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PREFACE 

Our purpose in writing this book was two-fold. First, we wanted 

to compile a chronology of the research in the field of mixed-mode 

simulation over the last ten to fifteen years. A substantial amount of 

work was done during this period of time but most of it was published 

in archival form in Masters theses and Ph.D. dissertations. Since the 

interest in mixed-mode simulation is growing, and a thorough review of 

the state-of-the-art in the area was not readily available, we thought it 

appropriate to publish the information in the form of a book. Secondly, 

we wanted to provide enough information to the reader so that a proto­

type mixed-mode simulator could be developed using the algorithms in 

this book. The SPLICE family of programs is based on the algorithms 

and techniques described in this book and so it can also serve as docu­

mentation for these programs. 
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CHAPTER 1 

INTRODUCTION TO MIXED-MODE SIMULATION 

1.1. THE SIMULATION PROBLEM 

Computer simulation is used in a variety of different fields to 

predict the behavior of physical systems whenever it is inappropriate, or 

too expensive, to build the actual system to observe its behavior. In 

electrical engineering, circuit simulation is used routinely in the design 

of integrated circuits (IC) to verify circuit correctness and to obtain 

detailed timing information before an expensive and time-consuming 

fabrication process is performed. In fact, it is one of the most heavily 

used computer-aided design (CAD) tools in terms of CPU-time in the Ie 
design cycle. The popularity of this form of simulation is primarily due 

to its reliability and its ability to provide precise electrical waveform 

information for circuits containing complex devices and all associated 

parasitics. 

Detailed circuit simulation has been used extensively for IC design 

since the early 1970s. However, the ever-increasing number of devices 

on a single silicon chip has led to development of a number of higher­

level simulation tools to cope with the complexity of the problem. 

These tools include behavioral simulators, register-transfer-Ievel (RTL) 

simulators, gate-level logic simulators, and more recently, switch-level 

simulators. These programs have been used to verify circuit functional­

ity and to obtain first-order timing characteristics. Typically, the higher­

level tools provide enough information to design working circuits. How­

ever, there is still a significant time lag between a functioning circuit and 

a circuit which meets the design specifications - particularly in the case 
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of high-performance custom integrated circuits. In fact, circuit simula­

tion is the only tool which provides enough detail to ensure that circuits 

of this type will meet specifications over a wide range of operating con­

ditions. 

At the present time, the most popular circuit simulation tool is the 

SPICE2 program [NAG75]. There are many thousands of copies of this 

program in use, as well as a number of versions of "alphabet-SPICE" 

(e.g., HSPICE, PSPICE, IGSPICE) being marketed commercially. All 

of these programs offer a wide variety of analyses including de analysis, 

time-domain transient analysis, ac analysis, noise analysis and distortion 

analysis. Of these, the time-domain transient analysis is the most com­

putationally expensive in terms of CPU-time. The SPICE program was 

originally designed to simulate circuits containing up to 100 transistors. 

However, at certain companies, this program is often used to simulate 

circuits containing over 10,000 transistors at great expense! The pro­

gram is accessed over 50,000 times per month at some of companies 

with a "job mix" that conforms to the 80-20 rule. That is, 80% of the 

SPICE runs are on small circuits which consume only 20% of the total 

CPU-time used each month, while 20% of the jobs are very large and 

consume 80% of the CPU-time used each month. Therefore, the 

development of fast but accurate simulation methods for very large-scale 

integrated (VLSI) circuits continues to be an important area of research. 

1.2. LEVELS OF SIMULATION 

1.2.1. Electrical Simulation 

Electrical or circuit level simulation provides the greatest amount of 

detail. The electrical transient analysis problem in SPICE involves the 

solution of a system of nonlinear, first-order, ordinary differential equa­

tions. These equations model the dynamic characteristics of the circuit 
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for a set of applied input voltages, given a set of initial conditions. The 

solutions are voltage wavefonns at circuit nodes and current wavefonns 

through circuit elements. Usually the designer is interested in only a 

subset of the entire set of solutions. 

Standard circuit simulators use direct methods to solve the circuit 

equations. Briefly, direct methods employ some fonn of numerical 

integration to convert the nonlinear differential equations into a set of 

nonlinear difference equations. These equations are solved simultane­

ously using the iterative Newton-Raphson method. This involves a 

conversion of these equations to linear equations and their subsequent 

solution using a sparse LU decomposition technique [NAG75]. There 

are two limitations in this approach that make it inappropriate for large 

circuits. One fundamental problem is that the sparse linear solution 

dominates the run time for large circuits [NEW83]. The second limita­

tion is that, at each time point, all variables in the system are solved 

using a common time-step based on the fastest changing component in 

the system. This can be inefficient for both small and large circuits, but 

it is more significant for very large problems where most of the com­

ponents are either changing very slowly or not changing at all. 

A variety of techniques have been investigated to improve the per­

fonnance of circuit simulators. Early work in this area included timing 

simulation [CHA75, NEW78B, DEM80], which is a simplified fonn of 

relaxation-based circuit simulation, and tearing methods, which have 

been applied to both linear [SAN77, Y AN80, SAK81] and nonlinear 

[RAB79] equation levels. More recently, the relaxation-based 

approaches have been the focus of intensive research. In particular, the 

Wavefonn Relaxation method [LEL82, WHI83] has been implemented 

in a number of programs including RELAX [LEL82, WHI83], SWAN 

[DUM86], TOGGLE [HSI85], RealAx [MAR85], MOSART [CAR84] 
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and iDS 1M [OVE89]; and Iterated Timing Analysis [KLE83, SAL84], 

based on nonlinear relaxation, has been implemented in SPLICE 

[SAL83, KLE84, ACU89], ELDO [HEN85] and SISYPHUS [GR087]. 

1.2.2. Gate-Level Simulation 

When the complexity of an integrated circuit design reaches the 

point at which electrical analysis is no longer cost effective, logic or 

gate-level simulation is used. In logic simulation, transistors are usually 

grouped into logic gates and modeled at the gate level. This form of 

simplification, sometimes referred to as macromodeling, can result in 

greatly enhanced execution speed by reducing the number of models to 

be processed and simplifying the arithmetic operations required to pro­

cess each transistor group. Rather than dealing with voltages and 

currents at signal nodes, discrete logic states are defined, and simple 

Boolean operations are used to determine the new logic value at each 

node. Boolean operations are generally the most efficient operations 

available on a digital computer. 

A logic simulator that uses event-driven, selective-trace techniques 

is typically 100 to 1000 times faster than the most efficient forms of 

electrical analysis. It can also provide first-order timing information, 

including the detection of hazards, glitches, and race conditions. In 

addition, it can output information regarding any illegal states or conflict 

conditions that may arise at any node in the circuit. The number of 

logic states used in a simulation, their meaning, the logic delay models 

and the scheduling algorithm all have a profound impact on both the 

speed and accuracy of the results. It is this wide variety of factors that 

has resulted in the development of such a large number of logic simula­

tors - almost every one addressing a different set of tradeoffs. 
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1.2.3. Switch-Level Simulation 

Recently, switch-level simulation [BRY80] has become the pre­

ferred form of logic simulation for MOS digital circuits. In this 

approach, the circuit is entirely simulated at the transistor level, rather 

than at the gate level. The transistors are modeled as gate-controlled 

switches and operate as follows: if the transistor is "ON," it is viewed as 

a closed switch and it may transfer a signal value from one node to 

another; if the transistor is "OFF," it is viewed as an open switch and is 

incapable of transmitting any signals through it. The network is com­

posed of a set of nodes connected by these switches, and the logic value 

at each node is determined using this idealized transistor model. Usually 

a strength is associated with each transistor switch when in the closed 

position to model the conductance of the device. This strength is used 

to determine the effective conductance of signal paths from any node to 

the supply and ground nodes. The capacitance at each node can also be 

modeled using a node strength that is proportional to the size of the 

capacitance. Many of the important features of MOS circuits, such as 

charge-sharing and bidirectionality, can be modeled using this switch­

level model, although detailed timing information is not usually pro­

vided. 

A number of researchers have attempted to incorporate timing 

information at the switch level at the cost of additional CPU-time. 

Simulators that fall into this category are MOTIS [CHA 75], RSIM 

[TER83], ELOGIC [KIM84] , SPECS [DEG84], MOSTIM [RA085] , 

CINNAMON [VID86], SPECS2 [VIS86] and iDSIM [OVE88]. Pro­

grams such as RSIM treat MOS transistors as linear resistors and com­

pute signal transition times using the Penfield-Rubenstein technique 

[PEN81], which is an RC-delay modeling technique. Although the 

method is extremely efficient, the overall accuracy of this approach is 
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limited due to the simplified nature of the delay model. MOSTIM and 

iDSIM determine the delay directly using lookup tables for delays that 

are generated during a pre-characterization phase for recognizable 

transistor configurations. These tables account for factors such as device 

sizes, loading and input slew-rate. The ELOGIC and SPECS programs 

compute the delays by using electrically-based table lookup device 

models. The waveforms are generated as piecewise linear segments 

using the computed delays. Both approaches provide for variable preci­

sion by allowing the user to specify the number of voltage or current 

levels to be used in the simulation. 

1.2.4. Register-Transfer Level Simulation 

Register-Transfer Level (RTL) [BRE75] simulation is concerned 

with circuits described at a higher level of abstraction. Combinational 

components, (such as gates, multiplexers, decoders, encoders, adders, 

and arithmetic units) and sequential components (such as registers and 

counters) may be used in RTL simulators. RTL simulation has been 

used extensively for data path design. It is used for both the description 

and simulation of the designs when evaluating alternative architectures. 

The set of statements describing the circuit operation involves a 

sequence of register transfers and arithmetic operations that are similar to 

data-flow descriptions. In the description, related bits of information are 

usually grouped into ordered sets of words or buses for convenience and 

to establish logical relationships. Although RTL simulators are widely 

used to design computers, they do not usually provide information 

regarding races, hazards, illegal states or critical timing constraints. 

1.2.5. Behavioral Level Simulation 

Behavioral level simulators [HIL80, INF84, INS 84] allow the 

designer to define arbitrary functional blocks, both combinational and 
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sequential, that can be used in system-level simulation. Two types of 

blocks may be defined: structural and behavioral. Structural blocks 

describe how a number of functional blocks are interconnected. A 

behavioral block contains a detailed description of the operations to be 

performed on the inputs to produce the outputs of the block. The state­

ments describing the operations are usually written in a high-level 

language, typically a hardware description language (HDL), and then 

translated to a standard programming language format and compiled into 

the simulator. When the simulator is executed, the operations of the sys­

tem are emulated. Examples of applications that are appropriate for 

simulation at the behavioral level are: verifying of the system timing in a 

CPU; checking a proposed network protocol for a local-area network; 

and validating the operations in DMA controller sequence. 

1.3. MIXED-MODE SIMULATION 

The various levels of simulation, described in the previous section, 

are listed in Table 1.1 from the highest level of abstraction to the lowest 

level. The relative runtime cost and accuracy of each simulation level is 

provided for the hypothetical simulation of a 32-bit microprocessor. The 

reader should notice that the progression from behavioral level to electri­

cal level provides an increase in the accuracy of the simulation at the 

cost of more CPU-time. A progression in the opposite direction usually 

allows larger and larger circuits to be simulated for a given amount of 

CPU-time, or requires less and less CPU-time to simulate a given circuit. 

However, each level uses less precision in signal representation. This 

often translates to less accuracy in the results due to modeling limita­

tions. 

There are many situations in which only one level of simulation is 

not sufficient for the simulation of an entire design. One common 
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Level Relative Capability and Accuracy 
Cost 

Behavioral (B) 1 Algorithmic verification, 
some timing information 

RTL (R) 10 Functional verification, 
some timing information 

Gate (G) 100 Functional verification, 
first-order timing information 

Switch (S) 1000 Functional verification, 
first-order timing information 

Timing (T) 10000 Detailed waveform information 
with variable accuracy 

Electrical (E) 1000000 Most accurate form of simulation 

Table 1.1: Relative Cost and Accuracy of Simulation 
for a Given Example 

situation arises in the design of a mixed analog and digital circuit. Logic 

simulators do not generally have the capability to model analog circuitry, 

and it is usually too expensive to simulate the entire design in a circuit 

simulator. A simple example of this is shown in Fig. 1.1 where a clock 

generator is represented using resistors, capacitors and logic gates. In 

this case, it would be convenient if a simulator that included both electri­

cal and logic simulation capabilities were available. 

Another situation that requires the use of multiple levels of abstrac­

tion is to describe designs developed in a "top-down" or "bottom-up" 

design environment. In both cases, the entire design at any given point 

in time may be represented at a number of different levels of abstraction. 

One designer may have the behavioral specification of his!her portion of 

the design, while a second is completing the detailed gate-level design. 
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Vx 

Figure 1.1: A Clock Generator Circuit 
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and a third is perfonning transistor-level cell library development. Furth­

ermore, a designer often uses multiple levels of abstraction in a 

schematic diagram to convey the important aspects of the design as 

shown in Fig. 1.2. To ensure that the designs represented schematically 

at many levels is functionally correct at any stage of the design process, 

a simulator that handles all possible levels of abstraction would be use­

ful. 

Mixed-level simulation can also be used for the purpose of accurate 

circuit modeling. For example, standard gate-level simulators are not 

capable of simulating the behavior of certain properties of MOS digital 

circuits such as bidirectionality and charge-sharing. Therefore, the mix­

ing of switch-level simulation and gate-level simulation would provide 

an effective balance between simulation speed and functional accuracy. 

On the other hand, the idealized transistor model in switch-level simula­

tion is not appropriate for the simulation of certain pass transistor 

configurations, and other circuits where the device W/L ratios are impor­

tant. For these cases, mixing electrical-level, switch-level and gate-level 

simulations would be useful. 

All of the situations cited above require a simulator that allows 

different portions of the circuit to be described and simulated at different 

levels of abstraction. That is, where accuracy is not a critical issue, 

higher levels of simulation can be used, but where proper modeling of 

the circuit is a problem or detailed timing information is desired, the 

lower levels of simulation can be used. CAD tools that address this 

need are referred to as mixed-mode simulators or multi-level simulators, 

or sometimes mixed-level simulators. This book describes the key issues 

in mixed-mode simulation and presents enough detail to allow the reader 

to implement a prototype mixed-mode simulator. 
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1.3.1. Basic Issues in Mixed-Mode Simulation 

In designing a mixed-mode simulator, a number of issues must be 

addressed. These issues are as follows: 

Choice of Simulation Levels: First, and foremost, is the issue of 

which forms of simulation to include in the simulator. This depends on 

the intended application of the simulator. If the design is primarily digi­

tal in nature, the combination of gate, RTL and behavioral simulations 

would be appropriate. For MOS designs, it may be better to incorporate 

gate and switch-level simulations. For designs containing both MOS 

and bipolar transistors, it may be necessary to mix gate level and electri­

cal level simulations. Ideally, one would prefer to combine all the levels 

of simulation into one program, but the development time would be 

significant. 

Simulator Architecture: A mixed-mode simulator must be flexible 

and extensible so that algorithms and device models can be added or 

removed easily as the technology and the simulator requirements evolve. 

An appropriate choice of simulator architecture is necessary to achieve 

this goal. The architecture described in this book is based on the use of 

the event-driven, selective-trace paradigm at all levels of abstraction. 

This permits the exclusive simulation of activity, and it is a necessary 

feature when simulating large digital systems. It is also consistent with 

the algorithms commonly used in most simulators, except for standard 

electrical simulators, which must be modified to fit within the event­

driven framework. 

Event Definition and Event Scheduling: To establish event-driven, 

selective-trace simulation, the notion of an event must be defined at each 
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Figure 1.2: A Portion of a Control Circuit 

level in the simulator. An event is a change in state of some node in the 

circuit that may affect other components in the circuit. The effect of an 

event is to cause all fanout components to be processed, and possibly 

new events to be scheduled, if changes in their output nodes occur. The 

key issue in mixed-mode simulation is to define a scheduling policy for 
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events that occur between different modes of simulation. 

Signal Representation and Signal Mapping: A consistent representa­

tion for signals over all simulation levels is critical for accurate mixed­

mode simulation. In the higher levels of simulation, the signal value is 

usually represented using hexadecimal values for collections of bits or 

logic values such as 0, 1 and X for single bits. At the other extreme, 

electrical simulation uses 64-bit double precision words to represent real 

values of voltage. A mixed-mode simulator must be able to manage 

these different signal types and map them from one representation to 

another without a significant loss in accuracy. 

Representation of Time: Time is usually represented as real numbers 

in electrical simulation and as integers in logic and higher level simula­

tions. Typically the time steps chosen in electrical simulation are very 

small (order of nanoseconds to picoseconds), whereas in the logic level 

and higher levels of simulation, it is usually an integer multiple of some 

basic unit of time (order of nanoseconds). This disparity between the 

various representations of time must also be resolved in the mixed-mode 

environment. 

Partitioning: Circuit partitioning is a key factor in obtaining efficiency 

and accuracy from mixed-mode simulation. The main question is to 

determine which portions of the circuit must be simulated at the most 

detailed level and which portions will profit from simulation at higher 

levels of abstraction without any noticeable loss of accuracy. The pros­

pects of performing this task automatically seem formidable and this is 

still an "open" research area. To date, most of the simulators available 

require that circuit designers be responsible for the partitioning process, 
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since they are familiar with the nature of the design. 

User Interface: Another important consideration when designing a 

mixed-mode simulator is the user interface to the simulator. The inter­

face must be graphics-oriented, highly interactive, and provide the 

features of schematic capture, simulation control and output post­

processing. While a variety of schematic packages with these features 

do exist commercially, there are a number of additional requirements in 

mixed-mode simulation. First, the front-end must allow a hierarchical 

representation of the circuit in which each successive level of the hierar­

chy implies a different level of abstraction. That is, each level in the 

hierarchy represents a different form of simulation in the associated 

mixed-mode simulator. This implies that all of the components 

representing the circuit at two or more different levels must have the 

same functional behavior to guarantee correct results. Therefore, some 

convenient way of verifying the consistency of different representations 

of the same circuitry must be provided by the user interface. The capa­

bility of adding new components, specifically, macromodels or high-level 

RTL and behavioral models, should also be made simple. 

1.3.2. A Survey of Existing Simulators 

Mixed-mode simulation has been gaining in popularity over the last 

few years; as a result, a large number of mixed-mode simulators have 

been developed. The mixed-mode simulation techniques used in the pro­

grams can be broadly classified into three groups: 

1) Manual approach (M): In this approach, a logic simulator is used 

to simulate the digital portion of the circuit. The results are used as 

inputs to an electrical simulator to simulate the analog portion. This pro­

cess is both tedious and unreliable, especially if feedback paths exist 
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between the analog and digital portions of the design. 

2) "Glued" approach (G): In this case, two or more existing simula­

tors are combined using either a procedural interface, if the programs are 

executed in the same address space, or an interprocess communication 

mechanism, if the programs are running in different address spaces. 

This is an effective solution for companies that have already invested 

large amounts of time and money maintaining separate simulators and 

are not willing to abandon them in favor of the development and support 

of a completely new simulator. In addition, the input languages for the 

simulators do not have to be modified and, therefore, have minimal 

impact on the designer. However, this simple solution also has a 

number of inherent limitations in terms of efficiency. The processing of 

bidirectional elements connected across the mixed-mode interface 

presents a problem, and the time advancement, backup and synchroniza­

tion of the various simulators that are running concurrently must be 

addressed. The process of combining a number of different simulators 

together in this way presents some very difficult implementation and sig­

nal mapping problems. 

3) Fully integrated approach (I): This is the most flexible and most 

efficient approach of the three mentioned here. In this case, the various 

simulation algorithms are tightly-coupled and conform to a set of poli­

cies defined within the simulator for time-advancement and backup, sig­

nal mapping, etc. The algorithms are usually tailored for the mixed­

mode environment and can handle bidirectional elements in a consistent 

manner. In addition, designers make use of a uniform interface to the 

simulator. The drawbacks of this approach are the long development 

time for this new program and the support and maintenance associated 
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with it. 

Table 1.2 contains a partial list of mixed-mode simulators that have 

been reported in the literature. Note that they vary widely in the simula­

tion modes that are supported. Although a detailed summary of the 

algorithms and techniques is not provided here, the reader is encouraged 

to consult the references for each program name to obtain further details. 

The mixed-mode simulators that combine process, device, and circuit 

level simulations have not been included in the table as they are beyond 

the scope of this book. 

1.4. OUTLINE OF THE BOOK 

This book focuses on the implementation of fully-integrated 

mixed-mode simulation and describes event-driven, relaxation-based 

techniques used in the SPLICE family of programs. While the issues of 

combining gate, RTL and behavioral levels of simulation are important, 

they often reduce to simple implementation issues. This book addresses 

the problem of mixing electrical simulation with gate-level simulation. 

Since electrical simulation is continuous in nature whereas gate-level 

simulation is discrete in nature, this particular problem presents a much 

more interesting challenge. 

In Chapter 2, the electrical simulation problem is formulated, and 

the standard numerical techniques used to solve the problem are 

presented. Next, the issues associated with the implementation of an 

efficient time-step control scheme are described. This includes a 

description of the constraints imposed on the step size by the numerical 

methods; this is followed by two common time-step control schemes 

used in circuit simulation programs. In Chapter 3, two properties of 

waveforms, called latency and multirate behavior, are defined and used 

to motivate the need for new simulation methods. Then, the relaxation 
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PROGRAM Type B R G S T E 
ADLIB-SABLE[HIL80] I X X 

ANDI(Silvar-Lisco) I X X X 
DIANA[DEM81A] I X X X 
DECSIM/SPICE[GRE88] G X X X X 
FIDELDO[T AH87] G X X 
LSIM/HSPICE G X X X X X X 
(Silicon Compiler) 
MOTIS3[CHE84B] I X X X 

PSPICE(MicroSim) I X X X 
SALT(CAD Group) I X X 
SAMSON[SAK81 ] I X X 
SAMSON2[BEA86] I X X 
SABERICADAT G X X X 
(Analogy/HHB) 
SISYPHUS [GR087] I X X X X 
SPLICE[NEW78B] I X X X 
SPLICE 1 [SAL83] I X X X 
SPLICE2[KLE84 ] I X X X X 

SW AN[DUM86] I X X X 

VIEWSIM/ AD[COR88] G X X 
iSPLICE3[ACU89] I X X X 
iDSIM[OVE88] I X X 

Table 1.2: Survey of Mixed-Mode Simulators and Their Capabilities 

methods are introduced and their convergence properties are described. 

First, the linear Gauss-Jacobi (GJ) and Gauss-Seidel (GS) methods are 

reviewed. Then, the nonlinear relaxation and waveform relaxation 

methods are described. The requirement for partitioning to improve the 

convergence speed of relaxation methods is presented at the end of the 

chapter. 
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In Chapter 4, a number of algorithms based on nonlinear relaxation 

methods are described. A technique which combines nonlinear relaxa­

tion [ORT70] with event-driven, selective-trace [SZY75] to exploit 

waveform latency is presented. This approach is referred to as Iterated 

Timing Analysis or ITA [SAL83]. Its name is derived from the original 

work on "timing" simulation pioneered in the MOTIS program 

[CRA 75]. The details of the implementation of ITA are provided. 

Gate simulation is addressed in Chapter 5 and switch-level simula­

tion is described in Chapter 6. Chapter 5 begins with a description of 

the evolution of logic state models and delay modeling. The Elogie 

technique for switch-level timing simulation and modeling is presented 

in Chapter 6. To conclude this chapter, the use of the Elogic modeling 

approach to resolve the signal mapping problems at the interface 

between electrical and logic elements is described. 

In Chapter 7, the implementation details of the SPLICE mixed­

mode simulator are presented. First, the implementation of event 

schedulers and event-driven, selective-trace techniques is detailed. Then, 

the overall architectural issues are described; this is followed by a sum­

mary of the transient analysis techniques used and event scheduling poli­

cies enforced between the different levels of simulation. Techniques for 

the dc solution of mixed-mode circuits are outlined, and mixed-mode 

simulation examples are provided to close out the chapter. 

A summary, a number of directions for future work, and final con­

clusions are provided in Chapter 8. 



CHAPTER 2 

ELECTRICAL SIMULA nON TECHNIQUES 

The features of circuit or electrical simulation are extremely impor­

tant in mixed-mode simulation as they determine the overall speedup and 

efficiency of the simulator. This chapter describes the basic theory and 

foundations for the electrical simulation techniques. First the circuit 

equations are formulated in Section 2.1 and the standard techniques are 

described in Section 2.2. The issues pertaining to time step selection 

and simulation accuracy are also addressed. The limitations of these 

techniques for large problems are identified and alternative approaches 

are described in the next chapter. 

2.1. EQUATION FORMULATION 

General-purpose circuit simulation programs such as ASTAP 

[WEE73], SPICE2 [NAG75] and SLATE [YAN80] provide a variety of 

analysis types including dc analysis, time-domain transient analysis, ac 

analysis, noise analysis and distortion analysis. By far the most CPU­

intensive of these analyses is the time-domain transient analysis. The 

transient analysis problem involves computing the solution of a system 

of coupled nonlinear differential-algebraic equations over some interval 

of time, [O,T]. The most general form for the equations describing the 

circuit behavior is 

F(x(t), x(t), u(t) ) = 0 x(O)=X (2.1) 

where, x(t) E ]RD is the vector of unknowns, and may be a mixture of 

node voltages, branch currents, capacitive charges or inductive fluxes, 

u(t) E ]Rr is a vector of independent sources, F: ]RDx]RDx]Rr ~ ]RD, 

and the initial conditions, x(O), are specified by the vector X. 
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Equations of this fonn arise as a result of the properties of general 

electronic circuits. For example, the current through a capacitor is a 

function of the time derivative of the voltage across the capacitor; there­

fore, Eq. (2.1) is dependent on x(t). Since many devices have nonlinear 

relationships between their currents and voltages, F is also usually non­

linear. And finally, as a circuit is constructed from a collection of 

sparsely connected elements, F is a sparse function of the components of 

x. These circuit properties all have some impact on the numerical tech­

niques used to solve the transient simulation problem and the resulting 

efficiency with which the solution is obtained. 

There are a number of different ways to fonnulate the circuit equa­

tions described by Eq. (2.1). The most popular of these are Nodal 

Analysis (NA) [DES69], Modified Nodal Analysis (MNA) [H075] and 

Sparse Tableau Analysis (STA) [HAC71]. These fonnulations are all 

based on the application of Kirchoff's Current Law (KCL) , Kirchoff's 

Voltage Law (KVL) and the branch constitutive equations [DES69]. 

Nodal Analysis is the simplest of the three approaches. It uses KCL, 

which requires that the sum of the currents entering each node equals the 

sum of the currents leaving each node. In a circuit containing n+ 1 

nodes, if KCL is written for every node in the circuit, a system of n 

equations is obtained assuming that one node is defined as a reference 

node. The currents in each equation can be replaced with the branch 

constitutive relations which are functions of the branch voltages (by 

assumption in NA), and KVL can be used to replace the branch voltages 

by node voltages. KVL requires that the sum of the voltages around any 

loop in a circuit be identically zero. The n node voltages are the unk­

nown variables in this fonnulation. Note that it must be possible to 

represent the element and input source currents in tenns of their tenninal 

voltages in order apply Nodal Analysis. This requirement excludes 
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current-controlled devices, floating voltage sources! and inductors and, 

therefore, limits the scope of the NA technique. However, inductors and 

floating voltage sources can be included in NA by simply reorganizing 

their branch equations as described in [MCC88, WHI85C]. Since the 

other current-controlled devices are not frequently used in the simulation 

of integrated circuits, NA is an adequate fonnulation technique for most 

practical circuits. 

The fonnulation used throughout the rest of this book is Nodal 

Analysis. The NA equations are formulated as follows: First, KCL is 

applied at each node in a circuit with n nodes and b branches to produce 

a matrix equation of the fonn: 

Ai = 0 (2.2) 

where A E JRnxb is the reduced incidence matrix with entries of either 

+ 1, -lor 0 and i E JR b is the vector of branch currents in the circuit. 

