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Mixed analog and digital mode simulators have been available for accurate alpha-

3, particle-induced transient fault simulation. However, they are not fast enough to simu-

late a large number of transient faults on a relatively large circuit in a reasonable amount

of time. This thesis describes a fast transient fault simulator which can evaluate the ef-

-- fects of alpha-particle hits or single event upsets (SEUs) in CMOS standard cell based

3 synchronous sequential VLSI circuits. The speed comes from approximating the initial

analog effects with gate level models, as well as using an improved transient fault simu-

lation algorithm in a hierarchy of simulators. The simulator is shown to be between four

3 to five orders of magnitude faster than a very accurate circuit simulator at the expense

3 of some accuracy and some limitations on the types of circuits simulatable.

Using this simulator, benchmark circuits have been tested for their behavior unde-

I alpha-particle injections. The experiments show that the one bit flip model is not a good

3 model for injecting faults in highly fault tolerant systems. The experiments also show

that at the pin level, no simple model exists which can mimic the behavior of the circuit

-- hit with alpha particles.

3 The simulator's usefulness is also shown in the development of a transient pulse

tolerant D flip-flop (DFF). The tool is used to demonstrate the tradeoff between transient

pulse tolerance and latch performance.
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CHAPTER 1
I

INTRODUCTION 3
I

In today's complex and highly automated society, computers are increasingly being

called upon to perform critical tasks where a failure could mean the loss of life. Inar- N
guably, these computers should be very reliable and dependable. 3

The reliability of computers can be increased by the use of one or more fault tolerant

schemes. Such schemes involve employing temporal or spatial redundancy so that the

computer can continue to function correctly in the presence of one or more faults. I
In the design phase of the fault-tolerant computers, different fault-tolerant schemes 3

should be analyzed in order to assess their cost effectiveness as well as the overall level

of reliability of the finished system. Typically, the computer system under design is

injected with faults, and subsequent system behavior is analyzed to determine the above 3
parameters. Fault injection may be performed either in actual hardware or in software

through simulation. The former requires a prototype, making the technique expensive

and time-consuming. The latter is preferred not only because it is less expensive but also i
because the analysis can be done early in the design phase to limit or eliminate costly 3
redesign, thus, speeding the delivery of the finished product.

I
I
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There are two types of faults that have to be considered for fault injection experiments

on VLSI circuits: permanent and transient. Examples of permanent faults are stuck

closed transistors or open metai lines. They can occur either during the fabrication

process due to dust, or during normal operation due to aging processes such as hot carrier

effects and metal migration. Transient faults, on the other hand, are faults deposited on

3 the VLSI circuit which change the state of the circuit without harming the circuit itself.

Thus, if the circuit were reset after a transient fault, it would begin to function correctly.

Some sources of transient faults are alpha particles, electromagnetic interference, power

3 supply variations, crosstalk, and lightning.

* This thesis is concerned with the transient faults arising from the combinational part

of a sequential circuit for two reasons: one, it is more difficult to simulate the injection

I of such a transient fault than that of a permanent fault since the former involves timing

3 whereas the latter does not, and, two, it is an important problem since studies indicate

that 85% or more of computer failures are transient in nature [1, 2]; this type of transient

fault is a part of the cause.

3 Of the various sources of transient faults, the best understood and the most widely

3 studied one is the alpha particle [3-11]. Alpha particles are mainly found in space, but

small amounts of radioactive elements in the packaging material or solder can decay,

I resulting in alpha particles. The simulation of VLSI circuits under an alpha-particle hit

is the main subject of this study. However, the simulation techniques that have been

developed can be used for the simulation of transient faults caused by other sources as

well, as long as an accurate model of the transient fault at the logic level ca.n be developed.

I
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The main reason for the difficulty in simulating the injection of a transient fault in the -

combinational logic portion is that the initial phenomenon is analog in nature, requiring

an electrical level simulator for accuracy. Electrical level simulators such as SPICE [121

are extremely accurate but are also prohibitively slow for even moderately sized circuits.

To make matters worse, there is a need to simulate a large number of fault injections to 3
obtain statistically valid results due to the fact that a transient fault can occur randomly 3
at any node in the circuit and at any time. The development of the simulator is made

difficult by the dual requirements of accuracy and speed.

This thesis describes a fast transient fault simulator which can evaluate the effects 3
of alpha-particle hits or single event upsets (SEUs) in CMOS standard cell based syn-

chronous sequential VLSI circuits. An overview of the transient fault simulation envi-

ronment is shown in Figure 1.1. The speed comes from approximating the initial analog I
effects with gate level models, as well as using an improved transient fault simulation 3
algorithm in a hierarchy of simulators. The simulator TIFAS is shown to be between

four to five orders of magnitude faster than SPICE at the expense of some accuracy and

some limitations on the types of circuits simulatable. 3
As Figure 1.1 shows, the transient fault simulator (FAST) is actually composed of

two separate simulators, TIFAS and TPROOFS [13]. TIFAS is a gate level event-driven

simulator with assignable delay whereas TPROOFS is a modified version of PROOFS 3
[14], a zero-delay parallel fault simulator. TIFAS uses the gate level models of the 3
electrical level phenomena [15] to inject transients and to propagate their effects to the

flip-flops in the circuits. Once a transient fault is latched, the remaining simulation is I

3 |
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Transient MdlnVoltage P Sulse o

~FSimlTor Simo-Dlato

I Figure 1.1 Overview of the transient fault simulator

I performed using the faster TPROOFS since the timing details initially required are no

I longer needed.

This thesis describes the implementation details of the simulator as well as some

I experimental results on benchmark circuits obtained using the simulator. In Chapter 2,

I previous work in the area of fault injection is described. Chapter 3 describes the different

models developed and used in the simulator. The implementation details of the simulator

I

are discussed in Chapter 4. In Chapter .5, the accuracy of the sinmulator is discussed,

I comparing it to SPICE and ILLIADS [16]. In Chapter 6, Fault injection experimental

I

U4
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I
results on benchmark circuits are presented. Chapter 7 describes an exercise in the use U
of FAST in designing DFFs to tolerate transient pulses. Finally, conclusions and future 3
research are stated in Chapter 8.

I
I
I

I
I
U
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I

I
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CHAPTER 2

RELATED WORK IN FAULT INJECTION

I
There has been a significant amount of research done in the field of fault injection.

Fault injection is necessary to study not only transient fault phenomena but also per-

I manent fault phenomena, and the ability of fault-tolerant systems to deal with them.

3 The fault injection experiments can be broadly categorized as software-implemented,

hardware-implemented, or radiation-induced. In software-implemented fault injection,

I faults are injected in either software running on a system or a software simulation of

some hardware. In hardware-implemented fault injection, faults are injected at the pins

of the actual hardware, and in radiation-induced fault injection, heavy ions are used to

inject charges. A more comprehensive survey of the related research in this area can be

* found in [171.

2.1 Radiation-Induced Fault Injection

Many studies have been done on the effects of high energy ions on circuits. The

alpha particle as a source of transient upset in dynamic RAMs was first reported in

- [3]. The Z-80 and NSC-800 microprocessors are studied for their vnlnerability to high

-- 6
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energy ions in [181. The study of another microprocessor, MC6809E, under heavy-ion I
radiation is reported in [19]. Heavy-ion radiation is used to evaluate the effectiveness

of error detection schemes in [20]. Data are gathered on the cosmic ray induced single

event upsets on a computer in actual space environment in [21]. Although heavy ion

experiments provide perhaps the most accurate data on a given circuit, they should i
be used as the final experiment prior to deployment. They are unsuitable at the early 3
design phase for the obvious reason that the prototype is not available. Also, they have

the drawback that the fault injection points are not controllable. I
I

2.2 Hardware-Implemented Fault Injection

Other researchers have tested systems by injecting faults at the pin level. One of 3
the first works in this area is described in (22] where faults are injected at the pin

level on the FTMP (Fault-Tolerant Multiprocessor) to study its fault detection, isolation I
and recovery characteristics. To study the effectiveness of an on-line error detection 3
mechanism, pin-level faults are injected on an MC68000 microprocessor in [23]. Pin-level

fault injection experiments are conducted to validate the fault tolerance of a railway

controller in [24]. Since pin-level fault injection in hardware also requires a prototype, this 3
type of experiments is also an unsuitable method at the early design phase. Furthermore, 3
there are only a limited number of fault injection sites since the faults are injected on

the pins only. U

7I I
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U 2.3 Software- Implemented Fault Injection

There are several levels of software-implemented fault injection. At the highest level

I are flipping memory bits while an actual software is running on a hardware platform to

3 mimic transient faults. This type of experiment is useful for studying the behavior of the

system under transient faults. For example, in [251, a random page in memory is set to

I hexadecimal FF to study large system failures. In another work, faults are injected by

3 flipping memory locations in IBM RT PCs [26]. Of course, the concern with the high-

level fault injections is that the transient fault model used may not accurately reflect the

actual fault phenomenon.

i At a lower level, faults can be injected by flipping latches in HDL simulations of

3 actual hardware. In [27], faults are injected at the flip-flops in HDL simulation of the

TI SBR9000 microprocessor to study microprocessor program flow under single-event

I upsets. In [28], flip-flop faults are injected into an HDL simulation of a 32-bit RISC

3 microprocessor. The same concern with the accuracy of the fault model exists here as

well.

At an even lower level, fault injection experiments can be performed at the gate level.

3 Transient gate-level faults are injected in a simulation model of the IBM RT PC in [29].

3 In that work, single-stuck-line transient faults lasting for one machine cycle were injected.

The inaccuracy in this experiment is that the fault duration of one machine cycle is too

I long for alpha-particle injections, and it may be too long for other sources of transient

3 faults as well.

8
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To accurately simulate a fault injection, an electrical level simulator such as SPICE I
[12] with an appropriate model for alpha-particle injection [30. 31, 32] has to be used

because the initial transient fault phenomenon is analog in nature [33, 34]. However, due

to the long simulation times required by SPICE on even medium sized circuits, mixed-

analog-digital-mode simulators have been developed to speed up the simulation time 3
with little loss in accuracy [35, 36]. Researchers have used these mixed-mode simulators

to inject transient faults into relatively large circuits [37, 38, 39]. However, even these

simulators are slow when injecting a large number of faults into a large circuit. I
Recently, a switch level timing simulator, ILLIADS [40], has been modified to inject 3

transient faults due to alpha particles [16]. This work represents considerable improve-

ment in speed -over those for SPICE and mixed-mode simulators. As shown in Chapter

5, the simulator presented in this thesis is between three to four orders of magnitude 3
faster than ILLIADS with some loss in accuracy for the simulation of standard cell based 3
fully static CMOS synchronous sequential circuits. Undoubtedly, there will always be

a place for ILLIADS and SPICE because of their accuracy, but for a quick look at the I
circuit behavior under alpha-particle injections, the simulator presented in this thesis 3
would suffice.

9I
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CHAPTER 3I
*LOGIC LEVEL MODELING

I
Because an alpha-particle hit first manifests itself at the electrical level, a logic level

model of its effects has to be developed to enable gate-level transient fault simulation;

I the logic-level model is the subject of this chapter. Since the inverter is the easiest gate

to understand and since other gates can be modeled as inverters, only inverters will

be considered for the most part in this chapter. First, the immediate effects of alpha-

1 particle hit and the detailed logic-level model are presented. In this presentation, the

rise/fall delays of gates are also discussed. Then, a flip-flop model in the presence of

transient voltage pulses is presented. Finally, the actual models used in the transient

fault simulator are described.I
3.1 The Immediate Effects of Alpha Particles

Researchers have extensively studied the phenomenon of alpha particles striking MOS

devices, starting with the seminal works by May and Woods [3] and by Messenger [31].

An alpha-particle hit on a semiconductor creates electron-hole pairs in its track as it,

gives up energy. The electron-hole pairs thus created will first diffuse and then drift if

-- 10
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there is an electric field. If the alpha particle goes through any portion of a depletion I
region, the electron-hole pairs created will drift due to the electric field in the region.

