

Application for Minor Source Permit to Construct a Direct Liquefaction Coal to Liquids Facility

Domestic Synthetic Fuels I, LLC

Mason County, West Virginia 10 May 2019 Project No.: 0465059

The business of sustainability

Document details	The details entered below are automatically shown on the cover and the main page footer. PLEASE NOTE: This table must NOT be removed from this document.			
Document title	Application for Minor Source Permit to Construct a Direct Liquefaction Coal to Liquids Facility			
Document subtitle	ment subtitle Mason County, West Virginia			
Project No.	0465059			
Date	10 May 2019			
Version	3.0			
Author	Grant Morgan			
Client Name	Domestic Synthetic Fuels I, LLC			

Document history

				ERM approval to issue		
Version	Revision	Author	Reviewed by	Name	Date	Comments
1.0		Grant Morgan	David Carpenter	Grant Morgan	1/4/2019	Draft for Review
2.0	Final for Issuance	Grant Morgan	David Carpenter	Grant Morgan	1/11/2019	Final for Issuance
3.0	Application Resubmittal to Address Comments	Grant Morgan	David Carpenter	Grant Morgan	5/10/2019	Application Resubmittal to Address Comments

CONTENTS

1.	INTRODUCTION1					
	1.1 1.2	0	nd n Overview			
2.	PROC	ESS OVE	RVIEW	2		
	2.1 2.2 2.3	Unit 100-	Process Overview —Coal Preparation —H—Coal	3		
		2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	Coal Slurry Mixing Section Feed and Preheat Section Reaction and Product Separation Section Atmospheric Fractionation Section Vacuum Fractionation Section Catalyst Handling	4 4 5 5		
	2.4	Unit 300-	-Product Upgrading	6		
		2.4.1 2.4.2	Unit 310—Hydrocracker Unit 320—Hydrotreating			
	2.5	Unit 400–	-Product Treating	7		
		2.5.1 2.5.2 2.5.3 2.5.4	Unit 410—Gas Recovery Unit Unit 420—Amine Regeneration Unit 430—Sour Water Stripping Unit 440—Sulfur Recovery	8 8		
	2.6		-Utilities			
	2.7		-Product Storage and Loading			
		2.7.1 2.7.2 2.7.3 2.7.4	Unit 610—Solid Product Handling Unit 620—Emergency Flare System Unit 630—Liquid Product Storage Unit 640—Liquid Product Loadout	11 11		
	2.8		– Hydrogen Plant			
3.	-		DF SIGNIFICANT DETERIORATION			
4.	FEDE	RAL REG	ULATORY REQUIREMENTS	15		
	4.1	Applicabl	e NSPS Standards	15		
		4.1.1 4.1.2 4.1.3	NSPS Subpart Dc—Small Industrial Steam Generating Units NSPS Subpart Kb—Volatile Organic Liquid Storage Vessels NSPS Subpart Y—Standards of Performance for Coal Preparation and Processing			
		4.1.4	Plants NSPS Subpart Ja—Petroleum refineries constructed after May 14, 2007	18		
		4.1.5 4.1.6	NSPS Subpart XX—Bulk Gasoline Terminals NSPS GGGa—Equipment leaks of Volatile Organic Compounds in Petroleum Refineries Constructed after November 7, 2006			
		4.1.7 4.1.8	NSPS Subpart QQQ—Petroleum Refinery Wastewater Systems NSPS Subpart IIII—Stationary Compression Ignition Internal Combustion Engines	19		
	4.2	Non-Appl	icable NSPS Standards	20		
		4.2.1 4.2.2	NSPS Subpart Db—Industrial-Commercial-Institutional Steam Generating Units 4.2.2 NSPS Subpart E—Standard of Performance for Incinerators			
	4.3	Applicabl	e Part 61 (NESHAP) and Part 63 (MACT) Standards	20		
		4.3.1	NESHAP Subpart ZZZZ—Stationary RICE	21		

		4.3.2	NESHAP Subpart BBBBBB—Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities	21
	4.4	Non-App	blicable Part 61 (NESHAP) and Part 63 (MACT) Standards	22
		4.4.1	NESHAP Subpart Q—Industrial Process Cooling Towers	22
		4.4.2	NESHAP Subpart CC—Petroleum Refineries	
		4.4.3	NEHSAP UUU—Petroleum Refineries; Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units	
		4.4.4	NESHAP Subpart JJJJJJ—Area Source Industrial, Commercial, and Institutional Boilers MACT	
5.	STATI	E REGUL	ATORY REQUIREMENTS	22
	5.1	Applicab	e State Regulatory Requirements	22
		5.1.1	45 CSR 1—Alternative Emission Limits During Startup, Shutdown, and Maintenance Operations	
		5.1.2	45 CSR 2—To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	
		5.1.3	45 CSR 4—To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor	
		5.1.4	45 CSR 5—To Prevent and Control Air Pollution from the Operation of Coal Preparation Plants, Coal Handling Operations and Coal Refuse Disposal Areas	
		5.1.5	45 CSR 6—Control of Air Pollution from the Combustion of Refuse	
		5.1.6	45 CSR 7—To Prevent and Control Particulate Air Pollution from Manufacturing Processes and Associated Operations	
		5.1.7	45 CSR 10—To Prevent and Control Air Pollution from the Emission of Sulfur Oxides	
		5.1.8	45 CSR 13—Permits for Construction, Modification, Relocation, and Operation of Stationary Sources.	
		5.1.9	45 CSR 16—Standards of Performance for New Stationary Sources (NSPS)	
		5.1.10	45 CSR 31—Confidential information	26
		5.1.11	45 CSR 34—National Emission Standards for Hazardous Air Pollutants (NESHAP)	
	5.2	Non-App	Dicable State Regulatory Requirements	26
		5.2.1	45 CSR 14—Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration	27
		5.2.2	45 CSR 17—To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive Particulate Matter	
		5.2.3	45 CSR 19—Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment	
		5.2.4	45 CSR 21—Prevent and Control Air Pollution From the Emission of Volatile Organic Compounds	
		5.2.5	45 CSR 27—Prevent and Control the Emissions of Toxic Air Pollutants	
		5.2.6	45 CSR 29—Rules Requiring the Submission of Emission Statements for Volatile	
			Organic Compound (VOC) Emissions and Oxides of Nitrogen (NO _x) Emissions	
		5.2.7	45 CSR 30—Requirements for Operating Permits	
		5.2.8	45 CSR 33—Acid Rain Provisions and Permits	
		5.2.9	45 CSR 40—Control of Ozone Season Nitrogen Oxides Emissions	28

APPENDIX A PERMIT APPLICATION DOCUMENTS

List of Tables

Table 3-1: Summary of PSD Non-Applicability	.14
Table 4-1: List of Tanks Containing Volatile Organic Liquids at the DSF Facility	. 15

List of Figures

Figure 2-1: DCL Facility—Simplified Block Flow Diagram	2
--	---

Acronyms and Abbreviations

Name	Description
CAA	Clean Air Act
CFR	Code of Federal Regulations
CO	carbon monoxide
CSR	Code of State Regulations
DCL	Direct Coal Liquefaction
DSF	Domestic Synthetic Fuels I, LLC
GRU	Gas Recovery Unit
HAP	Hazardous air pollutants
H_2S	Hydrogen sulfide
HP	High pressure
KO	Knockout
kPa	Kilopascals
kW	Kilowatts
LDAR	Leak detection and repair program
LPG	Liquefied petroleum gas
MACT	Maximum Achievable Control Technology
MMBtu/hr	Million British Thermal Units per Hour
MP	Mid-pressure
NESHAP	National Emission Standards for Hazardous Air Pollutants
NOx	Oxides of nitrogen
NSPS	New Source Performance Standards
PM	Particulate matter
PSD	Prevention of significant deterioration
PTE	Potential to emit
RICE	Reciprocating Internal Combustion Engines
SO ₂	Sulfur dioxide
SRU	Sulfur Recovery Unit
tpy	Tons per year
VOC	Volatile organic compound
WV	West Virginia
WVDAQ	West Virginia Division of Air Quality

1. INTRODUCTION

1.1 Background

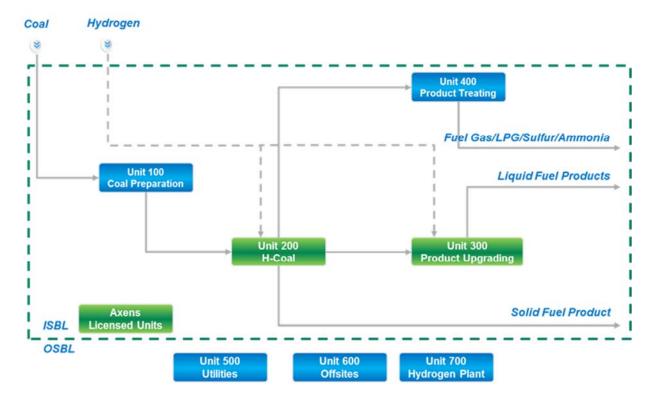
Domestic Synthetic Fuels I, LLC (DSF) submits this Minor Source air permit application to the West Virginia Department of Environmental Protection (WVDEP), Division of Air Quality (WVDAQ) to authorize the construction of a direct liquefaction coal to liquids facility in Mason County, WV. The proposed facility will be located on a 221-acre site north of Point Pleasant, Mason County, WV. This parcel of land sits within the Mason County Industrial Park and is on the western side of State Route 62. The facility will produce ultra-low sulfur diesel fuel, gasoline, liquefied petroleum gases (LPGs), elemental sulfur, and flake product for sale to market.

1.2 Application Overview

The proposed project will require the construction of a new facility subject to the requirements of WV 45 Code of State Regulations (CSR) 13—"Permit for Construction, Modification, Relocation And Operation of Stationary Sources of Air Pollutants …". This permit application narrative is provided to add clarification and/or further detail to the permit application forms being provided to the WVDAQ for this project.

Concurrent with the submittal of this air quality application, other required environmental permits and approvals are being pursued with the appropriate regulatory agencies.

This section (Section 1) contains introductory information. Section 2 presents an overview of the proposed process and equipment. A Prevention of Significant Deterioration review is provided as Section 3. Section 4 provides a review of federal regulatory requirements. A review of state regulatory requirements is provided as Section 5.


The WVDAQ permit application forms, emission calculations, process flow diagrams, and other pertinent information is provided as Appendix A: Permit Application Documents.

2. PROCESS OVERVIEW

2.1 General Process Overview

DSF proposes to construct a Direct Coal Liquefaction (DCL) facility. DCL involves contacting coal directly with a catalyst at elevated temperatures and pressures with added hydrogen, in the presence of a solvent, to form a raw liquid product. The raw liquid product is then further refined into high quality liquid fuels. In the DCL process, coal is transformed into liquid without first being gasified to form syngas. The coal to syngas to liquids route is termed indirect coal liquefaction, which is the typical coal to liquids process. The DCL process is simpler and more efficient than indirect coal liquefaction. Natural gas from the local shale formations in WV and Ohio provide the source for the production of hydrogen for DCL and enhances the DCL process efficiency.

The DSF DCL facility will include the following major process units: Unit 100—Coal Preparation, Unit 200—H-Coal, Unit 300—Product Upgrading, Unit 400—Product Treating, Unit 500—Utilities, Unit 600—Off-sites, and Unit 700—Hydrogen Plant. A simplified block flow diagram (Figure 2-1) and accompanying description is provided below.

Figure 2-1: DCL Facility—Simplified Block Flow Diagram

In Unit 100—Coal Preparation, the coal is received via rail, barge, and truck, stockpiled, crushed, and dried, and stored in silos before being delivered to Unit 200. In Unit 200—H-Coal, the coal is mixed with process-derived recycle oil, pumped, and contacted with hydrogen and a catalyst at high temperature and pressure for conversion to liquid fuels. During this reaction, gases, liquids, and a solid stream are recovered to other facility process units. The liquid fuels are then sent to Unit 300 for product upgrading. In Unit 300—Product Upgrading, the distillate liquid products are processed in Unit 310 via a hydrotreater, hydrocracker, and fractionator to form stabilized naphtha, heavy naphtha, diesel fuel, and vacuum gas oil (lighter end fuels such as propane and butane) product streams. The stabilized naphtha is then reformed

in Unit 320 via a catalyst to form a reformate naphtha product stream. In Unit 400—Product Treating, flash gases, purge gases, and sour water streams from Unit 200 and Unit 300 are processed to produce fuel gas for use in the facility, LPG products, stripped water for reuse in the facility, and ammonia and sulfur byproducts. Unit 500—Utilities includes all facility utilities, including boilers, emergency electric generators, etc. Unit 600—Off-sites includes facility storage tanks, liquid loadout systems for rail and truck loading, emergency flares, and site roads. Unit 700 – Hydrogen Plant uses natural gas as a feedstock to produce the necessary Hydrogen for the DCL Process.

An outline of the facility maximum production rates, per product, is outlined below:

- Coal 2,500 tons per day (tpd)
- Diesel Fuel 6,551 barrels per day (bbl/d)
- Raw Gasoline 3,401 bbl/d Final gasoline product makeup comes from the stream information below with 15% ethanol added
 - Heavy Naptha (reformate) from Unit 320 at 1,986 bbl/d;
 - Light Naptha from Unit 410 at a rate of 1,415 bbl/d
- LPG 1,494 bbl/d
- Recycle "Sour" Water 4500 bbl/d
- Flake Residue 620 tpd
- Elemental Sulfur 60 tpd
- Liquid Ammonia 325 tpd

Each process unit is described in further detail below in the permit application process descriptions. These process descriptions accompany the process flow diagrams submitted as Attachment F of the WVDAQ Permit Application Forms.

2.2 Unit 100—Coal Preparation

Coal is delivered to the DSF facility via barge and truck. Coal barges are unloaded by crane to a receiver hopper (100-TH-1). From the hopper, coal is conveyed via two coal transfer conveyors (100-TC-1 and 100-TC-2) to a radial stacker, consisting of a hopper (100-TH-2) and transfer conveyor (100-TC-3). From the radial stacker, coal is deposited in either the active coal storage pile or backup coal storage pile (100-CSP-1). The active storage pile maintains 4 days of coal throughput while the backup storage pile maintains 24 days of coal throughput. The coal storage piles will minimize fugitive emissions (100-CSP-2, 100-CSP-3, 100-CSP-4) by leveraging wind guards in accordance with the fugitive dust control plan requirements of WV 45 CSR 5. A truck dump storage pile (100-CSP-3) is estimated based upon delivery of coal to the site via truck. Coal from the dump pile is transferred by a front-end loader to the active or backup storage piles.

From the storage piles, coal is transferred by a front-end loader to a coal surge hopper (100-TH-3). Coal is conveyed via coal milling transfer conveyor 1 (100-TC-4) to coal milling hopper 1 (100-TH-4). The coal mill crushes and dries coal to the specifications required for the input to the direct liquefaction process. The coal milling dryer (100-CMD-1) is a natural gas-fired indirect heat exchanger that exchanges heat with nitrogen to dry the raw coal. Coal exits the mill via coal milling hopper 2 (100-TH-5) and along the coal milling transfer conveyor (100-TC-5) for storage in coal storage silos (100-CS-1, 100-CS-2). From

the storage silos, crushed and dried coal is transferred through one of two hoppers (100-TH-6, 100-TH-7) along two transfer conveyors (100-TC-6, 100-TC-7) to Unit 200.

2.3 Unit 200—H—Coal

2.3.1 Coal Slurry Mixing Section

Crushed and dried coal is received from Unit 100 via an enclosed conveyor and stored in a Feed Coal Bin (200-D-110). Coal flows from the Feed Coal Bin to the Feed Coal Conveyor (200-S-105), a screw feeder used to control the coal feed rate to the Coal Slurry Mixing Drum (200-D-111).

In the Coal Slurry Mixing Drum, an agitator is used to provide sufficient energy to mix the coal and recycle oils. The slurry oils, or process-derived recycle oils, (hot solvent, cold solvent, and bottoms recycle) are mixed with the coal feed in the Coal Slurry Mixing Drum. A cold recycle solvent is utilized as wash oil to process the gas stream. A hot solvent is fed directly to the top of the Coal Slurry Mixing Drum to reduce entrainment of coal feed solids in the overhead vent gas. Finally, the hot atmospheric bottoms recycle stream is fed to the Coal Slurry Mixing Drum containing vacuum gas oil, residual oil, unconverted coal, and flake.

Overhead vapors from the Coal Slurry Mixing Drum are routed to the Vent Scrubber (200-T-102) to remove entrained solids. Cold solvent (process light vacuum gas oil) is used as a wash oil in the Vent Scrubber, which is then recovered and routed to the Coal Slurry Mixing Drum. Vaporized oil and water in the Vent Scrubber is routed to the Scrubber Vent Gas Trim Cooler (200-E-106) to be condensed, and the condensed liquid stream is then routed to the Vent Gas Separator (200-D-112). The Vent Gas Separator is a three-phase separator. Oil from the Vent Gas Separator is routed back to the Coal Slurry Mixing Drum. A slurry condensate and water mixture is routed from the Vent Gas Separator and combined with sour water from the Sour Water Flash Drum (200-D-107). This mixture is then sent to Unit 430—Sour Water Stripping. Gas from the Vent Gas Separator is routed to the Scrubber Vent Gas Ejector System (200-S-101) to be condensed and the condensed liquid stream flows to the Condensate Ejector Separator (200-D-113). The Condensate Ejector Separator is a two-phase separator with the liquid stream routed back to the Vent Gas Separator and the gas stream routed to Unit 410—Gas Recovery Unit.

2.3.2 Feed and Preheat Section

The coal slurry feed from the Coal Slurry Mixing Drum is mixed with feed hydrogen from the Hydrogen Reformer (700-HR-1) and fed to the Slurry Feed Heater (200-H-102) for heating to the desired feed temperature. The coal slurry feed is then mixed with another feed of hydrogen from the Hydrogen Heater (200-H-101) before entering the Catalytic Reactors (200-R-101 and 200-R-102).

2.3.3 Reaction and Product Separation Section

The coal liquefaction reactions occur in this section. In the first reactor (200-R-101), reactions occur to improve the recycle solvent quality and coal liquids are formed, hydrogenated, and stabilized. The second reactor (200-R-102) completes the conversion of coal and residuum to distillate liquids. Effluent from the reactors is fed to Separator 200-D-101 for product separation. The reactor effluent is fed through Separator 200-D-101 and Separator 200-D-105 to the Atmospheric Tower (200-T-301). The reactor effluent vapor from Separator 200-D-101 is routed through a series of separators (Separator 200-D-103 and Separator 200-D-104) and is sent to the high pressure (HP) Amine Absorber (200-T-101) for acid gas removal, and is subsequently purged back to the Hydrogen Plant. A lean methyldiethanolamine solution is used in the Amine Absorber and routed to the Rich Amine Flash Drum (200-D-108) for degassing.

From the Rich Amine Flash Drum, the rich amine stream is routed to Unit 420—Amine Regeneration. The vapor from the Rich Amine Flash Drum is sent to Unit 410—Gas Recovery Unit.

The vapor effluent from Separator 200-D-105 is combined with the liquid stream out of Separators 200-D-103/104 and is routed through Separators 200-D-106/107. Sour water from these separators is sent to Unit 430—Sour Water Stripping for water recovery and reuse. Hydrocarbons, the separators, are routed to Unit 410—Gas Recovery Unit.

2.3.4 Atmospheric Fractionation Section

Hot coal slurry from Separator 200-D-205 is fed to the Atmospheric Tower (200-T-301). The Atmospheric Tower overhead vapor is fed through the Atmospheric Tower Overhead Condenser (200-E-301) to the Atmospheric Tower Overhead Drum (200-D-301), which is a three-phase separator. An unstabilized naphtha product is recovered from the Atmospheric Tower Overhead Drum and sent to Unit 310— Hydrocracker. The water condensate from the Atmospheric Tower Overhead Drum is discharged to Unit 430—Sour Water Stripping. The vapor stream from the Atmospheric Tower Overhead Drum is sent to Unit 410—Gas Recovery Unit. Diesel product is routed from a side draw of the Atmospheric Tower to the Diesel Stripper (200-T-302). The Diesel Stripper acts as a two-phase separator with the liquid stream going to Diesel Coalescer (200-D-303) and the vapor stream recycled back to the Atmospheric Tower. The Diesel Coalescer separates the liquid stream from the Diesel Stripper into a diesel product stream that is routed to Unit 310—Hydrocraker and a recycle water stream that is discharged to Unit 430—Sour Water Stripping.

A slurry bottoms stream is pumped from the Atmospheric Tower and split into two streams. A portion of the atmospheric bottoms slurry stream is recycled back to the Coal Slurry Drum (200-D-111) and the rest of the slurry bottoms stream is fed to the Vacuum Tower Feed Heater (200-H-301) before entering the Vacuum Tower (200-T-303) for recovery of vacuum distillate as recycle solvent and final Unit 200—H-Coal products.

2.3.5 Vacuum Fractionation Section

There are four output streams from the Vacuum Tower (200-T-303): an overhead gas stream, upper side stream, lower side stream, and a vacuum bottoms stream. The overhead gas stream is cooled and condensed at the Vacuum Tower Overhead Condenser (200-E-305) and sent to the Vacuum Tower Hotwell (200-D-302). The Vacuum Tower Hotwell serves as a three-phase separator with the recovered oil stream sent to Unit 310—Hydrocracking, the water condensate sent to Unit 430—Sour Water Stripping, and an overhead gas stream, which is sent to Unit 410—Gas Recovery Unit.

The upper side stream off the Vacuum Tower contains a light vacuum gas oil which is sent back into the Vacuum Tower with a split stream that is sent to Unit 310—Hydrocracking. The lower side stream off the Vacuum Tower contains a heavy vacuum gas oil which is sent back into the Vacuum Tower with a split stream that is sent to Unit 310—Hydrocracking. The vacuum bottoms stream is pumped to Unit 600—Off-sites where the flake product it is stored before off-site delivery.

2.3.6 Catalyst Handling

During the Unit 200—H-Coal operation, fresh catalyst is added daily to the Catalyst Reactors (200-R-101 and 200-R-102) and an equivalent amount of spent catalyst is withdrawn to maintain constant catalyst activity. Feed catalyst from trucks or super sacks are fed to the Fresh Catalyst Storage Hopper (200-D-204), which is sized to hold approximately a 10-day supply of fresh catalyst. A 1-day batch of catalyst flows by gravity to the Catalyst Measuring Hopper (200-D-205) and then finally to the Catalyst Addition/Withdrawal Drum (200-D-206) before the catalyst is fed to the Catalyst Reactors. The airflow in the feed catalyst storage and addition system described above is controlled via Feed Catalyst Bin Filter

(200-D-206) before being discharged to the atmosphere. During the catalyst withdrawal from the Catalyst Reactors, the spent catalyst is first sent to the Addition/Withdrawal Drum from the reactors. From the Addition/Withdrawal Drum the catalyst is sent to the Spent Catalyst Cooling Drum (200-D-207) where it is eventually gravity-drained to the Spent Catalyst Hopper (200-D-208). The Spent Catalyst Hopper is designed to hold approximately 10-days inventory of spent catalyst. The spent catalyst is then transferred into drums (200-D-209) for eventual delivery off-site.

2.4 Unit 300—Product Upgrading

In Unit 300—Product Upgrading, the liquid naphtha, diesel, and vacuum gas oil products from Unit 200— H-Coal are processed in Unit 310 via a hydrotreater, hydrocracker, and fractionator to form stabilized naphtha and diesel fuel product streams. The stabilized naphtha is then reformed in Unit 320 via a catalyst to form a reformate naphtha product stream. Various overhead gas streams from Unit 310 and Unit 320 and a wild naphtha stream from Unit 310 are sent to Unit 410—Gas Recovery Unit for further treatment. Water streams from Unit 310 are sent for treatment to Unit 430—Sour Water Stripper.

2.4.1 Unit 310—Hydrocracker

Unit 310—Hydrocracker consists of two sections: a reaction section, including the Hydrotreater/Hydrocracker Reactor (310-R-101) and liquid separation, and a product fractionation section, including the H_2S Stripper (310-C-103) and Fractionator (310-C-201).

2.4.1.1 Reaction Section

The liquid product stream from Unit 200—H-Coal containing gas oil, diesel, and naphtha is routed through the Feed Surge Drum (310-D-101) and mixed with a hydrogen gas feed. This mixture is the preheated in the Reaction Heater (310-H-101) before entering the Hydrotreater/Hydrocracker Reactor (310-R-101). The reactor effluent is routed to the Hot HP Separator (310-D-106A).

The vapor from the Hot HP Separator is condensed in the Hot HP Vapor Air Cooler (310-A-101A) and sent to the Cold HP Separator (310-D-107A). The vapor from the Cold HP Separator is recycled back to 310-R-101 and the liquid is routed to the Cold Mid-Pressure (MP) Separator (310-D-107B).

The product effluent from the Hot HP Separator is sent to the Hot MP Separator for further separation with the liquid product effluent sent to the H_2S Stripper (310-C-103). The vapor from the Hot MP Separator is routed through the Hot MP Vapor Air Cooler (310-A-101B) to be condensed before being sent to the Cold MP Separator. The Cold MP Separator is a three-phase separator with the liquid product stream sent to the H_2S Stripper, the sour water stream sent to Unit 430—Sour Water Stripper, and the sour gas stream sent to the MP Amine Absorber in Unit 200—H-Coal for treatment.

2.4.1.2 Liquid Separation and Product Fractionation

The liquid product streams from the Hot and Cold Separators are fed to the H₂S Stripper. The H₂S Stripper overhead vapor stream is routed through the Stripper Air Condenser (310-A-102) and the condensed stream is sent to the Stripper Reflux Drum (310-D-111). The Stripper Reflux Drum is a three-phase separator with the wild naphtha, a light liquid hydrocarbon, stream sent to Unit 410—Gas Recovery Unit, the sour water stream sent to Unit 430—Sour Water Stripper, and the sour gas sent to Unit 410—Gas Recovery Unit. The H₂S Stripper bottom product stream is then sent to the Fractionator (310-C-201).

From the Fractionator column, heavy naphtha is recovered from the Fractionator overhead stream while the Fractionator bottom is a diesel product stream sent to Unit 630—Liquid Product Storage. The Fractionator overhead stream is routed through the Fractionator Condenser (310-A-201) and the condensed stream is sent to the Fractionator Reflux Drum (310-D-201). The Fractionator Reflux Drum is

a three-phase separator with the Reflux Drum flash gas sent to Unit 410—Gas Recovery Unit, sour water sent to Unit 430—Sour Water Stripping, and the heavy naphtha sent to Unit 320—Catalytic Reformer with a slip stream of the heavy naphtha is sent back to the Fractionator column. The diesel product stream is sent through the Fractionator Reboiler (310-H-103) and recycled back to the Fractionator column before exiting the bottom of the Fractionator and being sent to Unit 600—Storage and Load-out.

2.4.2 Unit 320—Hydrotreating

In Unit 320, the heavy naphtha stream from Unit 310 is routed through a series of Reaction Heaters (320-H-201, 320-H-202, 320-H-203, and 320-H-204) and Catalytic Reactors (320-R-201, 320-R-202, 320-R-203, and 320-R-204). The Catalytic Reactor product stream is then routed to Reactor Separator 320-D-201. Reactor Separator 320-D-201 is a two-phase separator with the separator flash gas sent to Unit 410—Gas Recovery Unit and the naphtha product stream routed to the Reformer Contactor Tower (320-C-201). The Contactor Tower overhead is routed to the Contactor Tower Condenser (320-A-202) and sent to the Contactor Tower Reflux Drum (320-D-204). The Contactor Tower Reflux Drum is a two-phase separator with the flash gas routed to Unit 410—Gas Recovery Unit and the liquid stream sent back to the Reformer Contactor Tower. A side stream of the LPG being sent back to the Reformer Contactor Tower is routed to Unit 630—Liquid Product Storage. The reformate naphtha product stream exiting the bottom of the Reformer Contactor Tower is routed to Unit 630—Liquid Product Storage

2.5 Unit 400—Product Treating

Unit 400—Product Treating has multiple process sections that treat gas, water, and amine streams from Unit 200—H-Coal and Unit 300—Product Upgrading. The process sections in Unit 400 include Unit 410—Gas Recovery Unit, Unit 420—Amine Regeneration, Unit 430—Sour Water Stripping, and Unit 440—Sulfur Recovery.

2.5.1 Unit 410—Gas Recovery Unit

Gas streams from the other process units are processed in a conventional saturated gas plant that recovers light naphtha for blending to gasoline, LPG (mixed C3/C4) and fuel gas that is used in fired heaters in the process units.

Incoming gas streams to Unit 410—Gas Recovery Unit are routed to a common header, which feeds to the Compressor Knockout (KO) Drum (410-D-101). The Compressor KO Drum is a two-phase separator with the flash gas routed to Gas Recovery Unit (GRU) Compressor 1 and the LPG stream is sent to Unit 630—Liquid Product Storage. The gas stream is compressed by GRU Compressor 1 and sent to the Compressor Air Cooler (410-A-101). The Compressor Air Cooler condenses the compressed gas stream from GRU Compressor 1 and the condensed gas stream is routed to the Recontacting Drum (410-D-102). The Recontacting Drum is a three-phase separator with the sour water routed to Unit 430—Sour Water Stripping, the liquid hydrocarbon stream routed to the GRU Stripper (410-C-102) column, and the Recontacting Drum flash gas routed to the bottom of the LPG Absorber (410-C-101).

The LPG Absorber recovers most of the propane (C_3) and butane (C_4) compounds from the Recontacting Drum flash gas by washing the gas with a mix of the wild naphtha from Unit 310 and recycle light naphtha from the Debutanizer (410-C-103). The overhead vapor from the LPG Absorber is used as fuel gas in fired sources throughout the facility and the LPG Absorber bottom liquid is sent back to the Recontacting Drum.

The GRU Stripper column allows for partial stripping of water, H_2S , and ethane (C₂) compounds from the LPG and gasoline mixture that comes into the top tray of the GRU Stripper column from the Recontacting Drum. The GRU Stripper column is reboiled with HP steam by the GRU Stripper Reboiler (410-H-101). The GRU Stripper overhead gas is recycled back into the gas feed stream feeding the Compressor Air

Cooler to be condensed and routed to the Recontacting Drum. The GRU Stripper bottom liquid stream feeds the Debutanizer.

