
Object-Oriented Software of Power System Analysis

Tarek Bouktir, Linda Slimani, Belkacem Mahded, Ahmed Gherbi
Department of Electrical Engineering, University of Oum El-Bouaghi, 04000 Algeria

Abstract— This paper describes an efficient software platform for power system analysis. Making use of the
object-oriented methodology advantages, the power system is modeled as an aggregate of linked objects and
structured in class hierarchy. Each class describes an object and encapsulates both its data structure and
behavior (operating methods). Attributes of all electrical objects are defined using Power System Application
Data Dictionary (PSADD). The objects interact and cooperate among themselves via ultimate message-
passing paradigms. All parts of the software (numerical methods, database, GUI…) have been built in terms
of objects. Borland C++Builder 5 was used to develop this compact, flexible and easy-to-maintain program.
This software may be used in educational purpose or in modeling, planning and analyzing of the power
system.

Key-words : Power System, Simulation, Object-Oriented Programming, PSADD.

1 Introduction
The planning, design and operation of electrical power system
require simulation analyses to determine the performance and
the reliability of the current and future system. The computer
simulation requires that a power system should be represented
by a set of data and functions structured in certain processing
algorithms to produce simulation results. During the last three
decades, many power system computer programs have been
described in the open literature [1-3]. Some of these softwares
were designed to provide various engineering analysis ranging
from load flow to transient stability. Others were developed for
planning and controlling power system in real-time [4,5].
However, these programs have proved their inadequacy and
their limitation to specified power configuration. For different
applications, the data structures are different depending on the
programming languages. With the conventional programming
languages (Fortran, C, Pascal), the data structures and the
algorithm procedures are very strong. So that any change even
minor may propagate through a whole developed modules of
the program. This requires tremendous efforts to debug and
time period is proportional to the size of the program source
rather than the magnitude of the change. For a large-scale
software system, this could conduct to a catastrophic
consequence so that the system becomes unmanageable and
requires to be redesigned. The limitations of the software in
turn restrict the potential use of modern electronic equipment
to help manage and protect the grid, because the software
cannot manage the increased data such equipment can deliver.
The New York Times of August 18, 2003 wrote (after the
August 14, 2003 Northeast Blackout), regarding transmission
lines in Ohio and the Midwest, “Problems on the lines were
becoming more frequent, and a series of reports, by the
industry's own quality-control offices and government
agencies, described the risks and urged utilities to be more
aware of the physical limits of the Midwest system. The
complexity and magnitude of the power flows, one report by
the Federal Energy Regulatory Commission said, could
‘overwhelm the electronic and software tools used to model

and manage power flows on the grid’”. We think that is the
same conclusion for the Feb,03,2003 Algerian blackout.
To overcome these disadvantages of traditional softwares, one
promising approach to achieve software reliability,
maintainability and extensibility is to use Object-Oriented
Methodology (OOM) [6].
Object-Oriented Technology (OOT) is the newest
methodology of software development, which has proved to be
an effective tool for complex systems modeling. It allows
expansions and modifications over a long period and supports
a wide range of applications. With OOP, problems are
modeled based on physical real-world concepts. Its greatest
benefits come from helping developers express abstract
concepts (objects) clearly and communicate them to each
other. Object-oriented approaches use the concept of objects as
the unit of the organization. Objects are simple entities which
are specified what they can do rather how they are done. So,
they can be viewed as 'black-boxes'.
During the few last years, the application of the OOP to
electric power system has gained widespread acceptance. The
object-oriented modeling scheme is not unique and affects
directly the performance of the developed software. Many
authors have developed various packages and proposed
interesting object-oriented power system model using different
OOP languages like C++, Smalltalk, Eiffel [7,8]. However,
most of the developed packages are limited to specific subjects
among the various fields of power systems engineering.
In a previous article [9], the authors have proposed an object
model of power system which has been tested successfully for
load flow application on Sonelgaz network. This paper
describes an other version of software platform for power
system modeling using OOM. The system has been modeled
as set of linked objects (entities). These may be real objects
(e.g. electrical devices) or software objects (e.g. database,
numerical methods). Then, an object Optimal Power Flow
application is described and integrated as a new module in our
developed object-oriented software called Object Oriented
Electrical Network Simulator (OOENS). This one has been
implemented using Borland C++Builder 5 and run under

Windows XP environment on desk PC Pentium 4 (1.5 GHz,
128 Mo of main memory).