The drifting phenomenon causes charges to be collected across the depletion region. This

charge collection can be modeled by a double-exppnential current pulse [31]

1(t) = Io(e-t/*Q - e-t/T•), (3.1) I
where r, is the collection time constant of the junction and ro is the time constant for

initially establishing the ion track. The time constants for the exponentials are functions I
of several fabrication process dependent factors, and in this thesis, the time constants 3
given in [41] are used: -r = 1.64 x 10-`0 sec and -r = 5.0 x 1011 sec. Figure 3.1 shows

the curreh-t pulses described by Eq. (3.1) as a function of time and the total charge I
injected. 3

There are four possible cases of charge injection scenarios for CMOS circuits as shown

in Figure 3.2, where the resistors represent conducting transistors and the direction of

the arrows inside the current sources corresponds to the direction of the current flow. 3
For cases I and II, the voltage at the p+ node will temporarily rise up, and for cases III

and IV, the voltage at the n+ node will momentarily fall down. Cases II and IV will not

affect the logic state of the circuit because the node is already at the logic value toward I
which the injected charge will drive the node. However, cases I and III may affect the 3
logic value of the node, which, in turn, may cause incorrect operation of the circuit.

Consider the inverter shown in Figure 3.3. If the input of the inverter is held constant

during charge injection and the subsequent voltage pulse production at the output, we 3
11 I

I
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Figure 3.3 Alpha-particle hit on an inverter with transitioning input

will have one of the four cases in Figure 3.2. However, if the input is transitioning, we

will either have a combination of cases I and II, or a combination of cases III and IV.

Suppose that the input of the inverter is transitioning from ground to VDD. If the alpha

particle hits the drain of the NMOS transistor, we have a combination of cases III and IV

and the output node will be drive;a to logic 0. Since the output is already being driven to

logic 0 by the input, the alpha particle will actually aid in the output transition, ,tnd this

hit will not manifest itself as a fault. We have a more interesting scenario when the alpha

particle hits the drain of the PMOS transistor with the same input transition. This is a

combination of cases I and II depending on when the alpha particle strikes relative to the

input and output transitions. As mentioned above, case II does not cause an erroneous

logic behavior. It has been found that transient faults injecte I befire a node has settled

to its final logic value for the clock cycle rarely, if at all, manifest themselves as latched

errors [13]. Therefore, no effort was made to model the effects of an alpha particle that

is injected during a node transition. Instead, this scenario is considered as case I, and

14
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R'

C RCI

(a) (b) I
Figure 3.4 Equivalent circuit of an inverter with the input tied to ground or VDD

the complementary scenario in which the input is transitioning from VDD to ground is

considered as case III. I

3,2 The Pulse Width at the Injection Node 3
The circuit under an alpha-particle hit can be viewed as an inverter as shown in

Figure 3.3 with the input tied to either ground or VDD, which leads to the equivalent

circuits of Figures 3.4 (a) and (b), respectively, with the current source specified by

Eq. (3.1). Here, the discussion will be focused on the case shown in Figure 3.4 (a) since I
tne case shown in (b) can be analyzed in a similar manner.

When an alpha pacticle hits the drain of the NMOS transistor, the voltage at the

injection node will temporarily dip down and then rise back up as the PMOS transistor 1
supplies current to recharge the node. The voltage function depends on three quantities:

strength of the PMOS transistor, the injected charge, and the total capacitance at the

15I
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injection node. If we view the PMOS transistor as a linear resistor, we have an RC circuit

I with the injected current modeled by Eq. (3.1). This circuit can be solved analytically

I for the voltage at the output node as a function of time, and the solution is found to be

I V~t)-" DD •- io - -tRe/ 1tr -- R-t/Re
RI et/ - e t/RC - t/-ro - e-tRC (3.2)

3 A transistor is a highly nonlinear device and can not be modeled as a linear resistor, but

its resistance is proportional to its L/W ratio. Upon examining Eq. (3.2), we find that

K V0(t) is a function of two quantities, RiL and RC. This observation potentially simplifies

our model of the voltage pulse width because now there is a possibility that it could be

described as a function of two quantities instead of three. In fact, SPICE simulation

verifies tfiat it.can indeed be modeled with two quantities.

For the development of the models, the SPICE level-two parameters from Orbit, a

fabrication company accessible through MOSIS, have been used for the MOS transis-

tors. The inverter design used is from the standard cell library from Mississippi State

University, which is distributed as part of the OCTTOOLS [421 set from the University

of California, Berkeley. SPICE3 [43] simulations have been run on the invflOl inverter

with the injected charge ranging from 1 pC to 9 pC and the output driving between

1 and 31 invfl01 inverters. The voltage waveforms produced at the injection node are

then processed to give logic level pulses with the logic threshold set at 2.5 V. Figure 3.5

shows a sample waveform. The pulse width as a function of the injection charge from

4 pC to 9 pC and the number of fanout inverters from I to 31 is shown in Figure 3.6.

-- In the figure, we can immediately see two distinct regions of l)ulse width behavior. For

16
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Figure 3.5 Sample voltage waveform at the charge injected node
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Figure 3.6 Pulse width at the injected nodeI
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I
a smaller number of fanout inverters, the pulse width becomes larger as the number of

inverters increases. This is due to the slower RC time constant for recharging the node.

For large capacitances, the injected charge is not sufficient to drive the voltage at the

node all the way down to ground. Therefore, as the output capacitance increases, the

I voltage dips less and less, resulting in smaller pulse width.

3 The two distinct regions can be modeled with two linear equations of the form

L L
PWI = A - Io + B - Ct + Const, (3.3)

where A, B, and Const are obtained from linear regression analysis of SPICE3 data, and

PW1 stands for the pulse width at the injection node. The PW1 computed using the

above eqnation is superimposed on the SPICE3 data in Figure 3.6. As can be seen, the

model and SPICE3 data agree quite well.

I
3.3 Propagation Delay of InvertersI

Researchers have found that at least three gate levels as shown in Figure 3.7 are

I needed in SPICE-like simulations until the electrical effects become stable enough to be

3 treated as logic signals [37, 38]. However, most of the time the electrical effects become

stable enough to be treated as logic signals after only two gate levels and the additional

effort involved in modeling the third gate level is not justified.

3 In the previous section, a simple model for the pulse width at the injection node has

3 been developed. This model, however, does not give us any information about the shape

of the pulse, which is needed since the gate delays are functions of the input slew rates.

I18
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Figure 3.7 Definition of gate levels

TD _3is inputVDD

I
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Figure 3.8 Definition of propagation delay of inverters

Once the shape of the pulse is known, the pulse width at the output of a second-level I
gate can be modeled. The propagation delay of gates is necessary for this purpose.

The propagation delay is defined as the time it takes for the output to reach VDD/ 2  I
minus the time it takes for the input to reach VDD/ 2 . The falling delay TPHL is shown in

Figure 3.8, and the rising delay rPLH is similarly defined. SPICE3 simulations of invflOI

with various values for Tts are shown in Figure 3.9. As can be seen in the figure, the I
propagation delay is a nonlinear function of the output capacitance and Tts. Therefore,
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Figure 3.9 Propagation delay of the inverter as a function of fanout loading for variousI values of TIS
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a simple curve-fitting technique is inappropriate, and a deeper insight into the behavior 3
of the propagation delay as a function of these parameters is required.

With the following equation for the NMOS transistor,

Nk' (W/L)N[(Vin - VTN)Vo.t - V1Zt/2] if V',. - VTN > Volt (

ID) = 11(3.4)

k'(W/L)N(Vi. - VTN) 2  if Vi. - VTN < Vout

and a similar one for the PMOS transistor, the step response of an inverter can be

analyzed. We concentrate on rPHL as the analysis can easily be extended to rPLH by

switching the roles of the PMOS and the NMOS transistors. I
A closed-form solution for the propagation delay is given in [441

L

TPHL = D T Cot (3.5) 1
where D is a process-dependent parameter. Although this solution was obtained using

the square law current equations for the transistors as given abovie, it can be applied

in general with the parameter D extracted from SPICE3 simulations followed by linear

regression analysis. 3
The above equation is fine for step input change, but as can be seen in Figure 3.9, the

propagation delay is also a function of the input slew rate. There has been a significant

amount of research done to model TPHL as a function of ramping inputs [45, 46, 47, 48]. I
Of these, only Shoji's work [47] is simple enough to be used in a logic level simulator, 3
and his analysis is discussed below.

2
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To obtain a closed-form solution, he has used very simple equations for the current

of the transistors. For the PMOS transistor,

Ip = bp (VDD - VG) if VD < VDD, (3.6)

and current less than Ip can flow when VD = VDD. For the NMOS transistor,

IN = bN VG if VD > 0, (3.7)

and current less than IN can flow if VD = 0. The parameters bp and bN may be thought

of as transconductance parameters of the PMOS and the NMOS transistors, respectively.

The gate voltage is described as

0 ift<O

VG(t) C t if 0 < t <TI (3.8)

VDD if t>T s,

where a = VDD/TIs and TIs is the time it takes for the input voltage to slew from 0 V

to VDD. Solving for the propagation delay, Shoji obtains

2 2V/la0+'ra ifa<ao

TPHLo,

1+.1 if a > a0 ,

where ,3 = bN/bp, TPHLg is the TPHL for the step function or the infinite slew rate input,

and

a0 = 3 VD D (3.10)
O 2 (1 + #) TPHL(

Since these equations were derived from very simple current equations for the transistors,

we can not expect these equations to accurately describe the propagation delay. However,
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we can expect them to provide us with an insight into the first-order behavior of the I
propagation delay. We can rewrite the equation for the region a > a() as

rPHL = rPHL. + (31+1)

2(1±_+3) (3.11

This equation has been modified as 3
TPHL = TPHLoo + (E + F/10) Tts, (3.12)

where E and F are parameters to be extracted from SPICE simulations followed by curve

fitting. An effort has been made to change Eq. (3.11) as little as possible yet introduce

enough parameters to accurately model the realistic propagation delay. Armed with

Eq. (3.124, we may write

1 al='ifa <a3
rPHL (3.13)

1 + oo-I + 
if a > a'

where

1k k(W/L)N
G p(ILp(3.14)3

anda -k(WLpVD(1)I

k'N(W/L)N E±Fat k',(W/L)p VD D o (3.15)

G TPHLo"

Note that Eq. (3.13) is exactly the same form as Eq. (3.9). The parameter G has been

introduced to provide better matching of the model and the actual data in the region 3
a• < a'. This parameter is also to be extracted from SPICE simulations followed by

curve fitting. The introduction of this parameter has no effect on the equation in region
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a > a' since the definitions of 0' and a' cancel out this factor. The computed values of

TPHL from the above equations are superimposed on the data from SPICE3 simulations

in Figure 3.9. The matching between the model and the SPICE data is very good, as

can be seen in the figure.

3.4 At the Output of a Fanout Inverter

The transient pulse at the output of the second-level gate has two quantities of inter-

est: the width of the pulse, and the delay through the second-level gate. To find these

quantities, we first have to characterize the shape of the voltage pulse at the injection

node, which can be done using the models developed in the previous sections. Consider

case III in Figure 3.2. Upon current injection, the voltage at the injection node will drop

rapidly to 0 V or below. Since the time constants for charge injection are very small,

this rapid drop will occur relatively independent of the capacitance and the strength of

the PMOS transistor at the injection node. Therefore, this part of the voltage pulse is

modeled as a step function going from VDD to ground. The voltage stays at or below 0 V

for a certain amount of time before it begins to rise as the PMOS transistor recharges the

node. This portion of the pulse is modeled as being 0 V. When the voltage does begin

to rise above 0 V, the charge injection can be assumed to have been completed since

the time constants for the current pulse are on the order of 0.1 ns or less. If the charge

injection has indeed been completed by the time the voltage starts to rise above 0 V. we

have exactly the same conditions as the step input change. Therefore, from this point in

"I 24
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Figure 3.10 Model of the pulse waveform at the injection node

time, the injection node displays a step response as found in the previous section. The

rising part of the pulse is modeled as a ramp with TI5 = 2 TPLH, and the pulse begins

to rise at time t = PWi - TPLH. Figure 3.10 shows the model of the pulse waveform3

adopted and the actual voltage waveform at the injection node.

