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Abstract

We estimate auto accident externalities (more specifically insurance externalities) using panel
data on state-average insurance premiums and loss costs. Externalities appear to be substantial
in traffic dense states: in California, for example, we find that a typical additional driver increases
the total of other people’s insurance costs by $2231 per year. In such states, an increase in traffic
density dramatically increases aggregate insurance premiums and loss costs. In contrast, the
accident externality per driver in low traffic states appears quite small. On balance, accident
externalities are so large that a correcting Pigouvian tax could raise $45 billion annually in
California alone, and over $140 billion nationally. The extent to which this externality results
from increases in accident rates, accident severity or both remains unclear. It is also not clear
whether the same externality pertains to underinsured accident costs like fatality risk.
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1 Introduction

Does driving entail substantial accident externalities that tort law does not internalize? Vickrey

[1968] answers yes. He argues that as a new driver takes to the road, she increases the accident risk

to others as well as assuming risk herself, and that tort law does not adequately account for this. If

so, this implies that a one percent increase in aggregate driving increases aggregate accident costs by

more than one percent. The reverse, however, could hold. The riskiness of driving could decrease as

aggregate driving increases, because such increases could worsen congestion and if people are forced

to drive at lower speeds, accidents could become less severe or less frequent. As a consequence,

a one percent increase in driving could increase aggregate accident costs by less than one percent,

and could even decrease those costs. 1

The stakes are large. Auto accident insurance in the U.S. costs over $100 billion each year, and

total accident costs could exceed $350 billion each year, after including costs that are not insured.2

Moreover, multi-vehicle accidents, which are the source of potential accident externalities, dominate

these figures, accounting for over 70% of auto accidents. If we assume that exactly two vehicles are

necessary for multi-vehicle accidents to occur, then one might expect the marginal cost of accidents

to exceed the average cost by 70%.3 Put differently, one would expect aggregate accident costs to

rise by 1.7% for every 1% increase in aggregate driving.4 Edlin’s [2003] estimates from calibrating
1A little introspection will probably convince most readers that crowded roadways are more dangerous than open

ones. In heavy traffic, most us feel compelled to a constant vigilance to avoid the numerous moving hazards. This
vigilance no doubt works to offset the dangers we perceive but seems unlikely to completely counter balance them.
Note also that the cost of stress and tension that we experience in traffic are partly accident avoidance costs and
should properly be included in a full measure of accident externality costs. So too, delay costs when traffic lower
speeds should be included in a full measure.

2The $100 billion figure comes from the National Association of Insurance Commissioners [1997], and the $350
billion comes from Urban Institute [1991]. Even this $350 billion figure does not include the cost of traffic delays
caused by accidents.

3Suppose that the chance that a driver causes an accident is p and that with probability .3p she has a one vehicle
accident causing damage of D and with probability .7p she has a two-vehicle accident causing damage of D to
each vehicle. Since by assumption she is the “but for” cause of each accident, the damages her driving causes is
.3pD + 2 ∗ .7pD = 1.7pD. This figure is also the marginal cost of driving. The average cost of accidents per driver,
however, is just pD. (Note: X was a “but for” cause of Y, if “but for” X, Y would not have occurred.)

4The elasticity of accident costs with respect to driving is the ratio of marginal to average cost. Marginal cost
exceeds average cost if multiple drivers are the logical, or “but for,” cause of the accident. This calculation neglects
the possibility that extra driving increases congestion and thereby lowers accident costs, but it also neglects the
possibility that more than two cars are necessary causes of many multi-car accidents, and that the per-vehicle
damages in multicar accidents may be higher than the damages in single car accidents.
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a simple theoretical model of two-vehicle accidents suggested that the size of accident externalities

in a high traffic density state such as New Jersey is so large that a correcting Pigouvian tax could

more than double the price of gasoline. Our research is motivated because calibration results like

Edlin’s [2003] could be over or underestimates depending upon how accidents actually scale with

density. Externalities could be substantially larger, for example, if accidents typically involve more

than two vehicles: consider the pileup in the picture below.5

If the elasticity of aggregate accident costs with respect to aggregate driving exceeds unity, then

the tort system will not provide adequate incentives. The reason is that the tort system is designed

to allocate the damages from an accident among the involved drivers according to a judgment of

their fault. A damage allocation system can provide adequate incentives for careful driving, but

it will not provide people with adequate incentives at the margin of deciding how much to drive or

whether to become a driver, at least not if the elasticity of accident costs exceeds unity (see Green

[1976], Shavell [1980], and Cooter and Ulen [1988]).6 Indeed, contributory negligence, comparative

negligence and no-fault systems all suffer this inadequacy because they are all simply different rules

for dividing the cost of accidents among involved drivers and their insurers. Yet in many cases

from the point of view of causation, as distinct from negligence, economic fault will sum to more

than 100%. Consider the provocative case of two vehicles that crash in an intersection, where one

drove through a red light and the other drove through a green light. Assume that the accident

would not have occured had either not been driving. From the vantage of causation, both caused

the accident in full, even though only one is negligent. The average cost of accidents is the damages

to two vehicles divided by the driving of two vehicles. But the marginal cost exeeds this. In

fact, the marginal cost of either vehicle driving is the damage to two vehicles — twice the average

cost. The marginal cost divided by the average, is of course the accident elasticity with respect
5Externalities might also be higher than one would guess from the 70% figure for multi-vehicle accidents because

vehicles can be a “but-for” cause of an accident without being involved in the resulting crash and without appearing
in government statistics.

6These authors do not put the matter in terms of the elasticity of aggregate accidents with respect to driving,
but instead in terms of two parties being necessary causes of an accident. The two ideas are equivalent, however, as
Edlin (1999) explains more fully.
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to driving and in this case it equals two. Whenever the accident elasticity exceeds unity, then in

order to provide efficient incentives both to drive safely and to regulate efficiently the quantity of

driving, the drivers in a given accident should in aggregate be made to bear more than the total

cost of the accident (with the balance going to a third party such as the government). In this

case, each could bear her own cost and write the government a check equal to the accident cost of

the other involved vehicle.7

Compared to its economic significance, there is relatively little empirical work gauging the

size (and sign) of the accident externality from driving. Vickrey [1968], who was the first

to conceptualize clearly the accident externality from the quantity of driving (as opposed to the

quality of driving), cites data on two groups of California highways and finds that the group with

higher traffic density has substantially higher accident rates, suggesting an elasticity of the number

of crashes with respect to aggregate driving of 1.5. We do not know, however, whether these groups

of highways were otherwise comparable apart from traffic density, or whether they are representative

of roadways more generally and can provide a helpful prediction of what would happen if overall

traffic density increased. We would expect, in fact, that the roads would not be comparable.

Drivers will tend to be attracted to safer roads, with wider lanes and easier driving conditions:

such roads could end up with lower accident rates, but we could not conclude that this was from

the high density as it could be from the inherent differences in the roadways. Without knowing the

inherent safety of the roadways, crash comparison studies will understate how much traffic density

increases accident rates. The flip side of this coin is that if road expenditures are rational, then

roads with more traffic will be better planned and better built in order to yield smoother traffic flow

and fewer accidents: as a result a cross-sectional study could likewise considerably understate the

rise in accident risk with density on a given roadway. Another difficulty is that since Vickrey’s data

contains no measure of accident severity, his comparison leaves open the possibility that accidents

become more frequent with higher density but that congestion causes accidents to be less severe, so
7Although such a system would be efficient in theory, it would be politically unacceptable for fairness reasons. It

would also lead to few accidents being reported (which would make it inefficient in practice).
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that on balance the accident externality is smaller than suggested or even negative. Alternatively,

his data could considerably understate the externality if there are more vehicles involved in each

accident when traffic density is higher, and this leads to higher costs per accident. These limitations

are common to all the transportation literature on the effect of traffic density on accident rates

that we have surveyed (e.g., Turner and Thomas [1986], Gwynn [1967], Lundy [1965], and Belmont

[1953]).8 Additionally, even if the transportation literature provided accurate estimates of the

dollar value of accident externalities, since these estimates are only available for particular types of

roadways, they do not provide a good guide for policy, until we begin to price driving by road. The

coarse macro policies that are the most likely require macro studies such as the one we undertake

here.