2 Overview Of The Object-Oriented
Modeling

The central theme in OO modeling is the process of
discovering classes, object, operations as well as the
relationships among classes. In this section, we shall give a
brief overview of these concepts.

2. 1. CLASSES AND OBJECTS

Somewhat predictably, the idea of an object is central to
object-oriented programming. An object is defined as an item
of data, very much like a variable (or constant) in a
conventional programming language. Every object belongs to
an object class, which is analogous to a data type in a
conventional language. However, one of the most important
things about object classes is that new classes can be defined
by the programmer, based on existing classes. Every object is
an instance of a class. A class defines the methods and
attributes that each instance of the class will possess
(intentional view). It can also be seen as defining the set of
objects which are instances of the class (extensional view).
Using the Rumbaugh's notations [11], a class in object models
is represented as a rectangle with three parts as shown in
Figure 1; at the Top is indicated the name of the class, the
middle part contains all data attributes of the class and at the
lower part the class functions (methods) are defined. The
constructor "Line (){}" is a function which initializes all the
class variables. The destructor "~Line (){}" is a special
function for freeing the allocated memory.

Figure 1 Class representation

2. 2. PRINCIPLES OF OOM

Four major principles underlie object-oriented modeling
[6,11,12]. These are:

i. Abstraction which denotes the capability to capture the
essential properties of an entity without undue details. It
consists of filtering of details not immediately needed.

ii. Encapsulation this defines the hiding of implementation.
It requires the packaging of the entity into one impermeable
unit.

iii. Polymorphism means that an entity can assume many
forms.

iv. Inheritance (generalization) which allows new object
classes to be defined in terms of existing object classes,
inheriting both data structure and behavior (definition of
methods) from the defining parent class or superclass. A class

which inherits from another class is said to be a subclass of its
parent. It is possible to define a method in a subclass with the
same name as a method in its parent class, and this new
method will override the method from the parent class.
Complete class hierarchies can be built up through inheritance,
perhaps representing hierarchies in the real-world.

2. 3. OBJECT-ORIENTED RELATIONSHIPS

The relationships are mathematical relations among classes
and objects. They capture associations that may exist among
objects. The following relationships are common:

i. Classification: it is used to describe the inheritance
association between superclass and subclasses.

ii. Aggregation: it used to describe an aggregate class,
which is formed from a number of component classes.

iii. Instantiation: this refers to the case where a class is
instantiated to create a specific object.

iv. Association : it describes the physical or conceptual
connection between classes.

2. 4. STAGES OF OBJECT MODELING

In Object Modeling Technique (OMT), building a model of an
application domain is achieved following three major stages
[11,13]:

1. Object-Oriented Analysis (OOA): during this stage, the
real-world system is modeled as an aggregate of simple
linked objects. Their relationships are identifying using the
application-domain concepts.

2. Object-Oriented Design (OOD): During this phase,
decisions are made about how the problem will be solved. This
includes two design stages:

i. System design: in this phase, the overall system
architecture is decided.

ii. Object design: which involves the building of the
model by defining the classes and their associations used in
the implementation and algorithms of the methods used to
implement operations.