Now we are ready to find the pulse width at the output of the second-level inverter.

According to our model of the voltage pulse waveform at the injection node, the second-I

level inverter will see two transitions, one a step and the other a ramp. We can immedi-3

25I
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Figure 3.11 Slow transitioning of the inverter with respect to the input pulse

ately write the following equation to describe the pulse width of the second inverter:

PW 2 = TPHL2 - rPLHI2 + PW 1. (3.16)

The subscript i refers to values at the injection node while the subscript 2 refers to values

at the output of the second level inverter. The values rPHL2 and TPLH2 are functions of the

input slew rate, capacitive loading, etc., and are computed accordingly. Equation (3.16)

holds provided that (1) the output of the second level inverter has had enough time to rise

to VDD before it is pulled down to ground and (2) the injection node voltage drops down

to ground before rising back up. If not, the equation for PV2 becomes more complicated;

we will discuss each of the cases in turn.

Figure 3.11 illustrates the first case. While the output of the second inverter is still

transitioning due to the step input change, the input has risen sufficiently high to start

driving the output to ground. Define T, and Tb as seen in the figure, and assume that

the output rises in a linear fashion until the input has risen to V/DD2 at which time the
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output starts falling, also in a linear fashion. Then we have I

T. = PWI - T"PLH2 (3.17) 1
and I

2
TPHL2 ( VDD (3.18) 3

T = VDD \(2TPLH2 2

Combining Eqs. (3.16), (3.17), and (3.18) together, we have

0 if TPLH2 > PW 1 I

Pw 2 = PWl - TPJJ{2 + 2rqr (27L if TPJJJ < PlY < 2TPLH2I

TPHL2 - TPLH2 + PWl if 2 rPLH2 < PWl

(3.19) 3
The second case that has to be considered is when the input voltage does not fall all

the way down to 0 V. In this case, the PMOS transistor is not fully turned on, and the

NMOS transistor may be conducting if the input voltage is high enough. I
Ignoring the NMOS transistor to simplify our analysis, we can perform the analysis -

done in [44] with a step change at the input whose final value is VIN.

TPHL=NvI 2(VDDN Vi •VTN) +ln 4(Vn - -1) (3.20)V )
Vi.D V-1Vi.(3.20)D

and

1nd[12 (V i. + I V T P I) 
14,D V. - IV T P I)TPLH=T - 1n- IT!VDl~-V + In(4VD- ]

7PDý i VP VDD -Ii VP D

(3.21) 1
27 1
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-- CO and -rp = Co/p The propagation delay we use must be modified

where TN = k,(WLN L

according to how much the input voltage has dropped with respect to some reference

value. We will set the reference value to be the minimum input voltage for the maximum

PW1 obtained by varying the capacitance while holding the other parameters constant.

Then,

V.m.n -V 2 D PW, (3.22)

3 and

Vinmo, IPw =max - VD D VDD P WIIPWi=mar" (3.23)

The maximum value of PW 1 as well as TIs Ipw=,•ax can be found directly from Eq. (3.3).

Although the input voltage does not stay at the minimum value to which it has dropped,

we will approximate the effect as such. Then, we have

I factorN(Vin,, )

TPHLoo = TPHLo f act orN( Vin•m IPW1 =max) (3.24)

where

factorN(V.) I V 2 VTN -V.-+ VT• ) + In 4( - VTN) _ "] (3.25)

The new propagation delay TJHL~o is used in Eqs. (3.13) and (3.15) in place of 7PHLL

for the computation of -rpHL.

Figure 3.12 shows PW2 from SPICE3 simulations as a function of the injected charge

and the capacitance at the injection node. The capacitance at the output of the second-

level gate is equal to the gate capacitance of one inverter in this simulation run. The

figure also shows the computed values of PW4'2 from the model which incorporates all of
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Figure 3.12 Pulse width at the output of the second inverter U
the cases discussed above. Although there are some discrepancies, we see that the model

tracks the SPICE data well. I
The last bit of information needed at the output of the second-level inverter is the 3

delay of the pulse since we are interested in the pulse waveform. This is easily obtained

since it is rPLHo . Figure 3.13 shows the pulse delay data from SPICE simulations as

well as the values computed from the model for the same set of simulations done for Fig- 3
ure 3.12. There are some discrepancies between the SPICE data and our model. However, 3
considering all the simplifying assumptions that have been made in the development of

I
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Figure 3.13 The delay of the transient pulse from the injected node to the output of
the second level gate
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our model and the simplicity of the model itself, the SPICE data and the model agree I
well.

3.5 Latch Modeling I
All flip-flops have setup-time and hold-time specifications which are defined with

respect to the clock edge. Sequential circuits are designed so that these times are satisfied. I
However, in the presence of transient pulses, there is no guarantee that the setup and hold 3
times will be satisfied; furthermore, the interesting cases from a transient fault simulation

standpoint are the ones in which they are violated. Therefore, a more detailed model of

the behayior of the flip-flops with respect to pulses arriving in the neighborhood of the 3
clock edge is needed.

To obtain such a model of the flip-flop behavior, SPICE simulations were performed

on the dfnf3ll DFF in the standard cell library from Mississippi State University. This I
is a master-slave type D flip-flop which latches the input on the negative transition of 3
the clock. The input and clock signals used are simple piecewise linear waveforms with

rise and fall times of 0.5 ns as shown in Figure 3.14. The figure shows the two types of N
transient pulses which can occur as well as a clock transition. The DFF was simulated 3
with various durations and arrival times of the input pulse in increments of 0.1 ns. The 3
duration of the input pulse is defined as the interval from mid-point to mid-point of the

two transitions in the pulse, as shown in Figure 3.14. The arrival time of a transient I
pulse is defined as the arrival time of the second transition of the pulse with respect to 3
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Figure 3.14 Transient pulses applied at the input of DFF

the clock edge. For example, in Figure 3.14, the type-zero pulse on the left has a negative

arrival time and the type-one pulse on the right has a positive arrival time.

The simulations show that for a type-one pulse, pulses with durations less than 0.7 ns

are not latched. Pulses with durations between 0.7 ns and 1.5 ns may be latched de-

pending on their arrival times with respect to the clock edge. Latching window is defined

as the neighborhood of the clock edge in which a pulse of given duration is latched, and

generally, it is larger for wider pulses. The latching windows for various pulse durations

for the type-one pulse are shown in Table 3.1. The Earliest Time and the Latest Time

define the limits of the latching window as illustrated in Figure 3.15.

For this particular DFF, type-zero pulses of durations less than or equal to 1.5 ns are

not latched because the dfnf3ll cell was designed with unbalanced PMOS and NMOS

drive at the input, resulting in longer pulse durations to flip the latch from 1 to 0. In

effect, this DFF is immune to flip-to-zero errors for the pulses widths less than or equal

to 1.5 ns. For other DFF designs, both flip-to-one and flip-to-zero errors may occur and

:32



I

Latching WindowI

0 !

A-liest Time Clock Edge Latest Time

Figure 3.15 Neighborhood of clock edge in which the transient pulse is latched 3
possibly with different latching windows. For some of the experiments in the following 3
chapters, the flip-to-zero latching window was made identical to the flip-to-one latching

window in order to model a more general DFF behavior. For others, a DFF that has U
been modified to equalize the latching windows is used. 3

Table 3.1 DFF latching windows for various transient pulse durations 3
Pulse Earliest Latest

Duration Time Time
(ns) (ns) (ns)

0.7 0.2 1.1
0.8 -0.5 1.2 I
0.9 -0.8 1.3
1.0 -1.0 1.4
1.1 -1.1 1.5
1.2 -1.2 1.6
1.3 -1.3 1.7
1.4 -1.4 1.8
1.5 -1.5 1.9 I

The last type of modeling required is the behavior of the flip-flop when an alpha

particle hits its output node. Dfnf-ll, as mentioned above, is a master-slave type flip-

flop which latches the input on the failing transition of the clock. When the clock is 3
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low, the slave latch receives its data from the master latch, so the output of the flip-flop

I acts like any other gate. However, when the clock is high, the feedback path in the slave

3 latch is enabled, and charge injected on the output node may flip the state of this latch.

The problem with a flipped latch is that the transient pulse width becomes much longer,

3 and this phenomenon must be modeled correctly. For a given injected charge, there is a

* threshold output loading below which the latch will be flipped and over which the latch

maintains the correct state. The threshold loading was found for total charges ranging

from 1 pC to 9 pC in increments of 1 pC. If the output loading is below this threshold,

I the pulse is modeled to last until the next clock edge. If the output loading is over this

3 threshold, the pulse is assumed to die out. Table 3.2 shows the threshold loadings for

the slave latch flipping from 0 to 1.I
Table 3.2 Dfnf311 threshold loading values for the slave latch flipping to 1

I Charge (pC) 111 2 3 4 5 6 7 819
Threshold Loading (# inverters) 0 0 0 2 5 8 12 16 20I

There is some concern that the latch might go into a metastable state [49, 50, 51, 52,

53] if the pulse arrives at exactly the right moment with respect to the clock edge. In this

3 work, the latch metastability phenomenon was not observed in the SPICE simulations

performed to model the latch; therefore, it has been ignored.

Finally, it should be noted that the modeling methodology presented in this chapter

I has some limitations. First, the pulse width modeling methodology is well suited for fully

3 static CMOS standard cell design where there is only a limited number of different gates

that have to be modeled. Second, the latch model is well suited for synchronous sequential

I
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designs that have a limited number of different flip-flops. In fully custom designs or in

designs employing latches as opposed to flip-flops, the modeling methodology described 3
here may not be suitable. Lastly, the models discussed here have been developed using

a 2-micron process. Hence, these models also may not be suitable for deep submicron

processes. U
I

3.6 Actual Models Used

The above sections demonstrated that models can be developed using the more ac-

curate SPICE level-two parameters. For the actual models used in the fault simulator,

however,.-SPICE level-one parameters have been used. The reason is to allow a fair I
comparison between simulation results from TIFAS, ILLIADS [40] and SPICE. ILLIADS 3
only supports SPICE level-one parameters, and SPICE takes considerably less time with

level-one parameters compared to those for level-two. I
The previous sections have shown a general modeling approach for the rise and fall 3

delays. This approach can be used if there are a large number of different gate configu-

rations. On the other hand, if the number of gates is limited, such as in a standard cell

design, the propagation delays as a function of the output capacitance can be easily mod- -
eled by performing several SPICE simulations and putting the results in a table. This is 3
the approach taken in TIFAS, and since the circuits used in these simulations are very

small, the modeling process is not time intensive. When pin to pin delays are different I
due to the transistor topology, the average delay is used. For example, in a two-input 3
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NAND gate, the falling transition times are different, dependent on which input is the

last to rise high. In this case, the average of the two times is used.

The previous sections have also described a general modeling approach for the pulse

widths. Although the model used is the same, different parameters have been derived

for each gate to increase accuracy. However, only the pulse width at the point of charge

injection has been explicitly modeled. Starting with the second-level gate, normal delay

values are used to propagate the fault except that the first transition of the transient

pulsf- ade to occur 0.1 ns faster at the output of the second-level gate to account for

fast initial transition and overshoot of the pulse. It is shown in Chapter 5 that explicitly

modeling only the injection node pulse width is still very accurate. It is possible to

explicitly model the pulse width at the second-level gate as well if the need is identified

in the future.

The flip-flops are also modeled with level-one SPICE parameters, and the latching

windows obtained are very similar to those obtained with level-two parameters. Dfnf3J1

has been modified to equalize the latching windows for both type-one and type-zero pulses

because the original design is skewed in such a manner that the type-one pulse latching

windows are larger and the type-zero pulse latching windows are almost nonexistent.

Equalized latching windows provide for a more general circuit behavior under the presence

of transient pulses, and these modified latching windows are shown in Table 3.3.

Lastly, alpha particle injected at a DFF input node is considered to be 0.1 ns wider

as far as the DFF is concerned to account for the fast initial transition and the overshoot

in the pulse, whose effect will be the same as that of a longer pulse.
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Table 3.3 Modified dfnf3ll latching windows (all numbers are in ns)

1-0-1 Pulse 0-1-0 Pulse .