This study is an attempt to provide better estimates of the size (and sign) of the accident

externality from driving. To begin, we choose a dependent variable, insurance rates, that is

dollar-denominated and captures both accident frequency and severity; we also analyze insurer

costs as a dependent variable. Our central question is whether one person’s driving increases

other people’s insurance rates. We use panel data from 1987-1995 on insurance premiums, traffic

density, aggregate driving, and various control variables including malt alcohol consumption and

precipitation. Using the theoretical model of Edlin [2003], our basic strategy is to estimate

the extent to which an increase in traffic density in a given state increases (or decreases) average

insurance premiums. Increases in traffic density can be caused by increases in the number of

people who drive or by increases in the amount of driving each person does. To the extent that

the external costs at these two margins differ, our results provide a weighted average of these two

costs. These regressions provide a measure of the insurance externality of driving.

We find that traffic density increases accident costs substantially whether measured by insur-
8Most of the papers we have surveyed in the transportation literature estimate the rate of increase of accidents

with driving, a framework that does not admit accident externalities. A few papers such as the one cited above
include quadratic or higher powers on the quantity of driving, or compare accidents/vehicle mile on roads with
different traffic density. Although these papers do not state their results in terms of externalities, they all provide
support for positive accident externalities.

5



ance rates or insurer costs. If congestion eventually reverses this effect, it is only at traffic densities

beyond those in our sample. Indeed, our estimates suggest that a typical extra driver raises oth-

ers’ insurance rates (by increasing traffic density) by the most in high traffic density states. In

California, a very high-traffic state, we estimate that a typical additional driver increases the total

insurance premiums that others pay by roughly $2231 ±$549 each year.9 In contrast, we estimate

that others’ insurance premiums are actually lowered slightly in Montana, a very low-traffic state,

but the result is statistically and economically insignificant: -$16±48 each year. These estimates

of accident externalities are only for insurance costs and do not include the cost of injuries that are

uncompensated or undercompensated by insurance, nor other accident costs such as traffic delays

after accidents.

Although we chose premiums and loss costs because they implicity include both crash frequency

and crash severity effects, it would be interesting to decompose these two effects. Our efforts to

do so unfortunately do not yield statistically significant results. Our point estimates suggest that

increases in traffic density appear to consistently increase accident frequency, but not severity. The

severity of accidents may fall somewhat with increases in density in low density states, and rise

in high density states. (Severity here includes only insured costs per crash.) As we said, though,

both the severity externality and the frequency externality are statistically insignificant, and it is

only when the two externalities are combined (as they should be) that we uncover statistically

significant externalities.

The principle example of underinsured accident costs is fatalities. We also therefore study the

fatalities externality. In particular, do fatalities per mile decline or increase with traffic density?

Our regressions do not give a definitive answer to this question, as our fatality externality estimates

are not statistically significant. Our point estimates suggest that in low density states increases

in traffic density may lower fatality rates, whereas in high density states increases in density raise

fatality rates.
9Here we report estimates derived from specification 12, as described subsequently.
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None of our externality estimates distinguish the size of externality by the type of vehicle

or the type of driver. We find average externalities, and specific externalities are apt to vary

substantially. White [2002], for example, finds that SUV’s damage other vehicles much more than

lighter vehicles.10

The remainder of this paper is organized as follows. Section 2 provides a framework for

determining the extent of accident externalities based upon Edlin’s [1999] theoretical model of

vehicle accidents. Section 3 discusses our data. Section 4 reports our estimation results. Section

5 presents a state-by-state analysis of accident externalities. Section 6 decomposes the externality

into accident frequency and accident severity effects. Section 7 explores the effects of traffic

density on fatality rates. Finally, Section 8 discusses the policy implications of our results and

directions for future research.

2 The Framework

Let r equal the expected accident costs per vehicle. (For the sake of simplicity of discussion, consider

a world where vehicles and drivers come in matched pairs.) A simple statistical-mechanics model

of accidents would have the rate r determined as follows:

r = c1 + c2
M

L
= c1 + c2D (1)

where

M= aggregate vehicle-miles driven per year by all vehicles combined;

L = total lane miles in the region; and

D = traffic density = M
L .

The first term represents the expected rate at which a driver incurs cost from one-vehicle ac-

cidents, while the second term, c2D, represents the cost of two-vehicle accidents. Two-vehicle

accidents increase with traffic density because they can only occur when two vehicles are in prox-
10White is not studying the effects of extra driving, but rather the effects of switching vehicle types.
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imity. This particular functional form can be derived under the assumptions that (1) a two-vehicle

accident occurs with some constant probability q (independent of traffic density) whenever two ve-

hicles are in the same location; (2) driving locations are drawn independently from the L lane-miles

of possible locations; and (3) that drivers do not vary the amount of their driving with traffic den-

sity. (See Edlin [2003]).11 It can also be viewed as a reasonable reduced form. At the end of

section 4, we will also estimate a model that abandons “assumption” (3) by normalizing accident

costs per mile driven instead of per vehicle as the variable r does.

If we extend this model to consider accidents where the proximity of three vehicles is required,

we have:

r = c1 + c2D + c3D
2, (2)

where the quadratic term accounts for the likelihood that two other vehicles are in the same location

at the same time.

These are the two basic equations that we estimate. As we pointed out in the introduction,

however, it is far from obvious that in practice the coefficients c1, c2, c3 are all positive. In particular,

it seems quite likely that such an accident model can go wrong because the probability or severity of

an accident when two or several vehicles meet could ultimately begin to fall at high traffic densities

because traffic will slow down.

An average person pays the average accident cost r either in the form of an insurance premium

or by bearing accident risk. The accident externality from driving results because a driver increases

traffic density and thereby increases accident costs per driver. Although the increase in D from

a single driver will only affect r minutely, when multiplied by all the drivers who must pay r, the

effect could be substantial. For exerting this externality, the driver does not pay under any of the

existing tort systems.

If there are N vehicles/driver pairs in the region under consideration (a state in our data), then
11To the extent that traffic locations are not drawn uniformly the “relevant” traffic density figure will differ (and

be higher) than M
L
. This actually only changes the coefficient c2.
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the external cost is:

external marginal cost per mile of driving = (N − 1)
µ
dr

dM

¶
= (N − 1)

·
c2
L
+ 2c3

M

L2

¸
. (3)

An average driver/vehicle pair drives m̄ = M
N miles per year, so that the external cost of a

typical driver/vehicle is given by

external marginal cost per vehicle ≈ m̄(N − 1) dr
dM
≈ (c2D + 2c3D2). (4)

(The first approximation holds since any single driver contributes very little to overall traffic density

so that the marginal cost given by equation (3) is a good approximation of the cost of each of the

m̄ miles she drives; the second approximation holds when N is large because then N/(N − 1) ≈ 1

so that m̄(N − 1) ≈M .)

The interpretation of these externalities is simple. If someone stops driving or reduces her

driving, then not only does she suffer lower accident losses, but other drivers who would otherwise

have gotten into accidents with her, suffer lower accident losses as well.

In this model of accident externalities, all drivers are equally proficient. In reality, some people

are no doubt more dangerous drivers than others, and so the size of the externality will vary

across drivers. Our regression estimates are for the marginal external cost of a typical or average

driver. We will return to the subject of driver heterogeneity when we discuss the implications of

our analysis. The main implication of driver heterogeneity is that the potential benefit from a

Pigouvian tax that accounts for this heterogeneity exceeds what one would derive from this paper’s

estimates.

3 Data

We have constructed a panel data set with aggregate observations by state and by year. The Data

Appendix gives exact sources and specific notes. Table 1 provides summary statistics.
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Our primary accident cost variable is average state insurance rates per vehicle, rst, for private

passenger vehicles for both collision and liability coverages. These rates are collected by year, t,

and by state, s, by the National Association of Insurance Commissioners. Our second accident cost

variable is an Insurer Cost Series that we construct from loss cost data collected by the Insurance

Research Council. The loss cost data LC represents the average amount of payouts per year per

insured car for Bodily Injury (BI), Property Damage (PD) and Personal Injury Protection (PIP)

from claims paid by insurers to accident victims. LCst is substantially smaller than average

premiums r for two reasons: first, non-payout expenses such as salary expense and returns to

capital are excluded; and second, several types of coverage are excluded. Despite its lack of

comprehensiveness, this loss cost data has one feature that is valuable for our study. It is a direct

measure of accident costs, and should therefore respond to changes in driving and traffic density

without the lags that insurance premiums might be subject to, to the extent that such changes in

traffic density were unpredictable to the insurance companies. We therefore “gross up” loss costs

in order to make them comparable in magnitude to premiums, by constructing an Insurer Cost

series as follows:

erst = LCst Pi rsiP
i LCsi

, (5)

where s indexes states and i indexes years. This series represents what premiums would have been

had companies known their loss costs in advance.