Element 3ik of A is + 1 if a particular branch current, ik , leaves node i, -1 

if it enters node i and 0 if it is not incident at node i. If the set of 

branch currents is divided into the capacitor currents, ico and the currents 

through the resistive elements, ip then Eq. (2.2) can be rewritten as 

(2.3) 

Each of the currents due to the nonlinear resistive elements can be 

replaced by their branch constitutive relations which are all functions of 

the branch voltages by assumption. The branch voltages, Vb' can be 

replaced by the node-to-datum voltages, v, using the relation: 

1 These are voltage sources with neither terminal connected to the ground node. 
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A T -v - vb (2.4) 

which follows from KVL [CHU75]. Then, the right-hand side of (2.3) 

can be written as 

(2.5) 

where fk(v) is the sum of all the currents through the resistive elements 

connected to node k as a function of the node voltages, v. 

The left-hand side of Eq. (2.3) represents the capacitor currents. 

The nonlinear capacitors are often specified in terms of their stored 

charge, q, a function of the voltage across the capacitor, Veo as follows: 

q = q(vJ 

The current flowing through the capacitor can be obtained by taking the 

time derivative of charge, which can then be related to the capacitance 

by applying the chain rule: 

. • dq(vJ dVe • 
leap = q(vJ = = C(ve)ve 

dVe dt 
(2.6) 

Hence, each of the components of ie in Eq. (2.3) can be replaced by 

C(vJve. If Eq. (2.4) is used to replace the branch voltages by node vol­

tages, then Aeie can be transformed into the following: 

C ll (V) 

(2.7) 

An important assumption which is sufficient to guarantee convergence of 
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relaxation-based simulation techniques (to be described shortly) is that a 

two-tenninal capacitor exists between each node and the reference node. 

These are referred to as grounded capacitors. This requirement is easily 

satisfied in real circuits where lumped capacitances are always present 

between circuit nodes and ground in the fonn of interconnect capaci­

tance, and also between the tenninals of active circuit elements and 

ground in the fonn of parasitic capacitances. Each grounded capacitor 

contributes a tenn to the diagonal of the capacitance matrix. Therefore, 

the Cn elements are non-zero for all i. Note that Cij is zero only if a 

capacitor does not exist between nodes i and j in the circuit. 

By combining Eqs. (2.5) and (2.7), one obtains: 

C l1 (v) .. C1n(v) 

(2.8) 

This equation can be written in the compact fonn: 

C(v(t),u(t» vet) = - f(v(t),u(t», t E [O,T] (2.9) 

v(O) = V 

where vet) E R n is the vector of node voltages at time t, vet) E R n is 

the vector of time derivatives of vet), u(t) E R r is the input vector at 

time t, C(x(t),u(t» represents the nodal capacitance matrix, and 

f(v(t),u(t» = [f1(v(t),u(t», ... ,fn(v(t),u(t»]T 

where fk(v(t),u(t» is the sum of the currents charging the capacitors 

connected to node k. 

Equation (2.9) is a set of coupled first-order nonlinear differential 

equations that uses voltage as a state variable. This is commonly 
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referred to as the capacitance formulation of the transient analysis prob­

lem. Alternatively, charge may be used as a state variable rather than 

voltage. The proper choice of voltage or charge as the state variable 

depends on the nature of the capacitors in the circuit. If all capacitances 

are linear, then either voltage or charge may be used as the state vari­

able. However, in circuits with nonlinear capacitors, such as MOS cir­

cuits, charge must be used as the state variable due to considerations of 

charge conservation. That is, in order to keep the total charge in the 

system constant during the simulation process, charge must be used as 

the state variable. Examples of charge conservation problems arising 

from the use of Eq. (2.9) are given in [W AR78, Y AN83, WHI85C]. 

The charge formulation of the circuit equations in normal form is 

given by 

q(t) = i(q(t» 

where qk(V) is the sum of the charges due to the capacitors connected to 

node k and ik(q) is the sum of the currents charging the capacitors at 

node k. This equation can be solved to obtain the node charges as a 

function of time. However, information about charge is of little interest 

to the circuit designer, who would prefer to have information about the 

node voltages from the simulator. Therefore, it is preferable to write the 

charge formulation as 

q(t) = i(q(t» = - f(v(t» 

which is obtained by combining Eq. (2.6) and Eq. (2.9). This assumes 

that q is an invertible function of v. The charge formulation, including 

the input sources, u(t), is given by 

q(v(t),u(t» = - f(v(t),u(t» (2.10) 

Both the formulations given by Eqs. (2.9) and (2.10) will be used 
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throughout this book. 

2.2. STANDARD TECHNIQUES FOR TRANSIENT ANALYSIS 

Equations (2.9) and (2.10) formu1ated above for the transient 

analysis of circuits must be solved using numerical techniques since, in 

general, it is difficult to obtain closed-form solutions. The first step is to 

apply a numerical integration method to discretize the time derivative, 

x(t). An integration method divides the continuous interval of time, 

[0, T], into a set of M discrete time points defined by 

(2.11) 

An algebraic problem is solved at each time point, tn+l' to obtain a 

sequence approximation to the exact solution. The quantity hn is 

referred to as a time step. The selection of proper time-steps for a given 

problem is an imponant issue which is described in detail in Section 2.3. 

An example of a first-order implicit integration method is the backward­

Eu1er (BE) method. To solve x(t)=f(x(t)) using BE. the following 

expression is used: 

(2.12) 

This equation is implicit in that x(tn+1) appears on both sides of the 

equation. 

A numerical integration method converts a set of nonlinear 

differential equations into a set of nonlinear algebraic equations. These 

algebraic equations must be solved using some numerical method at each 

time point. The most commonly used method to solve nonlinear equa­

tions is the Newton-Raphson method [ORT70]. To solve a system of 

nonlinear equations, given by F(x)=O, using the Newton-Raphson 

method, the following iterative equation is used: 
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(2.13) 

where JJ«:x) is the Jacobian matrix and k is the iteration counter for the 

method. Each term in the Jacobian matrix, gij' is given by 

dFj 
gjj =-­

dXj 
(2.14) 

where F j is the ith component of F and Xj is the jth component of x. 

Equation (2.13) is iterated until IIxk+1 - xk II<El and IIF(xk+l~I<E2 

Note that if the problem is linear, then the Newton method produces the 

correct solution in one iteration. 

The Newton method described above converts the set of coupled 

nonlinear algebraic equations into a set of coupled linear equations given 

by Ax = b, where x E JR.", b E JR.", A E JR"X" and A is assumed to be 

nonsingular. The matrix A is relatively sparse, typically having three 

elements per row [NEW83]. There are essentially two approaches to 

solving a sparse linear system. One approach is to use direct methods 

(such as LU decomposition) which attempt to exploit the sparse nature 

of the matrix during the computation. The implementation of these 

methods involves carefully chosing a data structure and the use of spe­

cial pivoting strategies to minimize fillins [KUN86]. A second approach 

to the sparse linear problem is to use relaxation methods. The relaxation 

process involves decoupling the system of equations and solving each 

equation separately. An iterative method is applied between the equa­

tions until convergence is obtained. In effect, the problem of solving 

one large system containing n variables is converted to the problem of 

solving n subsystems each containing one variable. 

The standard approach to circuit simulation is based on direct 

methods and uses the following steps: 
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1. MNA is used to fonnu1ate the system of differential­

algebraic equations for the circuit. 
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2. Implicit integration methods are applied to convert the 

differential equations into a sequence of algebraic equations, 

which are nonlinear in general. 

3. A damped Newton-Raphson method is used to convert the 

nonlinear equations into linear equations. 

4. Direct sparse-matrix techniques are used to solve the linear 

equations generated by the Newton-Raphson method. 

The details of the implementation of this approach in SPICE2 may be 

found in [NAG75]. This approach has proven to be very reliable and 

can be used across a variety of different technologies and element types. 

The most computationally intensive part of this approach is the Newton­

Raphson iteration. It is composed of two phases: the fonnulation phase 

and the solution. These two phases, represented by steps 3 and 4 above, 

are repeated at each time point until convergence is obtained. In the for­

mulation phase, the elements in the circuit are processed by calculating 

their contribution to the Jacobian matrix and the right-hand side vector in 

Eq. (2.13) to fonn the system of linear equations. This is also referred 

to as the function evaluation (or model evaluation) and load phase, and 

can be very time-consuming because of the complexity of the equations 

describing the elements in the circuit. For small to medium sized cir­

cuits containing MOS devices, the model evaluation and load times dom­

inate the total CPU-time for the simulation [NEW78A]. 
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In the second phase of the Newton iteration, the linear equations 

generated in the first phase are solved using direct methods such as LV 

decomposition. While this portion has a negligible contribution to the 

total run time for small circuits, it can in fact dominate the run time for 

very large circuits (i.e., greater than 1000 nodes in the circuit for 

SPICE2) [NEW83], as shown in Fig. 2.1. Therefore, any technique 

which attempts to reduce overall circuit simulation run times must 

reduce both the model evaluation time and the linear equation solution 

time to be effective. 

2.3. TIME-STEP CONTROL: THEORETICAL ISSUES 

Time-step control is an important issue in electrical simulation. In 

this section, the constraints imposed by the numerical techniques on the 

step sizes used in the integration process are described. Based on these 

constraints, an efficient time-step control scheme is presented. Ways to 

further improve the efficiency by using different step sizes to solve 

different components in the system are presented in the next chapter. 

The circuit simulation problem, in its most general form, involves 

the solution of a system of nonlinear algebraic-differential equations. To 

simplify the description to follow, the circuit equations are assumed to 

be a system of differential equations in normal form: 

x(t) = f(x(t),u(t», xeD) = X, t E [O,T] (2.15) 

where u is the set of primary inputs, x is a vector of unknown circuit 

variables and f is some nonlinear function. The vector of values 

specified as X are the initial conditions, and the simulation interval is 

[O,T]. 
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2.3.1. Constraints on Step Size 

The general fonn of a kth-order linear multistep integration method 

[GEA 71] is given by 

P P • 
Xn+ 1 = L3jXn- j+ L hn_ j- 1 bjxn_ j (2.16) 

1=0 I~ 1 

where xn is the computed solution at time tn. and hn is the time-step at 

time tn- The 2p+3 coefficients. 3j and bj' are chosen such that Eq. 

(2.16) will give the exact solution if the true solution is a polynomial in 

t of degree less than or equal to k [CHU75]. 

There are two broad classes of integration methods: explicit and 

implicir [CHU75]. Explicit methods use only the solutions at previous 

time points to generate the solution at the next time point. and are 

characterized by b_ 1=0. A number of explicit integration methods can 

be derived directly from a Taylor series expansion of x(t) at the point tn: 

. h; .. 
xn+l = xn + hnxn + TXn+ ... (2.17) 

For example. the forward-Euler (FE) method is obtained by taking the 

first two tenns of Eq. (2.17): 

(2.18) 

This difference equation can be fonnulated in tenns of Eq. (2.17) by 

setting p=O. 30=1. bo=l and all other coefficients to zero. Equation 

(2.18) implies that each equation can be updated independently. and in 

parallel. at each time point. For differential equations in the normal 

fonn. the solution at each time point can be obtained in one step and 

does not involve a matrix solution; therefore. the explicit methods are 

2 Recently, a number of combined integration-relaxation methods used in Timing Simulation 
[CHA75] have been classified as semi-implicit integration methods [DEMSO, NEWS3, WHIS5C]. 
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extremely efficient. Unfortunately, these methods are not as useful as 

implicit methods for circuit simulation. Implicit methods are character­

ized by b_ 1:;t{) in Eq. (2.16). The backward-Euler (BE) implicit integra­

tion method can be derived using a Taylor expansion of x(t) about the 

point tn: 

(2.19) 

Using Eq. (2.19) to replace xn in Eq. (2.17), and ignoring the higher­

order terms, the BE scheme is obtained: 

(2.20) 

In this case, p=O, ao=l, b_ 1=1 with all other coefficients equal to zero. 

For nonlinear problems, this implicit equation is usually solved using an 

iterative method, often requiring a matrix solution. Therefore, the impli­

cit methods are computationally more expensive than explicit methods. 

The forward-Euler and backward-Euler methods are representative of 

their respective class of integration algorithms and will be used to illus­

trate a number of other properties below. 

a. Accuracy Constraint 

Integration methods provide a numerical approximation to the true 

solution since, in general, the exact solution of Eq. (2.15) cannot be 

obtained. The error in the numerical solution is due to a combination of 

the machine error and the truncation error. The machine error is usually 

in the form of a round-off error, since finite precision arithmetic is used, 

and it depends on the floating-point arithmetic unit of the computer 

being used. The truncation error results from the fact that the Taylor 

series is truncated after a number of terms and this error depends on the 

specific integration method. The local truncation error (L TE) for general 
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multistep methods is defined as 

(2.21) 

where x(tn+1) is the exact solution to Eq. (2.15) at tn+l' and Xn+l is the 

computed solution obtained from Eq. (2.16). In this definition, it is 

assumed that x(tn)=xn and, therefore, only provides information about 

the error which occurs over a single time-step, hence, its name "local" 

truncation error. The LTE for the forward-Euler method can be derived 

using Eq. (2.18): 

(2.22) 

Using a Taylor expansion for the first term about tn' the L TE is given by 

the first remainder term of the resulting expression: 

h; .. 
L TEn+l = 2X(~) (2.23) 

If EA is some user allowable error tolerance for the problem, the accu­

racy constraint is 

This presents a bound on the step size which is given by 

hn S ...J2EA/x(~) 

(2.24) 

(2.25) 

If this constraint is not satisfied, the solution must be rejected and a new 

solution computed with a smaller step size. Since the exact value of ~ is 

not known, the L TE is usually estimated using techniques to be 

described in a section to follow. 

The backward-Euler method has an LTE given by 
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LTEn+l = X(tn+l)- Xn- hnx(tn+1) (2.26) 

By expanding x(tn) in a Taylor series about tn+l and applying the results 

to Eq. (2.26), the LTE is obtained by retaining the first remainder term: 

LTEn+l = - ~ x(l;) tn~S;tn+l (2.27) 

Note that the error made in one step is O(h2) in both the FE and BE 

methods; hence, the accuracy bound on the step size is similar in both 

cases. However, the behavior of the global error, due to the accumula­

tion of the local errors, may be quite different for the two methods and 

this difference strongly recommends the use of one method over the 

other. This characteristic is associated with the stability of the integra­

tion method. 

b. Stability Constraint 

The general stability characteristics of numerical integration 

methods applied to nonlinear differential equations are difficult to obtain. 

Usually the results are inferred from the analysis of a simple linear test 

problem [GEA71]: 

x(t) = - AX(t) , x(O) = XI) (2.28) 

for which the solution is known to be 

x(t) = ~-At (2.29) 

and, in general, A is complex. This linear problem is useful because it is 

easy to analyze and provides information about the local behavior of 

nonlinear problems (Le., when the step size is small). The problem is 

usually analyzed with Re(A)>O so that the solution to Eq. (2.28) is 

stable. To further simplify the analysis, a fixed time-step is assumed. 

For example, if the FE method is used to solve Eq. (2.28), the following 



34 MIXED-MODE SIMULATION 

difference equation is obtained: 

where 0" = Ah. Therefore, 

xn+l = (1- O")xn = (1- ot+1xo 

The region of absolute stability is defined as the set of all complex 

values of 0" such that xn+l remains bounded as n~oo. For FE, it con­

sists of all 0" such that 

11-01$1 (2.30) 

which produces the following constraint for real values of A: 

0$ 0 $ 2. 

Therefore the time-step must lie in the range: 

O$h$ ~. (2.31) 

If step sizes outside this range are used, the computed solution will 

become unstable even though the true solution is stable. For BE, the 

difference equation is 

Hence, 

1 x - X 
n+l - (1+ot+1 0 

which results in the following requirement for stability: 

1 ---$1 
11+01 

(2.32) 

Considering only real values of A, the method produces a stable solution 

for all h~O. Ideally, an integration method should produce a stable 
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solution if the true solution is stable for any step size; this is the case for 

the BE method but not for FE. This property highly recommends the 

use of the BE method over the FE method since the step size can be 

selected based on accuracy considerations alone. For the general case 

when A. is complex, the region of Absolute stability for the BE integra­

tion method includes the entire right-half <J-plane. An integration 

method with this property is said to be A-stable [CHU75]. 

The forward-Euler and backward-Euler methods are examples of 

first-order integration methods. Higher-order methods with smaller local 

truncation errors can be constructed by taking more terms in the Taylor 

expansions of Eqs. (3.4) and (3.6). Integration methods with small 

LTEs are preferred as they allow larger time-steps to be used. For 

example, the trapezoidal method is a second-order integration method 

given by 

(2.33) 

and is quite popular as it is the most accurate A-stable method [CHU75]. 

The LTE for the trapezoidal method can be shown to be [CHU75]: 

h~ d3x J: 
LTEn+l = -12 dt3 (~) (2.34) 

Since the error is O(h3), it is often the case that a much larger step size 

can be used, compared to the BE method, for a given value of EA. 

c. Stiff-Stability Constraint 

Another consideration in the choice of integration methods is the 

issue of stiffness. A stiff problem is one that exhibits time-scale varia­

tions of several orders of magnitude in the solution. A simple example 

of stiffness is the case of a fast initial "transient" in the solution, which 
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dies quickly, followed by a slower "steady-state" solution. To handle 

this type of behavior, it is natural to use small time steps in the transient 

portion to accurately follow the solution and then to increase the step 

size for the remainder of the solution. However, this strategy may lead 

to instability of the integration method, especially for explicit integration 

methods. For example, if the test problem in Eq. (2.28) is solved using 

FE in the interval [0,1061:], where 1: =lIA, and A E JR, the time-step 

constraint given in Eq. (2.31) would be imposed in the entire interval 

even though the solution decays to zero in approximately 51:. If the step 

size is increased beyond this stability bound, the solution will become 

unstable. On the other hand, if the size is kept within the constraint 

imposed by stability, the number of time points would be very large. 

There are other situations which feature this kind of time-scale 

variation. A stiff problem is generated if the interval of time over which 

the system is integrated is large compared to the smallest time constant 

in the circuit, or if the circuit time constants themselves are widely 

separated. In addition, if the rise or fall time of an input wavefonn is 

widely separated from the circuit time constants, the problem also is 

considered to be stiff. 

Integration methods which are appropriate for solving stiff prob­

lems should have regions of Absolute Stability which cover most of the 

right-half complex a-plane so that the time-step can be selected based on 

the accuracy considerations alone. Explicit methods are not well-suited 

to stiff problems since their regions of Absolute Stability are usually 

very small. The A-stable integration methods are well-suited to stiff 

problems, but other implicit methods (for example, see [CHU75]) may 

be prone to instability when solving stiff problems. Gear proposed a 

family of integration methods called stiffly-stable methods [GEA 71] 

which have the fonn: 
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. I k 
xo+l = h L~Xo+l-1 

01=0 

37 

(2.35) 

The values for <lj are chosen such that a kth-order method is exact if the 

true solution is a kth-order polynomial. The methods of order k=1 and 

k=2 are both A-stable algorithms. The methods of order k=3 up to k=6 

are not A-stable, but they do have stability regions which are quite suit­

able for the integration of stiff problems [GEA71]. These methods are 

also referred to as Backward-Differentiation Fonnulas (BDF) [BRA 72]. 

A variable-order method, also proposed by Gear [GEA 71], uses the 

integration order which allows the largest step size at each time point. 

This technique was implemented in the SPICE2 program [NAG75] and 

it was found that, even though the order could be varied from k= 1 up to 

k=6, a second-order method was used most often in the computation. 

The reason for this was attributed to the nature of the nonlinearities in 

the circuit simulation problem (described in the next section) and nature 

of the solution waveforms. Therefore, most circuit simulators use a 

low-order implicit integration method with guaranteed stability properties 

so that the step sizes can be selected based on accuracy considerations 

alone. 

2.3.2. Solution of Nonlinear Equations 

When solving linear dynamic circuits, the accuracy and stability 

requirements of the numerical integration method are the only constraints 

on the step size used. Furthermore, linear problems can be solved in 

one "iteration" (i.e., one matrix solution) at each time point. Therefore, 

the amount of computation is directly proportional to the number of time 

points used. This is not true for nonlinear dynamic circuits, assuming 

that an implicit integration method is used. In fact, the cost of comput­

ing a solution at each time point is a function of the number of iterations 
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used to solve the nonlinear algebraic problem. Consider the differential 

equation 

x(t) = f(x(t)) (2.36) 

where f(x) is some nonlinear function. If the BE method is used to 

solve Eq. (2.36), the following equation is obtained: 

(2.37) 

This nonlinear algebraic equation can be solved using a variety of tech­

niques including fixed-point iteration and Newton's method. The 

approach usually taken in circuit simulators is to use Newton's method 

or one of its variants. Rewriting Eq. (2.37) as 

(2.38) 

the Newton-Raphson method to solve this equation is given by the 

expression [ORT70]: 

(2.39) 

where k is the Newton iteration counter. In circuit terms, the Newton 

method replaces each nonlinear device in the circuit by a linearized 

model based on operating point information. This process converts the 

nonlinear circuit into a linear equivalent network. The linearized net­

work is solved using standard linear circuit analysis techniques 

[CHU75]. The Newton method involves repeating the above steps until 

convergence is obtained. 

To guarantee convergence of the Newton method, the functions 

F(x) and F'(x) must be continuous in an open neighborhood about x·, 

F'(x .)~, and the initial guess, xo, must be close to the final solution. 

The Newton method is preferred over the simpler fixed-point method for 

several reasons. The main reason is that the fixed-point algorithm is not 
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well-suited to stiff problems. It also imposes a bound on the time-step 

to guarantee convergence. Another reason is due to the quadratic con­

vergence property of the Newton method. That is, if, in addition to the 

above conditions, F"(x*) exists, then for some k>K the difference 

between successive iterations and the true solution satisfies the relation 

[ORT70]: 

In practice, this quadratic convergence behavior occurs close to the final 

solution. Hence, it is important to provide an initial guess which is 

close to the final solution. In general, it is difficult to provide a reason­

able starting guess for the Newton method. However, for the transient 

analysis problem it is possible to generate a good initial guess, especially 

if a capacitor exists between each node and the ground node3. For 

example, the solution at the previous time point is a good starting guess 

for the Newton method at to+l' A better approach is to use an explicit 

integration method [BRAn]: 

k+l 

X~+l = L 'Yixo+l- i 
i=l 

(2.40) 

where the 'Yi values are obtained by requiring that the predictor, X~+l' be 

correct if the solution is a kth-order polynomial. Usually a kth-order 

predictor is used with a kth-order integration method. 

The time-step also has some influence on the convergence speed of 

the Newton method. An intuitive reason for this can be given in circuit 

terms: the Newton method converts a nonlinear circuit into an associated 

linear circuit, as mentioned previously. As the step size is made smaller, 

3 A capacitor to ground at each node implies some smoothness in the solution since it 
prevents instantaneous changes in the voltage at the node. Therefore, as h--)O, Xn+l--)Xn' 
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the values of linearized circuit elements begin to approach their values at 

the previous time point. Therefore, the circuit will behave almost 

linearly in this interval and convergence can be obtained in very few 

iterations, possibly even a single iteration. On the other hand, if the step 

size is too large, a good starting guess may be difficult to generate, and 

could lead to either slow convergence or nonconvergence. If nonconver­

gence should occur, the time-step must be rejected and a smaller step 

used in its place. Hence, in some cases, it may actually be more 

efficient to use two small steps rather than one large step. 

2.4. TIME-STEP CONTROL: IMPLEMENT A TION ISSUES 

The simplest time-step selection scheme is to use the same time­

step throughout the interval of interest, [O,T]. That is, use a fixed time­

step. Unfortunately, there are a number of constraints on the step size 

which may require that h be extremely small, resulting in a large number 

of time points. These constraints arise from the accuracy, stability and 

stiff-stability properties of a numerical integration method. For a fixed­

step approach, the step size would have be chosen such that it satisfies 

these constraints under worst-case conditions. A better approach is to 

vary the step size during the simulation in accordance with the variation 

in the constraints. For a given problem, the allowable step sizes depend 

primarily on the properties of the specific integration method being used. 

In this section, the main considerations in the implementation of an 

efficient time-step control for circuit simulation are described. It 

includes a discussion of L TE time-step control, iteration count time-step 

control and the effect of input sources on time-step selection. 

2.4.1. LTE Time-Step Control 

In L TE time-step control, the user provides two accuracy control 

parameters, Ea and Er , which are the absolute and relative errors 
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pennissible in each integration step. They are combined to fonn a user 

error tolerance: 

The general fonn of the local truncation error for most multistep integra­

tion methods of order k is given by [GEA7l,CHU75] 

LTE - C- hk+1x(k+l)(J:.) n+l - k ':J (2.41) 

where Ck is a constant which depends on the coefficients of Eq. (2.16) 

and the order of the method. Since the value of x(k+l)(;) is not known, 

in general, it must be estimated in some way using the numerical solu­

tions. Typically a divided-difference approximation is used. The first 

divided-difference is defined as 

X 1- x DD (t ) - n+ n 1 n+l - h 
n 

and the k+ 1st divided-difference is defined as 

DDk(tn+1)- DDk(tn) 
DDk+1(tn+1) = --~k~-~I:-----

1: hn- I 
1=0 

Then the estimate for the derivative tenn in Eq. (2.41) is (see [NAG75] 

for derivation) 

The L TE estimate is then 

Ek = Ckhk+1DDk+l(tn+l) 

For the BDF integration methods [BRA72], the LTE can be estimated in 

a more convenient way. The estimate is the calculated using difference 

between the computed solution xn+l and the predicted value xP(tn+1). 
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For a kth-order BDF method, the following expression is used: 

Ek = [ hn ](XO+1- r(tn+1» 
tn+ 1- tn- k 

The expression for xP(tn+1) is given in Eq. (2.40). The computed solu­

tion Xn+ 1 is accepted if 

I Ek I < EUserLTE (2.42) 

One way of implementing this check is to take the ratio of the allowable 

L TE and the actual L TE: 

r= = 

Noting that both errors are O(hk+ 1), it follows that 

and 

[
h lk+1 max 

r= -­
hn 

The comparison test given in Eq. (2.42) becomes 

rLTE> 1.0 

to accept the computed solution. The advantage of this ratio is that it 

can also be used to select the step size for the next integration step. 

Therefore, the next recommended step size is given by 

(2.43) 

In practice, Eq. (2.43) may occasionally recommend rather abrupt 

changes in the step size. A number of experiments have shown that 
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rapid changes in step size may introduce stability problems [BRA 72]. 

Intuitively, the step sizes should follow the smoothness of the solution. 

To ensure that the changes in the step size are indeed gradual, it is con­

venient to set upper and lower bounds on the changes in step size. In 

fact, three regions can be defined as follows: 

• if rLTE < l.0, reduce the step size by MAX( S. , rLTE ) 

• if l.0 =:;; rLTE < a, maintain the same step size 
• if rLTE ~ a, increase the step size MIN( SU ' ~ rLTE ) 

The time step may be reduced at most by the factor s. and increased at 

most by the factor SUo The a factor pennits the same step size to be 

used a number of times. Typically, a=l.2, s.=O.25 and su=2.0. Note 

that a multiplying factor ~ has also been introduced as part of the 

growth factor. The ~ factor is a way of making the time step selection 

somewhat conservative. Since the LTE can only be estimated, it may 

occasionally be optimistic [Y AN80]. If so, the time step would be 

rejected and a smaller step used unnecessarily. The (3 factor reduces the 

likelihood of this happening and a typical value is 0.9. 

2.4.2. Iteration Count Time-Step Control 

As mentioned before, the use of large steps is not necessarily the 

most efficient approach for nonlinear circuits, especially if relaxation is 

used. In fact, if the time step is too large, the iterative method may not 

converge, which would force the time step to be rejected, resulting in 

wasted effort. This suggests that the time step control should also be 

controlled by the nonlinearity of the problem. 

