Design of the MIPS Processor

We will study the design of a simple version of MIPS

that can support the following instructions:

I-type instructions LW, SW
R-type instructions, like ADD, SUB

Conditional branch instruction BEQ

J-type branch instruction J

The instruction formats

6-bit |5-bit |5-bit |5-bit |5-bit |b5-bit
LW op rs rt immediate
SW op rs rt immediate
ADD |op rs rt rd 0 func
SUB |op rs rt rd 0 func
BEQ |op rs rt immediate
J op address

ALU control
ALU control (3-bit)

{
Sl

7~ " ALU result
—

32

ALU control input |ALU function
000 AND

001 OR

010 add

110 sub

111 Set less than

How to generate the ALU control input? The control
unit first generates this from the opcode of the

instruction.

A single-cycle MIPS

We consider a simple version of MIPS that uses
Harvard architecture. Harvard
architecture uses separate memory for

instruction and data.

Mem Write

| Read I Instruction I—.

[31-0]
mmmp address — — address
Write Instruction
data Data memory
memory
Mem Read

Instruction memory is read-only — a programmer
cannot write into the instruction memory.
To read from the data memory, set Memory read =1

To write into the data memory, set Memory write =1

Instruction fetching

1L .
Clock =% =

Read Instruclion |y
address [31-0]

Instruction
memory

Each clock cycle fetches the instruction from the
address specified by the PC, and increments PC by 4

at the same time.

Executing R-type instructions

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $s4, St1, St2 - [000000] 01001 | 01010 | 10100 1000000

This is the instruction format for

the R-type instructions.

1 RegWrite

I 32
Read Instruction [25-21] | Read REA] gl ALU
address [31-0] register 1 data 1 Zaro
[[20 - 16] Read >
Instruction register 2 Read 32 e
*
memory 1115-11] | Write data 2
register ALUOp
Write Registers
‘ i data
op rs rt rd shamt func

3 26 25 21 20 16 15 11 10 6 5

Here are the steps in the execution of an
R-type instruction:

¢ Read instruction
¢ Read source registers rs and rt
¢ ALU performs the desired operation

¢ Store result in the destination register rd.

Q. Why should all these be completed in a

single cycle?

Executing Ilw, sw instructions

These are I-type instructions.

lw S$t0, -4(Ssp)

sw Sa0, 16(Ssp)

|

Read Instruction
address [31-0]

Instruction
memory

125 - 21]

I [20 - 18]

I[15-11

RegDst
1[15-0]

1000111 11101 | 01000 1111 1111 1111 1100
31 2625 2120 16 15
101011 11101 | 00100 0000 0000 0001 0000
op rs rt address
RegWrite
l MemWrite MemToReg
zz?sdtem dzfaa? :k I Read
Read Read > Zero data
:?i:mz data 2 Result fugguesp] address
register A v Data
— W?ite Registers ALUOp . w memory
data |
ALUSrc MemRead

v

Try to recognize the steps in the execution of

lw and sw.

Design of the MIPS Processor (contd)

First, revisit the datapath for add, sub, lw, sw.
We will augment it to accommodate the beq

and j instructions.

Execution of branch instructions

beq $at, $zero, L

add $v1, $v0, $zero
add $v1, $vi, $vi
j somewhere

L: add $v1, $v0, $vO

000100 | 00001 00000 0000 0000 0000 0011
op rs rt address

Offset= 3x4=12
The offset must be added to the next PC to

generate the target address for branch.

The modified version of MIPS

We need a second adder, since the ALU
is already doing subtraction for the beq.

Add
PC .
Multiply constant
by 4 to get offset.
| RegWrite
Read Instruction _.I [25 - 21] Read | Read
address [31-0] register 1 data 1
. Read
Instruction
i Read
memory repleier 2 data 2
Write
register
. Registers
Write

The final datapath for single cycle MIPS. Find out which paths

I[15-

RegDst
0]

data

ALUSrc

h

>

Zero

Result

ALUOp

MemWrite

Read
address

Write
address

Write mZ:::
data v

Read
data

MemRead

» PCSrc=1 branches
to PC+4+(offsetx4)

= PCSrc=0 continues
to PC+4.