Pulse Earliest Latest Earliest Latest .
Duration Time Time Time Time

0.8 0.3 0.4 0.6 0.7
0.9 0.3 0.6 0.2 0.9
1.0 0.2 0.7 0.0 1.0
1.1 0.2 0.8 0.0 1.1

1.2 0.2 0.9 -0.1 1.2
1.3 0.2 1.0 -0.1 1.3
1.4 0.1 1.1 -0.1 1.4
1.5 0.1 1.2 -0.2 1.5

I
I
I
I
I
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CHAPTER 4

TRANSIENT FAULT SIMULATOR

In this work, the gate level was chosen as the level of abstraction for simulation

because it offers a reasonably high level of abstraction without sacrificing too much in

topological details. As seen in Figure 1.1, the transient fault simulator FAST is composed

of two distinct simulators, TIFAS and TPROOFS. In this chapter, each of the simulators

will be discussed.

The need for a simulator with a rise/fall delay model is obvious because an alpha-

particle hit, or any other transient fault, initially has critical timing information associ-

ated with it. For example, the delay from the fault injection point to the flip-flops as

well as the duration of the transient voltage pulse are critical information which must be

used in the simulation. This is the main reason for the development of TIFAS as opposed

to a zero-delay simulator. However, once a fault is latched into a flip-flop, there are no

more transient pulses propagating through the circuit, obviating the need for any timing

information. In this case, a zero-delay logic simulator would suffice, and TPROOFS is

used for this purpose.
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4.1 Preprocessing Phase I

The circuits used in this work are from the ISCAS-89 [54] suite of sequential bench- i
mark circuits, used primarily in the testing community. These circuits were chosen

because they are available, relatively small, and generally accessible. Two important

tasks must be performed before the actual simulation takes place. The first task is the

translation from the ISCAS-89 bench format to the internal format usable by TIFAS and I
TPROOFS. The second is the calculation of delays. Because the topology is static, the 3
delay calculation has to be done only once before the actual simulation; it is practical

to do it in the preprocessing phase so that all of the delay values as well as the circuit 1
topology can be written to a file to be read by TIFAS. 3

The rise and fall delay values were derived from SPICE simulation of the cells from

the standard cell library from Mississippi State University distributed as part of the Oct-

tools set by the University of California, Berkeley, as described in the previous chapter. I
This cell library was chosen because the detailed information of the cell topology at the i

transistor level is available, enabling the simulation and modeling of the cells. Accu-

rate modeling of these cells is important for a fair comparison of TIFAS to ILLIADS and I
SPICE. In this work the rise and fall delay values depend only on the fanout capacitance.

Other parasitic elements such as routing capacitances are ignored.

I
i
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4.2 Logic Simulation

A fault simulator is basically a logic simulator with the capability of injecting faults.

The role of TIFAS is to simulate the injection of a voltage pulse at a node in the circuit

and to propagate the pulse to the flip-flops to see whether the pulse is latched or not. It

is based on the two-pass algorithm of only scheduling real events for further evaluation

[55] and is shown in Figure 4.1. The algorithm works as follows. In the first pass, for

every event (n, v) pending at the current time where n is the node number and v is the

value, the node is updated, and all the gates on the fanout list of the node are added to

the activated list. In the second pass, the gates on the activated list are evaluated one

at a time, and if the output of the gate differs from the previously scheduled value (isv),

an event is generated and scheduled in the event queue in the appropriate time slot in

the future, accounting for the gate delay. The advantage of this algorithm is that a gate

activated by more than one event occurring at the inputs is guaranteed to be scheduled

only once.

According to [55], the one-pass algorithm shown in Figure 4.2 of evaluating the gate

as soon as it is activated is more efficient. This algorithm works as follows. For every

event (n, v) pending at the current time, the node is updated, and all of the gates on

the fanout list are examined immediately. If the output of a gate on the fanout list is

different from the previously scheduled value, first a check is performed to see if the last

scheduled time (1st) is the same as the time at which the currently generated event is to

be scheduled. If they are the same, the last scheduled event is cancelled to suppress the

40



m
m

TwoPassEvent._DrivenSimulationAlgorithm() f
for every event(n, v) pending at current time f

value(n) - v
for every gate j on the fanout list of n {

add j tot he activated list

for every j on the activated list {
v1 - evaluate(j)
if v' != lsv(j) then {

schedule(j, v') for time t+delay(j) m
lsv(j) = v,

Figure 4.1 A standard two-pass algorithm for event-driven simulation

zero width spikes which would have occurred as an artifact of the simulation algorithm.

Then, the newly generated event is scheduled.

This algorithm may be more efficient, but it presents a problem when the rise and m

fall delays are different. In the algorithm shown in Figure 4.2, the rise and fall delays

are assumed to be the same. When they are different, the lst(j) and t'should reflect the

different delay values, making the algorithm more complex. For simplicity's sake, the

two-pass algorithm was chosen. I
Even with the two-pass algorithm, care must be taken when the rise and fall delays

are different. Consider Figure 4.3. The inverter here has a rise delay of 10 and a fall

delay of 5. At the input, there is a 1-0-1 pulse of width 2 occurring at time 0. At time I
0, the inverter evaluates, and a 1 is scheduled for the output node at time 10. At time 2,
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OnePassEventDrivenSimulat ionAlgorith~mo(
I ~for every event(n, v) pending at current time

value(n) = v
for every gate j on the fanout list of n f

vI = evaluate(j}
if vI 1= Isv(j) then

t' = current-time + delay(j)
if t, = lst(j)

then cancel event Qj, Isv(j)) at time Ist(])
schedule Qj, v') for time t'
isvQj) = v'
Ist (j) = t,

Figure 4.2 A standard one-pass algorithm for event-driven simulation with zero-width
spike suppressio,._
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the inverter is evaluated again, and an event is scheduled at time 7. Left untreated, this I
simulator will erroneously report that both the input and the output of the inverter are

1 at time 10. In a case such as this, the second event generated at time 2 should override

the first, in effect cancelling both events. This may be accomplished with the algorithm

shown in Figure 4.4, which should be used immediately following the gate evaluations in I
the second pass of the two-pass algorithm. It works as follows. First, the newly evaluated

value is checked for difference from the last scheduled value. If they are the same, then

the new event is ignored. If they are different, the time t' at which the new event is to

be scheduled is compared to the last scheduled time of the last event on this node. If

t' is greater, it is scheduled. If not, the last scheduled event is removed from the queue,

and the lsv(j) and lst(j) values are reset.

The logic system used in a simulator is one of its most important characterizing traits I
since the system can affect the efficiency as well as the capability of the simulator to a

large degree. Generally, the more values there are in the logic system, the less efficient

the simulator, but the greater the capability and the flexibility. Originally, TIFAS started I
out as a hierarchical simulator which could process VHDL descriptions. That is the main

reason for using the std-logic-l164 multivalue logic system, which is the standard logic

system for VHDL. Th- logic system is shown in Table 4.1. This logic system can handle

tri-state terminated outputs, as well as wired-OR type topologies. I
The VHDL standard std-logic_1164 also specifies truth tables to be used with the logiC

system. Two such tables are shown in Tables 4.2 and 4.3. Table 4.2 is the table showing

I
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Figure 4.3 Cancellation of event due to different rise and fall delays

I Table 4.1 The logic value system used in TIFAS

Value Meaning

U Uninitialized
X Forcing Unknown
0 Forcing 0
1 Forcing 1
Z High Impedance
W Weak Unknown
L Weak 0
H Weak I
D Don't Care
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PostEvaluat ion-ofGates () {
if (v' - lsv(j)) {
V - current-time + delay for transition from lsv(j) to v'
if t' > ist(j) {

scheduile(j, v') for time t'
lst(j) = V
lsv(j) = v,

else {
cancel event Qi, lsv(j)) at time lst(j)
update lst(j) and lsv(j)

}!

Figure 4.4 An algorithm for processing the evaluation of gates with the rise/fall delay
model to enable cancellation of previous events

what the value should be if two output lines are wired together, and is appropriately

called the resolution function. Table 4.3 shows the truth table for an AND function.

The last major piece needed in a logic simulator is the timing wheel. Some sort of

data structure is needed to maintain the header list which keeps track of the time and

the events to be simulated at that time. The header list may be implemented as a linked

list or as a fixed size array. Because of the inefficiencies of searching and updating a

linked list, using an array as shown in Figure 4.5 is the preferred method. The figure I
shows a timing wheel of size M, which can keep track of events occurring between the

current time T and T+M-1. For events occurring outside this range, an auxiliary linked

list can be used to store them until they can be included in the timing wheel. However, U
I
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U Table 4.2 VHDL standard resolution table

SU X 0 1 Z W L H D
U U U U U U U U U U
X U X X X X X X X X

3 0 U X 0 x 0 0 0 x
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H XU w U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X

ID U X X X X X X X X

I
I
* Table 4.3 VHDL standard AND table

U X 0 1 Z W L H D

SU U U 0 U U U 0 U U

X U X 0 X X X 0 X X
0 0 0 0 0 0 0 0 0 0
1 U X 0 1 X X 0 1 X

Z U X 0 X X X 0 X X
iW U X 0 X X X 0 X X

L 0 0 0 0 0 0 0 0 0
H U X 0 1 X X 0 1 X

SD IU X 0 X X X 0 X X

| 46
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Figure 4.5 Timing wheel

because the next event generated by the current one usually occurs in the near future,

with a reasonably large M, there is no need for the auxiliary linked list.

The wheel itself works as follows. The entries in the wheel correspond to the simula- I
tion time modulus M. Therefore, the entry T (modulus M) contains events for time T,

and the entry T+1 (modulus M) contains events for time T+1. The entry immediately

preceding T, instead of containing events for T-1, contains events for the time T+M-1.

Indeed, the name timing whcel comes from the circular behavior of the array arising from 3
the modulus operator. In TIFAS, the basic unit of time was chosen to be 0.1 ns, and the I

timing wheel size was chosen to be 100. Even with the timing wheel of this size, there

was no need for the auxiliary linked list. I
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4.3 Timing Fault Simulator

The simulation of a transient fault differs from stuck-at fault simulation in that tim-

ing is involved. In stuck-at fault simulation, various techniques are used to speed up

the simulation time, such as concurrent, deductive, differential, and parallel simulation

algorithms [141. For transient fault simulation, however, these techniques are not appli-

cable because of the nature of the transient fault. A transient fault, defined here as a

random voltage pulse occurring at a node resulting from some outside source, inherently

has timing information which renders the above techniques ineffective or useless. For

that reason, the serial fault simulation technique was chosen.

An alpha-particle-induced transient fault is specified by the injection node, the injec-

tion time and the total injected charge. Since transient faults occur randomly, all three

parameters are random. It follows that the domain of the transient faults is very large,

necessitating a fast transient fault simulator.

If the standard algorithr- for event-driven simulation is employed to perform the fault

simulation at the gate level, all the events that occur in the clock cycle of fault injection

must be simulated. These events include the transient pulse as well as the input and

-- the DFF events. This algorithm is illustrated in Figure 4.6. Normally, many transient

faults are simulated in a given clock cycle, and if we can possibly avoid re-simulating the

input and the DFF events every single time, we will obtain a significant speedup in the

I simulator.