A number of programs use a time step control based on nonlinear­

ity considerations alone (e.g., SPICE2, ADVICE, MOTIS3) called itera­

tion count time step controL This strategy minimizes the total number of 

Newton iterations used during the simulation. The step sizes are 

selected as follows. If the numlx>r of iterations is larger than Nhigh , the 
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step size is reduced by some factor. If the number of iterations is less 

than N1ow, the step size is increased by some factor. Otherwise, the step 

size remains the same. The idea is to use approximately the same 

number of iterations at each time point. 

While this strategy is certainly effective at reducing the overall 

computation time, it is prone to accuracy problems [NAG75]. For 

example, for linear circuits the step size would always be increased since 

the solution is always obtained in one "iteration" at each time point. For 

weakly nonlinear circuits, the same sort of effect would be observed. 

Therefore, this approach, when used by itself, is not recommended since 

it does not control the numerical integration errors directly. However, 

the iteration count time-step control can be used in conjunction with the 

L TE-based time step control. In this case, if too many iterations were 

required to converge, a somewhat smaller step size could be used in the 

next integration step. If too few iterations are used, a slightly larger step 

size can be used. The method could be implemented by making the 

growth factor dependent on the number of iterations used to compute the 

solution. Of course, if convergence is not obtained in a specified 

number of iterations, the time step should be rejected and a smaller step 

used in its place. 



CHAPTER 3 

RELAXATION-BASED SIMULATION TECHNIQUES 

The overall goal in circuit simulation is to generate the solution as 

efficiently as possible while providing the desired level of accuracy. As 

described in the last chapter, the standard approach to solving Eq. (2.1) 

is to use a numerical integration method. One way to make the integra­

tion process efficient is to simply minimize the total number of time 

points used. That is, at any stage during the simulation, take the largest 

step possible that provides the required accuracy. This strategy is 

effective for linear problems, assuming that the numerical integration 

method has guaranteed stability properties but does not guarantee a 

smaller runtime. In fact, for nonlinear problems, it may be more 

efficient to take smaller steps so that the iterative method used to solve 

the nonlinear algebraic equations converges in fewer iterations. Using 

small time-steps also improves the accuracy of the solution. Therefore, 

minimizing the total number of iterations is a more useful goal in reduc­

ing the amount of computation. 

The cost of each iteration is proportional to the number of model 

evaluations l performed, assuming that the linear equation solution time is 

small. Therefore, the number of model evaluations used in the solution 

process is a good measure of the amount of computation. Based on this 

argument, the objective for the efficient solution of the differential equa­

tions in Eq. (2.1) should be to minimize the total number of model 

evaluations. 

1 A model evaluation usually refers to the calculation of the currents and conductances for a 
MOS or bipolar transistor. or some equivalent amount of computation. 
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A number of researchers have attempted to reduce the computation 

time for expensive model evaluations by using lookup tables for active 

devices [CHA 75, NEW79 , BUR83, GYU85]. In this approach, a 

number of tables of device characteristics are generated prior to the 

analysis, and simple table lookup operations are performed during the 

analysis in place of the expensive analytic evaluations. Points which are 

not available in the tables are interpolated using polynomial interpolation 

or splines. One drawback of this approach is that there may be a sub­

stantial memory requirement for these tables, depending on the level of 

accuracy desired, but it is usually justified by the improvement in com­

putation speed. Current research in this area involves reducing the 

memory requirements without sacrificing either the computational advan­

tage or the accuracy of the device models. Further details on this topic 

may be found in the references listed above. 

In this chapter, the focus is on reducing the total number of expen­

sive model evaluations by minimizing the number of time points com­

puted for each waveform. This is accomplished by using relaxation­

based techniques to exploit the waveform properties such as latency and 

multi rate behavior. Section 3.1 begins by introducing the general con­

cepts of waveform latency and multi rate behavior. In Section 3.2, the 

various relaxation-based techniques that are used to exploit latency and 

multi rate behavior are examined. In Section 3.3, the circuit partitioning 

issues for relaxation methods are addressed. 

3.1. LATENCY AND MUL TIRATE RERA VIOR 

Most circuit simulators employing direct methods use a single com­

mon time step for the whole system and, hence, compute the solution of 

every variable at every time point. The time-step at each point is based 

on the fastest changing variable in the system, i.e., the n+lst time point 
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is given by 

where hn is the integration step size determined by 

and hi,n is the recommended step size for with the ith variable at tn. As 

a result, many variables are solved using time steps which are much 

smaller than necessary to compute their solutions accurately. For exam­

ple, the computed points of a waveform from a large digital circuit, 

simulated using direct methods, are shown in Fig. 3.l(a). Note that 

there are many more points than necessary to represent the waveform 

accurately, especially in the regions when the waveform is not changing 

at all. The extra points are due to some other variable changing rapidly 

in the same region of time. The same waveform is shown Fig. 3.1 (b) 

with only the minimum number of points necessary to represent it accu­

rately. 

Since the objective in circuit simulation is to provide an accurate 

solution while minimizing the number of expensive model evaluations, 

one way to achieve this goal is to reduce the number of time points 

computed for each waveform. A number of circuit simulators have 

attempted to improve the efficiency in this manner by exploiting a pro­

perty of waveforms called latency [NAG75, NEW78 , RAB79, Y AN80, 

SAK8l]. While the general concept of latency includes any situation 

where the value of a variable at a particular time point can be computed 

accurately using some explicit formula, it usually refers to the situation 

where a variable is not changing in time and its solution can be obtained 

from the explicit equation: 
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Figure 3.1: Effect of Solution by Direct Methods 
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Xn+l = Xn (3.1) 

That is, the value xn+l is not computed using a numerical integration for­

mula but instead is simply updated using the value at the previous time 

point. For example, the waveform shown in Fig. 3.2(a) has three latent 

periods, and ideally the value of x does not need to be computed in any 

of these regions. 

In the SPICE program [NAG75], latency exploitation is performed 

using a bypass scheme. In this technique, each device is checked to see 

if any of its associated currents and node voltages have changed 

significantly since the last iteration. If not, the same device conduc­

tances and current are also used in the next iteration. However, the 

checking operation is somewhat expensive, especially if the circuit is 

large and most of the devices are latent. In general. latency exploitation 

involves the use of a model describing the behavior of a particular vari­

able as a function of time over a given interval. The simple model 

described in Eq. (3.1) can be considered as a "zeroth-order" latency 

model. Higher-order latency models can be constructed if the solution is 

known to have a specific form (i.e., polynomial, exponential) or if the 

solution for the variable can be obtained in closed form. For example, a 

first-order latency model given by 

can be used in the case of an ideal current source, with current I, charg­

ing a linear capacitor, C. Usually a latency model can only be used over 

a portion of the simulation interval. Therefore, the validity of the model 

must be monitored and its use must be discontinued when the model is 

thought to be invalid. The latency model used in this context has also 

been called a dormant model [SAK81]. 
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In practice, only the zeroth-order fonn of latency can be exploited 

easily since the higher-order fonns are difficult to construct for general 

nonlinear circuits. To exploit this simple fonn of latency, some mechan­

ism is necessary to detect that the signal value is not changing appreci­

ably2. The wavefonn is considered to be latent at that point, and iL'l 

associated variable is updated using Eq. (3.1) at subsequent time points. 

A second mechanism is used to detennine when the latency model is 

invalid, and from that point onward the variable is computed in the usual 

way. Hence, the wavefonn is only computed at time points when the 

signal is changing. Event-driven, selective trace can be used to exploil 

latency, as described in the next chapter, without incurring the overhead 

of the bypass scheme. 

It is only useful to exploit this simple fonn of latency when some 

variables in the circuit are changing while other variables are stationary, 

since direct methods can adequately handle the case when all variables 

are active or latent. In fact, the "useful" fonn of zeroth-order latency 

can be viewed as a subset of a more general property of waveforms 

called multirate behavior which is illustrated in Fig. 3.2(b). Multirate 

behavior refers to signals changing at different rates, relative to one 

another, over a given interval of time. MOS circuits inherently exhibit 

this kind of behavior because of different transistor sizes and different 

capacitance values at each node. Exploiting this general property can 

reduce significantly the number of time points computed for each 

wavefonn since large steps can be used for variables changing very 

slowly while smaller steps can be used for rapidly changing variables. 

The basic strategy to speed up circuit simulators suggested above is 

to take advantage of the relative inactivity of large circuits by reducing 

2 A number of schemes to detect zeroth-order latency are described in Chapter 4. 
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the number of time points computed. However, the actual speed 

improvement obtained by solving the equations in this manner depends 

on the two main factors: 

1) The "amount" of latency and multi rate behavior exhibited 
by the circuit during the simulation, and 

2) The efficiency of techniques used to exploit the two properties. 

The first point refers to the maximum speed improvement that can be 

obtained if the two waveform properties are exploited fully, and this fac­

tor depends on the circuit size and the activity in the circuit generated by 

the external inputs. The second factor depends on the actual number of 

points computed and the work required to compute each point. 

3.2. OVERVIEW OF RELAXATION METHODS 

Relaxation-based circuit simulators, such as SPLICE [SAL83, 

KLE84] and RELAX [LEL82. WHI83], use iterative methods at some 

stage of the solution process to solve the circuit equations. The success 

of these programs is due to the fact that they offer the same level of 

accuracy as direct methods, assuming identical device models, while 

significantly reducing the overall simulation run time. The reduction in 

run time is accomplished by computing fewer solution points for each 

waveform, thereby reducing the total number of model evaluations, and 

by avoiding the direct sparse-matrix solution. However, a tradeoff exists 

in the relaxation methods since they can only be applied to a specific 

class of circuits. Furthermore, there is the additional requirement that a 

grounded capacitor be present at each node in the circuit to guarantee 

convergence. While these factors limit the scope of the application of 

relaxation methods, the programs which use relaxation have proven to be 

extremely useful for simulation of many industrial MOS and bipolar 

integrated circuits. In the remainder of this chapter, the relaxation 
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methods are described and their mathematical properties are presented. 

3.2.1. Linear Relaxation 

Two common linear iterative methods are the Gauss-Jacobi (GJ) 

and Gauss-Seidel (GS). The methods differ only in the information they 

use when solving a particular equation as shown in the two algorithms 

given below. The superscript k is the iteration count, and E is some 
small error tolerance. 

Algorithm 3.1 (Gauss-Jacobi Method to solve Ax = b) 

k~O; 

guess xO ; 

repeat { 
k~ k+l ; 
forall ( i E {1,···,n}) 

} until ( IXjk - Xjk-ll~ E, i=l, ... ,n ); 

• 
Algorithm 3.2 (Gauss-Seidel Method to solve Ax = b) 

k~O; 

guess xO ; 

repeat { 
k~ k+l ; 
foreach ( i E {1, .. ,n}) 

} until ( IXjk - Xik-ll~ E, i=l, ... ,n ); 

• 
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Notice that in the GJ method each Xjk is computed using the itera­

tion values xIk-l), j=l, ... ,n, which are the values from the previous 

iteration. In the GS method, the latest iteration values are used as soon 

as they become available. The forall construct in Algorithm 3.1 sug­

gests that all n variables can be computed in parallel during each itera­

tion. The for each construct in Algorithm 3.2 requires that the variables 

be processed in a particular sequence. 

Linear relaxation schemes are usually described using a splitting 

notation that separates A into two components: 

A=B-C 

where B is a nonsingular matrix such that linear systems of the form 

Bx = d are "easy" to solve. Various relaxation schemes can be con­

structed by choosing different B and C matrices in the iterative equation: 

Xk+l = _ n-1cxk + C-1b 

In particular, if A is decomposed into its diagonal, strictly lower­

triangular and strictly upper-triangular pans, D, L and U, respectively 

such that A = L + D + U, then the GS method is obtained by setting 

B = (L+D) C=-U (3.2) 

and the GJ method is obtained using 

B=D c = - (L+U). (3.3) 

Since relaxation methods are iterative, the question naturally arises 

as to whether or not these methods converge to the correct solution and, 

if so, under what conditions? The requirements for convergence are 

stated in the following standard theorem [VAR62]: 
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Theorem 3.1: Suppose b E IRD and A = B - C E IRDXD is nonsingular. 

If B is nonsingular and the spectral radius of B-1C, given by p(B-1C), 

satisfies the condition p(B-1C)<1, then the iterates x(k) defined by 

Bx(k+l) = Cx(k) + b converge to x· = A -lb for any starting vector x(O) . 

• 
In other words, the magnitude of the largest eigenvalue of the iteration 

matrix B-IC must be strictly less than I to guarantee convergence of a 

linear relaxation method. A condition which guarantees that 

p(B-IC) < 1 is if A is strictly diagonally dominant. A matrix has this 

property if the diagonal term in each row i is greater than the sum of the 

off-diagonal terms in the same row, i.e., 

D 

~ I aij I < I ajj I for I~i~n 
j=l 
j*i 

and the "more dominant" the diagonal, the more rapid will be the con­

vergence. However, these linear relaxation methods have a linear con­

vergence rate. 

A number of techniques are available to improve the convergence 

speed of linear relaxation methods. For example, in the GS method, the 

order in which the equations are solved usually has a strong effect on 

the number of iterations required to converge. Consider the case when 

matrix A is lower triangular. If processed in the sequence, 

xI,x2, ••• 'XD ' then one relaxation iteration is sufficient to obtain the 

correct solution. However, if processed in the reverse order, then n 

iterations are required to obtain the solution. Therefore, equation order­

ing is usually performed on the variables whenever GS is used. 

Another technique to improve convergence, also used in conjunc­

tion with the Gauss-Seidel method, is the method of Successive 
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Overrelaxation (SOR). In this approach, the Gauss-Seidel method is 

used initially to generate an intennediate value, XI(k+l), using the equation 

x.(k+l) = B-1Cx.(k) + B-1b 
I I 

where B and C are defined by Eq. (3.2). The actual value of xlk+1) is 

obtained by taking a weighted combination of the previous iteration and 

the intennediate value which depends on a relaxation parameter, ro. 

xlk+1) = (1- ro)xlk ) + roXj(k+l) 

The SOR method can also be defined in tenns of the splitting notation 

with B = ro- 1(D+roL), and C = ro-1[(I- ro)D- roU]. While the proper 

choice of ro can greatly reduce the number of iterations, an optimal value 

of ro can only be computed a priori for a limited number of cases. In 

general, it may be necessary to perfonn a somewhat complicated eigen­

value analysis to determine the best value of ro. In practice, adaptive 

algorithms are used to select an appropriate value for ro during the solu­

tion process. 

Linear relaxation methods can be used in conjunction with the 

solution of nonlinear equations to solve the linear systems generated by 

Newton's method. For example, the Newton-SOR method is a combina­

tion of the Newton-Raphson method and the SOR method. In this com­

posite algorithm, the Newton iteration can be considered as the "outer 

loop" and the SOR iteration as the "inner loop." While it is possible to 

carry the inner loop to convergence, there is no requirement to do so, as 

long as the outer loop is iterated to convergence. In general, an m-step 

Newton-SOR method can be defined where m is the number of iterations 

used in the inner loop. For the case m=l, a one-step Newton-SOR 

method is obtained. The Newton-SOR method is only one example of 

the possible combinations of nonlinear iterative methods and linear itera­

tive methods. For example, Newton's method may be replaced by the 
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secant method and the SOR iteration may be replaced by one of the 

standard Gauss-Seidel or Gauss-Jacobi methods. 

3.2.2. Nonlinear Relaxation 

The basic idea of relaxation can also be extended to solve systems 

of nonlinear equations of the form F(x) = 0, where F:IR°--4IRo, with 

components flo f2' ... ,fo and fi:IR°--4IR. That is, rather than solving the 

system using direct matrix techniques, the nonlinear equations can be 

solved in a decoupled fashion. Two such algorithms are given below. 
The index k is the iteration count, while E1 and E2 are error tolerances. 

Algorithm 3.3 (Nonlinear Gauss-Jacobi Method to solve F(x) = 0) 

k~ 0 ; guess xO ; 
repeat { 

k~ k+l ; 
forall ( i E {I,··· ,n } ) 

I f ( k- 1 k- 1 k k- 1 k- 1) 0 so ve i x 1 , •.• , xi-1 ,xi' xi+ 1 ,..., Xo = 

for Xlk ; 
} until ( I Xik - Xik- 11 ~ E1 ' I f/xk,l) I ~ Ez ' i=l, ... ,n); 

• 
Algorithm 3.4 (Nonlinear SOR Method to solve F(x) = 0) 

k~ 0 ; guess xO ; 
repeat { 

k~ k+l ; 

foreach ( i E {I,··· ,n } ) 
I f ( k k k k- 1 k- 1) 0 so ve i x 1 , ..• , xi- 10 Xi , xi+ 1 ,..., Xo = 

x.k . I , 

Xlk~ (1- 0l)X,k-1+0l(Xik) ; 
} until ( I Xlk - Xlk- 11 ~ E1 ' I fi(xk,,) I ~ Ez, i=l, .•. ,n ); 

• 

for 
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These algorithms are referred to as nonlinear relaxation methods. 

The steps are very similar to linear relaxation as given in Algorithms 

(3.2) and (3.3) except that, in this case, each equation in the inner loop 

is nonlinear. To solve each one-dimensional nonlinear problem, 

fl(x) = 0, an iterative technique such as the Newton method or secant 

method must be used since, in general, a closed-form solution cannot be 

obtained. Combining the SOR method with the Newton method results 

in the SOR-Newton algorithm. The general case is the m-step SOR­

Newton method, where m is the number of Newton iterations taken in 

the inner loop. The question again arises as to the number of inner loop 

iterations to use. 

It can be shown that the rate of convergence of the one-step SOR­

Newton method is the same as for the one-step Newton-SOR method 

lORT70]. The m-step SOR-Newton method also has the same rate as 

the one-step method implying that it is not worthwhile to take more than 

one Newton step since the convergence rate is not affected. However, 

the convergence rate of the m-step Newton-SOR method is m times the 

rate of convergence of the one-step method. Therefore, based on the 

rates of convergence, one might be inclined to choose the m-step 

Newton-SOR to solve a system of nonlinear equations. There is, how­

ever, a hidden cost if the partial derivatives are expensive to calculate. 

Each step of SOR-Newton requires the evaluation of each fi and n par-

ar· 
tial derivatives, axl

•• whereas the m-step Newton-SOR method requires 
I 

the evaluation of f and all partial derivatives. Based on both operation 

counts and the rates of convergence given above, the one-step SOR­

Newton method appears to be the most efficient and for this reason it is 

used in Iterated Timing Analysis (IT A) [SAL83]. Note that this implies 

one iteration in the inner loop. The outer loop is iterated until 
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convergence is obtained. SOR-Newton also offers one additional advan­

tage over Newton-SOR in that wavefonn latency can be exploited easily. 

This feature is described in more detail in the chapter to follow. 

In a general-purpose implementation of these methods, the iterative 

process must be tenninated when the solution is close enough to x·. 

Often, this condition is checked using the test I Xik- Xik-11 ~ £1. How­

ever, this check of convergence is not sufficient in the nonlinear case. A 

second test is necessary to ensure that each function, f l , is close enough 

to zero, and this is specified using the test I fi(xk,i) I ~ q for all i. 

The algorithms presented above are meaningful only if the non­

linear equations, which are solved at each step in the inner loop, have 

unique solutions in some specific domain under consideration. Recall 

that for linear relaxation, the condition that aii~' for all i=l, ..• ,n 

ensures that a solution exists, assuming that the diagonal dominance pro­

perty holds. A similar condition is required in the nonlinear case. To 

illustrate this point, let the Jacobian be decomposed into its diagonal, 

strictly lower-triangular and strictly upper-triangular parts as follows: 

F/(x) = D(x)+L(x)+U(x) 

The iterations in the nonlinear scheme are well-defined if F is continu­

ously differentiable in an open neighborhood S of the point x·, for which 

F(x .)=0, and D(x·) is nonsingular. The requirements for convergence 

are also analogous to those for the linear case. By splitting the Jacobian 

matrix using the previous notation 

F/(x) = H(x) - C(x), 

the local convergence of the nonlinear relaxation methods described in 

Algorithms (3.5) and (3.6) can be stated as follows [ORT70]: 
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Theorem 3.2: Given F:Rn~Rn, assume that F is continuously 

differentiable in an open neighborhood S of x* and x* satisfies F(x*)=O. 

If B(x*) is nonsingular and p(B(x*r lC(x*»<l, then there exists an open 

ball S* c S such that the nonlinear relaxation methods given in Algo­

rithms (3.5) and (3.6) converge to x* for any initial guess xO E S* .• 

Recall that under the conditions stated in Theorem 3.1, linear relax­

ation methods converge for any initial guess. However, for the non­

linear case the convergence result is local since the initial guess must be 

close enough to the final solution to guarantee convergence. The proof 

of this theorem may be found in the reference [ORT70). 

3.2.3. Waveform Relaxation 

The relaxation schemes presented above can be also extended to 

functions spaces to solve systems of differential equations. This class of 

algorithms is called Waveform Relaxation (WR) [LEL82). The relaxa­

tion variables in WR are elments of function spaces, i.e., they are 

waveforms in the closed interval [O,T], whereas for linear and nonlinear 

relaxation the variables are simply vectors in Euclidean n-space. To 

illustrate the WR algorithm, consider the circuit simulation problem in 

the form specified in Eq. (2.9). The WR method for solving this system 

of equations is given in Algorithm 3.5 below. 

Algorithm 3.5 converts the problem of solving a coupled system of 

n first-order ODEs to the problem of solving n separate differential 

equations, each containing a single variable. The outer loop in the algo­

rithm is the Gauss-Seidel iteration which requires that the latest values of 

the relaxation variables be used to solve each equation in the inner loop. 

Each equation in the inner loop is a single nonlinear differential equa­

tion, and this equation can be solved using any standard numerical 
integration method. 
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Algorithm 3.5 (WR Gauss-Seidel Algorithm for Solving Eg. (2.9)) 

k+- 0; 
guess wavefonn xO(t); t E [O,T] such that xO(O) = Xo ; 
repeat { 

k+- k+1 ; 
foreach ( i E {l, .. ,n) { 

solve 
I 
~ C (xk ... Xk x k- I ... x k- I u)x· k+ 
.LJ Ij I, , 1 ' 1+1 ' 'n' j 
j=1 

o 
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~ C ( kkk-I k-l ). k-l 
.LJ Ij Xl , ... 'XI 'XI+l , ... ,Xo ,U Xj + 

} 

j=l+l 

~(Xk .• Xk Xk- 1 •• Xk- 1 u) =0 II 1, • , I , 1+1, • 'n , 

for ( Xlk(t) ; t E [O,T] ), with the initial condition 
Xlk(O) = x10 ; 

} until ( maxIs; IS; nmaxt e [O.T] I Xlk(t) - Xlk- 1(t) I ~ E ) 

• 
The convergence of the Wavefonn Relaxation method is 

guaranteed under conditions which are similar to the linear and nonlinear 

cases, as stated in the following theorem [WHI85C]: 

Theorem 3.3: If C(x(t),u(t» E IRom of Eq. (2.9) is strictly diagonally 

dominant unifonnly over all x(t) E IRn and u(t) E IRr and Lipschitz 

continuous with respect to x(t) for all u(t), then the sequence of 

wavefonns {Xk} generated by the Gauss-Seidel or Gauss-Jacobi WR 

algorithm will converge uniformly to the solution of Eq. (2.9) in any 

bounded interval [O,T], for any initial guess xO(t) .• 

While this theorem guarantees convergence of the WR algorithm, it 
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does not imply anything about the speed of convergence. Although the 

method usually converges in a few iterations, it has been observed that 

in test cases with tight feedback loops, the number of iterations required 

to converge is proportional to the simulation interval [WHI83]. To 

improve convergence, the simulation interval [O,T] is usually divided 

into smaller intervals, [O,TIl, [T loT 2], ... , [Tn_ loTn], called windows. 

Initially, the WR algorithm is applied only in the first window, [O,Tj], 

until the waveforms converge. Then a second window, [T j ,T2 ], is 

selected and WR is applied within this interval until the waveforms con­

verge. This continues until the entire simulation interval is covered 

Note that the WR method converges more rapidly as the window size i:-. 

made smaller. One advantage of WR is that the time-steps for each of 

the variables can be chosen independently of one another, but this 

advantage is compromised if the windows are too small. Therefore, the 

window size is an important factor which determines the performance of 

programs which use the WR method. 

3.2.4. Partitioning for Relaxation Methods 

Relaxation methods are most effective when applied to a system of 

equations which are "loosely-coupled," that is, where the variables do 

not depend too strongly on one another. For this type of system, relaxa­

tion methods usually converge quite rapidly. The speed of convergence 

in the linear case is controlled by the spectral radius of the iteration 

matrix given by pCB-Ie) (using the notation of Theorem 3.1); this is 

usually close to zero for loosely-coupled systems. However, for an arbi­

trary problem, there is no guarantee that the spectral radius will be small. 

In fact, in "tightly-coupled" systems, the spectral radius may be very 

close to 1 which implies slow convergence. This degrades the perfor­

mance of the relaxation-based methods compared to those for the direct 

methods. 
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The precise meaning of loosely-coupled and tightly-coupled can be 

described using a simple 2x2 matrix problem: 

Assume that the equations have been ordered such that Xl is solved 

before x2. Then, 321 can be considered as a feed-forward term and 312 

can be considered as a feedback term. The spectral radius of the itera­

tion matrix for the GS method (see Theorem 3.1) is given by 

and to guarantee convergence, this value must be strictly less than 1. If 

both 312 and 321 are non-zero, the variables Xl and x2 are considered to 

be coupled. If both 312 and 321 are large, relative to 311 and 322' then Xl 

and x2 are called tightly-coupled variables. If both 312 and 321 are small, 

then Xl and x2 are called loosely-coupled variables. Note that if either 

321 or 312 is zero, then equation ordering has a significant impact on the 

number of iterations. In fact, if 321=0, then x2 should be solved before 

Xl so that the solution can be obtained in one iteration. A similar argu­

ment applies if 321 is very small compared to 312. Therefore, the main 

objective in reordering is to make the A matrix as lower triangular as 

possible. 

When solving large systems, the definitions given above can be 

used to partition the system into groups of tightly-coupled variables. 

Rather than using relaxation methods to solve the tightly-coupled vari­

ables within each "block," it is better to solve them using direct 
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methods. The relaxation method can be applied between the blocks, 

which are loosely-coupled relative to the variables within a block. This 

gives rise to block relaxation methods [V AR62] , which can be viewed as 

a combination of the direct methods and relaxation methods. As an 

example, consider the 3x3 matrix problem: 

If X2 and x3 are tightly-coupled, then many relaxation iterations may be 

required to solve this problem. However, by grouping X2 and X3 into the 

same block and reordering the variables for the Gauss-Seidel method, the 

following equation is obtained: 

[
a22 a23 

a32 a33 

a12 0 

If X2 and X3 are solved using direct methods, then this problem can be 

solved using a single relaxation iteration. This example shows that 

proper ordering and partitioning are extremely important in the 

relaxation-based methods. 



CHAPTER 4 

ITERATED TIMING ANALYSIS 

In the previous two chapters, the circuit simulation problem was 

identified and efficient techniques to solve the problem were described. 

In this chapter, a detailed description of event-driven electrical simula­

tion based on nonlinear relaxation methods is provided. The chapter 

begins with the equation flow for nonlinear relaxation when applied to 

the circuit simulation problem. Then the timing analysis and iterated 

timing analysis (ITA) algorithms are described. An algorithm for event­

driven electrical simulation with a global variable time step approach is 

given in the next section. Finally, the issues relating to latency detection 

and event scheduling in IT A are discussed. 

4.1. EQUATION FLOW FOR NONLINEAR RELAXA nON 

The starting point for the description is the system of nonlinear 

differential equations describing the circuit behavior using the charge­

based formulation: 

q(v(t)) = f(v(t),u(t)), v(O)=V, t E [O,T] (4.1) 

where q is the charge associated with the capacitors connected to each 

node, f is the sum of the currents charging the capacitances at each node, 

u is the set of input voltages and v is the set of unknown node Voltages. 

Using trapezoidal integration [CHU75] to discretize the system in Eq. 