The Debutanizer produces a light naphtha stream to be blended with the reformate naphtha stream from Unit 320—Catalytic Reformer in order to form the gasoline product for the DSF facility. LPG product is also recovered from the Debutanizer overhead stream. The Debutanizer overhead gas stream is condensed by the Debutanizer Air Condenser (410-A-102) and sent to the Debutanizer Reflux Drum (410-D-103). The Debutanizer Reflux Drum is a three-phase separator with the sour water routed to Unit 430—Sour Water Stripping, the LPG product stream routed to Unit 630—Liquid Product Storage, and the flash gas routed to the fuel gas line from the LPG Absorber to be used as fuel gas in fired sources throughout the facility. A slip stream of the LPG product stream is recycled back to the Debutanizer to ensure that the pentane (C_5) specification in the LPG product is met.

The Debutanizer is reboiled with HP steam by the Debutanizer Reboiler (410-H-102). The Debutanizer Reboiler duty is set to ensure that the C_4 specification of the light naphtha stream is met. The reboiler duty is controlled by the HP steam flowrate to the reboiler.

The light naphtha product from the bottom of the Debutanizer is sent to Unit 630—Liquid Product Storage. A slip stream of the light naphtha product is mixed with the wild naphtha from Unit 310—Hydrocracking and fed to the top of the LPG Absorber to be used as an absorption medium.

2.5.2 Unit 420—Amine Regeneration

The rich amine streams from Unit 200—H-Coal and Unit 440—Sulfur Recovery Unit are combined in a common header and directed to the Amine Flash Drum (420-D-101) where hydrogen and light hydrocarbons are flashed at low pressure and sent to Unit 410—Gas Recovery Unit.

The rich amine from Amine Flash Drum is pumped to the Amine Regenerator (420-R-101). Acid gases are stripped off the rich amine stream in this column. The Amine Regenerator overhead stream is partially condensed by the Amine Regenerator Overhead Air Cooler (420-A-101) before being routed to the Amine Regenerator Reflux Drum (420-D-102) where the vapor and liquid phases are separated. Acid gas from the Amine Regenerator Reflux Drum is routed to Unit 440—Sulfur Recovery. The liquid stream from the Amine Regenerator Reflux Drum is recycled back to the top of the Amine Regenerator column.

The Amine Regenerator is reboiled with MP steam by the Amine Regenerator Reboiler (420-H-101). The Amine Regenerator bottoms product, which is lean amine, is air-cooled and then passes through a set of filters to remove particulates and amine degradation products formed in the regenerator reboiler before being sent back to the H-Coal Unit. A slip stream of Lean Amine is routed to the Sulfur Recovery Unit (SRU) Amine Absorber (440-R-104) in Unit 440—Sulfur Recovery.

2.5.3 Unit 430—Sour Water Stripping

Sour water streams from other process units are collected into one common header and sent to the Sour Water Feed Flash Drum (430-D-101). The Sour Water Feed Flash Drum is a three-phase separator that operates at a low pressure to flash any light end hydrocarbons, which are then sent to Unit 410—Gas Recovery Unit. Entrained condensates are separated in the Sour Water Feed Flash Drum and sent to Unit 630—Liquid Product Storage. Sour water from the Sour Water Feed Flash Drum is cooled and sent to the Sour Water Storage Tank (430-TK-1). A pressure controller on the tank vents vapors to Unit 440—Sulfur Recovery Unit. The Sour Water Storage Tank is provided with an oil skimmer in order to remove condensates and inhibit H₂S evolution. Condensates from the Sour Water Storage Tank recycled back into the process.

Sour water from Sour Water Storage Tank is pumped to the H_2S Stripper (430-C-101). The H_2S Stripper is a trayed column where H_2S is separated from the sour water. The H_2S Stripper is reboiled via the H_2S Stripper Reboiler (430-H-101) with MP steam to strip H_2S from the sour water.

The H₂S Stripper overhead vapor is sent to the H₂S Stripper Overhead Air Cooler (430-A-101) to condense the vapor and then to the H₂S Stripper Overhead KO Drum (430-D-102) to remove entrained liquids. Liquids from the knockout drum are returned to the Sour Water Feed Flash Drum. The acid gas from the H₂S Stripper Overhead KO Drum is sent to Unit 440—Sulfur Recovery.

The H₂S Stripper bottom stream is sent to the top tray of the H₂S-NH₃ Stripper (430-C-102). The H₂S-NH₃ Stripper is a trayed column where ammonia and any remaining H₂S are removed from the sour water. The H₂S-NH₃ Stripper is reboiled with MP steam via the H₂S-NH₃ Stripper Reboiler (430-H-102).

The stripped sour water from the H₂S-NH₃ Stripper is routed to other process units for use as wash water or discharged from the facility to a Publically Owned Treatment Work.

The overhead vapor from the H_2S -NH₃ Stripper is sent to the bottom of the H_2S Absorber, which is a trayed column. In this tower, the ammonia product is scrubbed free of H_2S using a portion of the stripped water from the H_2S -NH₃ Stripper bottoms. The overhead vapor from the H_2S Absorber is cooled and partially condensed by the H_2S Absorber Air Cooler (430-A-102). The condensed liquid is separated from the NH₃ rich vapor in the H_2S Absorber Overhead Drum (430-D-103) and then pumped to the column top tray as reflux. The bottom liquid from the H_2S Absorber, which contains H_2S and NH₃, is mixed with the sour water feed to the H_2S Stripper.

The vapor from the H₂S Absorber Overhead Drum is compressed by a three-stage reciprocating Ammonia Product Compressor. The compressed ammonia product is totally condensed by cooling water before entering the Ammonia Product Drum (430-D-106) from which it is pumped to storage.

2.5.4 Unit 440—Sulfur Recovery

The Sulfur Recovery Unit utilizes the Claus process to recover elemental sulfur. In the Claus sulfur recovery section, H_2S in the acid gas feed is converted to elemental sulfur. The H_2S is partially combusted with air to make SO₂, which reacts with the H_2S in the furnace and catalytic stages to form sulfur.

The acid gas feed to the Claus sulfur recovery section is comprised of sour gas from Unit 430—Sour Water Stripping and acid gas from Unit 420—Amine Regeneration. The sour and acid gases enter the sulfur recovery section through the Acid Gas Wash Drum (440-D-101) where traces of ammonia and entrained water are removed. In the upper section of the acid gas wash drum, the acid gas is contacted with wash water from Unit 430—Sour Water Stripping to remove traces of ammonia from the gas. The wash water is then returned to Unit 430—Sour Water Stripping for treatment.

The combustion reaction is carried out in the burner of the Reaction Furnace. Sulfur is formed thermally in the SRU Reaction Furnace (440-H-101) and the products from the exothermic reactions are cooled in the Waste Heat Boiler (440-H-102) by generating high-pressure steam and then further cooled by generating low-pressure steam in the SRU Condenser 1 (440-D-102). The condensed sulfur is separated from the gas and the sulfur drains from the condenser to the Sulfur Pit.

The outlet gas from SRU Condenser 1 is heated and then enters SRU Converter 1 (440-R-101), which contains an alumina catalyst. Sulfur is formed by an exothermic reaction. SRU Converter 1 effluent is then cooled in the SRU Condenser 2 (440-D-103) and the condensed sulfur is drained to the Sulfur Pit. Similarly, the gas from SRU Condenser 2 is reheated with steam and enters SRU Converter 2 (440-R-102) where sulfur is formed. The converter effluent is cooled again in SRU Condenser 3 (440-D-104) and

the condensed sulfur is drained to the sulfur pit. Tail gas from SRU Condenser 3 is routed to the tail gas treatment section of Unit 440—Sulfur Recovery.

In the hydrogenation section of tail gas treatment, sulfur compounds are catalytically converted to H_2S , which is then removed in the amine treating section of Unit 440—Sulfur Recovery. The tail gas from the final condensers of the Claus sulfur recovery section enters the hydrogenation section through the Reducing Gas Generator (440-H-103). The Reducing Gas Generator heats the tail gas to permit the desired hydrogenation and hydrolysis reactions to proceed in the reactor. Hot combustion products are mixed with the tail gas, and the resulting stream flows to the Hydrogenation Reactor (440-R-103). In the Hydrogenation Reactor, sulfur compounds are converted to H_2S by hydrogenation and hydrolysis. These reactions are exothermic and the gas exiting the Hydrogenation Reactor is then sent to the Desuperheater Contact Condenser (440-C-101) to be cooled.

In the Desuperheater Contact Condenser, the gas is cooled and condensed into a water stream. This is a two-stage column in which the gas is first de-superheated by contact with a circulating water stream in the lower section of the column and then further cooled, condensing most of the water in the gas, by contact with a second circulating stream of cooled water in a packed bed in the upper section. The cooled hydrogenated tail gas proceeds to the SRU Amine Absorber (440-R-104).

In the SRU Amine Absorber, tail gas from the De-superheater/Contact Condenser flows into the SRU Amine Absorber where H₂S is absorbed by the lean amine solution from Unit 420—Amine Regeneration. Rich amine is pumped from the bottom of the SRU Amine Absorber to Unit 420—Amine Regeneration.

Overhead gas from the SRU Amine Absorber flows to the SRU Incinerator (440-SRI-1) for destruction.

2.6 Unit 500—Utilities

Unit 500—Utilities includes facility utilities necessary to operate the facility. Regulated sources within Unit 500 includes the facility boiler, emergency electric generator, and cooling towers.

The facility will operate a natural gas-fired boiler (500-SB-1) to generate steam. During normal operations, the facility will produce excess steam, which will allow the boiler to be operated at partial load. During facility startup, the boiler will operate at full rated capacity of 24.3 Million British Thermal Units per hour (MMBtu/hr). During normal facility operations, the boiler will operate at 4.9 MMBtu/hr.

An emergency electric generator (500-EG-1) will be a diesel-fired source operated during power failure to supply power to critical equipment. The necessary generator rating to supply critical power is identified as 500 kilowatts (kW).

The facility will also operate a cooling water tower (500-CT-1) with an estimated flow rate of 5,565 gallons per minute. The cooling water tower will operate as an induced flow system and is not estimated in the facility PTE to include a drift eliminator. The supply source pressure and temperature are estimated to be 80 psig and 80 degrees Fahrenheit. The return pressure and temperature are estimated to be 55 psig and 100 degrees Fahrenheit.

2.7 Unit 600—Product Storage and Loading

Unit 600—Product Storage and Loading has multiple process sections that store and load-out solid and liquid products. The process sections in Unit 600 include Unit 610—Solid Product Handling, Unit 620— Emergency Flare System, Unit 630—Liquid Product Storage, and Unit 640—Liquid Product Load-out.

2.7.1 Unit 610—Solid Product Handling

2.7.1.1 Flake Product

Slurry reside from the bottom of the Unit 200 vacuum fractionator is flaked and transferred off-site as a saleable product. From Unit 200, slurry residue to pumped onto a flake transfer conveyor system (610-TC-1) that allows the material to cool and solidify as flake product. From the conveyor system, flake product is stored in the surge flake storage silo (610-SS-1) before transfer via a pipe conveyor (610-TC-2) to product storage domes (610-DS-1, 610-DS-2). Each of the flake product storage domes is controlled with a fan filter. Within the storage domes, stack conveyors (6100-TC-4, 610-TC-5) are used to create storage piles (610-SP-1, 610-SP-2). From the storage piles, flake is gravity fed to loading hoppers (610-TH-1, 610-TH-2) before conveyance along two conveyors (610-TC-6, 610-TC-7) prior to loading into the truck loading hopper (610-TH-3). Flake product is loaded from the loading hopper into trucks (610-TR-1) for delivery off-site.

2.7.1.2 Sulfur Product

Sulfur recovered from Unit 440—Sulfur Recovery is stockpiled for eventual transport via truck off-site. From Unit 440, sulfur enters via a hopper (610-TH-4) and transported along a conveyor (610-TC-8) for deposition on the sulfur storage pile (610-SP-3). From the storage sulfur storage pile, sulfur product is transferred from a front-end load into sulfur loading hopper (610-TH-5). From the hopper, sulfur product is conveyed (610-TC-9) to the truck loading hopper (610-TH-6) for loading into truck (610-TR-2) for off-site delivery.

2.7.2 Unit 620—Emergency Flare System

The flare system collects the discharges from unplanned pressure safety valve discharges and overpressure control valves, as well as for depressurization during facility shutdown, for safe destruction in an elevated flare. The emergency flare (620-FL-1) will be operated with two flare tips, one in hydrocarbon service and one in acid gas service. Flare sizing is based upon maximum relieving rate estimates, which is expected to occur during facility shutdown. DSF conservatively estimates four plant shutdowns per year, as the nature of the process promotes minimizing shutdowns and turnarounds.

Loading to the emergency flare will occur for 30 minutes from each refining process unit during facility shutdown to purge process gases. Flowrates and waste stream compositions from Units 200, 310, 320, and 420 are included in the facility potential to emit (PTE) estimation.

2.7.3 Unit 630—Liquid Product Storage

2.7.3.1 Diesel Storage

Diesel produced from Unit 310 – Hydrocracking is fed to two finished product storage tanks (630-TK-8, 630-TK-9) until ready to load transports for sale.

2.7.3.2 Gasoline Semi-Finished Storage

Reformate (Heavy Naptha) from Unit 320 - Catalytic Reformer is fed to two semi-finished storage tanks (630-TK-4, 630-TK-5). Light Naptha from Unit 410 – Gas Recovery Unit is fed to two semi-finished storage tanks (630-TK-2, 630-TK-3). Reformate and Light Naptha are blended into two Gasoline storage tanks (630-TK6, 630-TK-7). Ethanol from two tanks (630-TK-10, 630-TK-11) is stored in Unit 630 awaiting blending into the gasoline to make finished product gasoline in for shipment in Unit 640 – Liquid Product Loadout. Vapors from the gasoline area are captured and sent to flare 640-FL-1 for destruction.

2.7.3.3 LPG Storage

LPG is produced from Unit 320 – Catalytic Reformer and Unit 410 – Gas Recovery and stored in nine pressurized tanks (630-TK-1A-I) until ready for loading and shipping.

2.7.3.4 Emergency Dump Tanks (Process Vessels)

There are four process vessels that can be used to hold in-process materials during maintenance outages, unexpected process interruptions, off-spec material to be reworked in the process, etc. The HYK Heavy Feed Tank (630-TK-12) and HYK Light Feed Tank (630-TK-13) can be used to handle in-process materials from Unit 200. The Heavy Slop Oil Tank (630-TK-14) and Light Slop Oil Tank (630-TK-15) can be used to handle in-process materials from Unit 430.

2.7.4 Unit 640—Liquid Product Loadout

2.7.4.1 Diesel Loading

Diesel from two storage tanks (630-TK-8, 630-TK-9) is loaded into transport containers by one of the separate loading racks for diesel trucks (6 truck spots), diesel railcars (1 spot), or barge (1 spot). Material is metered through a loading skid which measures the amount of product loaded into the transport container.

2.7.4.2 Gasoline

Gasoline in two storage tanks (630-TK6, 630-TK-7) is blended with ethanol from two storage tanks (630-TK-10, 630-TK-11) to fill transports with finished gasoline (15% ethanol blend). The blending operation and measurement of material loaded is accomplished through a metering/blending skid in the loading area. There are separate loading racks for gasoline trucks (4 truck spots), gasoline railcars (1 spot) or barge (1 spot). Vapors are captured and sent to control device 640-FL-1.

2.7.4.3 LPG

LPG stored in nine pressurized tanks (630-TK1 A-I) is loaded into tank trucks (2 spots) in a dedicated LPG loading area.

2.7.4.4 Enclosed Ground Flare

Control device 640-FL-1 is an enclosed ground flare system of total nominal capacity 27.6 MMBTU/hr. This unit is sized to control the potential captured vapor flows from loading gasoline to trucks, rail and barge spots at maximum instantaneous loading rates.

2.7.4.5 Paved Haul Roads

The DSF facility will transport materials and products on paved facility haul roads. Paved roads will be maintained with a street sweeper to minimize the accumulation of materials along haul roads that could contribute to fugitive dust.

Materials receiving and product offloading operations by truck will be conducted during the day to minimize truck traffic during the evening and overnight. Materials transported on facility paved haul roads are detailed in the emission calculations of this permit application

Materials and products will also be transported by barge and rail. It is estimated that 50 percent of coal will be received via truck with the remaining by barge. Flake product, LPG, Sulfur, Ammonia, and catalyst materials will be loaded by truck. Diesel and gasoline product will be loaded by truck, barge, and rail.

2.8 Unit 700 – Hydrogen Plant

The DSF facility will require a Hydrogen plant to provide the necessary hydrogen feed to Unit 200. The Hydrogen Plant will leverage a process of Steam Methane Reforming natural gas to produce the necessary hydrogen. The main steps in the process are as follows:

- Gas compression and treating purification Natural gas is compressed, preheated, and impurities are removed;
- Reforming furnace Feed gas is converted to hydrogen, CO, and CO₂;
- CO shift and gas cooling CO is exothermically reacted to promote the formation of CO₂; and
- PSA Hydrogen Purification Adsorption vessels maximize hydrogen recovery at a high purity.

The Steam Methane Reforming furnace duty is estimate to be 537 MMBtu/hr. Total hydrogen production will be 75 MMSCFD. The estimated natural gas import is 28 MMSCFD.

3. PREVENTION OF SIGNIFICANT DETERIORATION

WV regulations in WV 45 CSR 14 establish and adopt a preconstruction permit program in accordance with the policy of §101(b)(1) of the Clean Air Act (CAA), the purposes of §160 of the CAA, and the prevention of significant deterioration (PSD) of air quality requirements of 40 Code of Federal Regulations (CFR) §51.166. The PSD program applies to a new major stationary source or major modification that is located in an area formally designated as attainment or unclassifiable for any pollutant for which a National Ambient Air Quality Standard exists (criteria pollutants). Mason County, WV is designated as attainment or unclassifiable for all criteria pollutants.

The DSF facility will qualify as a fuel conversion plant as it converts a solid coal input into a liquid product output through the direct liquefaction process. Fuel conversion plants are specially regulated as one of the 28 stationary source types under the CAA that are subject to a 100 ton per year major stationary source applicability threshold. This is codified under WV 45 CSR 14 Section 2.43a.

As shown in Table 3-1, the proposed facility will not exceed the PSD threshold of 100 tons per year. As such, the DSF facility will qualify as a minor source regulated under WV 45 CSR 13. DSF will monitor future construction and modification activities at the site closely and will compare future increases in emissions with the New Source Review thresholds to ensure these activities will not trigger this program.

Regulated NSR Pollutant	Project Potential Emissions (ton/year)	PSD Applicability	PSD Review Required?
NOx	82.27	100	No
СО	71.35	100	No
VOC	86.35	100	No
SO ₂	27.03	100	No
PM ₁₀	56.11	100	No
PM _{2.5}	32.65	100	No

Table 3-1: Summary of PSD Non-Applicability

4. FEDERAL REGULATORY REQUIREMENTS

4.1 Applicable NSPS Standards

New Source Performance Standards (NSPS) are established for specific industrial categories in 40 CFR Part 60. WV regulations in WV 45 CSR 16 incorporate the federal NSPS by reference. A review of the potentially applicable and non-applicable NSPS categories has been performed and is presented below.

4.1.1 NSPS Subpart Dc—Small Industrial Steam Generating Units

NSPS Subpart Dc applies to each steam-generating unit that is capable of combusting between 10 and 100 MMBtu/hr (2,930–29,300 kW) of fuel and for which construction, modification, or reconstruction is commenced after 9 June 1989. The DSF facility will operate affected units under NSPS Dc.

The Steam Boiler (500-SB-1) and Coal Milling Dryer (100-CMD-1) are subject to NSPS Subpart Dc as steam generating units with a maximum rated heat input capacity between 10 and 100 MMBtu/hr. Steam generating units are defined as combustion devices that produce steam, heat water, or heat any heat transfer medium. Note that per 60.40c(h), affected facilities that also meet the applicability requirements under subpart J or subpart Ja of this part are subject to the particulate matter (PM) and NO_X standards under this subpart and the SO₂ standards under subpart J or subpart Ja of this part.

Additional indirect-fired sources at the facility will qualify as process heaters that are used to heat a material to initiate or promote a chemical reaction, and as such, are not subject to the requirements of Dc. These process heaters are identified as the Slurry Feed Heater (200-H-102), Hydrogen Heater (200-H-101), Vacuum Tower Feed Heater (200-H-301), Fractionator Reboiler (310-H-103), and Reaction Heaters (320-H-201 through 320-H-204).

The Claus Furnace (440-CF-1) and Sulfur Recovery Incinerator (440-SRI-1) are direct fired-sources that are not subject to Dc.

4.1.2 NSPS Subpart Kb—Volatile Organic Liquid Storage Vessels

NSPS Subpart Kb applies to each storage tank containing a volatile organic liquid that is greater than 19,813 gallons (75 m³) in capacity and that has been constructed, reconstructed, or modified after 23 July 1984. This subpart does not apply to storage vessels with a capacity greater than or equal to 39,890 gallons (151 m³) storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (kPa) or with a capacity greater than or equal to 75 m³ but less than 151 m³ storing a liquid with a maximum true vapor pressure less than 15.0 kPa.

The following table lists tanks that store volatile organic liquids at the DSF facility and provides their regulatory applicability status per NSPS Subpart Kb:

Tank ID	Tank Contents	Approx. Tank Volume (m³)	Max. vapor pressure (kPa) @ 80 degF	Subpart Kb Key Applicable Requirements for VOC Control
630-TK-1 (A – I)	LPG	227.12 m3	>204.9	Exempt—pressure tank ¹
630-TK-2	Light Naphtha Tank 1	476.96	_	Exempt—process vessel

Table 4-1: List of Tanks Containing Volatile Organic Liquids at the DSF Facility

Tank ID	Tank Contents	Approx. Tank Volume (m³)	Max. vapor pressure (kPa) @ 80 degF	Subpart Kb Key Applicable Requirements for VOC Control	
				**Regulated under NESHAP BBBBBB	
630-TK-3	Light Naptha Tank 2	476.96	—	Exempt—process vessel **Regulated under NESHAP BBBBBB	
630-TK-4	Reformate (Heavy Naphtha) Tank 1	635.95	_	Exempt—process vessel & vapor pressure	
630-TK-5	FK-5 Reformate (Heavy Naphtha) Tank 2 635.95 —		Exempt—process vessel & vapor pressure		
630-TK-6	Gasoline Tank 1	3,179.75	80	Fixed roof with internal floating roof <u>and</u> closed vent system routed to 95% control device	
630-TK-7	Gasoline Tank 2	3,179.75	80	Fixed roof with internal floating roof <u>and</u> closed vent system routed to 95% control device	
630-TK-8	Diesel Tank 1	4,531	0.083	Exempt based on vapor pressure	
630-TK-9	Diesel Tank 2	4,531	0.083	Exempt based on vapor pressure	
630-TK-10	Ethanol Tank 1	635.95	8.4	Fixed roof with internal floating roof <u>and</u> closed vent system routed to 95% control device	
630-TK-11	Ethanol Tank 2	635.95	8.4	Fixed roof with internal floating roof <u>and</u> closed vent system routed to 95% control device	

Tank ID	Tank Contents	Approx. Tank Volume (m³)	Max. vapor pressure (kPa) @ 80 degF	Subpart Kb Key Applicable Requirements for VOC Control
630-TK-12	HYK Heavy Feed Tank	476.96	_	Exempt—process vessel
630-TK-13	HYK Light Feed Storage Tank	476.96	_	Exempt—process vessel
630-TK-14	Heavy Slop Oil Tank	2,536.23	_	Exempt—process vessel **Regulated under NSPS QQQ
630-TK-15	Light Slop Oil Tank	2,536.23	_	Exempt—process vessel **Regulated under NSPS QQQ
430-TK-1	Sour Water Tank	794.94	_	Exempt—process vessel **Regulated under NSPS QQQ

1 Pressure vessels designed to operate in excess of 204.9 kPa and without emissions to the atmosphere are not subject to Subpart Kb, per 60.110b.(d)(2).

DSF will maintain records of the design of each storage tank, liquids stored, and maximum vapor pressure, and will notify the agency of any changes from the original tank design.

4.1.3 NSPS Subpart Y—Standards of Performance for Coal Preparation and Processing Plants

NSPS Subpart Y applies to affected facilities in coal preparation and processing plants that process more than 200 tons of coal per day. Coal preparation and processing plant means any facility (excluding underground mining operations) which prepares coal by one or more of the following processes: breaking, crushing, screening, wet or dry cleaning, and thermal drying. The DSF facility will dry, crush, and handle coal at a rate that exceeds the applicability threshold of 200 tons per day and therefore is subject to NSPS Subpart Y.

Specific emission sources within Unit 100—Coal Handling that are subject to Subpart Y include coal processing and conveying equipment, storage piles and the Coal Milling Dryer (100-CMD-1), an indirect-fired coal thermal dryer. Subject coal processing and conveying equipment will comply with the opacity limit of 10% and PM discharge concentration limit of 0.010 gr/dscf. As outlined in 40 CFR 60.252(c), the coal milling dryer qualifies as a thermal dryer that receives all of its thermal input from an affected facility covered under 40 CFR 60 Subpart Dc. As such, the thermal dryer will comply with the NSPS Dc limits and is not subject to the Subpart Y limits. The open storage piles will require the submission of a fugitive dust plan that identifies control measures to minimize fugitive coal dust. DSF proposes to use a wind barrier for the active storage pile (100-SP-1) and backup storage pile (100-SP-2) as a method of compliance.

4.1.4 NSPS Subpart Ja—Petroleum refineries constructed after May 14, 2007

NSPS Subpart Ja applies to the following affected facilities in petroleum refineries: fluid catalytic cracking units (FCCU), fluid coking units (FCU), delayed coking units, fuel gas combustion devices (including process heaters), flares, and sulfur recovery plants, which either commence construction, modification, or reconstruction after May 14, 2007.

The subpart defines petroleum refinery as "any facility engaged in producing gasoline, kerosene, distillate fuel oils, residual fuel oils, lubricants, asphalt (bitumen) or other products through distillation of petroleum or through redistillation, cracking or reforming of unfinished petroleum derivatives." Petroleum means "the crude oil removed from the earth and the oils derived from tar sands, shale, and coal." Process heater is defined as "an enclosed combustion device used to transfer heat indirectly to process stream materials (liquids, gases, or solids) or to a heat transfer material for use in a process unit instead of steam." Sulfur recovery plant means "all process units which recover sulfur from H₂S and/or SO₂ from a common source of sour gas produced at a petroleum refinery."

The DSF facility will not qualify as a fluid catalytic cracking unit or fluid coking unit as the direct liquefaction process does not burn or produce coke. DSF proposes to operate fuel gas combustion devices (including process heaters), flares, and a sulfur recovery plant at the facility.

The Slurry Feed Heater (200-H-102), Hydrogen Heater (200-H-101), Vacuum Tower Feed Heater (200-H-301), Reaction Heater (310-H-101), Reaction Heater 1 (320-H-201), Reaction Heater 2 (320-H-202), Reaction Heater 3 (320-H-203), and Reaction Heater 4 (320-H-204) are subject to NSPS Subpart Ja because they meet the definition of process heater and fuel gas combustion unit. The SO₂ limits from 40 CFR 60.102a(g)(1)(i) states that fuel gas combustion units shall not cause the discharge of SO₂ in excess of 20 ppmv on a 3-hour rolling basis and in excess of 8 ppmv on an annual basis. The fuel gas recovered from Unit 410—Gas Recovery Unit is expected to have a total sulfur content of less than 1 ppmv. As a conservative measure, the emission calculations utilize the EPA AP-42 Section 1.4 emission factor for external natural gas combustion, which equates to 3.5 ppmv SO₂ outlet. The less than 8 ppmv total sulfur in the fuel gas comply with the H₂S requirement of 40 CFR 60.102a(g)(1)(ii). Note that per Subpart Dc at 60.40c(h), affected facilities that also meet the applicability requirements under subpart J or subpart Ja of this part are subject to the PM and NOX standards under this subpart (Dc) and the SO₂ standards under subpart J or subpart Ja of this part, as applicable.

The Slurry Feed Heater (200-H-102) is proposed as a 74.02 MMBtu/hr natural-draft heater and will comply with the NSPS Ja limit of 0.040 pounds per MMBtu emission limitation for oxides of nitrogen (NO_x).

The sulfur recovery unit will have a design production capacity greater than 20 long tons per day and will be designed with a reduction control system followed by incineration. As such, DSF will comply with the requirements of 60.102(a)(f)(1)(i) and maintain an SO₂ emission limit less than or equal to 250 ppm_v.

The flare (620-FL-1) will qualify as an affected emergency flare under this subpart. As such, DSF will comply with the work practice standards outlined in 40 CFR §60.103a.

4.1.5 NSPS Subpart XX—Bulk Gasoline Terminals

The NSPS Subpart XX–affected facility is all of the loading racks at a bulk gasoline terminal which deliver liquid product into gasoline tank trucks that commence construction or modification after December 17, 1980. As defined in Subpart XX, bulk gasoline terminal means "any gasoline facility which receives gasoline by pipeline, ship or barge, and has a gasoline throughput greater than 75,700 liters per day".

Gasoline is defined as "any petroleum distillate or petroleum distillate/alcohol blend having a Reid vapor pressure of 27.6 kilopascals or greater which is used as a fuel for internal combustion engines". Loading

rack means "the loading arms, pumps, meters, shutoff valves, relief valves, and other piping and valves necessary to fill delivery tank trucks."

DSF proposes to have a gasoline throughput greater than 75,700 liters per day, and therefore its gasoline loading racks will be affected sources per Subpart XX.

The DSF facility will also be subject to National Emission Standards for Hazardous Air Pollutants (NESHAP) BBBBBB, which presents more stringent requirements for gasoline loading racks. NESHAP BBBBBB is discussed further in section 4.3.2.

4.1.6 NSPS GGGa—Equipment leaks of Volatile Organic Compounds in Petroleum Refineries Constructed after November 7, 2006

NSPS Subpart GGGa applies to each owner or operator of a petroleum refinery that commences construction, modification, or reconstruction after 7 November 2006. This subpart requires implementation of a leak detection and repair program (LDAR) for the equipment within a petroleum refinery in accordance with NSPS Subpart VVa. Exceptions to the provisions of Subpart VVa are listed in §60.593a.

Subpart GGGa provides the following key definitions:

- Equipment means each valve, pump, pressure relief device, sampling connection system, openended valve or line, and flange or other connector in volatile organic compound (VOC) service.
 For the purposes of recordkeeping and reporting only, compressors are considered equipment.
- Process unit means components assembled to produce intermediate or final products from petroleum, unfinished petroleum derivatives, or other intermediates; a process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product.
- Petroleum refinery means any facility engaged in producing gasoline, kerosene, distillate fuel oils, residual fuel oils, lubricants, or other products through the distillation of petroleum, or through the redistillation, cracking, or reforming of unfinished petroleum derivatives.
- Petroleum means the crude oil removed from the earth and the oils derived from tar sands, shale, and coal.