3. Implementation and testing: during this phase, the
developed objects and classes are finally translated in a
particular OOP language (e.g. C++Builder) to become
complete software.
Object-oriented modeling uses the same conceptual model
across analysis, design and implementation. Analysis and
design stages are intertwined in some OO methodologies.
3 Anatomy Of The Developed Software
The main idea presented in this project software is based upon
the object concept. So, all parts of the software are designed
separately as objects using OOT in order to facilitate
modifications or enhancements.
It consists of five major objects:
• A user-friendly Graphical User Interface (GUI)
• A central Object-Oriented Database (OODB)
• A number of power system applications
• An Object Mathematical Library.
• A network container.
The electrical network is modeled using two main object
concepts: the classification which groups similar objects into

Line
Bus FromBus
Bus ToBus
complex Current
……………..
complex Impedance();
complex PowerLoss();
Line (){};
~Line (){};

classes and the specialization which refines classes into
subclasses.
According to this approach, an object-oriented system is
viewed as a collection of classes and instances ordered by two
relations: instantiation and inheritance. The inheritance is a
powerful abstraction for sharing simulates among classes while
preserving their differences. It is the relationship between a
class and one or more refined versions of it. The facilities of
the base class are automatically available to all subclasses.
The electrical network model is structured in the same way as
the physical network. In the present case, the plant components
that make up the power system for the static analysis consist of
elements such as generators, transformers, transmission lines,
loads and capacitor banks.

Figure 2 illustrates the implementation of the class Device
that has been defined as the base class for all the electrical
network classes. The class Device has a private part consisting
of parameters that are normally used for describing the
electrical behavior of the component and a public part
consisting of data accessing methods used to coordinate the
class with the other classes and to communicate with the
external environment of the class.

class Device // class name
{
private: // Private part of the class
AnsiString FNames; // device name
int FNum; // device number
AnsiString GetName(); // getting the
name
void SetName(AnsiString); // setting
name
int GetNum();// getting number
void SetNum(const int); // setting
number
public: // Public part
__property AnsiString Names=
{read=GetName, write=SetName};
__property int Num = {read=GetNum,
write=SetNum};
Device(){} // Constructor
~Device(){} // Destructor } // {Device}

Figure 2. The base class Device of the electrical network

Figure 3 shows the global design of the base classes and their
subclasses. Four base classes are identified and derived from
the base class Device.
The class Bus represents a main base class because all the
electrical components are connected to one or two buses.
DeviceWithTwoConnections represents the electrical
components which are linked to two buses whereas those
linked to a single bus are grouped in
DeviceWithOneConnection class. The fourth class is grouping
all protection devices. Using inheritance, new classes
representing the remaining network elements are derived from
these classes. For example, the class
DeviceWithTwoConnections is the base class of the network
lines and transformers. Attributes and operations attached to
the base class DeviceWithTwoConnections such as the sending
bus and the receiving bus numbers, and also the resistance,
reactance and susceptance are inherited by the line and
transformer subclasses.

Figure 3. Class diagram of the electrical network object model

4 Network Container Class
The network container is a dynamic vector instance inclosing
the different components of the network model. The topology
of the electrical system is defined by the admittance matrix
which is declared in the public part. This can be used by other
applications having an instance of the network container.
Figure 4 illustrates the network container class with its
different parameters and necessary methods providing access
to manage the component objects.

class Network: public Device{
private:
vector<Bus> Bus;
vector<Generator> Generator;
vector<Line> Line;
vector<Load> Load;
vector<Transformer> Transformer;
void Admittance();
public:
__property nit NB =
{read=GetTotalBusesNumber,
write=SetTotalBusesNumber};
__property int NL =
{read=GetTotalBranchesNumber,
write=SetTotalBranchesNumber};
__property int NSLACK ={read=GetBusBar,
write=SetBusBar};
__property double BASE ={read=GetBasePU,
write=SetBasePU};
..................................
Network(){};// Constructor
~Network(){};// Destructor};

Figure 4. Network container class with its attributes and Operations

Figure 5 shows the IEEE 30-bus system that is drawn by our
software.

Figure 5. The main form of the simulator

5 Database Module and Data Dictionary
5.1. Database Module
The data associated with any electrical device can be stored
using windows-based database system, and can be invoked by
any analysis application. The advantages of database structure
are: Flexibility of data transfer between the environment and
other applications and data source. Data can be imported and
exported easily via the SQL (structured Query Language)
Security of data from loss or corruption is correctly ensured.
Extension to the database can be made without difficulties.

