

HEIDENHAIN

Exposed Linear Encoders

May 2014

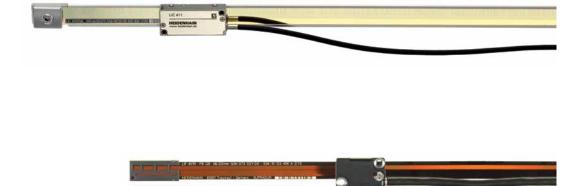
Exposed linear encoders

Linear encoders measure the position of linear axes without additional mechanical transfer elements. This eliminates a number of potential error sources:

- Positioning error due to thermal behavior of the recirculating ball screw
- Reversal error
- Kinematics error through ball-screw pitch
 error

Therefore, linear encoders are indispensable for machine tools on which high **positioning accuracy** and a high **machining rate** are essential.

Exposed linear encoders are designed for


use on machines and installations that require especially high accuracy of the measured value. Typical applications include:

- Measuring and production equipment in the semiconductor industry
- PCB assembly machines
- Ultra-precision machines such as diamond lathes for optical components, facing lathes for magnetic storage disks, and grinding machines for ferrite components
- High-accuracy machine tools
- Measuring machines and comparators, measuring microscopes, and other precision measuring devices
- Direct drives

Mechanical design

Exposed linear encoders consist of a scale or scale tape and a scanning head that operate without mechanical contact. The scale of an exposed linear encoder is fastened directly to a mounting surface. The flatness of the mounting surface is therefore a prerequisite for high accuracy of the encoder.

Information on

- Angle encoders with integral bearing
- Angle encoders without integral bearing
- Modular magnetic encoders
- · Rotary encoders
- Encoders for servo drives
- Linear encoders for numerically controlled machine tools
- Interface electronics
- HEIDENHAIN controls

is available on request as well as on the Internet at *www.heidenhain.de*

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces for HEIDENHAIN Encoders* brochure, ID 1078628-xx. This catalog supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDEN-HAIN is always the catalog edition valid when the contract is made.

Standards (ISO, EN, etc.) apply only where explicitly stated in the catalog.

Contents

verview		
	Exposed linear encoders	2
	Selection guide	4
chnical characteristics		
	Measuring principles	8
	Reliability	12
	Measuring accuracy	14
	Mechanical design types and mounting	17
	General mechanical information	21
ecifications		
For absolute position measurement	LIC 4113, LIC 4193	22
	LIC 4115, LIC 4195	24
	LIC 4117, LIC 4197	26
	LIC 4119, LIC 4199	28
	LIC 2117, LIC 2197	30
	LIC 2119, LIC 2199	32
For high accuracy	LIP 372, LIP 382	34
	LIP 211, LIP 281	36
	LIP 471, LIP 481	38
	LIP 571, LIP 581	40
	LIF 471, LIF 481	42
For high traversing speed	LIDA 473/LIDA 483	44
	LIDA 475/LIDA 485	46
	LIDA 477/LIDA 487	48
	LIDA 479/LIDA 489	50
	LIDA 277/LIDA 287	52
	LIDA 279/LIDA 289	54
For two-coordinate measurement	PP 281R	56
ectrical connection		
	Interfaces	58
	Cables and connecting elements	65
	Diagnostic and testing equipment	69
	Interface electronics	72

Selection guide

Absolute encoders and encoders with position value output

Absolute position measurement

The LIC exposed linear encoders permit absolute position measurement both over large paths of traverse up to 28 m and at high traversing speed.

	Substrate and mounting	Coefficient of expansion α_{therm}	Accuracy grade
LIC 4100 For high accuracy and high traversing speeds	Glass or glass ceramic scale, bonded to the mounting surface	≈ (0±0.1) · 10 ⁻⁶ K ⁻¹ ≈ 8 · 10 ⁻⁶ K ⁻¹	± 3 μm ²⁾ ± 5 μm
	Steel scale tape drawn into aluminum extrusions and tensioned	Same as mounting surface	± 5 μm
	Steel scale tape drawn into aluminum extrusions and fixed	≈ 10 · 10 ⁻⁶ K ⁻¹	± 3 μm ³⁾ ± 5 μm
	Steel scale tape, cemented on mounting surface	≈ 10 · 10 ⁻⁶ K ⁻¹	± 3 μm ± 5 μm
LIC 2100 For high traversing speed	Steel scale tape drawn into aluminum extrusions and fixed	≈ 10 · 10 ⁻⁶ K ⁻¹	± 15 μm
	Steel scale tape, cemented on mounting surface	≈ 10 · 10 ⁻⁶ K ⁻¹	± 15 μm
LIP 200 For very high accuracy	Scale of Zerodur glass ceramic with fixing clamps	$\approx (0\pm 0.1) \cdot 10^{-6} \text{K}^{-1}$	± 1 μm ³⁾ ± 3 μm

¹⁾ Signal period of the sinusoidal signals. It is definitive for errors within one signal period (see *Measuring Accuracy*)²⁾ Higher accuracy grades available on request

Incremental encoder with position value output

The LIP 211 incremental linear encoder provides position information as position values over the EnDat 2.2 interface. The sinusoidal scanning signals are highly interpolated in the scanning head and converted to a position value by the integrated counter function. As with all incremental encoders, the absolute reference is determined with the aid of reference marks.

Position error per signal period typically	Signal period ¹⁾	Meas. length	Interface	Туре	Page
± 0.04 μm	-	240 mm to 3040 mm	EnDat 2.2	LIC 4113	22
		3040 mm	Fanuc αi	LIC 4193 F	
			Mitsubishi	LIC 4193 M	
 ± 0.04 µm	_	140 mm to 28440 mm	EnDat 2.2	LIC 4115	24
		28440 mm	Fanuc αi	LIC 4195 F	-
			Mitsubishi	LIC 4195 M	-
 ± 0.04 µm	_	240 mm to 6 040 mm	EnDat 2.2	LIC 4117	26
		040 mm	Fanuc αi	LIC 4197 F	-
			Mitsubishi	LIC 4197 M	-
 ± 0.04 µm	-	70 mm to 1020 mm	EnDat 2.2	LIC 4119	28
		1020 mm	Fanuc αi	LIC 4199 F	-
			Mitsubishi	LIC 4199 M	-
± 1.5 μm	-	120 mm to 3020 mm	EnDat 2.2	LIC 2117	30
		3020 mm	Fanuc αi	LIC 2197 F	
			Mitsubishi	LIC 2197 M	
			Panasonic	LIC 2197 P	1
± 1.5 µm	_	120 mm to	EnDat 2.2	LIC 2119	32
		3040 mm	Fanuc αi	LIC 2199 F	-
			Mitsubishi	LIC 2199 M	
			Panasonic	LIC 2199 P	
± 0.001 µm	0.512 µm	20 mm to 3040 mm	EnDat 2.2	LIP 211	36

³⁾ Up to measuring length ML = 1020 mm or 1040 mm

LIP 211

Selection guide Incremental encoders

Very high accuracy

The **LIP** exposed linear encoders are characterized by very small measuring steps together with very high accuracy and repeatability. They operate according to the interferential scanning principle and feature a DIADUR phase grating as the measuring standard (LIP 281: OPTODUR phase grating).

High accuracy

The **LIF** exposed linear encoders have a measuring standard manufactured in the SUPRADUR process on a glass substrate and operate on the interferential scanning principle. They feature high accuracy and repeatability, are especially easy to mount, and have limit switches and homing tracks. The special version LIF 481V can be used in high vacuum up to 10⁻⁷ bars (see separate Product Information sheet).

High traversing speeds

The **LIDA** exposed linear encoders are specially designed for high traversing speeds up to 10 m/s, and are particularly easy to mount with various mounting possibilities. Steel scale tapes, glass or glass ceramic are used as carriers for METALLUR graduations, depending on the respective encoder model. They also feature a limit switch.

Two-coordinate measurement

On the **PP** two-coordinate encoder, a planar phase-grating structure manufactured with the DIADUR process serves as the measuring standard, which is scanned interferentially. This makes it possible to measure positions in a plane.

Encoders for application in vacuum

Our standard encoders are suitable for use in a rough or fine vacuum. Encoders used for applications in a high or ultrahigh vacuum need to fulfill special requirements. Design and materials used have to be specially adapted for it. For more information, refer to the Technical Information document *Linear Encoders for Vacuum Technology*.

The following exposed linear encoders are specially adapted for use in high and ultrahigh vacuum environments.

- High vacuum: LIP 481V and LIF 481V
- Ultrahigh vacuum LIP 481 U For more information, please refer to the

appropriate product information documents.

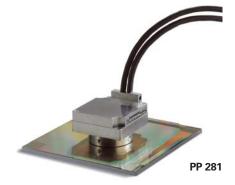
	Substrate and mounting	Coefficient of expansion α _{therm}	Accuracy grade
LIP For very high accuracy	Zerodur glass ceramic embedded in bolted-on Invar carrier	≈ 0 · 10 ⁻⁶ K ⁻¹	± 0.5 μm ³⁾
	Scale of Zerodur glass ceramic with fixing clamps	≈ 0 · 10 ⁻⁶ K ⁻¹	± 1 μm ± 3 μm
	Scale of Zerodur glass ceramic or glass with fixing clamps	$\approx 0 \cdot 10^{-6} \text{K}^{-1} \text{ or}$ ≈ 8 · 10 ⁻⁶ K ⁻¹	± 0.5 μm ± 1 μm ³⁾
	Glass scale, fixed with clamps	≈ 8 · 10 ⁻⁶ K ⁻¹	± 1 µm
LIF For high accuracy	Scale of Zerodur glass ceramic or glass, cemented with PRECIMET adhesive film	$\approx 0 \cdot 10^{-6} \text{K}^{-1} \text{ or}$ ≈ 8 · 10 ⁻⁶ K ⁻¹	± 1 μm ⁵⁾ ± 3 μm
LIDA For high traversing speeds and large measuring lengths	Glass or glass ceramic scale, bonded to the mounting surface	\approx 0 · 10 ⁻⁶ K ⁻¹ or ≈ 8 · 10 ⁻⁶ K ⁻¹	± 1 μm ⁵⁾ ± 3 μm ± 5 μm
	Steel scale tape drawn into aluminum extrusions and tensioned	Same as mounting surface	± 5 μm
	Steel scale tape drawn into aluminum extrusions and fixed	≈ 10 · 10 ⁻⁶ K ⁻¹	± 3 μm ²⁾ ± 5 μm ± 15 μm ⁶⁾
	Steel scale tape, cemented on mounting surface	≈ 10 · 10 ⁻⁶ K ⁻¹	± 3 μm ²⁾ ± 15 μm ⁶⁾
	Steel scale tape drawn into aluminum extrusions and fixed	≈ 10 · 10 ⁻⁶ K ⁻¹	± 15 μm
	Steel scale tape, cemented on mounting surface	≈ 10 · 10 ⁻⁶ K ⁻¹	± 15 μm
PP For two-coordinate measurement	Glass grid plate, with full- surface bonding	≈ 8 · 10 ⁻⁶ K ⁻¹	± 2 μm
LIP/LIF For application in high and ultrahigh vacuum	Scale of Zerodur glass ceramic or glass with fixing clamps	\approx 0 · 10 ⁻⁶ K ⁻¹ or ≈ 8 · 10 ⁻⁶ K ⁻¹	± 0.5 μm ± 1 μm
technology			± 3 µm

¹⁾ Signal period of the sinusoidal signals. It is definitive for errors within one signal period (see *Measuring Accuracy*)

²⁾ Up to measuring lengths 1020 mm or 1040 mm

³⁾ Higher accuracy grades available on request

Position error per signal period typ.	Signal period ¹⁾	Meas. length	Interface	Туре	Page
± 0.001 μm	0.128 µm	70 mm to 270 mm		LIP 372	34
		270 1111	\sim 1 V _{PP}	LIP 382	
± 0.001 µm	0.512 µm	20 mm to 3040 mm	∕~ 1 V _{PP}	LIP 281	36
			EnDat 2.2	LIP 211	
± 0.02 μm	2 µm	70 mm to 420 mm		LIP 471	38
		120 11111	\sim 1 V _{PP}	LIP 481	
± 0.04 µm	4 µm	70 mm to 1 440 mm		LIP 571	40
		1440 11111	\sim 1 V_{PP}	LIP 581	
± 0.04 µm	4 µm	70 mm to 1 020 mm ⁴⁾		LIF 471	42
		102011111	\sim 1 V_{PP}	LIF 481	
± 0.2 µm	20 µm	240 mm to 3040 mm		LIDA 473	44
			\sim 1 V _{PP}	LIDA 483	
± 0.2 µm	20 µm	140 mm to 30040 mm		LIDA 475	46
3004011111	\sim 1 V_{PP}	LIDA 485			
± 0.2 µm	20 µm	240 mm to 6040 mm		LIDA 477	48
			∕~ 1 V _{PP}	LIDA 487 high speed	
± 0.2 µm	20 µm	Up to 6000 mm ⁴⁾		LIDA 479	50
		000011111	\sim 1 V_{PP}	LIDA 489	
± 2 µm	200 µm	Up to 10 000 mm ⁴⁾		LIDA 277	52
			\sim 1 V _{PP}	LIDA 287	
± 2 µm	200 µm	Up to 10000 mm ⁴⁾		LIDA 279	54
		10000 mm /	\sim 1 V _{PP}	LIDA 289	
± 0.04 µm	4 μm	Measuring range 68 x 68 mm ⁴⁾	∕~ 1 V _{PP}	PP 281	56
± 0.02 μm	2 µm	70 mm to 420 mm	∕~ 1 V _{PP}	LIP 481V LIP 481 U	Prod- uct info
± 0.04 µm	4 µm	70 mm to		LIF 481V	



LIDA 489

LIDA 287

⁴⁾ Other measuring lengths/ranges upon request ⁵⁾ Only for Zerodur glass ceramics, with LIDA 4x3 up to ML 1640 mm ⁶⁾ \pm 5 µm after linear length-error compensation in the subsequent electronics

1020 mm

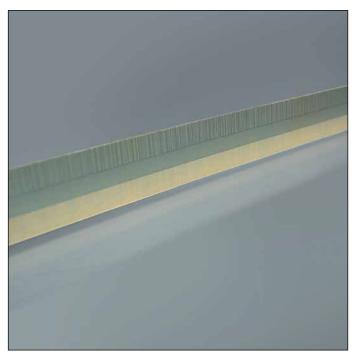
Measuring principles

Measuring standard

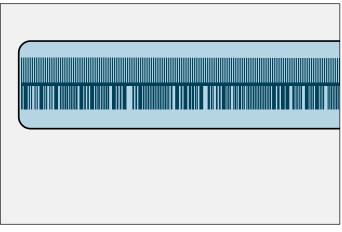
HEIDENHAIN encoders with optical scanning incorporate measuring standards of periodic structures known as graduations.

These graduations are applied to a carrier substrate of glass or steel. The scale substrate for large measuring lengths is a steel tape.

HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.


- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 µm
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 μm) or three-dimensional chromium structures (typical graduation period of 8 μm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and less

Along with these very fine grating periods, these processes permit a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.


The master graduations are manufactured by HEIDENHAIN on custom-built highprecision dividing engines.

Absolute measuring method

With the absolute measuring method, the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position. The absolute position information is read **from the graduated disk**, which is formed from a serial absolute code structure. A separate incremental track is interpolated for the position value and at the same time—depending on the interface version—is used to generate an optional incremental signal.

Graduation of an absolute linear encoder

Schematic representation of an absolute code structure with an additional incremental track (LC 401x as example)

Incremental measuring method

With the incremental measuring method, the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the measuring standard is provided with an additional track that bears a **reference mark**. The absolute position on the scale, established by the reference mark, is gated with exactly one signal period.

The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

In the most unfavorable case this may necessitate machine movements over large lengths of the measuring range. To speed and simplify such "reference runs," many HEIDENHAIN encoders feature **distance-coded reference marks** multiple reference marks that are individually spaced according to a mathematical algorithm. The subsequent electronics find the absolute reference after traversing two successive reference marks—only a few millimeters traverse (see table).

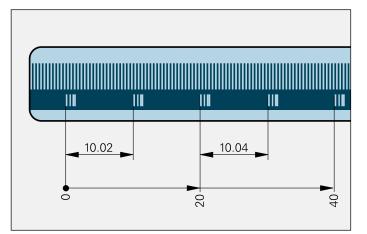
Encoders with distance-coded reference marks are identified with a "C" behind the model designation (e.g. LIP 581 C).

With distance-coded reference marks, the **absolute reference** is calculated by counting the signal periods between two reference marks and using the following formula:

$P_1 = (abs B-sgn B-1) \times \frac{N}{2} + (sgn B-sgn D) \times \frac{abs M_{RR}}{2}$

and

 $B = 2 \times M_{RR} - G$


Where:

- P₁ = Position of the first traversed reference mark in signal periods
- abs = Absolute value
- sgn = Algebraic sign function ("+1" or "-1")

M_{RR} = Number of signal periods between the traversed reference marks

- N = Nominal increment between two fixed reference marks in signal periods (see table below)
- D = Direction of traverse (+1 or -1). Traverse of scanning unit to the right (when properly installed) equals +1.

Graduations of incremental linear encoders

_	Signal period	Nominal increment N in signal periods	Maximum traverse
LIP 5x1C	4 µm	5000	20 mm
LIDA 4x3C	20 µm	1000	20 mm

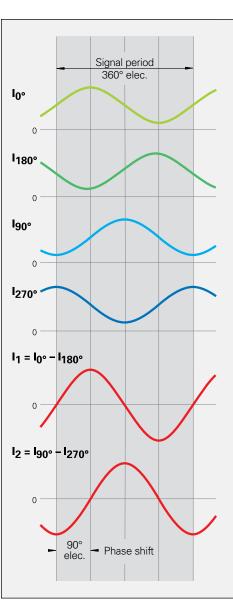
Technical characteristics

Schematic representation of an incremental graduation with distancecoded reference marks (LIP 5x1 C as example)

Photoelectric scanning

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few micrometers wide, and generates output signals with very small signal periods.

The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN uses two scanning principles with linear encoders:

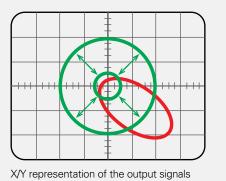

- The imaging scanning principle for grating periods from 10 µm to 200 µm.
- The **interferential scanning principle** for very fine graduations with grating periods of 4 µm and smaller.

Imaging principle

Put simply, the imaging scanning principle functions by means of projected-light signal generation: two graduations with equal or similar grating periods—the scale and the scanning reticle—are moved relative to each other. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating with the same or similar grating period is located here. When the two gratings move relative to each other, the incident light is modulated. If the gaps in the gratings are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. Photovoltaic cells convert these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle filters the light to generate nearly sinusoidal output signals. The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and scale. Practical mounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.

The **LIC** and **LIDA** linear encoders operate according to the imaging scanning principle.



