada por un motor (6), la cual permite el vaciado del evaporador (1). En caso de ser necesario -no dibujado en la figura 1- la base del evaporador puede estar dotada de una mesa de sacudidas accionada por una leva excéntrica, iniciándose el movimiento de sacudidas en el momento de apertura para favorecer la caída del material decantado hacia fuera del evaporador (1) . Durante el proceso de vaciado de éste, la válvula de llenado (7) ha de estar cerrada. Una vez vacío el evaporador, la compuerta (6) se cierra, se abre la válvula (7) y comienza un nuevo ciclo. Once the water contaminated by AMD becomes steam, all the polluting materials that were dissolved in it precipitate to the bottom (4) of the evaporator (1). In order that the precipitated material is not caked, the evaporator (1) has inside it an agitator (5) moved by a motor. When the level of the deposited material reaches a height predetermined by the plant's own operation, at the bottom of the evaporator (1) a sliding gate driven by a motor (6) slides, which allows the emptying of the evaporator (1) . If necessary - not drawn in Figure 1- the evaporator base can be equipped with a shake table driven by an eccentric cam, the shaking movement being initiated at the time of opening to favor the fall of the decanted material outwards of the evaporator (1). During the process of emptying it, the filling valve (7) must be closed. Once the evaporator is empty, the gate (6) closes, the valve (7) opens and a new cycle begins.
En general, una instalación completa constará de N evaporadores análogos al descrito y esquematizado en la Figura 1, con lo cual los procesos de llenado con aguas contaminadas por AMD y vaciado de los materiales disueltos en ellas, se hará de forma sincronizada, con objeto de que no haya tiempos de espera; para ello se implementará el sistema de control adecuado. In general, a complete installation will consist of N evaporators analogous to that described and schematized in Figure 1, so that the processes of filling with water contaminated by AMD and emptying of the materials dissolved in them, will be done in a synchronized manner, in order to that there are no waiting times; for this, the appropriate control system will be implemented.
Los contaminantes extraídos de cada uno de los N evaporadores van a parar a una cinta transportadora (8) que los recorre todos. Ésta va depositando de forma continua el material transportado (9) hasta las cubetas o los contenedores habilitados para ello (10) . Respecto del vapor producido (11), éste tiene 3 cometidos fundamentales. La mayor cantidad de vapor irá, a través de un condensador (12) y ya licuado, a una torre de refrigeración (13) para su enfriamiento. Esta agua enfriada y limpia irá, en una pequeña parte a alimentar (14) el condensador y, en gran medida, a la tubería (15) que alimente el cauce o cauces del entorno. El segundo cometido del vapor producido será generar una línea de vapor, de la presión adecuada, para toda la instalación (16) . El último cometido del vapor generado será que una pequeña parte del mismo sea inyectada (17) en la camisa del evaporador (éste ha debido ser construido con esta característica) , lo cual provocará un precalentamiento de éste y, como consecuencia, una mayor eficiencia energética del proceso . Los posibles "arrastres" no deseados de materia particulada potencialmente transportados por el vapor de agua a la salida de cada evaporador, pueden ser recogidos en un sifón u otro elemento retenedor de partículas antes de su incorporación a los circuitos de vapor. The contaminants extracted from each of the N evaporators go to a conveyor belt (8) that runs through them everybody. This is continuously depositing the transported material (9) to the trays or containers enabled for it (10). Regarding the steam produced (11), it has 3 fundamental tasks. The greatest amount of steam will go, through a condenser (12) and already liquefied, to a cooling tower (13) for cooling. This cooled and clean water will go, in a small part to feed (14) the condenser and, to a large extent, to the pipe (15) that feeds the channel or channels of the environment. The second task of the steam produced will be to generate a steam line, of adequate pressure, for the entire installation (16). The last task of the steam generated will be that a small part of it is injected (17) into the evaporator jacket (this must have been built with this characteristic), which will cause it to preheat and, as a consequence, greater energy efficiency of process . The possible unwanted "drag" of particulate matter potentially transported by the steam at the exit of each evaporator, can be collected in a siphon or other element retaining particles before being incorporated into the steam circuits.