Both premiums and Insurer Cost data have the advantage over crash data that they are dollar-

denominated and therefore reflect both crash frequency and crash severity. This feature is important

if one is concerned about the effect of traffic density on accident costs, because the number of cars

per accident (and hence crash severity) could increase as people drive more and traffic density

increases.

The average cost for both collision and liability insurance across all states in 1995 was $619

per vehicle, a substantial figure that represents roughly 2% of gross product per capita. Average
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insurance rates vary substantially among states: in New Jersey, for example, the average cost is

$1032 per insured car year, whereas in North Dakota the cost is $350 per insured car year.

Our main explanatory variable is Traffic Density (Dst = Mst
Lst
), where Mst is the total vehicle

miles travelled and Lst is the total lane miles in state s and year t. The units for traffic density

are vehicles/lane-year and can be understood as the number of vehicles crossing a given point on a

typical lane of road over a one year period. Data on vehicle-miles comes from the U.S. Department

of Transportation, which collects it from states. Methods vary and involve both statistical sampling

with road counters and driving models.

We are concerned that the mileage data may have measurement error and that the year-to-

year changes in M on which we base our estimates could therefore have substantial measurement

errors. To correct for possible measurement errors, we instrument density with the number of

registered vehicles and with the number of licensed drivers. Although these variables may also

have measurement error, vehicle mile data are based primarily on road count data and gasoline

consumption (not on registered vehicles and licensed drivers) so it seems safe to assume that these

errors are orthogonal.

Traffic density like premiums varies substantially both among states and over time. In addition

to traffic density, we introduce several control variables that seem likely to affect insurance costs:

state- and time-fixed effects; (we include two separate state-liability fixed effects in each of the

three states that switch their liability system (tort, add-on, and no-fault) over our time period;12

malt-alcohol beverage consumption per capita (malt-alcohol beverage per cap.); average cost to

community hospitals per patient per day (hosp. cost); percentage of male population between 15

and 24 years old (% young male pop.); real gross state product per capita (real gross prd. per cap.);

yearly rainfall (precipitation); and yearly snowfall (snowfall).
12 In states with traditional tort systems, accident victims can sue a negligent driver and recover damages. Injured

parties in no-fault jurisdictions depend primarily on first-party insurance coverage because these jurisdictions limit
the right to sue, usually requiring either that a monetary threshold or a ”verbal” threshold be surpassed before suit
is permitted. Add-on states require auto insurers to offer first-party personal injury protection (PIP) coverage, as
in no-fault states, without restricting the right to sue.
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We introduce malt-alcohol beverage per cap. because accident risk might be sensitive to alcohol

consumption: 57.3 % of accident fatalities in 1982 and 40.9 % in 1996 were alcohol-related.13 We

include % young male pop. because the accident involvement rate for male licensed drivers under

25 was 15% per year, while only 7% for older male drivers.14 We use hosp. cost as another

control variable since higher hospital costs in certain states would increase insurance cost and

hence insurance premiums there. Likewise, real gross prd. per cap. could have a significant effect

on insurance premiums in a given state. On the one hand, more affluent people can afford safer

cars (e.g. cars with air bags), which could reduce insurance premiums; on the other hand, they may

tend to buy more expensive cars and have higher lost wages when injured, which would increase

premiums. Finally, we incorporate precipitation and snowfall since weather conditions in a given

state could affect accident risk and are apt to correlate with the driving decision.

Our panel data only extends back until 1987, because the National Association of Insurance

Commissioners does not provide earlier premiums data.

4 Estimation

Here, we estimate 11 specifications of Equations (1) and (2) and report these in Tables 2 and 3,

together with three first-stage regressions.

As a preliminary attempt to estimate the impact of traffic density on insurance rates, we run

the following cross-sectional regression with 1995 data:

rs = c1 + c2Ds + b · xs + εs, (6)

where xs represents our control variables. This regression yields an estimate of ĉ2 = 1.1 ∗ 10−04 ±

3.8 ∗ 10−05, as reported in Column 1 of Table 2. (Throughout this discussion, we report point

estimates followed by “±” one standard deviation, where the standard deviation is calculated

robust to heteroskedasticity.)
13Traffic Safety Facts Table 13
14Traffic Safety Facts Table 59 (pg. 94)
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These cross-sectional results do not account for the potential correlation of state-specific factors

with traffic density.15 This possibility suggests identifying density effects from within-state changes

in density. For this reason, we use panel data to estimate the following model:

rst = αs + γt + c1 + c2Dst + b · xs + εst (7)

where the indexes s and t denote state and time respectively. This specification includes state

fixed effects αs and time fixed effects γt, so that our identification of the estimated effect of increases

in traffic density comes from comparing changes in traffic density to changes in aggregate insurance

premiums in a given state, controlling for overall time trends. Including time fixed effects helps us

to control for technological change such as the introduction of air bags or any other shocks that hit

states relatively equally. States that switch from a tort system to a no-fault system or vice versa

are given two different fixed effects, one while under each system.

Specification 2 (i.e., Column 2) reveals that above average increases in traffic density in states are

associated with above average increases in insurance rates. This specification yields substantially

larger estimates than the pure cross-sectional regressions in specification (1) — a coefficient of .00036

± .00016 compared with .00011 ± .000038. There are several potential reasons why we would

expect the cross section to be biased down. In particular, states with high accident costs would

rationally spend money to make roads safer. Since this effect will work to offset the impact

of traffic density, we would expect a cross-sectional regression to understate the effect of density

holding other factors constant. Extra safety expenditures can, of course, be made in a given state

in reaction to increased traffic density from year to year, but one might expect such reactions to

be significantly delayed, so that the regression coefficient would be closer to the ceterus parabus
15For example, cross-sectional estimates could be biased downward if low-traffic states tend to have dangerous

montainous roads, or contrarywise could be biased upward if low-traffic states more typically look like the safe flat
roads of western Kansas. As the introduction observed in discussions of Vickrey, safer roads will encourage more
driving and higher traffic density, tending to lead to underestimates of the effects of increases in traffic density on
safety on a given roadway. Cross-sectional estimates could also be biased downward by safety expenditures (on roads
or otherwise) in high-traffic states — this “bias” in the measure of externality might be addressed of course if accident
prevention costs could be added to accident costs. (This latter bias probably exists to some extent in panel regressions
as well, but if policy responses are slow, it should not be as big a problem)
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figure we seek. Likewise, downward biases result if states switch to liability systems that insure a

smaller percentage of losses in reaction to high insurance costs.

Measurement errors in the vehicle miles travelled variable M could bias the traffic density

coefficient toward 0 in both specifications (1) and (2); relatively small errors in Mst could lead to

substantial errors in year-to-year changes in miles, which form the basis of our estimates. The rest

of our regressions we therefore report in pairs –an OLS together with an IV that uses licensed

drivers per lane-mile and registered vehicles per lane-mile as instruments for traffic density. As

justified above in the Data section, we assume that any measurement error in these variables is

uncorrelated with errors in measuring traffic density.16 These variables do not enter our accident

model directly, because licensed drivers and vehicles by themselves get into (almost) no accidents.

A licensed driver only can increase the accident rate of others to the extent that she drives, and

vehicles, only to the extent that they are driven. On the other hand, these variables seem likely to

be highly correlated with traffic density. Column 6 of Table 2 reports the results of the first-stage

regression. It reveals that the density of licensed drivers and registered cars are in fact highly

positively correlated and predictive of traffic density as expected.

The instruments substantially increase our estimate of ĉ2, as one would expect if errors in

variables were a problem for OLS. The estimates do not change so much, though, that with a

Hausman exogeneity test we could reject the hypothesis that both OLS and IV are consistent.17

The test suggests that both might be consistent. The Hausman test is unfortunately not designed,

however, to test our actual null hypothesis which is that IV is consistent and OLS is biased toward

0;18 this hypothesis finds some (limited) support from the coefficient estimates. At the expense of

the possibility of some inefficiency in our estimates, we therefore stick to our priors and focus on

IV estimates, though we report both OLS and IV in Tables 2 and 3. If in fact there are errors
16This technique does not ”cure” the bias toward 0 that would result if L is measured with error.
17The Hausman exogeneity test statistic is 17.3 for the linear model, comparing specifications (2) and (3), and is

distributed as chi-squared with 61 degrees of freedom under the null hypothesis that both IV and OLS are consistent,
but OLS is more efficient. The test statistic comparing specifications (7) and (8) is 30.
18The Hausman test tests the null hypothesis that both IV and OLS are consistent against the alternative hypothesis

that only IV is consistent; in contrast our null is that only IV is consistent.
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in the miles variable (a possibility that the Hausman test is not designed to reject), then we are

probably better off for focusing on the IV estimates. The estimate in Specification (3) of Table 2

of the density effect is .0014, roughly three times larger than Specification (2).