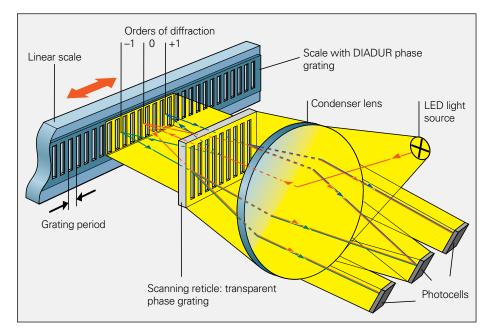
Photoelectric scanning according to the imaging scanning principle with steel scale and single-field scanning (LIDA 400)

The sensor generates four nearly sinusoidal current signals (I_{0° , I_{90° , I_{180° and I_{270°), electrically phase-shifted to each other by 90°. These scanning signals do not at first lie symmetrically about the zero line. For this reason the photovoltaic cells are connected in a push-pull circuit, producing two 90° phase-shifted output signals I_1 und I_2 in symmetry with respect to the zero line.

In the XY representation on an oscilloscope, the signals form a Lissajous figure. Ideal output signals appear as a centered circle. Deviations in the circular form and position are caused by position error within one signal period (see *Measuring Accuracy*) and therefore go directly into the result of measurement. The size of the circle, which corresponds to the amplitude of the output signal, can vary within certain limits without influencing the measuring accuracy.

Interferential scanning principle

The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.


A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

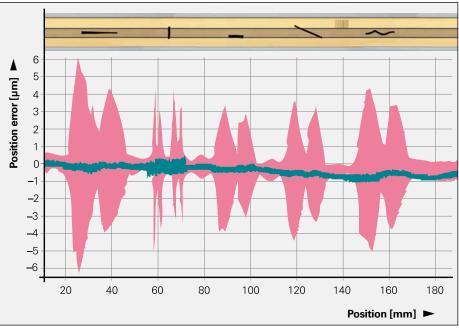
When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders –1, 0, and +1, with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and –1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.

A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: when the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order –1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

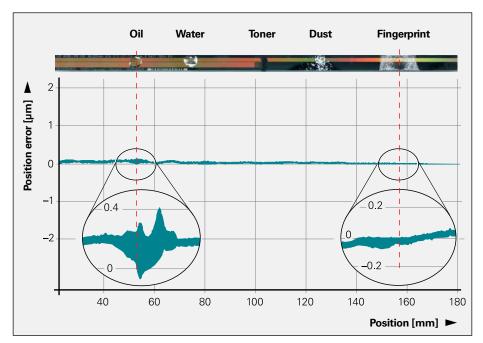
Interferential encoders function with grating periods of, for example, 8 μ m, 4 μ m and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy. Even so, their generous mounting tolerances permit installation in a wide range of applications.

LIP, LIF and **PP** linear encoders operate according to the interferential scanning principle.

Photoelectric scanning in according to interferential scanning principle and single-field scanning


Reliability

Exposed linear encoders from HEIDEN-HAIN are optimized for use on fast, precise machines. In spite of the exposed mechanical design, they are highly tolerant to contamination, ensure high long-term stability, and are quickly and easily mounted.



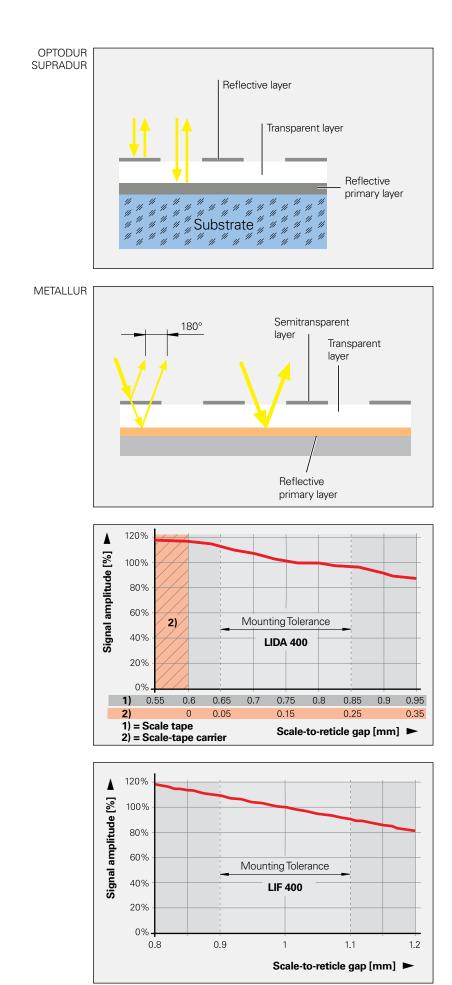
Lower sensitivity to contamination Both the high quality of the grating and the scanning method are responsible for the accuracy and reliability of linear encoders. Exposed linear encoders from HEIDEN-HAIN operate with single-field scanning. Only one scanning field is used to generate the scanning signals. Unlike four-field scanning, with single-field scanning, local contamination on the measuring standard (e.g., fingerprints from mounting or oil accumulation from guideways) influences the light intensity of the signal components, and therefore the scanning signals, in equal measure. The output signals do change in their amplitude, but not in their offset and phase position. They remain highly interpolable, and the position error within one signal period remains small.

The **large scanning field** additionally reduces sensitivity to contamination. In many cases this can prevent encoder failure. This is particularly clear with the LIDA 400 and LIF 400, which in relation to the grating period have a very large scanning surface of 14.5 mm² as well as the LIC 4100 with 15.5 mm². Even if the contamination from printer's ink, PCB dust, water or oil is up to 3 mm in diameter, the encoders continue to provide high-quality signals. The position error remains far below the values specified for the accuracy grade of the scale.

Reaction of the LIF 400 to contamination

Durable measuring standards

By the nature of their design, the measuring standards of exposed linear encoders are less protected from their environment. HEIDENHAIN therefore always uses tough gratings manufactured in special processes.


In the DIADUR process, hard chrome structures are applied to a glass or steel carrier.

In the OPTODUR and SUPRADUR process, a transparent layer is applied first over the reflective primary laver. An extremely thin, hard chrome laver is applied to produce an optically three-dimensional phase grating. Graduations that use the imaging scanning principle are produced according to the METALLUR procedure, and have a very similar structure. A reflective gold layer is covered with a thin layer of glass. On this layer are lines of chromium only several nanometers thick, which are semitransparent and act as absorbers. Measuring standards with OPTODUR-, SUPRADUR or METALLUR graduations have proven to be particularly robust and insensitive to contamination because the low height of the structure leaves practically no surface for dust, dirt or water particles to accumulate.

Application-oriented mounting tolerances

Very small signal periods usually come with very narrow mounting tolerances for the gap between the scanning head and scale tape. This is the result of diffraction caused by the grating structures. It can lead to a signal attenuation of 50% with a gap change of only \pm 0.1 mm. Thanks to the interferential scanning principle and innovative index gratings in encoders with the imaging scanning principle, it has become possible to provide ample mounting tolerances in spite of the small signal periods.

The mounting tolerances of exposed linear encoders from HEIDENHAIN have only a slight influence on the output signals. In particular, the specified tolerance between the scale and scanning head (scanning gap) cause only negligible change in the signal amplitude. This behavior is substantially responsible for the high reliability of exposed linear encoders from HEIDEN-HAIN. The two diagrams illustrate the correlation between the scanning gap and signal amplitude for the encoders of the LIDA 400 and LIF 400 series.

Measuring accuracy

The accuracy of linear measurement is mainly influenced by

- the quality of the graduation,
- the quality of the graduation carrier,
- the quality of the scanning process,
- the quality of the signal processing electronics,
- The bearing error

These factors of influence are comprised of encoder-specific error and applicationdependent issues. All individual factors of influence must be considered in order to assess the attainable total accuracy.

Error specific to the measuring device

The encoder-specific errors include

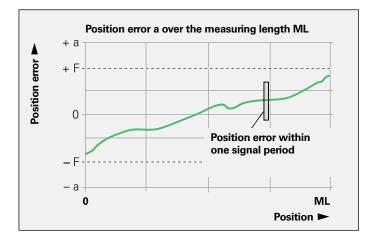
- accuracy of the graduation (listed in the Specifications as the accuracy grade),
- the position error within one signal period.

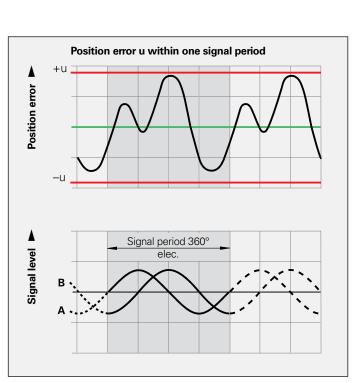
Accuracy of graduation

The accuracy of the graduation \pm a results from its quality. This includes

- The homogeneity and period definition of the graduation
- the alignment of the graduation on its carrier,
- for encoders with massive graduation carriers: the stability of the graduation carrier, in order to also ensure accuracy in the mounted condition,
- for encoders with steel scale tape: the error due to irregular scale-tape expansion during mounting.

The accuracy of the graduation \pm a is ascertained under ideal conditions by using a series-produced scanning head to measure position error at positions that are integral multiples of the signal period. The respectively determined position error *F* lies—with reference to its mean value within the accuracy grade \pm a over any max. one-meter section of the measuring length.


Position error within one signal period


Position errors within one signal period ± u result from the quality of the scanning and—for encoders with integrated pulseshaping or counter electronics—the quality of the signal-processing electronics. For encoders with sinusoidal output signals, however, the errors of the signal processing electronics are determined by the subsequent electronics.

The following individual factors influence the result:

- The size of the signal period
- The homogeneity and period definition of the graduation
- The quality of scanning filter structures
- The characteristics of the sensors
- The stability and dynamics of further processing of the analog signals

These factors of influence are to be considered when specifying position error within one signal period.

Position error within one signal period $\pm u$ is specified in relation to the signal period. For exposed linear encoders, the value is typically better than ± 1 % of the signal period. You will find the specific values in the following table.

Position errors within one signal period already become apparent in very small paths of traverse and in repeated measurements. They especially lead to fluctuations in traversing speed in the speed control loop.

Application-dependent error

The mounting and adjustment of the scanning head, in addition to the given encoder-specific error, normally have a significant effect on the accuracy that can be achieved by encoders without integral bearings. The application-dependent error values must be measured and calculated individually in order to evaluate the **total accuracy**.

Deformation of the graduation

Error due to deformation of the graduation is not to be ignored. It occurs when the graduation is mounted on an uneven, for example convex, surface.

Mounting location

Poor mounting of linear encoders can aggravate the effect of guideway error on measuring accuracy. To keep the resulting Abbé error as small as possible, the scale should be mounted at table height on the machine slide. It is important to ensure that the mounting surface is parallel to the machine guideway.

Vibration

To function properly, linear encoders must not be continuously subjected to strong vibration; the more solid parts of the machine tool provide the best mounting surface in this respect. Encoders should not be mounted on hollow parts or with adapter blocks, etc.

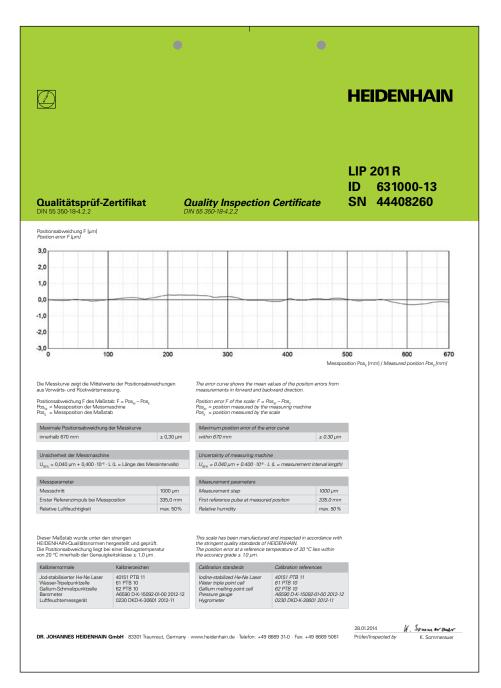
Temperature influence

The linear encoders should be mounted away from sources of heat to avoid temperature influences.

	Signal period of the scanning signals	Typical position error u within one signal period
LIP 3x2	0.128 µm	± 0.001 µm
LIP 281	0.512 µm	± 0.001 µm
LIP 4x1	2 µm	± 0.02 μm
LIP 5x1 LIF, PP	4 μm	± 0.04 µm
LIC 41xx	-	± 0.04 µm
LIDA 4xx	20 µm	± 0.2 µm
LIC 21xx	-	± 1.5 µm
LIDA 2xx	200 µm	± 2 μm

Calibration chart

All HEIDENHAIN linear encoders are inspected before shipping for accuracy and proper function.


They are calibrated for accuracy during traverse in both directions. The number of measuring positions is selected to determine very exactly not only the longrange error, but also the position error within one signal period.

The **Quality Inspection Certificate** confirms the specified accuracy grades of each encoder. The **calibration standards** ensure the traceability—as required by EN ISO 9001—to recognized national or international standards.

For the encoders of the LIP and PP series, in addition a calibration chart documents the **position error** over the measuring range. It also indicates the measuring parameters and the uncertainty of the calibration measurement.

Temperature range

The linear encoders are calibrated at a **reference temperature** of 20 °C. The system accuracy given in the calibration chart applies at this temperature.

Mechanical design types and mounting

Linear scales

Exposed linear encoders consist of two components: the scanning head and the scale or scale tape. They are positioned to each other solely by the machine guideway. For this reason the machine must be designed from the very beginning to meet the following prerequisites:

- The machine guideway must be designed so that the mounting space for the encoder meets the **tolerances** for the scanning gap (see *Specifications*).
- The bearing surface of the scale must meet requirements for **flatness**.
- To facilitate adjustment of the scanning head to the scale, it should be fastened with a **bracket**.

Scale versions

HEIDENHAIN provides the appropriate scale version for the application and accuracy requirements at hand.

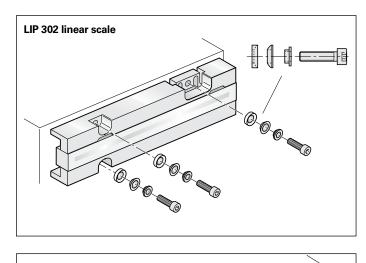
LIP 3x2

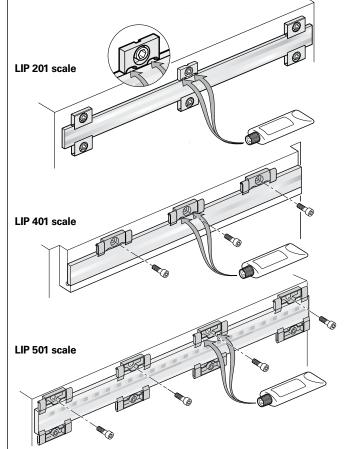
High-accuracy LIP 300 scales feature a graduation substrate of Zerodur, which is cemented in the thermal stress-free zone of a steel carrier. The steel carrier is secured to the mounting surface with screws. Flexible fastening elements ensure reproducible thermal behavior.

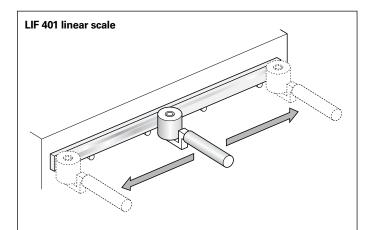
LIP 2x1 LIP 4x1 LIP 5x1

The graduation carriers of Zerodur or glass are fastened onto the mounting surface with clamps and additionally secured with silicone adhesive. The thermal zero point is fixed with epoxy adhesive.

Accessories for the LIP 2x1Fixing clamps (6x)ID 683609-01Fixing clamp forID 683611-01thermal fixed pointID 683611-01Epoxy adhesiveID 734360-01


Accessories for LIP 4xx/LIP 5xxFixing clampsID 270711-04Silicone adhesiveID 200417-02Epoxy adhesiveID 200409-01


LIC 41x3 LIF 4x1 LIDA 4x3


The graduation carriers of glass are glued directly to the mounting surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller.

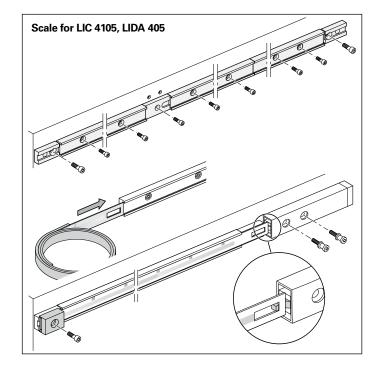
Accessories Roller

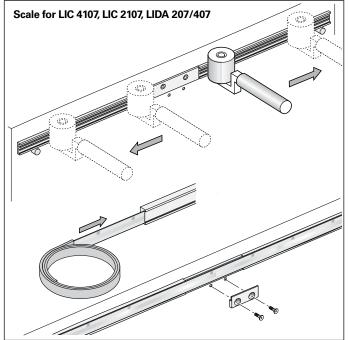
ID 276885-01

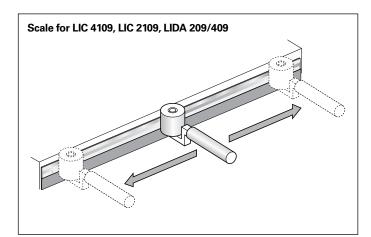
LIC 41x5 LIDA 4x5

Linear encoders of the LIC 41x5 and LIDA 4x5 series are specially designed for large measuring lengths. They are mounted with scale carrier sections screwed onto the mounting surface or cemented with PRECIMET adhesive film. Then the onepiece steel scale-tape is pulled into the carrier, **tensioned in a defined manner**, and **secured at its ends** to the machine base. The LIC 41x5 and LIDA 4x5 therefore share the thermal behavior of their mounting surface.

Encoders of the LIC 41x7, LIC 21x7, LIDA 2x7 and LIDA 4x7 series are also designed for large measuring lengths. The scale carrier sections are cemented to the bearing surface with PRECIMET adhesive mounting film; the one-piece scale tape is pulled in and **fixed at its midpoint** to the machine bed. This mounting method allows the scale to expand freely at both ends and ensures a defined thermal behavior.


Accessory for LIC 41x7, LIDA 4x7 Mounting aid ID 373990-01


Mounting aid (for LIC 41x7, LIDA 4x7)


LIC 21x9 LIC 41x9 LIDA 2x9 LIDA 4x9

The steel scale-tape of the graduation is cemented directly to the mounting surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller. A ridge or aligning rail 0.3 mm high is to be used for horizontal alignment of the scale tape.

Accessory for versions with PRECIMET Roller ID 276885-01

Mechanical design types and mounting Scanning heads

Because exposed linear encoders are assembled on the machine, they must be precisely adjusted after mounting. This adjustment determines the final accuracy of the encoder. It is therefore advisable to design the machine for simplest and most practical adjustment as well as to ensure the most stable possible construction.

For exact alignment of the scanning head to the scale, it must be adjustable in five axes (see illustration). Because the paths of adjustment are very small, it is generally sufficient to provide oblong holes in an angle bracket.