Con objeto de hacer todo el proceso completamente renovable y limpio, la energía necesaria para que el calentador (3) eleve la temperatura del agua contaminada por AMD (2) hasta llevarla a su punto de ebullición, será obtenida según los siguientes ejemplos prácticos. In order to make the entire process completely renewable and clean, the energy necessary for the heater (3) to raise the temperature of the water contaminated by AMD (2) to its boiling point, will be obtained according to the following practical examples.
Ejemplo 1: el sistema funciona sólo de dia y es 100% renovable. Example 1: the system works only by day and is 100% renewable.
En este caso se dispone de un campo de reflectores cilindro parabólicos (18) en número M acorde con las necesidades energéticas de la instalación. Los componentes principales del reflector cilindro parabólico son: la superficie especular (19) del cilindro parabólico se consigue a través de películas de plata o aluminio depositadas sobre un soporte que le da la suficiente rigidez. Esta superficie refleja los rayos del sol sobre un tubo absorbedor (20) calentándolo. El tubo absorbedor consta de dos tubos concéntricos separados por una capa de vacío. El interior, por el que circula el fluido térmico que se calienta (un aceite por ejemplo) , es metálico, y el exterior de cristal. Con objeto de optimizar el funcionamiento del cilindro parabólico de modo que siempre esté de cara al sol en el recorrido de éste por el horizonte, el sistema consta de un seguidor solar (21) , un dispositivo que rota los reflectores cilindro parabólicos del colector alrededor de un eje. Por último, la estructura mecánica (22) del colector tiene por objeto dar rigidez al conjunto de elementos que lo componen. In this case there is a field of parabolic trough reflectors (18) in number M according to the energy needs of the installation. The main components of the parabolic trough reflector are: the specular surface (19) The parabolic cylinder is achieved through films of silver or aluminum deposited on a support that gives it sufficient rigidity. This surface reflects the sun's rays on an absorber tube (20) by heating it. The absorber tube consists of two concentric tubes separated by a vacuum layer. The interior, through which the thermal fluid that is heated (an oil for example) circulates, is metallic, and the exterior is glass. In order to optimize the operation of the parabolic cylinder so that it is always facing the sun along its horizon, the system consists of a solar tracker (21), a device that rotates the parabolic trough reflectors of the collector around A shaft Finally, the mechanical structure (22) of the collector is intended to stiffen the set of elements that compose it.
En el funcionamiento diurno las válvulas (23) están cerradas y la recirculación del fluido térmico se produce a través del reflector cilindro parabólico, de modo que el fluido calentado (hasta 400 °C) es impulsado por una bomba (25) hasta el calentador (3) para provocar la ebullición del agua contaminada por AMD. El fluido enfriado (26) vuelve, mediante la impulsión de una bomba (27) al reflector cilindro parabólico para ser de nuevo calentado. El circuito consta además de un vaso de expansión (28) con objeto de absorber las dilataciones y cambios de volúmenes que se originen, de modo que no se creen sobre presiones. In daytime operation the valves (23) are closed and the recirculation of the thermal fluid occurs through the parabolic cylinder reflector, so that the heated fluid (up to 400 ° C) is driven by a pump (25) to the heater ( 3) to cause the boiling of water contaminated by AMD. The cooled fluid (26) returns, by driving a pump (27) to the parabolic trough reflector to be heated again. The circuit also includes an expansion vessel (28) in order to absorb the dilations and changes in volumes that originate, so that they are not created on pressures.
Ejemplo 2: el sistema funciona de dia y de noche de forma continua y es 100% renovable. Example 2: the system works day and night continuously and is 100% renewable.