Our approach and results should be compared to the studies in the transportation literature.

The transportation studies we have found are cross-sectional, comparing crash rates on roads with

high and low traffic density. Many studies seem to study variants of equation (1) without the

density term on which we have focussed,19 but we found four that estimate a form of equation

(1) that includes the density term (Thomas and Turner [1986], Lundy [1965], McKerral [1962],

and Belmont [1953]). The coefficients in these studies (once converted to the units in Table 2)

range from .0001 to .0003, assuming that the $/crash is constant and equal to the average level in

our sample. One reason that these cross-sectional crash studies may have lower estimates than

our estimate of .0014 is that the severity per crash could increase with traffic density because the

average number of involved vehicles per crash should grow. As we discuss later, we attempt to

decompose our externality estimates into the effect of traffic density on crash frequency and on

crash severity. We find that in high traffic density states increases in density substantially increase

severity as measured by insurance expenses per crash.

The cross-sectional studies cited above may also be biased downward for reasons similar to

Specification (1) (a cross-sectional regression with a roughly comparable estimate). Roads may be

built better and safer in areas with high traffic density, either to reduce accidents or to improve the

driving experience. People may also avoid driving on dangerous roads, causing those roads to have

low traffic density. Put differently people may be attracted to live near safer roads where traffic

flows smoothly and driving is easy, or arrange their driving to be on such roads. Measurement

error may also lower coefficients in these regressions, much as they do in our Specification 2, and

none of these studies used an instrumental variables approach. (For example, road counters may

only have measured density on certain days, rather than for the whole period where accidents were
19For example, some regress accidents per mile of road on traffic flow.
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measured.) Finally, these studies are all of high speed highways where accident costs per crash are

probably substantially larger than our average.20 Our estimates would also be higher if the costs of

increased density were more severe for the non-highway driving which we include. To summarize,

our results suggest that the cost of increased density are much higher than one would have inferred

from transportation studies, but not unreasonably so given the many reasons one might expect the

methodologies to yield different results.

Table 3 gives regression results from our quadratic density model, which can be viewed as a

structural model of one-, two-, and three-vehicle accidents. An alternative view of these spec-

ifications is that they test whether the marginal effect of increased traffic density is greater in

high-density states as would be suggested by the multi-vehicle accident model, or lower as might

be the case if congestion ultimately lowered accident rates.

Both the instrumented and OLS specifications in Table 3 reveal the same pattern. In particular,

the density coefficient becomes negative and the density-squared coefficient positive and significant.

(The density coefficient is not significant in Specification (7).) These two effects balance to make

the effect of increases in density on insurance rates small and of indeterminant sign in low traffic

states and positive, substantial, and statistically significant in high traffic states.

These regressions provide strong evidence that traffic density increases the risk of driving, and

that it does so at an increasing rate. Hence, high traffic density states have very high accident

costs and commensurately large external marginal costs not borne by the driver or his insurance

carrier. Congestion may eventually lower the external marginal accident costs, but such an effect

is probably at higher density levels than observed in our sample. Belmont [1953] indicates that

crash rates fall only when roads have more than 650 vehicles per lane per hour, which corresponds

to nearly 6 million vehicles per lane per year, a figure well above the highest average traffic density

in our sample.

The extra costs from increases in traffic density may, of course, not be fully reflected in premi-
20Recall that to convert their crash coefficients to $, we multiplied by $/crash. We used the average figure for

dollars per crash since we did not have a figure specific to highways.
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ums; these costs may, at least in the short term, lower profits or increase losses in the insurance

industry. This possibility could bias our estimates of the externality from traffic density downward.

Instead of trying to handle this by introducing lagged density as an explanatory variable, we use

our Insurer Cost Series, r̃, in place of premiums, r. This series, described above in the data section,

is formed from data on selected companies’ loss costs (payouts) on selected coverages.

Columns (9) and (10) revealed the same pattern as the premiums regressions, and similar

magnitudes. The similarity of magnitudes suggests that insurers can accurately forecast the risk

that comes from traffic density. (Otherwise, one might expect the Insurer Cost Series to yield

much larger estimates). The consistency of results using our Insurer Cost Series lends us added

confidence in our findings.

Our framework, whether using insurer cost or premiums, still suffers, however, from potential

biases. These biases flow from normalizing insurance costs on a per-vehicle basis. Accident cost

per vehicle will depend upon the amount the average vehicle is driven; the more it is driven, the

higher will be costs. If miles per vehicle in a state rise, this could drive up both traffic density

and insurance premiums per vehicle without any externality effect. Hence, our estimates might be

biased up. On the other hand, if traffic density rises because more people become drivers, then

each person will find driving less attractive and drive less, reducing her risk exposure. This would

bias our externality estimate down, and could lead to a low density coefficient estimate even with

a large externality. These potential biases offset each other, so one might hope that our estimates

are roughly correct.

Both biases are removed if we try a different specification and normalize aggregate statewide

premiums by M instead of by the number of insured vehicles. Accordingly, columns (11) and (12)

report estimates of a variant of equation (2) in which we have premiums per vehicle mile driven, p,

instead of premiums per vehicle per year, r, on the left-hand siide. The estimates in specification

(12), like our other estimates, have a positive and significant coefficient on density squared; the

estimates are naturally much smaller in absolute value because once normalized by miles driven,
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the left-hand-side variable is roughly 10−4 smaller than in the other regressions. Estimates from the

premiums per-mile specification are our preferred estimates because they avoid the potential biases

from variations in miles driven per vehicle. As we see in the next section, this specification leads

to the largest estimates of the externality effect. This suggests that the largest bias in regression

(8) is the downward bias from more drivers leading to less driving per driver.

5 The External Costs of Accidents

Here, we compute the extent to which the typical marginal driver increases others’ insurance

premiums in a state. For specifications (3), (8) and (10), equation (4) gives the externality on a

per-vehicle basis. We convert this figure to a per-licensed-driver basis by multiplying by the ratio

of registered vehicles to licensed drivers in a given state.21 The resulting figure implicitly assumes

a self-insurance cost borne by uninsured drivers equal to the insurance cost of insured drivers.22

Extra driving and extra drivers impose large accident costs on others in states with high traffic

density like New Jersey, Massachusetts, and California, according to our estimates. In California,

for example, our estimates range from a level of $1271±490 per driver per year in the linear model to

$2432 in the quadratic model using Insurer Costs. An additional driver doing the average amount

of driving could increase others’ insurance costs by .015 cents/vehicle or in statewide aggregate

by $2432 ± $670 per driver per year. This external marginal cost is in addition to the already

substantial internalized cost of $744 in premiums that an average driver paid in 1996 for liability

and collision coverage in California. In contrast, in South Dakota, a state with roughly 1/15th

the traffic density of California, our estimates of the external cost are quite low, ranging from

$−60±28 to $94±36. The marginal accident externality is positive in most states according to our

estimates. In the linear model, the externality is positive in all states. As a comparative matter,

external marginal costs in high traffic density states are much larger than either insurance costs or
21 In deriving equation (4) we did not distinguish between vehicles and drivers, assuming that they were matched.

Because our data on r is in per-vehicle units, applying equation (4) with our estimates of coefficients c2 and c3 yields
external costs per vehicle.
22This figure is an overestimate to the extent that insured drivers buy uninsured motorist coverage, and thereby

bear a disproportionate fraction of overall costs.
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gasoline expenditures.

Our external cost estimates are large in high density states such as Massachusetts, New Jersey,

California and Hawaii, but not unexpectedly so. Consider that nationally, there are nearly three

drivers involved per crash on average. According to the accident model in Section 2, this would

suggest that the marginal accident cost of driving would typically be three times the average, and

that the external marginal cost would be twice the average. Hence, we might expect that a 1%

increase in driving could raise costs by 3%.23 In California, a 1% increase in driving raises insurance

costs by roughly 2.5%, according to Specification (3), our linear model, and by 4%, according to

Specification (12). The linear model suggests that in almost all states a 1% increase in driving

raises accident costs by substantially more than 1%. (The lowest figure for the linear model is

North Dakota where the estimate is a 1 + 81/363 = 1.2% increase in costs.)24 In the quadratic

models, low density states have small, negative, and statistically insignificant externality costs.

6 Decomposing the externality into frequency and severity effects

Traffic density could increase insurance premiums by increasing the frequency of crashes or by

increasing the severity as measured by premiums per crash (or, of course by both). Here, we

explore the relative importance of these two avenues.