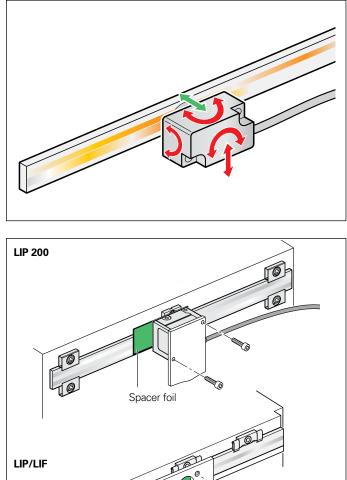
Mounting the LIP 2x1

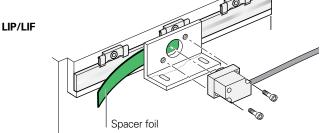
The LIP 2x is mounted from behind or above onto a flat surface (e.g. a bracket). These surfaces have contact areas for thermal connection to optimal heat dissipation. The mounting elements should be made of an effective heat-conducting material.

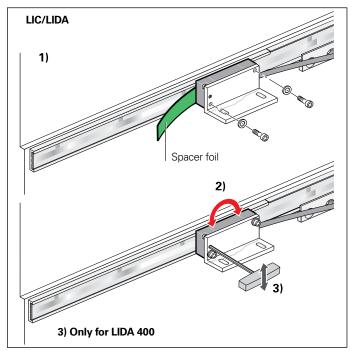
Mounting the LIP/LIF

The scanning head features a centering collar that allows it to be rotated in the location hole of the angle bracket and aligned parallel to the scale.

Mounting the LIC/LIDA


There are three options for mounting the scanning head (see Dimensions). A spacer foil makes it quite easy to set the gap between the scanning head and the scale or scale tape. It is helpful to fasten the scanning head from behind with a mounting bracket. The scanning head can be very precisely adjusted through a hole in the mounting bracket with the aid of a tool.


Adjustment


The gap between the scale and scanning head is easily adjusted with the aid of a spacer foil.

For the LIC and LIP 2x1, the signals are adjusted quickly and easily with the aid of the PWM 20 adjustment and testing package. For all other exposed linear encoders, the incremental and reference-mark signals are adjusted through a slight rotation of the scanning head (for the LIDA 400 it is possible with the aid of a tool).

As adjustment aids, HEIDENHAIN offers the appropriate measuring and testing devices (see *HEIDENHAIN Measuring Equipment*).

Scanning heads – LIDA 200 function display

The LIDA 200 features an integrated function display with a multicolor LED. This makes the mounting quality visible at a glance during mounting. No further aids are required. The status display also makes it possible to quickly and easily check the signal quality during normal operation.


The function display offers a number of benefits:

- Easy mounting without test unit or oscilloscope
- Quality of scanning signals displayed by three-color LED
- Continuous monitoring of incremental signals over entire measuring length
- Status of reference mark signal displayed during mounting
- Quick check of correct operation in the field without technical aids

The integrated status display permits both a qualified judgment of the incremental signals as well as a check of the reference mark signal. The quality of the **incremental signals** is clarified by shades of color as well as the blinking of the LED. This makes a very detailed gradation of signal quality possible. The **reference mark signal's** compliance to tolerances is shown by a pass/fail display.

Note

The status display of the reference mark signal is switched off at velocities over approx. 150 mm/s in order to prevent permanent blinking. The information on the incremental signals would otherwise no longer be displayed. The reference mark signal display is not activated until the power supply is switched back on.

LED display of incremental signals

Amplitude range	LED blinks	LED color	Mounting quality
1.35 V 1.45 V	5-fold	•	Unsatisfactory
1.25 V 1.35 V	4x	•	
1.15 V 1.25 V	3x	•	Acceptable
1.05 V 1.15 V	2 x	•	Good
0.95 V 1.05 V	1 x	•	Optimum
0.85 V 0.95 V	2 x	•	Good
0.75 V 0.85 V	3x	•	Acceptable
0.65 V 0.75 V	4x	•	Unsatisfactory
0.55 V 0.65 V	5-fold	•	
0.45 V 0.55 V	6x	•	
0.35 V 0.45 V	7x	•	
0.25 V 0.35 V	8x	•	
0.15 V 0.25 V	8x	•	
0.00 V 0.15 V	8x	•	
0.00 V 0.10 V			

LED reference-mark-signal display (function check)

When the reference mark is scanned, the LED lights up briefly in blue or red.

- Out of tolerance
- Within tolerance
- O Incorrect measurement! The reference mark was scanned too quickly.

General mechanical information

Temperature range

The operating temperature range

indicates the limits of ambient temperature within which the values given in the specifications for linear encoders are maintained.

The **storage temperature range** of -20 °C to +70 °C applies when the unit remains in its packaging.

Thermal characteristics

The thermal behavior of the linear encoder is an essential criterion for the working accuracy of the machine. As a general rule, the thermal behavior of the linear encoder should match that of the workpiece or measured object. During temperature changes, the linear encoder should expand or contract in a defined, reproducible manner.

The graduation carriers of HEIDENHAIN linear encoders (see *Specifications*) have differing coefficients of thermal expansion. This makes it possible to select the linear encoder with thermal behavior best suited to the application.

Expendable parts

Encoders from HEIDENHAIN are designed for a long service life. Preventive maintenance is not required. However, they contain components that are subject to wear, depending on the application and manipulation. These include in particular cables with frequent flexing.

Other such components are the bearings of encoders with integral bearing, shaft sealing rings on rotary and angle encoders, and sealing lips on sealed linear encoders.

Protection (EN 60 529)

The scanning heads of the exposed linear encoders are protected against the ingress of liquid.

Scanning head	Protection
LIC	IP 67
LIDA	IP 40
LIF	IP 50
LIP 200	IP 30
LIP 300 LIP 400 LIP 500	IP 50
PP	IP 50

The scales have no special protection. Protective measures must be taken if the possibility of contamination exists.

Acceleration

Linear encoders are subjected to various types of acceleration during operation and mounting.

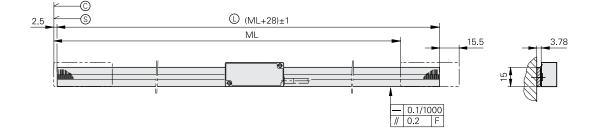
- The indicated maximum values for vibration apply for frequencies of 55 to 2000 Hz (EN 60068-2-6). Any acceleration exceeding permissible values, for example due to resonance depending on the application and mounting, might damage the encoder. Comprehensive tests of the entire system are required.
- The maximum permissible acceleration values (semi-sinusoidal shock) for shock and impact are valid for 11 ms, or 6 ms for the LIC (EN 60068-2-27). Under no circumstances should a hammer or similar implement be used to adjust or position the encoder.

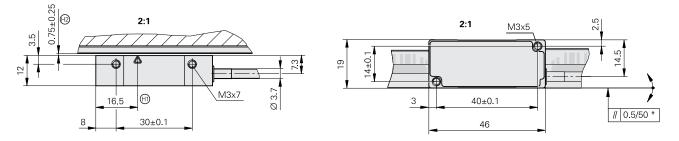
System tests

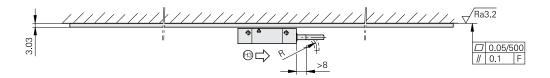
Encoders from HEIDENHAIN are usually integrated as components in larger systems. Such applications require **comprehensive tests of the entire system** regardless of the specifications of the encoder.

The specifications shown in this brochure apply to the specific encoder, not to the complete system. Any operation of the encoder outside of the specified range or for any other than the intended applications is at the user's own risk.

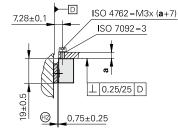
In safety-related systems, the higher-level system must verify the position value of the encoder after switch-on.

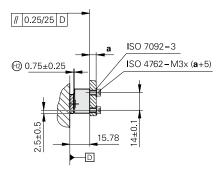

Assembly


Work steps to be performed and dimensions to be maintained during mounting are specified solely in the mounting instructions supplied with the unit. All data in this catalog regarding mounting are therefore provisional and not binding; they do not become terms of a contract.


DIADUR, SUPRADUR, METALLUR and OPTODUR are registered trademarks of DR. JOHANNES HEIDENHAIN GmbH, Traunreut. Zerodur® is a registered trademark of Schott-Glaswerke, Mainz, Germany.

LIC 4113, LIC 4193 Absolute linear encoder for measuring lengths up to 3 m


- Measuring steps to 0.001 µm ٠
- Measuring standard of glass or glass ceramic •
- Glass scale cemented with adhesive film
- · Consists of scale and scanning head

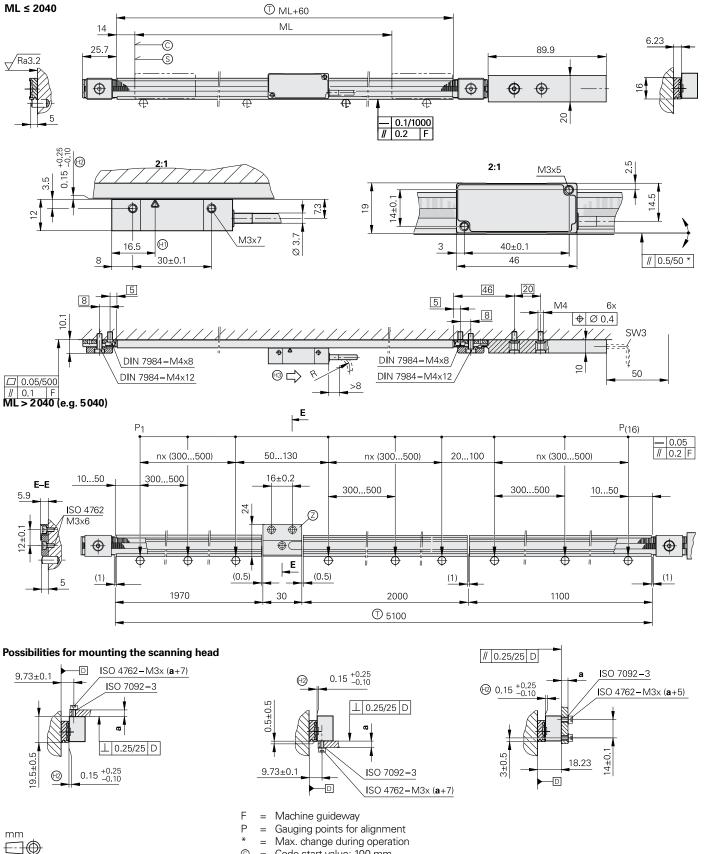


Possibilities for mounting the scanning head

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

62 0.75±0.25 上 0.25/25 D 0±0.5 7.28±0.1 ISO 7092-3 -D ISO 4762-M3x (a+7)

- F Machine guideway =
- * = Max. change during operation
- © Code start value: 100 mm =
- = Beginning of measuring length (ML) S
- \bigcirc = Scale length
- HI = Optical centerline
- 0 = Mounting clearance between scanning head and scale
- H3 = Direction of scanning unit motion for output signals in accordance with interface description



Linear scale	LIC 4103			
Measuring standard Coefficient of linear expansion*	METALLUR absolute and incremental track on glass or glass ceramic $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass) $\alpha_{therm} = (0 \pm 0.1) \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic)			
Accuracy grade*	\pm 3 µm, \pm 5 µm (higher accuracy	grades on request)		
Measuring length ML* in mm	240 340 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040			
Weight	3 g + 0.1 g/mm measuring length	1		
Scanning head	AK LIC 411 AK LIC 419F AK LIC 419M			
Interface	EnDat 2.2	Fanuc Serial Interface αi Interface	Mitsubishi high speed interface	
Ordering designation*	EnDat22	Fanuc05	Mit03-4 Mit02-2	
Resolution*	0.001 μm (1 nm)		0.01 μm (10 nm) 0.005 μm (5 nm) 0.001 μm (1 nm)	
Calculation time t _{cal} Clock frequency	≤ 5 μs – 16 MHz			
Traversing speed ¹⁾	≤ 600 m/min			
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin			
Cable length	\leq 50 m (with HEIDENHAIN cable)			
Voltage supply	3.6 V to 14 V DC			
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 800 mW <i>At 14 V:</i> ≤ 900 mW	$At 3.6 V: \le 950 \text{ mW}$ $At 14 V: \le 1050 \text{ mW}$		
Current consumption (typical) At 5 V: 100 mA (without load)		At 5 V: 120 mA (without load)		
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1 000 m/s ² (EN 60068-2-27)			
Operating temperature	–10 °C to 70 °C			
Weight Scanning head Connecting cable Connector	 ≤ 20 g (without connecting cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub connector:</i> 32 g 			

* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure

LIC 4115, LIC 4195 Absolute linear encoder for measuring lengths up to 28 m

- For measuring steps as fine as 0.001 µm (1 nm)
- Steel scale-tape is drawn into aluminum extrusions and tensioned
- Consists of scale and scanning head

- ©
 - Code start value: 100 mm =
- = Beginning of measuring length (ML) S
- Ō Carrier length =

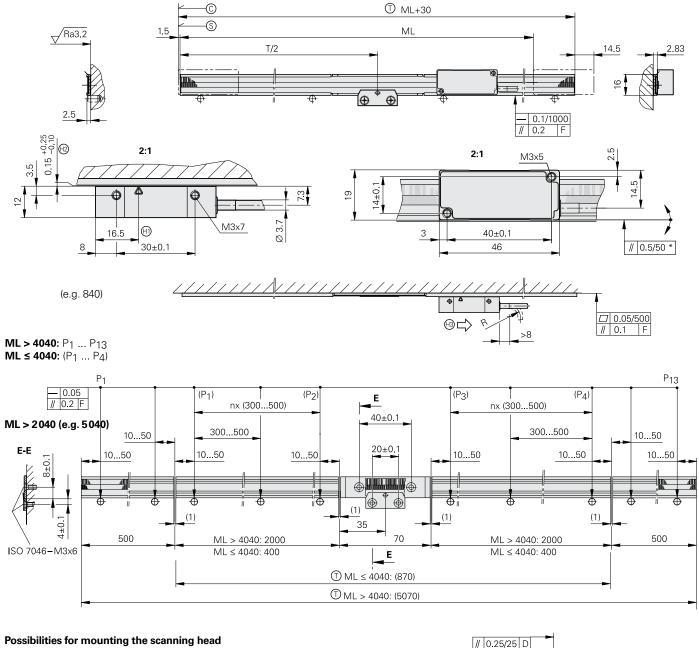
0

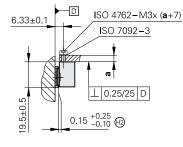
- 0 = Spacer for measuring lengths from 3 040 mm
- HI Optical centerline =
 - = Mounting clearance between scanning head and scale
- = Direction of scanning unit motion for output signals in accordance with interface description H3

Tolerancing ISO 8015

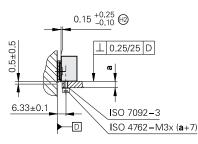
ISO 2768 - m H

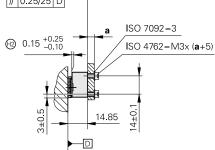
< 6 mm: ±0.2 mm




Linear scale	LIC 4105				
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR Depends on the mounting surface	Steel scale tape with METALLUR absolute and incremental track Depends on the mounting surface			
Accuracy grade	± 5 μm	5 μm			
Measuring length ML* in mm	140 240 340 440 54 1540 1640 1740 1840 194	10 2040	1040 1140 1240 1340 1440		
	Larger measuring lengths up to 28 440 mm with a single-section scale tape and individual scale-c sections				
Weight Scale Parts kit Scale-tape carrier	31 g/m 80 g + n ⁴⁾ × 27 g 187 g/m				
Scanning head	AK LIC 411	AK LIC 419F	AK LIC 419M		
Interface	EnDat 2.2	Fanuc Serial Interface αi Interface	Mitsubishi high speed interface		
Ordering designation*	EnDat22	Fanuc05	Mit03-4 Mit02-2		
Resolution*	0.005 µm (5		0.01 μm (10 nm) 0.005 μm (5 nm) ²⁾ 0.001 μm (1 nm) ³⁾		
Calculation time t _{cal} Clock frequency	≤ 5 μs – 16 MHz				
Traversing speed ¹⁾	≤ 600 m/min				
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin				
Cable length	≤ 50 m (with HEIDENHAIN cable)				
Voltage supply	3.6 V to 14 V DC				
Power consumption ¹⁾ (max.)	$At 3.6 V: \le 800 \text{ mW}$ $At 3.6 V: \le 950 \text{ mW}$ $At 14 V: \le 900 \text{ mW}$ $At 14 V: \le 1050 \text{ mW}$				
Current consumption (typical)	At 5 V: 100 mA (without load) At 5 V: 120 mA (without load)				
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1 000 m/s ² (EN 60068-2-27)				
Operating temperature	–10 °C to 70 °C				
Weight Scanning head Connecting cable Connector	≤ 20 g (without connecting cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub connector:</i> 32 g				

* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure ²⁾ Up to measuring length ML \leq 21 040 ³⁾ Up to measuring length ML \leq 4140 ⁴⁾ n = 1 for ML 3140 mm to 5040 mm; n = 2 for ML 5140 mm to 7040 mm; etc.*


LIC 4117, LIC 4197 Absolute linear encoder for measuring lengths up to 6 m

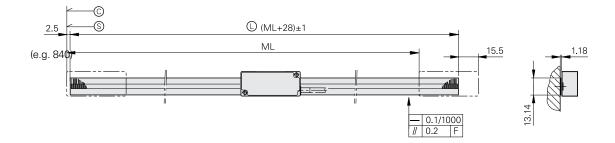

- For measuring steps as fine as 0.001 µm (1 nm)
- Steel scale-tape is drawn into aluminum extrusions and fixed at center
- · Consists of scale and scanning head

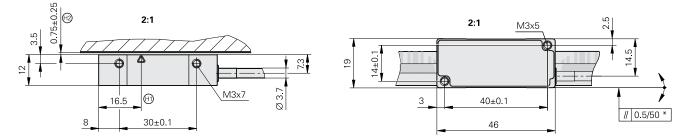
mm €]⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

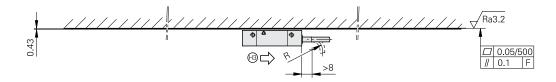
- = Machine guideway F
- P * Gauging points for alignment =
 - Max. change during operation =
 - Code start value: 100 mm =
- © S = Beginning of measuring length (ML)
- \bigcirc = Carrier length

0

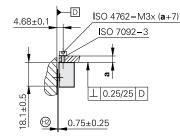
- = Optical centerline HI
 - = Mounting clearance between scanning head and scale
- ß = Direction of scanning unit motion for output signals in accordance with interface description

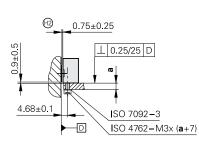

Linear scale	LIC 4107		
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR absolute and incremental track $x_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$		
Accuracy grade*	± 3 μm (up to ML 1040 mm), ± 5 μm		
Measuring length ML* in mm	24044064084010401240144016401840204022402440264028403040324034403640384040404240444046404840504052405440564058406040		
Weight Scale tape Parts kit Scale-tape carrier	31 g/m 20 g 68 g/m		