Durante el día el proceso es el ya descrito, sin embargo, cuando la luz solar decae de un cierto nivel, el fluido térmico ya no alcanza la temperatura adecuada, con lo cual se le impide el paso al reflector cilindro parabólico (cerrando las válvulas (29) ) y se le obliga, abriendo las válvulas (23) , a circular por un calentador eléctrico (30) . Este calentador puede ser externo al evaporador (1) o interno, concéntrico con el que aloja (3) el fluido térmico. Por supuesto, con objeto de hacer el sistema renovable, la energía eléctrica necesaria es generada también de forma limpia y no contaminante. El procedimiento para hacer esto se explica en la Figura 2. During the day the process is already described, however, when sunlight falls from a certain level, the thermal fluid no longer reaches the proper temperature, which prevents the passage to the parabolic trough reflector (closing the valves ( 29)) and is forced, by opening the valves (23), to circulate through an electric heater (30). This heater can be external to the evaporator (1) or internal, concentric with the one that houses (3) the thermal fluid. Of course, in order to make the system renewable, the necessary electrical energy is also generated in a clean and non-polluting way. The procedure to do this is explained in Figure 2.
La Figura 2 muestra un campo de paneles solares que, durante el día, proporciona la energía eléctrica necesaria para los sistemas que lo necesiten presentes en el esquema de la Figura 1 (dependiendo del grado de automatización que se le dé a la planta, serán fundamentalmente sistemas de instrumentación y control, así como motores y bombas) . Además de lo anterior, el campo de paneles alimenta a un electrolizador, el cual a partir de agua genera hidrógeno que es almacenado en un tanque. Durante el día, el vapor del circuito de la instalación (16 en Figura 1) alimenta a una turbina que, junto a los paneles, genera energía eléctrica de forma no contaminante. En el caso de que la energía eléctrica generada sea superior a la demandada por la instalación, ésta puede ser vendida a la red eléctrica . Figure 2 shows a field of solar panels that, during the day, provides the necessary electrical energy for the systems that need it present in the scheme of Figure 1 (depending on the degree of automation given to the plant, they will be fundamentally instrumentation and control systems, as well as motors and pumps). In addition to the above, the panel field feeds an electrolyzer, which generates hydrogen from water and is stored in a tank. During the day, the steam from the installation circuit (16 in Figure 1) feeds a turbine that, together with the panels, generates electrical energy in a non-polluting way. In the event that the electricity generated is greater than that demanded by the installation, it can be sold to the electricity grid.
Durante la noche, cuando los paneles solares y los reflectores cilindro parabólicos no actúan, el hidrógeno generado durante el día sirve para alimentar una pila de combustible de alta temperatura (> 400 °C) . Ésta genera electricidad mediante hidrógeno sin producir residuos contaminantes y, la reacción exotérmica que produce, permite realizar cogeneración, lo cual alimenta la línea de vapor que mueve a la turbina. During the night, when solar panels and parabolic trough reflectors do not work, the hydrogen generated during the day serves to fuel a high temperature fuel cell (> 400 ° C). This generates electricity by hydrogen without producing polluting waste and, the exothermic reaction it produces, allows cogeneration, which feeds the steam line that moves the turbine.
El banco de baterías (Figura 2) es un sistema únicamente de respaldo, con objeto de mantener sistemas críticos ante cualquier fallo y garantizar la energía eléctrica necesaria para arrancar la pila (sus sistemas electromecánicos) , ya que cuando ésta está en marcha se auto abastece. Ejemplo 3: el sistema funciona de dia o también de noche y es en parte renovable. The battery bank (Figure 2) is a backup system only, in order to maintain critical systems in the event of any failure and guarantee the necessary electrical energy to start the battery (its electromechanical systems), since when it is running it supplies itself . Example 3: the system works day or night and is partly renewable.
Se puede dar la circunstancia que, dependiendo del tipo de explotación o de las necesidades de la empresa explotadora, se plantee la posibilidad de instalar un sistema mixto renovable/red eléctrica o con una caldera de apoyo alimentada por cualquier combustible. En este caso el esquema de la Figura 1 se mantendría en su totalidad. Sin embargo, en la Figura 2 ya no estarían: campo de paneles solares, electrolizador, tanque de hidrógeno y pila de combustible. Esto es, las necesidades de energía de la planta durante el día y la noche (mayor, ya que el campo de reflectores cilindro parabólicos no actúa) deberían ser satisfechas mediante conexión a la red eléctrica o por medios propios, tales como una caldera que genere el vapor suficiente para mover una turbina. The circumstance may arise that, depending on the type of operation or the needs of the operating company, the possibility of installing a mixed renewable system / power grid or with a support boiler fueled by any fuel is considered. In this case the scheme in Figure 1 would be maintained in its entirety. However, in Figure 2 they would no longer be: solar panel field, electrolyser, hydrogen tank and fuel cell. That is, the energy needs of the plant during the day and night (greater, since the field of parabolic trough reflectors does not work) should be met by connection to the power grid or by own means, such as a boiler that generates Enough steam to move a turbine.