5.2. The Data Dictionary
Attributes of all electrical objects are defined using Power
System Application Data Dictionary (PSADD).

Figure 6 attributes of electrical devices stored using windows-based
database system
Its can be stored using windows-based database system in
order to build a flexible general-purpose power flow

environment that have great expendability and
flexibility (Figure 6).

The PSADD is an attempt by IEEE to extend and
renovate the old standby of the power industry, the
IEEE Common Format, which served the industry
well for many years. The Data Dictionary is meant
primarily as a definition of terms used for
analytical applications within power system
models. It is organized around the notion of
objects. In this paper, we us this Data dictionary to
define attributes of all electrical objects. The
PSADD integrates two viewpoints: a bus-oriented
viewpoint common to analytical studies, and an
equipment-oriented viewpoint common to
measured values and system operation. The
communication between the graphics, the database,
network classes and power system applications are
presented in the figure 7.

6 Object Math Library Module
The power system analysis requires
powerful numerical methods to obtain
accurate results. Using OOP concepts
and operators overloading inline
functions, a flexible mathematical
library which includes the commonly
used numerical methods has been
implemented. The main idea is to
include numerical algorithms and
methods as conceptual objects. The
heart of this module is arrays objects
(vector and matrix) which are called in
solving iterative and non-iterative
equations. These arrays have been
implemented as templates objects in
order to support all types of data
declaration (integer, complex and
float). The memory is dynamically

managed using the new and delete C++ keywords.

Figure 7. Architecture of the OOP environment.

Network Container

GUI
OODB

Applications

Object Math Library

Events

I/O FilesHelp Files

7 Power System Applications
7.1 Load flow calculation
Performing a load flow solution in a
distribution network is required after any
change in loads. This will provide updated
voltages, angles and transformer taps and
points out generators having exceeded
reactive limits. to determining all active and
reactive power of all generators and to
determine power that it should be given by the
slack generator after any change in load. The
load flow is also necessary to perform other
studies such as fault analysis, transient
stability, and optimal power flow. All these
require a fast and robust load flow program
with best convergence properties. The
developed load flow module is based upon the
full Newton-Raphson algorithm.
By clicking the appropriate push button on the
main window, an interactive and graphic
interface for the Load Flow Application is invoked in the
screen (figure 8).

Figure 8. Power Flow Window

To perform the PF calculation, the user clicks the run button
then the load flow program is executed, and the results are
displayed on the load flow window.

7.2 Object Oriented Optimisation library
Using Object Oriented Programming, the optimisation
methods used to compute the optimal power flow are designed
in a hiearchical structure. In this structure, low-level objects
are relatively abstract or general, while higher-level ones are
more problem-specific. We will devide the methods into three
classes:
• Local optimisation methods class
• Global optimisation methods class
• Newton type methods class.
In the local optimisation methods, the current iterates in the
optimisation process are derived from the update of previous
iterates that lie in a nearby neighbourhood. For example the
nonlinear conjugate gradient method, the Nelder-Mead

simplex method and the Quasi-Newton methods fall into the
local optimisation methods class.

Figure 9. Optimisation method hierarchy

If the objective function has a
high degree of complexity,
then optimisation might require
the use of stochastic
algorithms. The genetic
algorithm and evolutionary
algorithm fall into this global
optimisation methods class.
Due to their evolutionary
nature, genetic algorithms will
search for solutions without
regard for the specific inner
structure of the problem. GAs
can handle any kind of
objective functions and any
kind of constraints, linear or
nonlinear, defined on discrete,
continuous, or mixed search

spaces. In The Newton type methods, we need the availability
of the objective function and analytic first and the second
derivatives. In Figure 9, we present the optimisation method
hierarchy.