To do so, let

C = the number of crashes in state (8)

and (9)

A = total state insurance premiums (10)
23A few words of explanation are called for here. If accidents require the coincidence of three cars in the same place

at the same time, then r = c3D
2 and external marginal costs equal 2c3D2. Internalized marginal costs are c3D2,

so that total marginal cost is 3c3D2. If there were no external marginal costs, then a 1 percent increase in driving
would increase costs by 1 percent (the internalized figure). External costs are twice as large as internalized costs in
this example.
24The figure is calculated as follows. The marginal external cost is 83. The marginal internal cost (which is just

the average cost) is given by premiums and is $363. Hence, the elasticity of accidents with respect to driving is
363+81
363 = 1.2%
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We can decompose premiums per vehicle mile driven p = A
M as follows

A

M
=
C

M

A

C
(11)

We estimate equations

Cst
Mst

= βs + δt + c4 + c5Dst + c6D
2
st + b · xs + εst (*)

Ast
Cst

= %s + σt + c7 + c8Dst + c9D
2
st + η · xs + ust. (**)

From expression (*), we can compute the impact of an extra person driving the average number

of miles on the number of crashes: Column 3 of Table 5 reports what the impact of this increase

in crash frequency would be on total premiums if premiums per crash remained constant. These

figures can be interpreted as an estimate of the external marginal cost from increasing crash fre-

quency. Thus a typical driver in Pennsylvania increases crash frequency enough to raise others’

premiums by $288/year according to our point estimate even if crash severity remained fixed. Our

point estimates suggest that crash frequency appears to increase with density at all density levels,

though these estimates are not statistically significant.

The impact of a typical driver on insurance premiums through increases or decreases in severity

(AstCst
) can be found from (**) as follows

Mst

#Drivers in states s at time t
Cst

dAstCst

dMst
=

·
c8
lst
+ 2c9

Mst

l2st

¸
Cst

Mst

# Drivers in state s at time t

(12)

Column 5 of Table 5 gives external marginal cost from increase in crash severity. At low

traffic density, these figures are somewhat negative. In high density states the figures become

positive and economically substantial. In Massachusetts, the estimated frequency externality is

$841 ± 987 per driver per year and the estimated severity externality is $702 ± 659 per driver per

year. Unfortunately, our externality estimates for both frequency and severity are not statistically
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significant. Only when the two are combined together (as they should be to form a true externality

estimate) as we did previously do we get statistically significant effects.

7 Fatalities

The Urban Institute has estimated that total accident costs are substantially in excess of insured

costs. If these costs behave as insured costs do, the true externalities would far exceed our

estimates. One of the biggest underinsured costs is fatalities. Viscusi [1993] estimates the cost

of a life as $6 million, and yet few auto insurance policies cover more than $500,000. The bulk

of fatality costs are therefore not in our insurance data. However, fatality data is separately

available. We therefore estimate Fst
Mst

= δs+αt+c10+c11Dst+c12D
2
st+c13 ·xs+µst, where Fst are

auto fatalities in state s in year t. We estimate this with instrumental variables, and from these

estimates we can calculate the external marginal fatality cost. Column 3 of Table 6 gives these

figures. Unfortunately none of the figures is statistically significant so nothing definite is learned

from this exercise. The pattern of point estimates is similar to that for premiums - negative and

small in low density states, positive and large in high density states.

8 Implications

For specifications (3), (10), and (12), even in states with only moderate traffic density such as

Arizona or Georgia, the insurance externalities that we estimate are substantial. They exceed

existing taxes on gasoline in such states and dwarf existing taxes in states with high traffic density

such as California in all specifications.25 The result of not charging for accident externalities is too

much driving and too many accidents, at least from the standpoint of economic efficiency.

The true extent of accident externalities is probably substantially in excess of our estimates

because we neglected two important categories of losses. In particular, we did not include the costs

of traffic delays following accidents, nor did we include damages and injuries to those in accidents
25This fact is not surprising since those taxes are designed to cover road repairs and construction, and not to

remedy asked a externalities.
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when these losses are not covered by insurance. This latter omission could be quite substantial.26

According to one fairly comprehensive Urban Institute [1991] study, the total cost of accidents

(excluding congestion) is over $350 billion, substantially over the roughly $100 billion of insured

accident cost. If these uninsured accident costs behave like the insured costs we have studied, then

accident externality costs could be 3.5 times as large as we have estimated here. Externality Costs

for California might be $7000 per driver per year.

In principle, accident charges should vary by roadway and time of day to account for changes in

traffic density. Technology may soon make such pricing cheap. GPS technology has already been

used in a few instances.27 Most of the social gains can probably be achieved, however, with less

refined policies.

The straightforward way to address the large external marginal costs in certain states is to

levy a substantially increased charge, either per mile, per driver, or per gallon so that people pay

something closer to the true social costs that they impose when they drive. If each state charged

our estimated external marginal cost for each mile driven or each new driver, the total national

revenue would be $140 billion/year, neglecting the resulting reductions in driving.28 This figure

exceeds all state income tax revenues combined. In California alone, revenues would be $45 billion,

well in excess of California’s income tax revenue. New Jersey, another high traffic state could

likewise gather much more revenue from an appropriate accident externality tax than it does from

its income tax: $12 billion compared to $5 billion. Of course, the number of drivers and the amount

of driving would decline significantly with such tax, and that would be the point of the tax, because

less driving would result in fewer accidents.

Although taxing driving is a conceptually straightforward response to the externality, proposing
26Some types of losses and some drivers are uninsured. For example, the pain and suffering of an at-fault driver

is generally not insured, and in no-fault states, pain and suffering may go uncompensated for nonnegligent drivers
as well. Moreover, there is substantial evidence that insurance settlements are often less than even pecuniary losses
(Dewees et al., 1996).
27Progressive Corporation and Norwich have each run trial programs. See, Carnahan [2000] and

http://www.norwich-union.co.uk. Oregon’s Road User Fee Task Force would like to start a pilot program using
GPS technology as the basis for mileage-based fee scenarios. EPA (2003).
28Here, we use the estimates from Specification 12.

22



to do so could be political death for elected officials. Few things are more sacrosact than an

American’s car. However, a simple second-best alternative might be palatable. The body politic

has accepted mandatory insurance, so why not also require insurance companies to quote premiums

by the mile instead of per car per year? This simple change could reduce driving substantially by

moving a fixed cost to the margin without raising the overall cost of driving.29 (See Litman [1997]

and Edlin [2003] for more extensive discussions of this possibility).30 People could then choose

to save substantial amounts on insurance by reducing their driving. As driving distributions are

skewed, most people drive less than the average, so the political prospects of such a change seem

more promising than a tax which would raise overall driving costs. The National Organization for

Women, Butler [1990], and Butler et al. [1988] have argued forcefully that such a policy would be

more fair as well, pointing out that women drive roughly half what men do, have half the accidents,

but still pay comparable premiums. (See also Ayres and Nalebuff, 2003).

An extremely valuable aspect of a per-mile premiums requirement is that it takes advantage

of the fact that current insurance premiums account for heterogeneity in risk. As a result, those

in highly dense areas and those with poor driving records, would face the highest per-mile rates

and would reduce driving the most, creating a doubly large reduction in accidents — exactly as a

social planner would wish. Even per-mile premiums, though, have not been an easy sell politically.

Entrenched insurance, highway and oil interests need to be conquered to mandate them. For this

reason, pay-at-the-pump proposals have thus far failed (See Sugarman [1993]), and so too have

mandatory per-mile premiums policies. Statutes allowing per-mile insurance but not requiring it

have seen little take-up by insurance carriers.31

Edlin’s [2003] estimates of the social gains from per-mile premiums are based on a simulation
29Edlin [2003] describes the limited extent to which current insurance premia vary with miles driven.
30A British firm, Norwich-Unions, is also now experimenting with “pay as you drive” insurance in the UK. See

http://news.bbc.co.uk/hi/english business/newsid-1831000/1831181.stm, http://www.norwich-union.co.uk for infor-
mation.
31Effective January 2002, Texas passed a law allowing insurance companies to charge premiums at per-mile rates,

converting the standard unit of coverage from the vehicle-year to the vehicle-mile. One insurance carrier — Progressive
— responded with an experimental program, but there appears to be little other interest thus far. See Wall Street
Journal [1999], or Carnahan [2000] for information on the Texas pilot program run by Progressive Corporation
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model of accident externalities that assumes a much lower accident externality than the one esti-

mated here. Still he estimates that the accident savings net of lost driving benefits from per-mile

premiums would be substantial at $12.7 billion/year nationwide. The empirical estimates here

suggest that the gains would be considerably larger. One reason that insurers do not adopt such

policies on their own is that so much of the gains are external and the monitoring costs are internal.