I
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StandardEvent-DrivenAlgorithm() {
For each input vector { 3

Schedule input vector and DFF outputs in timing wheel
Evaluate good circuit
Save good circuit state 3
While transient fault remains to be injected in this cycle {

Initialize faulty circuit state to be the good circuit

state from the previous cycle I
Schedule input vector, DFF outputs and transient fault

events in timing wheel

Evaluate I
Compare DFFs with the good circuit

Figure 4.6 A standard event-driven algorithm for transient fault simulation

The transient pulses of interest to us are those which can be latched into a flip- 3
flop. Since the latching window is near the clock edge and pulses have to arrive inside

the latching window to be latched into flip-flops, it seems reasonable to assume that

the interesting pulses propagate through the circuit after the normal events have passed 3
through. If that is indeed the case, we only have to propagate the transient pulse with the g
other nodes set to the stable values for the clock cycle. This would provide large savings

in simulation time since the normal events for the clock cycle need not be re-simulated I
every time a fault is injected. Figure 4.7 illustrates this algorithm. 3

The fault-driven algorithm produces the same simulation output as the standard

event-driven algorithm under certain conditions as formalized in the following assertion:
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Fault-DrivenAlgorithmn() {
For each input vector {

Schedule input vector and DFF outputs in timing wheel
Evaluate good circuit
Whil.e transient fault remains to be injected in this cycle {

Schedule transient fault events in timing wheel
Evaluate
Compare DFFs with the good circuit

}
I}
U}

Figure 4.7 A fault-driven algorithm for performing transient fault simulation

Assertion 1. For synchronous circuits composed of simple gates with transport delay

satisfying- the conditions that

1. the latest possible transition at the inputs to latch,:s occurs at time

tf = tclkedge - setup-time - pulse-width and

2. the transient pulse does not reconverge on itself,

only the faulty transitions need to be evaluated with the other nodes holding the final stable

values for the clock cycle, irrespective of the fault injection node and time.

-- Proof: There are two cases to consider: (1) the second transition of the transient pulse

3 arrives at the input of a flip-flop at time t < tclkdge - setup-time, and (2) the second

transition of the transient pulse arrives at time t > tcikdge - setupltime. If the transient

pulse reconverges on itself, it is possible to have a combination of cases (1) and (2) where

I the pulse width at a flip-flop input may be different for the two algorithms discussed

I .50
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above, which may result in different outputs. However, the second condition in the I
assertion requires that the pulse does not reconverge on itself. 3

For case (1), the pulse arrives at such a time that it will not be latched by the flip-

flop in the fault-driven simulator. Consider what happens in the standard event-driven

simulator. Since the normal transitions at the input of the flip-flop die out before the 3
time tclkedge - setup time, the normal transitions cannot cause the second edge of the

transient pulse to occur after time tcikedg, - setup-time. Therefore, this pulse will not

be latched in the standard event-driven simulator either. I
For case (2), the pulse arrives at a time when it may be latched depending on its 3

duration. Consider what happens to the first edge of the transient pulse in the standard

event-driven algorithm. The first edge arrives at the input to the flip-flop at time t >

tdlkedge - setup-time - pulse.width. Because of the first condition in the assertion, this 3
edge arrives after the arrival of the last normal transition. In fact, at every node along

the path from the injection node to the flip-flop, the first edge will have occurred after the

arrival of the last normal transition to that node in order to satisfy the same condition. I
Therefore, the first edge may be evaluated assuming all nodes have settled to their stable 3
values for the clock cycle. The second edge may be evaluated in this manner as well since

it occurs after the first edge. Therefore, the fault-driven algorithm and the standard

event-driven algorithm will produce identical outputs for this case. 01

Both algorithms have been implemented and experiments have been conducted to

see the difference in the outputs of the two algorithms in realistic situations where both

of the conditions in the assertion may be violated. Table 4.4 shows the experimental I
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results on ten circuits from the ISCAS-89 suite of benchmark circuits. At the time of

3 this experiment, the fault simulator could only support a transport delay; furthermore,

3 the delay models were not yet developed, so reasonable values for delay from LSI Logic's

standard cell library [56] were used. Also, the pulse-width model was not ready at the

I time, so logic pulses randomly chosen from 0.7 to 1.5 ns in duration were injected. Finally,

3 the DFF latching window is the original latching window, with the flip-to-zero window

made the same as the flip-to-one window. The clock periods in the simulations were set

to minimally satisfy the setup time requirements of the DFFs. In each of the circuits,

3 100,000 randomly chosen transient pulses were injected. The input vector files used were

3 generated by an automatic test pattern generation tool [57]. Figure 4.8 summarizes

the experimental setup. The column Latched Pulses shows the number of transient

I pulses which were latched into flip-flops, and the column Difference shows the number

3 of transient pulses which resulted in different outcomes from the two algorithms. As

the table shows, the differences between the two algorithms are negligible; furthermore,

most of the differences were compensating. That is, for every fault latched in only one

3 simulator, there tended to be another fault which was only latched in the other simulator.

3 Therefore, we can safely use the fault-driven algorithm.

The time spent in execution was measured in the experiment conducted above to see

I the speedup obtained in the fault-driven algorithm compared to the standard one. The

3 results are shown in Table 4.5. As the table shows, the fault-driven algorithm achieves a

speedup of up to 36 compared to the standard one.
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Table 4.4 Comparison of the outputs of the two algorithms

Circuit Latched Faults Difference

s208 4,839 0
s641 3,113 3
s713 3,067 4
s820 1,995 19 3
s953 1,146 0

s1196 1,466 0
s1238 1,493 0 I
s1494 1,013 3
s5378 2,685 0

s35932 2,896 10

I
I
I

Number of faults injected: 100,000 per circuit
Fault injection node: randomly chosen over all nodes
Transient pulse width: randomly chosen from 0.7 ns to 1.5 ns
Fault injection time: randomly chosen over the whole clock period
Fault injection clock cycle: evenly distributed over the middle

portion of the simulation run
Input vector suite: automatically generated from

Sequential Circuit Test Generator (STG)
Clock period: chosen to minimally satisfy DFF setup time. I

Figure 4.8 The experimental setup for validating the improved algorithm

I
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Table 4.5 Comparison of the speed of the algorithms with 100,000 fault injections

Circuit Gates Standard Fault-Driven Speedup
I Alg. (min) Alg. (min)

s208 104 6.2 2.2 2.8
s641 398 17.8 4.7 3.8
s713 412 20.5 4.9 4.2
s820 294 20.4 2.9 7.0
s953 424 19.0 1.4 13.6

s1196 547 29.6 3.9 7.6
s1238 526 30.6 4.0 7.7
s1494 653 46.8 4.2 11.1

s5378 2,958 99.7 8.3 12.0
s35932 17,793 1567.2 43.3 36.2

Figure 4.9 shows the speedup as a function of the gate count. Although the data are

insufficient to make a definite statement about the speedup improvement as a function of

the gate count, the graph does indicate a larger speedup with the increase in the number

of gates. This trend is important and argues in favor of the fault-driven algorithm since

the simulator is targeted for large circuits.

As a further verification that the speedup is due to algorithmic rather than coding

efficiency, the number of events generated was also counted in the above experiment.

Table 4.6 shows the comparison of the two algorithms in terms of the number of events.

The table shows that the number of events is drastically reduced in the fault-driven

algorithm compared to the standard one. Figure 4.10 shows the reduction factor in the

number of evaluations as a function of gate count. Similar trend can be seen here as in

Figure 4.9.
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Figure 4.9 Speedup as a function of gate count I

I

Table 4.6 Comparison of number of events (in millions) I
Circuit Stand. JF-D Reduc. Factor]

s208 4.0 0.7 5.7
s641 15.8 1.6 9.9
s713 19.2 1.7 11.3 3
s820 14.1 0.7 20.1
s953 13.7 0.5 27.4

s1196 24.9 0.9 27.7 3
s1238 23.9 0.8 29.9
s1494 42.4 1.1 38.5
s5378 108.1 1.7 63.6

s35932 1,613.0 2.1 768.1

I
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Figure 4.10 Reduction factor as a function of gate count

4.4 TPROOFS

Once the errors are latched, TIFAS is no longer needed since the circuit can now be

simul ted with full accuracy using a more efficient zero-delay logic simulator. PROOFS

[14] is a fast and memory efficient zero-delay parallel fault simulator which can be used

for this purpose.

Transient PROOFS (TPROOFS) is a modified version of PROOFS which allows

faults to be injected at the outputs of DFFs. The latched errors in TIFAS are collected

and written to a file, which is then read by TPROOFS to carry out the fault simulation

for the remaining vectors in the test sequence. In TPROOFS, any number of faults can

be simulated in a particular clock cycle, and any number of DFF flips for a given fault

can be correctly simulated. The algorithm used in TPROOFS is shown in Figure 4.1 1.
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TPROOFS-Algorithm() {
For each input vector { 3

Evaluate good circuit
Save good circuit state
While faulty machines remain {

Get next group of 32 active transient faults
Set faulty machine flip-flops for faults which occurred in the

previous time frame or whose fault effects propagated to
flip-flops in the previous time frame

Evaluate faulty machines
Save faulty machine flip-flop values

}

>I
}!

Figure 4.11 The algorithm used in TPROOFS, a zero-delay parallel fault simulator

TPROOFS is particularly fast because it is a zero-delay parallel simulator. The zero-

delay circuit model allows it to use efficient data structures, and combined with the

parallel simulation of 32 active faults, TPROOFS can achieve from one to two orders of 3
magnitude speedup over serial or even concurrent fault simulators.

5
U
I
I
I
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CHAPTER 5

ACCURACY OF THE TIMING FAULT

pSIMULATOR

The validation of the transient fault simulator described above is made difficult for

two reasons. The first problem is the inherent difference between a logic level simulator

and an electrical level simulator. This difference invariably results in different delays

for signal propagations through the circuit. Therefore, even if the latching behaviors of

the DFFs are modeled as accurately as possible, the two simulators may report different

results on the same injected fault due to the different arrival times of the injected pulse.

The second problem is the long simulation times incurred when running SPICE. In

fact, the time cost of SPICE is one of the primary reasons for developing FAST. This

problem places limits on the validation process: one, large circuits cannot be simulated.

and two, even small circuits cannot be simulated with a large number of fault injections.

3 For example, SPICE3 takes about two minutes per injection for the circuit s208 on a

SUN ELC workstation. Simulation of 100,000 fault injections would take more than four

months at this rate.

I
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These problems have forced the validation experiments to be scaled back. For the I
validation experiment, only five circuits are used. Among these, it is feasible to simulate 3
a relatively large number of fault injections in SPICE on only the smallest circuits s27

and s208. For the other circuits, s641, s713, and s820, another technique is used.

ILLIADS [40] is a switch-level timing simulator which achieves f-c- 5;mulation times 3
compared to SPICE with little loss in accuracy by using the analytic solution of the 3
Ricatti equation. It has been modified to support current injection to simulate alpha-

particle hits [16]. Because this is an accurate timing simulator, the results from this

simulator should be relatively close to the results from SPICE. For these reasons, ILLI- 3
ADS is primarily used to validate TIFAS for the circuits s641, s713 and s820.

5.1 Comparison to SPICE and ILLIADS I
SPICE3 was originally used for verification purposes. However, it reported unreliable I

simulation results. For example, with the same circuit description and the same injected 3
fault in the same clock cycle, SPICE3 reported different latching behaviors depending

on the length of the transient simulation, although the results should have been the

same. Moreover, SPICE3 has convergence problems with some faults. For those reasons, 3
HSPICE has been used instead. 3

The DFF used here is a modified version of the original DFF where the latching

windows have been equalized. This was done to observe a more general circuit behavior, I
rather than observing only unidirectional DFF flips. 3
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I
A word should be said about the relative speed of the simulators. Table 5.1 shows

the simulation times. From the table, we can see that ILLIADS is from 10 to 30 times

3 faster than HSPICE, whereas TIFAS in turn is from three to four orders of magnitude

faster than ILLIADS.

Table 5.1 Simulation times for SPICE, TIFAS, and FAST

3 Circuit Gates SPICE ILLIADS TIFAS
I_ _ I_ _ (sec/fault) (sec/fault) I (sec/10,000 faults)

s27 13 44.0 4.6 12.1
s208 104 304.4 10.2 20.0
s641 398 1298.6 41.4 46.3
s713 412 1371.6 45.9 46.4
s820 294 1395.7 44.4 37.6

I
For this experiment, 2,000 random faults have been injected in each of the five circuits.

I The faults were chosen randomly in space and time, and evenly distributed from 1 pC to

3 9 pC. The only nodes not injected with faults are primary inputs, primary outputs, and

DFF outputs. The DFF output nodes were excluded because an alpha-particle hit on the

I DFF output node may cause the DFF to flip its state, which is a different phenomenon

3 from the one of interest here.