(4.1), the following system of nonlinear difference equations is obtained: 

(4.2) 

where the subscripts nand n+l refer to time points to and to+l = to+ho' 
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respectively, and hn is the integration step size. This equation can be 

fonnulated as a nonlinear problem, as follows: 

(4.3) 

Instead of solving this system of equations using standard techniques 

[NAG75], the strategy in this section is to use nonlinear relaxation. That 

is, use the Newton method to solve each equation in the system 

separately and a relaxation method to guarantee that the solutions arc 

mutually consistent. The expression for the ith equation in Eq. (4.3) 

solved using the Newton method is 

(4.4) 

where the index k is the iteration counter for the Newton method and 

JF.(v) is the ith diagonal tenn of the Jacobian matrix of F(v) given by 

(4.5) 

Usually a number of iterations are required to obtain the correct solution. 

However, in this case, since a converged relaxation method is used to 

guarantee a consistent solution to the system of equations, the Newton 

iteration for each equation need not be carried to convergence. In fact, 

from an efficiency standpoint, only one iteration should be used to 

approximate the solution of each equation before moving to the next 

equation, as described earlier in Chapter 3. The resulting one-step 

Gauss-Seidel-Newton relaxation algorithm is specified precisely in the 

following, using the definition: 

Vk,1 = [v k+1 v k+1 ••• v.k+1 v.k v.k ••• vk]T 1 ,2, , 1-1 , I' 1+1> ' n 

where the superscript T denotes the transpose of a vector. This 

definition is based on the Gauss-Seidel method which uses the k+ 1st 
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values of all other components, whenever possible, in computing the 

k+ 1 st value of vI. Here n is the number of equations in the system. 

Algorithm 4.1: (Gauss-Seidel-Newton Relaxation Method) 

repeat { 

• 

foreach ( i E { 1, . • • ,n} ) ( 

solve JFI(vk.I)(vr+l- Vlk) = - Fj(vk.l) for Vlk+1 

where Fj(v) is specified in Eq. (4.3) and 

JF1(v) is specified in Eq. (4.5) ; 

4.2. TIMING ANALYSIS ALGORITHMS 

The first published program to use techniques based on nonlinear 

relaxation for circuit simulation was the MOTIS program [CHA75]. It 

used backward-Euler integration, a Gauss-Jacobi-Newton relaxation algo­

rithm, and node-by-node decomposition (that is, it solved for one node 

voltage at a time). In MOTIS, a simple modification was made to the 

relaxation scheme based on the conjecture that there exists a small 

enough time-step, hmin, such that the method obtains the correct solution 

in exactly one iteration. At each time point, tn+1, the program computed 

new values of all node voltages using only one iteration of the Gauss­

Jacobi-Newton method and accepted the results as the correct solutions 

at tn+l. It was believed that iterating the outer relaxation loop to conver­

gence would be both expensive and unnecessary for most MOS logic 

circuits. However, the resulting accuracy of this approach relied heavily 

on three things: 

(1) The user's ability to select an appropriate time-step based 
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on knowledge of the circuit characteristics 

(2) The fact that the global error reduces to zero when a node 
voltage reaches the supply voltage or ground 

(3) Only a limited number of well-characterized circuit topologies 
(CMOS polycells) were used to build a design. 

The initial speed improvements obtained using this approach were 

extremely encouraging, partially due to the simplified numerical tech­

niques and partially due to the use of table lookup models for the MOS 

devices. The combined techniques were shown to be over two orders of 

magnitude faster than standard techniques when applied to large digital 

MOS circuits [CHA 75]. Since the method was intended to provide 

first-order timing information of MOS logic circuits, it was called "Tim­

ing Analysis" or "Timing Simulation." 

Although timing analysis provided an electrical simulation capabil­

ity with execution speeds comparable to logic simulation, it had a 

number of problems. For example, the choice of a proper time-step to 

guarantee accurate solutions was very difficult to determine in general. 

In addition, the method had severe accuracy problems for circuits con-

taining elements such as large floating capacitors I , small floating resis­

tors and transfer gates. The MOTIS program avoided this problem for 

floating capacitors by not allowing them in the circuit description and 

solved collections of transfer gates using direct methods. 

A number of improvements to the basic technique was suggested to 

overcome the inherent accuracy limitations of the method. In particular, 

the MOTIS-C program [FAN77] employed trapezoidal integration and 

one iteration of the Gauss-Seidel-Newton relaxation algorithm. Since 

1 A "floating" element is a two-terminal device whose tenninals are not connected to either 
ground or to a power supply. 
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timing analysis algorithms based on the Gauss-Seidel principle use 

updated information at to+l whenever possible, the accuracy is generally 

better than one based on the Gauss-Jacobi method. The simulation 

time-step was selected automatically in the program by doing a simple 

analysis of the time constants associated with each node and by using 

some fraction of the smallest time constant as the step size. However, 

MOTIS-C still suffered from problems similar to those for MOTIS. 

A modified timing analysis algorithm was implemented in 

SPLICE1.3 [NEW78] as part of a mixed-mode simulation capability. 

Although backward-Euler integration was used in this program, a 

number of other noteworthy enhancements were made to the underlying 

timing analysis algorithm. The first enhancement was based on two 

observations: 

(1) Most of the node voltages in a large digital circuit remain 
stationary at a given time point (the latency property). 
Computing the solution for these nodes is unnecessary. 

(2) The order in which the nodes are solved has a strong influ­
ence on the accuracy of the solution for timing analysis 
algorithms based on the Gauss-Seidel principle. 

These observations suggested that a good strategy would be to identify 

the "active" nodes at each time point and process these nodes in an order 

based on the direction of signal flow. In SPLICE 1. 3, a single mechan­

ism was used to perform both tasks: an event-driven, selective-trace 

algorithm normally associated with logic simulation [SZY75). This 

mechanism is described in the following paragraphs. 

The SPLICEl program treats a circuit as a signal-flow graph and 

constructs a corresponding directed graph for the circuit given by 

G=G(X,E), where X is the set of vertices and E is the set of directed 

edges of the graph. Two tables, the fanin and fanout tables, are 
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constructed at each vertex based on the following definitions: 

Definition 4.1: (Fanin and Fanout nodes) 

A node xk is called a fanin node of XI' and is specified as 

Xk E Fanin(xl), if Xk directly affects XI' A node Xj is called a fanout 

node of XI, and is specified as Xj E Fanout(xi), if Xj is directly affected 

by Xi' • 

Whenever the value of an input node or any internal node changes. 

it is possible to schedule all of its fanouts to be processed. In this way 

the effect of a change at the input to a circuit may be traced as it pro­

pagates to other circuit nodes via the fanout tables. Since the only nodes 

that are processed are those which are affected directly by the change, 

this technique is selective and hence its name: selective trace. If such a 

selective trace algorithm is used with the fanout tables, the order in 

which the nodes are updated becomes a function of the signals flowing 

in the network and is therefore a dynamic ordering. 

To make the processing efficient, and for consistency with the logic 

simulator in the SPLICE1 program, the total simulation period, Tstop ' is 

divided into uniform steps, referred to as the Minimum Resolvable Time 

(mrt). A time queue is constructed and the time slots in this queue 

define distinct points in time separated by one mrt. Hence, events are 

scheduled at integer multiples of mrt in the queue. The simple event 

scheduling algorithm used in SPLICE1 for timing analysis is given 

below. The routine NextEventTime(t) examines successive time slots in 

the time queue starting at time t and returns the next time point where 

one or more events have been scheduled. The external input nodes to a 

circuit are denoted as ek' 

As seen in the algorithm below, three separate event scheduling 

mechanisms exist: 
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(1) External inputs generate events whenever they make transitions 
from one value to another, 

(2) Internal nodes can schedule themselves to be processed, and 
(3) Internal nodes can schedule their fanout nodes to be processed. 

Note that if XI is not active, then neither XI nor its fanouts are scheduled. 

However, since nodes may schedule themselves, the fanouts of xI may 

still be active even though xI is not. The importance of this fact and 

other issues associated with electrical event scheduling will be presented 

in Section 4.6. Also, the precise meaning of "active" is elaborated 
further in Section 4.6. 

Algorithm 4.2: (Event Scheduling Algorithm in SPLICED 

tnt- 0; 
while ( tnST stop) { 

} 

• 

tnt- NextEventTime( tn ); 
foreach ( input k at tn ) { 

if ( ek is "active" ) 
foraH ( Xj E Fanout(ek) ) schedule( Xj' tn ); 

} 

foreach ( event i at tn ) { 

} 

process node Xi by computing XI(tn); 
if ( xI is "active" ) { 

schedule( xi' tn+h ); 
foraH ( Xj E Fanout(xl) ) schedule( Xj' tn ); 

The use of event-driven, selective-trace techniques give greatly 

improved accuracy of SPLICE1.3 compared to those for the MOTIS and 

MOTIS-C programs. In addition, a further improvement was realized 

using a variable time-step control, as follows. Initially, every node is 
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solved using a common step size given by the mrt. If the change in 

either the voltage at a node or the current through any device connected 

to the node is large, its solution is recomputed in the mrt interval using 

smaller steps and a single iteration at each time point. Each of the 

smaller steps may be further refined to insure that the changes in voltage 

and current are within acceptable limits. Therefore, the local time-steps 

for each node are based on limiting change of the node voltage and its 

associated currents over each step2. While the run time was noticeably 

higher, this variable time-step control was extremely effective in improv­

ing the accuracy of the results. 

Other enhancements were developed in SPLICE1.3 to handle 

tightly-coupled circuits. SPLICEl.3 used the Implicit-Implicit-Explicit 

(lIE) method [NEW80] to handle floating capacitors. To accommodate 

large blocks of tightly-coupled circuit elements, the program allowed the 

user to define "circuit" blocks. These blocks would be solved using 

standard direct matrix techniques. However, instead of using a single 

iteration, the Newton iteration in the inner loop was carried to conver­

gence since the elements inside the circuit block were considered to be 

"highly" nonlinear. However, the outer relaxation iteration was only 

performed once. 

While the results from programs using timing analysis were within 

acceptable accuracy limits for a certain class of problems, a rigorous 

mathematical analysis indicated that these methods have inherent stability 

and accuracy problems [DEM8IB]. This severely limited the application 

of the technique. Another problem, cited earlier, was that timing 

analysis programs relied on the user's knowledge of the underlying 

2 Note that a variable time-step control based OIl local truncation error is not easy to define 
here since the relaxation loop is not carried to convergence. The local error (i.e., the error over one 
step) is due to the integration method and the fact that the iteration is not carried to convergence. 
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algorithms and improper usage could produce the wrong answer. Circuit 

designers have been known to lose confidence in a simulator if it occa­

sionally produces the wrong answer, whatever the reason. Therefore, 

this approach has not been widely accepted, although it is heavily used 

where the approach has been thoroughly developed, is well-understood, 

and is applied to a restricted class of circuit topologies. 

4.3. SPLICEl.7 - FIXED TIME-STEP ITA 

The reluctance to close the outer relaxation loop in timing analysis 

was primarily due to its perceived high cost. However, the event-driven 

techniques significantly reduced the cost of timing analysis for large 

problems since only a small fraction of the nodes is processed at each 

time point. A number of other improved timing analysis algorithms 

were proposed [DEM83] but they used at least two iterations or required 

the use of expensive function evaluations, which increased greatly the 

cost of the simulation. As described earlier, the variable step approach 

in SPLICE!.3 improved the accuracy somewhat at the expense of addi­

tional iterations. The additional cost was thought to be worthwhile due 

to the improved reliability. 

The next step, naturally, is to close the relaxation loop and examine 

the true cost of iterating to convergence, given that event-driven selective 

trace is employed to improve efficiency. This was done in the 

SPLICE!.6 program, which later evolved to be SPLICE!.7, and the tech­

nique was named Iterated Timing Analysis or ITA [SAL83]. The proto­

type version of IT A used backward-Euler integration, node-by-node 

decomposition and a fixed time-step based on the mrt. The fixed time­

step algorithm was kept for consistency with the existing scheduler and 

logic simulation portions of SPLICE!. The ITA algorithm in 

SPLICE!.7 is a simple extension of Algorithm 4.3 as shown below. 
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Algorithm 4.3: (Fixed Time-Step ITA) 

• 

tnt- 0; 
while (tnSTstop) { 

tnt- NextEventTime( tn ); 
foreach ( input k at tn ) 

if ( ek is active) 
forall ( Vj E Fanout(ei) ) schedule( Vj. tn ); 

repeat { 
foreach ( event i at tn ) { 

solve JF\(vk,i)(vr+l- vh = - Fj(vk,j) for Vjk+1 

where Fj(v) is specified in Eq. (4.3) and 
JF\(v) is specified in Eq. (4.5) ; 

if ( I Vjk+l_ Vjk 1<£1. I Fj 1<£2 ) { /* converged? */ 
if ( vi did not converge on last iteration) { 

if ( Vj is active) { 
/* this is the selective-trace portion */ 

schedule( Vj. tn+1 ); 
forall ( Vj E Fanout(vD ) 

schedule( Vj. tn ); 

else U* do nothing (latency) */} 

else U* do nothing (break feedback loops) */} 

else { /* node has not converged */ 
schedule( Vj. tn ); 
forall ( Vj E Fanout(vD ) schedule( Vj. tn ); 

} until ( Q is empty at tn ) 
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The following definition is used above: 

Vk,i = [v k+ 1 v k+ 1 ••• v k+1 v.k v.k ••• vk]T I • 2' • i-I' 1 • 1+1. • 0 

The algorithm above has two features not present in the SPLICE 1. 3 

algorithm: 

• If a node voltage does not converge. the node is 
rescheduled at the current time point to along with 
its fanout nodes . 

• All nodes are processed until their voltages converge. 
When a node converges at to, it schedules itself at to+1 

and schedules its fanouts at to, if active. However, if 
it is scheduled again at to' by one of its fanins. and 
converges again. it does not schedule any additional 
events. This approach breaks feedback loops. since two 
nodes which are fanouts of each other would schedule 
each other indefinitely at to if this approach was not used. 

The speed improvement obtained by the SPLICE1.7 program com­

pared to that for the SPICE2 program was in the range of 5 to 50 times 

faster for a number of MOS digital circuits containing up to 1200 

transistors [SAL83]. However. the ITA approach required approximately 

twice as much CPU-time to simulate a circuit compared to SPLICE 1. 3 

which used timing simulation [SAL84]. Again, the improvements in 

reliability and numerical robustness far outweighed the cost of the 

increase in run-time. 

While the converged relaxation scheme is provably better than the 

non-iterated approach. it is not without problems. One problem is the 

speed of convergence. For example, SPLICE1.7 was able to simulate 

accurately an NMOS operational amplifier but it required more than two 

times the CPU-time used by SPICE2 [NEW83]. The circuit is a tightly-
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coupled analog circuit with large forward gain and capacitive feedback 

and, in this application, the node-by-node decomposition strategy used in 

SPLICE1.7 is inappropriate. For this same reason, convergence is also 

very slow in the presence of large floating capacitors and small drain and 

source resistors, usually found in detailed MOS transistor models. 

Another problem is due to nonconvergence. Since a fixed time-step is 

used, the program simply stopped when it was unable to converge to a 

solution within a specified number of relaxation-Newton iterations. 

Obviously, a variable step algorithm would resolve this problem and 

would also allow the solutions to be computed accurately based on a 

local truncation error criterion. These and other problems were solved in 

the SPLICE2 and iSPLICE3.1 programs. 

4.4. iSPLICEJ.l - GLOBAL-VARIABLE TIME-STEP ITA 

A new robust version of IT A has been implemented in the 

iSPLICE3 [SAL89A] program. It differs from SPLICE1.7 in two 

respects: 

• it uses partitioning to improve the speed of convergence 
for tightly-coupled circuits 

• it achieves better accuracy by using an LTE-based 
time-step control. 

The iSPLICE3 program also provides detailed MOS level I and MOS 

level 3 transistor models including a charge-conserving capacitance 

model. 

4.4.1. Circuit Partitioning 

The node-based ITA approach used in SPLICE1.7 is not appropri­

ate for circuits with tight coupling between two or more nodes, since the 

convergence can be very slow in this situation. One reason for this 

problem is that, in computing the new value for a particular node, the 
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relaxation process effectively replaces the fanin nodes with ideal voltage 

sources of constant value. Therefore, the true Norton equivalent contri­

butions from the fanin nodes are not used in the computation of a new 

value for the node. SPLICE2 used an improved representation of the 

neighboring nodes based on a current and conductance model, rather 

than constant voltage sources, and this approach was called the coupling 

method [KLE84]. This fanin node model is only approximate since the 

exact Norton equivalent circuit for each node is expensive to calculate 

for large circuits. While this approach improved the convergence speed 

on some examples, the technique was heuristic in nature and did not 

solve the general problem of coupling between more than two nodes in 

feedback loops. 

As was realized in early mixed-level simulators such as SPLICEI, 

tightly-coupled subcircuits are better solved using direct methods 

[NEW78]. However, it is difficult for users to identify tightly-coupled 

blocks manually, especially when the degree of coupling is a function of 

time and hence may change over the simulation interval. A more 

effective approach to the coupling problem is to identify strongly­

coupled components in the circuit automatically and to group them 

together to form subcircuits - a process referred to as circuit partitioning. 

Since the variables associated with the subcircuits are assumed to be 

tightly-coupled, the subcircuits can each be solved using direct matrix 

techniques, and the relaxation method can be applied between subcir­

cuits. This technique has been used in conjunction with the Waveform 

Relaxation algorithm [LEL82, CAR 84 , WHI85A, MAR85, DUM86] 

with great success. The same approach can be used with nonlinear 

relaxation to improve convergence as described in Chapter 3. The static 

partitioning approach of the RELAX2 program [WHI85C] has been 

adopted in the iSPLICE3 program and it is described briefly in the 
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following. 

The main goal of partitioning is to speedup the convergence pro­

cess of relaxation methods. Recall from Chapter 3 that the speed of 

convergence is controlled by the contraction factor, "/00' in the following 

way: 

For a linear problem, this iteration factor can be computed quite easily. 

For example, if the linear problem Ax=b is solved using the Gauss­

Seidel algorithm, "/00 is equal to the largest eigenvalue of the iteration 

matrix [(L+Dr I(_U»), where A=L+D+V. Therefore, a two-node linear 

circuit, such as the one in Fig. 4.1, has an iteration factor (for the con­

ductance portion only) given by 

A similar expression exists for the capacitance portion of the circuit. 

Note that if the two nodes are part of a larger circuit, the values of gI 

and g2 are the Norton equivalent conductances seen from each node 

looking back into the rest of the circuit. 

The partitioning algorithm makes use of the iteration factor to 

decide whether or not two nodes should be placed in the same subcir­

cuit. If the factor is close to one and the nodes are solved indepen­

dently, the convergence would be very slow. Therefore, the nodes 

should be placed in the same subcircuit. However, if the factor is close 

to zero, they may be placed in different subcircuits without adversely 

affecting the convergence speed. A threshold parameter, a., is used to 

decide whether or not the nodes should be solved together or separately. 
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1 2 

I 

Figure 4.1: Linear Circuit Considered for Partitioning Purposes 

A number of approximations are made in computing the iteration 

factors when partitioning MaS circuits. As MaS circuits are nonlinear, 

each nonlinear device must be replaced by a linear equivalent device. 

Since a static partitioning strategy is used, worst-case conductance and 

capacitance values are used when replacing each nonlinear device with a 

linear one. However, the exact Norton equivalent model seen by each 

node cannot be computed efficiently because it involves tracing paths 

from each node to all other nodes in the circuit. For efficiency, the 

depth of the conductance and capacitance computing processes is trun­

cated whenever the gate of an MaS transistor is encountered since the 

conductance of an MaS transistor is zero in the worst case. When these 

heuristics are applied, the following partitioning algorithm is obtained: 



80 MIXED-MODE SIMULATION 

Algorithm 4.4 (Conductance Partitioning) 

• 

g12 +-0; gl +-0; g2+-0; 
foreach ( conductive element between nodes 1 and 2 ) { 

} 

g12 +-g12 + maximum element conductance over all v; 
Remove the element from the circuit; 

gl +- sum of the minimum Norton equivalent 
conductance of each element at node 1 

g2 +- sum of the minimum Norton equivalent 
conductance of each element at node 2 

if (g12 g12 > (l ) { 

(g2+g12) (gl+g12) 
Place the two terminal nodes in same subcircuit; 

A similar algorithm is used for partitioning based on capacitances. 

Using this approach, the run times were reduced significantly compared 

to those for the node-based approach on all examples simulated. How­

ever, the partitioning strategy described here has a number of problems. 

The main problem with this approach is that it may produce unneces­

sarily large subcircuits since worst-case values are used in the partition­

ing process. The advantages of the relaxation method are lost if the sub­

circuits are too large. Since static partitioning is used (that is, the sub­

circuits are defined before the simulation begins), the latency exploitation 

is no longer performed at the node level but rather at the subcircuit level. 

All nodes in a subcircuit must be latent before the subcircuit is declared 

latent. While this provides a somewhat stronger condition for latency, it 

reduces the efficiency of the latency exploitation. Ideally, one would 

prefer to use small-signal conductance and capacitance values to perfonn 

the initial partitioning, and then adjust the subcircuits as these values 

change during the simulation. This is referred to as dynamic partitioning 
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and has already been successfully applied to the simulation of bipolar 

circuits using Wavefonn Relaxation [MAR85]. 

Another problem with the partitioning approach given in Algorithm 

4.4 is that it is too local a criterion. For example, if two nodes are 

extremely tightly-coupled, relative to their coupling to neighboring 

nodes, they will be placed in the same subcircuit while the neighboring 

nodes may be incorrectly placed in different subcircuits. If the neighbor­

ing nodes are actually coupled to either of the two external nodes, the 

convergence will still be slow [WHI85C]. One practical problem in par­

titioning is that it is a time-consuming task. Care must be taken in the 

definition of the data structures and partitioning algorithms so that the 

partitioning phase does not dominate the total run time for large circuits. 

This is more of a concern in dynamic partitioning [MAR85] where the 

partitioning operation may be performed frequently during the simula­

tion. 

4.4.2. Global-Variable Time-Step Control 

iSPLICE3.1 uses a global-variable time-step algorithm in which the 

components in the system are integrated using a single common time­

step. This integration time-step is selected based on the fastest changing 

variable in the system, the same strategy used in direct methods. How­

ever, only the active subcircuits are processed at each time point, and 

these subcircuits are identified using the selective-trace algorithm. The 

main steps in the global time-step ITA algorithm are given below fol­

lowing a brief description of the notation to be used. 

Notation for Algorithm 4.5: (see Fig. 4.2) 

Assume that a given circuit is partitioned into n subcircuits 

SI,s2, ... ,sl' ... ,so· The ith subcircuit, Sj, has nj internal variables 



82 MIXED-MODE SIMULATION 

and ne external inputs. The internal variables given by int( SD = { Xl , 

x2, ... , xo( } are those variables computed whenever subcircuit Sj is pro­

cessed. They are defined in vector form as Vj=[XbX2, .•. ,xo(]T. The 

external inputs of a subcircuit are other nodes which affect the internal 

nodes of the subcircuit. They are specified as Fanin(Sj) = { 
ebe2, •.. ,eo}. The fanouts of a subcircuit are associated with the inter-

• 
nal nodes of the subcircuits. Hence, the set of subcircuits affected by an 

internal node, Xj' are specified as Fanout(xj) = { S I ,S2' ... ,Sk}' The 

following definition is also used: 

k,j _ [ k+1 k+1 ... .k+1 .k .k ... k]T V - VI ,v2' ,vl_I ,VI ,vHI, ,vo · 

Algorithm 4.5: Global-Variable-Time-Step ITA 

partitionO; 
to f- 0; hmin f- hstart; 
while ( t ~ T stop) { 

stepRejection = FALSE; 
hoextf- hmin; tnf- tn + hnext; hmin~ hmax; 
foreach ( input ik at tn ) 

if ( ek is active) 
forall ( Sj E Fanout(ek» schedule( Sj' tn ); 

repeat { 
foreach ( event i at tn ) { 

solve h(vk,j)(vr+l- Vjk) = - Fj(vk,j) for Vjk+I 

corresponding to subcircuit Sj; 
if (IIvr+l- Vjk 11<£1, //Fj 1/<£2) { /*converged? */ 

if ( Vj did not converge on last iteration) { 
foreach ( Xj E int(Sj) ) { 

if ( Xj is active) { 
if ( CheckAccuracy( Xj ) = TRUE) 
hj~ pickStep( Xj ); 
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• 

} 

hmin+- min( hmin• hi ); 
schedule( xI. to+l ); 
foraH (Sj E Fanout(xD) 

schedule( Sj. to ); 

else { /* reject solution */ 
to+- to- hmm; 
hmin+- hmin/2; 
stepRejected = TRUE; 

else { /* subcircuit has not converged yet */ 
if ( itercnt > maxitercnt) { 

} 

to+- to- hmin; hmin+- hmin/2; 
stepRejected = TRUE; 

else { 
schedule( Sit to ); 
foreach ( Xi E int(Si» { 

if ( xI is active) 
foraH ( Sj E Fanout(xi) ) 

schedule( Sj. to ); 

} until « Q is empty at to ) OR (stepRejection) ) 

83 

In the algorithm above. the CheckAccuracy(x) routine uses a local trun­
cation error criterion to determine if the computed solution for X is 
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accurate and, if so, returns "TRUE." The PickStep(x) routine uses an 
L TE estimate to pick the next recommended step size for x. 

The main differences between this algorithm and the one used in 

SPLICE!.7 are due to the actions taken when the subcircuit variables 

converge at a time point and when they do not converge in a specified 

number of relaxation-Newton iterations. When the active subcircuits 

converge at a time point, tn' the local truncation errors for their internal 

variables are estimated [BRA 72] and the new global time-step, hnext , is 

set to the smallest recommended step in the system, hrnin. If the accu­

racy in the solution computed at tn is unacceptable, the solution is 

rejected and the integration is retried with the smaller time-step. Simi­

larly, if the iterations do not converge within a specified number of itera­

tions, the time-step is rejected and a smaller step is used. 

4.5. ELECTRICAL EVENTS AND EVENT SCHEDULING 

4.5.1. Latency Detection 

The most critical aspect in ITA, in terms of accuracy, is the detec­

tion of the latency condition. For example, if component x is identified 

as being latent prematurely, any small errors in its value will be pro­

pagated to the other components producing errors in their solutions. If 

the component is thought to be latent but, in reality, it is changing very 

slowly, the results may be completely wrong. Then the overriding ques­

tion is: how can one be sure that a variable has reached a steady-state 

value? The simplest approach is to test if the following condition is 

satisfied: 

Latency Condition 1: 

I xn+ 1 - xn I <Ex (4.6) 
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External 
Inputs 

Figure 4.2: Notation Associated with Subcircuits 
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where xn+l = x(tn+l)' xn = x(tn) and Ex is some small number. As illus­

trated in Fig. 4.3, the component is considered latent if the difference in 

the computed solution at two successive time points is less than some 

pre-specified amount, Ex. For a fixed time-step IT A algorithm [SAL83], 

this is a reasonable check as long as Ex is specified properly and one 

additional check is done, as described shortly. There are situations 

where Condition 1 may fail, as shown in Fig. 4.4, where the true solu­

tion rises and then falls before reaching a steady-state value. If the time 

points are chosen such that Condition I is satisfied, latency will be 

detected incorrectly. A more conservative version of Condition 1 

requires that the inequality be satisfied for two time points that are not 

adjacent. 
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Figure 4.3: Simple Latency Detection 
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Figure 4.4: Potential Problem in Latency Detection 



ITERATED TIMING ANALYSIS 87 

Latency Condition 1.1: 

(4.7) 

While this conservative approach works well in practice, it is still not 

strong enough to handle the general case. For example, if a global vari­

able time-step control is used, the step sizes may be very small due to 

some fast component resulting in small changes in x over a large number 

of time points (if x is a slower component). In this case, it would make 

more sense to use a rate-of-change criterion to detect latency rather than 

the absolute change in x. That is, use the check 

Latency Condition 2: 

(4.8) 

As shown in Fig. 4.5, this requires that x= 0 to satisfy the latency condi­

tion. This method also encounters problems with the example in Fig. 