MemToReg

'W

the signal follow for lw, sw, add and beq instructions

Executing R-type instructions

PC

=

Read Instruction
address [31-0]

Instruction
memory

1[15 - 11]w
I

RegDst
I1[15-0]

data

Add
4
RegWrite
1[25-21 |
P [] Read Read
register 1 data 1
1 [20 - 16]
[] Read
register 2 Read
, data 2
Write
register
Registers
Write 9

_| Sign

MemWrite MemToReg

Read Read
address data

Write
address

Write m:;‘:
data ry

‘O ResS -

MemRead

The ALUop will be determined by the value of the

opcode field and the function field of the instruction

word

Executing LW instruction

h

> Zero
Result

MemWrite MemToReg

I I

h 2

v

ALUOp

Read Read L__slf 1 |
address data

Write
address

Write
data

o xec=

Data
memory

MemRead

Add
PC 4
RegWrite
Read Instruction 1[25 - 21] |
address [31-0] [Read Read
register 1 data 1
| [20 - 16] Read
Instruction register 2 Read jmgm 0
memory data 2
Write M
register :
. Registers
Write i/ 1)
data i
RegDst ALUSrc
1[15-0] _{ Sign

'@

Executing beq instruction

The branch may

or may not be

v
Add
PC 4
RegWrite
Read Instruction 1[25 - 21] I
address [31-0] [® Read Read
register 1 data 1
1[20 - 16] Read
instruction ? ree?ster 2 Read
memory o data 2
Write
register
Registers
Write 9
data
RegDst
1[15-0] Sign

- X = O

ALUSrc

¥

> Zero
Result

ALUOp

MemWrite

Read Read
address data

Write
address

Write mg;t:
data b

MemRead

taken, depending
on the ALU’s Zero
output

MemToReg

o xS -

Control signal table

This table summarizes what control signals are

needed to execute an instruction. The set of

control signals vary from one instruction to

another.

Operation | RegDst | RegWrite | ALUSrc | ALUOp | MemWrite | MemRead | MemToReg
add 1 1 0 010 0 0 0
sub 1 1 0 110 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 001 0 0 0
slt 1 1 0 111 0 0 0
lw 0 1 1 010 0 1 1
SW X 0 1 010 1 0 X
beq X 0 0 110 0 0 X

How to implement the control unit? Recall

how to convert a truth table into a logical

circuit! The control unit implements the

above truth table.

The Control Unit

—PALUsrc
I [31-26, 15-0]
MemRead Control
>
—p MemWrite
» ALUop
Instruction
Memory
> RegDst

p-Regwrite

All control signals are not shown here

1-cycle implementation is not used

Why? Because the length of the clock cycle will
always be determined by the slowest operation

(lw, sw) even if the data memory is not used.

Practical implementations use multiple cycles
per instruction, which fixes some shortcomings

of the 1-cycle implementation.

e Faster instructions (R-type) are not held back by
the slower instructions (Iw, sw)
e The clock cycle time can be decreased, i.e.

faster clock can be used

e Eventually simplifies the implementation of

pipelining, the universal speed-up technique.

This requires some changes in the datapath

Multi-cycle implementation of MIPS

First, revisit the 1-cycle version

We need a second adder, since the ALU
is already doing subtraction for the beq.

PC

s

Read Instruction
address [31-0]

Instruction
memory

Add
4 Multiply constant to PC+4.
by 4 to get offset. |
RegWrite
| MemWrite
1[25-21] Read Read N I
register 1 data 1 | ALu »| Read Read
1120 - 16] Read > Zero address data
register 2 d*;e:g RESUIt feugpump| Write
Write address
register . o Write Data
Witte Registers ALUOp data memory
data |
MemRead

RegDst

1[15-0]

ALUSrc

» PCSrc=1 branches
to PC+4+(offsetx4)
» PCSrc=0 continues

MemToReg

"lextend

PCWrite

The multi-cycle version

}

PC

lorD MemRead
[

/ RegDst RegWrite
pe| Address |

0 A

M »| Read Read

u Memory register 1 data 1

. » Read

! Write Mem 0 register 2 dl:teaag 0

] data Data M Write P 1 o
[u register) ALUOp
MemWrite X Write '

1 I—b data Registers 3

ALUSrcB

- xXxcg O

MemToReg

Note that we have eliminated two adders, and
used only one memory unit (so it is Princeton
architecture) that contains both instructions
and data. It is not essential to have a single
memory unit, but it shows an alternative

design of the datapath.