DSF proposes to construct and operate a petroleum refinery, and therefore will be subject to the applicable requirements of Subpart GGGa.

DSF has included an estimation of VOC and HAP emissions from fugitive components within this permit application. Detailed explanations and notes of the calculation methodologies and percent control effectiveness are provided in Appendix A – Permit Application Documents – Attachment N – Emission Calculations. DSF commits to implementing the GGGa LDAR program, which includes a 500 ppm leak definition and includes monitoring frequencies comparable to the HON MACT LDAR Requirements. Given the similarities between these LDAR programs, emission calculations leverage the same percent control effectiveness as is provided by in the November 1996 "US EPA Preferred and Alternative Methods for Estimating Fugitive Emissions from Equipment Leaks". In addition, DSF commits to operating leakless pumps and compressors throughout the facility.

4.1.7 NSPS Subpart QQQ—Petroleum Refinery Wastewater Systems

NSPS Subpart QQQ sets standards to reduce VOC emissions from individual drain systems, oil-water separators, and aggregate facilities. The DSF facility will not operate a wastewater treatment facility that will discharge to the Ohio River. Wastewater generated at the facility will be discharged to the Publically

Owned Treatment Works. Prior to this discharge, process waters will contain oily waters subject to the provisions of this rule.

Drains, junction boxes, sewer lines, and other conveyance systems for oily water will be constructed, operated, and maintained in accordance with the Rule. The Oil-water separator in Unit 430—Sour Water Stripping will qualify as an affected unit under QQQ. The oil-water separator will be equipped and operated with a closed vent system the routes vapors to the Sulfur Recovery Incinerator (440-SRI-1). The slop oil tanks (440-LSO-1, 440-HSO-1) will operate in an enclosed system and oils will be recycled to the process.

4.1.8 NSPS Subpart IIII—Stationary Compression Ignition Internal Combustion Engines

Federal NSPS regulations for stationary compression ignition internal combustion engines are found at 40 CFR Part 60, Subpart IIII ("NSPS Subpart IIII") and include emission limits and operating requirements for emergency CI engines that commenced construction after April 1, 2006. At the DSF facility, one emergency generator engine (600-EG-1) is subject to this subpart.

Pursuant to 40 CFR §60.4205(b), the emergency generator engine will be certified to meet the emission standards listed in 40 CFR §89.112 and 89.113, as referenced by 60.4202.

4.2 Non-Applicable NSPS Standards

The following NSPS subparts are not applicable to the DSF facility based on the rationale set forth below.

4.2.1 NSPS Subpart Db—Industrial-Commercial-Institutional Steam Generating Units

NSPS Db regulates steam-generating units with a rating greater than 100 MMBtu/hr. The Hydrogen Reformer (600-HR-1) is rated at 537 MMBtu/hr, but is not subject to the requirements of Db as the reformer heats a material to initiate or promote a chemical reaction.

4.2.2 4.2.2 NSPS Subpart E—Standard of Performance for Incinerators

The DSF facility will operate a Sulfur Recovery Incinerator (440-SRI-1) as a part of Unit 440. This incinerator does not burn solid waste and therefore is not subject to the requirements of this Rule.

4.3 Applicable Part 61 (NESHAP) and Part 63 (MACT) Standards

NESHAP standards are established for specific pollutants and source categories in 40 CFR Part 61 and Part 63 (Maximum Achievable Control Technology [MACT]) in accordance with the CAA Amendments of 1990, which required development standards for sources of hazardous air pollutants (HAPs). WV regulations in WV 45 CSR 34 incorporate the federal NESHAP standards by reference. A review of the potentially applicable and non-applicable NESHAP and MACT categories has been performed and is presented below.

Potential HAP emissions from the DSF facility are less than the major source thresholds of 10 tons per year (tpy) of an individual HAP or 25 tpy of total HAP emissions. Thus, DSF is an area (minor) source of HAP and is not subject to any major source MACT standards.

Sources of HAPs from the DSF facility are generated from on-site combustion and the storage and loading of fuels. HAPs of concern include formaldehyde, benzene, ethylbenzene, n-hexane, toluene, xylenes, carbonyl sulfide, nickel oxide, and cobalt oxide. Heavy metals, such as mercury, do not have the potential to be emitted from the DSF facility since coal is not combusted as a part of the direct liquefaction

process. Without combustion of coal, the trace metals elements are not extracted from the coal feed and will remain in the coal slurry. As such, there is no potential to emit heavy metals to the atmosphere from the direct liquefaction process.

There are no NESHAP standards under 40 CFR Part 61 that are applicable to the DSF facility.

A review of the area source MACT regulations under 40 CFR Part 63 has been performed for applicability to the DSF facility and is presented below.

4.3.1 NESHAP Subpart ZZZZ—Stationary RICE

Federal NESHAP regulations for stationary Reciprocating Internal Combustion Engines (RICE) are found at 40 CFR Part 63, Subpart ZZZZ ("RICE MACT"). For the emergency generator engine (600-EG-1), as a new compression ignition stationary RICE located at an area source of HAP, the requirements of NESHAP Subpart ZZZZ are satisfied by meeting the requirements of NSPS Subpart IIII (per §63.6590(c)(1)). No further requirements apply for such engines under this part. As discussed in Section 4.1.8, the emergency generator complies with NSPS Subpart IIII.

4.3.2 NESHAP Subpart BBBBBB—Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities

Subpart BBBBBB applies to each area source bulk gasoline terminal, pipeline breakout station, pipeline pumping station, and bulk gasoline plant that commenced construction after November 9, 2006. "Bulk gasoline terminal" means any gasoline facility that receives gasoline by pipeline and has a gasoline throughput greater than 20,000 gallons per day. The DSF facility will qualify as an affected source for a bulk gasoline terminal located at an area source of HAPs.

The requirements of NESHAP Subpart BBBBBB apply to the gasoline storage tanks, gasoline loading racks, vapor collection-equipped gasoline cargo tanks, and equipment components in vapor or liquid gasoline service. "Gasoline cargo tank" means a delivery tank truck or railcar that is loading gasoline or that has loaded gasoline on the immediately previous load. The loading of gasoline into marine tank vessels at bulk facilities is not subject to this subpart.

The Subpart BBBBBB affected sources that meet the criteria specified in Tables 1 through 3 to this subpart at DSF will be:

- 1. Gasoline, light naphtha and ethanol storage tanks;
- 2. Gasoline loading racks;
- 3. Vapor collection-equipped gasoline cargo tanks; and
- 4. Equipment components in vapor or liquid gasoline service.

Subpart BBBBBB also specifies that flares, if used as a control device, must be designed and monitored in accordance with §63.11(b).

Per §63.11088(f): If your gasoline storage tank is subject to, and complies with, the control requirements of 40 CFR part 60, subpart Kb of this chapter, your storage tank will be deemed in compliance with this section. The gasoline and ethanol storage tanks will be subject to both NSPS Kb and NESHAP BBBBBB, and will comply with the requirements of Kb. The light naptha tank, as a process vessel, will not be subject to Kb. A similar process vessel exemption does not exist under NESHAP BBBBBB, such that the light naptha tank will be subject based upon reid vapor pressure of tank contents. The heavy naptha, HYK feed tanks, slop oil tanks, and sour water tank will not be subject based upon reid vapor pressure.

4.4 Non-Applicable Part 61 (NESHAP) and Part 63 (MACT) Standards

Potential HAP emissions from the DSF facility are less than the major source thresholds of 10 tpy of an individual HAP or 25 tpy of total HAP emissions. Thus, DSF is an area (minor) source of HAP and is not subject to any major source MACT standards.

There are no NESHAP standards under 40 CFR Part 61 that are applicable to the DSF facility.

A review of the area source MACT regulations under 40 CFR Part 63 has been performed for applicability to the DSF facility and is presented below.

4.4.1 NESHAP Subpart Q—Industrial Process Cooling Towers

NESHAP Subpart Q regulates new and existing industrial cooling towers operated with chromium-based water treatment chemicals located at or supporting major sources of HAPs. As a minor source of HAPs, the DSF facility is not subject to the requirements of Subpart Q.

4.4.2 NESHAP Subpart CC—Petroleum Refineries

NESHAP Subpart CC regulates petroleum process units and related emission points located at a major source of HAPs and contain/emit certain HAP pollutants. As a minor source of HAPs, the DSF facility is not subject to the requirements of Subpart CC.

4.4.3 NEHSAP UUU—Petroleum Refineries; Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units

NESHAP Subpart UUU regulates petroleum refineries that qualify as a major source of HAPS. As a minor source of HAPs, the DSF facility is not subject to the requirements of Subpart UUU.

4.4.4 NESHAP Subpart JJJJJJ—Area Source Industrial, Commercial, and Institutional Boilers MACT

Federal NESHAP regulations for industrial, commercial, and institutional boilers and process heaters that are located at area sources of HAP are found at 40 CFR Part 63, Subpart JJJJJJ ("Area Source Boiler MACT"). The Steam Boiler (600-SB-1) is not subject to this subpart and to any requirements in this subpart because it is a gas-fired boiler.

5. STATE REGULATORY REQUIREMENTS

5.1 Applicable State Regulatory Requirements

This section outlines the WV state air quality rules that could be reasonably expected to apply to DSF and makes an applicability determination for each rule based on activities conducted at the site and the emissions of regulated air pollutants.

5.1.1 45 CSR 1—Alternative Emission Limits During Startup, Shutdown, and Maintenance Operations

This rule sets forth the criteria for establishing an alternative emission limitation during periods of startup, shutdown, or maintenance (SSM). An alternative emission limitation may be a numerical limitation, a technological control requirement, or a work practice requirement that would apply during periods of startups, shutdowns, or maintenance as a component of the continuous allowable emission limitation.

The DSF facility will operate with continuous operations such that startups, shutdowns, and maintenance operations will be infrequent. The facility is expected to operate with four startup and shutdowns per year,

with maintenance activities occurring during these turnaround periods. With the submittal of this permit application, DSF has evaluated SSM operations, and included an estimation of these activities in the facility PTE.

5.1.1.1 Facility Startup

During facility startup, the refining process will require additional steam production for the boiler (500-SB-1) that would normally be provided by additional heat exchangers associated with various heaters at the facility. In order to provide the necessary steam for facility startup, the full boiler rating capacity of 24.3 MMBtu/hr is estimated for 60 hours per year. During normal facility operations, the boiler is expected to fire at 4.9 MMbtu/hr.

Facility heaters will startup at a lower load or heat rating (MMBtu/hr) and therefore will utilize less fuel during startup operations. These heaters will be operated without traditional add-on control devices that may require a ramp-up time period to promote emission reductions. Although an increase to the lb/MMBtu emission factor during startup is expected, the offset of lower load results in a decreased impact on a lb/hr basis when compared to normal operations.

The Hydrogen Reformer (700-HR-1) will utilize Selective Catalytic Reduction (SCR) to further reduce NO_x. The temperature of the exhaust stream is critical to promote the reaction of NO_x with the catalyst material. During facility startup, minimum temperatures to promote NO_x reduction are not expected until proper heating from the exhaust gases has occurred. As such, DSF has included startup NO_x emissions that take no emission reduction credit from SCR in the facility PTE.

5.1.1.2 Facility Shutdown

During facility shutdown, a number of transient events are expected to occur that will contribute to a regulated source of emissions. These events include process unit purging and flaring and the collection of in-process fluids for eventual reintroduction to the process feed. The estimated impact on the facility PTE has been included in this permit application.

During facility shutdown, depressurization of gas streams will be routed to the flare (620-FL-1) for destruction. The estimated loading to the flare during facility shutdown is based upon maximum relieving rate estimates and leverages conservative waste stream compositions from Units 200, 310, 320, and 420. DSF conservatively estimates four plant shutdowns per year, as the nature of the process promotes minimizing shutdowns and turnarounds.

Liquid streams that have been formed prior to or during facility shutdown will be routed to intermediate process tanks for temporary storage until facility operations restart. The HYK Heavy Feed Storage Tank (630-TK-12), HYK Light Feed Storage Tank (630-TK-13), Heavy Slop Oil Tank (630-TK-14), and Light Slop Oil Tank (630-TK-15) will receive and store these liquids for eventual refeed into Unit 200. In order to provide a conservative PTE, DSF has estimated that these tanks will store liquids for 1 month and has not utilized emission control reductions for these intermediate tanks.

5.1.1.3 Maintenance Activities

As a refining operation, the DSF process is inherently a steady-state process that limits the need for extensive ongoing maintenance. Most maintenance activities will occur during facility shutdown, such that there is not an expected increased contribution to the facility PTE. Some routine maintenance activities are expected to contribute to the facility PTE and have been included in this application. These maintenance activities include catalyst replacement and the associated loading and unloading of catalyst materials. Contributions to the facility PTE from catalyst operations are discussed in the process description and quantified in the emission calculations.

5.1.2 45 CSR 2—To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

This rule establishes emission limitations for smoke and particulate matter (filterable) discharged from fuel-burning units. A fuel-burning unit is defined as any unit that burns fuel to provide heat or power by indirect heat transfer.

DSF will operate numerous combustion sources, some of which will be subject to the requirements of 45 CSR 2. The Steam Boiler (500-SB-1) and Coal Milling Dryer (100-CMD-1) are indirect heat exchangers with design heat input greater than 10 MMBtu/hr. Each of these units will qualify as a 'Type B' fuel-burning unit and will comply with the opacity and weight standards of Rule 2.

The Vacuum Tower Feed Heater (200-H-301), Fractionator Reboiler (310-H-103), Slurry Feed Heater (200-H-102), Hydrogen Heater (200-H-101), Reaction Heaters (320-H-201 through 320-H-204), and Hydrogen Reformer (600-HR-1) qualify as process heaters that are not regulated under Rule 2. The Claus Furnace (440-CF-1) and Sulfur Recovery Incinerator (440-SRI-1) are direct fired-sources that are not subject to Rule 2.

5.1.3 45 CSR 4—To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the facility are subject to this requirement, which states: "No person shall cause, suffer, allow or permit the discharge of air pollutants which causes or contribute to an objectionable odor at any location occupied by the public." DSF will comply with the requirements of this Rule.

5.1.4 45 CSR 5—To Prevent and Control Air Pollution from the Operation of Coal Preparation Plants, Coal Handling Operations and Coal Refuse Disposal Areas

The coal handling operations, identified as Unit 100 in the application, will be subject to the requirements of Rule 5. Unit 100 operations will also be subject to the provisions of 40 CFR 60 Subpart Y. Compliance with the Subpart Y will demonstrate compliance with Rule 5. In addition, fugitive dust emissions will be minimized with the use of fugitive control dust systems, such as the implementation of street sweepers on paved facility haul roads.

Operations subject to Rule 5 are exempt from Rule 17.

5.1.5 45 CSR 6—Control of Air Pollution from the Combustion of Refuse

Refuse is defined as "the useless, unwanted or discarded solid, liquid or gaseous waste materials resulting from community, commercial, industrial or citizen activities." DSF will trigger applicability to this Rule for the combustion of gaseous exhaust streams through the use of the Sulfur Recovery Incinerator (440-SRI-1), Emergency Flare (620-FL-1), and the Liquid Product Load-out Flare (640-FL-1). Per 45 CSR 6-4.3, opacity of emissions from the afterburner shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

5.1.6 45 CSR 7—To Prevent and Control Particulate Air Pollution from Manufacturing Processes and Associated Operations

45 CSR 7 regulates the emissions of filterable PM from source operations within manufacturing processes. Manufacturing processes are defined as any industrial or manufacturing actions or processes that emit smoke, particulate matter, or gaseous matter. DSF operations identified as Units 200–Units 600 will qualify as manufacturing process source operation type d, with a throughput of 208,333 lbs/hr. Table

45-7A indicates a lb/hr PMFilterable limit of 21.2 lb/hr from each manufacturing source operation. The summation of filterable PM from all facility manufacturing source operations is 18 lb/hr. Compliance with the Rule 7 individual stack limit is met.

The facility shall not emit filterable PM into the open air from any process source operation that is greater than 20 percent opacity.

Per 45 CSR 7-5, DSF will also have to limit fugitive emissions by equipping manufacturing processes with a system to minimize fugitive PM emissions. DSF will utilize a combination of good housekeeping practices, wind shields/enclosures, baghouses, and various filters throughout the facility to minimize fugitive PM emissions. All haul roads will be paved and maintained using a street sweeper to minimize fugitive PM emissions.

As discussed in 5.1.4, Unit 100 operations are subject to the provisions of Rule 5.Operations subject to Rule 7 are exempt for the requirements of Rule 17 and Rule 5.

5.1.7 45 CSR 10—To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

Rule 10 controls air pollution from the emission of sulfur oxides through the regulation of fuel-burning units and manufacturing process source operations.

DSF will operate numerous combustion sources, some of which will be subject to the requirements of 45 CSR 10. The Steam Boiler (500-SB-1) and Coal Milling Dryer (100-CMD-1) are indirect heat exchangers with design heat input greater than 10 MMBtu/hr. Each of these units will qualify as a 'Type B' fuel-burning unit and will comply with the weight standards of Rule 10.

The Vacuum Tower Feed Heater (200-H-301), Fractionator Reboiler (310-H-103), Slurry Feed Heater (200-H-102), Hydrogen Heater (200-H-101), Reaction Heaters (320-H-201 through 320-H-204), and Hydrogen Reformer (600-HR-1) qualify as process heaters that are not regulated under Rule 10. The Claus Furnace (440-CF-1) and Sulfur Recovery Incinerator (440-SRI-1) are direct fired-sources that are not subject to Rule 10.

DSF will operate a small indirect heat exchangers, Hydrocracker Reaction Heater (310-H-101), which will qualify for the exemption noted in 45 CSR 10 Section 10.1: Any fuel burning units having a design heat input under 10 MMBtu/hr will be exempt from Section 3 and Sections 6 through 8.

Section 3.1 of Rule 10 places weight emission standards on fuel-burning units. Subject units will qualify as 'Type B' fuel-burning units. DSF fuel-fired sources will comply with this concentration requirement by firing natural gas during facility startup operations and process gas with a total sulfur content of <1 ppmv during normal facility operations.

Section 4.1 of Rule 10 places an in-stack sulfur dioxide concentration limit of 2,000 ppmv on existing source operations. The manufacturing process source operations of Unit 440—Sulfur Recovery Unit will comply with the requirements of the Rule. The Sulfur Recovery Unit Incinerator (440-SRI-1) will be subject to the sulfur dioxide concentration limit of NSPS Ja of 250 ppmv, which will demonstrate compliance with this section of Rule 10.

Section 4.1.b of Rule 10 limits sulfur dioxide emissions from a sulfur recovery plant to no greater than 0.06 pounds per pound of sulfur processed. Unit 440—Sulfur Recovery Unit will process 4,565 pounds per hour of sulfur and is proposed with a sulfur dioxide emission limit of 5.64 pounds per hour, which will demonstrate compliance with this section of Rule 10.

Section 5.1 of Rule 10 prohibits combustion of any refinery process gas stream or any other process gas stream that contains hydrogen sulfide in a concentration greater than 50 grains per 100 cubic feet of gas.

The estimated H₂S concentration of gas routed from the SRU Amine Absorber (440-R-104) to the SRU Incinerator (440-SRI-1) is approximately 10 ppmv or 0.04 grains per 100 cubic feet of gas, as calculated based upon the pound per hour SRU Incinerator loading and expected gas density included on page 391 of this submittal.

5.1.8 45 CSR 13—Permits for Construction, Modification, Relocation, and Operation of Stationary Sources

The purpose of this rule is to set forth the procedures for stationary source reporting, and the criteria for obtaining a permit to construct and operate a new stationary source which is not a major stationary source, to modify a non-major stationary source, to make modifications which are not major modifications to an existing major stationary source, to relocate non-major stationary sources within the state of West Virginia, and to set forth procedures to allow facilities to commence construction in advance of permit issuance.

DSF will be subject to this regulation because 45 CSR 13 applies to non-major (minor) stationary sources. Potential annual air emissions at the facility will be less than 10 tpy of a single HAP, less than 25 tpy of any combination of HAP, and less than 100 tpy of each criteria air pollutant.

5.1.9 45 CSR 16—Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to new stationary sources that are subject to 40 CFR 60 Standards of Performance for New Source Stationary Sources (NSPS). A discussion of applicable and non-applicable NSPS are provided in Section 4 of this application.

5.1.10 45 CSR 31—Confidential information

This rule establishes the requirements for claiming information submitted to the Director as confidential and the procedures for determinations of confidentiality in accordance with the provisions of WV Code 22-5-10. No confidential information is included in the submittal of this application.

5.1.11 45 CSR 34—National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to NESHAP requirements promulgated in 40 CFR 61 and 40 CFR 63. A discussion of applicable and non-applicable NESHAPs are provided in Section 4 of this application.

5.2 Non-Applicable State Regulatory Requirements

This section outlines the WV state air quality rules that could be reasonably expected to not apply to DSF and presents rationale for a non-applicability determination for each rule based on activities conducted at the site.

5.2.1 45 CSR 14—Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The facility is exempt from Rule 14 major source air permitting. Further discussion of PSD applicability is discussed in Section 3 of this application.

5.2.2 45 CSR 17—To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive Particulate Matter

The facility will not be subject to this rule because sources that are subject to the fugitive PM emission requirements of either WV 45 CSR 7 or WV 45 CSR 5 are exempt from the provisions of WV 45 CSR 17.

5.2.3 45 CSR 19—Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Nonattainment

The preconstruction permit program requirements of this rule do not apply to the facility because it will be a new minor stationary source, and because it will be located in Mason County, an area designated as attainment for each National Ambient Air Quality Standard pollutant.

5.2.4 45 CSR 21—Prevent and Control Air Pollution From the Emission of Volatile Organic Compounds

DSF will not be subject to this regulation because 45 CSR 21 applies to sources located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County for control of the emission of VOCs through the application of reasonably available control technology. The facility will be located in Mason County and, therefore, will not be subject to the rule.

5.2.5 45 CSR 27—Prevent and Control the Emissions of Toxic Air Pollutants

DSF will not be subject to this regulation because it is not a "Chemical Processing Unit" as defined in 45 CSR 27-2.4, which explicitly states that "... the term chemical processing unit ... does not include equipment used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight." None of the process streams at the facility will produce or contact materials containing more than 5 percent benzene by weight. In addition, the facility will not discharge a toxic air pollutant into the open air in excess of the amount shown in 45 CSR 27 Table A.

5.2.6 45 CSR 29—Rules Requiring the Submission of Emission Statements for Volatile Organic Compound (VOC) Emissions and Oxides of Nitrogen (NO_x) Emissions

45 CSR 29 requires the submission of an emission statement from stationary sources located in Putnam County, Kanawha County, Cabell County, Wayne County, Wood County, and Greenbrier County, which have plant-wide VOC and/or NO_x emissions of greater than or equal to 25 tpy. The facility will be located in Mason County and, therefore, will not be subject to the rule.

5.2.7 45 CSR 30—Requirements for Operating Permits

DSF will not be subject to this regulation because 45 CSR 30 and the federal Title V operating permit program (40 CFR 70), which Rule 30 implements, apply to Title V major sources. The major source thresholds with respect to the WV Title V operating permit program are 10 tpy (9.07 MT/year) of a single HAP, 25 tpy (22.7 MT/year) of any combination of HAP, and 100 tpy (90.7 MT/year) of other regulated pollutants.

Since the facility's potential air emissions, including fugitive emissions, will be less than each Title V major source threshold, DSF will not require a Title V Operating Permit.

5.2.8 45 CSR 33—Acid Rain Provisions and Permits

The facility is not subject to 45 CSR 33 because the facility does not meet the definition of an affected source (power plants) under the Acid Rain Program under Title IV of the CAA.

5.2.9 45 CSR 40—Control of Ozone Season Nitrogen Oxides Emissions

DSF will not be subject to this regulation because the facility will not operate a unit with a maximum design heat input capacity greater than 250 MMBtu/hr (73,270 kW), a large NO_x SIP Call engine, or a kiln.

APPENDIX A PERMIT APPLICATION DOCUMENTS

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)				
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN CONSTRUCTION D MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FA	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION				
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and a					
Sec	tion I. G	eneral			
1. Name of applicant (as registered with the WV Secretar Domestic Synthetic Fuels I, LLC	ry of State's	Office):	2. Fede	ral Employer I 208025	D No. <i>(FEIN):</i> 5171
3. Name of facility (if different from above):			4. The applicant is the:		
Same as above			☑ OWNER□ OPERATOR□BOTH		
5A. Applicant's mailing address: PO Box 292 Point Pleasant, WV 25550	5	5B. Facility's present physical address: N/A			
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorpora change amendments or other Business Registration C If NO, provide a copy of the Certificate of Authority/ amendments or other Business Certificate as Attachr 	ation/Organ Certificate as /Authority o	nization/Limited F s Attachment A.	Partnersh	ip (one page)	including any name
7. If applicant is a subsidiary corporation, please provide t	the name of	parent corporation	n: Americ	a First, Inc ¹	
 8. Does the applicant own, lease, have an option to buy o If YES, please explain: Domestic Synthetic 					ES 🗌 NO
 If NO, you are not eligible for a permit for this source. 					
 9. Type of plant or facility (stationary source) to be cons administratively updated or temporarily permitted crusher, etc.): Direct Coal Liquefaction Facility 			Classifica (NAICS)	erican Industry ation System code for the facility: 2 24110	
11A. DAQ Plant ID No. (for existing facilities only): 1 N/A		current 45CSR13 and 45CSR30 (Title V) permit numbers ated with this process (for existing facilities only): N/A			

¹ Domestic Synthetic Fuels I, LLC is an entirely separate entity from America First, Inc. At the time of submittal, America First, Inc. is the sole member of Domestic Synthetic Fuels I, LLC, and as such, is considered the parent as of 427 entity.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

12A.

- For **Modifications**, **Administrative Updates** or **Temporary permits** at an existing facility, please provide directions to the *present location* of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the *proposed new site location* from the nearest state road. Include a MAP as Attachment B.

Take WV-62N out of Point Pleasant, WV for about 5.0 miles and take a left at the access road. The Domestic Synthetic Fuels I site will be on the right-hand side of the access road.

12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
N/A	Point Pleasant	Mason
12.E. UTM Northing (KM): 4309.098	12F. UTM Easting (KM): 403.948	12G. UTM Zone: 17N
13. Briefly describe the proposed change(s) at the facility:		
New construction of facility.		
14A. Provide the date of anticipated installation or change	ge: 4/11/2019 or ASAP	14B. Date of anticipated Start-Up
		if a permit is granted: 10/01/2021
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).		
 Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52 		
16. Is demolition or physical renovation at an existing facility involved? YES NO		
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed		
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.		
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the		
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application		
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this		
information as Attachment D.		
Section II. Additional attachments and supporting documents.		
 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 		
20. Include a Table of Contents as the first page of your application package.		
 Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance). 		
- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).		
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.		
23. Provide a Process Description as Attachment G.		
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). 		
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.		

24. Provide Material Safety Data Sheet	s (MSDS) for all materials proce	ssed, used or produced as Attachment H.		
 For chemical processes, provide a MSDS for each compound emitted to the air. 				
25. Fill out the Emission Units Table and provide it as Attachment I.				
26. Fill out the Emission Points Data S	ummary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.		
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide it	as Attachment K.		
28. Check all applicable Emissions Unit	t Data Sheets listed below:			
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry		
Chemical Processes	Hot Mix Asphalt Plant	oxtimes Solid Materials Sizing, Handling and Storage		
Concrete Batch Plant	Incinerator	Facilities		
Grey Iron and Steel Foundry	Indirect Heat Exchanger	Storage Tanks		
General Emission Unit, specify				
Fill out and provide the Emissions Unit I	Data Sheet(s) as Attachment L.			
29. Check all applicable Air Pollution C	ontrol Device Sheets listed belo	DW:		
Absorption Systems	🛛 Baghouse	⊠ Flare		
Adsorption Systems	Condenser	Mechanical Collector		
	Electrostatic Precipita	ator 🗌 Wet Collecting System		
Other Collectors, specify				
Fill out and provide the Air Pollution Con	ntrol Device Sheet(s) as Attach	ment M.		
30. Provide all Supporting Emissions (Items 28 through 31.	Calculations as Attachment N,	or attach the calculations directly to the forms listed in		
	compliance with the proposed e	n proposed monitoring, recordkeeping, reporting and missions limits and operating parameters in this permit		
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.				
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general				
circulation in the area where the sour	rce is or will be located (See 450	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>		
Advertisement for details). Please s	submit the Affidavit of Publicat	on as Attachment P immediately upon receipt.		
33. Business Confidentiality Claims.	Does this application include con	fidential information (per 45CSR31)?		
☐ YES	⊠ NO			
segment claimed confidential, includ Notice – Claims of Confidentiality	ing the criteria under 45CSR§31 "guidance found in the General			
Se	ection III. Certification	of Information		
34. Authority/Delegation of Authority. Check applicable Authority Form be		ther than the responsible official signs the application.		
Authority of Corporation or Other Busi	ness Entity	Authority of Partnership		
Authority of Governmental Agency				
Submit completed and signed Authority Form as Attachment R.				
		Permitting Section of DAQ's website, or requested by phone.		

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE <u>Levin</u> (Please use blu	L L	(Please use blue ink)
35B. Printed name of signee: Kevin Whited		35C. Title: President
35D. E-mail: kwhited@americaleading.com	36E. Phone: 304 – 268 - 7515	36F. FAX:
36A. Printed name of contact person (if different from	n above): Grant Morgan	36B. Title: Project Manager
36C. E-mail: Grant.morgan@erm.com	36D. Phone: 304 – 757 - 4777	36E. FAX: 304 - 757 - 4799

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
	ermit application with the signature(s) to the DAQ, Permitting Section, at the application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

G For Title V Administrative Amendments:

NSR permit writer should notify Title V permit writer of draft permit,

□ For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.