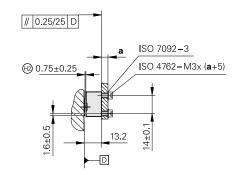

Scanning head	AK LIC 411	AK LIC 419F	AK LIC 419M		
Interface	EnDat 2.2	Fanuc Serial Interface αi Interface	Mitsubishi high speed interfac		
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	
Resolution*	0.001 µm (1 nm)		0.01 μm (10 nm 0.005 μm (5 nm 0.001 μm (1 nm	1)	
Calculation time t _{cal} Clock frequency	≤ 5 μs 16 MHz	-			
Traversing speed ¹⁾	≤ 600 m/min	300 m/min			
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin				
Cable length	\leq 50 m (with HEIDENHAIN cable)				
Voltage supply	3.6 V to 14 V DC				
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 800 mW <i>At 14 V:</i> ≤ 900 mW	$At 3.6 V: \le 950 \text{ mW}$ $At 14 V: \le 1050 \text{ mW}$			
Current consumption (typical)	At 5 V: 100 mA (without load)	At 5 V: 120 mA (without load)			
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1 000 m/s ² (EN 60068-2-27)				
Operating temperature	–10 °C to 70 °C				
Weight Scanning head Connecting cable Connector	≤ 20 g (without connecting cable 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub conne</i>				


* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure ²⁾ Up to measuring length ML \leq 4140

LIC 4119, LIC 4199 Absolute linear encoder for measuring lengths up to 1 m


- For measuring steps as fine as 0.001 µm (1 nm) ٠
- Steel scale tape cemented on mounting surface •
- · Consists of scale and scanning head

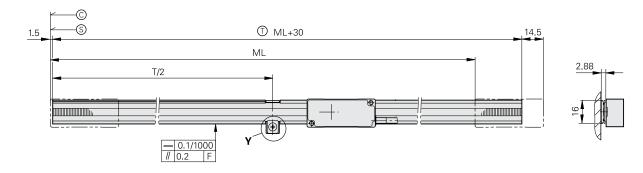


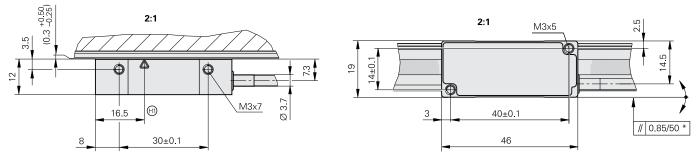


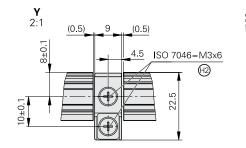
Possibilities for mounting the scanning head

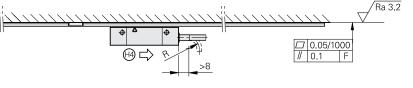
mm ✐⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- = Machine guideway F
- * Max. change during operation =
- © S Code start value: 100 mm =
 - = Beginning of measuring length (ML)
- \bigcirc = Scale tape length
- HI = Optical centerline
- 0 = Mounting clearance between scanning head and scale
- 8 = Direction of scanning unit motion for output signals in accordance with interface description

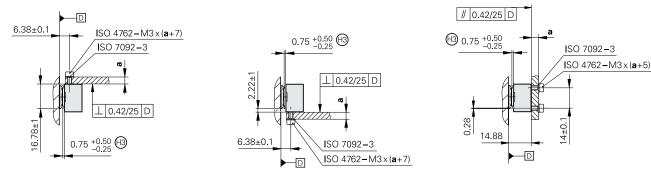



Linear scale	LIC 4109			
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR absolute and incremental track $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$			
Accuracy grade*	± 3 μm; ± 5 μm			
Measuring length ML* in mm	70 120 170 220 270) 320 370 420 520	620 720 820 920 1020	
Weight	31 g/m			
Scanning head	AK LIC 411 AK LIC 419F AK LIC 419M			
Interface	EnDat 2.2 Fanuc Serial Interface Mitsubishi high spe αi Interface			
Ordering designation*	EnDat22	Fanuc05	Mit03-4 Mit02-2	
Resolution*	0.001 μm (1 nm) 0.005 μm (10 nm) 0.005 μm (5 nm) 0.001 μm (1 nm)			
Calculation time t _{cal} Clock frequency	≤ 5 μs 16 MHz –			
Traversing speed ¹⁾	≤ 600 m/min			
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin			
Cable length	\leq 50 m (with HEIDENHAIN cable)			
Voltage supply	3.6 V to 14 V DC			
Power consumption ¹⁾ (max.)	$At 3.6 V: \le 800 \text{ mW}$ $At 3.6 V: \le 950 \text{ mW}$ $At 14 V: \le 900 \text{ mW}$ $At 14 V: \le 1050 \text{ mW}$			
Current consumption (typical)	At 5 V: 100 mA (without load) At 5 V: 120 mA (without load)			
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1 000 m/s ² (EN 60068-2-27)			
Operating temperature	–10 °C to 70 °C			
Weight Scanning head Connecting cable Connector	 ≤ 20 g (without connecting cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub conne</i> 			


* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure


LIC 2117, LIC 2197

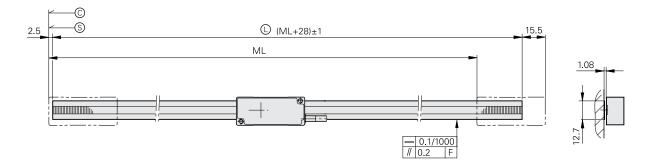
- Absolute linear encoder for measuring lengths up to 3 m
- Measuring step 0.1 µm or 0.05 µm
- Steel scale-tape is drawn into aluminum extrusions and fixed at center
- Consists of scale and scanning head

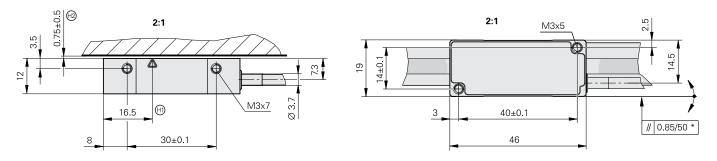


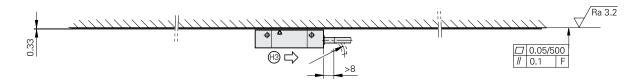
Possibilities for mounting the scanning head

mm $\Box \odot$ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

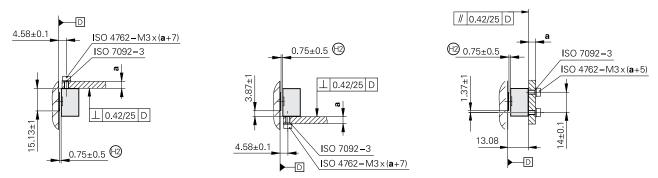
- Machine guideway F =
- * Max. change during operation =
- © = Code start value: 100 mm
- Beginning of measuring length (ML) =
- S D = Carrier length
- HI = Optical centerline
- 62 = Mating threaded hole, M3, 5 mm deep
- 63 Mounting clearance between scanning head and scale tape =
- 0 = Direction of scanning unit motion for output signals in accordance with interface description


Linear scale	LIC 2107				
Measuring standard Coefficient of linear expansion		Steel scale tape with absolute track $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$			
Accuracy grade	± 15 μm	± 15 μm			
Measuring length ML* in mm	120 320 520 770 1020 1220 1520 2020 2420 3020 (Larger measuring lengths up to 6 020 mm available on request)				
Weight Scale tape Scale-tape carrier	20 g/m 70 g/m				
Scanning head	AK LIC 211	AK LIC 219F	AK LIC 219	М	AK LIC 219P
Interface	EnDat 2.2	EnDat 2.2 Fanuc serial interface Mitsubishi high speed interface interface			Panasonic serial interface
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01
Resolution*	0.1 μm or 0.05 μm	1	,	1	
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 16 MHz				
Traversing speed ¹⁾	≤ 600 m/min				
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin				
Cable length	\leq 50 m (with HEIDENHAIN cable)				
Voltage supply	3.6 V to 14 V DC				
Power consumption ¹⁾ (max.)	$At 3.6 V: \le 800 \text{ mW}$ $At 14 V: \le 900 \text{ mW}$				
Current consumption (typical)	At 5 V: 110 mA (without load)				
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	0 °C to 70 °C				
Weight Scanning head Connecting cable Connector	20 g (without connecting cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub connector:</i> 32 g				


* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure


LIC 2119, LIC 2199

Absolute linear encoder for measuring lengths up to 3 m

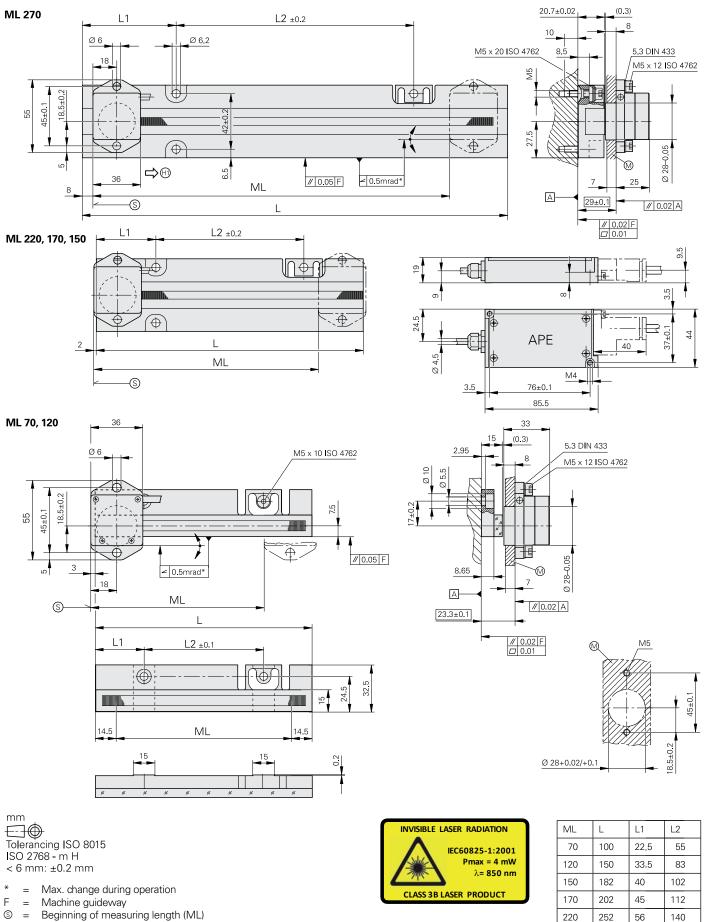

- Measuring step 0.1 μm or 0.05 μm
- Steel scale tape cemented on mounting surface
- Consists of scale and scanning head

Possibilities for mounting the scanning head

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- F = Machine guideway
- * = Max. change during operation
- \bigcirc = Code start value: 100
- © = Beginning of measuring length (ML)

- 🐵 = Mating threaded hole, M3, 5 mm deep
- Mounting clearance between scanning head and scale tape
- (9) = Direction of scanning unit motion for output signals in accordance with interface description


Linear scale	LIC 2109				
Measuring standard Coefficient of linear expansion	Steel scale tape with absolute track $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$				
Accuracy grade	± 15 µm	± 15 μm			
Measuring length ML* in mm	120 320 520 770 1020 1220 1520 2020 2420 3020 (Larger measuring lengths up to 6 020 mm available on request)				
Weight	20 g/m				
Scanning head	AK LIC 211	AK LIC 219F	AK LIC 219	М	AK LIC 219P
Interface	EnDat 2.2	Fanuc serial interface αi interface	Mitsubishi I interface	nigh speed	Panasonic serial interface
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01
Resolution*	0.1 μm or 0.05 μm	0.1 μm or 0.05 μm			
Calculation time t _{cal} Clock frequency	≤ 5 μs – ≤ 16 MHz –				
Traversing speed ¹⁾	≤ 600 m/min				
Electrical connection*	Cable, 1 m or 3 m with M12 coupling (male), 8-pin or sub-D connector (male), 15-pin				
Cable length	\leq 50 m (with HEIDENHAIN cable)				
Voltage supply	3.6 V to 14 V DC				
Power consumption ¹⁾ (max.)	$At 3.6 V: \leq 800 \text{ mW}$ $At 3.6 V: \leq 950 \text{ mW}$ $At 14 V: \leq 900 \text{ mW}$ $At 14 V: \leq 1050 \text{ mW}$				
Current consumption (typical)	At 5 V: 110 mA (without load)				
Vibration 55 to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	0 °C to 70 °C				
Weight Scanning head Connecting cable Connector	20 g (without connecting 20 g/m <i>M12 coupling:</i> 15 g; <i>D-su</i>				

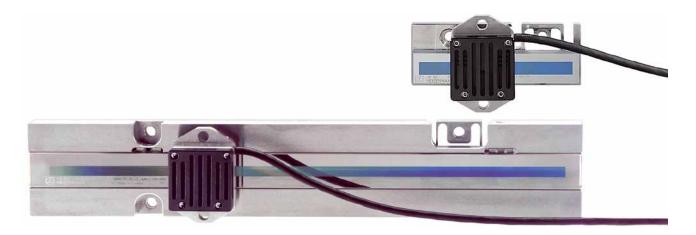
* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure

LIP 372, LIP 382 Incremental linear encoders with very high accuracy

• Measuring steps to 0.001 µm (1 nm)

• Measuring standard is fastened by screws

270

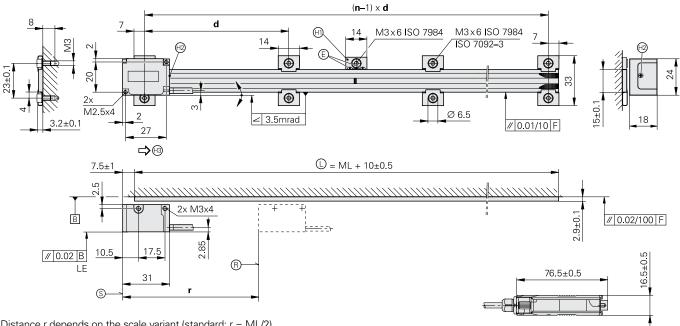

71

322

180

 \mathbb{M} = Mounting surface for scanning head

HI = Direction of scanning unit motion for output signals in accordance with interface description


	LIP 382	LIP 372			
Measuring standard Coefficient of linear expansion	DIADUR phase grating on Zerodur glass ceramic; grating period 0.512 µm $\alpha_{therm} \approx (0 \pm 0.1) \cdot 10^{-6} \text{ K}^{-1}$				
Accuracy grade	± 0.5 μm (higher accuracy grades available on request)				
Measuring length ML* in mm	70 120 150 17	70 120 150 170 220 270			
Reference marks	No	No			
Interface	~ 1 V _{PP}				
Integrated interpolation Signal period	– 0.128 μm	32-fold 0.004 μm			
Cutoff frequency –3 dB	≥ 1 MHz	-			
Scanning frequency* Edge separation a	-	≤ 98 kHz ≥ 0.055 μs	≤ 49 kHz ≥ 0.130 μs	≤ 24.5 kHz ≥ 0.280 μs	
Traversing speed	≤ 7.6 m/min	≤ 0.75 m/min	≤ 0.38 m/min	≤ 0.19 m/min	
Laser	Scanning head and scale mounted: Class 1 Scanning head not mounted: Class 3B Laser diode used: Class 3B				
Electrical connection	Cable 0.5 m to interface	electronics (APE), sep. ada	apter cable (1 m/3 m/6 m	n/9 m) connectable to APE	
Cable length	See Interface Description	cription, but \leq 30 m (with HEIDENHAIN cable)			
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V			
Current requirement	< 190 mA	< 250 mA (without load)			
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 4 \text{ m/s}^2$ (EN 60068-2-6) $\leq 50 \text{ m/s}^2$ (EN 60068-2-27)				
Operating temperature	0 °C to 40 °C				
Weight Scanning head Interface electronics Linear scale	150 g 100 g <i>ML 70 mm:</i> 260 g, <i>ML</i> ≥	. 150 mm [.] 700 a			
Connecting cable	38 g/m				

* Please select when ordering

LIP 211, LIP 281

Incremental linear encoders for very high accuracy and high position stability

- For measuring steps of 0.001 μm (1 nm) and smaller
- For high traversing speeds and large measuring lengths
- Measuring standard is fastened by fixing clamps
- Consists of scale and scanning head

Ø 3.7

// 0.02 B

а

7±0.2

а

B

上 0.02 B

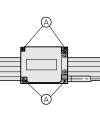
22.9

В

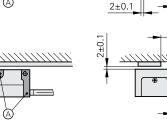
LE

ISO 4762 M2.5×(a+3.5)-A2

ISO 4762 M3x(a+3.5)-A2


Distance r depends on the scale variant (standard: r = ML/2) Quantity n of pairs of fixing clamps (mounting with fixing clamps at both ends)

ML	n
ML ≤ 70	2
$70 < ML \le 100$	З
$100 < ML \le 200$	4


Distance d between fixing clamps:

d =	ML – 4
a =	n – 1

Possibilities for mounting the scanning head

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

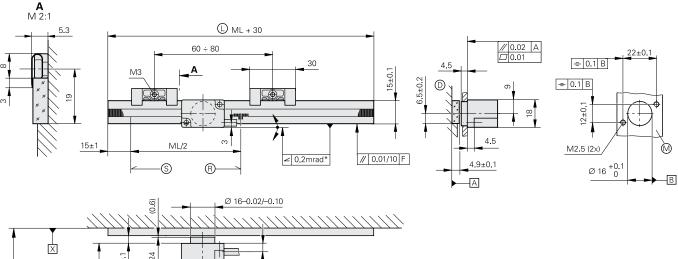
±0.2

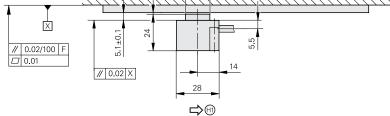
33.3 5±0

42.