7.3 Optimal Power Flow Class

The Optimal Power Flow (OPF) problem is modelled as a
class multi-inherited from a Load Flow (LF) class and a
Genetic Algorithm (GA) class and has a direct access to a main
power system object class. The necessary data for performing
the optimization are the upper and lower constraint vectors and
the coefficient vector of the cost function. Several computing
methods are available in this class such as the cost function
method, the optimal line search of the minimum, the
integration of the inequality constraints and the method for
updating the design vectors (Figure 10).

Optimisation

Newton-Like Local Optimisation Global Optimisation

Newton Direct Search

Simplex Quasi-Newton Conjugate Gradient

Q-N using BFGS Q-N using DFP

Gradient
Genetic

Algorithm
Evolutionary

Algorithm

Quasi-Newton

1. Conclusion

The complexity of the electric power system has been resulted
in the need for a simulation and visualization tool for power
system modeling, control and operation. This paper presents an
efficient object-oriented software platform for power system
analysis. It has been shown that the object-oriented technology
can be successfully applied in the development of large-scale
software system. This software satisfies the requirements of
flexibility, extensibility, maintainability and data integrity. The
developed power system model may be used to develop a wide
range of power applications (load flow, OPF, transient
stability…). A very flexible and reusable module for numerical
methods for power system analysis has been implemented. The
software manages its memory requirement dynamically by
itself using the features and benefits of C++Builder 5.

Figure 10. Optimal Power Flow Window

References

[1] Adielson T.,"SIMPOW- A Digital Program System For
Static And Dynamic Simulation Of Power Systems"
OEPSI conference, Bankok, Nov. 1982.
[2] Neyer A.F., Wu F.F., Imhof K., "Object-Oriented
Programming For Flexible Software; Example Of A Load
Flow", IEEE Trans. on Power Systems, Vol. 5, No.3, Aug.
1990.
[3] Rochefort M. , De Guise N., Gingras L. "Development
Of A Graphical User Interface For A Real-Time Power
System Simulator", Electric Power Systems Research 36,
1996, pp.203-210.
[4] Foley M., Bose A., "Object-Orientated On-Line
Network Analysis", IEEE, Trans. on Power Systems, Vol.
10, pp.125-132, 1995.
[5] Hasan K., Ramsay B., Moyes I."Object Oriented Expert
System For Real-Time Power System Alarm Processing-

Part 1. Selection Of A Toolkit" Electric Power System
Research 30, 1994, pp. 77-82
[6] Belkhouche B., "Object-Oriented Modeling Tools",
http://www.eecs.tulane.edu/Belkhouche.
[7] Zhou E.Z., "Object-Oriented Programming, C++ And
Power System Simulation", IEEE Trans. on Power
Systems, Vol. 11, No. 1, pp. 206-214, Feb. 1996.
[8] Eldridge G. "Introducing Eiffel : An Object-Technology
Approach to Power System Analysis"
http://www.progsoc.uts.edu.au/~geldridg/psa-objects/
ppr_9601.zip
[9] Bouktir T., Gherbi A., Belfarhi L., Belkacemi M. "An
Efficient Object-Oriented Load Flow Applied To A Large-
Scale Power System : Application To Sonelgaz Network",
ICEL2000, Oran, Algeria.
[10] Rumbaugh J., Baha M., Premerlani W., Eddy F.,

Lorensen W., "Object-Oriented
Modeling And Design", Prentice
Hall, Englewood Cliffs, New
Jersey, USA, 1991.
[11] Reisdorph K., "Borland
C++Builder 3", Simon & Schuster
Macmillan, France, 1998.
[12] Booch G., "Object-Oriented
Design With Applications", 2nd Ed.
Benjamin Cummings, Coleman
Arnold, 1994.
[13] Zhu J., Lubkeman D. L.,
"Object-Oriented Development Of
Software Systems", IEEE Trans. on
Power systems, Vol. 12, No. 2, pp.
1002-1007, May 1997.
[14] Stagg G.W., El-Abiad
A.H.,"Computer Methods In Power
System Analysis", McGraw Hill,
1968.