Table 5.2 shows the results of this experiment. The second, third and fourth columns

show the number of latched faults reported by each simulator. For the circuits s27

3 and s208, all 2000 fault injections were performed in TIFAS, ILLIADS and SPICE. For

3 the circuits s641, s713 and s820, each fault injection simulation in SPICE takes about

30 min on a SUN Sparkstation 1 workstation, making it unfeasible to simulate all 2000

I fault injections. Instead, TIFAS and ILLIADS simulations were (lone first, and the union

I 60

I



I

of the latched faults reported by TIFAS and ILLIADS were then simulated in SPICE.

Columns 5 and 6 show the number of latched faults reported by SPICE that were also 3
reported latched by TIFAS and ILLIADS, respectively.

Table 5.2 Comparison of latched faults between SPICE, TIFAS, and FAST

_ Latched ICommon with SPICE N
Circuit I SPICE TIFAS ILLIADS TIFAS ILLIADS

s27 116 128 146 85 109
s208 35 32 47 28 32
s641 4 12 12 3 2)
s713 6 16 17 3 6
s820 1 5 6 1 1 I

The number of faults reported latched is arguably the most important parameter

since it indicates the sensitivity of the circuit to an alpha-particle hit. For the circuits

s27 and s208, the numbers of faults reported latched by TIFAS are off by about 10% 3
compared to the ones reported by SPICE. For the larger circuits, the numbers are not 3
close. However, as mentioned above, since only the faults that were latched by TIFAS or

ILLIADS were simulated in SPICE, the actual number of faults latched by SPICE would I
probably be higher if all 2,000 fault injections per circuit are simulated. 3

For the circuit s27, SPICE reported 116 latched faults out of 2,000 injections. Of these

116, 85 (73%) were also reported latched by TIFAS. For the circuit s208, 80% of the faults

reported latched by SPICE were also reported latched by TIFAS. The percentage for the 3
larger circuits cannot be determined since we do not have complete data on the number

of faults latched in SPICE.

I
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Some comments should be made about these results. Although TIFAS is not as

I accurate as SPICE, TIFAS is shown to be within 10% of SPICE for the small circuits

3 as far as the number of faults latched is concerned. If the application does not call

for SPICE-like accuracy as far as the number of faults latched is concerned, TIFAS

can be used. Also, although TIFAS did not catch all of the latched faults reported by

3 SPICE, it did catch more than 70% of the latched faults for the smaller circuits, at a

small fraction of the computational cost of SPICE. This capability may be important in

certain applications. Fo: example, when designers are trying to make the circuit more

I transient fault tolerant, TIFAS can give quick feedback on at least some of the faults

3 that would be reported latched by SPICE.

I 5.2 Main Cause Behind the Different SimulationI
ResultsI

As mentioned in the beginming of this chapter, difference in delays is a major reason

I behind the different results reported by the three simulators. Let us consider the circuit

3 shown in Figure 5.1. In (a) and (b) the circuit is shown with delay values used in TIFAS

and ILLIADS, respectively. For simplicity, assume that the rise and fall delays are the

same. Now suppose that a pulse is injected at node N 15 units before the earliest time

3 of the latching window corresponding to the pulse duration. The fault will be latched in

ILLIADS simu!a.tion, but it will not be in TIFAS. On the other hand, if a pulse is injected

at node N 16 units before the latest time of the latching window, it will 1), c in

3
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(a) Delays in TIFAS

I
I

II
"1 (b) Delays in ILLIADS

Figure 5.1 Same circuit with different delays in TIFAS and ILLIADS 3
TIFAS but not in ILLIADS. Thus, the difference in delay amounts to a translation in time 3
of the latching window. Provided that the pulse durations and the latching windows are 3
the same in both simulators, the percentage of random-- 1v ir- ected faults that are latched

will be equal in the two simulators. Of colrs'e, the pulse widths are not guaranteed to I
be the same since different rise and fall times can attribute to either the widening or the 3
narrowing of the pulse. However, the close correspondence between the latched faults

reported by TIFAS and ILLIADS gives strong indication t,,at the translation of latching

windows is the major reason behind the (lifference in the simulation results. 3
I
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CHAPTER 61

I EXPERIMENTAL RESULTS ON BENCHMARK

I CIRCUITS

1
3 In this chapter, FAST is used to study the characteristics of benchmark circuits under

alpha-particle hits. The circuits chosen for the experiment are from the ISCAS-89 suite

I of sequential benchmark circuits, as done in Chapter 5. The DFF used is the modified

DFF whose equalized latching windows are shown in Table 3.3.

I
6.1 Experimental Conditions1

The experimental conditions here are similar to the conditions used above. For each

I circuit, one-million faults were randomly chosen for injection. All output nodes of gates

3 were possible candidates for injection, except primary output nodes and DFF output

nodes. The clock period was set to be 2 ns longer than the latest settling time in the

circuits. The total charge injected varied from 1 pC to 9 pC in I pC increments. Finally.

3 the injection times were chosen randomly.

I
I 6,4
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6.2 Experimental Results I

Table 6.1 shows the number of faults that were latched into at least one DFF, as well !

as the distribution of the number of DFF flips for a given fault. For example, the column 3
Two shows the percentage of latched faults which resulted in two DFF flips. The numbers

show that overall, between 86 and 99 percent of all latched faults result in a single DFF

flip. This number is important for the researchers injecting faults at the register level, i

since most fault injections performed at this level inject a fault by flipping a single bit. 3
Depending on the circuit, and depending on the application, single-bit flip may be an

acceptable model. For example, if one is looking at the gross behavior of a system under U
faults, a single-bit flip model may suffice. However, a significant percentage of faults did 3
result in two or more DFF flips that for validating highly fault-tolerant systems, it would

be better to use TIFAS to derive a register-level model which includes multiple DFF flips

or to use TIFAS to find the specific DFFs that were flipped. I
Table 6.1 Latch flip distributions with one-million injections per circuit 3

Circuit Latched DFFs Flipped (percentage) I
I Faults One Two Three ]Four [Five or More

s27 68,219 91.2 8.8 0.0 0.0 0.0
s208 14,663 95.6 3.4 0.9 0.1 0.0
s641 8,874 90.6 8.7 0.5 0.2 0.0
s713 9,979 94.0 5.3 0.6 0.2 0.0
s820 6,409 99.6 0.4 0.1 0.0 0.0

s1196 5,474 97.1 2.6 0.2 0.0 0.0
s1238 5,305 97.1 2.5 0.3 0.1 0.0
s1494 1,030 96.2 3.2 0.6 0.0 0.0 3
s5378 11,147 86.4 6.5 2.9 2.0 2.3
s35932 9,653 99.0 0.0 0.0 0.0 0.9
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Table 6.2 Data on ISCAS-89 circuits

i Circuit Gates] Potential Injection Sites J DFFs Clock Period (ns)
s27 13 9 3 5.9

s208 104 94 8 8.7
s641 398 355 19 13.8
s713 412 370 19 14.0
s820 294 270 5 13.8

s1196 547 515 18 14.1
s1238 526 494 18 15.2
s1494 653 628 6 19.3
s5378 2,958 2,730 179 14.23 s35932 17,793 15,745 1,728 14.5

3 To further analyze Table 6.1, we need other data on the circuits shown in Table 6.2.

Part of the reason why the smaller circuits don't register more than five flipped DFFs is

I that there are only a few DFFs to begin with, as can be seen in the table. For the largest

3 circuits s5378 and s35932 with a large number of DFFs, there are more faults resulting

in a higher number of flipped DFFs.

A curious phenomenon was observed when the DFF flip distributions were analyzed

3 with respect to the total injected charge. Figure 6.1 shows the DFF flip distributions for

various amounts of injected charge for the circuit s5378. As can be seen in the figure.

the total injected charge seems to have little effect on the distribution, especially above

I 2 to 3 pC of injected charge. The same general trend is observed in other circuits as

3 well, and Figure 6.2 shows the distribution for the circuit s1196. These data indicate

that small errors in the pulse width model will not have a major impact on the final DFF

flip distributions. As both figures show, the number of faults causing multiple DFF flips

3 tails off exponentially.

I
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Figure 6.1 The DFF flip distributions for various amounts of total injected charge for
the circuit s5378
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Figure 6.2 The DFF flip distributions for various amounts of total injected charge for
the circuit s1196
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Figure 6.3 The number of faults latched as a function of the total injected charge for
the circuits s208, s641 and s35932 3

Figure 6.3 shows the number of faults that were latched as a function of the injected 3
charge for the circuits s208, s641 and s35932. As expected, the higher the charge, the

greater the likelihood the fault will be latched for all three circuits. This is a general

trend which holds for the other circuits as well. 3
Figure 6.4 shows the distribution of the faults that were latched with respect to their 3

injection times. The x-axis denotes the number of seconds that the fault was injected

prior to the clock edge, and the y-axis denotes the number of faults that were latched for I
the specific time of injection. Different circuits showed different behavior here. For the 3
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Figure 6.4 The distribution of the number of latched faults with respect to various
injection times for the circuits s1196, s35932 and s5378. Clock edge occurs at time 0.

circuit s1196, the distribution is concentrated around 1 ns before the clock edge, whereas

circuit s5378 shows a more rounded distribution in the range 0 to 5 ns prior to the clock

edge. Circuit s35932 shows two peaks, one near the clock edge and one about 7 to 8 ns

away.

Still, most of the circuits show a peak near the clock edge which means that the

faults that were injected closer to DFFs have a higher probability of being latched. This

is reasonable since faults injected farther away from DFFs have a higher probability ot

being logically blocked. However, the graph for circuit s35932 in Figure 6.4 shows that

this generalization cannot be made for all circuits.
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There may be certain nodes in the circuit which may be more sensitive to alpha-

particle hits than others. From the previous observation on the injection time, it would

seem that the nodes closer to the DFFs would be more sensitive. Table 6.3 shows the

number of nodes that account for at least 50% of all latched faults. In the larger circuits,

less than 10% of the nodes accounted for more than 50 percent of latched faults. If the I
number of sensitive nodes is small, it may be possible to redesign the circuit to make

the nodes less sensitive, but this approach probably is not very attractive for most large

circuits as there are a large number of sensitive nodes. N
Table 6.3 also shows the number of DFFs which accounts for 50% of the total flipped 3

bits. If the sensitive DFFs are not in the critical path of the circuit, it may be possible to

use the pulse tolerant DFF design presented in the next chapter to increase the transient

fault tolerance of the circuit with little or no performance penalty. U
Finally, Table 6.3 also shows the number of flip-co-0 and flip-to-i DFF flips. In most 3

circuits they are evenly balanced, but in circuits s820 and s53 78 there are more flip-to-1

flips by a ratio of about 4 to 1. In these cases, the DFF design may be modified to have

smaller flip-to-1 latching windows at the expense of larger flip-to-O latching windows to

obtain fewer latched faults overall.

The latched errors were run through TPROOFS, and the transient faults causing

errors on the output pins as well as the latency data were gathered. In this thesis, the U
transient faults showing up at the outputs in TIFAS were not considered as errors prop- 3
agating to output pins: only latched errors propagating t,) the output pins in TPROOFS

were considered as errors at the output. The input vector [57] was lengthened by 50
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Table 6.3 Most sensitive nodes and DFFs

I Circuit Sensitive % of Total Sensitive % of Total Flip- Flip-
_No Nodedes DFFs DFFs to-O to-i

3 s27 3 33 2 33 32,437 41,757
s208 7 7 4 50 4,964 10,498
s641 57 16 6 32 4,597 5,190
s713 60 16 6 32 3,651 7,033
s820 24 9 2 40 1,289 5,155

s1196 31 6 6 33 2,757 2,888
s1238 32 6 6 33 2,525 2,957
s1494 41 6 3 50 392 683
s5378 258 9 22 12 3,650 11,030

s35932 1896 12 188 11 3,244 7,800

I cycles to give the latched faults more time to propagate to the primary outputs. The

3 TPROOFS simulation was very fast, taking only 618 sec to simulate all ten circuits with

140,753 faults-on a Sun Sparkstation ELC. Table 6.4 shows the latched faults which

U propagated to the primary outputs. As we can see, the percentage of the latched errors

3 which propagated to the primary outputs varies widely from circuit to circuit, from a

minimum of 32% to a maximum of 98%.