For Title V Significant Modifications processed in parallel with NSR Permit revision:

NSR permit writer should notify a Title V permit writer of draft permit,

Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Table of Contents

- ATTACHMENT A BUSINESS CERTIFICATE
- ATTACHMENT B LOCATION MAP
- ATTACHMENT C INSTALLATION AND START UP SCHEDULE
- ATTACHMENT D REGULATORY DISCUSSION
- ATTACHMENT E PLOT PLAN
- ATTACHMENT F DETAILED PROCESS FLOW DIAGRAMS
- ATTACHMENT G PROCESS DESCRIPTION
- ATTACHMENT H SAFETY DATA SHEETS
- ATTACHMENT I EMISSIONS UNIT TABLE
- ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET
- ATTACHMENT K FUGITIVE EMISSIONS DATA SUMMARY SHEET
- ATTACHMENT L EMISSIONS UNIT DATA SHEETS
- ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEETS
- ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS
- ATTACHMENT O MONITORING, REPORTING, AND RECORDKEEPING PLAN
- ATTACHMENT P PUBLIC NOTICE

Attachment A

I, Mac Warner, Secretary of State of the State of West Virginia, hereby certify that

DOMESTIC SYNTHETIC FUELS I, LLC

Control Number: 9AOW4

has filed its "Articles of Organization" in my office according to the provisions of West Virginia Code §§31B-2-203 and 206. I hereby declare the organization to be registered as a limited liability company from its effective date of December 26, 2018 until the expiration of the term or termination of the company.

Therefore, I hereby issue this

CERTIFICATE OF A LIMITED LIABILITY COMPANY

Given under my hand and the Great Seal of the State of West Virginia on this day of December 26, 2018

Mac Warner

Secretary of State

ARTICLES OF ORGANIZATION

of

DEC 2 6 2018 IN THE OFFICE OF SECRETARY OF STATE

FILED

DOMESTIC SYNTHETIC FUELS I, LLC

The undersigned, acting as Organizer of a West Virginia limited liability company pursuant to the provisions of Chapter 31B, Article 2, Section 202, of the West Virginia Code, does hereby adopt the following Articles of Organization for such limited liability company:

1. **NAME:** The name of the limited liability company shall be:

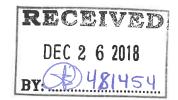
DOMESTIC SYNTHETIC FUELS I, LLC

2. INITIAL DESIGNATED OFFICE/PRINCIPAL OFFICE: The mailing address and the physical address of the initial designated office and the principal office of the limited liability company shall be:

<u>19 Gemini Way</u> Summit Point, WV 25446

Jefferson

in the County of:


3. AGENT FOR SERVICE OF PROCESS: The name and address of the initial agent for service of process on the limited liability company shall be:

<u>Kevin R. Whited</u> <u>19 Gemini Way</u> Summit Point, WV 25446

4. **ORGANIZER:** The name and address of the sole Organizer of the limited liability company are as follow:

<u>Michael J. Funk</u> <u>1250 Edwin Miller Boulevard, Suite 300</u> <u>Martinsburg, WV 25442</u>

- 5. **PERIOD OF DURATION:** The limited liability company shall be an <u>At-Will Company</u> (within the meaning of Chapter 31B of the West Virginia Code) with an indefinite period of duration, and shall NOT be a Term Company.
- 6. **MANAGEMENT:** The limited liability company shall be a <u>Manager-Managed Company</u> (within the meaning of Chapter 31B of the West Virginia Code), and the name and address of the initial manager are as follow:

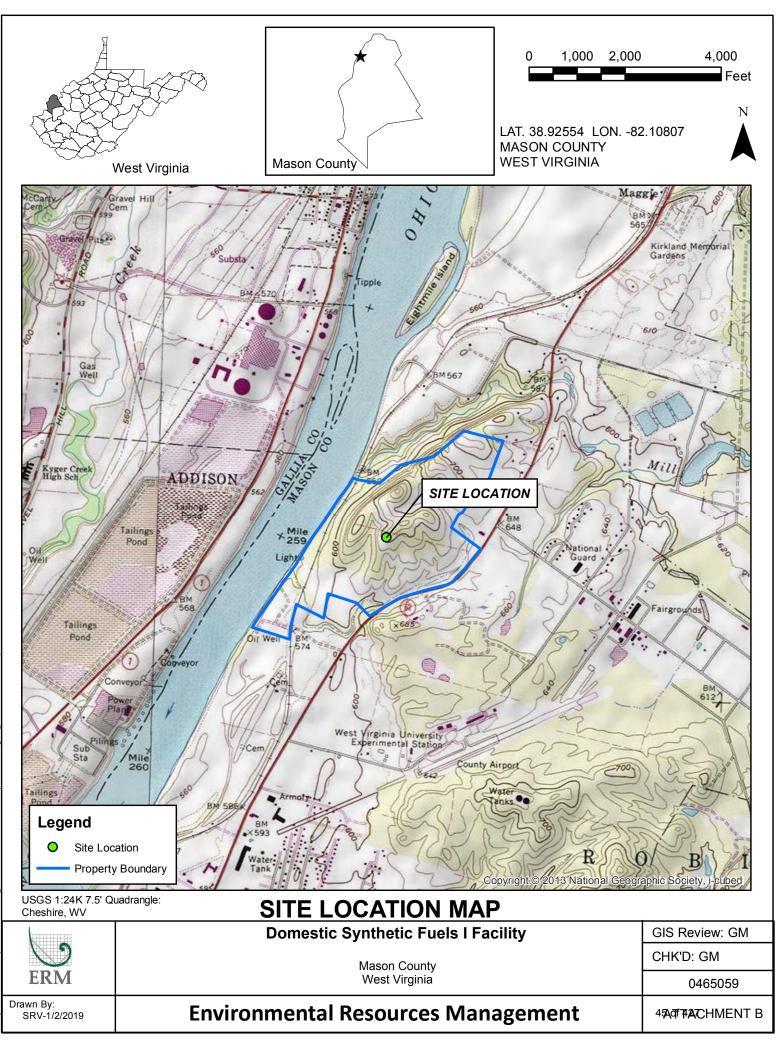
MA8280327

Kevin R. Whited 19 Gemini Way

Summit Point, WV 25446

Provided that, that no manager or managers shall have authority to execute and deliver any instrument transferring the limited liability company's interest in real estate unless such instrument is executed by members owning at least 66% of the membership interests in the limited liability company.

- LIABILITY OF MEMBERS FOR DEBTS: <u>No member of the limited liability company</u> shall be liable for the debts, obligations, and liabilities of the limited liability company under Chapter 31B, Article 3, Section 303(c) of the West Virginia Code.
- 8. PURPOSES: The purpose or purposes for which the limited liability company is organized are as follow: <u>To engage in the development, construction, and operation of facilities for the production of synthetic fuels; and the transaction of and engagement in any or all other lawful business and activities incident thereto for which limited liability companies may be organized under the laws of West Virginia.</u>
- 9. EFFECTIVE DATE: The requested effective date of these Articles of Organization is the <u>date</u> and time of filing.
- 10. E-MAIL ADDRESS: The E-mail address where business correspondence from the Office of Secretary of State may be received is: <u>kwhited@americaleading.com</u>.
- 11. **CONTACT INFORMATION:** The name, telephone number, and e-mail address of the limited liability company's contact person in case of any problems or questions with regard to filing is:


Michael J. Funk <u>304-262-3522</u> michael.funk@steptoe-johnson.com

IN WITNESS WHEREOF, the undersigned Organizer of the limited liability company, for the purpose of organizing the limited liability company under the laws of the State of West Virginia, does execute, make, and deliver these Articles of Organization this 26th day of December, 2018.

MICHAEL , FUNK, Organizer

Prepared by: Michael J. Funk, 1250 Edwin Miller Boulevard, Suite 300, Martinsburg, WV 25404.

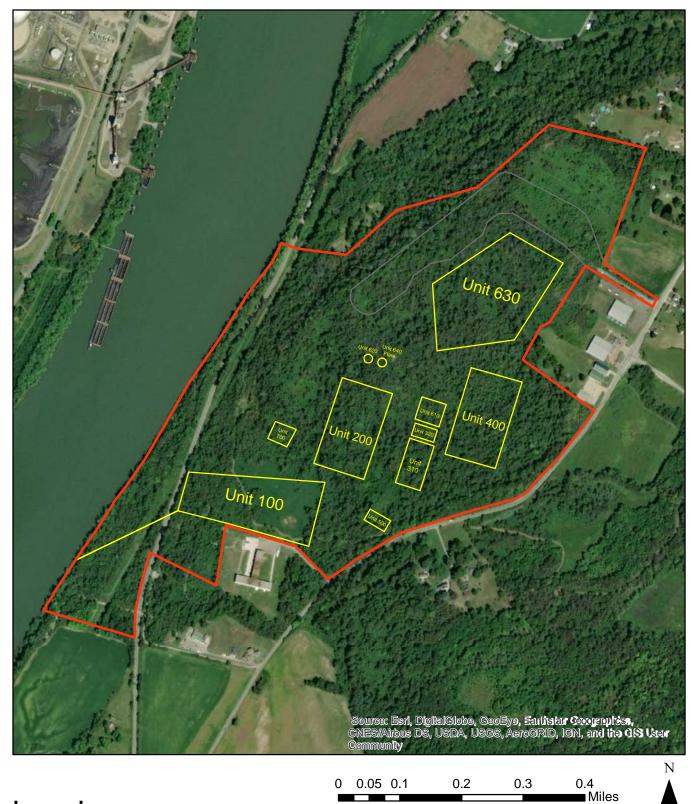
Attachment B

Attachment C

Attachment C

Construction Schedule

Construction is expected to start on the DSF facility in April 2019. DSF facility operations are expected to start in October 2021.

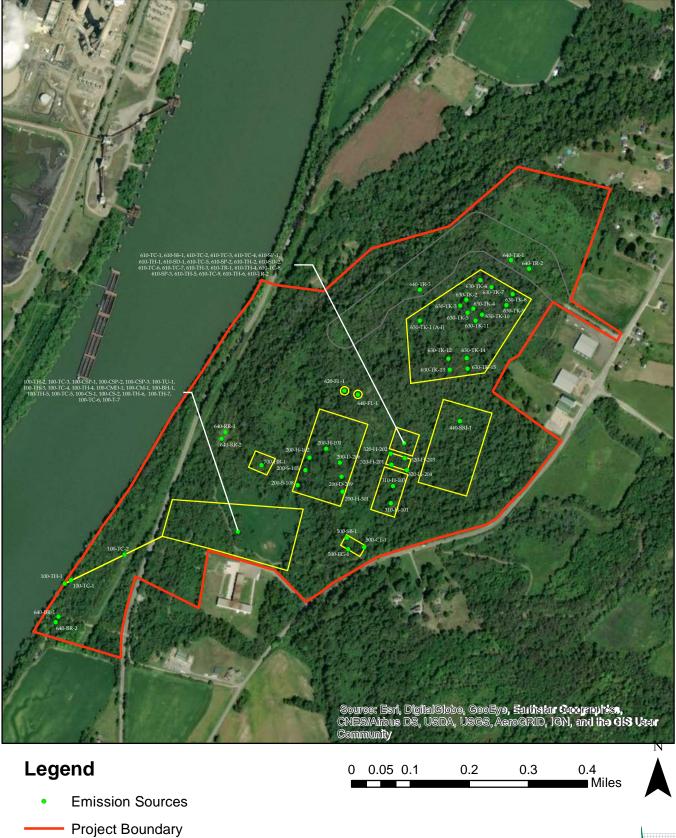

Attachment D

Attachment D

Regulatory Discussion

Please see the regulatory discussion in Section 4 and Section 5 of the Introduction of this permit application for the federal and state regulatory discussions, respectively.