4.4 since x=O as the signal switches direction. A more conservative way 

to do this type of latency check would be to use the strategy of Condi­

tion 1.1 and include a number of points from the past. 

Latency Condition 2.1: 

1.:i: I x n+2-j - xn+l-j I 

k j=1 hn+1- j 
< Ex' k~l (4.9) 

This condition uses an average rate of change based on the previous k 

solutions to detect latency and this overcomes the problem given in Fig. 

4.4. However, another problem arises if the true value of x is some 

small non-zero value that eventually changes the value of x significantly 
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Figure 4.5: Variable Step Latency Criterion Based on Rate-of-Change 

at some point in the future. To resolve this problem, a "wake-up" 

mechanism should be used with either Condition 1.1 or 2.1 when it is 

anticipated that component x has undergone a significant change in 

value. That is, the actual rate-of-change of x should be used to predict 

the wake-up time point, as follows: 

Wake-up Condition J: 

(4.10) 

and twake-up = tn+! + hnext. This wake-up condition can be used to 
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compute hnext and the component should be re-activated and solved at 

twake-up' This process is illustrated in Fig. 4.6. 

The latency and wake-up conditions specified above work well in 

practice and their use can be justified by considering latency exploitation 

as the use of a zeroth-order explicit integration method as described in 

reference [RAB79]. Explicit integration algorithms are obtained directly 

from a Taylor series expansion of the solution at the point tn: 

• h;+l dZxn 
Xn+l = Xn + hn+lxn + ----2-+ ... 

2 dt 
(4.11) 

A zeroth-order method uses only the first tenn and produces the 

v 

h next 

twake-up Time 

Figure 4.6: Wake-up Mechanism 
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following trivial integration method for which x(tn+1) is simply updated 

with the value x(tn) at the previous time point: 

(4.12) 

This integration method has a local truncation error (L TE) given by 

An estimate of the LTE can be obtained using a finite difference approx­

imation for x: 

Therefore the L TE estimate is given by 

X 1- X LTE=h n+ n n+l h 
n 

A check for latency can now be constructed from this analysis. The 

integration method specified in Eq. (4.12) can be used whenever the fol­

lowing condition is satisfied: 

Latency Condition 3: 

(4.13) 

where EuserLTE is the allowable local truncation error specified by the 

user. 

For a fixed time-step algorithm, this latency check is equivalent to 

Condition 1 since hn = hn+l for all n. Of course, the value for Ex in 

Condition 1 must be derived the same way as EuserLTE to be identical to 
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Condition 3. For a variable step algorithm, one could rewrite Condition 

3 as 

IXn+l - xn l EuserLTE 
--~--<----

hn hnew 

By replacing hn+l with a constant value of step size h max such that 

hmax:»hn+l> one can provide a somewhat tighter constraint: 

< 
EuserLTE 

h max 

Then latency condition 2 and 3 can be made identical by setting 

Ex = EuserLTE/hmax· Note that Condition 3 is an a posteriori criterion 

(Le., it is used after selecting h n+1) to detect latency. A similar criterion 

can be used in an a priori manner to decide when to activate the com­

ponent. The idea is to use the L TE requirement to predict the time point 

when the zeroth-order integration method is no longer valid by checking 

when Latency Condition 3 is violated: 

(4.14) 

where hnew = twake-up - tn+l and twake-up is the time when the com­

ponent should be activated. This wake-up time can be computed as fol­

lows: 

E h t - t + userLTE 0+1 
wake-up - n+ 1 

Xn+l- Xn 
(4.15) 

and this is identical to Wake-up Condition 1. Therefore, the intuitive 

arguments which lead to Latency Conditions 1 and 2 and Wake-up Con­

dition 1 are well-supported by the above analysis. 
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4.5.2. Events and Event Scheduling 

The next issue is to define precisely the notion of electrical events 

for use in conjunction with the scheduling algorithm. The proper 

definition of this concept is important from the standpoint of efficiency 

and accuracy, as will be seen. In logic analysis, an event occurs when a 

node makes a transition from one state to another (different) state. The 

event causes the fanouts of the node to be scheduled in the time queue. 

As long as the node remains in the same state, no additional events are 

generated. Since logic states are discrete, logic events are easy to iden­

tify. In electrical analysis, there is a continuum of "allowed states" mak­

ing it more difficult to distinguish a significant event from an 

insignificant one. However, the definition of logic events can be 

extended in a straightforward manner to electrical analysis. The result­

ing definition of an electrical event is connected with the notion of 

"active" and "latent" components. Definition 4.2: (Electrical Events) 

In electrical analysis, a component is "latent" if it satisfies one of the 

latency conditions given by Eqs. (4.6-4.9). Otherwise, it is an "active" 

component making a transition from one electrical value (or state) to 

another. Active components generate electrical events each time they 

make a transition to a new value. • 

The usefulness of this definition is seen in the following. Consider 

the two-stage inverter of Fig. 4.7. For this circuit, A E Fanout(I) and 

B E Fanout(A). As depicted by the arcs in the corresponding graph, 

there are four ways to schedule nodes: 

(1) node I can schedule node A (fanout scheduling) 
(2) node A can schedule node A (self-scheduling) 
(3) node A can schedule node B (fanout scheduling) 
(4) node B can schedule node B (self-scheduling). 

Whether a given node (say, node A) should actually schedule any events 

depends on its own state and the state of its fanouts (node B in this 
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case). Since each node can be either "active" or "latent," a total of four 

cases exist. These cases are listed in Table 4.1 along with the recom­

mended action to be taken by node A for each case. 

As the table indicates, case (2) is the only case where the schedul­

ing mechanism is conservative. The other cases do not introduce any 

additional work or create accuracy problems and therefore are listed as 

reasonable. However, case (2) can be a source of either accuracy prob­

lems or excessive computation. To see this, consider the circuit in Fig. 

4.8. If node A is "active," it will force nodes B, C and D to be pro­

cessed if the action recommended in Table 4.1 is taken. In reality, only 

node B should be processed. The other two nodes do not change due to 

the bias conditions, but this is not known a priori. Therefore, case (2) is 

considered to be a conservative scheduling strategy. The alternative 

would be to ask the question: is fanout Xj sensitive to changes in Xi? 

Here, Xl = A and Xj E Fanout(xi) = { B , C , D }. Only an affirmative 

response to this question causes a particular Xj to be scheduled by Xi. 

case status of status of action by node A comment 
node A node B 

(1) active active schedule self at t+h reasonable 
schedule fanouts at t 

(2) active latent schedule self at t+h conservati ve 
schedule fanouts at t 

(3) latent active no scheduling req' d reasonable 

(4) latent latent no scheduling req'd reasonable 

Table 4.1: Four Cases in Electrical Event Scheduling 
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Figure 4.7: Scheduling Possibilities for a Simple Example 
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Figure 4.8: Conservative Scheduling Case 
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Otherwise Xj should not be scheduled. 

The conditions associated with case (2) can also be viewed as a 

wake-up condition due to inputs. That is, "Does the change at node A 

wakeup node B?". The previous wake-up conditions were all handled 

via the self-scheduling mechanism. In this case, the question is whether 

or not a change at Xi translates to a change at a fanout Xj such that Xj 

violates its latency condition. Since Xj may have a number of fanin 

nodes which are active, superposition must be used to determine the 

combined effect of all active fanin nodes on Xj' This involves determin-

df· 
ing the transconductance, ~, and performing the computation: 

aX, 

(4.16) 

where k is the number of fanin nodes of Xj which are active, hn is the 

current step size, and C j is the total capacitance at node Xj' This compu­

tation assumes that all the additional currents, due to changes in the 

fanin nodes, charges the capacitances at node Xj' This produces a new 

wake-up condition due to the inputs, as follows: 

Wake-up Condition 2: 

where hnew = t new - tlatent' and t new is the current time point. In the 

worst-case, the computation in Eq. (4.16) can be as expensive as per­

forming an evaluation of Xj' but it certainly is not as accurate. Since 

there is no way to guarantee that Wake-up Condition 2 is a sufficient 

check for latency violation, since it is only a local criterion, it is better to 

perform the evaluation of Xj rather than the sensitivity check to guarantee 
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that an error is not made inadvertently. This results in a stronger condi­

tion for latency, which involves the fanin nodes also being latent. 

The ideas presented above are fonnalized in the following: 

(1) A component Xi is defined as being latent if 

(a) it satisfies the latency conditions specified 
in Eqs. (4.6-4.9) and 

(b) all ek E Fanin(xD satisfy 
their latency criteria. 

(2) A latent component does not generate any events. 

(3) If a component is not latent, then it is active and hence will generate 

events for itself and for all Xj E Fanout(xi) after every transition. 

(4) A latent component Xi is scheduled for re-evaluation if 

(a) the wake-up condition specified in (4.10) is satisfied. or 

(b) any component ek E Fanin(xj) becomes active. 

4.5.3. Latency in the Iteration Domain 

Another fonn of latency can be exploited at each time point due to 

the decoupled nature of the relaxation process. Since the components in 

the system are changing at different rates, it is quite possible that slowly 

varying components will converge quickly at each time point since their 

behavior can be predicted accurately. Once these components have con­

verged, there is no need to reprocess them at the same time point unless 

required to do so by some other component. This fonn of latency is 

called iteration domain latency and can also be exploited efficiently using 

the same event-driven techniques used for time domain latency. 

The iteration domain is a discrete space in which a sequence of 

iteration values of a component can be represented as a function of the 
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iteration nwnber [KLE84]. This iteration domain can be viewed in the 

same way as the time domain. For example, if a converging sequence 

of iterations for a component, Xi' is plotted against the iteration number, 

a waveform is produced as shown in Fig. 4.9. The detection of latency 

in the time domain is seen to be analogous to the detection of conver­

gence in the iteration domain. In fact, since the "step size" is fixed in 

the iteration domain, the check for convergence should be similar to that 

for the Latency Condition I given earlier. This corresponds to checking 

if the iteration waveform is "flat enough" [KLE84] and is given as 

Convergence Criteria 1: 

which is consistent with the usual check for convergence. False 

v 

~------'''''''''''''''.''''''''''''.'' ''''''''''. 

o 1 2 3 4 5 6 7 8 Time 

Figure 4.9: Iteration Domain Waveform 
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convergence occurs when the condition is satisfied but the necessary 

accuracy has not been obtained. Therefore, a check similar to Latency 

Condition 1.1 would be better to avoid this problem [KLE84]. 

Convergence Criteria 1.1: 

I Xjk+m_ Xjk I < E, Ill> 1 

To exploit latency in the iteration domain using event-driven tech­

niques, a table similar to the one for latency in time is necessary. In the 

iteration domain, if a component is "iterating," it is equivalent to being 

"active" in the time domain, and if it has "converged" in the iteration 

domain, it is equivalent to the "latent" condition in the time domain. 

Note that latency in time implies latency in the iteration domain, but 

latency in the iteration domain (Le., convergence) does not imply latency 

in time. In fact, when a component converges in the iteration domain, a 

separate test is necessary to determine if it is active or latent in the time 

domain. The four cases in the iteration domain are listed in Table 4.2 

below along with the recommended action for node A, assuming that 

node A is in the "converged" state initially and enters the state listed in 

column 2 after computing its new value. 

Table 4.2 shows that case (2) is again the only conservative 

scheduling situation. To understand this case, consider Fig. 4.8 again. 

Each time node A performs an iteration, it will schedule nodes B, C and 

D. However, as before, only node B should be processed as nodes C 

and D are latent in time and hence are in the converged state at the time 

point. If node A requires many iterations to converge, it will schedule 

nodes C and D many times resulting in a lot of unnecessary work. 

However, there is no need to repeatedly schedule all its fanouts on every 

iteration, especially since the nodes have a self-scheduling ability. 
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Therefore, one strategy might be for node A to schedule its fanouts on 

every other iteration rather than on every iteration. This could be used 

for both case (1) and case (2) since the self-scheduling mechanism 

would take care of any additional scheduling of node B. 

case new status status of action by node A comment 

of node A node B 

(1) iterating iterating schedule self at t reasonable 

schedule fanouts at t 

(2) iterating converged schedule self at t conservative 

schedule fanouts at t 

(3) converged iterating no scheduling req'd reasonable 

(4) converged converged no scheduling req' d reasonable 

Table 4.2: Four Cases in Iteration Domain Latency 



CHAPTER 5 

GATE-LEVEL SIMULATION 

5.1. INTRODUCTION 

When the complexity of an integrated circuit design reaches the 

point where electrical analysis is no longer cost-effective, logic simula­

tion or gate-level simulation may be used. Rather than dealing with vol­

tages and currents at signal nodes, discrete logic states are used. In 

essence, logic analysis may be viewed as a simplification of timing 

analysis, described in the previous chapter, where the difference equa­

tions are replaced by a set of discrete state equations and only simple 

Boolean operations are required to obtain new logic values at each node. 

These Boolean operations are generally the most efficient ones available 

on a digital computer. In a classical logic simulator, transistors are usu­

ally grouped into logic gates wherever possible and modeled at the 

gate-level rather than at the individual transistor level. This form of 

simplification, sometimes referred to as macromodeling, can result in 

greatly enhanced execution speed by reducing both the number of 

models to be processed and simplifying the arithmetic operations 

required to process each transistor group. With event-driven, selective 

trace analysis and the above simplifications, asynchronous logic simula­

tors are typically 100 to 1000 times faster than the most efficient forms 

of electrical analysis. 

The major objective of all simulators is to accurately predict the 

behavior, both normal and abnormal, of the physical circuits they model. 

This is even more critical in the context of mixed-mode simulation 

where the overall accuracy may be limited by the accuracy in the higher 
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levels of simulation. Therefore, gate level analysis in a mixed-mode 

simulator must provide the correct results and at least first-order timing 

information. The main factors controlling the accuracy of gate level 

simulation are the state model and the delay model. The delay model 

must be computationally simple and at the same time include the most 

important factors contributing to it. Modeling parameters are usually 

provided with the delay model. If these parameter values are derived 

from careful characterization of transistor circuits that form the logic 

gates, then a simplified gate model can be used with a high degree of 

confidence. 

The tradeoff between the accuracy of logic simulation and the com­

puter time required to perform a simulation is very important. For 

example, the accuracy of logic simulation can be improved by increasing 

the number of logic states used in the simulation. However, as the 

number of states increases, the overall runtime may also increase. In 

fact, the number of logic states, their meaning, the delay models used 

and the event scheduling algorithm all have a profound impact on the 

speed and accuracy of logic simulation. The proper choice of each of 

these factors depends on the circuit technology and its associated charac­

teristics, as well as the particular design methodology used. It is this 

wide variety of factors that has resulted in the development of a large 

number of logic simulators, almost every one addressing a different set 

of tradeoffs. 

While it is clear that the transition from the continuous electrical 

domain to the discrete logic domain may result in the loss of some cir­

cuit information, it is important that the circuit design methodology 

accommodate this type of simplification. Otherwise, the logic simulation 

mode cannot be used effectively. Unfortunately, in MOS logic circuits, 

there are many transistor configurations that are not directly amenable to 
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this type of transfonnation. To overcome this problem, switch-level 

simulation was developed and has become the preferred fonn of simula­

tion for MOS logic circuits. This approach is detailed in the next 

chapter. 

In this chapter, some of the factors influencing the choice of logic 

states and delay models are described. Since logic simulators have been 

in use for the design of digital hardware since the early 1950s, it is 

impossible to address all aspects of simulator development here. There­

fore, only those aspects which are related to mixed-mode simulation are 

emphasized. In addition, the modifications necessary to make gate level 

simulation suitable for the mixed-mode environment are described. 

5.2. EVOLUTION OF LOGIC STATES 

5.2.1. Two-State Logic Model 

The earliest use of logic simulation was for the verification of com­

binational logic. Since the logic was assumed to have zero delay and 

logic gates were assumed to implement ideal Boolean operations such as 

AND, OR and INVERT, only two states were required: a state 

representing true (logic 1) and a state representing false (logic 0). With 

a two-state simulator, it is not only possible to verify the logic function 

of a digital system (Le., generate a truth table) but it is also possible to 

detect certain other types of potential design errors such as hazards and 

races [EIC65]. A hazard is a momentary incorrect output state, after an 

input transition, resulting from paths in the circuit with different delay 

times to the output. There are a number of different types of hazards 

that can arise in in a logic circuit: static 0 hazard, static 1 hazard, 

dynamic 1 hazard and dynamic 0 hazard. These hazards are illustrated 

in Fig. 5.1. A race condition exists in an asynChronous sequential circuit 

if more than one of the state variables undergoes a transition during a 
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static-O time 

static-! time 

dynamic-! time 

dynamic-O time 

Figure 5.1: Four Types of Hazards in Logic Circuits 
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state transient. If the final stable state of the circuit depends on the 

order in which the state variables change, the race is tenned critical; oth­

erwise, it is tenned noncritical. 

Although hazards may occur in combinational as well as sequential 

circuits, they are generally most important when they affect the behavior 

of sequential circuits. Since hazards result from paths with different 

delay times, any hazard actually causing a circuit to malfunction will be 

detected as a critical race or oscillation in the circuit. However, a two­

state simulator (even with random delay models) has only a limited 

capability for detecting races and hazards, if delay variations are not 

modeled. If several inputs to a logic gate change within a relatively 

short period of time, it is possible that the order of occurrence of these 

events may change if gate delays were distributed at slightly different 

points within their tolerance limits. If the output state of the gate 

depends on the order in which the inputs change, a potential hazard 

exists. 

It is not sufficient to simply monitor the output of a gate and look 

for mUltiple transitions during an input pattern if all potential hazards are 

to be detected. Depending on the order in which the input transitions 

are processed, the potential hazard mayor may not be detected in the 

zero-delay simulator. This is illustrated in Fig. 5.2 for a simple NAND 

gate. If input A changes first, then output D will switch to the 0 state 

before returning to the 1 state. However, if input B changes first, the 

output will remain at 1 during the input transitions. The potential for 

both static and dynamic hazards can be detected. However, the errors 

caused by actual circuit hazards cannot be detected in a two-state simula­

tor without the use of more accurate delay models. 

It should be noted that, in a two-state logic system, only one logic 

gate may drive (or fanin to) any node (often called a net in the context 
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A: 0-1----1 

B: 1-0---1 

C: 1 
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J--- D: 1-0-1 
or 

1-1-1 

Figure 5.2: Potential Hazard in NAND Gate 

of logic design). If more than one gate did fanin to a node, a potential 

conflict would arise if one gate had a logic 1 at its output and another a 

logic 0 since it would be unclear what the resulting signal at the node 

should be. An exceptional case is that of the wired-function (wired­

AND, wired-OR), where the node is treated as a logic gate itself and 

performs a logic function. This is illustrated in Fig. 5.3(a) for an open­

collector TIL example. If it is possible for more than one output to 

drive a node in a particular technology, such as the so-called tristate 

logic where gates may logically disconnect themselves from the node (as 

illustrated for MOS in Fig. 5.3(b», then two-state logic analysis cannot 

be used to verify the design. 
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(a) 

(b) 

Figure 5.3: Multiple Devices Driving a Single Node 
(a) Open Collector TIL Structure and Its Equivalent Logic Mode 

(b) MOS Transfer Gates Connected to a Common Bus 

107 
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5.2.2. Ternary Logic Model 

Two-state simulation has a number of limitations. For example, if 

two gates drive the same node in the circuit and the output of each gate 

is different, a conflict situation arises. To model this conflict condition, 

a third state may be added--the unknown state, X. The output node is 

set to this X state whenever any such conflicts arise. The X state can 

then propagate through the fanout gates to other nodes in the circuit and 

possibly set them to the X state. The logic operations for the AND, OR 

and INVERT gates with X gates are shown in Fig. 5.4 

The simple step of adding this new state has caused much confu­

sion and increased the complexity of logic simulation. In [BRE72J, the 

basic problems associated with unknowns in gate-level simulation are 

described. One such problem arises due to the pessimistic propagation 

of unknowns when the value of a node is actually known. For example, 

in Fig. 5.5, one of the inputs is unknown, and this produces an X at 

each intermediate node and results in an X at the output node C. How­

ever, since a value of 1 or 0 at that input produces the same result.;; at 

node C, the value at node C is actually known to be 1. Therefore, the 

propagation of X blindly can lead to pessimistic results and excessive 

computation. This problem can be resolved by keeping track of X and 

X values1 during the simulation and combining them using the identities 

X-X=o and X+X=l whenever they appear at common AND or OR gate 

inputs. A second problem with the use of the X state is due to the addi­

tional complexity it introduces into gate-level logic simulation. In fact, 

computing the output states of a sequential circuit with n inputs and m 

internal states having k out of the n+m nodes unknown has been shown 

to be NP-complete with respect to k [CHA87]. 

1 Multiple X and X states must be maintained, one for each different source of the X state. 
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Figure 5.4: Logic Truth Tables Including X State 
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A number of other problems with the X state also exist, mainly due 

to the misuse of the definition of the state. For example, gate outputs 

must be correctly initialized prior to the analysis to either the 0 or the I 

state. If a sequential circuit is under analysis, storage nodes such as the 

output of flip-flops may not be known at initialization time. If the node 

is set to X, there is clearly an inconsistency since the states of Q and Q 

can simply be set to Q=l and Q=O (or equivalently Q=O and Q=l) 

without violating the sanctity of the simulation. Consider the SR flip­

flop circuit of Fig. 5.6. If the outputs are assumed to be unknown at ini" 

tialization, they can not be set to known values due to the input data and 

the feedback of the X states. However, a "conflict" situation does not 

exist at these output nodes; therefore, the use of X in this case is clearly 

incorrect. Another state is required to account for uninitialized nodes in 

sequential circuits. A distinction should be made between initial unk 

nowns Xi and generated unknowns Xg. When an initial unknown is 

encountered during the simulation, it can be set to a known value in the 

processing of the gate it is driving. If a generated unknown is encoun­

tered, it must not be set but rather propagated through the gates. The 

difference between initial and generated unknown states can also prove 

useful in determining those parts of a circuit not exercised during the 

simulation (still at XI after the simulation). 

The X state has also been used occasionally for the transition 

period between 0 and I, which is another improper use of X. For this 

situation, a T state (Le., transition state) should be employed, or possibly 

the R (rising) and F (falling) states to provide information about the 

direction of the signal transition. In mixed-mode simulation, the use of 

X is generally not recommended. However, the R and F states are 

extremely useful and an important part of electrically-oriented gate-level 

simulation, as described later in this chapter. 
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Figure 5.5: Problem Using X-State in Gate-Level Simulation 
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Figure 5.6: Initial Unknowns in a SR Flip-Flop 
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5.2.3. A Four-State Logic Model 

The ternary logic model described above is still not sufficient for 

the analysis of general MOS digital circuits which contain transfer gates 

and tri-state logic circuits. For these circuits, many gate outputs may be 

connected to a single node, as shown in Fig. 5.7, and it is necessary to 

determine which output is controlling the state of the node, or bus. If 

more than one gate is forcing the node, a bus contention warning must 

be generated by the simulator. It is possible to represent the condition 

where the output of Ml is not controlling the bus (Gl is logic 0) by set­

ting the output of Ml to X in that case. If this technique is used, there 

is no longer any distinction between the true unknown state and the off 

condition of the gate. With the addition of a fourth static state, high 

impedance (Z) or non-jorcing, the distinction is maintained. 

Table 5.1: Four-State Logic Simulation 

The four static states are illustrated in Table 5.1. A high voltage is 

represented by logic 1, low voltage logic 0, and unknown is X. The 

fourth state, Z, is shown separately since it does not represent a voltage 

state but rather an impedance condition. With the addition of the Z 

state, bus contention can be predicted without confusion. But what if all 

the gates driving a node are off! What is the input to a fanout gate in 

this case? In MOS circuits, the previous output is generally "stored" on 

the parasitic capacitance at the node and held for some time. This may 

be modeled by saving two states at each node, the present state and the 
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Figure 5.7: Multiple Transfer Gates at a Common Bus 

previous state2. If the present state is Z, then the previous state can be 

used to determine the input to fanout gates. 

5.2.4. A Nine-State Logic Model 

Another approach that can be used to keep track of the previous 

state of high-impedance nodes is to add three new static states, as shown 

in Table 5.2. The low impedance states are called forcing states (Or, Xr, 

If)' and there are now three high impedance states (Oz' Xz, and I z), 

which also carry the information about the previous signal level. 

2 The previous state is required to accurately model storage elements in any case. 
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Oz Xz lz 

0, Xr lr 

Table 5.2: Six-State Logic Simulation 

Consider once again the circuit of Fig. 5.7. If MI and M2 are 

both conducting, it is clear that the state at node (2) can be determined 

from our simple model. But what about nodes (1) and (3)? Since the 

transfer gates are bidirectional, the signal at node (2) may force nodes 

(1) and (3) to the X state. In reality, the output impedance of the 

inverter is probably considerably lower than the output impedance of the 

transfer gate and, hence, the inverter output would determine the node 

state. To model this effect, another three states may be added, called 

soft states, (Os, Xs' and 15)' which correspond to the output of the 

transfer gate when its gate node is on and its input is a forcing or soft 

state. These states are shown in Table 5.3. 

Oz Xz Iz 

Os Xs Is 

Or Xr Ir 

Table 5.3: Nine-State Logic Simulation 

Conceptually, the y-axis of this state table may be considered an 

impedance axis and the x-axis as a voltage axis. In fact, the output of 

any logic gate may be mapped into this state table by measuring its out­

put voltage (or current) and output impedance. As will be seen later, 
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this technique may also be used to translate gate outputs from logic 

analysis into electrical inputs for mixed-mode analysis. 

5.3. CHARACTERIZATION OF SWITCHING PROPERTIES 

One aspect of logic simulation that takes on greater significance in 

the context of mixed-mode simulation is the representation of logic 

waveforms. In standard logic simulation, the waveforms are represented 

using the symbols "1" and "0" for the high and low values, respectively, 

and logic transitions are represented as ideal steps. The rise and fall 

transition times of the waveforms in standard logic simulation are not as 

important as the propagation delays from the input to the output of a 

gate. However, this is not the case in mixed-mode simulation. The 

transient characteristics during switching are much more important than 

the propagation delay. If needed, the propagation delay can always be 

derived from measurements on the waveforms for the input and output 

nodes. 

It is important to have finite nonzero rise and fall delays in the 

mixed-mode environment for two reasons. First, from a practical 

viewpoint, this is not a realistic situation. The capacitance associated 

with each node produces some finite delay for both rising and falling 

signals. Second, it will undoubtedly cause convergence problems in the 

electrical simulation algorithms, specifically in the Newton method, due 

to abrupt changes in the logic waveforms that feed the electrical portions 

of the circuit. Therefore, the goal of logic analysis in the context of 

mixed-mode simulation should be to produce waveforms that are similar 

to the waveforms that would be generated by pure electrical simulation 

of the same circuit, albeit with less precision. 

A modeling technique that satisfies this requirement can be 

developed by examining the electrical properties of gates. In Fig. 5.8(a), 
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1 2 3 

(a) 

(b) 

Figure 5.8: (a) Two Inverters 
(b) Actual Wavefonns for Inverter Chain 
(c) Logic Wavefonns for Inverter Chain 
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the output wavefonns for a chain of two inverters are shown. The 

wavefonns are characterized by three regions: a region where the output 

is low, a region where the output is high and a region where the output 

is in transition. A first-order model of the charging and discharging 

behaviors at each node is shown in Figs. 5.9(a) and 5.9(b), respectively. 

In both cases, the model is given by an ideal current source connected to 

a linear capacitor. The response at the output node is a ramp function 

that is either rising or falling at a rate that depends on the value of the 

capacitance and current. In reality, the charging or discharging current is 

not constant so, for a first-order model, an average current must be used 

to obtain the approximate timing infonnation. In addition, the capaci­

tance is not constant but an average can also be used for it. The logic 

wavefonns corresponding to the circuits in Fig. 5.9 are shown in Fig. 

5.8(b). This approach can be used to generate ramp wavefonns for logic 

gate outputs by simply computing the rise and fall transition times. The 

details of the transition time computation are left to the next section. 