The error manifestation latency is defined as the first cycle in which the latched fault

I propagated to at least one output minus the cycle in which it was injected in TPROOFS.

3 Figure 6.5 shows the error manifestation latency for the circuits s208, s713 and s5378.

The latency distributions are not the same for different circuits, but the general trend

I is the same: the latched faults tend to propagate to the primary outputs sooner rather

3 than later.

Another interesting aspect to examine is the pin error distribution which is important,

to the researchers injecting faults at the pin level. Since TPROOFS reports all the

I
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Table 6.4 Latched faults propagating to primary outputs (one-million injections per
circuit)

Circuit Latched Faults Primary Output Errors Percentagem
s27 68,219 32,511 48

s208 14,663 4,742 32
s641 8,874 4,742 48 3
s713 9,979 4,578 46
s820 6,409 5,516 86

s1196 5,474 1,743 32 3
s1238 5,305 1,667 31
s1494 1,030 1,006 98
s5378 11,147 4,069 37 U

s35932 9,653 5956 62 I

10000 1
s208
s713

s5378 -
S1000

.• 100
o

Z 10 7.II
1. : . . .

-- -- 
--..... 

...... .... . .I . . .

0 5 10 15 20 25 30 35 40

Latency (cycles) 3
Figure 6.5 The latency of the latche(l faults propagating to the primary oiIIptils for
the ('ircuits s208, s713 and s5378 I
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primary outputs that are affected by latched faults, the pin error distribution can be

obtained by post-processing the TPROOFS output. Table 6.5 shows the distributions

for the circuit s713. The manifestation cycles are defined with respect to the first cycle

in which the fault manifested itself at the pins. For example, manifestation cycle of 0

refers to the first cycle in which the fault propagated to the pins, 1 refers to the next

cycle, etc. Other circuits displayed different distributions. For example, for the circuit

s1196, all the fault effects disappeared after the third cycle of manifestation, whereas for

the circuit s1494, the fault effects lingered for more than 20 cycles after the first cycle

of manifestation. For the circuits in which the fault effects last for more than one cycle,

the pin error distributions do not stay constant, nor do they decrease in a predictable

manner. Therefore, there is no easy way to model latched faults at the pin level for the

circuits in general.

Table 6.5 Pin error distributions according to the clock cycle of manifestation for the
circuit s713

Manifestation Number of erroneous pins

Cycle 1 _ 2 L3i 4

0 4,030 449 63 36
1 1,345 445 26 8
2 652 382 23 14
3 350 167 25 0
4 132 71 3 0
5 42 7 0 0
6 5 43 0 0
7 0 5 0 0
8 0 7 0 0
9 0 2 0 0
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CHAPTER 7
I

LATCH DESIGN FOR TRANSIENT PULSE

TOLERANCE 3
I

As an exercise in using FAST, and as an interesting problem in its own right, the

design space of DFFs is explored in this chapter to see what kind of tradeoffs are possible

between -ransient pulse tolerance and performance. In the course of designing transient I
pulse tolerant DFFs, TIFAS is used in every step to determine the limits of the pulse 3
tolerance needed, showing its value in a fault tolerant design (581. A transient pulse

tolerant latch is different from a traditional SEU-hardened latch in the following way: a

traditional SEU-hardened latch is designed to tolerate direct ion hits whereas a transient 3
pulse tolerant latch is designed to tolerate transient pulses that arise in the combinational

part of the circuit and propagate to the input of the latch. Since no work has been

previously done on transient pulse tolerant latches, we are limited to examining the I
SEU-hardened latch designs. 3

I
I
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* Figure 7.1 A hardened latch design which uses resistors in the feedback path

I 7.1 Radiation Hardened Latch Designs

I Although the topology of the radiation hardened latches varies, the fundamental

* concept is the same: provide data redundancy in duplicate storage nodes which can

correct the SEU.

The most common technique for hardening latches is to use resistors in the feedback

path as shown in Figure 7.1 [59]. The idea here is that with the proper choice of the

resistances, any SEU occurring at the drain nodes will die out before it has had time

to propagate around the feedback loop. We may also view the resistors as providing

I redundant storage nodes which can hold uncorrupted data for a certain length of time. A

major drawback of this technique is the performance penalty introduced by the resistors.

The following three techniques require less performance overhead.

I In the paper by Rockett [60], a radiation hardened latch design is described which

uses extra transistors to provide the data redundancy. When the clock line is high, the

redundant transistors are disabled to allow the latch to be written in a normal manner.

I
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When the clock line is low, however, the redundant transistors maintain the integrity of

the latch node holding the high value, making the latch SEU tolerant.

Weaver et al. uses voltage division to achieve upset protection in one direction [61].

Resistors are inserted between the drains of PMOS and NMOS transistors of an inverter.

If the feedback point is at the drain of the NMOS transistor, an ion-hit-induced voltage I
pulse at the drain of the PMOS transistor will be voltage divided before reaching the

input of the feedback inverter. With the proper choice of the resistances and the proper

choice of feedback points, the latch can be made immune to one type of upset. That is, it

can be made immune to either the 0 to 1 flip or I to 0 flip. If the latch is immune to the

1 to I flip, full SEU immunity can be achieved by duplicating the latch and connecting

the outputs to an AND gate.

The last technique we will look at was proposed by Liu and Whitaker [62]. Unlike the I
technique by Rockett, the latch here is designed from the ground up with redundancy

in mind. The latch consists of four storage nodes. Only transistors of one type are

connected to a storage node, making the nodes immune to either the 0 to 1 flip or 1 to 0

flip. The nodes are fed back with the above immunity in mind such that the uncorrupted

node storing the same information can always correct the corrupted node. Unfortunately,

none of these techniques can be directly applied to guard against transient pulses at the

input. I

I
I
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7.2 Transient Pulse Tolerant Latch Design

For the SEU tolerant latches discussed above, it is possible to incur only a small

performance overhead through the use of information redundancy in space. The use of

space redundancy is possible because uncorrupted data can easily be made accessible

by the corrupted part of the latch. However, for transient pulse tolerant designs, space

redundancy is not an option because uncorrupted data are not readily available at the

time the transient pulse occurs. The only source of uncorrupted data is from a duplicate

circuit, and duplicati:.g the whole circuit is a very expensive proposition. Since infor-

mation redundancy must come from either space or time, the only remaining option is

information redundancy in time, and this implies a significant performance penalty.

Although performance penalty is unavoidable, we should still examine the tradeoffs

that can be made. As the performance becomes worse, the transient pulse tolerance

should improve. For each circuit and each application, the degree of transient pulse

tolerance needed will be different. In this section, we find, through SPICE simulations,

the most effective resistor to insert for obtaining transient pulse tolerance, and in the

next section, we examine the tradeoff between performance and transient pulse tolerance.

For this design, the modified dfnf3ll DFF whose latching windows are shown in

Table 3.3 has been used as the base flip-flop. The input stage and the master latch

of the flip-flop are shown in Figure 7.2. The transistors C1-C4 are used to buffer the

clock input. The transistors 11-14 form the input inverter and pass gate combination.

The transistors LI-L6 form the back-to-back inverters and pass gate combination. The
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Figure 7.2 Dfnf3l1 D flip-flop input stage and master latch used in this thesis I

functionally equivalent circuit is shown in Figure 7.3. Transistors I1 and 12 have wider I
widths and transistors L5 and L6 have narrower widths than the original, and the final

dimensions used are shown in Table 7.1.

Table 7.1 Base DFF transistor dimensions

[Transistor [W/L [J Transistor [W/LJ I
C1 23/2 C2 14/2
C3 23/2 C4 14/2
I1i 45/2 12 45/2
13 15/2 14 15/2
LI 22/2 L2 15/2 I
L3 9/2 L4 9/2
L5 4/2 L6 4/2

I
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ICLK

DATA to slave latch

l/"CLK

ICLK

Figure 7.3 Dfnf311 Functionally equivalent circuit for the D flip-flop input stage and
master latch

To make the DFF transient pulse tolerant, the input stage has to be slow in order

to filter out the pulse. A resistor can be inserted between the points P1 and P2 in

Figure 7.2 to slow down the input stage. With the proper choice of the resistance, the

latching iýindows can be made to vanish, hardening the DFF against transient pulses at

the input.

Other options for resistor insertion are between points P2 and P3, P2 and P6, and P4

and P5. The reason these resistors should be considered is that they are in the feedback

I path of the latch. It is possible that the feedback mechanism can help to eliminate or

reduce the effects of the transient pulse, similar to the effect resistors in the feedback

path have for radiation hardened latches.

The resistor between points P2 and P6 has been found to be ineffective because this

resistor does not help in any way to reduce the effects of the transient pulse which arrives

at point P1. The resistor between points P4 and P5 has been found to be ineffective as

well. On first thought, with proper transistor sizing and proper resistance between P4

I and P5, we may think the transistors L3-L6 can help to reduce the effects of the transient
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Figure 7.4 Dfnf3ll D flip-flop with possible places for adding resistors RI and R2

pulse arriving at P1. However, this is not straightforward since the feedback mechanism

might interfere with the write operation. Furthermore, this has only a limited impact

in any case since L3-L6 only turn on when the clock line goes low. Therefore, the only

cases we should consider are these: adding a resistance between points P1 and P2, and I

between points P2 and P3. From here on, the resistor between P1 and P2 will be referred

to as Ri, and the resistor between points P2 and P3 will be referred to as R2, as shown I
in Figure 7.4.

Table 7.2 and Table 7.3 show the latch windows for adding a 10 kQ RI and 10 kl• R2)

respectively. Comparing the tables, we can see that RI is more effective in reducing the U
latching window. However, it is possible that RI might incur more performance penalty

s i 

I

I



than R2, so the relative performances of the two resistors should be compared in terms

of the setup time required.

Table 7.2 Dfnf3ll latching windows with RI = 10 kfQ (in ns)

1-0-1 Pulse 0-1-0 Pulse
Pulse Earliest Latest Earliest Latest

Duration Time Time Time Time

1.3 - - - -

1.4 0.0 0.2 - -

1.5 -0.2 0.4 - -

1.6 -0.2 0.6 - -

1.7 -0.3 0.7 0.1 0.3
1.8 -0.4 0.8 0.1 0.5
1.9 -0.4 0.9 0.0 0.7
2.0 -0.5 1.0 -0.1 0.8

I
Table 7.3 Dfnf3ll latching windows with R2 = 10 kf2 (in ns)

1-0-1 Pulse 0-1-0 Pulse
Pulse Earliest Latest Earliest Latest

Duration Time Time Time Time
1.0 - - - -

1.1 0.2 0.6 0.2 0.8
1.2 0.2 0.7 0.1 0.9
1.3 0.2 0.8 0.0 1.0
1.4 0.1 0.9 0.0 1.1
1.5 0.1 1.0 -0.1 1.2
1.6 0.1 1.1 -0.1 1.3
1.7 0.0 1.2 -0.1 1.4
1.8 0.0 1.3 -0.2 1.5
1.9 0.0 1.4 -0.2 1.6

2.0 0.0 1.5 -0.2 1.7

Normally, setup time is defined as the time with respect to the clock edge at which

the input signal should be stable in order to guarantee proper latch operation. With the

transient pulse tolerant latch, we have a somewhat different problem. The latch windows
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(a) pulse is outside the latching window
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€I

(b) normal transition near the pulse causes it to become latchedI

II

T n arisu clk edge
SI I

(c) transient pulse tolerant setup time such that it isn't latched

Figure 7.5 Illustration of the concept of TPTTSU i

above were found assuming that the input signal has been stable for a long time prior I
to the arrival of the transient pulse, as shown in Figure 7.5(a). If, however, a normal

transition occurs somewhat near the clock edge, this might cause the latching window

to become larger. For example, if a transition on the DFF input occurs near the clock

edge and the same pulse arrives as shown in Figure 7.5(b), this pulse may be latched

in reality although it is outside the latching window. Therefore, the transition in effect

enlarges the latching window. What we need to do is to define a setup time as shown in

Figure 7.5(c) that will preserve the latching window size. i
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Definition 1 TPTT•,(pw) is the transient pulse tolerant setup time at which point the

input signal to DFF should be stable in order to guarantee the same latching window

size for a .pulse width of pw as in the case where the input signal has been stable for an

infinitely long time.

