
Design of the MIPS Processor

We will study the design of a simple version of MIPS

that can support the following instructions:

• I-type instructions LW, SW

• R-type instructions, like ADD, SUB

• Conditional branch instruction BEQ

• J-type branch instruction J

The instruction formats

 6-bit 5-bit 5-bit 5-bit 5-bit 5-bit

LW op rs rt

SW op rs rt

ADD op rs rt rd 0 func

SUB op rs rt rd 0 func

BEQ op rs rt

J op

immediate

immediate

immediate

address

ALU control

 ALU control (3-bit)

 32

 ALU result

 32

ALU control input ALU function

000 AND

001 OR

010 add

110 sub

111 Set less than

How to generate the ALU control input? The control

unit first generates this from the opcode of the

instruction.

A single-cycle MIPS

We consider a simple version of MIPS that uses

Harvard architecture. Harvard

architecture uses separate memory for

instruction and data.

Instruction memory is read-only – a programmer

cannot write into the instruction memory.

To read from the data memory, set Memory read =1

To write into the data memory, set Memory write =1

Instruction fetching

Each clock cycle fetches the instruction from the

address specified by the PC, and increments PC by 4

at the same time.

Clock

Executing R-type instructions

This is the instruction format for

the R-type instructions.

Here are the steps in the execution of an
R-type instruction:

♦ Read instruction

♦ Read source registers rs and rt

♦ ALU performs the desired operation

♦ Store result in the destination register rd.

Q. Why should all these be completed in a

single cycle?

Executing lw, sw instructions

These are I-type instructions.

 op rs rt address

Try to recognize the steps in the execution of

lw and sw.

Design of the MIPS Processor (contd)

First, revisit the datapath for add, sub, lw, sw.

We will augment it to accommodate the beq

and j instructions.

Execution of branch instructions

add $v1, $v0, $zero

 add $v1, $v1, $v1

 j somewhere

L: add $v1, $v0, $v0

 Offset= 3x4=12

The offset must be added to the next PC to

generate the target address for branch.

beq $at, $zero, L

The modified version of MIPS

The final datapath for single cycle MIPS. Find out which paths

the signal follow for lw, sw, add and beq instructions

Executing R-type instructions

The ALUop will be determined by the value of the

opcode field and the function field of the instruction

word

Executing LW instruction

Executing beq instruction
 The branch may

Control signal table

This table summarizes what control signals are

needed to execute an instruction. The set of

control signals vary from one instruction to

another.

How to implement the control unit? Recall

how to convert a truth table into a logical

circuit! The control unit implements the

above truth table.

The Control Unit

 ALUsrc

 I [31-26, 15-0]

MemRead

 MemWrite

 ALUop

 RegDst

 Regwrite

All control signals are not shown here

Control

Instruction
Memory

1-cycle implementation is not used

Why? Because the length of the clock cycle will

always be determined by the slowest operation

(lw, sw) even if the data memory is not used.

Practical implementations use multiple cycles

per instruction, which fixes some shortcomings

of the 1-cycle implementation.

• Faster instructions (R-type) are not held back by

the slower instructions (lw, sw)

• The clock cycle time can be decreased, i.e.

faster clock can be used

• Eventually simplifies the implementation of

pipelining, the universal speed-up technique.

This requires some changes in the datapath

Multi-cycle implementation of MIPS

First,	
 revisit	
 the	
 1-­cycle	
 version	
 	

The multi-cycle version

Note that we have eliminated two adders, and

used only one memory unit (so it is Princeton

architecture) that contains both instructions

and data. It is not essential to have a single

memory unit, but it shows an alternative

design of the datapath.

Intermediate registers are necessary

In each cycle, a fraction of the instruction is

executed

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment

Cycle 2. Reading sources from the register file

Cycle 3 Performing an ALU computation

Cycle 4 Reading or writing (data) memory

Cycle 5 Storing data back to the register file

Why intermediate registers?

Sometimes we need the output of a

functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1

determines the destination of the register write in

stage 5. The ALU result for an address computation

in stage 3 is needed as the memory address for lw or

sw in stage 4.)

These outputs must be stored in

intermediate registers for future use.

Otherwise they will be lost after the next

clock cycle.

(Instruction read in stage 1 is saved in Instruction

register. Register file outputs from stage 2 are saved

in registers A and B. The ALU output will be stored in

a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS
 (Instruction Fetch)

IR:= Memory[PC]

 PC:= PC+4

(Instruction decode and Register fetch)

 A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]

 ALUout := PC + sign-extend(IR[15:0]]

(Execute|Memory address|Branch completion)

Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= A op B

Branch: if A=B then PC := ALUout

(Memory access | R-type completion)

 LW: MDR:= Memory[ALUout]

 SW: Memory[ALUout]:= B

 R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

 LW: Reg[[20:16]]:= MDR

We will now study the implementation of a
pipelined version of MIPS. We utilize the five
stages of implementation for this purpose.

The PC is not shown here, but can easily be added.

Also, the buffer between the stages is not shown

The implementation of pipelining becomes “simpler”

when you use separate instruction memory and data

memory (We will explain it later). So we go back to

our original Harvard architecture.

Pipelined MIPS
Why pipelining? While a typical instruction takes 3-4

cycles (i.e. 3-4 CPI), a pipelined processor targets 1

CPI (and gets close to it).

Pipelining in a laundromat -- Washer takes 30

minutes --Dryer takes 40 minutes -- Folding takes 20

minutes. How does the laundromat example help

with speeding up MIPS?