Attachment E

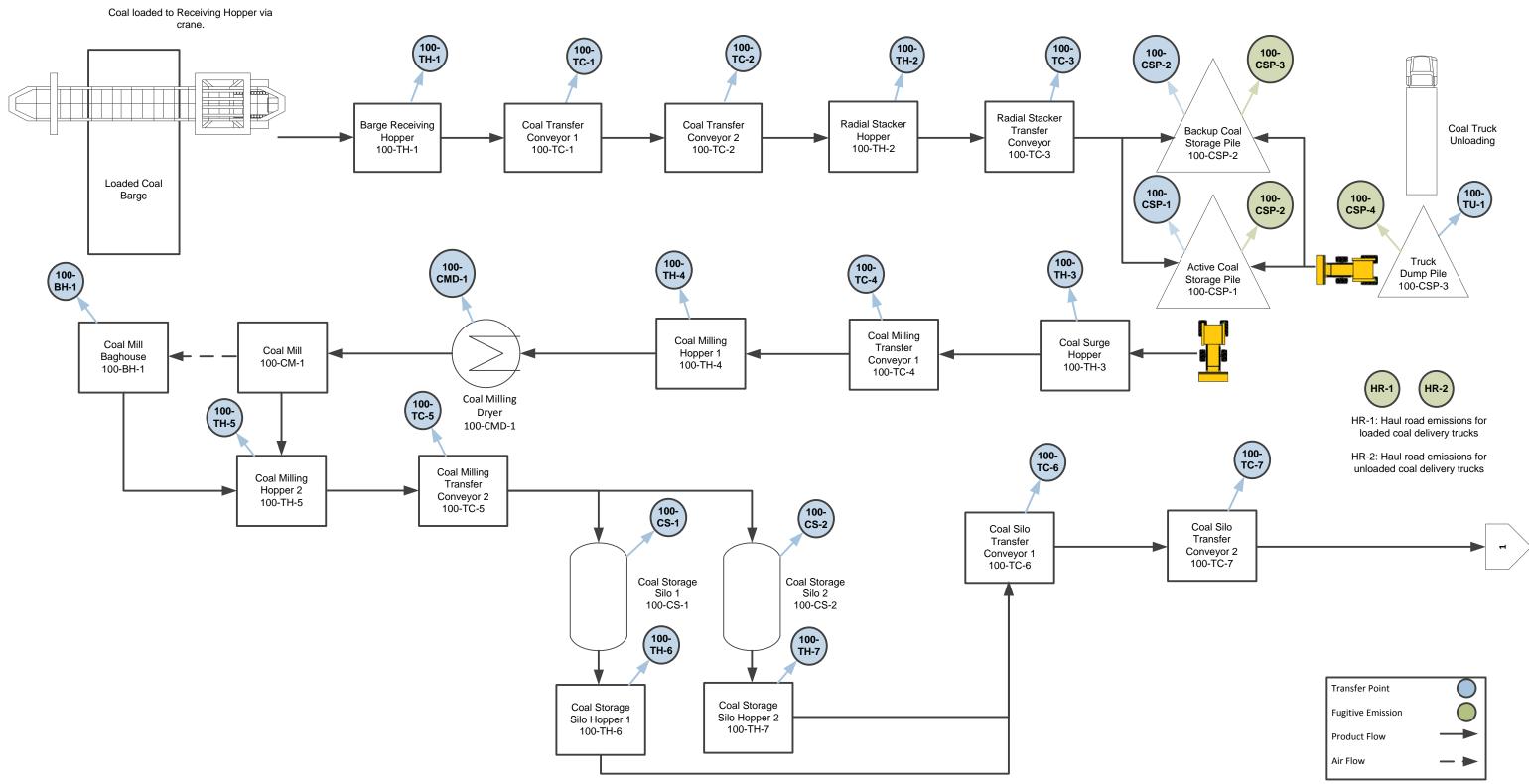


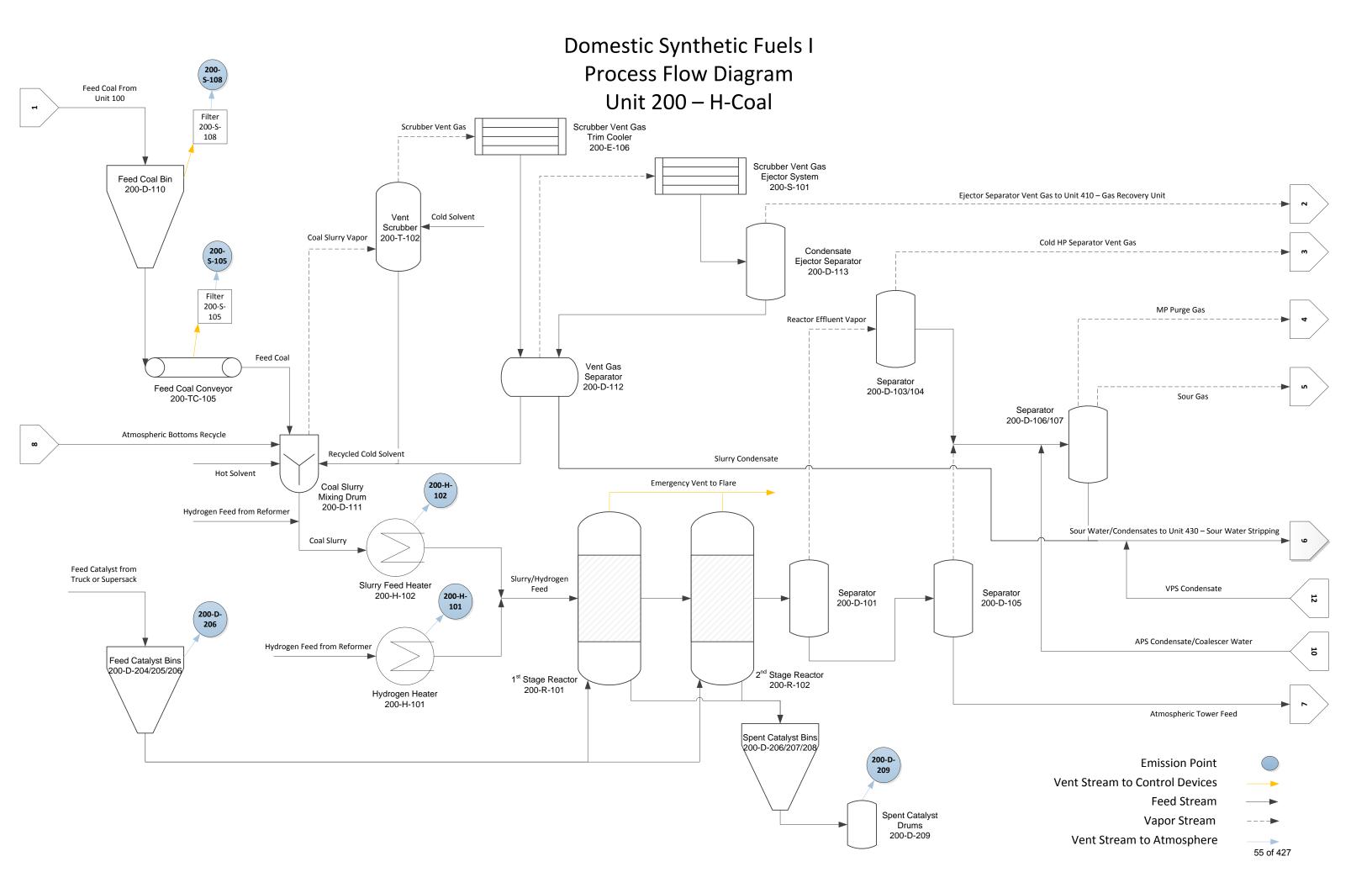
Unit Boundary

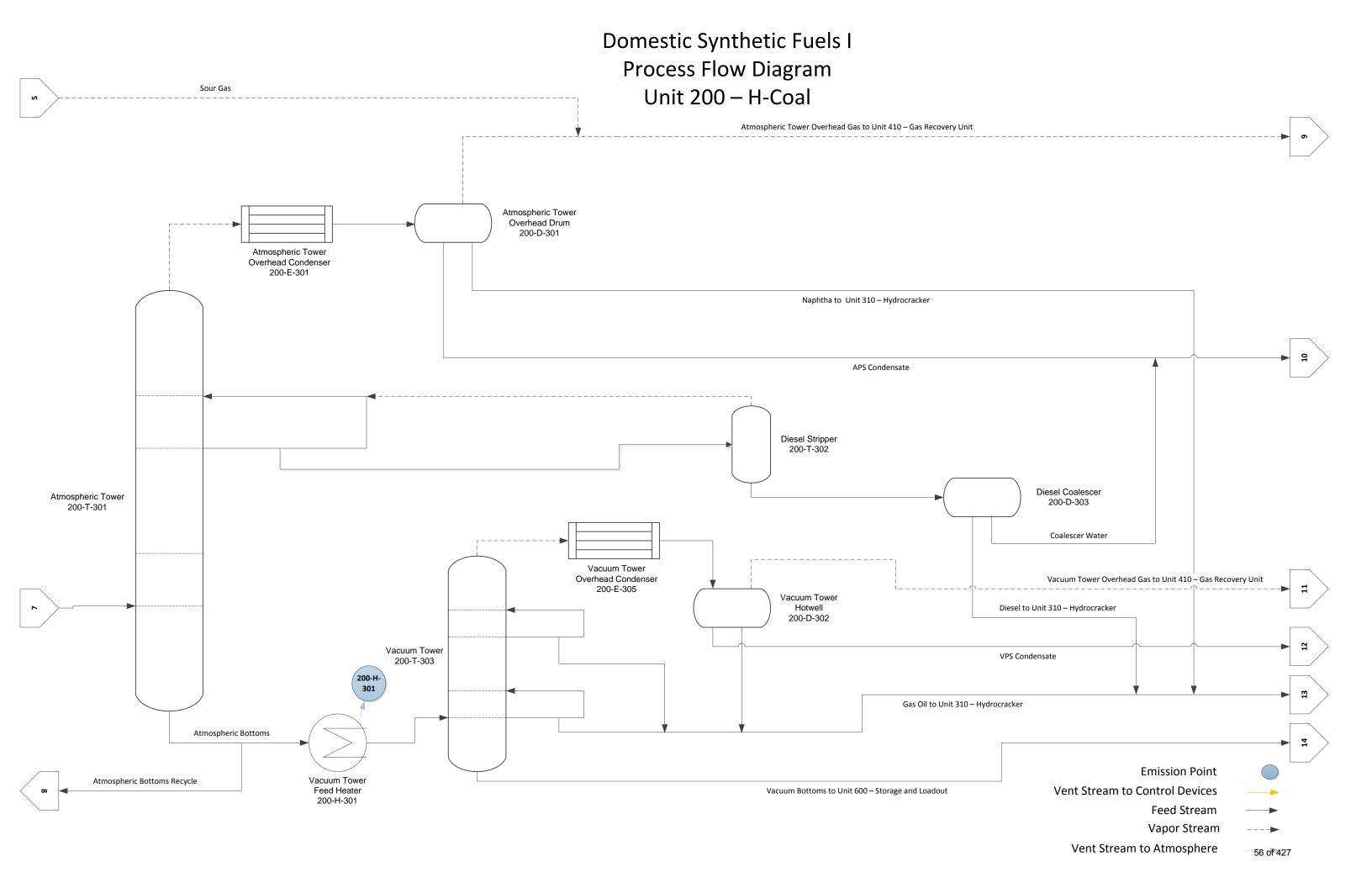
Access Road

Domestic Synthetic Fuels I, LLC Point Pleasant, WV

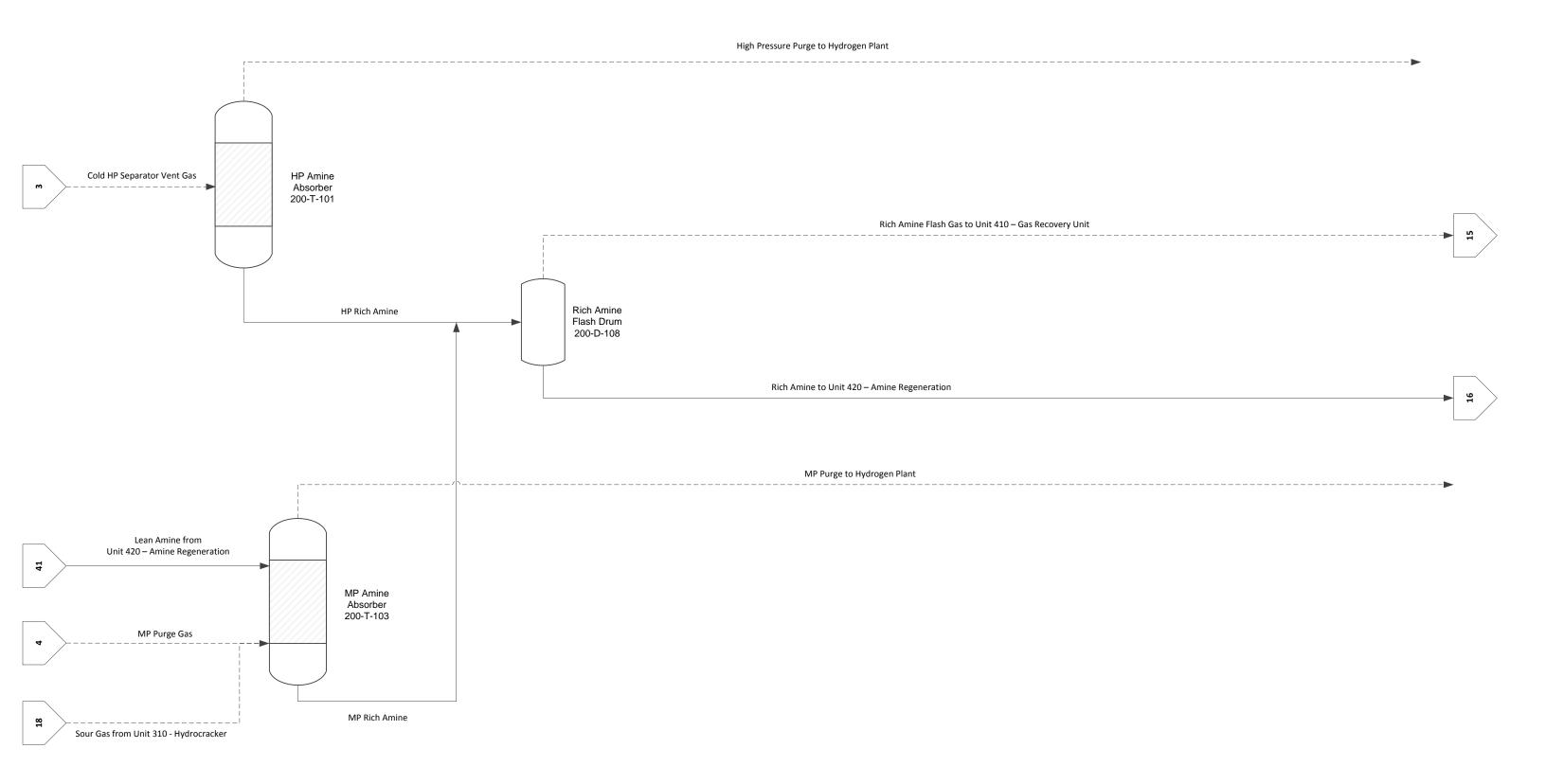
Unit Boundary

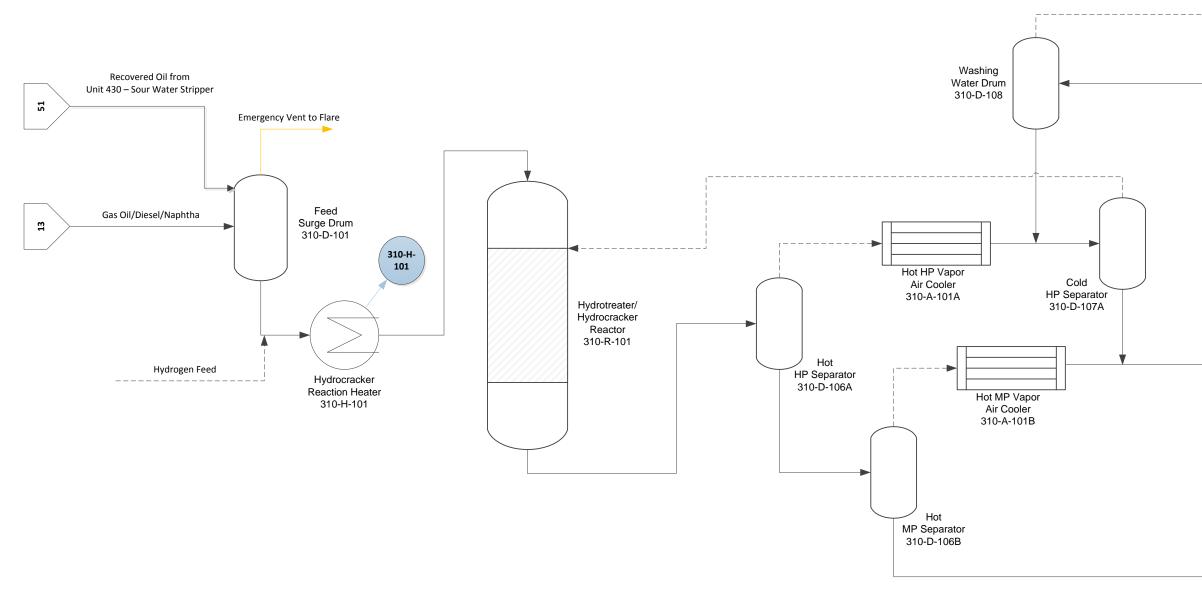

Access Road

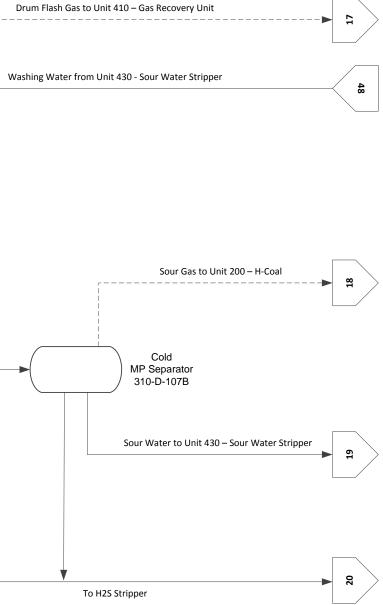

Domestic Synthetic Fuels I, LLC Point Pleasant, WV

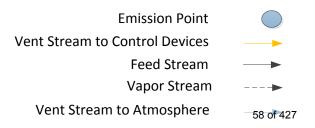


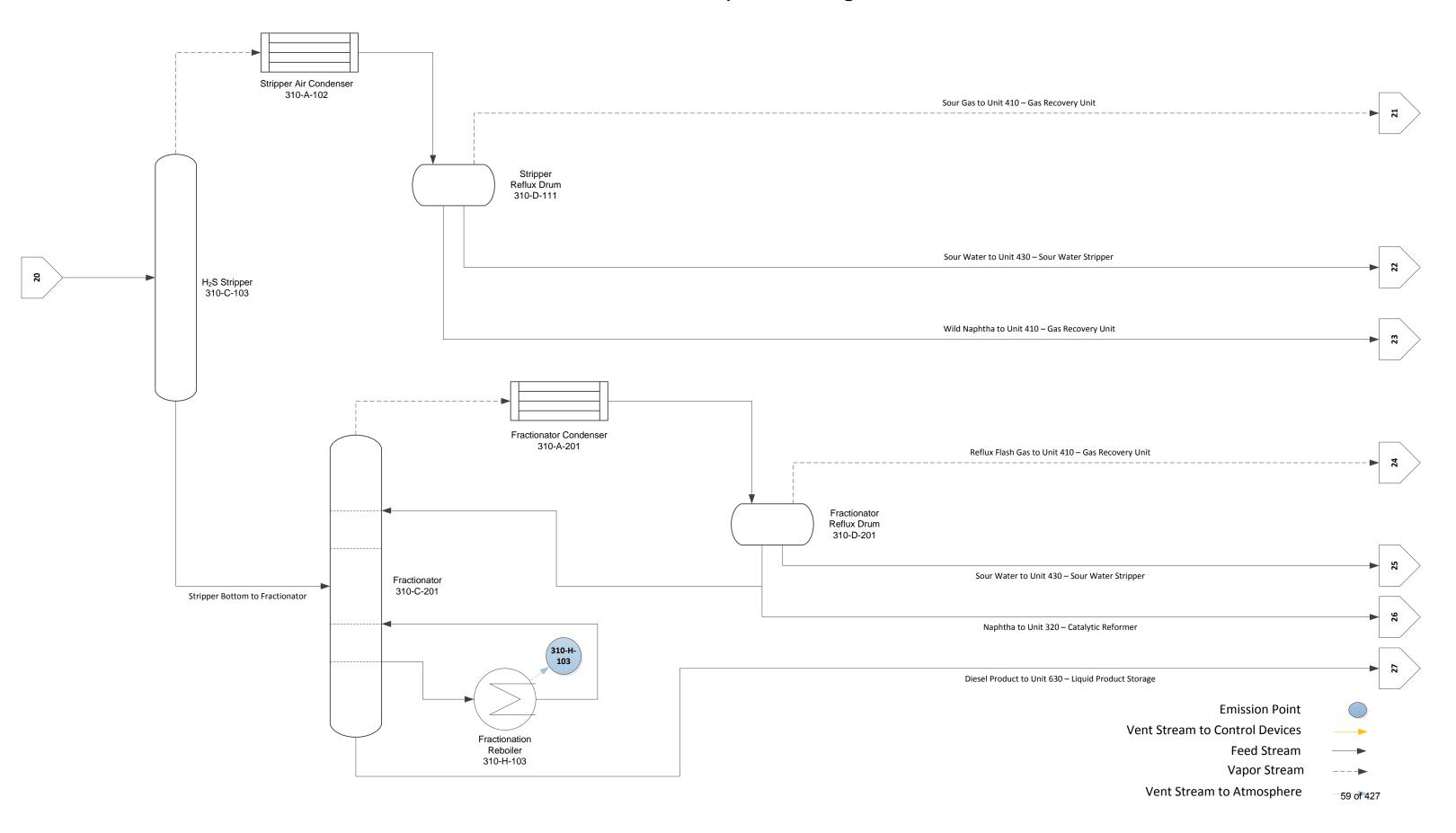
Attachment F

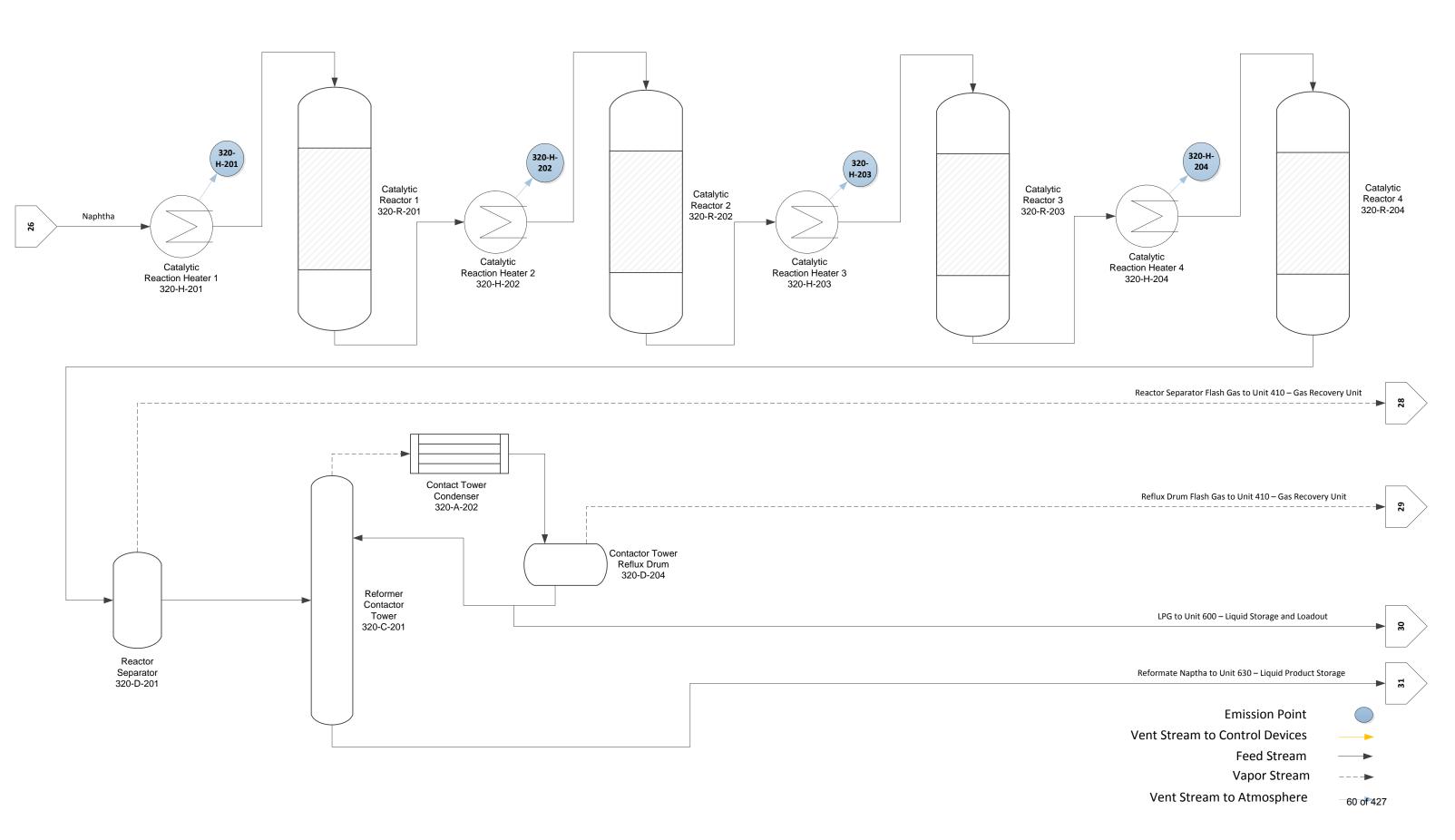

Domestic Synthetic Fuels I Process Flow Diagram Unit 100 – Coal Handling

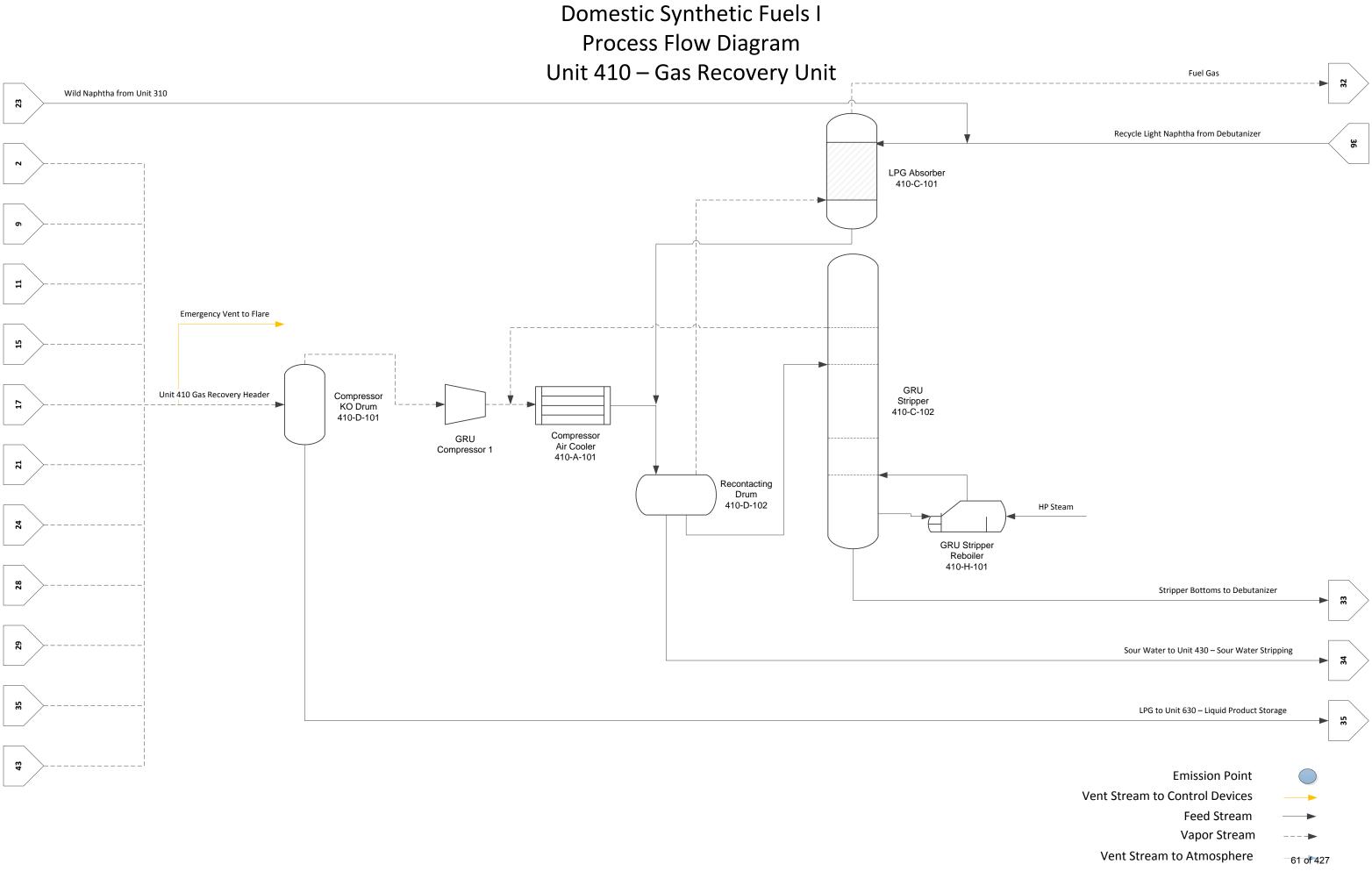




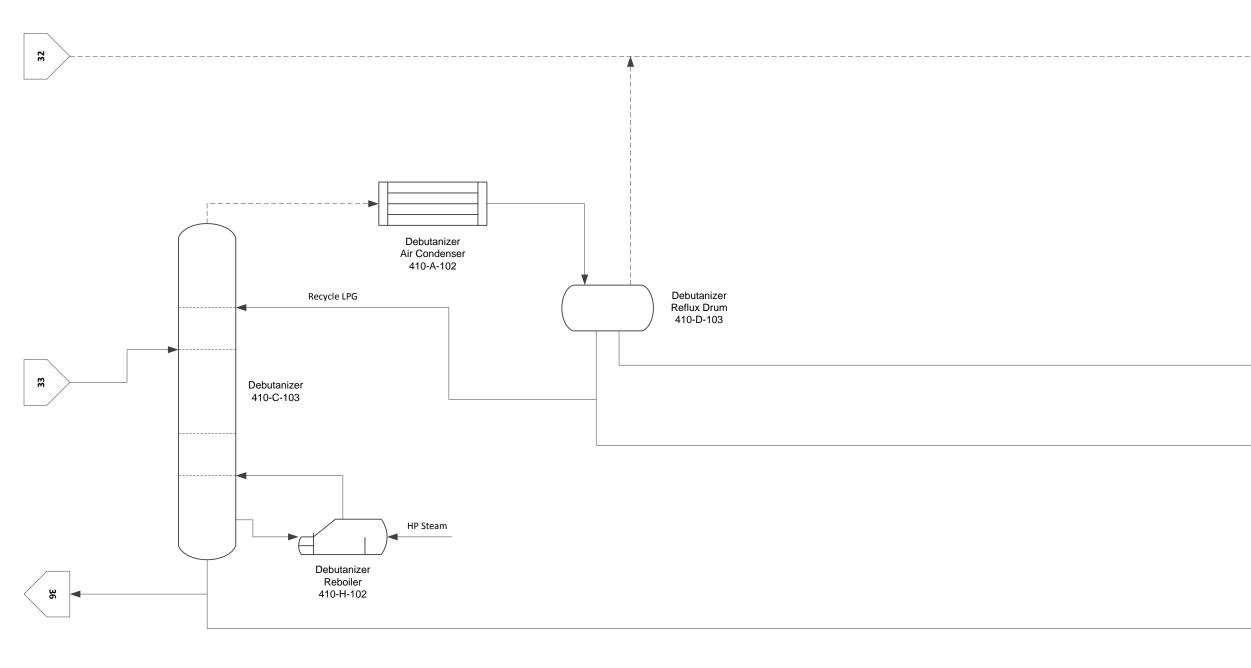

Domestic Synthetic Fuels I Process Flow Diagram Unit 200 – H-Coal


Domestic Synthetic Fuels I Process Flow Diagram Unit 310 – Hydrocracker

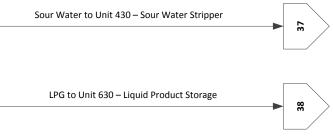




Domestic Synthetic Fuels I Process Flow Diagram Unit 310 – Hydrocracking

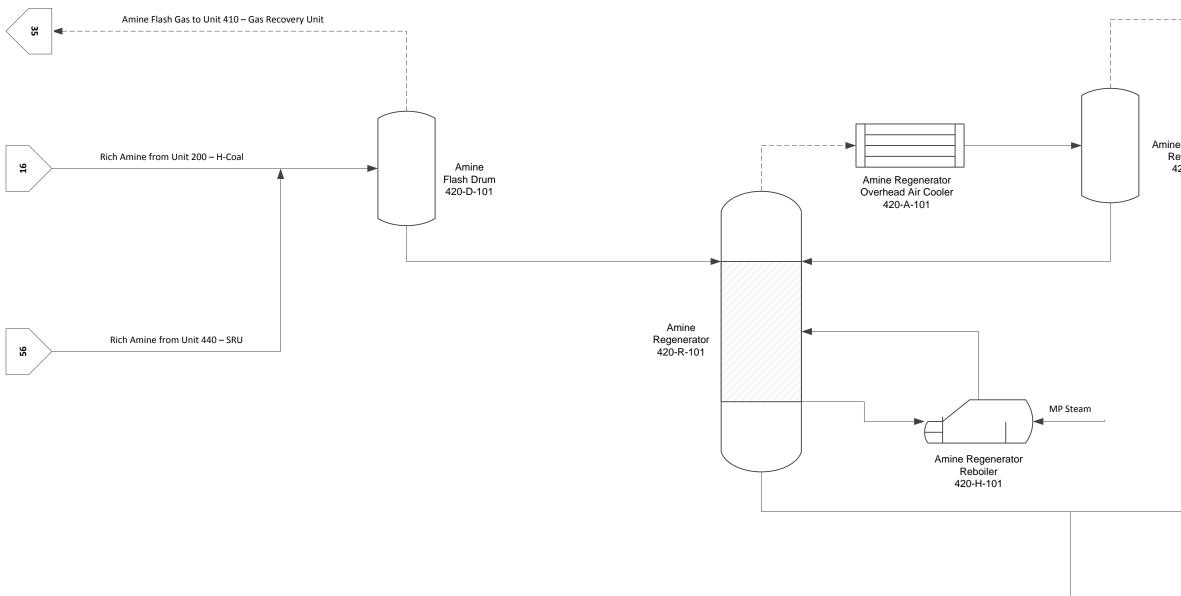


Domestic Synthetic Fuels I Process Flow Diagram Unit 320 – Catalytic Reformer

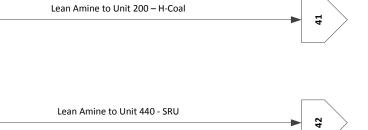


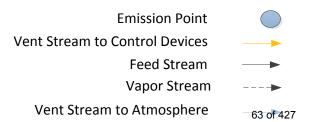


Domestic Synthetic Fuels I Process Flow Diagram Unit 410 – Gas Recovery Unit

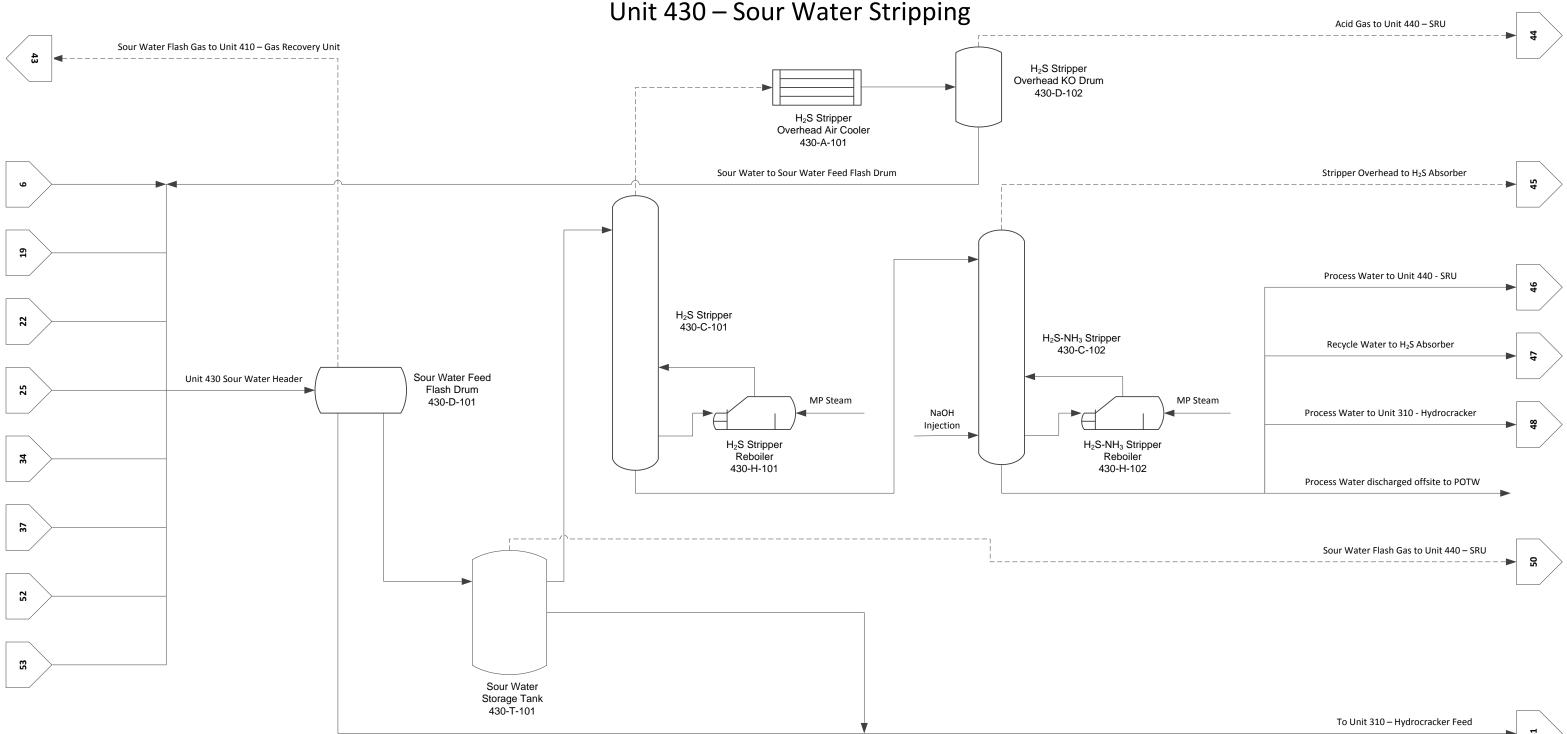


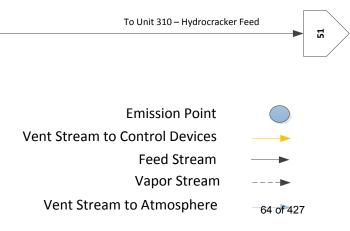
Fuel Gas for use in Facility Fired Sources