Claims

REIVINDICACIONES
1. - Sistema para la neutralización de aguas ácidas de mina y recuperación de carga metálica del tipo que consiste en aprovechar una energía renovable para evaporar el agua ácida procedente de la mina y recuperar el mineral desecado, y que comprende, al menos (i) unos primeros medios de generación de energía; y (ii) unos segundos medios evaporadores de agua contaminada por AMD y que se caracteriza porque 1. - System for neutralization of acidic mine waters and recovery of metallic cargo of the type that consists of using renewable energy to evaporate acidic water from the mine and recover the dried ore, and which comprises at least (i) first means of power generation; and (ii) second evaporating means of water contaminated by AMD and characterized in that
(a) comprende un evaporador (1) continente del agua contaminada por AMD (2) hasta llevarla a su punto de ebullición, para lo cual se emplea un calentador (3) por cuyo interior pasa un fluido térmico a elevada temperatura proviniendo dicho fluido de los primeros medios de generación de energía (18,19,20,21); y una pluralidad de eyectores o bombas de vacío configuradas para bajar el punto de ebullición del agua ácida mediante la generación de vacío en el interior del evaporador (1) ;  (a) comprises an evaporator (1) continent of the water contaminated by AMD (2) until it is brought to its boiling point, for which a heater (3) is used, through which a thermal fluid flows at a high temperature, said fluid coming from the first means of power generation (18,19,20,21); and a plurality of ejectors or vacuum pumps configured to lower the boiling point of acidic water by generating vacuum inside the evaporator (1);
(b) y donde una vez que el agua contaminada por AMD se hace vapor, todos los materiales contaminantes que estaban disueltos en ella precipitan al fondo (4) del evaporador (1) , siendo movidos por un agitador (5) ; y porque cuando el nivel del material depositado alcance una altura prefijada por la propia operación de la planta, en el fondo del evaporador (1) se desliza una compuerta de corredera accionada por un motor (6), la cual permite el vaciado del evaporador (1) con una válvula de llenado (7) cerrada;  (b) and where once the water contaminated by AMD becomes steam, all the polluting materials that were dissolved in it precipitate to the bottom (4) of the evaporator (1), being moved by an agitator (5); and because when the level of the deposited material reaches a height predetermined by the plant's own operation, at the bottom of the evaporator (1) a sliding gate operated by a motor (6) slides, which allows the emptying of the evaporator ( 1) with a filling valve (7) closed;
y donde una vez vaciado el evaporador (1), la compuerta (6) se cierra, se abre la válvula (7) y comienza un nuevo ciclo llenado-evaporación-vaciado .  and where once the evaporator (1) has been emptied, the gate (6) is closed, the valve (7) is opened and a new filling-evaporation-emptying cycle begins.
2. - Sistema de acuerdo con la reivindicación 1 que se caracteriza porque la base del evaporador (1) comprende una mesa de sacudidas accionada por una leva excéntrica, iniciándose el movimiento de sacudidas en el momento de apertura para favorecer la caída del material decantado hacia fuera del evaporador 2. - System according to claim 1 characterized in that the base of the evaporator (1) comprises a shaking table driven by an eccentric cam, the shaking movement being initiated at the time of opening to favor the fall of the decanted material towards out of evaporator
3. - Sistema de acuerdo con las reivindicaciones 1 y 2 que se caracteriza porque comprende una pluralidad de evaporadores (1) donde los procesos de llenado con aguas contaminadas por AMD y vaciado de los materiales disueltos en ellas, se hará de forma sincronizada, con objeto de que no haya tiempos de espera . 3. - System according to claims 1 and 2 characterized in that it comprises a plurality of evaporators (1) where the processes of filling with water contaminated by AMD and emptying of the materials dissolved therein, will be done in a synchronized manner, with so that there are no waiting times.
4. - Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque los contaminantes extraídos de cada uno de los evaporadores van a parar a una cinta transportadora (8) que los recorre todos, y donde ésta va depositando de forma continua el material transportado (9) hasta las cubetas o los contenedores habilitados para ello (10) . 4. - System according to the preceding claims characterized in that the contaminants extracted from each of the evaporators go to a conveyor belt (8) that runs all of them, and where it continuously deposits the transported material ( 9) to the buckets or containers enabled for it (10).
5. - Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque el vapor producido (11) irá, a través de un condensador (12) y ya licuado, a una torre de refrigeración (13) para su enfriamiento, donde esta agua enfriada y limpia irá, en parte a alimentar el condensador (14) y, en parte, a la tubería (15) que alimente el cauce o cauces del entorno.  5. - System according to the preceding claims characterized in that the steam produced (11) will go, through a condenser (12) and already liquefied, to a cooling tower (13) for cooling, where this water is cooled and clean will go, in part to feed the condenser (14) and, in part, to the pipe (15) that feeds the channel or channels of the environment.
6.- Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque el vapor producido (11) irá a una línea de vapor, de la presión adecuada, para toda la instalación (16). 6. System according to the preceding claims characterized in that the steam produced (11) will go to a steam line, of adequate pressure, for the entire installation (16).
7.- Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque el vapor producido (11) irá inyectado (17) en la camisa del evaporador (1), lo cual provocará un precalentamiento de éste. 7. System according to the preceding claims characterized in that the steam produced (11) will be injected (17) into the evaporator jacket (1), which will cause it to preheat.
8.- Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque los posibles "arrastres" no deseados de materia particulada potencialmente transportados por el vapor (11) de agua a la salida de cada evaporador (1)/ son recogidos en un sifón u otro elemento retenedor de partículas antes de su incorporación a los circuitos de vapor (12,16,17) . 8. System according to the preceding claims characterized in that the possible "unwanted" dragging of particulate matter potentially transported by the steam (11) of water at the exit of each evaporator (1) / they are collected in a siphon or other element retaining particles before they are incorporated into the steam circuits (12,16,17).
9. - Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque los primeros medios de generación de energía comprenden un campo de reflectores cilindro parabólicos (18) en número M, al menos uno por cada evaporador (1) . 9. - System according to the preceding claims characterized in that the first means of power generation comprise a field of parabolic trough reflectors (18) in number M, at least one for each evaporator (1).
10. - Sistema de acuerdo con las reivindicaciones anteriores que se caracteriza porque cuando la luz solar decae de un cierto nivel, el fluido térmico ya no alcanza la temperatura adecuada, con lo cual se le impide el paso al reflector cilindro parabólico (19), cerrando las válvulas (29) y se le obliga, abriendo las válvulas (23) , a circular por un calentador eléctrico (30) alimentado por medio de energías renovables . 10. - System according to the preceding claims characterized in that when sunlight falls from a certain level, the thermal fluid no longer reaches the appropriate temperature, thereby preventing the passage to the parabolic trough reflector (19), closing the valves (29) and being forced, opening the valves (23), to circulate through an electric heater (30) powered by renewable energy.