Intermediate reqgisters are necessary

In each cycle, a fraction of the instruction is

executed
PCWrite
A J
PC ALUSrcA
lorD (]\
| 0
RegDst RegWrite M
MemRead | u
0 | X i
»| Read Read
M o : A > ALU
s >
u t=p{ Address register 1 data 1 \1/ > Zero
X
. »{ Read
1 Memory IRinrite 0 register 2 Read B) e
I , data 2 [=L_=>1 0 ||
Write Mem [31-26] M e 4 » 1 PCSource
— [25-21] u register » - ALUOp
data Data X . v
(20-16] Write pegisters o 3
I (15-11] | 1 r’ data 9 y
MemWite [15-0] ‘r
Instruction 0 ALUSrcB
register M
u Sign
Memory X extend
data » 1
register \
£
MemToReg

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment

Cycle 2. Reading sources from the register file

Cycle 3 Performing an ALU computation
Cycle 4 Reading or writing (data) memory

Cycle 5 Storing data back to the register file

Why intermediate reqgisters?

Sometimes we need the output of a
functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1
determines the destination of the register write in
stage 5. The ALU result for an address computation
in stage 3 is needed as the memory address for Iw or
sw in stage 4.)

These outputs must be stored in
intermediate registers for future use.
Otherwise they will be lost after the next
clock cycle.

(Instruction read in stage 1 is saved in Instruction
register. Register file outputs from stage 2 are saved
in registers A and B. The ALU output will be stored in
a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS

(Instruction Fetch)
IR:= Memory[PC]
PC:= PC+4
(Instruction decode and Register fetch)

A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]
ALUout := PC + sign-extend(IR[15:0]]
(Execute|Memory address|Branch completion)
Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= Aop B
Branch: if A=B then PC := ALUout

(Memory access | R-type completion)
LW: MDR:= Memory[ALUout]
SW: Memory[ALUout]:= B
R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

LW: Reg[[20:16]]:= MDR

Instruction execution review

|
d Executing a MIPS instruction can take up to five steps.

Step Name Description
Instruction Fetch |IF Read an instruction from memory.
Instruction ID Read source registers and generate control
Decode signals.
Execute EX Compute an R-type result or a branch outcome.
Memory MEM | Read or write the data memory.
Writeback WB [Store a result in the destination register.

J However, as we saw, not all instructions need all five steps.

Instruction Steps required

beq IF ID EX

R-type IF ID EX WB
SW IF ID EX MEM

Iw IF ID EX MEM WB

We will now study the implementation of a
pipelined version of MIPS. We utilize the five
stages of implementation for this purpose.

Break datapath into 5 stages

0 Each stage has its own functional units.
O Each stage can execute in 2ns
— Just like the multi-cycle implementation

A Py
4 N\ “ A ~ A, "_L‘
RegWrite
Read Instruction | _1[25-21] l MemWrite MemToReg
Read Read |
address [31-0] rocister 1
1120 - 18] % bl —p| Read Read 1
R Read address data
Instruction : Read M
memory register 2 Bitng: Write u
Write address B
register ol Wits 0
Wiite Registers data Memory
data
MemRead
RegDst ALUSre
[[15-0] Sign
extend
2ns ns Ins 2ns

The PC is not shown here, but can easily be added.

Also, the buffer between the stages is not shown

The implementation of pipelining becomes “simpler”
when you use separate instruction memory and data
memory (We will explain it later). So we go back to

our original Harvard architecture.

Pipelined MIPS

Why pipelining? While a typical instruction takes 3-4

cycles (i.e. 3-4 CPI), a pipelined processor targets 1

CPI (and gets close to it).

O Pipelining doesn’t help latency

6 PM 7 8 9 of single load, it helps
| T—b throughput of entire workload
| || ||| Pipeline rate limited by slowest
30 40 40 40 ' 40 20 pipeline stage

O Multiple tasks operating
simultaneously using different
resources

O Potential speedup = Number
pipe stages

0 Unbalanced lengths of pipe
stages reduces speedup

O Time to “fill” pipeline and time
to “drain” it reduces speedup

Pipelining in a laundromat -- Washer takes 30
minutes --Dryer takes 40 minutes -- Folding takes 20
minutes. How does the laundromat example help

with speeding up MIPS?