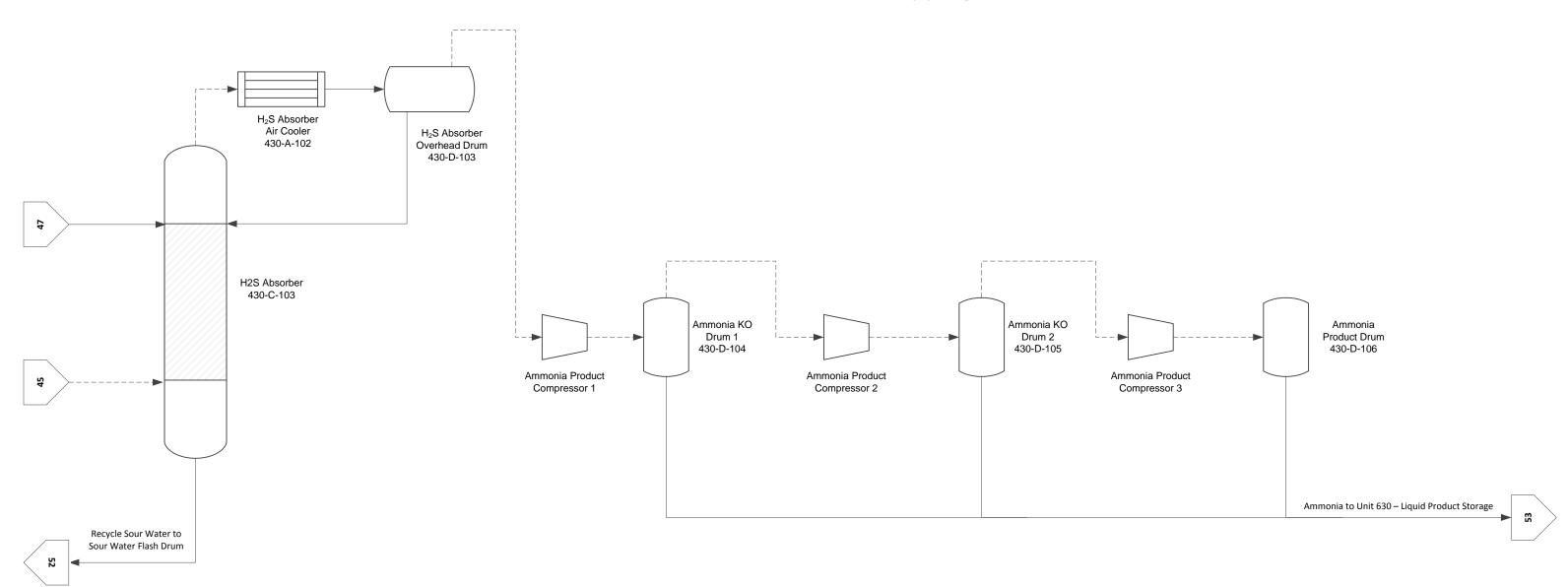

Domestic Synthetic Fuels I Process Flow Diagram Unit 420 – Amine Regeneration

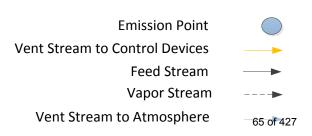


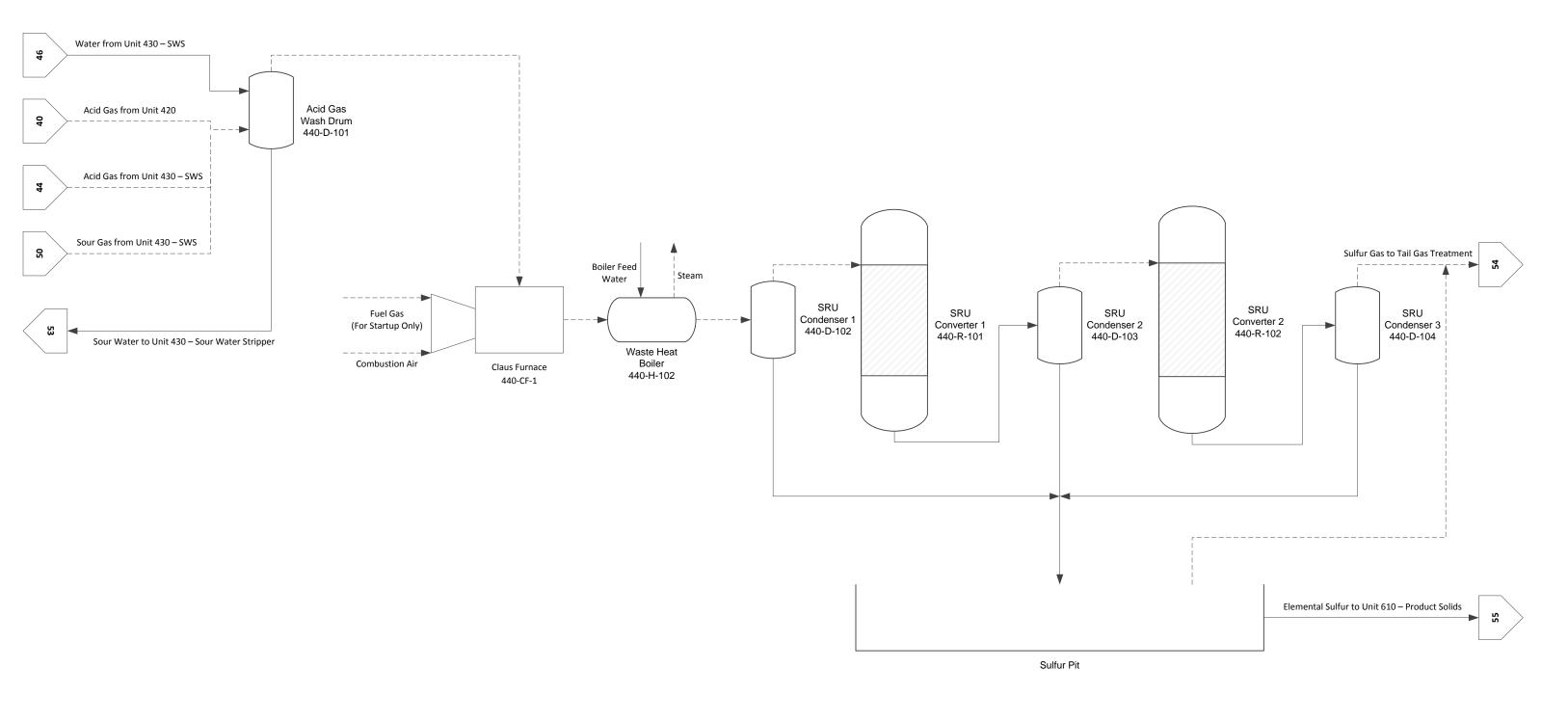
Reflux Drum Acid Gas to Unit 440 – SRU

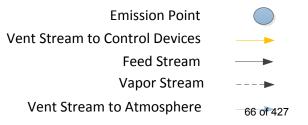


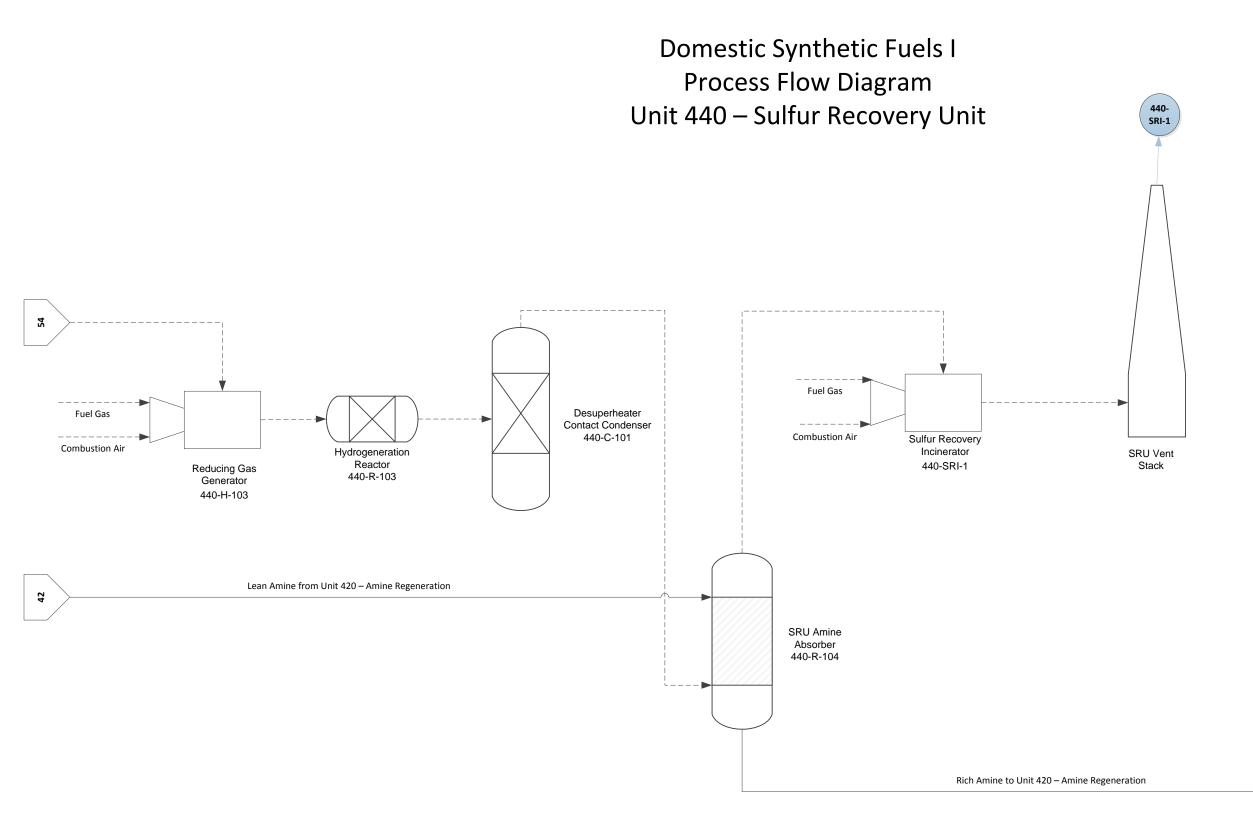

Amine Regenerator Reflux Drum 420-D-102



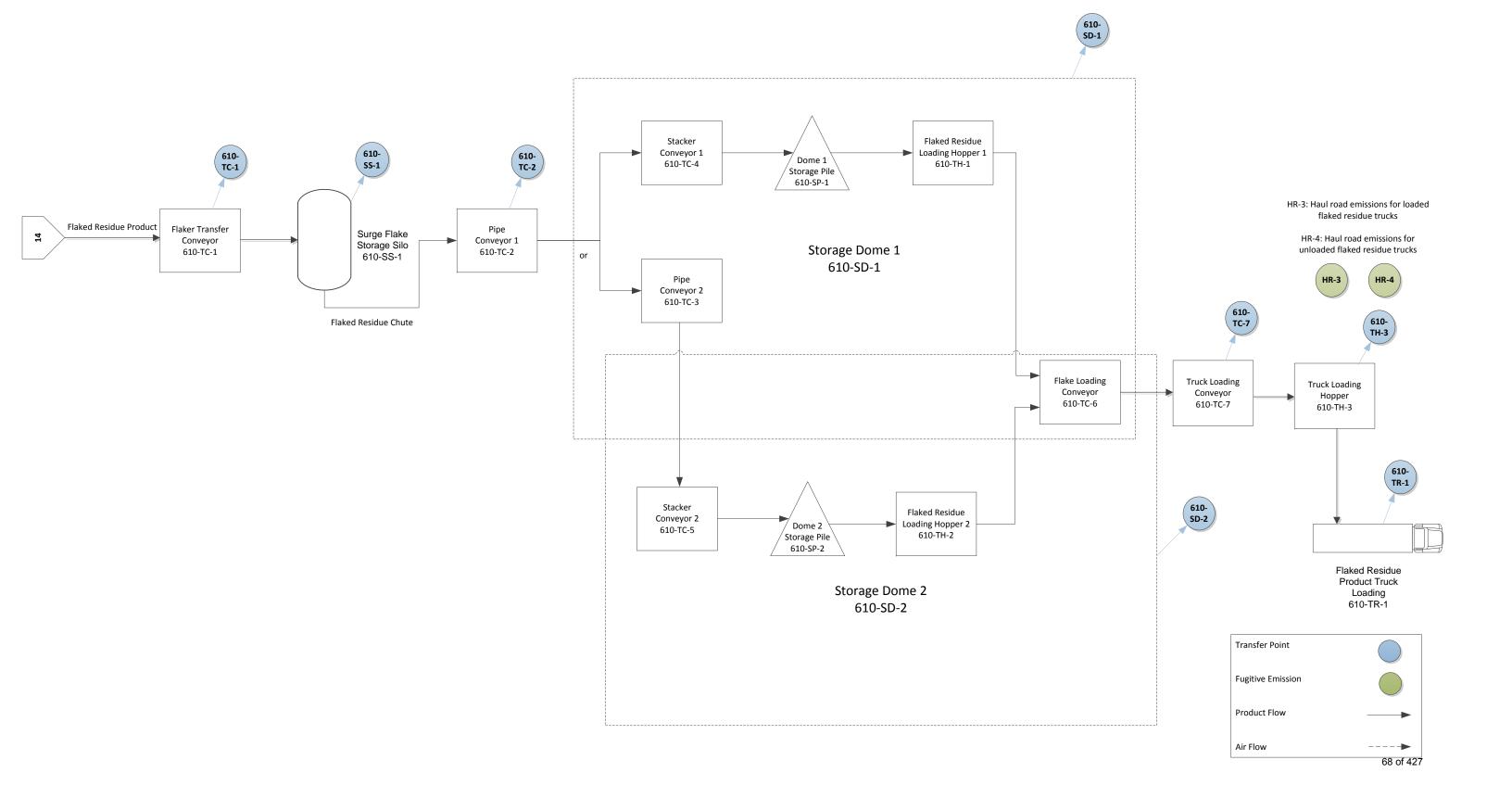

Domestic Synthetic Fuels I Process Flow Diagram Unit 430 – Sour Water Stripping

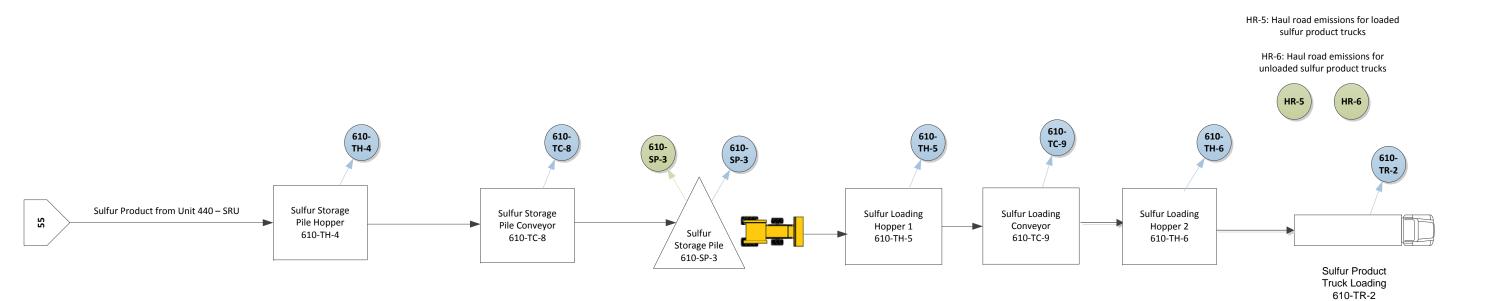


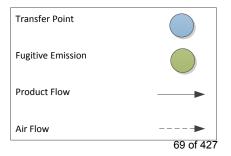

Domestic Synthetic Fuels I Process Flow Diagram Unit 430 – Sour Water Stripping



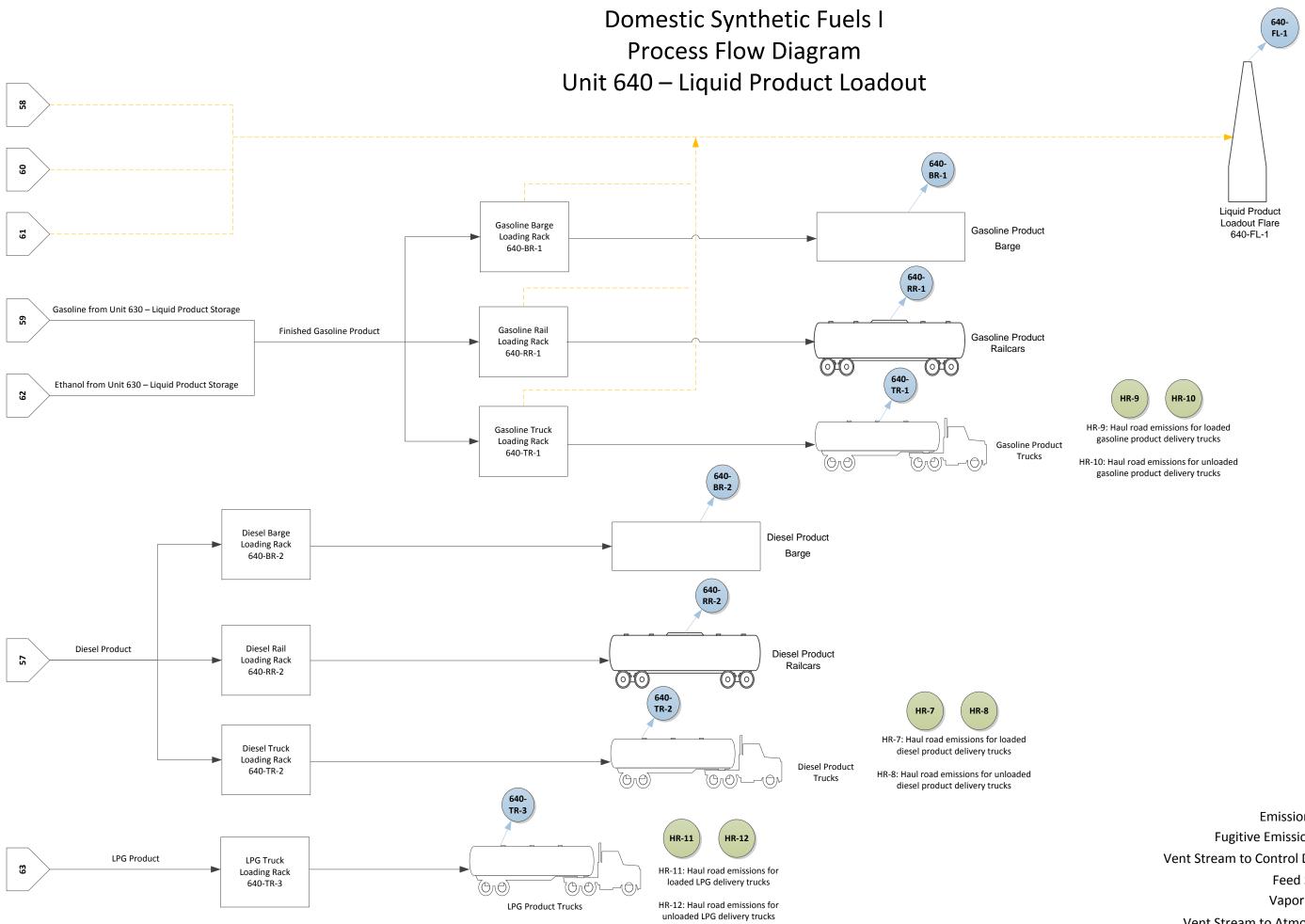
Domestic Synthetic Fuels I Process Flow Diagram Unit 440 – Sulfur Recovery Unit




Emission Point Vent Stream to Control Devices -Feed Stream Vapor Stream ---> Vent Stream to Atmosphere


67 of 427

Domestic Synthetic Fuels I Process Flow Diagram Unit 610 – Product Solids Handling


Domestic Synthetic Fuels I Process Flow Diagram Unit 610 – Product Solids Handling

\bigcirc	Emission Point
	Fugitive Emission Point
	Vent Stream to Control Devices
	Feed Stream
	Vapor Stream
70 of 42	Vent Stream to Atmosphere

Emission Point Fugitive Emission Point Vent Stream to Control Devices Feed Stream Vapor Stream Vent Stream to Atmosphere

71 of 427

Attachment G

Attachment G

Process Description

Please see the process description for the DSF facility as Section 2.0 in the Introduction of this permit application.

Attachment H

SAFETY DATA SHEET

1. Identification			
Product identifier	PR 156		
Other means of identification			
Product code	31224		
Recommended use	Catalyst.		
Manufacturer/Importer/Supplier/	/Distributor information		
Manufacturer			
Supplier	Axens		
Headquarters	Axens SA		
Address	89, boulevard Franklin Roosevelt		
	92508 Rueil-Malmaison		
Telephone	+33 1 47 14 21 00		
Fax	+33 1 47 14 25 00		
SDS contact e-mail	sds@axens.net		
Emergency Telephone Number			
Europe	+1 760 476 3961		
Asia Pacific	+1 760 476 3960		
Americas	+1 760 476 3962		
Middle East / Africa	+1 760 476 3959		
Information on operation hours	24/7/365		
2. Hazard(s) identification			
Physical hazards	Not classified.		
Health hazards	Not classified.		
Environmental hazards	Not classified.		
OSHA defined hazards	Not classified.		
Label elements			
Hazard symbol	None.		
Signal word	None.		
Hazard statement	The mixture does not meet the criteria for classification.		
Precautionary statement			
Prevention	Observe good industrial hygiene practices.		
Response	Wash hands after handling.		
Storage	Store away from incompatible materials.		
Disposal	Dispose of waste and residues in accordance with local authority requirements.		
Hazard(s) not otherwise classified (HNOC)	None known		
Supplemental information	None.		

3. Composition/information on ingredients

Mixtures

Chemical name Common name and synonyms		CAS number	%	
Aluminium Oxide (Non Fibrous Form)		1344-28-1	90 - 100	
Dialuminium Chloride Pentahydroxide		12042-91-0	5 - < 10	
Platinum Dioxide		1314-15-4	< 1	
Rhenium Dioxide		12036-09-8	< 1	
TRADE SECRET*		Proprietary*	< 1	

*Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

4. First-aid measures	
Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.
Skin contact	Wash off with soap and water. Get medical attention if irritation develops and persists.
Eye contact	Rinse with water. Get medical attention if irritation develops and persists.
Ingestion	Rinse mouth. Get medical attention if symptoms occur.
Most important symptoms/effects, acute and delayed	Direct contact with eyes may cause temporary irritation.
Indication of immediate medical attention and special treatment needed	Treat symptomatically.
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.
5. Fire-fighting measures	
Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).
Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this will spread the fire.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire fighting equipment/instructions	Move containers from fire area if you can do so without risk.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.
General fire hazards	No unusual fire or explosion hazards noted.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	The product is immiscible with water and will spread on the water surface. Stop the flow of material, if this is without risk. Following product recovery, flush area with water. For waste disposal, see section 13 of the SDS.
Environmental precautions	Avoid discharge into drains, water courses or onto the ground.
7. Handling and storage	
Precautions for safe handling	Avoid prolonged exposure. Observe good industrial hygiene practices.
Conditions for safe storage, including any incompatibilities	Store in original tightly closed container. Store away from incompatible materials (see Section 10 of the SDS).

B. Exposure controls/pe			
ccupational exposure limits			
US. OSHA Table Z-1 Limit Components	s for Air Contaminants (29 CFR 1910.1000) Type	Value	Form
Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)	PEL	5 mg/m3	Respirable fraction.
1344-20-1)		15 mg/m3	Total dust.
US. ACGIH Threshold Lim			F
Components	Туре	Value	Form
Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)	TWA	1 mg/m3	Respirable fraction.
Dialuminium Chloride Pentahydroxide (CAS 12042-91-0)	TWA	1 mg/m3	Respirable fraction.
TRADE SECRET	TWA	0.1 mg/m3	
US. NIOSH: Pocket Guide	to Chemical Hazards		
Components	Туре	Value	
Dialuminium Chloride Pentahydroxide (CAS 12042-91-0)	TWA	2 mg/m3	
TRADE SECRET	TWA	0.1 mg/m3	
ological limit values	No biological exposure limits noted for the ing	redient(s).	
ontrols dividual protection measure	should be matched to conditions. If applicable or other engineering controls to maintain airbo exposure limits have not been established, ma s, such as personal protective equipment	orne levels below reco	ommended exposure limits.
Eye/face protection	Wear safety glasses with side shields (or gog	ales).	
Skin protection			
Hand protection	Wear appropriate chemical resistant gloves. S supplier.	Suitable gloves can be	e recommended by the glove
Other	Wear suitable protective clothing.		
Respiratory protection	In case of insufficient ventilation, wear suitable	e respiratory equipme	ent.
Thermal hazards	Wear appropriate thermal protective clothing,	when necessary.	
eneral hygiene onsiderations	Always observe good personal hygiene meas and before eating, drinking, and/or smoking. equipment to remove contaminants.		
. Physical and chemica	l properties		
opearance	Extrudates		
Physical state	Solid.		
Form	Solid.		

Pale yellow

Not available. Not available.

Color

Odor threshold

рΗ

Melting point/freezing point	3632 °F (2000 °C)
Initial boiling point and boiling range	Not available.
Flash point	Not available.
Evaporation rate	Not available.
Flammability (solid, gas)	Not available.
Upper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	Not available.
Solubility(ies)	
Solubility (water)	Insoluble
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
Other information	
Density	< 1.00
Explosive properties	Not explosive.
Oxidizing properties	Not oxidizing.

10. Stability and reactivity

The product is stable and non-reactive under normal conditions of use, storage and transport.
Material is stable under normal conditions.
No dangerous reaction known under conditions of normal use.
Avoid spread of dust. Contact with incompatible materials.
Acids. Bases. Strong oxidizing agents. Chlorine.
Thermal decomposition or combustion may liberate carbon oxides and other toxic gases or vapors.

11. Toxicological information

Information on likely routes of exposure		
Inhalation	Prolonged inhalation may be harmful.	
Skin contact	No adverse effects due to skin contact are expected.	
Eye contact	Direct contact with eyes may cause temporary irritation.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Direct contact with eyes may cause temporary irritation.	

Information on toxicological effects

Acute toxicity

Components	Species	Test Results
Aluminium Oxide (Non Fibrous Fo	rm) (CAS 1344-28-1)	
<u>Acute</u>		
Inhalation		
Aerosol		
LC50	Rat	> 0.888 mg/l, 4 Hours
		7.6 mg/l, 1 Hours
Oral		
LD50	Rat	> 2000 mg/kg
Dialuminium Chloride Pentahydro	xide (CAS 12042-91-0)	
Acute		
Dermal		
LD50	Rat	> 2000 mg/kg, 21 Days
2200		
		> 2000 mg/kg, 24 Hours
Oral		
LD50	Rat	> 2000 mg/kg
* Estimates for product may b	e based on additional component data not shown.	
Skin corrosion/irritation	-	ation
	Prolonged skin contact may cause temporary irrit	
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irr	tation.
Respiratory or skin sensitization	1	
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	This product is not expected to cause skin sensit	zation.
Germ cell mutagenicity	No data available to indicate product or any com	
jjj	mutagenic or genotoxic.	
Carcinogenicity	This product is not considered to be a carcinoger	by IARC, ACGIH, NTP, or OSHA.
IARC Monographs. Overall	Evaluation of Carcinogenicity	
IARC Monographs. Overall Not listed.	Evaluation of Carcinogenicity	
Not listed.	Evaluation of Carcinogenicity d Substances (29 CFR 1910.1001-1050)	
Not listed.		
Not listed. OSHA Specifically Regulate Not regulated.		
Not listed. OSHA Specifically Regulate Not regulated.	d Substances (29 CFR 1910.1001-1050)	
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro	d Substances (29 CFR 1910.1001-1050)	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed.	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity -	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified.	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity -	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified.	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified.	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful.	e or developmental effects.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful.	
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful.	azardous. However, this does not exclude the
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. n The product is not classified as environmentally h	azardous. However, this does not exclude the harmful or damaging effect on the environment
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductiv Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. n The product is not classified as environmentally h possibility that large or frequent spills can have a	azardous. However, this does not exclude the harmful or damaging effect on the environment
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductive Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. n The product is not classified as environmentally has a possibility that large or frequent spills can have a No data is available on the degradability of this p	azardous. However, this does not exclude the harmful or damaging effect on the environment
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductive Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. n The product is not classified as environmentally from possibility that large or frequent spills can have a No data is available on the degradability of this possibility of this possibility.	azardous. However, this does not exclude the harmful or damaging effect on the environment roduct.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential Mobility in soil	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproduction Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. n The product is not classified as environmentally from the possibility that large or frequent spills can have a No data is available on the degradability of this possibility of this possibility for the possibility of the po	azardous. However, this does not exclude the harmful or damaging effect on the environment roduct. ne depletion, photochemical ozone creation
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential Mobility in soil	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproduction Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. The product is not classified as environmentally fr possibility that large or frequent spills can have a No data is available on the degradability of this p No data available. No data available. No other adverse environmental effects (e.g. ozo potential, endocrine disruption, global warming potential, endocrine disruption, glo	azardous. However, this does not exclude the harmful or damaging effect on the environment roduct. ne depletion, photochemical ozone creation
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential Mobility in soil Other adverse effects	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproduction Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. The product is not classified as environmentally fr possibility that large or frequent spills can have a No data is available on the degradability of this p No data available. No data available. No other adverse environmental effects (e.g. ozo potential, endocrine disruption, global warming potential, endocrine disruption, glo	azardous. However, this does not exclude the harmful or damaging effect on the environment roduct. ne depletion, photochemical ozone creation otential) are expected from this component.
Not listed. OSHA Specifically Regulate Not regulated. US. National Toxicology Pro Not listed. Reproductive toxicity Specific target organ toxicity - single exposure Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential Mobility in soil Other adverse effects 13. Disposal consideratio	d Substances (29 CFR 1910.1001-1050) ogram (NTP) Report on Carcinogens This product is not expected to cause reproductive Not classified. Not classified. Not an aspiration hazard. Prolonged inhalation may be harmful. The product is not classified as environmentally fr possibility that large or frequent spills can have a No data is available on the degradability of this p No data available. No data available. No other adverse environmental effects (e.g. ozo potential, endocrine disruption, global warming potential, endocrine disruption, global warming potential.	azardous. However, this does not exclude the harmful or damaging effect on the environment roduct. ne depletion, photochemical ozone creation otential) are expected from this component.

Material name: PR 156

Hazardous waste code	The waste code should be disposal company.	e assigned in discussic	on between the user, the producer and the waste
Waste from residues / unused products	product residues. This ma Disposal instructions). Th	aterial and its container e exhausted catalysts	Empty containers or liners may retain some r must be disposed of in a safe manner (see: may have different risks and properties compared not applicable to exhausted catalysts.
Contaminated packaging			sidue, follow label warnings even after container is n approved waste handling site for recycling or
14. Transport information			
DOT			
Not regulated as dangerous g	oods.		
ΙΑΤΑ			
Not regulated as dangerous g	oods.		
Not regulated as dangerous g Transport in bulk according to			
Annex II of MARPOL 73/78 and	Not applicable.		
the IBC Code			
15. Regulatory informatio	n		
US federal regulations	This product is not known Communication Standard		hemical" as defined by the OSHA Hazard
TSCA Section 12(b) Export	Notification (40 CFR 707, S	Subpt. D)	
Not regulated.			
CERCLA Hazardous Substa	nce List (40 CFR 302.4)		
Not listed. SARA 304 Emergency relea: Not regulated. OSHA Specifically Regulate Not regulated.		10.1001-1050)	
Superfund Amendments and Re	authorization Act of 1986	(SARA)	
Hazard categories	Immediate Hazard - No Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No		
SARA 302 Extremely hazard Not listed.	lous substance		
SARA 311/312 Hazardous chemical	No		
SARA 313 (TRI reporting) Chemical name		CAS number	% by wt.
ALUMINUM OXIDE (FIBP		1344-28-1	90 - 100
Other federal regulations		1011 20 1	
Clean Air Act (CAA) Section	112 Hazardous Air Pollut	ants (HAPs) List	
Not regulated.			69 120)
Clean Air Act (CAA) Section Not regulated.	112(r) Accidental Releas	e Prevention (40 CFR	. 00. 130)
Safe Drinking Water Act (SDWA)	Not regulated.		
US state regulations			
-			a Health and Safety Code Section 11100)

US. California Controlled Substances. CA Department of Justice (California Health and Safety Code Section 11100) Not listed.

US. Massachusetts RTK - Substance List

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. New Jersey Worker and Community Right-to-Know Act

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. Pennsylvania Worker and Community Right-to-Know Law

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1) Dialuminium Chloride Pentahydroxide (CAS 12042-91-0)

US. Rhode Island RTK

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	No
Canada	Domestic Substances List (DSL)	No
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	No
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	No
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	No

*A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s) A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	05-28-2015
Revision date	10-27-2017
Version #	4.0
HMIS® ratings	Health: 0 Flammability: 0 Physical hazard: 0 Personal protection: B
NFPA ratings	Health: 0 Flammability: 0 Instability: 0
NFPA ratings	
Disclaimer	Axens cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.
Revision information	Regulatory Information: Regulatory Information

SAFETY DATA SHEET

1. Identification	
Product identifier	HF 858
Other means of identification	
Product code	13302
Recommended use	Catalyst.
Recommended restrictions	None known.
Manufacturer/Importer/Supplie	r/Distributor information
Manufacturer	
Supplier	Axens
Headquarters	Axens SA
Address	89, boulevard Franklin Roosevelt
	92508 Rueil-Malmaison
	France
Telephone	+33 1 47 14 21 00
Fax	+33 1 47 14 25 00
SDS contact e-mail	sds@axens.net
Emergency Telephone	
Number	
Europe	+1 760 476 3961
Asia Pacific	+1 760 476 3960
Americas	+1 760 476 3962
Middle East / Africa	+1 760 476 3959
Information on operation	24/7/365
hours	

2. Hazard(s) identification

H350

Physical hazards	Not classified.	
-		Cotogon ()
Health hazards	Skin corrosion/irritation	Category 2
	Serious eye damage/eye irritation	Category 1
	Sensitization, skin	Category 1
	Carcinogenicity	Category 1A
	Specific target organ toxicity, repeated exposure	Category 2
Environmental hazards	Hazardous to the aquatic environment, acute hazard	Category 2
	Hazardous to the aquatic environment, long-term hazard	Category 2
OSHA defined hazards	Not classified.	
Label elements		
Signal word	Danger	
Hazard statement		
H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H318	Causes serious eye damage.	
11050	May course concer	

May cause cancer.

H373	May cause damage to organs through prolonged or repeated exposure.
H401	Toxic to aquatic life.
H411	Toxic to aquatic life with long lasting effects.
Precautionary statement	
Prevention	
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P260	Do not breathe dust/fume/gas/mist/vapors/spray.
P264	Wash thoroughly after handling.
P272	Contaminated work clothing must not be allowed out of the workplace.
P273	Avoid release to the environment.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
Response	
P302 + P350	If on skin: Wash with plenty of water.
P305 + P351 +	
P338	If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a poison center/doctor.
P333 + P313	If skin irritation or rash occurs: Get medical advice/attention.
P362	Take off contaminated clothing and wash before reuse.
P391	Collect spillage.
Storage	
P405	Store locked up.
Disposal	
P501	Dispose of contents/container in accordance with local/regional/national/international regulations.
Hazard(s) not otherwise classified (HNOC)	None known.
Supplemental information	98.3% of the mixture consists of component(s) of unknown acute hazards to the aquatic environment. 93.8% of the mixture consists of component(s) of unknown long-term hazards to the aquatic environment.

ixtures			
Chemical name	Common name and synonyms	CAS number	%
Aluminium Oxide		1344-28-1	80 - < 90
Molybdenum Trioxide		1313-27-5	5 - < 10
Aluminium Orthophosphate		7784-30-7	3 - < 5
Cobalt Oxide		1307-96-6	1 - < 3
Nickel Monoxide		1313-99-1	< 1
Other components below reportable	e levels		3 - < 5

*Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

4. First-aid measures	
Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.
Skin contact	Remove contaminated clothing immediately and wash skin with soap and water. In case of eczema or other skin disorders: Seek medical attention and take along these instructions. Wash contaminated clothing before reuse.
Eye contact	Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention immediately.
Ingestion	Rinse mouth. Get medical attention if symptoms occur.
Most important symptoms/effects, acute and delayed	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. Skin irritation. May cause redness and pain. May cause an allergic skin reaction. Dermatitis. Rash. Prolonged exposure may cause chronic effects.
Indication of immediate medical attention and special treatment needed	Provide general supportive measures and treat symptomatically. Keep victim under observation. Symptoms may be delayed.

IF exposed or concerned: Get medical advice/attention. If you feel unwell, seek medical advice (show the label where possible). Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves. Wash contaminated clothing before reuse.

5. Fire-fighting measures	
Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).
Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this will spread the fire.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire fighting equipment/instructions	Use water spray to cool unopened containers.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.
General fire hazards	No unusual fire or explosion hazards noted.
6. Accidental release mea	sures
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	The product is immiscible with water and will spread on the water surface. Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Prevent product from entering drains. Following product recovery, flush area with water. Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
Environmental precautions	Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS. Avoid release to the environment. Prevent further leakage or spillage if safe to do so. Avoid discharge into drains, water courses or onto the ground. Inform appropriate managerial or supervisory personnel of all environmental releases.
7. Handling and storage	
Precautions for safe handling	Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Provide adequate ventilation. Do not get this material in contact with eyes. Avoid breathing dust/fume/gas/mist/vapors/spray. Avoid contact with eyes, skin, and clothing. Avoid prolonged exposure. Should be handled in closed systems, if possible. Wear appropriate personal protective equipment. Avoid release to the environment. Observe good industrial hygiene practices.
Conditions for safe storage, including any incompatibilities	Store locked up. Store in original tightly closed container. Store away from incompatible materials (see Section 10 of the SDS).
 Exposure controls/pers 	ional protection

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-1 Limits for Air Components	Contaminants (29 CFR 1910.1000) Type	Value	Form
Aluminium Oxide (CAS 1344-28-1)	PEL	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
Molybdenum Trioxide (CAS 1313-27-5)	PEL	5 mg/m3	
Nickel Monoxide (CAS 1313-99-1)	PEL	1 mg/m3	

US. ACGIH Threshold Limit Values

US. ACGIH Threshold Limit Components	Values Type	Value	Form
Aluminium Orthophosphate	TWA	1 mg/m3	Respirable fraction.
(CAS 7784-30-7) Aluminium Oxide (CAS 1344-28-1)	TWA	1 mg/m3	Respirable fraction.
Cobalt Oxide (CAS 1307-96-6)	TWA	0.02 mg/m3	
Molybdenum Trioxide (CAS 1313-27-5)	TWA	0.5 mg/m3	Respirable fraction.
Nickel Monoxide (CAS 1313-99-1)	TWA	0.2 mg/m3	Inhalable fraction.
US. NIOSH: Pocket Guide to	o Chemical Hazards		
Components	Туре	Value	
Nickel Monoxide (CAS 1313-99-1)	TWA	0.015 mg/m3	
Biological limit values	No biological exposure limits noted	for the ingredient(s).	
Appropriate engineering controls	Good general ventilation (typically 1 should be matched to conditions. If or other engineering controls to mai exposure limits have not been estab wash facilities and emergency show	applicable, use process enclosur ntain airborne levels below recor blished, maintain airborne levels	es, local exhaust ventilation, nmended exposure limits. If to an acceptable level. Eye
Individual protection measures,	such as personal protective equip	nent	
Eye/face protection	Wear safety glasses with side shield	ds (or goggles) and a face shield	
Skin protection			
Hand protection	Wear appropriate chemical resistan supplier.	t gloves. Suitable gloves can be	recommended by the glove
Other	Wear appropriate chemical resistan	t clothing. Use of an impervious a	apron is recommended.
Respiratory protection	In case of insufficient ventilation, we	ear suitable respiratory equipmen	t.
Thermal hazards	Wear appropriate thermal protective	e clothing, when necessary.	
General hygiene considerations	Always observe good personal hygi and before eating, drinking, and/or s equipment to remove contaminants workplace.	smoking. Routinely wash work cl	othing and protective
9. Physical and chemical	properties		
Appearance	Extrudates		
Physical state	Solid.		
Form	Solid.		