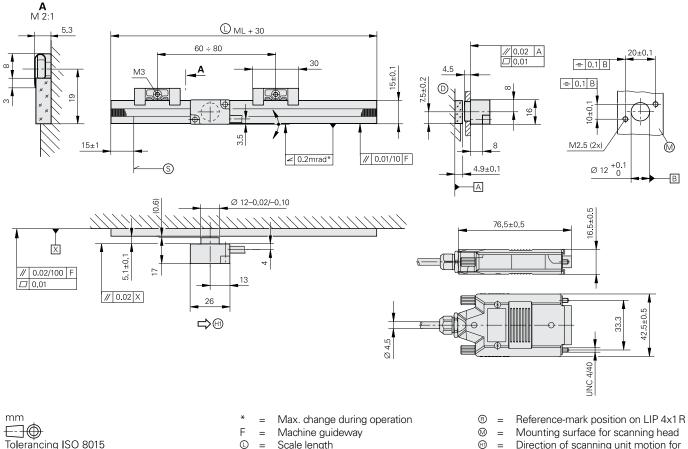
UNC 4/40

- F = Machine guideway
- \bigcirc = Scale length
- $\[mathbb{S}\]$ = Beginning of measuring length (ML)
- © = Adhesive according to Mounting Instructions
- A = Mounting surface
- (1) = Mounting element for hard adhesive bond in order to define the thermal fixed point
- M = Max. protrusion of screw head 0.5 mm
- (9) = Direction of scanning unit motion for output signals in accordance with interface description


Linear scale	LIP 201							
Measuring standard Coefficient of linear expansion	OPTODUR phase grating on Zerodur glass ceramic; grating period 2.048 μm $\alpha_{therm}\approx$ (0 \pm 0.1) x 10^{-6} K^{-1}							
Accuracy grade*	± 1 μm ± 3 μm (higher accuracy grades available or request)							
Measuring length ML* in mm	2030507012017022027032037042047052057062067072077082087092097010209209701020920	37042047052057062067072077082087092097010201140124013401440154016401840204022402440264028403040						
Reference marks	One at midpoint of measuring length							
Weight	0.11 g/mm overall length							
Scanning head	AK LIP 21	AK LIP 28						
Interface	EnDat 2.2 (absolute position value after scanning the reference marks in "position value 2")	~ 1 V _{PP}						
Ordering designation	EnDat 22	-						
Integrated interpolation	16 384-fold (14 bits)	-						
Clock frequency	≤ 8 MHz	-						
Calculation time t _{cal}	≤ 5 µs	-						
Resolution	0.03125 nm (31.25 pm)	-						
Signal period	-	0.512 μm						
Cutoff frequency –3 dB	-	≥ 3 MHz						
Traversing speed	≤ 90 m/min (higher upon request)							
Electrical connection*	Cable 0.5 m, 1 m, 2 m, or 3 m with D-sub connector	or (male) 15-pin; interface electronics in the						
Cable length	See interface description, but \leq 30 m (with HEIDE)	NHAIN cable)						
Voltage supply	3.6 V to 14 V DC	5 V DC ± 0.25 V						
Power consumption ¹⁾ (max.)	<i>At 14 V:</i> 2150 mA <i>At 3.6 V</i> : 2200 mA	_						
Current consumption (typical)	At 5 V: 300 mA (without load)	≤ 390 mA						
Laser	Scanning head and scale mounted: Class 1 Scanning head not mounted: Class 3B Laser diode used: Class 3B							
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{IEC } 60068-2-6)$ $\leq 400 \text{ m/s}^2 (\text{IEC } 60068-2-27)$							
Operating temperature	0 °C to 50 °C (32 °F to 122 °F)							
Weight Scanning head Connector Connecting cable	59 g 140 g 22 g/m							


* Please select when ordering ¹⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure

LIP 471, LIP 481 Incremental linear encoders with very high accuracy


- For limited installation space
- For measuring steps of 1 μm to 0.005 μm
- · Measuring standard is fastened by fixing clamps

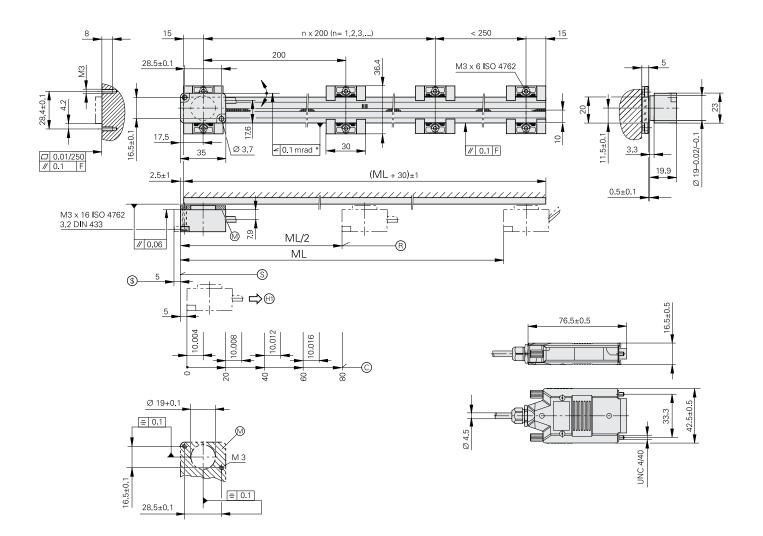
LIP 471 R/LIP 481 R

LIP 471 A/LIP 481 A

- \bigcirc = Scale length
- Shown without fixing clamps =
 - = Beginning of measuring length (ML)
- HI = Direction of scanning unit motion for
 - output signals in accordance with interface description

ISO 2768 - m H

< 6 mm: ±0.2 mm


	LIP 481	LIP 471					
Measuring standard* Coefficient of linear expansion	$\alpha_{\text{therm}} \approx (0 \pm 0.1)$	DIADUR phase grating on Zerodur glass ceramic or glass; grating period 4 μ m $\alpha_{therm} \approx (0 \pm 0.1) \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic) $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass)					
Accuracy grade*	± 1 μm (higher ac ± 0.5 μm	\pm 1 μm (higher accuracy grades available on request) \pm 0.5 μm					
Measuring length ML* in mm	70 120 170	0 220 27	0 320 37	70 420			
Reference marks*	<i>LIP 4x1 R:</i> One at <i>LIP 4x1A:</i> None	midpoint of m	easuring lengt	h			
Interface	∕~ 1 V _{PP}						
Integrated interpolation* Signal period	_ 2 μm	5-fold 0.4 µm			10-fold 0.2 µm		
Cutoff frequency –3 dB	≥ 300 kHz	-					
Scanning frequency* Edge separation a	-	≤ 200 kHz ≥ 0.220 μs	≤ 100 kHz ≥ 0.465 μs	≤ 50 kHz ≥ 0.950 µs	≤ 100 kHz ≥ 0.220 µs	≤ 50 kHz ≥ 0.465 μs	≤ 25 kHz ≥ 0.950 μs
Traversing speed	≤ 36 m/min	≤ 24 m/min	≤ 12 m/min	≤ 6 m/min	≤ 12 m/min	≤ 6 m/min	≤ 3 m/min
Electrical connection*	Cable 0.5 m, 1 m, connector	2 m, or 3 m v	vith D-sub coni	nector (male) í	15-pin; interfac	e electronics i	n the
Cable length	See Interface Des	scription, but \leq	30 m (with HE	EIDENHAIN ca	able)		
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.2	5 V				
Current requirement	< 190 mA	< 200 mA (v	vithout load)				
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (EN 6) \leq 500 m/s ² (EN 6)	$\leq 200 \text{ m/s}^2$ (EN 60068-2-6) $\leq 500 \text{ m/s}^2$ (EN 60068-2-27)					
Operating temperature	0 °C to 40 °C						
Weight Scanning head Linear scale Connecting cable Connector	LIP 4x1A: 25 g, LIP 4x1R: 50 g (each without cable) 5.6 g + 0.2 g/mm measuring length 38 g/m 140 g						

* Please select when ordering

Versions available for high vacuum LIP 481 V and ultrahigh vacuum LIP 481 U (see Product Information).

LIP 571, LIP 581 Incremental linear encoders with very high accuracy

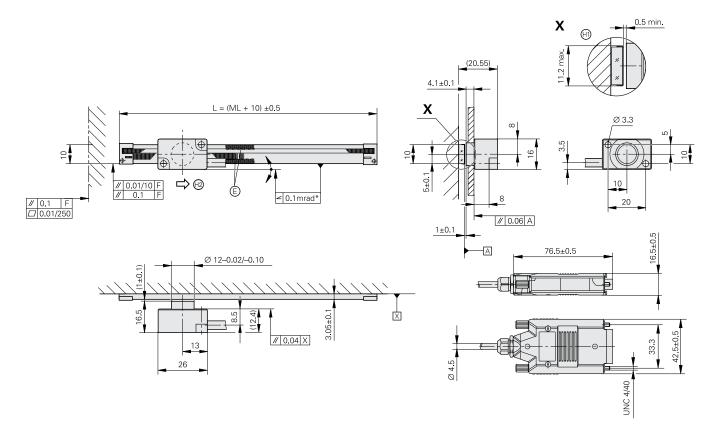
- For measuring steps of 1 µm to 0.01 µm
- Measuring standard is fastened by fixing clamps

mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- Max. change during operation =
- =

×

- Machine guideway Reference-mark position on LIP 5x1 R =
- Reference-mark position on LIP 5x1 C =
- Beginning of measuring length (ML) =
- F ® © S S = Permissible overtravel
- \mathbb{M} = Mounting surface for scanning head
- H = Direction of scanning unit motion for output signals in accordance with interface description



	LIP 581	LIP 571							
Measuring standard Coefficient of linear expansion	DIADUR phase gr $\alpha_{\text{therm}} \approx 8 \cdot 10^{-6} \text{ K}$	DIADUR phase grating on glass; grating period 8 μ m $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$							
Accuracy grade*	±1µm	: 1 μm							
Measuring length ML* in mm									
Reference marks*	<i>LIP 5x1 R:</i> One at <i>LIP 5x1 C:</i> Distance		easuring leng	th					
Interface	∕~1 V _{PP}								
Integrated interpolation* Signal period	– 4 μm	5-fold 0.8 µm			10-fold 0.4 µm				
Cutoff frequency -3 dB	≥ 300 kHz	_							
Scanning frequency* Edge separation a	-	≤ 200 kHz ≥ 0.220 µs	≤ 100 kHz ≥ 0.465 µs	≤ 50 kHz ≥ 0.950 μs	≤ 100 kHz ≥ 0.220 µs	≤ 50 kHz ≥ 0.465 μs	≤ 25 kHz ≥ 0.950 µs		
Traversing speed	≤ 72 m/min	≤ 48 m/min	≤ 24 m/min	≤ 12 m/min	≤ 24 m/min	≤ 12 m/min	≤ 6 m/min		
Electrical connection*	Cable 0.5 m, 1 m, connector	2 m, or 3 m v	vith D-sub con	nector (male) ⁻	15-pin; interfac	e electronics i	n the		
Cable length	See Interface Des	cription, but ≤	30 m (with H	EIDENHAIN ca	able)				
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.2	5 V						
Current requirement	< 175 mA	< 175 mA (w	rithout load)						
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (EN 60 \leq 500 m/s ² (EN 60	$\leq 200 \text{ m/s}^2$ (EN 60068-2-6) $\leq 500 \text{ m/s}^2$ (EN 60068-2-27)							
Operating temperature	0 °C to 50 °C (32 °	°F to 122 °F)							
Weight Scanning head Linear scale Connecting cable Connector									

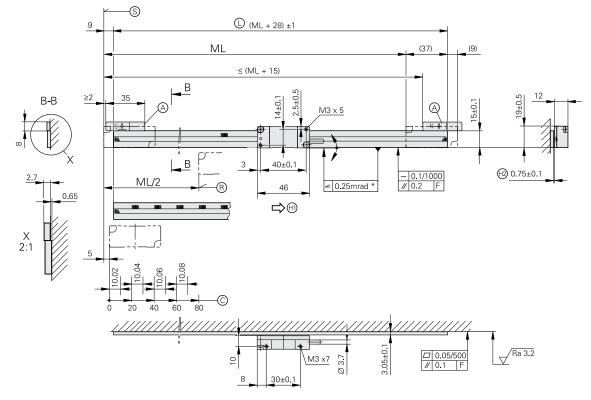
* Please select when ordering

LIF 471, LIF 481 Incremental encoder for simple installation

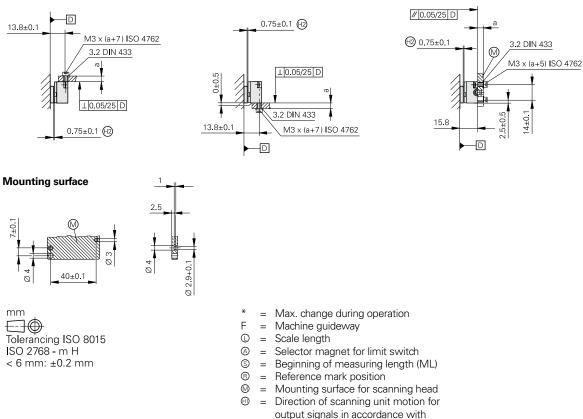
- For measuring steps of 1 μm to 0.01 μm
- Position detection through homing track and limit switches
- · Glass scale cemented with adhesive film
- Consists of scale and scanning head

mm
E-10
Tolerancing ISO 8015
ISO 2768 - m H
< 6 mm [.] +0 2 mm

- * Max. change during operation =
- F = Machine guideway
- ML = © = Measuring length Epoxy for ML < 170
- HI =
- Dimensions of limit plate Direction of scanning unit motion for 0 = output signals in accordance with interface description


Linear scale	LIF 401 R							
Measuring standard* Coefficient of linear expansion	SUPRADUR phase grating on Zerodur glass ceramic or glass; grating period 8 μ m $\alpha_{therm} \approx (0\pm0,1) \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic) $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass)							
Accuracy grade*	\pm 1 μm (only for Zerodur glass ceramic), \pm 3 μm							
Measuring length ML* in mm	701201702202703203704204705205706207207708208709209701020	670						
Reference marks	One at midpoint of measuring length							
Weight	0.8 g + 0.08 g/mm measuring length							

Scanning head	AK LIF 48	AK LIF 47						
Interface	\sim 1 V _{PP}							
Integrated interpolation* Signal period	– 4 µm	5-fold 0.8 µm	10-fold 0.4 μm	20-fold 0.2 μm	50-fold 0.08 µm	100-fold 0.04 μm		
Cutoff frequency -3 dB -6 dB	≥ 300 kHz ≥ 420 kHz	-				·		
Scanning frequency*	-	≤ 500 kHz ≤ 250 kHz ≤ 125 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz		
Edge separation a ¹⁾	-	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs		
Traversing speed ¹⁾	≤ 72 m/min ≤ 100 m/min	≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 24 m/min ≤ 12 m/min ≤ 6 m/min	≤ 12 m/min ≤ 6 m/min ≤ 3 m/min		
Position detection	Homing signal an	id limit signal; TTL	output signals (v	vithout line driver)			
Electrical connection*	Cable 0.5 m, 1 m connector	, 2 m, or 3 m with	h D-sub connecto	or (male) 15-pin; ir	iterface electroni	ics in the		
Cable length	See Interface Des incremental: ≤ 30		<i>t:</i> ≤ 10 m; (with H	EIDENHAIN cabl	e)			
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V	/					
Current requirement	< 175 mA	< 180 mA (with	out load)					
Vibration 55 to 2000 Hz Shock 11 ms	≤ 200 m/s ² (EN 6 ≤ 500 m/s ² (EN 6	(EN 60068-2-6) (EN 60068-2-27)						
Operating temperature	0 °C to 50 °C (32	0 °C to 50 °C (32 °F to 122 °F)						
Weight Scanning head* Connecting cable Connector	For scale of Zero For scale of glass (each without cab 38 g/m 140 g	s: 9 g	:: 25 g					


* Please select when ordering ¹⁾ At the corresponding cutoff or scanning frequency Versions available for **high vacuum LIP 481 V** (see Product Information).

LIDA 473/LIDA 483

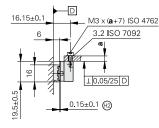
- Incremental linear encoders with limit switches
- + For measuring steps of 1 μm to 0.01 μm
- Measuring standard of glass or glass ceramic
- Glass scale cemented with adhesive film
- Consists of scale and scanning head

Possibilities for mounting the scanning head

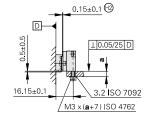
Linear scale	LIDA 403						
Measuring standard Coefficient of linear expansion*	METALLUR scale grating on glass ceramic or glass; grating period 20 μ m $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass) $\alpha_{therm} = (0 \pm 0.1) \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic)						
Accuracy grade*	\pm 1 μm (only for Zerodur glass ceramic up to ML 1640), \pm 3 $\mu m,$ \pm 5 μm						
Measuring length ML* in mm	240 340 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040						
Reference marks*	<i>LIP 4x3:</i> One at midpoint of measuring length <i>LIDA 4x3C:</i> Distance-coded						
Weight	3 g + 0.1 g/mm measuring length						

Scanning head	AK LIDA 48	AK LIDA 47	AK LIDA 47					
Interface	∕~ 1 V _{PP}							
Integrated interpolation* Signal period	_ 20 μm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 µm			
Cutoff frequency –3 dB	≥ 400 kHz	-	·					
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz			
Edge separation a ¹⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs			
Traversing speed ¹⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min			
Limit switches	L1/L2 with two diff	erent magnets; outpu	<i>it signals:</i> TTL (witho	ut line driver)				
Electrical connection	Cable, 3 m with D- connector	sub connector (male)	15-pin, with interface	electronics for the A	AK LIDA 47 in the			
Cable length	See Interface Desc	cription, but <i>limit:</i> \leq 20) m (with HEIDENHA	IN cable)				
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V		5 V DC ± 0.25 V				
Current requirement	< 100 mA	< 170 mA (without	< 170 mA (without load) < 255 mA (without load)					
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (EN 60 \leq 500 m/s ² (EN 60	50 068-2-6) 50 068-2-27)						
Operating temperature	–10 °C to 70 °C	o 70 °C						
Weight Scanning head Connecting cable Connector	20 g (without conn 22 g/m <i>LIDA 483:</i> 32 g, <i>LIL</i>							

* Please select when ordering
 ¹⁾ At the corresponding cutoff or scanning frequency


LIDA 475/LIDA 485

Incremental linear encoders for measuring lengths up to 30 m


- For measuring steps of 1 µm to 0.05 µm •
- Limit switches
- Steel scale-tape is drawn into aluminum extrusions and tensioned •
- Consists of scale and scanning head

Possibilities for mounting the scanning head

mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

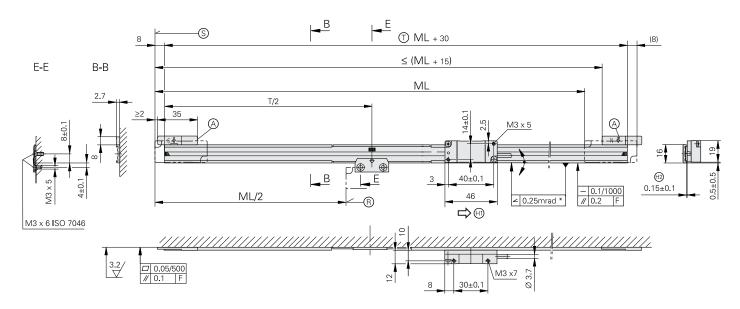
- \bigcirc Scale carrier sections fixed with screws = Scale carrier sections fixed with = PRECIMET
 - Max. change during operation =
- F Machine guideway =