The three regions described above can be represented by four 

parameters: a low level, a high level, a low threshold and a high thres­

hold. These regions and parameters are shown in Fig. 5.1O(a). The four 

parameters have a direct correlation with the parameters that represent 

the dc voltage transfer characteristic (VTC) for a logic gate as shown in 

Fig. 5.1O(b). This is a graph of the output voltage, Vout, versus the 

input voltage, Vln' for a simple inverter. The four parameters in the 

figure are as follows: 

VOL = low output of inverter 

V OH = high output of inverter 

VIL = maximum value of input before output begins 

to drop appreciably 

V IH = minimum value of input before output begins 
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Figure 5.9: (a) First-Order Charging Model 
(b) First-Order Discharging Model 

Vout 
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to rise appreciably 

These parameters are used to define the logic noise margins for the 

inverter: 

The values of V IH and V IL based on the definitions above are 

somewhat arbitrary. Physically, VIL is the largest value of input voltage 

that still maintains a valid high voltage at the output, and V IH is the 

smallest value of input voltage that maintains a valid low output voltage. 

A more precise definition can be obtained by examining the input and 

output relationships. Clearly, the output voltage is some function of the 

input voltage: 

If some voltage noise, V noise' is superimposed on the input, then 

If the right-hand side is expanded in a Taylor series, then the following 

is obtained: 

af(Vin) 
V::;V = f(V1n) + a V noise + higher-order terms 

Yin 

Therefore, 

V new Void • V h' h d t out = out + galnx noise + Ig er-<>r er erms 

From this equation, assuming that the higher-order terms are negligible, 

it is seen that if the gain is small, the noise is attenuated. However, if 

the gain is large, the noise is amplified and added to the output. A 
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VOR = output high 
VOL = output low 
VIR = input high 
VIL = input low 

VIL VIR Yin 

(b) 

Figure 5.10: (a) Switching Regions 
(b) Inverter Voltage Transfer Characteristic 
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reasonable breakpoint between the two cases occurs when the gain is I. 

Therefore, useful definitions for both V IL and V IH are the points along 

the VTC where 

I dVOUT I 
I 1=1. 
I dV1N I 

Although, in reality, the output begins to change before these two critical 

points are reached at the input, an ideal logic model assumes that no 

change will occur at the output until the thresholds are exceeded. 

In terms of a logic state model, a new four-state logic model 

[SAK8I] is needed, where the state, s(t) , at any node at time t is an ele­

ment of the set { 0, R, F, I}, where R=rising waveform and F=falling 

waveform. Clearly, each of the states, set), may be defined in terms of 

the corresponding node voltages, v(t) , and the following noise margin 

parameters: 

set) = 0 iff V(t)E [VOVV1L) 

set) = Riff V(t)E [VIL,Vm] and v(t»O 

set) = F iff V(t)E [VIL,Vm] and v(t)<O 

The four-state logic model can be represented in truth table form 

for the AND, OR and INVERT gates as shown in Fig. 5.11. However, 

the actual transitions from one state to another are governed by practical 

considerations. Specifically, the transitions O~R, R~I, I~F, F~O, 

R~F and F ~R are permitted. These legal state transitions can be 

defined in terms of a state diagram as shown in Fig. 5.12. The transi­

tions 0~1, I~O, I~R and O~F are considered to be illegal since it is 
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Figure 5.11: Truth Tables for Four-State Logic Model 
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physically impossible to make these transitions without either visiting the 

intermediate states or violating the voltage limits of the circuits. 

Encountering an illegal state transition during the simulation is an 

indication that a timing error may be present in the circuit. As an exam­

ple, consider the AND gate in Fig. 5.13(a). The transitions at the inputs 

and outputs is specified using a string of values that indicate the state of 

the node in each time slot. If the two input transitions are separated in 

time, as in Fig. 5.13(b), there is no transition at the output. However, if 

the input transitions overlap, then the output may attempt an illegal state 

transition, which indicates that a race condition exists at the input. If 

input B makes the first transition but the two input transitions still 

Figure 5.12: Four-State Logic Transition Model 
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overlap, the output will be a glitch but will not encounter any illegal 

states as shown in Fig. 5.l3(c). Therefore, the output state transitions 

will either imply an error explicitly or implicitly, but in both cases a tim­

ing error can be uncovered. 

5.4. LOGIC SWITCIllNG DELAY MODELS 

Now that an appropriate logic transition model has been defined, 

the next step is to specify the details of the delay calculations. A variety 

(a) ~=D-c 

(b)A:IIIIIFFFFFFOOOOOOOOO 
B:OOOOOOOOOOORRRRRllll 
C:OOOOOOOOOOOOOOOOOOOO (no change) 

~)A:IIIIIFFFFFFOOOOOOOOO 
B:OOOOOOOORRRRRlllllll 
C:OOOOOOOOFFFOOOOOOOOO (illegal transition: race) 

(d)A:I1111111FFFFFOOOOOOO 
B:OOOORRRRRRllllllllll 
C:OOOORRRRFFFFFOOOOOOO (legal transition: glitch) 

Figure 5.13: Potential Timing Errors Due to Input Variations 
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of different delay models have been used in logic simulators and they 

have evolved over time due to changes in technology in much the same 

way as the logic model. The simplest delay model is the zero-delay 

model mentioned earlier. This type of model only allows for functional 

verification of logic circuits but does not allow the detection of races or 

hazards and, of course, it does not provide any timing information. It is 

also prone to problems such as "infinite looping" if there is an odd 

number of signal inversions in any logic feedback path. Early logic 

simulators used unit delay models to represent timing. In a unit delay 

simulator, all gates have the same (unit) delay between signal transitions. 

For logic circuits constructed from a single gate type that has similar rise 

and fall delays, the unit delay simulator can provide a useful analysis 

and lends itself to efficient implementation. If more than one gate type 

is used, assignable delays can provide improved accuracy in the results. 

In the assignable delay simulator, the delay of the logic gates may be 

assigned an integer value, T D. This delay is a multiple of some funda­

mental analysis time-step, or minimum resolvable time (mrt). Here, the 

mrt is the minimum non-zero delay of a logic gate and its value depends 

on the technology being simulated. For example, the mrt may be I ns 

for NMOS, while a value of 100 ps may be appropriate for ECL circuits. 

There are two ways in which gate delays may be interpreted as 

illustrated in Fig. 5.14. A transmission line or group delay model pro­

pagates the input patterns directly to the output, delayed by some amount 

T D. Even very short pulses are propagated unaltered, as shown in Fig. 

5.14(a). A second approach is to use an inertial delay model, in which 

the "inertia" or response time of the gate is modeled. If an input event 

occurs in less time than the time required for the gate to respond, it will 

be lost as shown in Fig. 5.14(b). Note that in this case spikes or glitches 

may be generated at the output. A spike is defined as a signal of shorter 
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v ideal delay 

time (a) 

v 

time 
(b) 

Figure 5.14: Interpretation of Gate Delay 
(a) transmission line model 

(b) inertial delay model 

TD 

time 

spike 

time 

duration than necessary to change the state of an element. Spikes may 

be generated by input hazards or by very narrow input pulses to a gate. 

A spike may be propagated into the fanout gates as either a new state (E 

for "error condition") or it may be deleted from the output and a warn­

ing message printed. The latter technique generally provides more infor­

mation from the analysis since the spike is generally an error and will be 

removed by the designer. By not propagating the spike, more 
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infonnation may be obtained about the correct operation of the circuitry. 

For mixed-mode simulation, the delay model used for the switching 

behavior must be derived from the electrical characteristics. The delay 

calculation should be based on a transition delay because of the nature of 

the logic model described in the previous section. For logic circuits in 

which rise and fall delays vary widely (such as single channel MOS), it 

is necessary to provide both rise (tLH) and fall (tHL) transition delays for 

each gate. These delays are a function of a number of different parame­

ters. In MOS circuits, the switching time may depend on 

• the device sizes 
• the supply voltage 
• the output capacitance 
• the number of inputs to the gate, 

and which one switches in value 
• and the shape (rise or fall times) of input wavefonns. 

Very few logic simulators have actually incorporated all of the 

above factors into the delay calculation. However, it is essential that an 

electrically-oriented logic simulator include the important first-order 

effects in the delay equation. To derive such an equation, consider the 

rise and fall delays of the CMOS inverter shown in Fig. 5.15. The fall 

time, tHL, is given by [UYE88]: 

tHL = Cout {2VTN + In [_2_(V_I_-_V_T_N_) - I]} 
JlN(VI - VTN) VI - VTN) Vo 

and the rise time, tLH, is given by [UYE88]: 

Cout {21 VTP 1 [_2(_V_I-_I_V_T_P _I) - I]} 
tLH = + In 

Pp(VI - IVTPI) (VI - IVTPI) Vo 

where Cout is the loading capacitance, VTN is the n-channel threshold 

voltage, V TP is the p-channel threshold voltage, and 
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---r-- VDD 

t-----...---Vout 

Figure 5.15: CMOS Inverter 

V1=VOH - O.l(VOH - VOL) and Vo=VoL+D.1(VOH - VOL) are the 90% 

and 10% switching points, respectively. All of these parameters are con­

stant except for the output loading capacitance which depends on the 

number of fanouts connected to the output node. 

The delay can be separated into two components by dividing Cout 

into Cintrinsic: + Cfanout' where Cintrinsic: is the unloaded output capaci­

tance and Cfanout is due only to external gates connected to the node. 

Then, the total gate delay can be represented by four parameters : the 

intrinsic gate delays (tr, to and the gate drive-capabilities (tre, tfe) , 

where 

tr = rise time for unloaded gate (y-intercept) 
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tf = fall time for unloaded gate (y-intercept) 

tre = gate drive-capability for rising signals (slope) 

tf = gate drive-capability for falling signals (slope). 

Using these values, the total delays are calculated with the equations: 

tLH = tr + tre*Cfanout (S.la) 

tHL = tf + tfe*Cfanout (S.lb) 

The logic gates can be characterized to detennine the four parame­

ters (tr, tf, tre, tfe). The value of Cfanout requires that the input and 

output capacitances be specified for each gate. For example, ci can be 

defined as the MOS capacitance associated with the gate input and co 

can be defined as the wiring capacitance. Then the total capacitance at 

each node becomes 

n 

Cfanout = ci + L eOk 
k=l 

This process is shown in Fig. S.16. Often the delay is a function of the 

input slope, SI. This aspect can be incorporated into the premultipliers 

tre and tfe: 

tLH = tr + tre(Sf)*Cfanout (S.2a) 

tHL = tf + tfe(Sf)*Cfanout (S.2b) 

It is now possible to model the delay by generating a set of curves 

similar to Fig. S.17 for every primitive element (NANDs, NORs, invert­

ers, etc.) using accurate electrical simulation. In this figure, the rise and 

fall times are plotted as a function of the output capacitance. A step vol­

tage is assumed at the input of each gate. Although not strictly true, the 
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relationship between the capacitance and delay is usually taken to be 

linear. That is, the delay is calculated based on the model of a constant 

current source charging a linear capacitor. The y-intercept of each curve 

represents the intrinsic unloaded rise/fall delay while the slope of each 

curve represents the gate "pull-up" or "pull-down" resistance. Separate 

characteristics are required for rising and falling outputs if the delay 

times are not symmetric. 

5.5. LOGIC SIMULA nON ALGORITHM 

The following pseudo-code provides a simplified description of the 

logic simulation algorithm based on the previous sections. First, the 

event time to is established by NextEventTime(). All input sources, ek' 

that are changing at that time schedule their immediate fanouts. Then all 

the nodes scheduled at tn are processed in sequence until the events at 

that time are exhausted. 

In the algorithm, a node is processed by computing the output 

value of its associated gate using the states of the inputs at tn' The input 

state consists of a voltage value and information indicating whether the 

signal is rising, falling or stationary. If the new output state is different 

from the old one, a delay calculation is performed. If the event occurs 

before a transition in the opposite direction is completed, a glitch warn­

ing is produced and the original transition event is cancelled. If the 

event does not cause a glitch, the schedule time for each fanout of the 

output node, Atj , is computed and then the fanout is scheduled at 

to + At. 
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Cfanout = Co + 3Ci 

Figure 5.16: Computing the Total Node Capacitance 

Delay 
slope = trc 

slope = tfc 

tf Cap 

Figure 5.17: Delay vs. Capacitance for an Inverter 
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Algorithm 5.1 (Logic Simulation Algorithm) 
tnt- 0; 
while (tn~Tstop) { 

• 

tnt- NextEventTime( tn ); 
foreach ( input k at tn ) 

if ( ek is active) 
forall (j E Fanout(ej» schedule( node j, tn ); 

/* processing logic block i */ 
foreach ( node i at tn ) { 

get inpucstates; 
compute new_output; 
if (node i has changed) { 

compute delay, ~t; 
if ( currenctime < lascevenctime(i» { 

issue glitch message; 
cancel pending events; 

else { /* normal event, so schedule Janouts */ 
forall ( node k E Fanout(i» { 

determine schedule threshold; 
compute schedule time ..1tk ; 

schedule ( node k , tn+ ..1tk ); 

} else { /* do nothing (latency exploitation) */ 



CHAYfER 6 

SWITCH-LEVEL TIMING SIMULATION 

6.1. INTRODUCTION 

Most modem logic simulators handle the problems specific to MOS 

integrated circuits by including the notion of signal strength in the logic 

model. However, the use of strength does not, by itself, solve all the 

modeling problems inherent to MOS circuits. For example, circuit 

designers use many combinations of transistors which do not have a 

direct mapping to a logic gate and therefore cannot be represented con­

veniently at the gate level. It is also difficult to model the logic opera­

tion of dynamic circuits in a convenient form in a standard logic simula­

tor. Transfer gates further complicate the situation because they intro­

duce dynamic loading effects, bidirectional signal flow, and capacitive 

charge-sharing effects. Many of these problems were resolved with the 

advent of the switch-level modeling and simulation technique [BRY80]. 

This chapter begins with a description of standard switch-level 

simulation and identifies a number of limitations in the approach, pri­

marily the lack of accurate timing information, and also the fact that 

intermediate voltage states are not represented which may occasionally 

lead to incorrect results. An electrically-oriented switch-level modeling 

technique that resolves these and other problems is described. This tech­

nique allows variable precision simulation, thereby allowing the user to 

choose anywhere from logic simulation accuracy to electrical simulation 

accuracy. Hence, the approach effectively spans the "gap" between logic 

and electrical simulations. A number of other simulation approaches 

with similar properties are also described. In the last section, the use of 
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this variable precision modeling approach to map signals across the 

interface between logic gates and electrical circuitry is described. 

6.2. SWITCH-LEVEL SIMULATION 

A switch-level simulator transforms an MOS transistor network 

into a corresponding network of switches and performs logic simulation 

on the resulting network. For example, in MOSSIM [BRY80], the logic 

circuit is described entirely at the transistor level, and the transistors are 

modeled as simple gate-controlled switches. The switch-level logic state 

model includes three logic levels (0, X, 1) and a number of strengths, s, 

which lie in the range {I,···, w} . Two subranges of strengths are 

defined, one representing all signal strengths originating at some external 

source, in the range k < s < w, and the other corresponding to nodal 

capacitance values, in the range I ~ s ~ k. The maximum possible 

strength, w, is reserved for inputs only. The switch-level model attempts 

to incorporate the key aspects of MOS logic circuits that determine its 

behavior and abstract away the details of the electrical behavior. This 

approach greatly simplifies the algorithms needed to correctly simulate a 

large variety of MOS logic circuits. 

The simulation process in switch-level simulation proceeds as fol­

lows. First, as a preprocessing operation, the switch-level network is 

partitioned into a number of subnetworks which are collections of 

strongly-connected components (SeC) or channel-connected components. 

These are sets of transistors that are connected to one another at the 

source or drain terminals. The identification of sees can also be done 

dynamically during the simulation process. Processing a given see may 

require a complicated series of steps, possibly involving iterations, to 

account for the interactions of different strengths of two or more "ON" 

transistors, as described below. However, the interaction between two 
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SCCs is easier to analyze since they are connected at the gate inputs of 

transistors and, hence, the logic operations do not depend on the signal 

strengths. The SCCs are simply scheduled and processed in the manner 

described earlier for logic gates using event-driven, selective trace tech­

niques. Therefore, this mode of simulation well-suited to implementa­

tion in mixed-mode simulators. 

The complicating factor in the processing of SCCs is due to the 

bidirectionality of transfer gates, or pass transistors. Although the 

transfer gate is inherently a bidirectional element, it is usually found in 

applications in which the signal flow is intended to be unidirectional. 

That is, the circuit designer expects signals to flow in only one direction 

through the device. However, there are occasions when transfer gates 

are used in bidirectional applications, or other situations in which a 

design error leads to signal flow in different directions at different times. 

A simulator must be able to analyze these cases accurately if it is to be 

useful. There have been a variety of modeling approaches for bidirec­

tional transfer gates, including the unconventional approach of two uni­

directional elements connected back-to-back. This approach can lead to 

inconsistencies when different logic values are on opposite sides of the 

element. Each value can flow through one of the transfer gates and 

reach the opposite side and then propagate through the circuit producing 

incorrect results. 

During the evaluation of an internal node of an SCC, the elements 

connected to that node try to impose their values on the node and the 

final state is determined by the element with the highest strength. A 

path analysis is actually performed to identify all possible paths from the 

node to a supply or ground node [BRY84]. Each path is assigned a 

strength that depends on the transistor with the lowest strength. Weak 

paths are blocked at intermediate nodes if a stronger path is encountered 
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at the nodes. The strongest path to a given node detennines the final 

state of the node. If two paths of equal strength but opposite values are 

encountered at a given node, the node is assigned to the X state. 

The path analysis approach is effective for handling bidirectional 

signal flow. A simpler approach is to use the so-called "supernode" 

technique [BR Y80]. In this approach, all nodes that are connected 

through transistors that are "ON" are considered to be the same node for 

processing purposes. All devices connected to this composite node arc 

processed together to determine the new state. The new state is then 

assigned to all nodes which comprise the supernode. The main problem 

with this approach is that it cannot adequately handle the case where the 

final values at the nodes are different and detennined by the strengths of 

the transistors in the subnetwork. Therefore, it does not permit different 

nodes of a supernode to reach different values. 

An alternative to the supernode and path analysis approaches is to 

use an iterative or relaxation-based method to determine the new states 

of these strongly-connected nodes (SCN) [DUM86]. The first step in this 

approach is to assign all nodes to the lowest strength permissible, or to a 

strength associated with the capacitance at each node. The signals are 

then propagated from the source nodes through the switch network start­

ing from the signal possessing the largest strength. This processing 

order prevents the accidental propagation of weaker signals onto storage 

nodes that may inadvertently generate the unknown logic level. The 

internal nodes of the SCC are evaluated using local event-driven tech­

niques and the fanout nodes within the set of SCNs are scheduled when­

ever they change state. The process is repeated until convergence is 

obtained, at which point scheduling occurs at the SCC level, i.e., the 

fanout SCCs are scheduled. Note that by using iterative methods, the 

nodes within a strongly connected component may converge to different 
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logic levels, which is the main advantage of the approach. The combi­

nation of local relaxation methods at the SCN level and standard event­

driven methods at the see level allows efficient switch-level analysis to 

be perfonned. 

One problem not addressed above is that of processing transfer 

gates with unknowns at gate inputs (Le., X-transistors). The strategy in 

analyzing circuits with X-transistors is to minimize the number of X 

states generated at the internal nodes of an Sec. A pessimistic approach 

would be to generate the X state at each of the drain and source output 

nodes of each X-transistor. This method is the easiest to implement but 

it may actually force the simulator to process many more events than 

necessary since the X state tends to be "sticky" and propagates 

throughout the circuit very quickly [CRA87]. A brute-force approach 

would be to enumerate all possible combinations of gate input values by 

replacing the X-transistors by either I-transistors or O-transistors. If 

there are k X-transistors, the see would have to be evaluated a total of 

2k times! Any node which produces the same logic level, regardless of 

the input combination, is set to that logic level; otherwise, it is set to X. 

A better approach [BRY87], which offers linear computational 

complexity in k, is to first choose the gate settings of the X-transistors to 

maximize the number of l's or X's in the see under consideration. 

Then, the process is repeated to select the gate settings to maximize the 

number of O's or X's in the Sec. Again, any node which reaches the 

same logic level in both cases is set to that level; otherwise, it is set to 

X. This approach has been shown to produce the same results as the 

computationally expensive method described above but requires much 

less work. 
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6.3. A GENERALIZATION OF THE NINE-STATE LOGIC MODEL 

Switch-level simulation has been adopted as an efficient technique 

for functional verification of large MOS digital circuits. However, there 

are many circuit configurations that may lead to incorrect solutions when 

the simple switch-level model is used. In fact, simple examples can be 

constructed that require more than the three strengths and three states of 

the nine-state logic model (described in Chapter 5) to produce the correct 

solutions. To illustrate this point further, consider the two circuit frag­

ments shown in Fig. 6.1. The circuit in Fig. 6.1(a) is a 2-' regenerative 

latch driving a bus. The two inverter stages provide forward gain while 

the depletion load device provides a resistive feedback path from C to 

A. In this case, at least four strengths are necessary to obtain the correct 

results at node C: inverter inv2 has a weak pull-up strength WI, a forc­

ing pull-down strength F and a high-impedance pull-down strength H 

(depending on whether it is on or off). The depletion device has a resis­

tive strength W 3' such that W 3 is less than WI. In addition, the pass 

transistor connected to the bus also has a sttength, W 2' which is less 

than WI but greater than W 3. As described earlier, switch-level simula­

tors provide a range of strengths to address this problem. 

A more serious problem is that the switch-level model may not 

produce the correct results for an arbitrary connection of pass transis­

tions when threshold voltage drops are important. For example, the 

situation shown in Fig. 6.1(b) is a case where additional voltage states 

are necessary. Here, the designer has inadvertently connected the gate of 

transistor M3 to a node which is already two threshold voltage drops 

below the input signal. Therefore, the value at node D can only rise to 

three threshold voltage drops below the input value and this may not be 

high enough to be considered as a valid high. While this circuit is 

clearly a poor design, it is important for a simulator to detect this type of 
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D 

(a) 

Figure 6.1: Examples Requiring Additional States and Strengths 
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error. A standard switch-level simulator would not be capable of identi­

fying this error since it uses only three logic values. For this case, at 

least three additional logic values are required. Hence, an appropriate 

state model to adequately simulate both circuits in Fig. 6.1 is shown in 

Fig. 6.2. 

Another situation which requires multiple strengths and voltage lev­

els is the simulation of dynamic circuits. In these circuits, capacitive 

charge-sharing and feedthrough effects often degrade the voltage levels. 

Feedthrough usually occurs when a clock signal feeds through a floating 

capacitor to an isolated node with a grounded capacitance. The isolated 

node also sustains a sharp voltage transition which depends on the value 

Strength 
J~ 

H 

WI 

F Sta tes ... -o VDD-2VT VDD 
VDD-3VT VDD-VT 

Figure 6.2: Better Logic Model for Simulation of Circuits in Fig. 6.1 
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of the grounded and floating capacitance values. Usually, feedthrough is 

not a significant factor. However, charge-sharing can often lead to cir­

cuits that do not function properly. Charge-sharing occurs when a 

transistor connecting two isolated grounded capacitors is turned on. The 

total charge is redistributed between the two capacitors until their node 

voltages are equal. It is possible to handle charge-sharing without intro­

ducing additional logic levels by assigning to each node a strength that 

corresponds to its capacitance value. If charge-sharing occurs, the node 

with the larger capacitance imposes its value on the node with the 

smaller capacitance (for worst-case analysis) and a potential problem is 

at least observed [BRY80]. 

One basic limitation of standard switch-level simulation still 

remains: accurate timing information is not provided. Electrical simu­

lation provides detailed timing information but is very expensive due to 

the use of complex analytical models that characterize the transistor 

current-voltage relationships. Logic simulation is extremely fast but is 

often unable to provide more than first-order timing information using 

simple expressions to compute the rise and fall delays. Clearly there 

exists a large "gap" between electrical simulation and logic simulation. 

The arguments made above promoting multiple logic values and 

strengths and the requirement for switch-level timing simulation can be 

resolved by treating strengths as electrical resistances and logic states as 

electrical voltage levels. This connection allows a generalization of the 

model of strength vs. state in logic simulation to resistance, R, vs. vol­

tage, V, in electrical simulation. 

The R-V characteristics for an inverter driving a pass transistor are 

shown in Fig. 6.3 based on SPICE2 simulations. These are dc transfer 

curves of the output resistance of the inverter and the output resistance 

of the transfer gate as a function of their respective output Voltages. The 
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Figure 6.3: Resistance vs. Voltage Plane 

two curves are highly nonlinear and do not exhibit monotonic behavior. 

Conceptually, electrical simulation has an infinite number of allowed 

"states" in this plane while the higher levels of simulation discretize the 

horizontal and vertical axes into a finite number of states. As a result, 

the difference between electrical and logic simulations becomes one of 

the degree of discretization of the R-V plane. This relationship also 

provides a convenient way of mapping from one form of simulation to 

the other in mixed-mode simulation. The use of this model as a vehicle 

for simulation is described in the next section. Its application in signal 

mapping across the mixed-mode interface is addressed in Section 6.6. 
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6.4. SIMULATION USING THE GENERALIZED MODEL 

6.4.1. Electrical-Logic Simulation 

A variable precision simulation approach, called electrical-logic 

simulation or simply Elogic [KIM84], has been developed based on the 

generalized model described in the previous section. This form of simu­

lation can be viewed as a relaxation-based, switch-level simulation tech­

nique. Elogic uses electrical device models in the context of switch­

level simulation which allows electrical timing information to be 

obtained. As part of the Elogic modeling process, a number of discrete 

voltage levels are selected. These levels need not be equally spaced but 

the number of levels and their values have an impact on performance 

and accuracy. In standard electrical simulators, the time-step is selected 

first and then the node voltage change is computed. By contrast, in Elo­

gic the voltage step is known in advance and the time required to make a 

transition from one voltage state to another adjacent voltage state is com­

puted. Similar approaches are used in SPECS [DEG84], MOTIS3 

[TSA85], SPECS2 [VIS86] and ADEPT [ODR86], as described in the 

next section. 

The processing sequence in Elogic is illustrated in Fig. 6.4 for a 

simple inverter example. The set of Elogic states is defined to be V 0' 

VI' V2, V3, and V4. As shown in Fig. 6.4(b), the input makes a 

sequence of transitions from V 0 to V 4 and visits each intermediate state 

between the two end points. Each transition at the input node causes an 

event to be scheduled at the output node. The corresponding output 

computed by Elogic is illustrated in Fig. 6.4(c). Note that the first tran­

sition at the input does not cause a transition at the output node since the 

transistor does not tum on. However, the second transition and all sub­

sequent input transitions result in transitions at the output. Note also 

that the output continues to make transitions even after the input reaches 
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its final value due to a self-scheduling mechansim. 

Briefly, the steps required to calculate the transition time, At, are as 

follows: each nonlinear device is first replaced by a linearized equivalent 

model. This model is used to compute the steady-state or final voltage, 

V ss. An exponential characteristic is used to predict the transient 

behavior of the voltage at the output node from the present state, V n' to 

the final value, V ss. The transition time, At, is then computed as the 

time required to go from V n to V 0+1 along this exponential characteris­

tic. After the input has completed its sequence of transition events, the 

output still continues to be scheduled due to its own self-scheduling 

mechanism, similar to the one described for ITA in Chapter 4. The out­

put will continue to schedule itself until it reaches the steady-state level. 

The algorithm is modified slightly if the input makes a new transi­

tion before the output has completed its current transition. This situation 

is usually categorized as a glitch in logic simulation but it calls for the 

rescheduling of a pending event in Elogic. If the output is very close to 

the next state, Vn+1, it is set to the next state and a new event is 

scheduled only if a transition to V n+2 is warranted. If the output is still 

very close to the previous state, V n' it is reset to the previous state and a 

new event time is calculated for the transition to V n+l. If the output is 

somewhere in between the two states, a new transition time is calculated 

using V n and the new value of the input node. The event is then 

rescheduled at the average of the original event time and the new event 

time. 