Material name: HF 858

	itial boiling point and boiling	Not available.
	nge	Not available.
	ash point	
	aporation rate	Not available.
FI	ammability (solid, gas)	Not available.
U	oper/lower flammability or exp	losive limits
	Flammability limit - lower (%)	Not available.
	Flammability limit - upper (%)	Not available.
	Explosive limit - lower (%)	Not available.
	Explosive limit - upper (%)	Not available.
Va	apor pressure	Not available.
Va	apor density	Not available.
Re	elative density	Not available.
So	olubility(ies)	
	Solubility (water)	Insoluble
	artition coefficient -octanol/water)	Not available.
Aı	uto-ignition temperature	Not available.
De	ecomposition temperature	Not available.
Vi	scosity	Not available.
01	ther information	
	Density	< 1.00
	Explosive properties	Not explosive.
	Oxidizing properties	Not oxidizing.

10. Stability and reactivity

····,		
Reactivity The product is stable and non-reactive under normal conditions of use, storage and tr		
Chemical stability	Material is stable under normal conditions.	
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.	
Conditions to avoid	Contact with incompatible materials. Minimize dust generation and accumulation.	
Incompatible materials	Acids. Chlorine. Bases. Strong oxidizing agents.	
Hazardous decomposition Under certain conditions, it reacts with carbon monoxide, forming nickel carbonyl Ni(C a very toxic gas. Thermal decomposition or combustion may liberate carbon oxides ar gases or vapors.		

11. Toxicological information

Information on likely routes of exposure

Inhalation	Prolonged inhalation may be harmful.
Skin contact	Causes skin irritation. May cause an allergic skin reaction.
Eye contact	Causes serious eye damage.
Ingestion	Expected to be a low ingestion hazard.
Symptoms related to the physical, chemical and toxicological characteristics	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. Skin irritation. May cause redness and pain. May cause an allergic skin reaction. Dermatitis. Rash.

Information on toxicological effects

Acute toxicity

May cause an allergic skin reaction.

Components	Species	Test Results
Aluminium Orthophosphate (CAS	7784-30-7)	
<u>Acute</u>		
Inhalation		
Dust		
LC50	Rat	> 5.1 mg/l, 4 Hours
luminium Oxide (CAS 1344-28-1)	
Acute		
Inhalation		
Aerosol		
LC50	Rat	> 0.888 mg/l, 4 Hours
		7.6 mg/l, 1 Hours
Oral		5, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1
LD50	Rat	> 2000 mg/kg
	Nat	2000 mg/kg
Cobalt Oxide (CAS 1307-96-6)		
<u>Acute</u>		
Dermal	Pat	> 2000 malka 24 Hours
LD50	Rat	> 2000 mg/kg, 24 Hours
Inhalation		
Dust		
LC50	Rat	0.06 mg/l, 4 Hours
Oral		
LD50	Rat	159 mg/kg
lolybdenum Trioxide (CAS 1313-	27-5)	
Acute		
Dermal		
LD50	Rat	> 2000 mg/kg, 24 Hours
Inhalation		
Dust		
LC50	Rat	> 1.93 mg/l, 4 Hours
Oral		
LD50	Rat	3883 mg/kg
lickel Monoxide (CAS 1313-99-1)		
Acute		
Inhalation		
Aerosol		
LC50	Rat	> 5.08 mg/l, 4 Hours
LD50	Rat	-
	Rai	38.2 mg/kg
Oral		
LD50	Rat	> 5000 mg/kg
* Estimates for product may b	e based on additional component data not sho	wn.
Skin corrosion/irritation	Causes skin irritation.	
Serious eye damage/eye	Causes serious eye damage.	
rritation		
Respiratory or skin sensitizatior	ı	
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	May cause an allergic skin reaction.	
		components present at greater than 0.1% are
	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic	
Germ cell mutagenicity	mutagenic or genotoxic.	

IARC Monographs. Overall E	valuation of Carcinogenicity	
Cobalt Oxide (CAS 1307-96-6)		2B Possibly carcinogenic to humans.
Nickel Monoxide (CAS 13	13-99-1)	1 Carcinogenic to humans.
OSHA Specifically Regulated	d Substances (29 CFR 1910.10	001-1050)
Not listed.		
US. National Toxicology Pro	gram (NTP) Report on Carcin	ogens
Nickel Monoxide (CAS 13	13-99-1)	Known To Be Human Carcinogen.
Reproductive toxicity	This product is not expected to	o cause reproductive or developmental effects.
Specific target organ toxicity - single exposure	Not classified.	
Specific target organ toxicity - repeated exposure	May cause damage to organs	through prolonged or repeated exposure.
Aspiration hazard	Not an aspiration hazard.	
Chronic effects	May cause damage to organs be harmful. Prolonged exposu	through prolonged or repeated exposure. Prolonged inhalation may re may cause chronic effects.

Ecotoxicity	Toxic to a	quatic life with long lasting eff	ects.	
Components		Species		Test Results
Molybdenum Trioxide (CAS	1313-27-5)			
Aquatic				
Fish	LC50	Fathead minnow (Pime	ohales promelas)	70 mg/l, 96 hours
* Estimates for product may	be based on	additional component data no	ot shown.	
Persistence and degradability	No data is	s available on the degradabilit	y of this product.	
Bioaccumulative potential	No data available.			
Mobility in soil	No data available.			
Other adverse effects				letion, photochemical ozone creation) are expected from this component.
13. Disposal consideration	ons			
Disposal instructions	this mater		supplies. Do not	ensed waste disposal site. Do not allow contaminate ponds, waterways or ditche ntainer in accordance with

	local/regional/national/international regulations.
Local disposal regulations	Dispose in accordance with all applicable regulations.
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.
Waste from residues / unused products	Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions). The exhausted catalysts may have different risks and properties compared to the original product. This safety data sheet is not applicable to exhausted catalysts.
Contaminated packaging	Since emptied containers may retain product residue, follow label warnings even after container is emptied. Empty containers should be taken to an approved waste handling site for recycling or disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

ΙΑΤΑ

ATA	
UN number	UN3077
UN proper shipping name	Environmentally hazardous substance, solid, n.o.s (Cobalt oxide)
Transport hazard class(es)	
Class	9
Subsidiary risk	-
Label(s)	9
Packing group	III
Environmental hazards	No.

Special precautions for user	Read safety instructions,	SDS and emergency	procedures before handling.
Other information			

Other information	
Passenger and cargo aircraft	Forbidden.
Cargo aircraft only	Forbidden.
IMDG	
UN number	UN3077
UN proper shipping name	Environmentally hazardous substance, solid, n.o.s (Cobalt oxide)
Transport hazard class(es)	
Class	9
Subsidiary risk	-
Label(s)	9
Packing group	III
Environmental hazards	
Marine pollutant	Yes
EmS	Not available.
Special precautions for user	Read safety instructions, SDS and emergency procedures before handling.
Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code	Not applicable.
IATA; IMDG	

Marine pollutant

15. Regulatory information

US federal regulations	This product is a "H Standard, 29 CFR 1	azardous Chemical" as defined by the OSHA Hazard Communication 1910.1200.
TSCA Section 12(b) Expo	ort Notification (40 CFR	707, Subpt. D)
Not regulated.		
CERCLA Hazardous Sub	stance List (40 CFR 302	2.4)
Cobalt Oxide (CAS 13	07-96-6)	Listed.
Nickel Monoxide (CAS 1313-99-1)		Listed.
SARA 304 Emergency rel	lease notification	
Not regulated.		
OSHA Specifically Regula	ated Substances (29 CI	⁻ R 1910.1001-1050)
Not listed.		

Superfund Amendments and Reauthorization Act of 1986 (SARA)	
---	--

Immediate Hazard - Yes
Delayed Hazard - Yes
Fire Hazard - No
Pressure Hazard - No
Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Not listed.

Hazard categories

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Chemical name

		/ o b j m	
ALUMINUM OXIDE (FIBROUS FORMS)	1344-28-1	80 - < 90	
MOLYBDENUM TRIOXIDE	1313-27-5	5 - < 10	
NICKEL COMPOUNDS	1313-99-1	< 1	

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Cobalt Oxide (CAS 1307-96-6)

Nickel Monoxide (CAS 1313-99-1)

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act Not regulated.

(SDWA)

US state regulations

US. California Controlled Substances. CA Department of Justice (California Health and Safety Code Section 11100) Not listed.

US. California. Candidate Chemicals List. Safer Consumer Products Regulations (Cal. Code Regs, tit. 22, 69502.3, subd.

CAS number

% hv wt

(a))

Cobalt Oxide (CAS 1307-96-6) Nickel Monoxide (CAS 1313-99-1)

US. Massachusetts RTK - Substance List

Aluminium Oxide (CAS 1344-28-1) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1)

US. New Jersey Worker and Community Right-to-Know Act

Aluminium Orthophosphate (CAS 7784-30-7) Aluminium Oxide (CAS 1344-28-1) Cobalt Oxide (CAS 1307-96-6) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1)

US. Pennsylvania Worker and Community Right-to-Know Law

Aluminium Oxide (CAS 1344-28-1) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1)

US. Rhode Island RTK

Aluminium Oxide (CAS 1344-28-1) Cobalt Oxide (CAS 1307-96-6) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1)

US. California Proposition 65

WARNING: This product contains a chemical known to the State of California to cause cancer.

US - California Proposition 65 - CRT: Listed date/Carcinogenic substance

Cobalt Oxide (CAS 1307-96-6)	Listed: July 1, 1992
Nickel Monoxide (CAS 1313-99-1)	Listed: October 1, 1989

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes

Material name: HF 858

Country(s) or region	Inventory name	On inventory (yes/no)*
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s) A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	12-08-2015
Revision date	12-08-2015
Version #	1.0
HMIS® ratings	Health: 3* Flammability: 0 Physical hazard: 0
NFPA ratings	Health: 3 Flammability: 0 Instability: 0
NFPA ratings	3 0

Disclaimer

Axens cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

SAFETY DATA SHEET

1. Identification	
Product identifier	HDK 786
Other means of identification	
Product code	24425
Recommended use	Catalyst.
Recommended restrictions	None known.
Manufacturer/Importer/Supplie	er/Distributor information
Manufacturer	
Supplier	Axens
Headquarters	Axens SA
Address	89, boulevard Franklin Roosevelt
	92508 Rueil-Malmaison
	France
Telephone	+33 1 47 14 21 00
Fax	+33 1 47 14 25 00
SDS contact e-mail	sds@axens.net
Emergency Telephone Number	
Europe	+1 760 476 3961
Asia Pacific	+1 760 476 3960
Americas	+1 760 476 3962
Middle East / Africa	+1 760 476 3959
Information on operation	24/7/365
hours	

2. Hazard(s) identification

Physical hazards	Not classified.	
Health hazards	Skin corrosion/irritation	Category 2
	Serious eye damage/eye irritation	Category 2A
	Sensitization, skin	Category 1
	Carcinogenicity	Category 1A
	Specific target organ toxicity, repeated exposure	Category 1
Environmental hazards	Not classified.	
OSHA defined hazards	Not classified.	

Label elements

Signal word	Danger
Hazard statement	
H315 H317 H319 H350 H372	Causes skin irritation. May cause an allergic skin reaction. Causes serious eye irritation. May cause cancer. Causes damage to organs through prolonged or repeated exposure.

Precautionary statement

r roodationary otatomont	
Prevention	
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P260	Do not breathe dust/fume/gas/mist/vapors/spray.
P264	Wash thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P272	Contaminated work clothing must not be allowed out of the workplace.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
Response	
P302 + P350	If on skin: Wash with plenty of water.
P305 + P351 +	
P338	If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308 + P313	If exposed or concerned: Get medical advice/attention.
P333 + P313	If skin irritation or rash occurs: Get medical advice/attention.
P337 + P313	If eye irritation persists: Get medical advice/attention.
P362	Take off contaminated clothing and wash before reuse.
Storage	
P405	Store locked up.
Disposal	
P501	Dispose of contents/container in accordance with local/regional/national/international regulations.
Hazard(s) not otherwise classified (HNOC)	None known.
Supplemental information	None.

3. Composition/information on ingredients

Mixtures

Chemical name	Common name and synonyms	CAS number	%
Aluminium Oxide		1344-28-1	50 - < 60
Silicon Dioxide - Amorphous		7631-86-9	20 - < 30
Tungsten Trioxide		1314-35-8	20 - < 30
Molybdenum Trioxide		1313-27-5	3 - < 5
Aluminium Orthophosphate		7784-30-7	1 - < 3
Nickel Monoxide		1313-99-1	1 - < 3

*Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

4. First-aid measures	
Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.
Skin contact	Remove contaminated clothing immediately and wash skin with soap and water. In case of eczema or other skin disorders: Seek medical attention and take along these instructions. Wash contaminated clothing before reuse.
Eye contact	Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention if irritation develops and persists.
Ingestion	Rinse mouth. Get medical attention if symptoms occur.
Most important symptoms/effects, acute and delayed	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Skin irritation. May cause redness and pain. May cause an allergic skin reaction. Dermatitis Rash. Prolonged exposure may cause chronic effects.
Indication of immediate medical attention and special treatment needed	Provide general supportive measures and treat symptomatically. Keep victim under observation. Symptoms may be delayed.
General information	IF exposed or concerned: Get medical advice/attention. If you feel unwell, seek medical advice (show the label where possible). Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves. Wash contaminated clothing before reuse.
5. Fire-fighting measures	

Suitable extinguishing media

Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).

Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this will spread the fire.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire fighting equipment/instructions	Use water spray to cool unopened containers.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.
General fire hazards	No unusual fire or explosion hazards noted.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	The product is immiscible with water and will spread on the water surface.
	Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
	Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.
Environmental precautions	Avoid discharge into drains, water courses or onto the ground.
7. Handling and storage	
Precautions for safe handling	Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Provide adequate ventilation. Avoid breathing dust/fume/gas/mist/vapors/spray. Avoid contact with eyes, skin, and clothing. Avoid prolonged exposure. When using, do not eat, drink or smoke. Should be handled in closed systems, if possible. Wear appropriate personal protective equipment. Wash hands thoroughly after handling. Observe good industrial hygiene practices.
Conditions for safe storage, including any incompatibilities	Store locked up. Store in original tightly closed container. Store away from incompatible materials (see Section 10 of the SDS).

8. Exposure controls/personal protection

Components	Туре	Value	Form
Aluminium Oxide (CAS 1344-28-1)	PEL	5 mg/m3	Respirable fraction.
·		15 mg/m3	Total dust.
Molybdenum Trioxide (CAS 1313-27-5)	PEL	5 mg/m3	
Nickel Monoxide (CAS 1313-99-1)	PEL	1 mg/m3	
US. OSHA Table Z-3 (29 CFR 1910.	1000)		
Components	Туре	Value	
Silicon Dioxide - Amorphous (CAS 7631-86-9)	TWA	0.8 mg/m3	
- /		20 mppcf	
US. ACGIH Threshold Limit Values			
Components	Туре	Value	Form
Aluminium Orthophosphate	TWA	1 mg/m3	Respirable fraction.

US. ACGIH Threshold Limit Components	Type	Value	Form
Aluminium Oxide (CAS 1344-28-1)	TWA	1 mg/m3	Respirable fraction.
Molybdenum Trioxide (CAS 1313-27-5)	TWA	0.5 mg/m3	Respirable fraction.
Nickel Monoxide (CAS 1313-99-1)	TWA	0.2 mg/m3	Inhalable fraction.
Tungsten Trioxide (CAS 1314-35-8)	STEL	10 mg/m3	
	TWA	5 mg/m3	
US. NIOSH: Pocket Guide to	o Chemical Hazards		
Components	Туре	Value	
Nickel Monoxide (CAS 1313-99-1)	TWA	0.015 mg/m3	
Silicon Dioxide - Amorphous (CAS 7631-86-9)	TWA	6 mg/m3	
Tungsten Trioxide (CAS 1314-35-8)	STEL	10 mg/m3	
,	TWA	5 mg/m3	
iological limit values	No biological exposure limits noted	for the ingredient(s).	
ppropriate engineering ontrols	Good general ventilation (typically 1 should be matched to conditions. If or other engineering controls to mai exposure limits have not been estal wash facilities and emergency show	applicable, use process enclosu intain airborne levels below reco blished, maintain airborne levels	res, local exhaust ventilation mmended exposure limits. If to an acceptable level. Eye
dividual protection measures,	, such as personal protective equip	ment	
Eye/face protection	Wear safety glasses with side shiel	ds (or goggles).	
Skin protection			
Hand protection	Wear appropriate chemical resistan supplier.	t gloves. Suitable gloves can be	recommended by the glove
Other	Wear appropriate chemical resistan	t clothing. Use of an impervious	apron is recommended.
Respiratory protection	In case of insufficient ventilation, we	ear suitable respiratory equipmer	nt.
Thermal hazards	Wear appropriate thermal protective	, , , ,	
eneral hygiene onsiderations	Always observe good personal hyg and before eating, drinking, and/or equipment to remove contaminants workplace.	smoking. Routinely wash work o	lothing and protective
9. Physical and chemical	properties		
ppearance	Extrudates		
Physical state	Solid.		
_			

Solid.

Brown.

Form Color

Odor	Not available.
Odor threshold	Not available.
PH	Not available.
Melting point/freezing point	3632 °F (2000 °C)
nitial boiling point and boiling range	Not available.
Flash point	Not available.
Evaporation rate	Not available.
lammability (solid, gas)	Not available.
Jpper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
/apor pressure	Not available.
/apor density	Not available.
Relative density	Not available.
Solubility(ies)	
Solubility (water)	Insoluble
Partition coefficient n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
/iscosity	Not available.
Other information	
Density	< 1.00
Explosive properties	Not explosive.
Oxidizing properties	Not oxidizing.
10. Stability and reactivity	
Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
	NAME OF THE STREET AND A DESCRIPTION OF THE STREET

Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
Chemical stability	Material is stable under normal conditions.
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.
Conditions to avoid	Contact with incompatible materials. Minimize dust generation and accumulation.
Incompatible materials	Acids. Fluorine. Chlorine. Strong oxidizing agents. Bases.
Hazardous decomposition products	Thermal decomposition or combustion may liberate carbon oxides and other toxic gases or vapors.

11. Toxicological information

Information on likely routes of exposure		
Inhalation	Prolonged inhalation may be harmful.	
Skin contact	Causes skin irritation. May cause an allergic skin reaction.	
Eye contact	Causes serious eye irritation.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Skin irritation. May cause redness and pain. May cause an allergic skin reaction. Dermatitis. Rash.	
Information on toxicological effe	ects	
Acute toxicity	May cause an allergic skin reaction.	

Components	Species	Test Results
Aluminium Orthophosphate	(CAS 7784-30-7)	
<u>Acute</u>		
Inhalation		
Dust		
LC50	Rat	> 5.1 mg/l, 4 Hours
Aluminium Oxide (CAS 134	4-28-1)	
Acute		
Inhalation		
Aerosol		
LC50	Rat	> 0.888 mg/l, 4 Hours
		7.6 mg/l, 1 Hours
Oral		
LD50	Rat	> 2000 mg/kg
Molybdenum Trioxide (CAS		5 5
<u>Acute</u>	1010 21 0)	
Dermal		
LD50	Rat	> 2000 mg/kg, 24 Hours
Inhalation		2000 mg/kg, 24 mouro
Dust		
LC50	Rat	> 1.93 mg/l, 4 Hours
	Nat	> 1.35 mg/l, 4 mours
Oral		
LD50	Rat	3883 mg/kg
Nickel Monoxide (CAS 1313	3-99-1)	
<u>Acute</u>		
Inhalation		
Aerosol		
LC50	Rat	> 5.08 mg/l, 4 Hours
LD50	Rat	38.2 mg/kg
Oral		
LD50	Rat	> 5000 mg/kg
Silicon Dioxide - Amorphous	s (CAS 7631-86-9)	
<u>Acute</u>		
Dermal		
LD50	Rabbit	> 2000 mg/kg, 24 Hours
Inhalation		
Dust		
LC50	Rat	> 2.08 mg/l, 4 Hours
Oral		
LD50	Mouse	> 3160 mg/kg
	Rat	> 5000 mg/kg
Turnantan Triavida (OAO 40)		> 5000 mg/kg
Tungsten Trioxide (CAS 13	14-30-8)	
<u>Acute</u>		
Dermal	Det	
LD50	Rat	> 2000 mg/kg, 24 Hours
Inhalation		
Dust	- /	
LC50	Rat	> 5.36 mg/l, 4 Hours
Oral		
LD50	Rat	> 2000 mg/kg

* Estimates for product may be based on additional component data not shown.

Skin corrosion/irritation	Causes skin irritation.		
Serious eye damage/eye irritation	Causes serious eye irritation.		
Respiratory or skin sensitizatior	ı		
Respiratory sensitization	Not a respir	atory sensitizer.	
Skin sensitization	May cause	an allergic skin rea	action.
Germ cell mutagenicity	No data ava mutagenic c		product or any components present at greater than 0.1% are
Carcinogenicity	May cause	cancer.	
IARC Monographs. Overall I	Evaluation of	Carcinogenicity	
Nickel Monoxide (CAS 13 Silicon Dioxide - Amorpho	ous (CAS 763	,	1 Carcinogenic to humans. 3 Not classifiable as to carcinogenicity to humans.
OSHA Specifically Regulate	d Substance	s (29 CFR 1910.1	001-1050)
Not listed. US. National Toxicology Pro	oram (NTP)	Report on Carcin	onens
Nickel Monoxide (CAS 13			Known To Be Human Carcinogen.
Reproductive toxicity	-	t is not expected t	cause reproductive or developmental effects.
Specific target organ toxicity - single exposure	Not classifie	-	
Specific target organ toxicity - repeated exposure	Causes dan	nage to organs thr	ough prolonged or repeated exposure.
Aspiration hazard	Not an aspir	ation hazard.	
Chronic effects	•		ough prolonged or repeated exposure. Prolonged inhalation may be
			may cause chronic effects.
12. Ecological information	า		
Ecotoxicity			s environmentally hazardous. However, this does not exclude the nt spills can have a harmful or damaging effect on the environment.
Components		Species	Test Results
Molybdenum Trioxide (CAS 1	313-27-5)		
Aquatic			
Fish	LC50	Fathead minne	ow (Pimephales promelas) 70 mg/l, 96 hours
* Estimates for product may b	e based on ac	Iditional compone	nt data not shown.
Persistence and degradability	No data is a	vailable on the de	gradability of this product.
Bioaccumulative potential	No data ava	ilable.	
Mobility in soil	No data ava	ilable.	
Other adverse effects			tal effects (e.g. ozone depletion, photochemical ozone creation , global warming potential) are expected from this component.
13. Disposal consideratio	ns		
Disposal instructions			in sealed containers at licensed waste disposal site. Dispose of nce with local/regional/national/international regulations.
Local disposal regulations	Dispose in a	Dispose in accordance with all applicable regulations.	
Hazardous waste code	The waste of disposal cor		signed in discussion between the user, the producer and the waste
Waste from residues / unused products	product resi Disposal ins to the origin	Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions). The exhausted catalysts may have different risks and properties compared to the original product. This safety data sheet is not applicable to exhausted catalysts.	
Contaminated packaging			retain product residue, follow label warnings even after container is ould be taken to an approved waste handling site for recycling or

14. Transport information

DOT

Not regulated as dangerous goods.

ΙΑΤΑ

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to
Annex II of MARPOL 73/78 and
the IBC CodeNot applicable.

15. Regulatory information

US federal regulations	This product is a "Haza Standard, 29 CFR 191		ned by the OSHA Hazard Communication
TSCA Section 12(b) Export	Notification (40 CFR 70	7, Subpt. D)	
Not regulated.			
CERCLA Hazardous Subst			
Nickel Monoxide (CAS 1 SARA 304 Emergency relea		Listed.	
Not regulated. OSHA Specifically Regulat	ed Substances (29 CFR	1910.1001-1050)	
Not listed.			
Superfund Amendments and R	eauthorization Act of 19	986 (SARA)	
Hazard categories	Immediate Hazard - Ye Delayed Hazard - Yes Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No		
SARA 302 Extremely hazar Not listed.	dous substance		
SARA 311/312 Hazardous chemical	No		
SARA 313 (TRI reporting)			
Chemical name		CAS number	% by wt.
ALUMINUM OXIDE (FIE MOLYBDENUM TRIOXI NICKEL COMPOUNDS		1344-28-1 1313-27-5 1313-99-1	50 - < 60 3 - < 5 1 - < 3
Other federal regulations			
Clean Air Act (CAA) Sectio	n 112 Hazardous Air Po	llutants (HAPs) List	
Nickel Monoxide (CAS 1 Clean Air Act (CAA) Sectio Not regulated.	313-99-1)		8 68.130)
Safe Drinking Water Act (SDWA)	Not regulated.		
US state regulations			
US. California Controlled S	ubstances. CA Departm	nent of Justice (Californi	ia Health and Safety Code Section 11100)
	Chemicals List. Safer Co	onsumer Products Regul	lations (Cal. Code Regs, tit. 22, 69502.3, subd.
(a))			
Nickel Monoxide (CAS 1 US. Massachusetts RTK - S			
Aluminium Oxide (CAS			
Molybdenum Trioxide (C Nickel Monoxide (CAS 1			
Silicon Dioxide - Amorph			
US. New Jersey Worker an		Know Act	
Aluminium Orthophosph			
Aluminium Oxide (CAS			
Molybdenum Trioxide (C	AO 1313-21-5)		
Material name: HDK 786			SDS

Nickel Monoxide (CAS 1313-99-1) Silicon Dioxide - Amorphous (CAS 7631-86-9)

US. Pennsylvania Worker and Community Right-to-Know Law

Aluminium Oxide (CAS 1344-28-1) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1) Silicon Dioxide - Amorphous (CAS 7631-86-9)

US. Rhode Island RTK

Aluminium Oxide (CAS 1344-28-1) Molybdenum Trioxide (CAS 1313-27-5) Nickel Monoxide (CAS 1313-99-1)

US. California Proposition 65

WARNING: This product contains a chemical known to the State of California to cause cancer.

US - California Proposition 65 - CRT: Listed date/Carcinogenic substance

Nickel Monoxide (CAS 1313-99-1) Listed: October 1, 1989

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s) A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	12-15-2015
Revision date	12-15-2015
Version #	1.0
HMIS® ratings	Health: 2* Flammability: 0 Physical hazard: 0
NFPA ratings	Health: 2 Flammability: 0 Instability: 0
NFPA ratings	20
Disclaimer	Axens cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written

based on the best knowledge and experience currently available.

SAFETY DATA SHEET

Product identifier	AxTrap 867	
Other means of identification		
Product code	11622	
Recommended use	Industrial applications, Adsorbent for gas catalysts, reaction modification.	ses and liquids (including dessicant), air separation,
Manufacturer/Importer/Supplie	r/Distributor information	
Manufacturer		
Supplier	Axens	
Headquarters	Axens SA	
Address	89, boulevard Franklin Roosevelt	
	92508 Rueil-Malmaison	
	France	
Telephone	+33 1 47 14 21 00	
Fax	+33 1 47 14 25 00	
SDS contact e-mail	sds@axens.net	
Emergency Telephone Number		
Europe	+1 760 476 3961	
Asia Pacific	+1 760 476 3960	
Americas	+1 760 476 3962	
Middle East / Africa	+1 760 476 3959	
Information on operation	24/7/365	
hours		
2. Hazard(s) identification	1	
Physical hazards	Not classified.	
Health hazards	Skin corrosion/irritation	Category 1
	Serious eye damage/eye irritation	Category 1
Environmental hazards	Not classified.	
OSHA defined hazards	Not classified.	
_abel elements		

 Signal word
 Danger

 Hazard statement
 Causes severe skin burns and eye damage.

 H314
 Causes serious eye damage.

 H318
 Causes serious eye damage.

 Precautionary statement
 Value

 P264
 Wash thoroughly after handling.

 P280
 Wear protective gloves/protective clothing/eye protection/face protection.

 Response
 Fermion

Hazard(s) not otherwise classified (HNOC)	None known.
P501	Dispose of contents/container in accordance with local/regional/national/international regulations,
Disposal	
P405	Store locked up.
Storage	
P363	Wash contaminated clothing before reuse.
P310	easy to do. Continue rinsing. Immediately call a poison center/doctor.
P305 + P351 + P338	If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and
P304 + P340	If inhaled: Remove person to fresh air and keep comfortable for breathing.
P303 + P361 + P353	If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower,
P301 + P330 + P331	If swallowed: Rinse mouth. Do NOT induce vomiting.

3. Composition/information on ingredients				
Mixtures				
Chemical name	Common name and synonyms	CAS number	%	
Aluminium Oxide (Non Fibrou Form)	5	1344-28-1	82	z.
Disodium Oxide		1313-59-3	10	
Other components below reportable levels			8	

*Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

4. First-aid measures	
Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.
Skin contact	Take off immediately all contaminated clothing. Rinse skin with water/shower. Call a physician or poison control center immediately. Chemical burns must be treated by a physician. Wash contaminated clothing before reuse.
Eye contact	Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Call a physician or poison control center immediately.
Ingestion	Call a physician or poison control center immediately. Do not induce vomiting. If vomiting occurs, keep head low so that stomach content doesn't get into the lungs.
Most important symptoms/effects, acute and delayed	Burning pain and severe corrosive skin damage. Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result.
Indication of immediate medical attention and special treatment needed	Provide general supportive measures and treat symptomatically. Chemical burns: Flush with wate immediately. While flushing, remove clothes which do not adhere to affected area. Call an ambulance. Continue flushing during transport to hospital. Keep victim under observation. Symptoms may be delayed.
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.
5. Fire-fighting measures	
Suitable extinguishing media	Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).
Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this will spread the fire.

Specific hazards arising from	During fire, gases hazardous to health may be formed.
the chemical	

Special protective equipment Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

Move containers from fire area if you can do so without risk.

Specific methodsUse standard firefighting procedures and consider the hazards of other involved materials.General fire hazardsNo unusual fire or explosion hazards noted.

Material name: AxTrap 867

equipment/instructions

Fire fighting

71 Version #: 2.0 Revision date: 02-03-2017 Issue date: 07-18-2015 Print date: 02-03-2017

6. Accidental release mea			
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.		
lethods and materials for	The product is immiscible with water and will spread on the water surface.		
containment and cleaning up	Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.		
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.		
	Never return spills to original containers fo	r re-use. For waste dispo	sal, see section 13 of the SDS
Environmental precautions	Avoid discharge into drains, water courses	s or onto the ground.	
7. Handling and storage			
Precautions for safe handling	Do not get in eyes, on skin, or on clothing. Avoid prolonged exposure. Provide adequate ventilation. Wear appropriate personal protective equipment.		
Conditions for safe storage, ncluding any incompatibilities	Store locked up. Store in original tightly closed container. Store away from incompatible materials (see Section 10 of the SDS).		
8. Exposure controls/pers	onal protection		
Occupational exposure limits			
	for Air Contaminants (29 CFR 1910.1000)	Value	Form
Components 	Туре		
Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)	PEL	5 mg/m3	Respirable fraction.
1011201)		15 mg/m3	Total dust.
US. ACGIH Threshold Limit	Values		
Components	Туре	Value	Form
Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)	TWA	1 mg/m3	Respirable fraction.