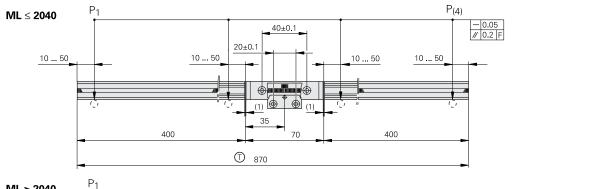
×

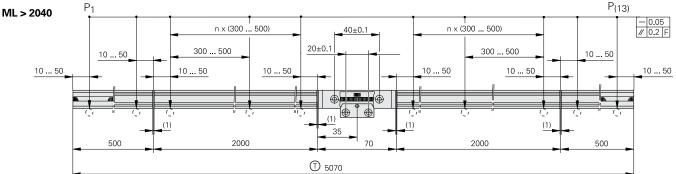
- Gauging points for alignment =
- Ρ ® Reference mark position =
- S = Beginning of measuring length (ML)

- // 0.05/25 D 3.2 ISO 7092 D M3 ×(a+5) ISO 4762 18.15 $^{+1}$ ç H2 0.15±0.1
- A Selector magnet for limit switch =
- T = Carrier length
- \bigcirc Spacer for measuring lengths from = 3040 mm
- HI Direction of scanning unit motion for = output signals in accordance with interface description
- (H2) = Adjust or set

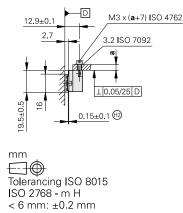
Linear scale	LIDA 405							
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR scale grating; grating period 20 μm Depends on the mounting surface							
Accuracy grade	± 5 μm							
Measuring length ML* in mm	140 240 340 440 540 640 740 840 940 1040 1140 1240 1340 1440 1540 1640 1740 1840 1940 2040							
	Larger measuring lengths up to 30 040 mm with a single-section scale tape and individual scale-carrier sections							
Reference marks	One at midpoint of measuring length							
Weight	115 g + 0.25 g/mm measuring length							

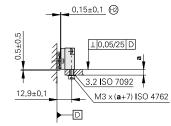

Scanning head	AK LIDA 48	AK LIDA 47						
Interface	∕~ 1 V _{PP}							
Integrated interpolation* Signal period	– 20 µm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 μm			
Cutoff frequency -3 dE	B ≥ 400 kHz	-						
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz			
Edge separation a ¹⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs			
Traversing speed ¹⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	 ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min 	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min			
Limit switches	L1/L2 with two di	fferent magnets; out,	out signals:TTL (with	nout line driver)				
Electrical connection	Cable, 3 m with D connector	-sub connector (male	e) 15-pin, with interfa	ace electronics for th	e AK LIDA 47 in the			
Cable length	See Interface Des	cription, but <i>limit:</i> ≤ 2	20 m (with HEIDEN)	HAIN cable)				
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V		5 V DC ± 0.25 V				
Current requirement	< 100 mA	< 170 mA (withou	< 170 mA (without load) < 255 mA (without load)					
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (EN 60 \leq 500 m/s ² (EN 60	30 068-2-6) 50 068-2-27)						
Operating temperature	–10 °C to 70 °C							
Weight Scanning head Connecting cable Connector	20 g (without con 22 g/m <i>LIDA 483:</i> 32 g, <i>L</i>	-						

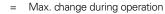

* Please select when ordering
 ¹⁾ At the corresponding cutoff or scanning frequency


LIDA 477/LIDA 487

Incremental linear encoders for measuring ranges up to 6 m


- For measuring steps of 1 µm to 0.05 µm ٠
- Limit switches
- Steel scale-tape is drawn into adhesive aluminum extrusions and fixed at center •
- · Consists of scale and scanning head





Possibilities for mounting the scanning head

Machine guideway = Ρ

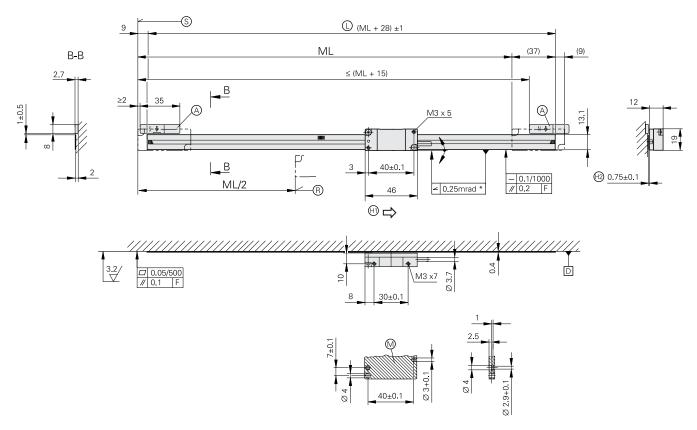
F

- Gauging points for alignment = ®
 - Reference mark position =
- S Beginning of measuring length (ML) =
- A = Selector magnet for limit switch
- T Carrier length =

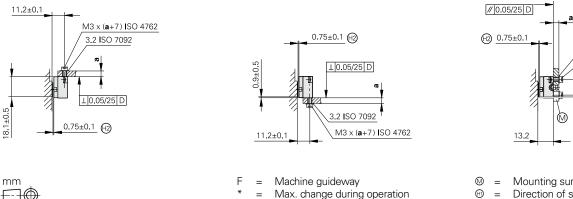
- // 0.05/25 D 3.2 ISO 7092 M3 × (a+5) ISO 4762 14.9 3±0.5 14±0. ⊕ 0.15±0.1
- HI Direction of scanning unit motion for = output signals in accordance with interface description
- Adjust or set (H2) =

48

Linear scale	LIDA 407							
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR scale grating; grating period 20 μm $x_{therm} \approx 10 \cdot 10^{-6} \ \text{K}^{-1}$							
Accuracy grade*	± 3 μm (up to ML 1040) ± 5 μm (up to ML 1040) 15 μm ¹⁾							
Measuring length ML* in mm	240 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 3240 3440 3640 3840 4040 4240 4440 4640 4840 5040 5240 5440 5640 5840 6040							
Reference marks	One at midpoint of measuring length							
Weight	25 g + 0.1 g/mm measuring length							


Scanning head	AK LIDA 48	AK LIDA 47	AK LIDA 47					
Interface	∕~ 1 V _{PP}							
Integrated interpolation* Signal period	_ 20 μm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 µm			
Cutoff frequency -3 dB	≥ 400 kHz	-						
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz			
Edge separation a ²⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs			
Traversing speed ²⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min			
Limit switches	L1/L2 with two diff	erent magnets; outpu	<i>it signals:</i> TTL (witho	ut line driver)				
Electrical connection	Cable, 3 m with D- connector	sub connector (male)	15-pin, with interface	e electronics for the A	AK LIDA 47 in the			
Cable length	See Interface Desc	cription, but <i>limit:</i> \leq 20) m (with HEIDENHA	IN cable)				
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V		5 V DC ± 0.25 V				
Current requirement	< 100 mA	< 170 mA (without load) < 255 mA (without load)			: load)			
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 \text{ (EN 60)}$ $\leq 500 \text{ m/s}^2 \text{ (EN 60)}$	60 068-2-6) 60 068-2-27)						
Operating temperature	–10 °C to 70 °C							
Weight Scanning head Connecting cable Connector	20 g (without conn 22 g/m <i>LIDA 483:</i> 32 g, <i>LIL</i>	•						

* Please select when ordering ¹⁾ \pm 5 µm after linear length-error compensation in the subsequent electronics ²⁾ At the corresponding cutoff or scanning frequency


LIDA 479/LIDA 489

Incremental linear encoders for measuring ranges up to 6 m

- For measuring steps of 1 µm to 0.05 µm ٠
- Limit switches
- · Steel scale tape cemented on mounting surface
- Consists of scale and scanning head

Possibilities for mounting the scanning head

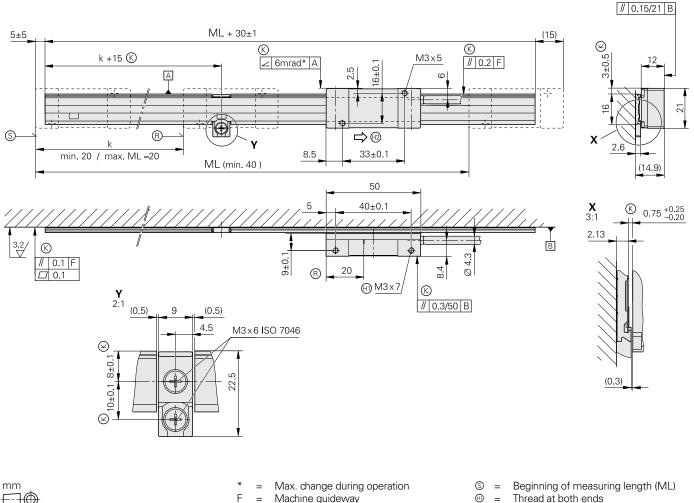
Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- Max. change during operation =
- ® = Reference mark position
- S Beginning of measuring length (ML) = \bigcirc = Selector magnet for limit switch
- \bigcirc = Scale tape length

14±0.1 6±0.5 Mounting surface for scanning head

3.2 ISO 7092 M3 x (**a**+5) ISO 4762

- Direction of scanning unit for output = signals in accordance with interface description
- 0 = Adjust or set


Linear scale	LIDA 409											
Measuring standard Coefficient of linear expansion	Steel scale tape wit $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}$	h METALLUR scale : -1	grating; gra	ting period	20 µm							
Accuracy grade*	± 3 μm, 15 μm ¹⁾											
Measuring length ML* in mm	70120170420520620											
Reference marks	One at midpoint of	measuring length		Every 50 n	nm							
Weight	31 g/m											
Scanning head	AK LIDA 48	K LIDA 48 AK LIDA 47										
Interface	\sim 1 V _{PP}	∠1Vpp TLTL										
Integrated interpolation* Signal period	– 20 µm	5-fold 4 µm	10-fold 2 µm		50-fold 0.4 µm	100-fold 0.2 μm						
Cutoff frequency –3 dB	≥ 400 kHz	-										
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz		≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz						
Edge separation a ²⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µ ≥ 0.220 µ ≥ 0.465 µ ≥ 0.950 µ	IS IS	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs						
Traversing speed ²⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/ ≤ 120 m/ ≤ 60 m/ ≤ 30 m/	min min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min						
Limit switches	L1/L2 with two diffe	erent magnets; outpu	<i>it signals:</i> T	TL (without	line driver)							
Electrical connection	Cable, 3 m with D-s connector	sub connector (male)	15-pin, wit	h interface e	electronics for the A	AK LIDA 47 in the						
Cable length	See Interface Desc	ription, but <i>limit:</i> \leq 20) m (with H	EIDENHAIN	V cable)							
Voltage supply	5 V DC ± 0.25 V	5 V DC ± 0.25 V			5 V DC ± 0.25 V							
Current requirement	< 100 mA < 170 mA (without load) < 255 mA (without load)											
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2$ (EN 60068-2-6) $\leq 500 \text{ m/s}^2$ (EN 60068-2-27)											
Operating temperature	–10 °C to 70 °C											
Weight Scanning head Connecting cable Connector	20 g (without conne 22 g/m <i>LIDA 483</i> : 32 g, <i>LID</i>	-										

* Please select when ordering ¹⁾ \pm 5 µm after linear length-error compensation in the subsequent electronics ²⁾ At the corresponding cutoff or scanning frequency

LIDA 277/LIDA 287

Incremental linear encoder with large mounting tolerance

- For measuring steps to 0.5 µm ٠
- Scale tape cut from roll •
- Steel scale-tape is drawn into adhesive aluminum extrusions and fixed
- Integrated status display with three-color LED •
- · Consists of scale and scanning head

 \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

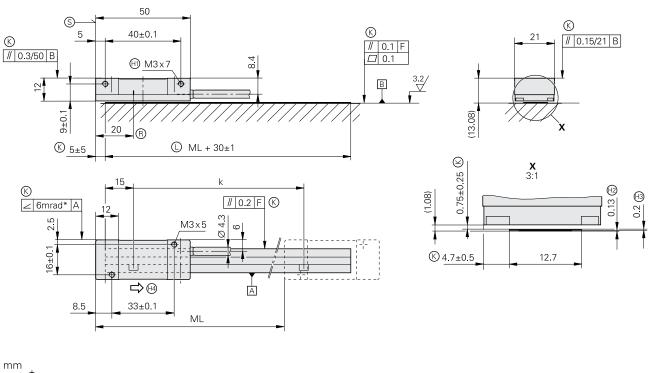
- Machine guideway =
- ß Required mating dimensions =
- ® Reference mark =
- \bigcirc = Scale tape length

- HI = Thread at both ends 0 Direction of scanning unit motion for =
 - output signals in accordance with interface description

 \bigotimes

Reference mark:

k = Any position of the selected reference mark starting from the beginning of the measuring length (depends on the length of cut)


Linear scale	LIDA 207	DA 207									
Measuring standard Coefficient of linear expansion	Steel scale tape; grating $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$	period 200 µm									
Accuracy grade	± 15 µm										
Scale tape cut from roll*	3 m, 5 m, 10 m	n, 5 m, 10 m									
Reference marks	Selectable every 100 mr	n									
Weight Scale tape Scale-tape carrier	20 g/m 70 g/m										
Scanning head	AK LIDA 28	AK LIDA 27									
Interface	\sim 1 V_{PP}										
Integrated interpolation* Signal period	– 200 µm	10-fold 50-fold 100-fold 20 μm 4 μm 2 μm									
Cut-off frequency Scanning frequency Edge separation a	≥ 50 kHz - -	– ≥ 50 kHz ≥ 0.465 μs	_ ≤ 25 kHz ≥ 0.175 μs	_ ≤ 12.5 kHz ≥ 0.175 μs							
Traversing speed	≤ 600 m/min	1	≤ 300 m/min	≤ 150 m/min							
Electrical connection*	Cable, 1 m or 3 m with [D-sub connector (male), 1	5-pin								
Cable length	See Interface Descriptio	n, but \leq 30 m (with HEID	ENHAIN cable)								
Voltage supply	5 V DC ± 0.25 V		5 V DC ± 0.25 V								
Current requirement	< 110 mA		< 140 mA (without load)							
Vibration 55 to 2000 Hz Shock 11 ms											
Operating temperature 0 °C to 50 °C											
Weight Scanning head Connecting cable Connector	20 g (without connecting 30 g/m 32 g	g cable)									

* Please select when ordering

LIDA 279/LIDA 289

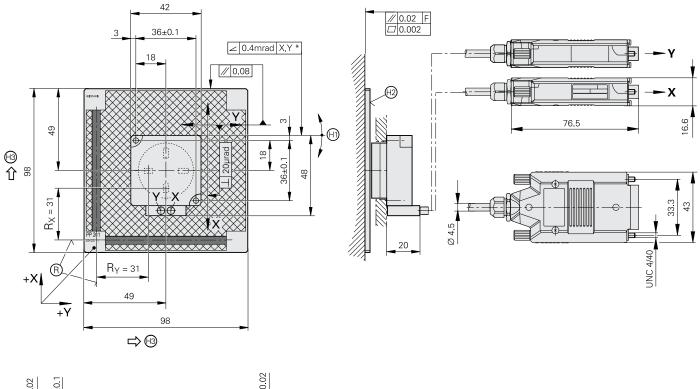
Incremental linear encoder with large mounting tolerance

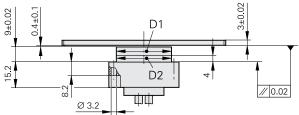
- For measuring steps to 0.5 µm ٠
- Scale tape cut from roll •
- Steel scale tape cemented on mounting surface
- Integrated status display with three-color LED •
- · Consists of scale and scanning head

✐⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- Max. change during operation =
- F = Machine guideway
- ß Required mating dimensions =
- ® Reference mark =
- \bigcirc Scale tape length =
- S = Beginning of measuring length (ML)
- Thread at both ends =
- (H)€2 = Adhesive tape
- H3 Steel scale tape =
- H4 Direction of scanning unit motion for = output signals in accordance with interface description

Reference mark:


k = Any position of the selected reference mark starting from the beginning of the measuring length (depends on the length of cut)



Linear scale	LIDA 209									
Measuring standard Coefficient of linear expansion	Steel scale tape; grating $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$	period 200 µm								
Accuracy grade	± 15 μm	15 μm								
Scale tape cut from roll*	3 m, 5 m, 10 m	m, 5 m, 10 m								
Reference marks	Selectable every 100 m	m								
Weight	20 g/m) g/m								
Scanning head	AK LIDA 28	AK LIDA 27								
Interface	∕~ 1 V _{PP}									
Integrated interpolation* Signal period	– 200 µm	10-fold 20 µm	50-fold 4 µm	100-fold 2 μm						
Cut-off frequency Scanning frequency Edge separation a	≥ 50 kHz - -	– ≥ 50 kHz ≥ 0.465 µs	– ≤ 25 kHz ≥ 0.175 µs	– ≤ 12.5 kHz ≥ 0.175 μs						
Traversing speed	≤ 600 m/min	1	≤ 300 m/min	≤ 150 m/min						
Electrical connection*	Cable, 1 m or 3 m with I	D-sub connector (m	nale), 15-pin							
Cable length	See Interface Description	n, but ≤ 30 m (with	HEIDENHAIN cable)							
Voltage supply	5 V DC ± 0.25 V		5 V DC ± 0.25 V							
Current consumption	< 110 mA		< 140 mA (without	load)						
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2$ (EN 60068-2-6) $\leq 500 \text{ m/s}^2$ (EN 60068-2-27)									
Operating temperature	0 °C to 50 °C									
Weight Scanning head Connecting cable Connector	20 g (without connectin 30 g/m 32 g	g cable)								

* Please select when ordering

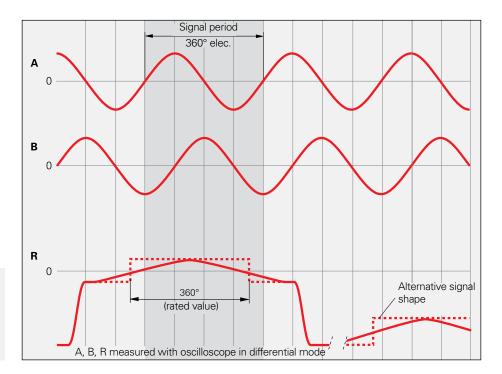
mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- Max. change during operation Machine guideway =
- =
- Reference-mark position relative to center position shown =
- = Adjusted during mounting
- F ® ® = Graduation side
- 0 = Direction of scanning unit motion for output signals in accordance with interface description

D1	D2
Ø 32.9 –0.2	Ø 33 –0.02/–0.10

	PP 281R
Measuring standard Coefficient of linear expansion	Two-coordinate TITANID phase grating on glass; grating period 8 μm $\alpha_{therm}\approx 8\cdot 10^{-6}~K^{-1}$
Accuracy grade	± 2 µm
Measuring range	68 mm x 68 mm, other measuring ranges upon request
Reference marks ¹⁾	One reference mark in each axis, 3 mm after beginning of measuring length
Interface	\sim 1 V _{PP}
Signal period	4 μm
Cutoff frequency –3 dB	≥ 300 kHz
Traversing speed	≤ 72 m/min
Electrical connection	Cable, 0.5 m with D-sub connector (male), 15-pin; with interface electronics in the connector
Cable length	See Interface Description, but \leq 30 m (with HEIDENHAIN cable)
Voltage supply	5 V DC ± 0.25 V
Current requirement	< 185 mA per axis
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 80 \text{ m/s}^2 \text{ (EN 60068-2-6)} \leq 100 \text{ m/s}^2 \text{ (EN 60068-2-27)}$
Operating temperature	0 °C to 50 °C (32 °F to 122 °F)
Weight Scanning head Grid plate Connecting cable Connector	170 g (without connecting cable) 75 g 37 g/m 140 g

¹⁾ The zero crossovers K, L of the reference-mark signal deviate from the interface specification (see the mounting instructions)


Interfaces Incremental signals \sim 1 V_{PP}

HEIDENHAIN encoders with \sim 1 V_{PP} interface provide voltage signals that can be highly interpolated.