Of the several taxes that could be imposed to correct for accident externalities, gasoline taxes

stand out as administratively expedient since states already have such taxes. Importantly, gas

taxes would bring the uninsured into the payment system. On the negative side, such taxes take

inadequate account of heterogeneity. Good and bad drivers are charged the same amount, even

though the accident frequency and hence the accident externality of bad drivers could be consid-

erably higher. In addition, fuel efficient vehicles would pay lower accident externality fees, even

though they may not impose substantially lower accident costs (in the extreme, an electric vehicle

would pay no accident externality charge).32 Environmental concerns may be a sound reason to

levy a tax on gasoline, but once such taxes are sufficient to address environmental externalities,

further gasoline taxes may not be the most efficient way to address accident externalities.

The most efficient way to get rid of the accident externality altogether (or for the most part

anyway) would probably be to levy a large tax on insurance premiums. Just as the per-mile

premium policy, a tax on insurance premiums would have the advantage over gasoline taxes of

taking into account heterogeneity because insurance premiums already do so. In California, the

tax might be roughly 300%. (If we consider, for example, the estimate of $2234 for the external

marginal cost from specification 12, and compare this figure to $744, the internal cost, we would

conclude that the tax should be 2234
744 = 300%.) If uninsured externality costs are in fact 3.5 times

insurance costs, as suggested by the Urban Institute study, then the tax should be closer to 1000%.

A substantial potential drawback with taxing insurance premiums is that the primary incentive

such a tax would yield (at least initially) would be at the decision margin of whether to become
32This effect is not entirely unwarranted, since fuel efficiency is related to vehicle weight, and the external damages

from accidents may be as well. Consider, e.g., a sport utility vehicle.
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a driver, and not of how much to drive. Since existing insurance premiums are not very sensitive

to actual driving (see Edlin [2003]), people who decide to drive despite the tax, once they have

paid the fee, will feel free to drive a lot. Other people, who might be willing to pay high per-mile

rates but who only want to drive a very few miles, may be inefficiently discouraged from driving at

all. On the other hand, large taxes on insurance premiums would give insurance companies much

larger incentives to adopt per-mile premium policies, or other premium schedules that are more

sensitive to actual driving done.33 Currently a firm that quotes such premium schedules bears all

the costs of monitoring mileage, but gleans only a fraction of the benefits: as its insureds cut back

their driving, others avoid accidents (with them) and others benefit considerably. An appropriate

premium tax internalizes these tax effects. Regardless of the form that premium schedules take,

if taxes are imposed through insurance premiums, states will need to become much more serious

about requiring insurance and enforcing these requirements.

Our research could also be used for decisions regarding the benefits of building an extra mile

of road in terms of accident reduction. If driving could be held constant, we estimate that an

extra lane mile would reduce insurance costs by $120,000 per year in California by lowering traffic

density; Idaho, in contrast, saves nothing with the extra road. Of course, extra lanes will induce

extra driving and the accident and other costs of this extra driving should be subtracted from these

figures — and driving benefits should be added — to arrive at net social benefits. Such adjustments

would not be necessary if appropriate Pigouvian taxes were already levied on driving.

Substantially more research on accident externalities from driving seems appropriate, particu-

larly given the apparent size of the external costs. There is substantial heterogeneity within states

in traffic density, so more refined data (such as county-level data or time-of-day data) would yield

more accurate estimates of the effect of traffic density and correspondingly of external marginal

costs. In principle, it would also be instructive to dissagregate traffic density into its components
33The transaction cost of monitoring actual mileage has apparently fallen sufficiently that Progressive Insurance

is now toward experimenting with distance-based insurance premiums for private passenger vehicles. Such policies
have been used for some time for commercial vehicles where the stakes are larger.

25



by the age of driver and by vehicle type. In particular, it would be useful to divide traffic density

by truck and non-truck; we did not do so because such data is only available on a comprehensive

basis since 1993.
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10 Data Appendix

Data Variables, Sources and Notes
Our panel data comes primarily from the Highway Statistics of Federal Highway Administra-

tion, National Association of Insurance Commissioners (NAIC), Insurance Research Council (IRC),
Department of Commerce Bureau of Economic Analysis, U.S. Census Bureau, the Statistical Ab-
stract of the United States, the Green Book of National Association of Independent Insurers (NAII),
the Brewers’ Almanac of the Beer Institute and the Weather Almanac of the Gale Group.

All dollar figures are converted to 1996 real dollars.

1. rliability: ($/liability car-year). Source: National Association of Insurance Commissioners,
State Average Expenditures & Premiums for Personal Automobile Insurance, (various years),
Table 7. The NAIC groups auto insurance coverages into three groups: liability, collision
and comprehensive.

2. rcollision: ($/collision car-year). Source: National Association of Insurance Commissioners,
State Average Expenditures & Premiums for Personal Automobile Insurance, (various years),
Table 7. The NAIC groups auto insurance coverages into three groups: liability, collision
and comprehensive.

3. r: Average premiums ($/ insured car-year). Source: National Association of Insurance Com-
missioners, State Average Expenditures & Premiums for Personal Automobile Insurance, (var-
ious years), Table 7. Notes: This variable is the sum of rliability and rcollision.

4. LC : Average amount of loss per year per insured car for BI, PD, PIP claims. ($/vehicle-
year). Source: Insurance Research Council, Trends in Auto Injury Claims, 1995, Appendix
A.

5. er: Insurer Cost Series constructed from loss costs as described in the Data Section. ($/car
years). .

6. M : Total Vehicle Miles Travelled (vehicle miles). Source: U.S. Department of Transporta-
tion, Federal Highway Adminstration, Highway Statistics, (various years), data for: 1984-
89,Table FI-1, data for: 1990-96,Table VM-2.

7. A: Total Insurance Premiums ($). Source: National Association of Insurance Commissioners
[various years]

8. p: premiums per mile driven. Aggregate premiums are given by state and by year in National
Association of Insurance Commissioners [various years]. pst = Ast/Mst.

9. L : Estimated Lane Mileage (miles). Source: U.S. Department of Transportation, Federal
Highway Adminstration, Highway Statistics, (various years), data for: 1984-89, Table HM-20
& Table HM-60, data for: 1990-96, Table HM-60.
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10. D : Traffic Density (vehicle miles / lane miles). This variable is the ratio of M to L.

11. Licensed drivers. Source: U.S. Department of Transportation, Federal Highway Adminstra-
tion, Highway Statistics, (various years), data for: 1984-94, Table DL-1A , data for: 1994-96,
Table DL-1C.

12. Registered vehicles (all motor vehicles = private + commercial + publicly owned). Source:
U.S. Department of Transportation, Federal Highway Adminstration, Highway Statistics,
(various years), Table MV-1.

13. Pindex : Fixed-Weighted Price Index for Gross Domestic Product. Source:U.S. Department
of Commerce, Bureau of Economic Analysis web page, Regional Statistics, www.bea.doc.gov.
Notes: The base year is 1996 (i.e. Pindex = 1, if year = 1996).

14. pop: Population. Source:U.S. Bureau of the Census, Census of Population, (various years),
www.census.gov/population/www/estimates/statepop.html.

15. malt-alcohol beverage per cap.: This figure is the number of gallons of beer and other malted
alcoholic beverages consumed per capita each year. Source: U.S. Brewers’ Association, The
Brewers’ Almanac, (various years), Table 43 and Table 45.

16. real gross prd. per cap.: Real gross state product per capita (millions/person). Source: U.S.
Department of Commerce, Bureau of Economic Analysis web page, Regional Statistics, www.bea.doc.gov/bea/
Notes: The values reported by Bureau of Economic Analysis are chained weighted 1992 dol-
lars. We convert to 1996 dollars.

17. % young male pop.: % of male population between 15-24. Source: U.S. Bureau of the Census,
Census of Population, (various years), www.census.gov/population/www/estimates/statepop.html.

18. hosp. cost: Average cost to community hospitals per patient per day ($). Source: U.S. De-
partment of Commerce, Statistical Abstract of the United States (various years), Section on
“Health and Nutrition”.

19. repair cost per veh.: Auto repair costs per registered vehicle ($/registered vehicle). Source:
National Association of Independent Insurers (NAII) Greenbook : A Compilation of Property-
Casualty Insurance Statistics, ( various years).