The number of Elogic voltage levels selected and their position 

have an important impact on the accuracy and speed of simulation. 

Specifically, the precision with which a given voltage can be represented 

is limited by the set of voltage levels chosen in an Elogic model. If the 
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actual value of a node voltage is between two Elogic states, the node 

voltage must be set to the closest defined level. This operation is analo­

gous to a roundoff process and it produces a roundoff error. The 

number of states can always be increased to improve the precision in 

representing a particular voltage. However, since it is necessary to visit 

each intermediate state whenever a transition is made from some initial 

state to the final state, the simulation time increases as the number of 

states increases. It is this continuous tradeoff between speed and preci­

sion that makes Elogic particularly attractive as it effectively spans the 

large speed/precision "gap" between classical electrical and logic simula­

tions. The user can use very few states in the preliminary design phase 

to verify the functionality of the circuit and obtain crude first-order tim­

ing estimates. As the design matures, more and more states can be 

added as necessary to improve the accuracy of the analysis. In addition, 

different parts of the same circuit can be simulated using a different 

number of states; this constitutes mixed-precision simulation, which is a 

special form of mixed-mode simulation. 

The detailed calculations for the transition time are now described 

using the two nonlinear devices connected to a linear grounded capacitor 

given in Fig. 6.5(a). Assume that the initial state of the node is V no 

When the output node is processed, the nonlinear devices are first con­

verted to linear devices. This can be done using either a small-signal 

model, which uses the incremental conductance and current of the device 

relative to a given operating point, or a line-through-origin model which 

uses the large-signal conductance of the device. In either case, the 

model is obtained by a table lookup scheme. The linear equivalent net­

work following this step is shown in Fig. 6.5(b). From this circuit, it is 

clear that the steady-state value of the output node is 
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Vout=Vn 

, 

Figure 6.5: Circuits Used to Calculate Transition Time 
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n n 
where IN = l: II and GN = l: GI• The next step is to detennine if the 

1=1 1=1 

node will undergo a transition from the present state to another adjacent 

state. This is done by checking if either: 

(6.2a) 

or 

(6.2b) 

If either condition is true, a transition time calculation is warranted. 

The dynamic behavior of the linear equivalent circuit is given by 

(6.3) 

for which the closed fonn solution is 

(6.4) 

Using this equation, the transition time, At, can be calculated as follows: 

(6.5) 

A problem with this approach is that an expensive log function is 

required to calculate At every time a node is evaluated. One way to 

avoid this function evaluation is to use a table lookup log function. 

Another approach is to use a linear charging model in place of the 

closed-fonn solution. This approximation assumes that the excess 

current available from the current source is constant during the transition 

from one state to the next. In reality, the charging or discharging current 

for the capacitor tends to decrease as a function of time; therefore, the 
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model is always optimistic. This model can be derived by applying the 

forward-Euler integration method to Eq. (6.3) 

Cg 
-(V 1 - V) = IN - GNV M M n n (6.6) 

Then, 

(6.7) 

6.4.2. The Elogic Algorithm 

The details of the Elogic simulation algorithm are presented below. 

In the algorithm, Elogic is implemented using event-driven techniques 

since a node schedules its fanouts for processing only when it achieves a 

new state. If a fanout node has already been scheduled at a some time 

tE, in the future, it will be rescheduled at the present time, t j • 

Algorithm 6.1: (Electrical-Logic Simulation Algorithm) 

/* processing node i */ 
if ( tj=tn+l OR Vj=V Ml ) { /* reached new state */ 

recompute ~ FALSE; 
update voltage, V I~ V n+ 1; 

/* fanout scheduling * / 
forall ( fanout nodes k of node i ) 

schedule ( node k at time tl ); 

else { /* did not reach new state */ 
reset voltage, VI~ V n; 
reset time, tj~tn; 
if ( V1=V n) recompute ~ FALSE; 
else recompute ~ TRUE; 
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} 

GN+-O and IN+-O; 
forall (fanin nodes k of node i) { 

replace node k by a constant voltage source; 
compute Gk and Ik ; 

update GN and IN; 

compute V SS' the steady-state voltage; 
/* Check/or transition using Eq. (6.2) */ 
if ( node i can make a transition) { 

transition +- TRUE; 
compute transition time, At, using Eq. (6.2) or (6.7); 
if (recompute = TRUE) At=(Atn+Atn+1)/2; 

else transition +- FALSE; 
if ( transition = TRUE ) { 

if ( (ti + At) < TSTOP ) /* self-scheduling */ 
schedule ( node i at ti + At ); 

else {do nothing}; /* latency exploitation */ 

6.4.3. Problems with the Elogic Approach 

The Elogic algorithm, if implemented exactly as described above, 

may encounter certain problems that lead to excessive computer run 

times or reduced accuracy. The first problem is that of algorithmic 

oscillation of a node voltage where one does not exist in the true solu­

tion. The simple form of this problem arises if the steady-state solution, 

V SS' lies between two discrete Elogic states. For example, if V ss lies in 

the range VI <V ss<V 2' then the node will be assigned to the value VI or 
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V 2, whichever is closer to V ss' However, if the node is re-evaluated 

using the new Elogic state voltage, it may force the node to move in the 

opposite direction, in which case it will be set to the other neighboring 

state. Again, since the true solution is in between the two defined states, 

the node will attempt to make another transition in the opposite direction 

creating an oscillation situation. 

One approach to resolve this problem is to detect oscillations and 

then suppress them. This may lead to the inadvertent suppression of 

actual oscillations in the circuit; therefore, it is not an attractive solution. 

Another approach is to introduce hysteresis into the state transition cri­

terion whenever the node voltage changes direction. Simple oscillation 

usually occurs as the steady-state voltage is reached. Therefore, if the 

sign changes on the time derivative of voltage, it is appropriate to 

require a significant change in the value before a transition in the oppo­

site direction is undertaken. For example, the transition could be 

scheduled if the new steady-state voltage is beyond the midpoint of vol­

tage region just visited during the last transition. Using this strategy, a 

transition occurs only if V ss > (V n+V 0+1)12 or V ss < (V n+V n - 1)12. 

Another way to resolve the problem is to simply set the node to an inter­

mediate "illegal" voltage level when the steady-state interval is reached. 

The node is permitted to leave this illegal state only if it is scheduled by 

another node. 

There is a second source of oscillation, termed interactive oscilla­

tion, which is more insidious and involves two or more nodes. As 

shown for the circuit in Fig. 6.6(a), the problem occurs when two neigh­

boring nodes use each other's values to determine their next states and 

the true solution lies between two Elogic states. In this case, node A is 

scheduled to make a transition from 1 V to OV, while node B is 

scheduled to make a transition from OV to IV. However, after the 
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transitions occur, both nodes make a transition in the opposite direction, 

and this process continues indefinitely. This type of oscillation is more 

difficult to detect than the simple oscillations described earlier, but the 

problem can be solved by introducing more states into the Elogic model. 

A third problem arises due to strong coupling between two or more 

nodes in the circuit. This problem can be illustrated using a simple cir­

cuit as shown in Fig. 6.6(c), where G1=Imho and G2=9mhos, and ini­

tially VA = VB = 0 V. Note that in evaluating node A, a zero volt 

source is applied at node B thereby grounding it. The Norton equivalent 

model seen by node A is computed as follows: 

IN = 5 G 1 = 5 x I = 5 (A) (6.8a) 

GN = G 1 + G2 = I + 9 = 10 (mhos) (6.8b) 

Therefore, the Thevenin equivalent voltage is 

(6.8c) 

Clearly, if the voltage change necessary to warrant a transition is larger 

than O.5V, the basic Elogic method would not attempt to transfer node A 

to the next adjacent state. As a result, both V A and VB would remain at 

zero volts. As described earlier, strong coupling affects the convergence 

speed of IT A and WR, whereas in the case of Elogic, it results in a tran­

sition error. For this circuit, the maximum voltage step which can be 

used depends on the ratio of G1 and G2 and, in general, the Elogic states 

for a given problem should be selected with this rule in mind. Another 

solution to this problem is to determine the steady-state voltages of all 

nodes in a set of SCNs using switch-level techniques, and then schedule 

transitions based on this analysis [TSA85]. 
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6.5. A SURVEY OF SWITCH-LEVEL TIMING SIMULATORS 

A number of other switch-level timing simulation techniques have 

been developed over the past decade that are also appropriate for use in 

a mixed-mode simulator. The original work in this area was, of course, 

the timing simulation algorithms of MOTIS [CHA75] as described in 

Chapter 4. More recently, there have been a number of notable contri­

butions that are embodied in the programs RSIM [TER83], SPECS 

[DEG84] , MOTIS3 [TSA85], ADEPT[ODR86], SPECS2 [VIS86], and 

iDSIM [RA089]. The techniques used in these programs are reviewed 

briefly below. 

The RSIM program attempted to produce timing waveforms for the 

switch-level technique by adding a linear resistor in series with each 

transistor switch and providing a capacitor to ground at each node. The 

value of the resistor was set to infinity when the gate voltage was low 

and to some finite resistance when the gate was high. Resistance values 

were calculated using the length and width of the transistors. The logic 

state model included only 0, X and 1. During the simulation, the 

transistors were replaced by their equivalent resistances and then com­

bined to form a Thevenin equivalent circuit, with resistance Rdrive and 

voltage source V they' driving a loading capacitance, C1oad. When a tran­

sition was expected at a node, the time required to make the transition 

was computed as Rdrlve><Cload. Since the values of Rdrive for low-to­

high transitions and high-to-Iow transitions were computed using 

different values of resistances for the transistor, the accuracy was often 

within 30% of SPICE2 for many circuits while providing over two ord­

ers of magnitude of speed improvement. The Elogic method can be 

viewed as an extension of this approach with the flexibility of allowing 

more states and having table lookup equivalent models for the transistors 

in each state. 
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The "fast timing" simulation approach of MOTIS3 is based on the 

Elogic algorithm. However, a backward correction scheme is used with 

the variable voltage step scheme to improve accuracy and avoid oscilla­

tory behavior. First, the net current, I net, available to the charge the load 

capacitance, C1oad' is calculated. Then the time required to make the 

transition is calculated using either an exponential model or the 

forward-Euler model (shown here): 

(6.9) 

Next, the value hn is used to perform a regular integration step to com­

pute a new target voltage, V'n+l' Finally, hn is scaled to produce the 

actual event time: 

(6.10) 

One additional contribution in MOTIS3 is the use of a so-called "super­

block" approach to handle tightly-coupled nodes. First, the steady-state 

voltage, V SS' of every node in the superblock is computed. Then, the 

delay calculation for each node and the minimum delay is assigned to 

the superblock. The node voltages in the superblock are scaled with 

respect to this delay. 

The ADEPf approach is also similar in many ways to the basic 

Elogic approach described in the previous section. Like the MOTIS3 

approach, it allows variable voltage steps to be used to improve accuracy 

at the expense of additional CPU-time. However, its most distinguishing 

feature is the implicit dynamic partitioning approach used to process 

tightly-coupled nodes. In ADEPf, when a node i is computed, the 

nodes, {j}, that are neighbors of i are checked for tight coupling to i 

using the criterion: 
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(6.11) 

All neighboring nodes that satisfy this criterion are solved using local 

relaxation methods to produce the correct results. Since this is applied 

to every node separately, it can be viewed as overlapped, dynamic parti­

tioning. 

Another promIsmg variable precision approach has been imple­

mented in the SPECS2 program, which is based in part on the tech­

niques used in SPECS [DEG84]. A tree/link based equation formulation 

[CHU75] is used in the program, instead of the standard nodal formula­

tion described in Chapter 2. This approach is well-suited to the simula­

tion of circuits containing ideal switches that have infinite resistance 

when OFF and infinite conductance when ON. Devices with these pro­

perties are very troublesome in the context of nodal analysis. In 

tree/link based analysis, a circuit graph is constructed from the circuit 

description and a tree is identified in the graph. A tree is defined as a 

connected, acyclic subgraph that contains all the nodes of the original 

graph. The branches that belong to the graph are called tree branches 

while the remaining branches are the links. The links combine to form a 

cotree. Once the tree has been defined, a cutset is identified in the tree. 

A cutset is some subset of the branches of a tree such that their removal 

results in a graph that is no longer connected, but the insertion of any 

one of the branches from the removed set results in a connected graph. 

Cutsets are the subgraphs to which KCL is applied, and loops are the 

subgraphs to which KVL is applied. The fundamental cutsets and loops 

are used to formulate the circuit equations. 

SPECS2 uses table models to define the device I-V characteristics 

as shown in Fig. 6.7(a). Note that the segments are piecewise constant, 

forming a set of step functions, as opposed to being piecewise linear. 
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These steps are important in the event-driven approach of SPECS2 since 

an event occurs whenever a device reaches a "comer" of its step model, 

as shown in Figs. 6.7(b) and 6.7(c). Here, events occur at t I, t2 and t3 

since V I, V 2 and V 3 are all boundaries of the device step model. For 

example, at t2 there is a change in the current through the device from i I 

to i2• As a result, the corresponding device is processed with the new 

current value and the next event is scheduled at the next comer in the 

table. The effect of this change on the rest of the circuit is taken into 

account via subsequent event scheduling and processing. 

The SPECS approach is also prone to spurious oscillations, as are 

many other variable precision algorithms. The strategy used in SPECS2 

to overcome this problem is to place the element into a pseudo-steady­

state condition. This is done by picking a current for the device which 

is in between the currents in the table model whenever the direction of 

the current derivative (with respect to time) changes sign. The value is 

selected to place the device in steady state. If the device is truly in 

steady state, it will remain in this condition. On the other hand, if it is 

not, it will be forced out of it by the other elements in the circuit. 

Therefore, true circuit oscillation will not be suppressed but algorithmic 

oscillation will be prevented. 

The iDSIM program uses macromodeling combined with waveform 

relaxation to perform switch-level timing simulation. The switch-level 

network is preprocessed to identify series-parallel connections of transis­

tors to form composite transistors. A set of macromodel parameter 

tables is generated for each composite transistor based on the device gate 

voltage, device size, threshold voltage, and other factors that affect 

delay. The actual simulation is performed in two steps. First the circuit 

is analyzed using switch-level techniques to identify the transitions that 

will occur during the simulation. These transitions produce break points 
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in the waveforms that, in tum, define the time intervals for detailed 

simulation. The second step is to perform the delay analysis to compute 

the transition times using the tables generated for the devices. If there 

are no feedback loops in the circuit, one pass of this algorithm is 

sufficient to produce the desired results. When feedback loops are 

present, a waveform relaxation approach is used with partial waveform 

convergence to compute the final results. 

6.6. THE MIXED-MODE INTERFACE 

A major issue in all mixed-mode simulators is the problem of inter­

facing of two or more simulation modes. This problem arises only when 

elements from different modes of simulation are connected at a common 

node. There are two possibile directions of signal conversion: one from 

the lower level of simulation (more detailed) to the higher level of simu­

lation (less detailed), and a second going in the opposite direction. For 

example, logic simulation and electrical simulation require signal conver­

sions from logic to electrical simulation and from electrical to logic 

simulation. Typically, it is easier to translate a signal from a lower level 

of simulation to a higher level since the conversion involves removing 

unnecessary details from the signal. Signal conversions from higher lev­

els to lower levels are more difficult to perform. In fact, it is the 

conversion of signals from the logic domain to the electrical domain that 

is most troublesome and this is the key problem addressed below. 

Early mixed-mode simulators used elements called logic-to-voltage 

(LTV) converters and logic-to-current (LTI) converters [NEW78] to per­

form signal mapping across the logic to the electrical interface. LTV 

converters were used to translate logic signals that were either 0 or 1 to 

an equivalent electrical Voltage. A finite tra.'1sition time was added for 

rising or falling logic waveforms to avoid convergence problems in the 
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electrical algorithms. Because the input resistance of an ideal LTV is 

zero, this model was only adequate for driving high impedance loads, 

such as the gate node of an MOS transistor. The LTI converter was 

used at the interface whenever it was necessary to model the current­

sourcing or current-sinking properties of a logic gate. An ideal L TI has 

an infinite input impedance and is, therefore, suited to driving low 

impedance loads such as the base of a bipolar transistor. These two con­

verters are illustrated in Fig. 6.8. 

The DIANA program [ARN78] introduced the concept of the 

Boolean-controlled switch (BCS) model where the state of a logic ele­

ment was used to select one of two linear equivalent models. This was 

an important step in the modeling of the logic to electrical interface. 

The BCS model depicted in Fig. 6.9 selects the RD-EO model if the out­

put is falling and the R I-E I model if the output is rising. The chosen 

model is presented to the electrical portion of the circuit and the node is 

then processed as part of electrical simulation. The values of the ele­

ments in the two Thevenin equivalent models can be adjusted to improve 

the accuracy, but the overall accuracy of this approach is limited. To 

understand the reason for this, the LTV, LTI and BCS converters are all 

shown in the same R-V plane in Fig. 6.10. Here, the inverter is 

assumed to be represented at the logic level and the pass transistor at the 

electrical level. The LTV model appears as a line at the zero resistance 

level while the L TI model appears as a line at the infinite resistance 

level. Clearly, these two models do not adequately represent the dc out­

put characteristics of the inverter and so the accuracy during transient 

analysis is expected to be poor. On the other hand, the BCS model 

appears as two points and allows more precision in following the 

transfer curve. Here, the BCS mode has been chosen for the inverter out­

put only. Unfortunately, this model only provides limited accuracy 
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Figure 6.8: LTV and LTI Converters 

Figure 6.9: Boolean-Controlled Switch Model 
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during transient analysis since the features of the curve cannot be cap­

tured by two points alone. 

One way to improve the accuracy of this approach is to allow more 

points along the trajectory of the dc transfer characteristic. This is the 

basic idea behind a generalization of the BeS model, called the voltage­

controlled switch (VeS), as shown in Fig. 6.11. The use of this 

approach was first suggested in (KLE84] and is based on the Elogic 

modeling approach. Rather than choosing 1-out-of-2 models to represent 

the output, a choice of l-out-of-n models is now available. The value of 

n depends on the number of voltage levels selected by the user. The 

greater the value of n, the better the accuracy. However, as shown ear­

lier for the Elogic method, the CPU-time is proportional to the number 

of voltage states selected. Hence, a speed/accuracy tradeoff exists. 

The generalized model is plotted on the R-V plane in Fig. 6.12. 

A ves model constructed from a five-state Elogie model is able to fol­

low the trajectory of the curve quite closely; this greatly improves the 

accuracy during transient analysis. The transient performances of the 

BeS and ves models are shown in Fig. 6.13 for the same example. 

When the inverter is represented using a BeS model, the results shown 

using the dotted lines are produced at node A. The five-state ves 
model produces the results shown by the dashed lines. The actual 

results, derived using full electrical simulation, are also shown by a solid 

line. Oearly, both models adequately capture the details of the 

waveform at node A. However, the ves based on the Elogic modeling 

approach provides better overall accuracy compared to the simple BeS. 
This interface modeling approach is now used in many mixed-mode 

simulators. 



164 

V 

MIXED-MODE SIMULATION 

R 

K 
200~--~-4---+--~--~--

K 

150~--~-4---+-+-+-~-

K 

100~---If---+---+----+---+--

KI----I---J.'-L1.:......-+----.:p~=-- • Be s 50 

o 1 2 3 4 

o ves 

5 v 

Elogic (ElL) 

Figure 6.12: ves Model on R-V Plane 

5.00 

4.50 

4.00 

f# :r :: II 

1. VI 
3.50 

3.00 

2.50 

2.00 

1.50 

1.00 

0.50 
\, 

Ons 20ns 40ns 

electrical 
ReS·······, 
Vcs----

time 

Figure 6.13: Transient Analysis Using BeS and ves Models 



CHAPTER 7 

IMPLEMENT A TION OF MIXED-MODE SIMULATION 

This chapter describes the issues involved in implementing a 

mixed-mode simulator. The iSPLICE3 program [SAL89A] is used as a 

case study since it uses many of the algorithms described in the previous 

three chapters. The chapter begins with an overview of the architecture 

of iSPLICE3. Then, the issues associated with the implementation of an 

event scheduler are presented. Following this, the event scheduling 

issues during the transient analysis are described. Next, the techniques 

used to obtain the dc solution are provided. Finally, a number of simu­

lation results using industrial examples are presented to indicate the per­

formance of the program compared to SPICE2. 

7.1. SIMULATOR ARCHITECTURE 

To remain useful over its lifetime. a simulator must have the ability 

to expand and grow as the technology and simulation requirements 

evolve. To accomplish this, a simulator should be organized so that new 

algorithms and models can be easily added to the existing environment 

Ideally, the addition of new algorithms or models should only involve a 

recompilation of the program to include the new routines. However, in 

practice, usually a few tables in a number of files must be modified to 

provide key pieces of information regarding the new models and algo­

rithms. 

In mixed-mode simulation, the use of event-driven, selective-trace 

in all modes of simulation is a unifying mechanism. To establish event­

driven, selective-trace simulation, a time-queue and an event scheduler 

are required, and the notion of an event must be defined at each level of 
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simulation. In iSPLICE3, each event data structure has associated func­

tion, time and data fields. When an event is processed, the function is 

perfonned on the data at the prescribed time. New events may be 

scheduled in the queue as part of the call to the function. Special simu­

lation related tasks may also be scheduled in the time queue along with 

regular simulation events. This organization makes it relatively simple 

to add new simulation algorithms and functions since the structure of the 

events allows any type of function to be executed. 

The basic simulation flow of iSPLICE3 is as follows: 

maine ) 
{ 

} 

• 

readin( ); 

build_subcircuitsO; 

schedule ( setup_dc_analysis , t=O- ); 

forall ( subcircuits 81 in the circuit) 

schedule ( 81 , t=O ); /* for dc solution */ 

schedule ( start_transient, t=O+ ); 

1* MAIN SCHEDULER LOOP: */ 
while (time queue is not empty) { 

} 

event ~ GetNextEventO; 

function ~ event.simulation_Mode; 

time ~ event. time; 

data ~ event.simulation_Data; 

1* Perfonn task associated with event */ 
function ( data, time ); 
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The circuit is first read in and divided into subcircuits during the 

readin() and build_subcircuits() phases. At the present time, the subcir­

cuit types may be either LOGIC, ELOGIC, or ELECfRICAL, and are 

determined by the input circuit description provided by the user. 

iSPLICE3 determines the subcircuit type based on the devices connected 

to nodes in the circuit. For example, if a node has only ELOGIC dev­

ices connected to it, it will be labeled as an ELOGIC node. If it has 

only LOGIC devices connected to it, then it will be labeled as a LOGIC 

node. However, if there is at least one ELOGIC device controlling the 

node (Le., the drain or source of a transistor), it will be labeled as an 

ELOGIC node. Similarly, if there is at least one ELECfRICAL device 

with a controlling node connected to it, it is labeled as an ELECTRICAL 

node. After the node assignments are completed, the ELECTRICAL 

nodes are further partitioned into subcircuits of tightly-coupled nodes as 

part of the standard ITA relaxation algorithm. Finally, the subcircuits 

and fanin and fanout tables are constructed using the node assignment 

information. 

The next step is to schedule the setup_dc_analysis() event, and 

then schedule all the newly created subcircuits for evaluation at time t=O 

as part of the dc solution. The last event to be scheduled before entering 

the processing loop is the starctransient() event, which is executed 

immediately after the dc solution is obtained. The program then enters 

the main loop where the scheduler sequences through the list of 

scheduled events. It remains in this loop until there are no events in the 

queue, at which time the program stops. The inner part of the loop 

involves obtaining the next event and then executing the function associ­

ated with the event. Examples of simulation functions scheduled in the 

time queue are ELECTRICAL_event(), WGIC_event() and 

ELOGIC _event(). 
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The basic flow for a simulation event is shown below: 

simulation_event( Sj, tN ) 

{ 

• 

gecinpuc voltages(SI ); 
process_subcircuit(SI); 
if (SI is active) 

schedule ( Sj , tN+l ); 

foreach ( node j in SI) 
foreach ( fanout subcircuit Sj of node j ) 

if (node j has crossed a critical threshold of Sj) 
schedule ( Sj , tN ); 

First the external voltages for the subcircuit are obtained. Then the 

subcircuit is processed using the appropriate analysis mode. If the vol­

tages in the subcircuit have changed, the subcircuit is rescheduled for 

evaluation at a later time. Then the fanouts are scheduled at the current 

time if any important thresholds have been encountered. Other functions 

may also be scheduled in the same time queue for any special operations 

required during the simulation. Examples of such functions are 

setup _dcanalysis() , setup _transient() , gectime_step(), backup _time(), 

wakeuPJall() and process-pwl(). 

7.2. EVENT SCHEDULER DESIGN 

In this section, a number of alternative strategies for the implemen­

tation of event schedulers are described. In designing a scheduler, a 

number of important issues relating to scheduler function and efficiency 

must be addressed. First, the event scheduler must have some notion of 
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a time sequence and must be able to associate an event with a particular 

point in time. It may also be necessary to arrange events at a particular 

time point in some sorted order. Occasionally, the simulator will 

schedule an event and later decide that the event is no longer necessary. 

Hence, the scheduler must have the capability of canceling a pending 

event. Finally, the scheduling operations must be efficient, since they 

add to the simulation overhead. The event insertion/deletion operations 

must be relatively fast and the time sequencing through events should be 

efficient. Both of these requirements can be acheived by maintaining 

some uniformity in the event distributions in the scheduler, as will be 

seen. The scheduler overhead is usually insignificant for electrical 

analysis (since the events themselves are usually computationally inten­

sive), but it may be a dominant factor in switch-level or higher levels of 

simulation where event processing operations are relatively simple. In 

general, the scheduling overhead should not consume more than 5-10% 

of the total simulation time. With these considerations in mind, the fol­

lowing implementations of event schedulers commonly found in mixed­

mode simulators are presented. 

7.2.1. Linear Linked-List Structure 

To simplify the description initially, consider the situation where 

events may only be scheduled at integer multiples of a basic unit of 

time, L\t. The simplest structure for this type of scheduler is a linear 

linked-list of events in a time-sorted order as shown in Fig. 7.1. The list 

is usually referred to as a time queue and events are added to the queue 

by scanning through existing members of the list, starting at the present 

time (PT) pointer, and inserting them at appropriate points in the queue 

based on their respective event times. Events are processed in order 

starting with the event pointed to by PT. One problem with this 

approach is that the complexity of adding N events to the list is O(N2). 
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PT 

A B c D E 

t2 
F 

K J I H G 

t4 t3 

Figure 7.1: Linear Linked-List 

A similar complexity exists when deleting events from the list. 

7.2.2. Indexed List Methods 

A somewhat more efficient organization, called a linear indexed 

list, is shown in Fig. 7.2 where the list contains headers that point to the 

true event list for each time point. These headers will be referred to as 

time-point headers (H) and the corresponding lists as time-point event 

lists. The time-point headers allow easy access to the time-point event 

lists where new events are to be added. As shown in the figure, the 

insertion process can be facilitated by including a tail pointer for each 

time-point event list. Therefore, adding an event is O(H) and removing 

an event is O(H+N). Of course, the time-point headers must be scanned 

first to locate the correct list to insert the event. To avoid this, the 

headers can be organized as an array and indexed directly using the 
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event time. This is referred to as an array indexed list. The method 

relies on the fact that the events are always scheduled at integer multi­

ples of At. For example, an event at PT +iAt would be inserted into the 

time-point list which is i units from the current time pointer, PT. If a 

tail pointer is used to link events to the end of the list, the insertion 

time for each event is 0(1). Event cancellation involves indexing into 

the correct time-point event list and searching for the proper event to 

remove from the list. Hence, event cancellation is still O(N) although 

the pre-multiplier of N is small. 

PT 

PT B 

PT+At c D E 

'~ ________________________ -J/ 

Events 

PT+2At 
'---/ 

Time Point Headers 

Figure 7.2: Linear Indexed List 
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The array indexed-list approach has the advantage that the correct 

header pointer can be accessed quickly. However, it cannot adapt to 

changing event distributions as easily as the linear indexed-list in Fig. 