11. - Procedimiento para la neutralización de aguas ácidas de mina y recuperación de carga metálica del tipo que consiste en aprovechar una energía renovable para evaporar el agua ácida procedente de la mina y recuperar el mineral desecado, implementado en el sistema de las reivindicaciones 1 a 10 que se caracteriza porque comprende las etapas de 11. - Procedure for neutralization of acidic mine waters and recovery of metallic cargo of the type that consists of using renewable energy to evaporate acidic water from the mine and recover the dried ore, implemented in the system of claims 1 to 10 characterized in that it comprises the stages of
(i) calentar en un evaporador (1) el agua contaminada por AMD (2) hasta llevarla a su punto de ebullición, para lo cual se emplea un calentador (3) por cuyo interior pasa un fluido térmico procedente de unos medios de generación de energía (18,19,20,21) ;  (i) heating in an evaporator (1) the water contaminated by AMD (2) until it is brought to its boiling point, for which a heater (3) is used, through which a thermal fluid from a means of generating energy (18,19,20,21);
(ii) bajar drásticamente el punto de ebullición del agua ácida (2) realizando vacío en el interior del evaporador (1) ; para ello se pueden utilizar eyectores de vapor o bombas de vacío;  (ii) drastically lower the boiling point of acidic water (2) by vacuuming inside the evaporator (1); for this, steam ejectors or vacuum pumps can be used;
(iii) una vez que el agua contaminada por AMD se hace vapor, todos los materiales contaminantes que estaban disueltos en ella precipitan al fondo (4) del evaporador (1) , agitándose para evitar su apelmazamiento, de tal forma que cuando el nivel del material depositado alcance una altura prefijada por la propia operación de la planta, en el fondo del evaporador (1) se desliza una compuerta de corredera accionada por un motor (6), la cual permite el vaciado del evaporador (1); y (iii) once the water contaminated by AMD becomes steam, all the polluting materials that were dissolved in it they precipitate at the bottom (4) of the evaporator (1), stirring to avoid caking, so that when the level of the deposited material reaches a height predetermined by the plant's own operation, at the bottom of the evaporator (1) a sliding gate is driven by a motor (6), which allows the emptying of the evaporator (1); Y
(iv) donde una vez vacio el evaporador, la compuerta (6) se cierra, se abre la válvula ( 7 ) y comienza un nuevo ciclo de llenado-evaporación-vaciado .  (iv) where once the evaporator is empty, the gate (6) closes, the valve (7) opens and a new fill-evaporation-emptying cycle begins.
PCT/ES2011/000173 2010-06-02 2011-06-01 System for the neutralisation of acid mine water and the recovery of the metal load therefrom WO2011151484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030851A ES2372246B1 (en) 2010-06-02 2010-06-02 SYSTEM FOR THE NEUTRALIZATION OF MINE ACID WATER AND RECOVERY OF ITS METAL LOAD.
ESP201030851 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011151484A1 true WO2011151484A1 (en) 2011-12-08

Family

ID=45066212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000173 WO2011151484A1 (en) 2010-06-02 2011-06-01 System for the neutralisation of acid mine water and the recovery of the metal load therefrom

Country Status (2)

Country Link
ES (1) ES2372246B1 (en)
WO (1) WO2011151484A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746229A3 (en) * 2012-12-20 2014-09-03 Solvay SA Method for increasing evaporation rate of an evaporative pond using solar energy
FR3003766A1 (en) * 2013-03-29 2014-10-03 Hevatech DRYING DEVICE FOR THERMAL ENERGY STORAGE
WO2018187276A1 (en) * 2017-04-03 2018-10-11 Ecodyst, Inc. Large scale standalone chillers, all-in-one rotary evaporators and related methods
US10150677B2 (en) 2012-12-20 2018-12-11 Solvay Sa Method for increasing evaporation rate of an evaporative pond
CN109694152A (en) * 2019-02-26 2019-04-30 方世缘 A kind of water treatment facilities and its operating method using neutralisation
USD903727S1 (en) 2018-02-19 2020-12-01 Ecodyst, Inc. Large scale chiller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434026A (en) * 1982-02-10 1984-02-28 Mack Harris Acid concentrating and recovery system