20. % young male lic. drivers: % of male licensed drivers under 25. Source: U.S. Department of
Transportation, Federal Highway Adminstration, Highway Statistics, (various years), Table
DL-22.

21. precipitation: total annual precipitation (inches). Source: Wood, Richard A., ed., Weather
Almanac, Ninth Edition, 1999. Notes: We do not have aggregate weather data for the states.
Data was available for specific locations in each state instead of a state overall. Therefore
we use the data from the largest city/metropolitan area (in terms of its population) in every
state.34

22. snowfall : total annual snowfall (inches). Source: Wood, Richard A., ed., Weather Almanac,
Ninth Edition, 1999. Notes: Note on precipitation applies.

23. State Liability Systems: Dummy variables for no fault and add-on states. Source: Insurance
Research Council, Trends in Auto Injury Claims, 1995, Appendix A. Notes: No fault states
have laws that restrict the right to sue for minor auto injuries. Instead they substitute PIP

34The only exceptions are Colorado, New Hampshire and Ohio.
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regardless of who was at fault. These states are: Colorado ,Connecticut (until 1/1/94), D.C,
Florida, Georgia (until 10/1/91), Hawaii, Kansas,Kentucky, Massachusetts, Michigan, Min-
nesota, New Jersey, N.Y. , N.Dakota, Penssylvania (until 10/1/84, then beginning 7/1/90),
Utah. Kentucky, NJ, PA are choice no-fault which means that vehicle owners can choose to
operate under no-fault or tort. Add-on states require auto insurers to offer PIP benefits, but
they do not restrict the right to pursue liability claim or lawsuit.These states are: Arkansas,
Connecticut (as of 1/1/94), Delaware, D.C (after 6/1/86), Maryland, PA (from 10/1/84 to
6/30/90), S. Dakota, Texas, Virginia, Wisconsin, Washington.
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Standard Standard
Variable Mean deviation Mean deviation

Insurance Premiums, r 522 139 619 161
(dollars/insured car-year)

Traffic density, D=M/L 264734 193298 319339 207067
(vehicle miles/lane miles-year)

Estimated Insurer costs, r~ 488 148 618 151
(dollars/car per year)

Malt-Alcohol Beverage per cap. 24 4 23 4
(gallons/person-year)

Real Gross Prd. per cap. 23590 5322 26898 4471
($/person-year)

% young male pop. 8 0 7 1
(percentage)

Hospital Cost 620 138 936 220
($/patient per day)

precipitation 33 14 34 15
(inches/year)

snowfall 25 24 37 36
(inches/year)

Notes:

1. All $ values are real 1996 dollars deflated with the fixed-weighted GDP deflator

1987 1995

TABLE 1 - SUMMARY STATISTICS



(1) (2) (3) (4) (5) (6)

First Stage
Regression

Regressors Insurance Premiums, r Insurance Premiums, r Insurance Premiums, r Insurer Costs, r~ Insurer Costs, r~ traffic density, D

1995 1987-1995

(OLS) (OLS) (IV) (OLS) (IV)

traffic density, D 0.00011** 0.00036** 0.0014** 0.00058** 0.0019** N/A
(0.000038) (0.00016) (0.00054) (0.00028) (0.00078)

state dummies no yes yes yes yes yes

time dummies no yes yes yes yes yes

Malt-Alcohol Beverage per cap. 0.448 0.79 2.8 -2.04 0.43 -1337.54*
(1.52) (2.12) (2.59) (5.09) (5.34) (775.76)

Real Gross Prd. 2217.5 2463.41 -113 5373.5 2224.5 2798127**
per cap. (1947.2) (1834.28) (2538.5) (3331.5) (4094.35) (572450.6)

Hospital Cost 0.026 0.024 -0.051 -0.3 -0.4 50.94**
(0.035) (0.04) (0.056) (0.11) (0.13) (13.75)

% young male pop. 7.85 8.18 11.64 -4.98 -0.75 -3881.96
(10.73) (7) (8.24) (12.09) (12.71) (2726.3)

precipitation 0.26 -0.49 -0.53* 0.1 0.06 57.81
(0.38) (0.26) (0.28) (0.36) (0.37) (87.57)

snowfall 0.13 -0.12 -0.19 0.014 -0.07 83.04**
(0.16) (0.13) (0.14) (0.22) (0.23) (42.27)

registered vehicles 1777.67**
per lane-mile (400.36)

licensed drivers 3353.72**
per lane-mile (447.54)

Notes:
1. White's robust standard errors are reported below coefficients

2. IV uses as instruments registered vehicles per lane mile, licensed drivers per lane mile, 
time and state dummy variables and all the control variables.

3. *: 10% significant, **: 5% significant

1987-1995

Dependent Variable

TABLE 2 - LINEAR INSURANCE MODEL



(7)
(8)

(9)
(10)

(11)
(12)

(13)
(14)

R
egressors

Insurance P
rem

ium
s, r

Insurance P
rem

ium
s, r

Insurer C
osts, r~

Insurer C
osts, r~

P
rem

ium
s per m

ile driven
P

rem
ium

s per m
ile driven

D
D

^2

1987-1995

(O
LS

)
(IV

)
(O

LS
)

(IV
)

(O
LS

)
(IV

)

traffic density, D
-0.00056*

-0.0011**
-0.0004

-0.00098
-1.14e-07**

-3.81e-08
N

/A
N

/A
(0.0003)

(0.00046)
(0.00054)

(0.00075)
(3.19e-08)

(4.87e-08)

D
^2

9.94E
-10**

2.19E
-09**

1.05E
-09**

2.51E
-09**

9.15e-14**
1.79e-13**

N
/A

N
/A

(3.57E
-10)

(5.23E
-10)

(5.81E
-10)

(6.02E
-10)

(3.56e-14)
(5.26e-14)

state dum
m

ies
yes

yes
yes

yes
yes

yes
yes

yes

tim
e dum

m
ies

yes
yes

yes
yes

yes
yes

yes
yes

M
alt-A

lcohol B
everage per cap.

0.97
2.4

-1.84
-0.059

0.00024
.00057**

-1057.66
-2.03E

+09
(2.2)

(2.75)
(5.18)

(5.5)
(0.00018)

(.00027)
(778.56)

(8.2E
+08)

R
eal G

ross P
rd.

2968*
2036.5

5907.16*
4712.6

-0.082
-.43**

3072066**
1.39E

+12
per cap.

(1667)
(1752.2)

(3077.66)
(3232.4)

(0.16)
(.2)

(580328.4)
(6.11E

+11)

H
ospital C

ost
0.029

-0.0085
-0.3**

-0.35**
7.85e-06**

-2.9e-6
48.49**

4.13E
+07**

(0.04)
(0.053)

(0.11)
(0.13)

(3.91e-06)
(5.52e-6)

(13.71)
(1.44E

+07)

%
 young m

ale pop.
22.93**

42.68**
10.62

34.84**
0.00083

0.0026**
-5991.6**

-1.23E
+10

(7.74)
(10.54)

(14.96)
(16.41)

(0.0007)
(0.001)

(2864.3)
(3.02E

+09)

precipitation
-0.48*

-0.48*
0.12

0.11
-0.000043**

-.000048*
39.96

8.73E
+07

(0.25)
(0.27)

(0.35)
(0.36)

(0.00002)
(.000025)

(87.29)
(9.19E

+07)

snow
fall

-0.15
-0.23

-0.017
-0.11

-0.000021*
-.00003**

85.49**
9.96E

+07**
(0.13)

(0.15)
(0.22)

(0.23)
(0.000011)

(.000013)
(42.03)

(4.43E
+07)

registered vehicles
2509.38**

-1.95E
+09

per lane-m
ile

(872.14)
(9.18E

+08)

licensed drivers
5067.47**

1.92E
+09

per lane-m
ile

(1010)
(1.06E

+09)

(registered vehicles
-8.523

4.79E
+07

per lane-m
ile)^2

(9.3)
(9.8E

+06)

(licensed drivers
-15.23*

1.07E
+07

per lane-m
ile)^2

(9.18)
(9.7E

+06)

N
otes:

1. W
hite's robust standard errors are reported below

 coefficients

2. IV
 uses as instrum

ents registered vehicles per lane m
ile, licensed drivers per lane m

ile, 
square of registered vehicles per lane m

ile, square of licensed drivers per lane m
ile,

tim
e and state dum

m
y variables and all the control variables.