The sinusoidal **incremental signals** A and B are phase-shifted by 90° elec. and have amplitudes of typically $1 V_{PP}$. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing.

The **reference mark signal** R has an unambiguous assignment to the incremental signals. The output signal might be somewhat lower next to the reference mark.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Pin layout

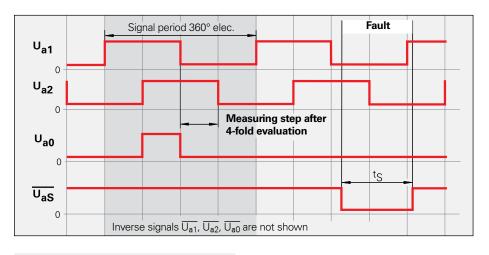
12-pin co	upling, N	/123			_		12-pin	connecto	or, M23		~	_	
	-		D		9 8 10 12 7 11 6 4 5		l				9	8 9 1 7 12 10 2 6 11 3 5 4	
15-pin D-		nector M 20/EIB 7			Interfac	e electroi	nics integ	grated					
	•	Voltage	supply				ncremer	ntal signal			1 2 3 4 5 6 9 10 11 12 13 1 0 0th	7 8 4 15 er signals	
	12	2	10	11	5	6	8	1	3	4	9	7	1
	4	12	2	10	1	9	3	11	14	7	5/6/8/15	13	1
	U _P	Sensor ¹⁾ U _P	0∨ ●	Sensor ¹⁾ 0∨	A+	A –	B+	В-	R+	R–	Vacant	Vacant	Vacant
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	/	Violet	Yellow

Cable shield connected to housing; U_P = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

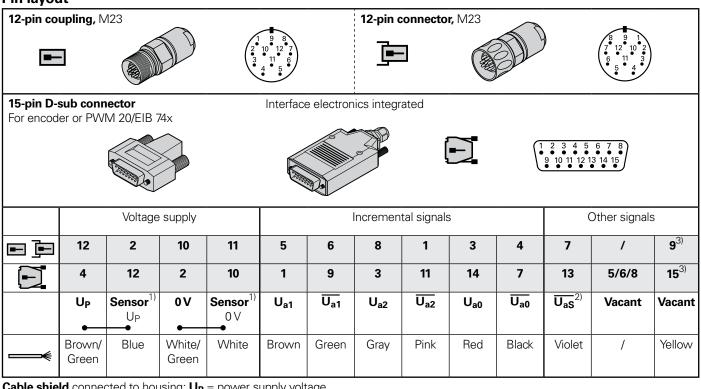
Vacant pins or wires must not be used!

¹⁾ LIDA 2xx: Vacant


Incremental signals

HEIDENHAIN encoders with TLITTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The incremental signals are transmitted as the square-wave pulse trains U_{a1} and U_{a2}, phase-shifted by 90° elec. The reference mark signal consists of one or more reference pulses U_{a0} , which are gated with the incremental signals. In addition, the integrated electronics produce their **inverted signals** $\overline{U_{a1}}$, $\overline{U_{a2}}$ and $\overline{U_{a0}}$ for noise-proof transmission. The illustrated sequence of output signals—with U_{a2} lagging Ua1-applies to the direction of motion shown in the dimension drawing.


The fault detection signal $\overline{U_{aS}}$ indicates fault conditions such as an interruption in the supply lines, failure of the light source, etc.

The distance between two successive edges of the incremental signals Ua1 and Ua2 through 1-fold, 2-fold or 4-fold evaluation is one measuring step.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the Interfaces of HEIDENHAIN Encoders brochure.

Pin layout

Cable shield connected to housing; UP = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used! ¹⁾ LIDA 2xx: Vacant / ²⁾ ERO 14xx: Vacant

³⁾ Exposed linear encoders: Switchover TTL/11 µA_{PP} for PWT (not with LIDA 27x), otherwise vacant

Interfaces Limit switches

LIDA 400 encoders are equipped with two limit switches that make limit-position detection and the formation of homing tracks possible. The limit switches are activated by differing adhesive magnets to enable switching between the left or right limit. The magnets can be configured in series to form homing tracks. The **signals from the limit switches L1** and **L2** are transmitted over separate lines and are therefore directly available. Nevertheless, the cable has only a very thin diameter of 3.7 mm in order to keep the forces on movable machine elements to a minimum.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces of HEIDENHAIN Encoders* brochure.

The incremental signals conform with the 1 V_{PP} or TTL interface.

LIDA 4xx pin layout

15-pin D-sub con	5-pin Interface					hics integ	arated			2 3 4 5 9 10 11 12 1	6 7 8 13 14 15				
		Voltage	supply			Incremental signa				als			Other signals		
	4	12	2	10	1	9	3	11	14	7	13	8	6	15	
гυπι	UP	Sensor 5 V	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	L1 ²⁾	L2 ²⁾	1)	
\sim 1 V_{PP}	│		•	-	A+	A –	B+	B–	R+	R–	Vacant			Vacant	
K	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	Green/ Black	Yellow/ Black	Yellow	

Cable shield on housing; UP = Voltage supply

Sensor: The sensor line is connected in the encoder with the corresponding power line.

¹⁾TTL/11 µA_{PP} conversion for PWT (not for LIDA 27x)
 ²⁾ Color assignment applies only to connecting cable

Vacant pins or wires must not be used.

Position detection

Besides the incremental graduation, the **LIF4x1** features a homing track and limit switches for limit position detection. The **signals for position detection H** and **L** are transmitted in TTL level over the separate lines H and L and are therefore directly available. Yet the cable has only a very thin diameter of 4.5 mm in order to keep the forces on movable machine elements to a minimum.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces of HEIDENHAIN Encoders* brochure.

The incremental signals conform with the 1 V_{PP} or TTL interface.

LIF 4x1 pin layout

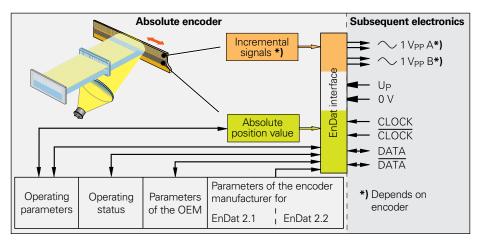
15-pin D-sub con	15-pin Interfac D-sub connector					nics integ	arated	Ð		2 3 4 5 9 10 11 12 '	• • • •			
		Voltage	supply			 1	ncremen	tal signals	S		Other signals			
	4	12	2	10	1	9	3	11	14	7	13	8	6	15
гшπι	UP	Sensor 5∨	0 V	Sensor 0 ∨	U _{a1}	$\overline{U_{a1}}$	U _{a2}	$\overline{U_{a2}}$	U _{a0}	U _{a0}	U _{aS}	Н	L	1)
\sim 1 V _{PP}	•		•	•	A+	A –	B+	B-	R+	R–	Vacant			Vacant
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	Green/ Black	Yellow/ Black	Yellow

Cable shield on housing; U_P = Voltage supply

Sensor: The sensor line is connected in the encoder with the corresponding power line.

¹⁾TTL/11 μ APP conversion for PWT

Vacant pins or wires must not be used.


Interfaces Position values EnDat

The EnDat interface is a digital, bidirectional interface for encoders. It is capable both of transmitting position values as well as transmitting or updating information stored in the encoder, or saving new information. Thanks to the serial transmission method, only four signal lines are required. The DATA is transmitted in synchronism with the CLOCK signal from the subsequent electronics. The type of transmission (position values, parameters, diagnostics, etc.) is selected through mode commands that the subsequent electronics send to the encoder. Some functions are available only with EnDat 2.2 mode commands.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the Interfaces of HEIDENHAIN Encoders brochure.

Ordering designation	Command set	Incremental signals
EnDat01	EnDat 2.1 or EnDat 2.2	With
EnDat21		Without
EnDat02	EnDat 2.2	With
EnDat22	EnDat 2.2	Without

Versions of the EnDat interface

EnDat pin layout

8-pin coupling,	M12				15-pin D-sub	connector				
				4 • 3 2	Đ			3 4 5 6 7 8 9 11 12 13 14 15		
	Voltage supply Absolute position									
	8	2	5	1	3	4	7	6		
	4	12	2	10	5	13	8	15		
	U _P	Sensor U _P	0 V •	Sensor 0 ∨	DATA	DATA	CLOCK	CLOCK		
	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow		

Cable shield connected to housing; U_P = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Fanuc and Mitsubishi pin layouts

Fanuc pin layout

HEIDENHAIN encoders with the code letter F after the model designation are suited for connection to Fanuc controls and drive systems. **Fanuc Serial Interface – α interface** Ordering designation: Fanuc02 Normal and high speed, two-pair transmission Fanuc Serial Interface – αi interface Ordering designation: Fanuc05 High speed, one-pair transmission Includes α interface (normal and high speed, two-pair transmission)

Fanuc pin layout

8-pin coupling,	M12				15-pin D-sub	connector				
				4 • 3 • 2	E			3 4 5 6 7 8 11 12 13 14 15		
		Voltage	e supply		Absolute position values					
	8	2	5	1	3	4	7	6		
	4	12	2	10	5	13	8	15		
	U _P	Sensor U _P	0V •	Sensor 0 ∨	Serial Data	Serial Data	Request	Request		
€	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow		

Cable shield connected to housing; U_P = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used!

Mitsubishi pin layout

HEIDENHAIN encoders with the code letter M after the model designation are suited for connection to Mitsubishi controls and drive systems.

Mitsubishi high speed interface

- Ordering designation: Mitsu01
 Two-pair transmission
- Ordering designation: Mit02-4 Generation 1, two-pair transmission
- Ordering designation: Mit02-2
- Generation 1, one-pair transmission
- Ordering designation: Mit03-4 Generation 2, two-pair transmission

Mitsubishi pin layout

8-pin coupling,	M12				15-pin D-sub	connector		
				$ \begin{array}{c} 5 \\ \bullet \\ \bullet \\ 8 \\ \bullet \\ \bullet$	E.			3 4 5 6 7 8 11 12 13 14 15
		Voltage	e supply			Absolute po	sition values	
-	8	2	5	1	3	4	7	6
E.	4	12	2	10	5	13	8	15
Mit03-4	U _P	Sensor U _P	0V •	Sensor 0 ∨	Serial Data	Serial Data	Request Frame	Request Frame
Mit02-2					Vacant	Vacant	Request/ Data	Request/ Data
	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow

Cable shield connected to housing; U_P = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used!

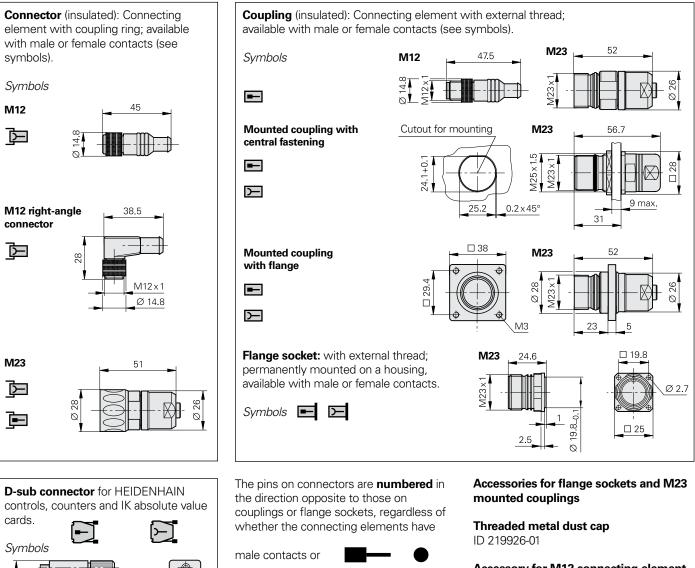
Panasonic pin layout

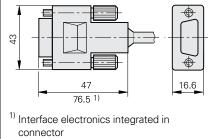
Panasonic pin layout

HEIDENHAIN encoders with the code letter P after the model designation are suited for connection to Panasonic controls and drive systems.

• Ordering designation: Pana01

Panasonic pin layout


8-pin coupling,	M12 15-pin D-sub connector							
				5 4 • 4 • 3 8 • 2	E			3 4 5 6 7 8 11 12 13 14 15
	Voltage supply			Absolute position values				
-	8	2	5	1	3	4	7	6
E.	4	12	2	10	5	13	8	15
	U _P	Sensor U _P	0V •	Sensor 0 ∨	Vacant ¹⁾	Vacant ¹⁾	Request Data	Request Data
	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow


Cable shield connected to housing; U_P = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used! ¹⁾ Required for adjustment/inspection with PWM 20

Cables and connecting elements

General information

 male contacts or
 Image: Contacts of the contact of t

When engaged, the connections are **protected** to IP 67 (D-sub connector: IP 50; EN 60529). When not engaged, there is no protection.

Accessory for M12 connecting element Insulation spacer ID 596495-01

Connecting cables for $1 V_{PP}$, TTL

		LIP/LIF/LIDA Without limit or homing signals		LIF 400/LIDA 400 With limit and homin signals	
PUR connecting cable [6(2 × AWG28) + (4)	x 0.14 mm ²)]; $A_P = 0.14 \text{ mm}^2$	•		•	
PUR connecting cable $[4(2 \times 0.14 \text{ mm}^2) + ($	(4 x 0.5 mm²) + 2 x (2 x 0.14 mm²)] A	$_{\rm P} = 0.5 {\rm mm}^2$			
PUR connecting cable [6(2 x 0.19 mm ²)] A _F	$p = 0.19 \text{ mm}^2$				
PUR connecting cable $[4(2 \times 0.14 \text{ mm}^2) + ($	$(4 \times 0.5 \text{ mm}^2)] \text{ A}_{\text{P}} = 0.5 \text{ mm}^2$	Ø8mm	Ø 6 mm ¹⁾	Ø8mm	Ø 6 mm ¹⁾
Complete with D-sub connector (female), 15-pin, and M23 connector (male), 12-pin		331693-xx	355215-xx	-	_
With one D-sub connector (female), 15-pin		332433-xx	355209-xx	354411-xx	355398-xx
Complete with D-sub connector (female) and D-sub connector (male), 15-pin		335074-xx	355186-xx	354379-xx	355397-xx
Complete with D-sub connector (female) and D-sub connector (female), 15-pin Pin layout for IK 220		335077-xx	349687-xx	-	-
Cable only		816317-xx	816323-xx	354341-01	355241-01
Adapter cable for LIP 3x2 With M23 coupling (male), 12-pin		_	310128-xx	_	_
Adapter cable for LIP 3x2 With D-sub connector, 15-pin assignment for IK 220		298429-xx	_	-	-
Adapter cable for LIP 3x2 without connector	□€	_	310131-xx	_	_
Complete with M23 connector (female) and M23 connector (male), 12 pins	<u>}</u>	298399-xx	_	_	_
With one M23 connector (female, 12-pin)	<u>}</u>	309777-xx	_	_	_
Connector on connecting cable to connector on encoder cable	D-sub coupling, 15-pin	For cable	Ø 6 mm To Ø 8 mm	315650-14	
Connector on connecting cable to mating element on encoder cable	M23 connector (female), 12-pin	For cable	Ø8mm	291697-05	
M23 connector for connection to subsequent electronics	M23 connector (male), 12-pin	For cable	Ø 8 mm Ø 6 mm	291697-08 291697-07	
M23 flange socket for installation in the subsequent electronics	M23 flange socket (female), 12-pin	\sim		315892-08	
Adapter ~ 1V _{PP} /11 μA _{PP} For converting the 1 V _{PP} signals to 11 μA _{PP} ; M23 connector (female, 12-pin) and M23 connector (male), 9-pin				364914-01	

¹⁾ Cable length for Ø 6 mm: max. 9 m

A_P: Cross section of power supply lines

EnDat connecting cables

PUR connecting cable [4(2 x 0.09 mm ²)] A _f	$p = 0.09 \text{ mm}^2$		
PUR connecting cable $[(4 \times 0.14 \text{ mm})]$	2) + (4 × 0.34 mm ²)]; A _P = 0.34 mm ²	Ø6mm	Ø 3.7 mm ¹⁾
Complete with connector (female) and coupling (male), 8-pin		368330-xx	801142-xx
Complete with right-angle connector (female) and coupling (male), 8-pin		373289-xx	801149-xx
Complete with connector (female), 8-pin and D-sub connector (male), 15-pin, for PWM 20, EIB 74x etc.		524599-xx	801129-xx
Complete with right-angle connector (female), 8-pin and D-sub connector (male), 15-pin, for PWM 20, EIB 74x etc.		722025-xx	801140-xx
With one connector (female), 8-pin	<u>}</u>	634265-xx	-
With one right-angle connector (female), 8-pin	₽Ę	606317-xx	-

¹⁾ Maximum total cable length 6 m A_P: Cross section of power supply lines

Connecting cables

Fanuc Mitsubishi

Fanuc

PUR connecting cable $[4 \times (2 \times 0.09 \text{ m})]$	m^2)]; A _P = 0.09 mm ²		
PUR connecting cable $[(4 \times 0.14 \text{ mm}^2)]$	+ $(4 \times 0.34 \text{ mm}^2)$]; A _P = 0.34 mm ²	Ø 6 mm	Ø 3.7 mm ¹⁾
Complete With M12 connector (female) and M12 coupling (male), 8-pin	<u></u>	368330-xx	801142-xx
Complete With M12 right-angle connector (female) and M12 coupling (male), 8-pin		373289-xx	801149-xx
Complete With M12 connector (female), 8-pin and Fanuc connector (female)	<u>}</u>	646807-xx	-
With one connector With 8-pin M12 connector (female)	<u>}</u>	634265-xx	-
With one connector With 8-pin M12 right-angle connector (female)	H.	606317-xx	-

¹⁾ Maximum total cable length 6 m A_P: Cross section of power supply lines

Mitsubishi

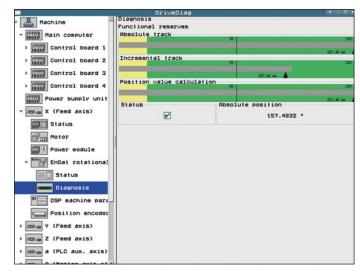
PUR connecting cable [$(1 \times 4 \times 0.14 \text{ mm}^2) + (4 \times 0.34 \text{ mm}^2)$]; A _P =	Ø 6 mm	
Complete With M12 connector (female), 8-pin and Mitsubishi connector, 20-pin	Mitsubishi 20-pin	646806-xx
Complete With M12 connector (female), 8-pin and Mitsubishi connector, 10-pin	Mitsubishi 10-pin	647314-xx
With one connector With 8-pin M12 connector (female)	<u>}</u>	634265-xx
With one connector With 8-pin M12 right-angle connector (female)	₽Ę	606317-xx

A_P: Cross section of power supply lines

Diagnostic and testing equipment

HEIDENHAIN encoders are provided with all information necessary for commissioning, monitoring and diagnostics. The type of available information depends on whether the encoder is incremental or absolute and which interface is used.