US5645693A (en) * 1991-06-28 1997-07-08 Goede; Gabor Plant for sea water desalinizing using solar energy
ES2105977A1 (en) * 1995-09-27 1997-10-16 Perales Corrales Jesus Improvements to water-desalination plants
GB2341855A (en) * 1998-06-10 2000-03-29 Ali Hussein Liban Combined cycle desalination unit
ES2328885A1 (en) * 2007-10-11 2009-11-18 Juan Jose Garcia Sanchez Evaporating system for waste water and the like using renewable energies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434026A (en) * 1982-02-10 1984-02-28 Mack Harris Acid concentrating and recovery system
US5645693A (en) * 1991-06-28 1997-07-08 Goede; Gabor Plant for sea water desalinizing using solar energy
ES2105977A1 (en) * 1995-09-27 1997-10-16 Perales Corrales Jesus Improvements to water-desalination plants
GB2341855A (en) * 1998-06-10 2000-03-29 Ali Hussein Liban Combined cycle desalination unit
ES2328885A1 (en) * 2007-10-11 2009-11-18 Juan Jose Garcia Sanchez Evaporating system for waste water and the like using renewable energies

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746229A3 (en) * 2012-12-20 2014-09-03 Solvay SA Method for increasing evaporation rate of an evaporative pond using solar energy
US9115003B2 (en) 2012-12-20 2015-08-25 Solvay Sa Method for increasing evaporation rate of an evaporative pond using solar energy
US10150677B2 (en) 2012-12-20 2018-12-11 Solvay Sa Method for increasing evaporation rate of an evaporative pond
FR3003766A1 (en) * 2013-03-29 2014-10-03 Hevatech DRYING DEVICE FOR THERMAL ENERGY STORAGE
WO2018187276A1 (en) * 2017-04-03 2018-10-11 Ecodyst, Inc. Large scale standalone chillers, all-in-one rotary evaporators and related methods
US11400388B2 (en) 2017-04-03 2022-08-02 Ecodyst, Inc. Large scale standalone chillers, all-in-one rotary evaporators and related methods
USD903727S1 (en) 2018-02-19 2020-12-01 Ecodyst, Inc. Large scale chiller
USD977530S1 (en) 2018-02-19 2023-02-07 Ecodyst, Inc. Large scale chiller
CN109694152A (en) * 2019-02-26 2019-04-30 方世缘 A kind of water treatment facilities and its operating method using neutralisation

Also Published As

Publication number Publication date
ES2372246A1 (en) 2012-01-17
ES2372246B1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
Zhang et al. Application of solar energy in water treatment processes: A review
WO2011151484A1 (en) System for the neutralisation of acid mine water and the recovery of the metal load therefrom
EP2939981B1 (en) Seawater desalting apparatus and method using solar energy for continuously supplying heat
Gleick Water and energy
El-Ghonemy Future sustainable water desalination technologies for the Saudi Arabia: a review
CN201678475U (en) Solar seawater desalination device
CN103608522A (en) Method and system for the sustainable cooling of industrial processes
US20170110883A1 (en) Advanced method of generating and producing energy from seawater
CN1533991B (en) Power generating heat supplying clean production system using city sewage and garbage resources
CN101838024B (en) Driven flash-evaporation solar seawater desalination method and device
WO2011004416A1 (en) Thermal desalination plant
WO2009047380A1 (en) Evaporating system for waste water and the like using renewable energies
WO2014076726A1 (en) Global synergy plants for depuration, biomass production and thermoelectric cogeneration (gspdptc)
US10710000B2 (en) Vacuum distillation apparatus
CN1743283B (en) Filter-adsorption-submerged floating wet land sewage treating system and apparatus
CN214654199U (en) Sewage treatment circulation system based on solar pond electricity generation
CN104591447B (en) A kind of solar light-heat power-generation processes sewage device and its method
US10850992B2 (en) Enhanced evaporation system
AU2021374019B2 (en) Facility and method for producing a globally usable energy carrier
CN104030515A (en) Vacuum desalination system and process
BR102017025183A2 (en) POWER GENERATOR SEALER
CN203938555U (en) A kind of vacuum seawater desalination system
CN204509006U (en) A kind of solar light-heat power-generation is disposed of sewage device
Morgan Alternative energy sources
DE2903518A1 (en) Plant for mfr. of hydrogen using solar energy - constructed as an automatically operated station of an artificial island

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789290

Country of ref document: EP

Kind code of ref document: A1