7.2. That is, the method is useful if the event distributions are uniform 

but may degenerate to the linear linked-list (Fig. 7.1) if the event distri­

butions are nonuniform as shown in Fig. 7.3(a). If the event distribution 

becomes nonuniform, it is possible to adjust the At accordingly to pro­

duce a more uniform distribution, as shown in Fig. 7.3(b). This involves 

modifying all the header pointers in the array indexed-list to reflect the 

new At value and could be an expensive operation. In the linear 

indexed-list method, only the headers in the region of evenl congestion 

need to be modified to make the distribution more uniform. This 

method also accommodates varying At's from one header to the next 

However, as stated earlier, event insertion is O(N) in this approach ouc 

to the scanning process involved. The array-based approach requires 

scanning consecutive entries in the array only during the event process­

ing phase and skips over time points where no events are scheduled. 

7.2.3. Classical Time-Wheel 

The classical approach to the scheduler design uses a time-wheel 

[BRE76] mechanism as illustrated in Fig. 7.4. This structure allows the 

indexed list to "wrap-around" so that the array of headers can be reused 

once the events associated with that entry have all been processed and 

the PT pointer has been incremented. For example, when the events at 

time PT have all been processed, the header at PT can be reused to 

represent the time PT +MAt, assuming that the array has M elements. 

Using the MOD function, the PT pointer is always updated as follows: 

PT = (PT + 1) MOD M 
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Figure 7.3: Nonunifonn and Unifonn Event Distributions 
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The obvious advantage of this approach is that a predetennined amount 

of memory can be allocated for the time queue a priori. However, 

dynamic memory allocation will still be required for events which occur 

at time points greater than t+Mi\t units in the future. They may be 

organized in an overflow or remote list. At some point, these remote 

events must be brought into the time queue. Since the events in the 

remote list are usually somewhat more expensive to insert or remove 

than events in the time queue, it is not efficient to update the time queue 

with events from the remote list every time a time-point event list has 

been processed. However, as more and more time points are processed, 

the probability that new events will end up in the remote list increases. 

and this is undesirable. Therefore, it is better to move events from the 

remote list to the time queue periodically, i.e., after processing k time 

points in the time wheel. 

Another source of inefficiency is due to the fact that many headers 

may not point to any events. These headers must be scanned anyway 

and this consumes additional CPU-time. The distribution of the events 

in the time queue, hence the sparsity, depends on the value of At. For 

example, if At is very small, only a few events will be scheduled at each 

time point, if any. On the other hand, if At is large, the events will 

densely populate the region of time near the current time pointer, PT. 

Both situations will reduce the scheduler perfonnance. Hence, the 

number of time points processed before bringing in remote events (k), 

the size of the time wheel (M) and step size between adjacent entries in 

the time wheel (At), and indeed how efficiently the remote list is 

managed have an impact on the efficiency of this type of scheduler. 

Typical event distributions should be examined to select the appropriate 

values for these parameters for a given application. 
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For all t, 
t;;:: PT + MAt 

Figure 7.4: Classical Time-Wheel Mechanism 

7.2.4. Managing Remote Lists 

175 

The remote list usually contains a small number of events if the 

proper parameter values are selected for the time queue. It usually con­

tains events associated with external sources and these events are often 

sparse in time. The objective is to ensure that the ratio between events 

in the time queue and remote list does not exceed a certain threshold. If 

it is not anticipated that many events will be scheduled in the remote list, 

it may be organized as a simple linear linked list. 

There are other situations where a more elaborate organization of 
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the remote queue is required. In the case of electrical simulation, some 

components may take small time steps during a transition while others 

use very large time steps due to the latency. Here, a secondary time 

wheel would be useful. It can be managed in exactly the same way as 

the primary time wheel except that each interval is defined to be kAt 

units of time. After kAt units of time have been processed in the pri­

mary time queue, all the events in the next interval of the secondary 

queue can be moved to the primary queue. In general, it is possible to 

have a set of remote time wheels, each having an interval, Ati , which is 

equal to kAtl _ 1, where Atl _ 1 is the interval used by the previous time­

wheel. If a variable number of time wheels are used, another level of 

indexing would be useful in selecting the proper time-wheel. 

The scheduler used in iSPLICE3 is similar to the classical timc­

wheel mechanism. However, rather than a single time-wheel, a pair 01 

time queues with M/2 entries and a remote list are used. While events 

are being processed from the first queue, new events may be scheduled 

either in the remaining portion of the first queue, in the second queue or 

in the remote list. The remote list is maintained as a simple linear 

linked-list. When the end of the first queue is reached, the second queue 

becomes active and the first queue is adjusted to represent the next 

(M/2)At units of time. Any appropriate remote events are moved from 

the remote list to the first queue. When the end of the second queue is 

reached, the first queue becomes the active queue again while the second 

queue is modified to represent the next (M/2)At units of time. This 

scheme represents a compromise between bringing in new events after 

each time point list is processed and bringing in remote events only after 

all events in the queue have been processed. 
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Figure 7.5: SPLICE Time Queue Data Structure 
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7.2.5. Other General Scheduling Issues 

In the above description, it was assumed that the events are only 

scheduled at integer multiples of a basic unit of time, At. However, in 

electrical simulators, there may be a requirement to schedule events at 

virtually any point in time between 0 and the end of the simulation, T. 

In this situation, a few additional modifications must be made to the 

scheduler. The structures shown in Fig. 7.2 and Fig. 7.3 can still be 

used except that the At's now indicate the ranges of times of the events 

scheduled in a particular event list. That is, the events at time, tsched ' 

associated with the jth entry in the queue, actually lie in the range 

t+jAt S tsched < t+(j+ l)At. Note that an event can no longer be 

scheduled at the end of a time point list, but instead, it must be inserted 

into the correct position according to its event time and the times of 

other events in the list. Oearly, the key to an efficient implementation 

for this case is to know where to start the search, as described below. 

To suit the general scheduling problem, a technique referred to as 

the cached-indexed list method [KLE84] may be used. It uses the 

"locality of reference" property of event scheduling, meaning that exist­

ing events are usually c1usted together in groups and new events are usu­

ally scheduled in the vicinity of previously scheduled events. In this 

approach, the headers are used as cache pointers which point to the most 

recently inserted event in a particular time interval. A cache pointer is 

used as a starting point for searches in the interval of the insertion, 

unless it happens to point to an event which is chronologically ahead of 

the event to be inserted. The cache pointer is then considered to be 

invalid. In that case, the headers are searched in reverse order until a 

valid cache pointer is found to begin the search. A valid cache pointer 

is defined as the first one which points to an event which precedes the 

event to be inserted. After adding the event, the original invalid header 
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is updated to point to the new event. One of the benefits of this 

approach is that the method does not rely on the validity of the cache 

pointers. Therefore, if At is modified, the headers need not be adjusted. 

Instead, the same rules of scheduling are used, and as events are added 

or dropped from the list, the cache pointers will eventually be restored to 

some equilibrium condition. This approach was used in SPLICE2 

[KLE84]. 

7.3. TRANSIENf ANALYSIS AND EVENT SCHEDULING 

iSPLICE3 performs both dc analysis and time-domain, transient 

analysis of MOS and bipolar integrated circuits. Transient analysis is 

generally the most time-consuming and memory-intensive task in simula­

tion but the mixed-mode techniques used in the iSPLICE3 program can 

reduce the simulation time significantly compared to that for SPICE2. 

iSPLICE3 has three simulation modes: circuit level simulation 

(ELECTRICAL) which uses iterated timing analysis, switch-level timing 

simulation (ELOGIC) and gate-level logic simulation (LOGIC). Each 

mode can be used independently or combined in a mixed-mode simula­

tion. The details of each algorithm have been described in the previous 

chapters. 

One issue that has been overlooked is that of event scheduling 

between different levels of simulation. A set of rules governing the 

scheduling policy from each simulation mode to other simulation modes 

must be defined. For example, one filtering operation that must be per­

formed when processing ELECTRICAL subcircuits is to schedule their 

non-ELECTRICAL fanouts only when convergence occurs. This 

prevents non-ELECfRlCAL fanouts from being processed unnecessarily 

with partial solutions during the iterations of ITA. However, other 

ELECTRICAL fanouts must be scheduled during the iterative process of 
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ITA. ELECfRICAL subcircuits schedule their LOGIC fanouts when­

ever a V IL or V IH threshold is encountered during an upward or down­

ward transition, respectively. Similarly, ELECfRlCAL subcircuits 

schedule their ELOGIC fanouts if they have encountered an ELOGIC 

state during the last transition. This is consistent with the scheduling 

used among ELOGIC subcircuits. 

An ELOGIC subcircuit schedules its ELECfRICAL fanout subcir­

cuits whenever it reaches a new ELOGIC voltage state. However. 

instead of actually scheduling an ELECfRICAL subcircuit at the curren! 

time, it simply ensures that the subcircuit is active by issuing a 

wakeup_call() event to any fanout ELECfRICAL subcircuits. If the 

fanout is not active, the wakeup_call() simply schedules it where the 

other ELECfRlCAL subcircuits are scheduled. An ELOGIC subcircuil 

schedules its LOGIC fanouts if a V1L or VIH threshold has been encoun 

tered in its last voltage transition. LOGIC subcircuits schedule ELOGIC 

fanouts at each ELOGIC state along a transition of the logic waveform 

using wakeup_call()'s that are scheduled along transitions of logic 

waveforms. The same mechanism is used when LOGIC schedules 

ELECfRlCAL subcircuits. Input source events follow similar rules as 

described above and are also dependent on the types of devices con­

nected to them. 

One additional complicating factor in intersimulation scheduling is 

due to rollbacks or step rejections. It may be necessary to occasionally 

cancel a pending event or reject a time-step and begin reprocessing at an 

earlier time. When this occurs, the scheduler must be backed up and the 

subcircuits rescheduled and reprocessed accordingly. The subcircuit 

which encountered the rejection is processed initially. If its new solution 

differs significantly from the previous one, its fanout subcircuits are 

scheduled. Otherwise, no scheduling operations are performed. 
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Similarly, the fanouts are processed and they compare their newly com­

puted solutions with previous solutions and schedule their fanouts only if 

the new solutions are different from their old solutions. Both ELOGIC 

and LOGIC schedule events on fixed grid boundaries so that slight varia­

tions in the computed schedule times are not inferred as different solu­

tions. The rollback strategy ensures that accurate solutions will be 

obtained in an efficient manner. 

7.4. DC ANALYSIS TECHNIQUES 

iSPLICE3 provides a number of different techniques to obtain a de 

solution for a given circuit. For ELECfRICAL circuits, either the stan­

dard Newton method, source-stepping or gmin-stepping methods may be 

invoked [QUA89]. For circuits that are represented using the ELECTRI­

CAL, LOGIC and ELOOIC levels, iSPLICE3 uses an iterative mixed­

mode de solution scheme to initialize the node voltages, as follows: 

• 

repeat { 
process_LOGIC_nodesO; /* using logic simulation */ 
process_ELECTRICAL_and_ELOGIC_nodesO; 
/* using Newton's method */ 

} until (convergence) 
secELOGIC_nodesO; /* force to discrete values */ 
repeat { /* correct any nodes affected by last operation */ 

process_LOGIC_nodesO; 
process_ELECTRICAL_nodesO; 
/* leave out ELOGIC nodes */ 

} until (convergence) 
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The algorithm given above is perfonned at time 0 using event­

driven techniques. First, the LOGIC nodes are processed using zero­

delay logic simulation. Then the ELECTRICAL and ELOGIC nodes are 

processed using direct methods (Le., the standard Newton method). Any 

nodes that are different from their previous solution act to schedule their 

fanout nodes at time O. This process is repeated until convergence 

occurs. When the dc solution is obtained, the ELOGIC nodes are set to 

their nearest discrete values and the iterative loop is repeated once again 

to correct any values that may be affected by this operation. Unfor­

tunately, the convergence of the dc solution is not guaranteed in all 

cases. In fact, if the LOGIC nodes do not have a dc solution, or if a 

proper initial guess is not specified for the ELECTRICAL and ELOGIC 

nodes, the iterative process may not converge at all! 

While it is generally difficult to find a dc solution for LOGIC 

nodes that may oscillate when analyzed using zero-delay logic simula­

tion, iSPLICE3 uses a new technique to improve the likelihood of con­

vergence for ELECTRICAL and ELOGIC nodes in MOS digital circuits. 

This technique provides an initial guess that is usually close to the final 

solution, it ensures proper and reliable convergence and reduces the total 

number of Newton-Raphson iterations required. on MOS digital circuits 

described at the transistor level. First, the ELECTRICAL and ELOGIC 

portions of the circuit are solved using zero-delay, switch-level logic 

simulation [BRY80] to derive the initial conditions at each node. Then 

these logic values are converted to their corresponding voltage values. 

Next, the standard Newton method is applied to the same portion of the 

circuit, using the derived values as initial guesses. Since this technique 

provides an initial guess that is usually close to the final solution, it 

ensures proper and reliable convergence and reduces the number of 

overall iterations. This approach has been found to be 4-5 times faster 
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than the standard approach on MOS digital circuits and successfully con­

verges on circuits that fail to converge in SPICE2. 

In the simple algorithm above, the processing of feedback paths 

deserves some special attentiori since all nodes are set to the uninitialized 

state as the first step of the switch-level analysis at time O. iSPLICE3 

processes the nodes from the inputs to the outputs, but if there are feed­

back paths in the network, some of the node values needed for the 

evaluation may be uninitialized, which presents a problem in determining 

the state of the output node. For these situations, iSPLICE3 guesses the 

values of initial unknowns whenever required as either logic 0 or logic 

1, depending on the situation. If an incorrect guess is made, the feed­

back path will act to correct the situation in a subsequent processing 

step. This technique removes most of the uninitialized states at the out­

put nodes, particularly in troublesome circuits such as flip-flops. How­

ever, some nodes may be assigned to the X state if the correct state can 

not be determined during switch-level simulation. These nodes are reset 

to 0 V before applying the Newton method since it places NMOS 

transistors in the cutoff region of operation rather than in some high-gain 

region. 

As a simple example, consider the CMOS SR flip-flop circuit in 

Fig. 7.6. Assume that S=O and R=l, and Q and Q are uninitialized. 

Then, if the upper NOR gate is processed by assuming that Q= 1, a value 

of Q=O is produced. This value would be used to process the lower 

NOR gate and Q=O is produced. Since this value is different from the 

original assumption, the first NOR gate is reprocessed to produce Q=l, 

and the second reprocessed to produce Q=O. These are the correct solu­

tions and so the processing would stop. Next, the values would be con­

verted to their equivalent voltages and the Newton method would be 

invoked. A more interesing example is generated if 5=0 and R=O since 
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s 
Q 

R 
Q 

Figure 7.6: CMOS SR Flip-Flop Example 

the previous outputs are held in the flip-flop for this case. Normally, a 

program like SPICE2 would produce values of Q=2.5V and Q=2.SV 

(assuming a SV supply voltage) as the de solution, which is clearly 

incorrect. iSPLICE3 will produce either Q=O.O and Q=S.O or Q=S.O and 

Q=O.O and either case is an acceptable solution. Of course, the user can 

always override these values by initializing the flip-flops to any desired 

setting. 
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7.5. MIXED-MODE SIMULATION EXAMPLES 

In this section, three industrial circuits that have been simulated 

using iSPLICE3 are presented and compared to SPICE2. The circuits 

are as follows: (1) a portion of a 64K CMOS static RAM, (2) a CMOS 

phase-locked loop used in a clock generation and synchronization appli­

cation, and (3) a successive approximation AID converter design in a 

BiCMOS technology. The three circuits are listed in Table 7.1 where 

the columns indicate the circuit name and simulation program used, the 

number of ELECTRICAL transistors, ELOGIC transistors, and LOGIC 

gates in the simulation, the total CPU-time and the speedup over 

SPICE2. Note that iSPLICE3 is listed twice for each circuit, once for 

ELECfRICAL simulation and once for mixed-mode simulation. 

As the results indicate, iSPLICE3 is 30 to 40 times faster than 

SPICE2 for these circuits. Part of the speed improvement is provided by 

the ITA method which is 5 to 10 times faster than SPlCE2. The 

remainder of the speedup is provided by mixed-mode simulation. In 

general, the speedup for a given circuit will depend on the number of 

transistors that are simulated at the ELECTRICAL level since this is the 

most expensive mode of simulation. 

To illustrate the accuracy aspects of the program, consider the 

block diagram of a 64K CMOS Static RAM shown in Fig. 7.7. It is 

comprised of row decoders, column decoders, sense amplifiers, memory 

cells, etc., and is therefore ideal for mixed-mode simulation. The logic 

gates were carefully characterized for mixed-mode simulation using the 

corresponding transistor level circuits, and the appropriate parameter 

values for the gates were generated. Then, mixed-mode simulation was 

performed and two critical nodes were compared to the SPICE2 results: 

the output of the sense amplifier (node 160) and the data output bit 

(node 134). As Fig. 7.8 indicates, the results of the two simulations are 
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almost indistinguishable. Note that the results for node 134 compare an 

electrical simulation in SPlCE2 against E10gic simulation using 6-states 

in iSPLICE3, since E10gic was used for the output buffer circuitry. 

Therefore, the waveform features that are smaller than 1 volt are not 

present in the iSPLlCE3 results. The results for the other nodes in this 

circuit, and the nodes in other circuits, have similar accuracy characteris­

tics. Therefore, with proper attention to logic modeling and parameter 

extraction, the iSPLICE3 program can provide accurate simulation 
results with substantially shorter runtimes compared to SPlCE2. 

Program Transistors Gates CPU-time 

ELEC ELOGIC LOGIC (sec.) speedup 

Static RAM 

SPlCE2 277 0 0 3272 

iSPLICE3 277 0 0 504 

iSPLICE3 68 41 57 82.0 

Phase-locked loop 

SPlCE2 205 0 0 132000 

iSPLICE3 205 0 0 20827 

iSPLICE3 69 26 42 4117 

AID Converter 

SPICE2 1133 0 0 79200 

iSPLICE3 1133 0 0 10830 

iSPLICE3 243 294 175 2280 

Table 7.1: Performance Comparisons Between iSPLICE3 and SPICE2 
on a VAX 3500 Workstation 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1. SUMMARY 

A variety of techniques for mixed-mode simulation have been 

described in this book, focusing primarily on the combination of the 

gate-level, switch-level timing and electrical fOlIDs of simulation. 

Chapter 1 began with an overview of the different levels of simulation 

and provided the motivation for combining two or more levels into one 

simulator. Then, the basic issues in mixed-mode simulation were out­

lined and a brief survey of existing mixed-mode simulators was pro­

vided. In Chapter 2, the electrical simulation problem was fOlIDulated 

and the standard numerical techniques used to solve the problem were 

presented. The issues associated with the implementation of an efficient 

time-step control scheme were also described. In Chapter 3, two proper­

ties of wavefolIDs, called latency and multirate behavior, were defined 

and used to motivate the need for new circuit simulation methods. Then, 

relaxation-based electrical simulation methods were introduced to exploit 

these wavefolID properties, and their theoretical aspects were described. 

Circuit partitioning methods to improve the convergence speed of relaxa­

tion methods were presented at the end of the chapter. 

The electrical, gate-level and switch-level timing simulation algo­

rithms were presented in Chapters 4, 5 and 6, respectively. These tech­

niques make use of the event-driven, selective-trace paradigm which 

fOlIDs a common thread for all algorithms used in mixed-mode simula­

tion. The main contribution of Chapter 4 was an event-driven circuit 

simulation algorithm to exploit latency. The evolution of logic states 
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and logic delay models was presented in Chapter 5. The development of 

the Elogic simulation and modeling approach to resolve the signal map­

ping problems at the interface between electrical and logic elements was 

described in Chapter 6. 

In Chapter 7, the implementation details of the iSPLICE3 mixed­

mode simulator were presented. First, the overall architectural issues 

were described followed by a summary of the transient analysis tech­

niques used and event scheduling policies enforced between the different 

levels of simulation. The issues associated with the implementation of 

event schedulers for mixed-mode simulators were also described in 

detail. A technique for the dc solution of mixed-level circuits was out­

lined. Finally, a number of mixed-mode simulation examples were pro­

vided. 

8.2. AREAS OF FUTURE WORK 

Although a substantial amount of work has been done in mixed­

mode simulation, and much has been accomplished, there are still many 

promising areas of future work. In particular, automatic partitioning of 

transistor circuits, mixed-mode fault simulation, and analog multilevel 

simulation are topics of great interest in the research community. Each 

of these topics is outlined briefly in the sections to follow. 

8.2.1. Automatic Partitioning 

One problem not directly addressed in this book is that of defining 

the portions of a circuit to be represented at the various levels of abstrac­

tion. Normally, this task is the responsibility of the user since the circuit 

designer has the knowledge to perform the operation manually. How­

ever, one tool that would prove to be extremely useful in mixed-mode 

simulation is an automatic partitioner. Such a tool would be necessary 

when a transistor level description is extracted from a layout, or obtained 
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from any other source, and a functional verification is desired in as short 

a time as possible. The partitioner would scan the circuit description 

and define the different levels of abstraction that would be used to simu­

late different portions of the circuit and then provide this information to 

the mixed-mode simulator. 

Conceptually, this process takes a collection of components from a 

given level in the circuit description and replaces them with higher level 

primitives l to improve speed [RA089, ACU89], or with lower level 

primitives to improve accuracy [OVE89]. The complete partitioning 

operation involves two phases: recognition and characterization. Groups 

of components that combine to form higher level primitives in the circuit 

must first be recognized using either a rule-based approach or a table 

lookup scheme. Then the parameters for the higher level model must be 

generated from the lower level description in the characterization phase 

to maintain simulation accuracy. 

The following steps illustrate the process for the simple case of an 

MOS circuit. In the first phase, the circuit is divided into subcircuits of 

strongly-coupled (or channel-connected) components where transistors 

that are connected by their sources and drains are lumped into the same 

subcircuit. Next, each subcircuit is processed by examining the parallel 

and series connections of NMOS and PMOS devices to extract the logic 

function. Finally, the set of electrical transistors is replaced by an 

equivalent logic gate. In the second phase, the characterization process 

is performed. The parameters, such as V OH' V OLo tr , and t" must be 

determined directly from the transistor level descriptions for every 

extracted gate using analytic equations, or possibly a few simulations. 

1 A primitive refers to a basic element that is known to the simulator, i.e., any element that is 
hard-coded into the program. 
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Any unrecognized structures are left to be simulated at the ELECTRI­

CAL level during mixed-mode simulation. 

There are a number of future directions to pursue in automatic par­

titioning. It would be useful to develop automatic methods to replace 

transistor level circuits with their gate equivalents for a variety of other 

technologies, including the bipolar and BiMOS technologies. Another 

important issue is to determine the highest level of simulation that can 

be used for a particular block of circuitry while still providing accurate 

results. This may require some short simulation runs of each block to 

determine its nature and simulation requirements. Along the same lines, 

it would be useful to determine the minimum number of Elogic states, 

and their corresponding voltage values, necessary to accurately simulate 

a given circuit. It would also be worthwhile to develop methods that 

can recognize higher level logic blocks such as flop-flops, registers, and 

adders from lower level primitives such as NANDs, NORs and inverters. 

8.2.2. Fault Simulation 

Fault simulation has been used in logic simulators to grade the 

quality of a set of input vectors in finding the potential faults in a circuit 

However, the faults that can be modeled easily at the gate level are the 

simple stuck-at faults, such as the stuck-at-l and stuck-at-O faults 

[BRE76]. There are many other faults which are electrical in nature that 

are as important as, and in some cases more important than, the simple 

stuck-at faults in causing circuit malfunctions. For example, transient 

faults can occur from a number of sources including power supply tran­

sients, capacitive and inductive crosstalk and cosmic particle hits. Stu­

dies in this area have shown that approximately 80% of the computer 

system failures can be attributed to transient faults. Other permanent 

faults may arise due to shorts and opens between any two terminals of a 
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bipolar or MOS transistor. Therefore, a study of electrically-oriented 

fault characteristics and their propagation is essential for the design of 

reliable digital systems. 

Since a gate-level simulator cannot accommodate these faults, and 

a circuit simulator would be too expensive to use for fault simulation 

when the circuit is large, mixed-mode simulation can be used to address 

this problem. The electrically-oriented faults can be placed in any por­

tion of a circuit by representing that portion at the electrical level while 

the rest of the circuit is represented at the gate level. This allows the 

simulator to run at the fastest possible speed while correctly modeling 

the true properties of the electrical fault. However, since thousands of 

faults must be simulated to obtain meaningful results, new techniques for 

concurrent mixed-mode fault simulation must be developed to make this 

approach feasible. 

8.2.3. Analog Multilevel Simulation 

The various levels of simulation discussed thus far are shown on 

the left side of Fig. 8.1. In defining this hierarchy of methods, there was 

a clear bias towards digital circuits, since they are usually large and tend 

to profit greatly from the higher levels of simulation. Analog circuit 

simulation was simply relegated to the lowest rung of the simulation 

ladder - electrical simulation. However, as shown on the right side of 

the figure, there is also a corresponding set of levels in the analog 

domain that has been overlooked until recently. 

At the highest level is analog behavioral simulation where the indi­

vidual blocks are described in terms of Laplace transforms or z-domain 

transfer functions and their interactions are described using signal flow 

diagrams that include summers, multipliers, etc. At the next level, cir­

cuit components, such as ideal opamps, switches, integrators, and 
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Digital Analog 

Behavioral Behavioral 

RTL/ Gate Ideal Functional 

Timing Non-ideal Functional 

Electrical Electrical 

Figure 8.1: Levels of Simulation 

comparators are used. This corresponds to the RTL level in digital cir­

cuits. Although the models are idealized, this level allows the designer 

to validate a proposed architecture for the design. The next level is 

similar to the previous level except that the first- and second-order 

details are included in the models. For example, finite bandwidth, finite 

gain, and input and output resistances would be included in the opamps, 

and switch capacitances and resistances included in the MOS switches 

when simulating switched-capacitor filter circuits. This corresponds to 

gate and switch-level that includes timing information and other non­

linear effects. Finally, at the most detailed level, electrical simulation is 
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available, which corresponds directly to the same level on the digital side 

of the figure. 

An important goal in analog simulation is to develop a multilevel 

simulation environment that incorporates all of these different levels of 

simulations and allows both time-domain and frequency-domain ana­

lyses. This would permit the designer to represent different portions of 

the design at any desired level in either the time-domain or the 

frequency-domain. The simulator would be responsible for transforming 

the representations from one domain to the other and resolving the issue 

of different levels of the hierarchy in one circuit description. Great pro­

gress has been made in this area recently [CRA89, SWI89] but much 

work remains, especially in the nonideal functional level of simulation to 

include nonlinearities and noise models. New macromodeling 

approaches must be developed that include these effects in standard ana­

log blocks for use in a wide range of applications. Finally, the analog 

simulation levels should be combined with the digital simulation levels 

so that both of the hierarchies in Fig. 8.1 can be mixed and matched 

easily within a single simulation environment. 

8.3. CONCLUSIONS 

Mixed-mode simulation is now a well-accepted form of simulation 

in industry for large circuits containing both analog and digital com­

ponents, and for circuits described at multiple levels of abstraction. A 

wide variety of· simulators have been developed, in both industry and 

academia, and many are in production use today. As described in this 

book, the key contribution of mixed-mode simulation is that it offers the 

designer the ability to intelligently trade off simulation precision for 

simulator performance within the scope of a single simulator thereby 

permitting the designer to choose detailed simulation where accuracy is 
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essential and higher forms of simulation where less accuracy can be 

tolerated. A second important theme of the book is that mixed-mode 

simulation provides a uniform environment for designers to develop 

ideas from initial concepts to the final circuit schematics and accommo­

dates both top-down and bottom-up design styles, or any form in 

between. In addition, designers often mix different levels of abstraction 

in a single schematic diagram to convey the important aspects of a cir­

cuit design. These different representations can be captured easily in a 

mixed-mode simulation environment and later used to verify the circuit 

operation and performance. Finally, mixed-mode simulators are flexible 

and extensible and provide high performance in circuit verification. 

These features combine to make mixed-mode simulation one of the most 

powerful tools for VLSI design and simulation. 
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