3. *: 10%
 significant, **: 5%

 significant

1987-1995

TA
B

LE 3 - Q
uadratic Insurance R

ate M
odel

First S
tage R

egressions
D

ependent V
ariable



Linear P
rem

ium
s per V

ehicle M
odel

S
tate

Traffic D
ensity

Insurance P
rem

ium
s, r

dollars/driver
standard error

dollars/driver
standard error

dollars/driver
standard error

dollars/driver
standard error

(1996)
(dollars/insured car-year)

N
orth D

akota
38355

363
-54

25
81

31
-46

42
-14

26
S

outh D
akota

46276
413

-60
28

94
36

-50
48

-15
32

M
ontana

66304
451

-91
46

157
61

-73
79

-16
48

N
ebraska

86412
423

-79
44

154
59

-60
76

-9
52

K
ansas

95586
446

-77
44

158
61

-56
78

-5
58

W
yom

ing
104623

419
-110

66
240

93
-78

117
-1

94
Idoha

106675
457

-87
53

193
75

-61
94

0
70

Iow
a

116447
410

-101
65

239
92

-68
115

6
66

N
evada

151224
793

-65
53

208
80

-33
98

31
75

A
laska

153453
774

-79
66

259
100

-39
122

24
56

M
innesota

166007
593

-84
79

317
122

-33
147

56
100

O
klahom

a
169828

518
-78

76
306

118
-28

142
63

107
N

ew
 M

exico
173811

655
-77

79
319

123
-24

147
76

121
A

rkansas
176172

553
-54

57
230

89
-16

106
70

106
O

regon
178394

569
-62

67
273

105
-16

126
53

78
M

ississippi
202024

578
-56

86
363

140
9

165
124

135
C

olorado
206060

680
-51

85
359

139
14

163
96

99
V

erm
ont

218398
503

-34
76

328
127

27
147

119
108

U
tah

224380
570

-29
80

344
133

36
154

140
120

W
isconsin

230553
483

-22
79

344
133

44
154

145
118

M
issouri

243347
566

-10
90

395
152

68
175

195
142

W
est V

irginia
244869

668
-7

86
378

146
67

168
169

121
A

labam
a

266154
560

19
88

395
152

100
173

249
153

M
aine

277816
463

36
94

427
165

126
187

250
142

K
entucky

280899
604

38
91

413
159

127
180

291
163

S
outh C

arolina
295083

595
62

98
448

173
160

195
308

159
Texas

295525
682

62
97

444
171

160
193

294
151

Louisiana
299164

786
80

116
530

204
197

230
300

151
W

ashington
301015

633
77

109
496

191
188

215
265

132
Tennessee

325458
545

134
126

578
223

270
249

392
173

Illinois
336716

589
146

119
546

211
277

235
353

148
Indiana

345358
543

201
149

681
263

367
293

528
214

N
ew

 H
am

pshire
353359

603
192

131
601

232
341

258
375

148
A

rizona
356960

723
181

120
547

211
317

235
494
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M

ichigan
364955

695
217

134
609

235
371

262
454
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G

eorgia
380431

631
273

149
674

260
447

289
670

240
N

orth C
arolina

386686
520

255
134

601
232

413
258

590
207

P
ennsylvania

389975
663

249
128

574
221

401
247

465
162

O
hio

425902
530

406
170

742
286

614
320

639
202

V
irginia

475461
530

555
193

791
305

795
347

955
275

N
ew

 Y
ork

498337
920

547
178

708
273

769
313

794
221

Florida
527303

716
609

186
705

272
840

317
906

244
R

hode Island
559748

896
787

227
815

314
1066

374
967

253
D

elaw
are

619775
787

1121
299

972
375

1480
466

1651
417

C
onnecticut

642792
865

1227
321
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386

1608
489

1480
371

M
assachusetts
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1386
352
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397

1795
520

1610
399

M
aryland

708803
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1529
382

1068
412

1967
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516

C
alifornia
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744
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470
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490
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670
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549

N
ew
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H

aw
aii
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N
otes

1. E
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dditional D
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 per-m
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ing that a driver drives average num
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iles in state.
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State Traffic Density External Accident Cost External Accident Cost
(1996) from Crash Frequency standard error from Crash Severity standard error

North Dakota 38355 10 26 -16 24
South Dakota 46276 13 31 -22 34
Montana 66304 22 47 -32 51
Nebraska 86412 19 36 -50 86
Kansas 95586 34 62 -36 64
Wyoming 104623 44 77 -40 74
Idaho 106675 38 66 -35 66
Iowa 116447 39 65 -35 69
Nevada 151224 64 89 -42 105
Alaska 153453 57 78 -27 69
Minnesota 166007 106 137 -32 94
Oklohoma 169828 66 84 -37 112
New Mexico 173811 75 95 -44 138
Arkansas 176172 140 174 -19 61
Oregon 178394 79 97 -23 78
Mississippi 202024 106 119 -21 107
Colorado 206060 147 163 -15 84
Vermont 218398 217 230 -5 46
Utah 224380 53 55 -22 252
Wisconsin 230553 100 102 -6 115
Missouri 243347 114 112 2 153
West Virginia 244869 121 118 3 144
Alabama 266154 154 144 16 113
Maine 277816 122 111 31 152
Kentucky 280899 171 155 36 162
South Carolina 295083 181 161 48 158
Texas 295525 117 103 59 194
Louisiana 299164 279 246 40 124
Washington 301015 129 114 58 175
Tennessee 325458 166 144 82 179
Illinois 336716 190 164 89 172
Indiana 345358 245 211 118 211
New Hampshire 353359 272 234 75 128
Arizona 356960 252 217 148 243
Michigan 364955 223 192 145 226
Georgia 380431 248 215 210 301
North Carolina 386686 197 172 221 307
Pennsylvania 389975 288 251 142 194
Ohio 425902 189 170 300 359
Virginia 475461 415 392 293 315
New York 498337 306 296 513 534
Florida 527303 322 323 443 446
Rhode Island 559748 514 534 494 486
Delaware 619775 837 927 614 586
Connecticut 642792 680 770 807 765
Massachusetts 681249 841 987 702 659
Maryland 708803 1220 1468 654 611
California 728974 1003 1227 763 711
New Jersey 802828 1035 1339 1507 1395
Hawaii 899518 1633 2247 1339 1236

TABLE 5 - YEARLY EXTERNAL ACCIDENT COST DECOMPOSITION - for 1996 

(dollars/driver) (dollars/driver)



State Traffic Density External Accident Cost
(1996) from Fatalities standard error

North Dakota 38355 7.52 3.65
South Dakota 46276 11.01 5.34
Montana 66304 24.68 11.98
Nebraska 86412 35.54 17.25
Kansas 95586 45.1 21.89
Wyoming 104623 80.02 38.84
Idaho 106675 61.5 29.85
Iowa 116447 63.57 30.85
Nevada 151224 99.1 48.1
Alaska 153453 75.17 36.48
Minnesota 166007 147.67 71.67
Oklohoma 169828 161.64 78.45
New Mexico 173811 187.71 91.11
Arkansas 176172 167.81 81.45
Oregon 178394 125.78 61.05
Mississippi 202024 250.35 121.51
Colorado 206060 189.49 91.97
Vermont 218398 221.19 107.36
Utah 224380 253.61 123.09
Wisconsin 230553 256.86 124.67
Missouri 243347 329.42 159.88
West Virginia 244869 283.8 137.74
Alabama 266154 395.41 191.91
Maine 277816 385.35 187.03
Kentucky 280899 446.33 216.63
South Carolina 295083 458.74 222.65
Texas 295525 438.11 212.64
Louisiana 299164 442.85 214.94
Washington 301015 390.32 189.44
Tennessee 325458 553.96 268.87
Illinois 336716 491.01 238.31
Indiana 345358 726.45 352.59
New Hampshire 353359 511.32 248.17
Arizona 356960 670.33 325.35
Michigan 364955 609.57 295.86
Georgia 380431 884.9 429.49
North Carolina 386686 775.09 376.19
Pennsylvania 389975 609 295.58
Ohio 425902 810.86 393.55
Virginia 475461 1170.72 568.22
New York 498337 960.68 466.27
Florida 527303 1080.62 524.48
Rhode Island 559748 1136.52 551.61
Delaware 619775 1897.01 920.72
Connecticut 642792 1688.22 819.39
Massachusetts 681249 1815.9 881.35
Maryland 708803 2342.08 1136.74
California 728974 2486.34 1206.75
New Jersey 802828 2494.47 1210.7
Hawaii 899518 3018.86 1465.22

Notes:
1. Estimates are computed assuming fatality cost of $6,000,000
2. Estimates are computed using IV estimates

(dollars/driver)

TABLE 6 - YEARLY EXTERNAL ACCIDENT COST OF FATALITIES - for 1996 