For R1, TPTTu,(1.Ons) = -3.5 ns and for R2, TPTT.,,(1.Ons) = -4.7 ns. Not

only does R1 provide for a smaller latching window for a given resistance, but also

I require shorter setup time. Therefore, inserting RI is the most effective choice among

the alternatives we have looked at. As we increase the value of R1, the latching windows

I will decrease, but the TPTTSU will increase, worsening the performance. In the next

I section, we examine in detail the tradeoff between transient pulse tolerance and the

performance penalty.

I 7.3 Fault Tolerance and Performance Tradeoff

I 7.3.1 Experimental Setup

I For the experiment conducted to compare the tradeoff between transient pulse toler-

I ance and speed, a set of circuits from ISCAS-89 suite of sequential benchmark circuits

has been chosen. The gates are from the standard cell library from Mississippi State

University. Gate delays and latching windows were obtained using SPICE3 with level t

I models, similar to the experiments conducted in the previous chapter.

In each of the circuits simulated, 100,000 randomly chosen faults were injected. The

injected faults were chosen randomly over time, space, and the amount of charge injected.
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Cell library: standard cell library from Mississippi State University
SPICE model: level 1
Number of faults injected: 100,000 per circuit
Fault injection node: randomly chosen over all nodes in the circuit

excluding input, output and DFF output nodes
Total charge injected: randomly chosen from 1 pC to 9 pC
Fault injection time: randomly chosen over the whole clock period
Fault injection clock cycle: evenly distributed over the middle

portion of the simulation run
Input vector suite: automatically generated from

Sequential Circuit Test Generator (STG)

Figure 7.6 The experimental setup for finding the tradeoff between transient pulse
tolerance and speed I
The charge injected is evenly distributed from 1 pC to 9 pC in 1 pC increments. Faults

were injected at the output nodes of all gates, except at the DFF output nodes and I
primary output nodes. DFF output nodes were excluded because there is a possibility I
of the injected fault directly flipping the DFF, which is a different phenomenon than the

one we are interested in. Finally, the input vectors for exercising the circuits are from U
[57]. Figure 7.6 summarizes the experimental setup.

7.3.2 Experiment I

Table 7.4 shows the distribution of the widths of the transient pulses latched into the I
flip-flops for the base dfnf3ll with R1 = 0 f?. According to the table, most of the pulses

that are latched are less than 2.0 ns long for the smaller circuits, and even for the larger

circuits, most are less than 2.4 ns long. The 32 pulses in column > 2.4 for the circuit 3
I
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s35932 are in fact 2.4 ns long in duration. Therefore, we will concentrate on pulse widths

that are less than or equal to 2.4 ns long.

Table 7.4 The distribution of the widths of the transient pulses latched into the flip-
flops with R1 = 0 QI and 100,000 fault injections

[Circuit Latched Faults 0.8-1.1 1.2-1.5 1.6-1.91 2.0-2.3 J>2.4
s208 1141 902 203 83 0 0
s641 409 410 45 7 0 0
s713 428 413 49 4 0 0
s820 568 219 286 58 4 2
s953 595 475 114 64 0 0

s1196 489 215 207 63 9 2
s1238 452 204 196 51 4 1
s1494 133 112 18 3 0 0
s5378 792 318 310 258 64 2

s35932 712 596 187 50 29 32I
The TPTTS,, tends to be longer for a longer pulse width. For some of the smallerI

circuits, longer transient pulses do not occur. However, for the sake of simplicity, we

will only look at TPTT,,(2.4ns), even when it is being applied to the smaller circuits.

Table 7.5 summarizes the TPTT,,(2.4ns) for various values of the resistor RI.

Table 7.5 The TPTT,,,(2.4ns) values for various RI values (in ns)

I Q0 5 1 5 W 10 k 1 k1 120 k
TPTT3 ,(2.4ns) -1.7 -3.8 -7.5 -7.8 -9.4

The transient fault simulator FAST was used to simulate 100,000 fault injections per

circuit with the different latching windows corresponding to the various values of R1.

Table 7.6 summarizes the results. The normal setup time with R1 = 0 QI is -0.3 ns. As

the table shows, the R1 value of 15 kQ with 7.5 ns penalty compared to the normal

setup time is seen to tolerate most of the transient pulses. Even the R.1 value of 10 kf9
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decreased the likelihood of latching a transient pulse by one to two orders of magnitude I

compared to no R1, but the performance penalty is about the same as that of 15 kfQ.

Since the transient pulse width distribution is different for each circuit, the value of RI

should be optimized for each circuit individually for better performance.

The penalty of 7.5 ns should be compared with respect to the clock period used. As I
shown in Table 6.2, the clock periods used for these circuits vary from 5.9 ns to 19.3 ns. 3
The penalty of 7.5 ns represents between 39 and 127% performance overhead with respect

to the clock cycle used. Although this penalty is substantial, it may be acceptable for I

critical systems.

Table 7.6 The number of latched faults out of 100,000 injections in ISCAS-89 bench-
mark cirdeuits with various R1 values

Circuit] 0 5 kn lO ka2 15 k 206k7 i

s208 1141 242 81 1 0
s641 409 67 3 0 0
s713 428 65 1 0 0
s820 568 260 28 2 0
s953 595 123 10 0 0
s1196 489 267 70 6 0
s1238 452 239 68 3 1
s1494 133 14 1 0 0
s5378 792 450 187 54 1

s35932 712 73 4 1 0 I
A couple of observations are in order. It was found that small imbalances in 0-1-0 pulse

and 1-0-1 pulse latching windows were magnified with the insertion of R1. Furthermore,

the TPTTS,, times for the different pulse types differed by as much as several nanoseconds. 3
This indicates that special care must be taken to balance the 0-1-0 pulse and the 1-0-1

pulse latching behaviors prior to RI insertion to maximize performance.
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The second observation is that the transient pulse width can be decreased. Since

the pulse width is a function of the transistor strength and the node capacitance, using

larger transistors or cutting down on the number of fanout gates is likely to reduce the

pulse width. With reduced pulse widths, a smaller value of R1 can be used; therefore,

performance can be improved.

Another interesting aspect to examine is ,,ae 0 r'F flip distribution, which is important

to researchers injecting latch flip errors in high levf' Aimulators as mentioned in the

previous chapter. Table 7.7 shows the flip distributions for vail.ous values of R1. While it

is clear that fewer faults become latched as the R1 value is increased, it is not sE- obvious

what happens with the flip distributions. In some cases, the distribution beco.nes more

widely spread With increasing R1 while in others the distribution becomes sharper.

Table 7.7 The DFF flip distributions for various values of R1, with 100,000 fault
injections for each case (in percent)

R1 =0 Q R1 =5k 5_ R1 = 10 kf
Circuit 1 121>3 1 21>3 1 121 >3

s208 97 2 1 90 6 4 84 12 4
s641 89 9 2 87 10 3 100 0 0
s713 92 8 0 88 12 0 100 0 0
s820 100 0 0 100 0 0 100 0 0
s953 90 10 0 97 3 0 100 0 0

s1196 99 1 0 100 0 0 100 0 0
s1238 99 1 0 99 1 0 100 0 0
s1494 100 0 0 100 0 0 100 0 0
s5378 91 5 4 92 6 2 92 8 1

s35932 99 0 1 88 0 12 0 0 100

In this exercise of designing a transient pulse tolerant DFF, the value of TIFAS has

been clearly demonstrated. Without it, it would have been very (di ficult to have an
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idea of the kind of pulse duration the DFF should be design~ed to tolerate, let alone the I

tradeoff possible between performance and transient pulse tolerance.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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CHAPTER 8

CONCLUSIONS

The work in this thesis was motivated by the lack of efficient tools for simulating

transient fault injections in the combinational logic portion of a sequential circuit. To

address this problem, a gate-level simulation tool with proper modeling has been devel-

oped. This tool, called TIFAS, represents an effective compromise between accuracy and

speed. TIFAS is shown to be between four and five orders of magnitude faster than a

very accurate circuit simulator with some loss in accuracy for the simulation of standard

cell based fully static CMOS synchronous sequential circuits.

To further speed up the entire simulation, another simulator, TPROOFS, is used

once a transient fault becomes latched into one or more DFFs. The reason for the use of

TPROOFS is that once a fault is latched, the circuit can be treated as pure logic without

any timing information. For the simulation of pure logic, a zero delay parallel simulator

such as TPROOFS is more efficient than TIFAS.

The combination of TIFAS and TPROOFS has been used on ISCAS-89 benchmark

circuits both to show the capability of the tools and to analyze the circuits. The ex-

periments show that the one-bit flip model is not a good model for injecting faults in
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highly fault tolerant systems. A better model would include multiple DFF flips with the I
appropriate probabilities derived from TIFAS simulations. 3

The experiments also show that at the pin level, a simple model cannot be found in

general, at least for the alpha-particle-induced or other transient pulse-induced errors.

The usefulness of TIFAS is also demonstrated in the design of a transient pulse toler-

ant DFF. With the insertion of a resistor immediately after the input stage in the master

latch of the DFF, the DFF can be made to filter out transient pulses. and TIFAS is used

to examine the tradeoff between performance penalty and transient pulse tolerance of I
this DFF design. 3

I
8.1 Future Research I

There are several extensions that can be made to improve the performance and ac-

curacy of TIFAS and also fault injection experiments in general. In TIFAS, for example, I
better models can be used. The current implementation uses only one gate level of pulse 3
width modeling. This can be extended to two, which will aid in improving the accuracy

of the simulator. Also, the gate-delay models can be made to reflect the input slew rates.

which will result in more accurate delays and also more accurate pulse widths. Also in 3
TIFAS, to speed up the simulator, more static analysis can be done to remove the faults

that occur far outside the latching windows by using the minimum and maximum delays

from each node to all of the DFFs. I
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Although FAST provides quick and reasonable DFF flip distributions in fault injec-

tion experiments, it is not the answer to all fault injection problems. More accurate

simulations are needed for a more detailed analysis of the circuit, and the only way to

obtain more accurate answers is to use a more accurate simulator, be it ILLIADS or

SPICE. TIFAS can help in this endeavor as well.

First, TIFAS may be modified to obtain a superset or near-superset of all the faults

that would be latched by SPICE. A possible solution involves the following. First, the

pulse width model may be modified to give widths that are at least as wide as the ones

reported by SPICE. Second, the latching window models may also be modifed to give

worst-case windows. Finally, minimum and maximum delays for each gate may be used

to see if the pu/lse arrival time range at a DFF overlaps with the latching window. If it

does, it is marked latched. This approach would report most, if not all, of the faults that

would be latched by SPICE, as long as the minimum and maximum delays are modeled

with care. Once the superset is obtained, SPICE or ILLIADS may be used to simulate

only those faults. Obviously, there will be significant savings in time.

Another approach that may be used is to obtain a set of activated gates in TIFAS

and to simulate only those gates in SPICE. For example, if a logical path exists between

the fault injected node and a DFF, all of the gates on the path as well as all of the gates

which influence the voltage waveforms at any of the nodes on the path may be extracted

to be simulated in SPICE. This approach has the potential of large savings in simulation

time since SPICE uses an n2 to n3 algorithm, where n is the number of nodes in the
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circuit. Furthermore, the two approaches outlined above can be combined to obtain an

even better speedup in both ILLIADS and SPICE simulations. 3
For the best accuracy in the shortest possible simulation time, all three simulators,

TIFAS, ILLIADS and SPICE, can be used. First, TIFAS may be used to obtain a

superset as proposed above. Then, ILLIADS may be used to filter out some of the faults I
which will not be latched in SPICE. Finally, SPICE may be used on the remaining faults. !

The inaccuracy of ILLIADS can be compensated for by simulating the same fault several

times in ILLIADS with slightly different injection times. This approach would still be

faster than using SPICE alone since ILLIADS is much faster. 3

I
U
U
I

I
I
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