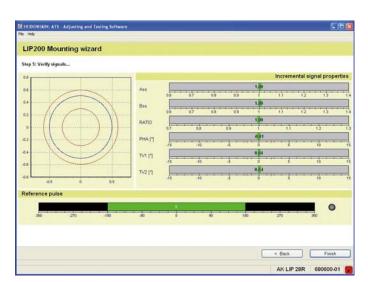
Incremental encoders mainly have 1 V_{PB} TTL or HTL interfaces. TTL and HTL encoders monitor their signal amplitudes internally and generate a simple fault detection signal. With 1 V_{PP} signals, the analysis of output signals is possible only in external test devices or through computation in the subsequent electronics (analog diagnostics interface).


Absolute encoders operate with serial data transfer. Depending on the interface, additional 1 V_{PP} incremental signals can be output. The signals are monitored comprehensively within the encoder. The monitoring result (especially with valuation numbers) can be transferred along with the position value through the serial interface to the subsequent electronics (digital diagnostics interface). The following information is available:

- Error message: Position value not reliable
- Warning: An internal functional limit of
- the encoder has been reachedValuation numbers:
- Detailed information on the encoder's functional reserve
- Identical scaling for all HEIDENHAIN encoders
- Cyclic output is possible

This enables the subsequent electronics to evaluate the current status of the encoder at little cost even in closed-loop mode.

HEIDENHAIN offers the appropriate PWM inspection devices and PWT test devices for encoder analysis. There are two types of diagnostics, depending on how they are integrated:


- Encoder diagnostics: The encoder is connected directly to the test or inspection device. This makes a comprehensive analysis of encoder functions possible.
- Diagnostics in the control loop: The PWM phase meter is looped into the closed control loop (e.g. through a suitable testing adapter). This makes a real-time diagnosis of the machine or system possible during operation. The functions depend on the interface.

Diagnostics in the control loop on HEIDENHAIN controls with display of the valuation number or the analog encoder signals

Function reserves			
Absolute track	0 24 rev. 337*	50	
Incremental- or sam		50 1	
Position-value forma	tion	50	
Mounting diagnostic	\$	Мок	Inting clearance (mi
Minimum 1.041 mm a	t 1324 rev. 337°, Maximum 1.041 mm at 1324 rev.		101
Ptatus	Absolute position		
Status	Absolute position	338	Angle [degre

Diagnostics using PWM 20 and ATS software

Commissioning using PWM 20 and ATS software

Diagnostic and testing equipment

PWM 20

Together with the ATS adjusting and testing software, the PWM 20 phase angle measuring unit serves for diagnosis and adjustment of HEIDENHAIN encoders.

For more information, see the *PWM 20, ATS Software* Product Information sheet.

	PWM 20		
Encoder input	 EnDat 2.1 or EnDat 2.2 (absolute value with/without incremental signals) DRIVE-CLiQ Fanuc serial interface Mitsubishi high speed interface Yaskawa serial interface SSI 1 V_{PP}/TTL/11 μA_{PP} 		
Interface	USB 2.0		
Voltage supply	100 V to 240 V AC or 24 V DC		
Dimensions	258 mm x 154 mm x 55 mm		
	ATS		
Languages	Choice between English and German		
Functions	 Position display Connection dialog Diagnostics Mounting wizard for EBI/ECI/EQI, LIP 200, LIC 4000 and others Additional functions (if supported by the encoder) Memory contents 		
System requirements and recommendations	PC (dual-core processor, > 2 GHz) RAM > 2 GB Windows operating systems XP, Vista, 7 (32-bit/64-bit), 8 200 MB free space on hard disk		

DRIVE-CLiQ is a registered trademark of Siemens Aktiengesellschaft

The **PWM 9** is a universal measuring device for checking and adjusting HEIDENHAIN incremental encoders. Expansion modules are available for checking the various types of encoder signals. The values can be read on an LCD monitor. Soft keys provide ease of operation.

	PWM 9
Inputs	Expansion modules (interface boards) for 11 µA _{PP} ; 1 V _{PP} ; TTL; HTL; EnDat*/SSI*/commutation signals *No display of position values or parameters
Functions	 Measures signal amplitudes, current consumption, operating voltage, scanning frequency Graphically displays incremental signals (amplitudes, phase angle and on-off ratio) and the reference-mark signal (width and position) Displays symbols for the reference mark, fault-detection signal, counting direction Universal counter, interpolation selectable from single to 1024-fold Adjustment support for exposed linear encoders
Outputs	Inputs are connected through to the subsequent electronicsBNC sockets for connection to an oscilloscope
Voltage supply	10 V to 30 V DC, max. 15 W
Dimensions	150 mm × 205 mm × 96 mm

The **PWT** is a simple adjusting aid for HEIDENHAIN incremental encoders. In a small LCD window, the signals are shown as bar charts with reference to their tolerance limits.

	PWT 10	PWT 17	PWT 18		
Encoder input	~ 11 μA _{PP}	\sim 1 V _{PP}			
Functions	Measurement of signal amplitude Wave-form tolerance Amplitude and position of the reference mark signal				
Voltage supply	Via power supply unit (included)				
Dimensions	114 mm x 64 mm x 29 mm				

The **APS 27** encoder diagnostic kit is necessary for assessing the mounting tolerances of the LIDA 27x with TTL interface. To examine them, the LIDA 27x is either connected to the subsequent electronics via the PS 27 test connector, or is operated directly on the PG 27 test unit.

Green LEDs for the incremental signals and reference pulse, respectively, indicate correct mounting. If they shine red, then the mounting must be checked again.

The **SA 27** adapter connector serves for tapping the sinusoidal scanning signals of the LIP 372 off the APE. Exposed pins permit connection to an oscilloscope through standard measuring cables.

	APS 27
Encoder	LIDA 277/LIDA 279
Function	Good/bad detection of the TTL signals (incremental signals and reference pulse)
Voltage supply	Via subsequent electronics or power supply unit (included in delivery)
Items supplied	PS 27 test connector PG 27 test unit Power supply unit for PG 27 (110 V to 240 V, including adapter plug) Shading films

	SA 27
Encoder	LIP 372
Function	Measuring points for the connection of an oscilloscope
Voltage supply	Via encoder
Dimensions	Approx. 30 mm x 30 mm

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or if additional interpolation of the signals is necessary.

You can find more detailed information in the *Interface Electronics* Product Overview and the respective product information documents.

Input signals of the interface electronics

Interface electronics from HEIDENHAIN can be connected to encoders with sinusoidal signals of 1 V_{PP} (voltage signals) or 11 μ A_{PP} (current signals). Encoders with the serial interfaces EnDat or SSI can also be connected to various interface electronics.

Output signals of the interface electronics

Interface electronics with the following interfaces to the subsequent electronics are available:

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc serial interface
- Mitsubishi high speed interface
- Yaskawa serial interface
- PCI bus
- Ethernet
- Profibus

Interpolation of the sinusoidal input signals

In addition to being converted, the sinusoidal encoder signals are also interpolated in the interface electronics. This permits finer measuring steps and, as a result, higher control quality and better positioning behavior.

Formation of a position value

Some interface electronics have an integrated counting function. Starting from the last reference point set, an absolute position value is formed when the reference mark is traversed, and is transferred to the subsequent electronics.

Measured value memory

Interface electronics with integrated measured value memory can buffer measured values: *IK 220:* Total of 8192 measured values *EIB 74x:* Per input typically 250 000 measured values

Box design

Bench-top design

Plug design

Version for integration

Top-hat rail design

Outputs		Inputs		Design – degree of protection	Interpolation ¹⁾ or subdivision	Туре
Interface	Qty.	Interface	Qty.	protection	Subulvision	
	1	~ 1 V _{PP}	1	Box design – IP 65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
					Without interpolation	IBV 600
					25/50/100/200/400-fold	IBV 660 B
				Plug design – IP 40	5/10/20/25/50/100-fold	APE 371
				Version for integration –	5/10-fold	IDP 181
				IP 00	20/25/50/100-fold	IDP 182
		~ 11 μA _{PP}	1	Box design – IP 65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
					Without/5-fold	EXE 602 E
					25/50/100/200/400-fold	EXE 660 B
				Version for integration – IP 00	5-fold	IDP 101
	2	~ 1 V _{PP}	1	Box design – IP 65	2-fold	IBV 6072
✓ 1 V _{PP} Adjustable					5/10-fold	IBV 6172
					5/10-fold and 20/25/50/100- fold	IBV 6272
EnDat 2.2	1 ~ 1 V _{PP}	~ 1 V _{PP}	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192
			Plug design – IP 40	≤ 16384-fold subdivision	EIB 392	
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP 65	-	EIB 2391 S
Fanuc serial	1	~ 1 V _{PP}	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192 F
interface				Plug design – IP 40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1592 F
Mitsubishi	1	1 V _{PP}	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192M
high speed interface				Plug design – IP 40	≤ 16384-fold subdivision	EIB 392 M
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1592 M
Yaskawa serial interface	1	EnDat 2.2 ²⁾	1	Plug design – IP 40	_	EIB 3391Y
PCI bus	1	C 1 V _{PP;} C 11 μA _{PP} EnDat 2.1; SSI Adjustable	2	Version for integration – IP 00	≤ 4096-fold subdivision	IK 220
Ethernet	1	 1 V_{PP} EnDat 2.1; EnDat 2.2 11 μA_{PP} upon request Adjustable by software 	4	Bench-top design – IP 40	≤ 4096-fold subdivision	EIB 741 EIB 742
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	-	PROFIBUS Gateway

¹⁾ Switchable

²⁾ Only LIC 4100, measuring step 5 nm; LIC 2000 in preparation

IEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany 2 +49 8669 31-0 FAX +49 8669 5061 E-mail: info@heidenhain.de

www.heidenhain.de

_

Vollständige und weitere Adressen siehe www.heidenhain.de For complete and further addresses see www.heidenhain.de

DE	HEIDENHAIN Vertrieb Deutschland 83301 Traunreut, Deutschland	ES	FARRES 08028 Ba
	FAX 08669 32-3132		vvvv.iaii
	E-Mail: hd@heidenhain.de	FI	HEIDENI 02770 Es www.hei
	12681 Berlin, Deutschland		
	窗 030 54705-240	FR	HEIDENI 92310 Sè
	HEIDENHAIN Technisches Büro Mitte		www.hei
	07751 Jena, Deutschland 會 03641 4728-250	GB	HEIDENI
	HEIDENHAIN Technisches Büro West		Burgess www.hei
	44379 Dortmund, Deutschland 혛 0231 618083-0	GR	MB Milio
	· U231 618083-0	GR	17341 At
	HEIDENHAIN Technisches Büro Südwest 70771 Leinfelden-Echterdingen, Deutschland		www.hei
	· 0711 993395-0	НК	HEIDENI
	HEIDENHAIN Technisches Büro Südost		Kowloon, E-mail: sa
	83301 Traunreut, Deutschland		
	2 08669 31-1345	HR	Croatia →
		HU	1239 Buc
AR	NAKASE SRL.		www.hei
	B1653AOX Villa Ballester, Argentina www.heidenhain.com.ar	ID	PT Servi
AT	HEIDENHAIN Techn. Büro Österreich		Jakarta 1
AI	83301 Traunreut, Germany		E-mail: pt
	www.heidenhain.de	IL	NEUMO Tel Aviv 6
AU	FCR Motion Technology Pty. Ltd		E-mail: ne
	Laverton North 3026, Australia E-mail: vicsales@fcrmotion.com	IN	HEIDENI
BE	HEIDENHAIN NV/SA		India Priv
DE	1760 Roosdaal, Belgium		Chetpet, www.hei
	www.heidenhain.be	п	HEIDEN
BG	ESD Bulgaria Ltd.		20128 M
	Sofia 1172, Bulgaria www.esd.bg		www.hei
BR	DIADUR Indústria e Comércio Ltda.	JP	HEIDENI Tokyo 102
DR	04763-070 – São Paulo – SP, Brazil		www.hei
	www.heidenhain.com.br	KR	HEIDEN
BY	GERTNER Service GmbH		Gasan-Do
	220026 Minsk, Belarus www.heidenhain.by		www.hei
СА	HEIDENHAIN CORPORATION	MX	HEIDENI 20235 Ag
0/1	Mississauga, OntarioL5T2N2, Canada		E-mail: in
	www.heidenhain.com	MY	ISOSER\
СН	HEIDENHAIN (SCHWEIZ) AG 8603 Schwerzenbach, Switzerland		43200 Ba
	www.heidenhain.ch		E-mail: is
CN	DR. JOHANNES HEIDENHAIN	NL	HEIDENI 6716 BM
	(CHINA) Co., Ltd.		www.hei
	Beijing 101312, China www.beidenbain.com.cn	NO	HEIDENI

CZ HEIDENHAIN s.r.o. 102 00 Praha 10, Czech Republic www.heidenhain.cz

TPTEKNIK A/S DK 2670 Greve, Denmark www.tp-gruppen.dk

• • • •				
FARRESA ELECTRONICA S.A. 08028 Barcelona, Spain www.farresa.es	PL	APS 02-384 Warszawa, Poland www.heidenhain.pl		
HEIDENHAIN Scandinavia AB 02770 Espoo, Finland www.heidenhain.fi	РТ	FARRESA ELECTRÓNICA, LDA. 4470 - 177 Maia, Portugal www.farresa.pt		
HEIDENHAIN FRANCE sarl 92310 Sèvres, France www.heidenhain.fr	RO	HEIDENHAIN Reprezentanță Romania Brașov, 500407, Romania www.heidenhain.ro		
HEIDENHAIN (G.B.) Limited Burgess Hill RH15 9RD, United Kingdom www.heidenhain.co.uk MB Milionis Vassilis		Serbia → BG		
		OOO HEIDENHAIN 115172 Moscow, Russia www.heidenhain.ru		
17341 Athens, Greece www.heidenhain.gr	SE	HEIDENHAIN Scandinavia AB 12739 Skärholmen, Sweden		
HEIDENHAIN LTD Kowloon, Hong Kong E-mail: sales@heidenhain.com.hk S Croatia → SL		www.heidenhain.se HEIDENHAIN PACIFIC PTE LTD.		
		Singapore 408593 www.heidenhain.com.sg		
HEIDENHAIN Kereskedelmi Képviselet 1239 Budapest, Hungary www.heidenhain.hu	SK	KOPRETINATN s.r.o. 91101 Trencin, Slovakia www.kopretina.sk		
PT Servitama Era Toolsindo Jakarta 13930, Indonesia E-mail: ptset@group.gts.co.id	SL	NAVO d.o.o. 2000 Maribor, Slovenia www.heidenhain.si		
NEUMO VARGUS MARKETING LTD. Tel Aviv 61570, Israel E-mail: neumo@neumo-vargus.co.il	тн	HEIDENHAIN (THAILAND) LTD Bangkok 10250, Thailand www.heidenhain.co.th		
HEIDENHAIN Optics & Electronics India Private Limited Chetpet, Chennai 600 031, India	TR	T&M Mühendislik San. ve Tic. LTD. ŞTİ. 34728 Ümraniye-Istanbul, Turkey www.heidenhain.com.tr		
www.heidenhain.in HEIDENHAIN ITALIANA S.r.I. 20128 Milano, Italy www.heidenhain.it	тw	HEIDENHAIN Co., Ltd. Taichung 40768, Taiwan R.O.C. www.heidenhain.com.tw		
HEIDENHAIN K.K. Tokyo 102-0083, Japan www.heidenhain.co.jp	UA	Gertner Service GmbH Büro Kiev 01133 Kiev, Ukraine www.heidenhain.ua		
HEIDENHAIN Korea LTD. Gasan-Dong, Seoul, Korea 153-782	US	HEIDENHAIN CORPORATION Schaumburg, IL 60173-5337, USA www.heidenhain.com		
www.heidenhain.co.kr HEIDENHAIN CORPORATION MEXICO 20235 Aguascalientes, Ags., Mexico	VE	Maquinaria Diekmann S.A. Caracas, 1040-A, Venezuela E-mail: purchase@diekmann.com.ve		
E-mail: info@heidenhain.com ISOSERVE SDN. BHD. 43200 Balakong, Selangor		AMS Co. Ltd HCM City, Vietnam E-mail: davidgoh@amsvn.com		
E-mail: isoserve@po.jaring.my	ZA	MAFEMA SALES SERVICES C.C.		

- HAIN NEDERLAND B.V. Ede, Netherlands idenhain.nl
- **HEIDENHAIN Scandinavia AB** NO 7300 Orkanger, Norway www.heidenhain.no
- PH Machinebanks' Corporation Quezon City, Philippines 1113 E-mail: info@machinebanks.com

vww.heidenhain.ro
Serbia → BG
DOO HEIDENHAIN 15172 Moscow, Russia vvvv.heidenhain.ru
IEIDENHAIN Scandinavia AB 2739 Skärholmen, Sweden vww.heidenhain.se
IEIDENHAIN PACIFIC PTE LTD. iingapore 408593 vww.heidenhain.com.sg
COPRETINATN s.r.o. 1101 Trencin, Slovakia vww.kopretina.sk
JAVO d.o.o. 000 Maribor, Slovenia vww.heidenhain.si
IEIDENHAIN (THAILAND) LTD Bangkok 10250, Thailand vww.heidenhain.co.th
&M Mühendislik San. veTic. LTD. ŞTİ. 4728 Ümraniye-Istanbul, Turkey vww.heidenhain.com.tr
IEIDENHAIN Co., Ltd. aichung 40768, Taiwan R.O.C. vww.heidenhain.com.tw
Gertner Service GmbH Büro Kiev 11133 Kiev, Ukraine vww.heidenhain.ua

- **EIDENHAIN CORPORATION** chaumburg, IL 60173-5337, USA ww.heidenhain.com
- laquinaria Diekmann S.A. aracas, 1040-A, Venezuela -mail: purchase@diekmann.com.ve
- MS Co. Ltd CM City, Vietnam -mail: davidgoh@amsvn.com
- ZA MAFEMA SALES SERVICES C.C. Midrand 1685, South Africa www.heidenhain.co.za