Biological limit values Appropriate engineering

controls

No biological exposure limits noted for the ingredient(s).

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Eye wash facilities and emergency shower must be available when handling this product.

Individual protection measures, such as personal protective equipment

Eye/face protection Wear safety glasses with side shields (or goggles) and a face shield.

Skin protection Hand protection

Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove supplier.

Other Respiratory protection Wear appropriate chemical resistant clothing. In case of insufficient ventilation, wear suitable respiratory equipment.

Material name: AxTrap 867

71 Version #: 2.0 Revision date: 02-03-2017 Issue date: 07-18-2015 Print date: 02-03-2017

Thermal hazards

General hygiene considerations

Wear appropriate thermal protective clothing, when necessary.

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and chemical	properties
Appearance	Spheres
Physical state	Solid.
Form	Solid.
Color	White
Odor threshold	Not available.
рН	Not available.
Melting point/freezing point	3632 °F (2000 °C)
Initial boiling point and boiling range	Not available.
Flash point	Not available.
Evaporation rate	Not available.
Flammability (solid, gas)	Not available.
Upper/lower flammability or exp	plosive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	Not available.
Solubility(ies)	
Solubility (water)	Insoluble
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
Other information	
Density	< 1.00
Explosive properties	Not explosive.
Oxidizing properties	Not oxidizing.
10. Stability and reactivity	y
Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.

Chemical stabilityMaterial is stable under normal conditions.Possibility of hazardous
reactionsNo dangerous reaction known under conditions of normal use.Conditions to avoidContact with incompatible materials.Incompatible materialsAcids. Bases. Strong oxidizing agents. Chlorine.Hazardous decomposition
productsAt thermal decomposition temperatures, carbon monoxide and carbon dioxide.

11. Toxicological information

Inhalation

Information on likely routes of exposure

May cause irritation to the respiratory system. Prolonged inhalation may be harmful.

Skin contact	Causes severe skin burns.
Eye contact	Causes serious eye damage.
Ingestion	Causes digestive tract burns.
Symptoms related to the physical, chemical and toxicological characteristics	Burning pain and severe corrosive skin damage. Causes serious eye damage. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result.

Information on toxicological effects

Acute toxicity

Components			
	Species	Test Results	
Aluminium Oxide (Non Fibrous Fo	orm) (CAS 1344-28-1)		
Acute			
Inhalation			
Aerosol			
LC50	Rat	> 0.888 mg/l, 4 Hours	
		7.6 mg/l, 1 Hours	
Oral			
LD50	Rat	> 2000 mg/kg	
* Estimates for product may b	e based on additional component da	ta not shown.	
Skin corrosion/irritation	Causes severe skin burns and eye damage.		
Serious eye damage/eye irritation	Causes serious eye damage.		
Respiratory or skin sensitizatio	n		
Respiratory sensitization	Not a respiratory sensitizer.		
Skin sensitization	This product is not expected to cau	use skin sensitization.	
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.		
Carcinogenicity	This product is not considered to b	e a carcinogen by IARC, ACGIH, NTP, or OSHA.	
IARC Monographs. Overall	Evaluation of Carcinogenicity		
Not regulated. US. National Toxicology Pro Not listed.	ogram (NTP) Report on Carcinoger	15	
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.		
Specific target organ toxicity - single exposure	Not classified.		
single exposure			
Specific target organ toxicity -	Not classified.		
Specific target organ toxicity - repeated exposure	Not classified. Not an aspiration hazard.		
Specific target organ toxicity - repeated exposure Aspiration hazard		ful.	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects	Not an aspiration hazard. Prolonged inhalation may be harm	ful.	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en	vironmentally hazardous. However, this does not exclude the	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en	vironmentally hazardous. However, this does not exclude the ills can have a harmful or damaging effect on the environment	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en possibility that large or frequent sp	vironmentally hazardous. However, this does not exclude the ills can have a harmful or damaging effect on the environment	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en possibility that large or frequent sp No data is available on the degrad	vironmentally hazardous. However, this does not exclude the ills can have a harmful or damaging effect on the environment	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects 12. Ecological information Ecotoxicity Persistence and degradability Bioaccumulative potential Mobility in soil	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en possibility that large or frequent sp No data is available on the degrad No data available. No data available. No other adverse environmental et	vironmentally hazardous. However, this does not exclude the ills can have a harmful or damaging effect on the environment	
Specific target organ toxicity - repeated exposure Aspiration hazard Chronic effects	Not an aspiration hazard. Prolonged inhalation may be harm n The product is not classified as en possibility that large or frequent sp No data is available on the degrad No data available. No data available. No data available. No other adverse environmental el potential, endocrine disruption, glo	vironmentally hazardous. However, this does not exclude the ills can have a harmful or damaging effect on the environment lability of this product. ffects (e.g. ozone depletion, photochemical ozone creation	

Local disposal regulations	Dispose in accordance with all applicable regulations.
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.
Waste from residues / unused products	Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions).
Contaminated packaging	Since emptied containers may retain product residue, follow label warnings even after container is emptied. Empty containers should be taken to an approved waste handling site for recycling or disposal.
14. Transport information	
DOT	
Not regulated as dangerous g	joods.
ΙΑΤΑ	

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to Not applicable. Annex II of MARPOL 73/78 and the IBC Code

15. Regulatory information

US federal regulations	This product is a "Haz Standard, 29 CFR 191		ned by the OSHA Hazard Communit	cation
TSCA Section 12(b) Export	Notification (40 CFR 70	7, Subpt. D)		
Not regulated.				
CERCLA Hazardous Substa	ince List (40 CFR 302.4)		
Not listed.				
SARA 304 Emergency relea	se notification			
Not regulated. OSHA Specifically Regulate Not regulated.	ed Substances (29 CFR	1910.1001-1050)		
Superfund Amendments and Re	authorization Act of 19	986 (SARA)		
Hazard categories	Immediate Hazard - Y Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No	es		
SARA 302 Extremely hazar	dous substance			
Not listed.				
SARA 311/312 Hazardous chemical	No			
SARA 313 (TRI reporting) Chemical name		CAS number	% by wt.	
ALUMINUM OXIDE		1344-28-1	82	
Other federal regulations				
Clean Air Act (CAA) Sectior	112 Hazardous Air Po	llutants (HAPs) List		
Not regulated.				
Clean Air Act (CAA) Sectior	n 112(r) Accidental Rele	ase Prevention (40 CFR	68.130)	
Not regulated.				
Safe Drinking Water Act (SDWA)	Not regulated.		N .	
JS state regulations				
US. California Controlled St	ubstances. CA Departm	ent of Justice (Californi	a Health and Safety Code Sectior	n 11100)
Not listed.		·	-	,
US. Massachusetts RTK - S	ubstance List			
Aluminium Oxide (Non Fi	brous Form) (CAS 1344	-28-1)		
Material name: AxTrap 867				SI
				0

US. New Jersey Worker and Community Right-to-Know Act Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. Pennsylvania Worker and Community Right-to-Know Law

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. Rhode Island RTK

Aluminium Oxide (Non Fibrous Form) (CAS 1344-28-1)

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates that all components of this product comply with the inventory requirements administered by the governing country(s) A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, inc	luding date of preparation or last revision
Issue date	07-18-2015
Revision date	02-03-2017
Version #	2.0
HMIS® ratings	Health: 3 Flammability: 0 Physical hazard: 0 Personal protection: B
NFPA ratings	Health: 3 Flammability: 0 Instability: 0
NFPA ratings	3 0
Disclaimer	Axens cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.
Revision information	This document has undergone significant changes and should be reviewed in its entirety.

Attachment I

			Attachment I			
	that wil	Em (includes all emission) I be part of this permit a	•	tion control devic		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Uni	t 100 – Coal Handli	ing		
100-TH-1	100-TH-1	Barge Receiving Hopper	2020	912,500 ton/yr	New	None
100-TC-1	100-TC-1	Coal Transfer Conveyor 1	2020	912,500 ton/yr	New	100-TC-1-FF
100-TC-2	100-TC-2	Coal Transfer Conveyor 2	2020	912,500 ton/yr	New	100-TC-2-FF
100-TH-2	100-TH-2	Radial Stacker Hopper	2020	912,500 ton/yr	New	100-TH-2-FF
100-TC-3	100-TC-3	Radial Stacker Transfer Conveyor	2020	912,500 ton/yr	New	100-TC-3-FF
100-CSP-1	100-CSP-1	Active Coal Storage Pile	2020	0.60 acres	New	Wind Shield
100-CSP-2	100-CSP-2	Backup Coal Storage Pile	2020	2.02 acres	New	Wind Shield
100-CSP-3	100-CSP-3	Truck Dump Coal Storage Pile	2020	0.01 acres	New	None
100-TU-1	100-TU-1	Coal Truck Unloading	2020	912,500 ton/yr	New	None
100-TH-3	100-TH-3	Coal Surge Hopper	2020	912,500 ton/yr	New	None
100-TC-4	100-TC-4	Coal Milling Transfer Conveyor 1	2020	912,500 ton/yr	New	100-TC-4-FF
100-TH-4	100-TH-4	Coal Milling Hopper 1	2020	912,500 ton/yr	New	100-TH-4-FF
100-CMD-1	100-CMD-1	Coal Milling Dryer	2020	13.45 MMBtu/hr	New	None
100-CM-1	100-BH-1	Coal Mill	2020	912,500 ton/yr	New	100-BH-1
100-BH-1	100-BH-1	Coal Mill Baghouse	2020	21,500 scf/min	New	100-BH-1
100-TH-5	100-TH-5	Coal Milling Hopper 2	2020	912,500 ton/yr	New	100-TH-5-FF
100-TC-5	100-TC-5	Coal Milling Transfer Conveyor 2	2020	912,500 ton/yr	New	100-TC-5-FF
100-CS-1	100-CS-1	Coal Storage Silo 1	2020	912,500 ton/yr	New	100-CS-1-FF
100-CS-2	100-CS-2	Coal Storage Silo 2	2020	912,500 ton/yr	New	100-CS-2-FF
100-TH-6	100-TH-6	Coal Storage Silo 1 Hopper	2020	912,500 ton/yr	New	100-TH-6-FF
100-TH-7	100-TH-7	Coal Storage Silo 2 Hopper	2020	912,500 ton/yr	New	100-TH-7-FF

			Attachment I			
	that wil	En (includes all emissio I be part of this permit a		tion control devic		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
100-TC-6	100-TC-6	Coal Silo Transfer Conveyor 1	2020	912,500 ton/yr	New	100-TC-6-FF
100-TC-7	100-TC-7	Coal Silo Transfer Conveyor 2	2020	912,500 ton/yr	New	100-TC-7-FF
			Unit 200 – H-Coal			
200-D-110	200-S-108	Feed Coal Bin	2020	912,500 ton/yr	New	200-S-108-FF
200-S-105	200-S-105	Feed Coal Conveyor	2020	912,500 ton/yr	New	200-S-105-FF
200-H-102	200-H-102	Slurry Feed Heater	2020	74.02 MMBtu/hr	New	None
200-H-101	200-H-101	Hydrogen Heater	2020	15.34 MMBtu/hr	New	None
200-D-204 /205/206	200-D-206	Feed Catalyst Bins	2020	803 ton/yr	New	200-D-206-FF
200-D-206	200-D-206	Spent Catalyst Withdrawal Bin	2020	1,285 ton/yr	New	None
200-D-207	200-D-207	Spent Catalyst Cooling Bin	2020	1,285 ton/yr	New	None
200-D-208	200-D-208	Spent Catalyst Loading Hopper	2020	1,285 ton/yr	New	None
200-D-209	200-D-209	Spent Catalyst Drums	2020	1,285 ton/yr	New	None
200-H-301	200-H-301	Vacuum Tower Feed Heater	2020	24.79 MMBtu/hr	New	None
200-FUG	200-FUG	Unit 200 Fugitive Emission Sources	2020		New	None
	·	Un	it 310 – Hydrocrack	er		·
310-H-101	310-H-101	Hydrocracker Reaction Heater	2020	8.37 MMBtu/hr	New	None
310-H-103	310-H-103	Fractionation Reboiler	2020	10.78 MMBtu/hr	New	None
310-FUG	310-FUG	Unit 310 Fugitive Emission Sources	2020		New	None
		Unit 3	20 – Catalytic Refo	rmer		
320-H-201	320-H-201	Catalytic Reaction Heater 1	2020	11.89 MMBtu/hr	New	None 110 of 427

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
320-H-202	320-H-202	Catalytic Reaction Heater 2	2020	11.89 MMBtu/hr	New	None
320-Н-203	320-H-203	Catalytic Reaction Heater 3	2020	11.89 MMBtu/hr	New	None
320-H-204	320-H-204	Catalytic Reaction Heater 4	2020	11.89 MMBtu/hr	New	None
320-FUG	320-FUG	Unit 320 Fugitive Emission Sources	2020		New	None
		Unit 4	10 – Gas Recovery	Unit		
410-FUG	410-FUG	Unit 410 Fugitive Emission Sources	2020		New	None
		Unit 42	20 – Amine Regenei	ration		
420-FUG	420-FUG	Unit 420 Fugitive Emission Sources	2020		New	None
		Unit 43	0 – Sour Water Stri	ipping		
430-TK-1	440-SRI-1	Sour Water Storage Tank	2020	5,000 BBL	New	440-SRI-1
430-FUG	430-FUG	Unit 430 Fugitive Emission Sources	2020		New	None
		Unit 44	10 – Sulfur Recover	y Unit		
440-CF-1	440-SRI-1	Claus Furnace	2020	4.4 MMBtu/hr	New	None
440-SRI-1	440-SRI-1	Sulfur Recovery Incinerator	2020	10.6 MMBtu/hr	New	440-SRI-1
440-FUG	440-FUG	Unit 440 Fugitive Emission Sources	2020		New	None
			Unit 500 – Utilities			
500-SB-1	500-SB-1	Steam Boiler	2020	Startup: 24.3 MMBtu/hr	New	None
			2020	Normal Op: 4.9 MMBtu/hr		Hone
500-EG-1	500-EG-1	Emergency Generator	2020	500 kW	New	None
500-CT-1	500-CT-1	Cooling Towers	2020	5,565 gal/min	New	None
500-FUG	500-FUG	Unit 500 Fugitive Emission Sources	2020		New	None 111 of 427

			Attachment I			
	that wil	Em includes all emission) I be part of this permit a	•	tion control devic		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Unit 610	– Solid Products H	landling		
610-TC-1	610-TC-1	Flaker Transfer Conveyor	2020	223,599 ton/yr	New	None
610-SS-1	610-SS-1	Surge Flake Storage Silo	2020	223,599 ton/yr	New	610-SS-1-FF
610-TC-2	610-TC-2	Pipe Conveyor 1	2020	223,599 ton/yr	New	610-TC-2-FF
610-TC-3	610-SD-1	Pipe Conveyor 2	2020	223,599 ton/yr	New	None
610-TC-4	610-SD-1	Stacker Conveyor 1	2020	223,599 ton/yr	New	None
610-SP-1	610-SD-1	Dome 1 Storage Pile	2020	0.50 acre	New	None
610-TH-1	610-SD-1	Flaked Residue Loading Hopper 1	2020	223,599 ton/yr	New	None
610-SD-1	610-SD-1	Flaked Residue Storage Dome 1	2020	223,599 ton/yr	New	610-SD-1-FF
610-TC-5	610-SD-2	Stacker Conveyor 2	2020	223,599 ton/yr	New	None
610-SP-2	610-SD-2	Dome 2 Storage Pile	2020	0.50 acre	New	None
610-TH-2	610-SD-2	Flaked Residue Loading Hopper 2	2020	223,599 ton/yr	New	None
610-SD-2	610-SD-2	Flaked Residue Storage Dome 2	2020	223,599 ton/yr	New	610-SD-2-FF
610-TC-6	610-SD-1 610-SD-2	Flake Loading Conveyor	2020	223,599 ton/yr	New	None
610-TC-7	610-TC-7	Truck Loading Conveyor	2020	223,599 ton/yr	New	None
610-TH-3	610-TH-3	Truck Loading Hopper	2020	223,599 ton/yr	New	None
610-TR-1	610-TR-1	Flaked Residue Product Trucks	2020	223,599 ton/yr	New	None
610-TH-4	610-TH-4	Sulfur Storage Pile Hopper	2020	19,995 ton/yr	New	None
610-TC-8	610-TC-8	Sulfur Storage Pile Conveyor	2020	19,995 ton/yr	New	None
610-SP-3	610-SP-3	Sulfur Storage Pile	2020	0.01 acres	New	None
610-TH-5	610-TH-5	Sulfur Loading Hopper 1	2020	19,995 ton/yr	New	None
610-TC-9	610-TC-9	Sulfur Loading Conveyor	2020	19,995 ton/yr	New	None 112 of 427

			Attachment I			
	that wil		nission Units Table on units and air pollut	ion control devic		
		· · · · · · · · · · · · · · · · · · ·	 ,,,,,,,	9		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
610-TH-6	610-TH-6	Sulfur Loading Hopper 2	2020	19,995 ton/yr	New	None
610-TR-2	610-TR-2	Sulfur Product Trucks	2020	19,995 ton/yr	New	None
		Un	it 620 – Flare Syster	n		
620-FL-1	620-FL-1	Emergency Flare	2020	6.2 MMSCF/H	New	620-FL-1
620-FUG	620-FUG	Unit 620 Fugitive Emission Sources	2020		New	None
		Unit 630 – Liquid	Products and Intern	nediates Storage	2	
630-TK-1A 630-TK-1I	N/A	LPG Storage Tanks	2020	60,000 gal /tank 9 tanks total	New	N/A
630-TK-2	640-FL-1	Light Naphtha Storage Tank 1	2020	3,000 BBL	New	640-FL-1
630-TK-3	640-FL-1	Light Naphtha Storage Tank 2	2020	3,000 BBL	New	640-FL-1
630-TK-4	630-TK-4	Reformate Storage Tank 1	2020	4,000 BBL	New	None
630-TK-5	630-TK-5	Reformate Storage Tank 2	2020	4,000 BBL	New	None
630-TK-6	640-FL-1	Gasoline Storage Tank 1	2020	20,000 BBL	New	640-FL-1
630-TK-7	640-FL-1	Gasoline Storage Tank 2	2020	20,000 BBL	New	640-FL-1
630-TK-8	630-TK-8	Diesel Storage Tank 1	2020	28,500 BBL	New	None
630-TK-9	630-TK-9	Diesel Storage Tank 2	2020	28,500 BBL	New	None
630-TK-10	640-FL-1	Ethanol Storage Tank 1	2020	4,000 BBL	New	640-FL-1
630-TK-11	640-FL-1	Ethanol Storage Tank 2	2020	4,000 BBL	New	640-FL-1
630-TK-12	630-TK-12	HYK Heavy Feed Storage Tank	2020	3,000 BBL	New	None
630-TK-13	630-TK-13	HYK Light Feed Storage Tank	2020	16,000 BBL	New	None
630-TK-14	630-TK-14	Heavy Slop Oil Storage Tank	2020	16,000 BBL	New	^{113 of} 1 €77

	that wil	Em (includes all emission) I be part of this permit a	-	ion control devic		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
630-TK-15	630-TK-15	Light Slop Oil Storage Tank	2020	16,000 BBL	New	None
630-FUG	630-FUG	Unit 630 Fugitive Emission Sources	2020		New	None
		Unit 640	– Liquid Product Lo	oadout		
640-FL-1	640-FL-1	Liquid Product Loadout Flare	2020	4.99 MSCF/H	New	640-FL-1
640-TR-1	640-TR-1; 640-FL-1	Gasoline Truck Loading Rack	2020	2400 gpm	New	640-FL-1
640-TR-2	640-TR-2	Diesel Truck Loading Rack	2020	3,600 gpm	New	None
640-TR-3	640-TR-3	LPG Truck Loading Rack	2020	600 gpm	New	None
640-RR-1	640-RR-1; 640-FL-1	Gasoline Rail Loading Rack	2020	800 gpm	New	640-FL-1
640-RR-2	640-RR-2	Diesel Rail Loading Rack	2020	800 gpm	New	None
640-BR-1	640-BR-1; 640-FL-1	Gasoline Barge Loading Rack	2020	1,800 gpm	New	640-FL-1
640-BR-2	640-BR-2	Diesel Barge Loading Rack	2020	1,800 gpm	New	None
640-FUG	640-FUG	Unit 640 Fugitive Emission Sources	2020		New	None
		Unit	700 – Hydrogen Pla	ant		
700-HR-1	700-HR-1	Hydrogen Reformer	2020	537 MMBtu/hr	New	SCR

Attachment J

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Tabl	e 1: En	nissions Data							
Emission Point ID No. (Must match Emission Units Table-& Plot Plan)	Emission Point Type ¹	Emission Vente Through Th (Must match Units Table Plan,	ed is Point E <i>mission</i> & <i>Plot</i>	Control (Must Emissio Table	Illution Device match on Units & Plot an)	Vent Time Emission (chemical pro only)	Unit	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote Uncor	mum ential htrolled sions ⁴	Maxi Pote Contr Emiss	ntial olled	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Conc ⁷ (ppmv or mg/m⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)		
						Unit	: 100 – C	coal Handling							
100-TH-1	Vent	100-TH-1	Point			С	8760	PM _{Total}	0.79	0.36			Solid	0 –	
								PM ₁₀	0.37	0.17				EPA	
								PM _{2.5}	0.06	0.03					
100-TC-1	Vent	100-TC-1	Point	100-	FF	С	8760	PM _{Total}			0.10	0.15	Solid	EE	0.01
				TC-1- FF				PM 10			0.10	0.15			grain/ dscf
								PM _{2.5}			0.05	0.08			
100-TC-2	Vent	100-TC-2	Point	100-	FF	С	8760	PM _{Total}			0.10	0.15	Solid	EE	0.01
				TC-2- FF				PM ₁₀			0.10	0.15			grain/ dscf
								PM _{2.5}			0.05	0.08			
100-TH-2	Vent	100-TH-2	Point	100-	FF	С	8760	PM _{Total}			0.10	0.15	Solid	EE	0.01
				TH-2- FF				PM 10			0.10	0.15			grain/ dscf
								PM _{2.5}			0.05	0.08			
100-TC-3	Vent	100-TC-3	Point	100-	FF	С	8760	PM _{Total}			0.10	0.15	Solid	EE	0.01
				TC-3- FF				PM ₁₀			0.10	0.15			grain/ dscf
								PM _{2.5}			0.05	0.08			
100-CSP- 1		100-CSP- 1	Point			С	8760	PM _{Total}	0.79	0.36			Solid	O – EPA	
100-CSP- 2		100-CSP- 2						PM ₁₀	0.37	0.17					
								PM _{2.5}	0.06	0.03					

100-TU-1		100-TU-1	Point			С	8760	PM _{Total}	0.79	0.36			Solid	0 –	
								PM ₁₀	0.37	0.17				EPA	
								PM _{2.5}	0.06	0.03					
100-TH-3	Vent	100-TH-3	Point			С	8760	PM _{Total}	0.08	0.36			Solid	0-	
100-111-3	vent	100-111-5	FOIL			C	0700	PM ₁₀	0.08	0.30			Solid	EPA	
								P 10110 PM2.5	<0.04	0.03					
100-TC-4	Vent	100-TC-4	Point	100-	FF	С	8760	PIMI2.5 PMTotal	<0.01	0.03	0.10	0.45	Solid	EE	0.01
100-10-4	vent	100-10-4		TC-4-		C	0700	PIMTotal PM ₁₀			0.10	0.45	Solid		grain/
				FF				P 10110 PM2.5			0.10	0.43			dscf
100-TH-4	Vent	100-TH-4	Point	100-	FF	С	8760	P MI2.5 PMTotal			0.03	0.25	Solid	EE	0.01
100-111-4	Vent	100-111-4		TH-4-		0	0700	PM ₁₀			0.10	0.45	Solid		grain/
				FF				PM _{2.5}			0.05	0.43			dscf
100-CMD-	Vertical	100-	Point			С	8760	CO	1.23	5.39	0.00	0.20	Gas/	EE	
1	Upward	CMD-1	1 0111			C		NOx	1.47	6.42			Vapor,		
	Stack							SO ₂	<0.01	0.04			Solid		
								PM _{Total}	0.11	0.49					
								PM _{10/2.5}	0.03	0.12					
								PM _{Con}	0.08	0.37					
								Pb	<0.01	<0.01					
								VOC	0.08	0.35					
								Total HAPs	0.03	0.12					
								n-Hexane	0.03	0.12					
								Formaldehyde	<0.01	<0.01					
								Benzene	<0.01	<0.01					
								Toluene	<0.01	<0.01					
100-BH-1	Vent	100-BH-1	Point	100-	BH	С	8760	PM _{Total}			1.84	8.07	Solid	EE	0.01
		100-CM-1		BH-1				PM 10			1.84	8.07			grain/ dscf
								PM _{2.5}			0.92	4.04			

100-TH-5	Vent	100-TH-5	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TH-5- FF				PM 10	0.10	0.45			grain/ dscf
								PM _{2.5}	0.05	0.23			
100-TC-5	Vent	100-TC-5	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TC-5- FF				PM 10	0.10	0.45			grain/ dscf
								PM _{2.5}	0.05	0.23			
100-CS-1	Vent	100-CS-1	Point	100-	FF	С	8760	PM _{Total}	0.07	0.30	Solid	EE	0.01
				CS-1- FF				PM ₁₀	0.07	0.30			grain/ dscf
								PM _{2.5}	0.03	0.15			
100-CS-2	Vent	100-CS-2	Point	100-	FF	С	8760	PM _{Total}	0.07	0.30	Solid	EE	0.01
				CS-2- FF				PM 10	0.07	0.30			grain/ dscf
								PM _{2.5}	0.03	0.15			
100-TH-6	Vent	100-TH-6	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TH-6- FF				PM ₁₀	0.10	0.45			grain/ dscf
									PM _{2.5}	0.05	0.23		
100-TH-7	Vent	100-TH-7	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TH-7- FF				PM ₁₀	0.10	0.45			grain/ dscf
								PM _{2.5}	0.05	0.23	1		
100-TC-6	Vent	100-TC-6	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TC-6- FF				PM 10	0.10	0.45			grain/ dscf
								PM _{2.5}	0.05	0.23			
100-TC-7	Vent	100-TC-7	Point	100-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
				TC-7- FF				PM ₁₀	0.10	0.45			grain/ dscf
								PM _{2.5}	0.05	0.23			
							Unit 200	– H-Coal					
200-S-108	Vent	200-D-	Point	200-	FF	С	8760	PM _{Total}	0.10	0.45	Solid	EE	0.01
		110		S- 108-				PM 10	0.10	0.45			grain/ dscf
				FF			[PM _{2.5}	0.05	0.23			

200-S-105	Vent	200-S-	Point	200-	FF	С	8760	PM _{Total}			0.10	0.45	Solid	EE	0.01
		105		S- 105-				PM 10			0.10	0.45			grain/ dscf
				FF				PM _{2.5}			0.05	0.23			
200-H-102	Upward	200-H-	Point			С	8760	СО	2.28	9.98			Gas/	EE	
	Vertical Stack	102						NOx	2.96	12.97			Vapor, Solid		
								SO ₂	0.06	0.27					
								PM Total	1.00	4.38					
								PM10/2.5	0.41	1.78					
								PMCon	0.59	2.60					
								Pb	<0.01	<0.01					
								VOC	0.56	2.43					
								Total HAPs	0.20	0.86					
								n-Hexane	0.19	0.82					
								Formaldehyde	<0.01	0.03					
								Benzene	<0.01	<0.01					
								Toluene	<0.01	<0.01					
200-H-101	Upward	200-H-	Point			С	8760	СО	0.47	2.07			Gas/	EE	
	Vertical Stack	101						NOx	0.71	3.10			Vapor, Solid		
								SO ₂	0.01	0.06					
								PM _{Total}	0.21	0.91					
								PM _{10/2.5}	0.08	0.37					
								PM _{Con}	0.12	0.54					
								Pb	<0.01	<0.01					
								VOC	0.13	0.55					
								Total HAPs	0.04	0.18					
								n-Hexane	0.04	0.17					

								Formaldehyde	<0.01	<0.01									
								Benzene	<0.01	<0.01									
								Toluene	<0.01	<0.01									
200-D-206	Vent	200-D-	Point	200-	FF	С	8760	PM _{Total}			0.10	0.45	Solids	EE					
		204, 200- D-205,		D- 206-				PM 10			0.10	0.45							
		200-D- 206		FF				PM _{2.5}			0.05	0.23							
		200						HAP _{Metals}			<0.01	0.02							
200-D-206	Vent	200-D-	Point			1 transfer/	365	PM _{Total}	<0.01	<0.01			Solid	0 –					
		206				day	event / yr	PM 10	<0.01	<0.01				EPA					
						1 transfer/ day		PM _{2.5}	<0.01	<0.01									
								HAP _{Metals}	<0.01	<0.01									
200-D-207	Vent	200-D-	Point				365	PM _{Total}	<0.01	<0.01			Solid	0-					
		207					day event / yr	PM 10	<0.01	<0.01				EPA					
							,		PM _{2.5}	<0.01	<0.01								
										HAP _{Metals}	<0.01	<0.01							
200-D-208	Vent	200-D-	Point			1 transfer/	365	PM Total	<0.01	<0.01			Solid	0-					
		208				day	event / yr	PM ₁₀	<0.01	<0.01				EPA					
								PM _{2.5}	<0.01	<0.01									
								HAP _{Metals}	<0.01	<0.01									
200-D-209	Vent	200-D-	Point			1 transfer/	365	PM _{Total}	<0.01	<0.01			Solid	0-					
		209				day		event	PM ₁₀	<0.01	<0.01				EPA				
								PM _{2.5}	<0.01	<0.01									
												HAP _{Metals}	<0.01	<0.01					
200-H-301	Upward	200-H-	Point				8760	СО	0.76	3.34			Gas/	EE					
	Vertical Stack	301							NOx	1.15	5.02			Vapor, Solid					
							SO ₂	0.02	0.09										
				PM _{Total}	0.34	1.47													

							PM10/2.5	0.14	0.60				
							PM _{Con}	0.20	0.87				
							Pb	<0.01	<0.01				
							VOC	0.21	0.90				
							Total HAPs	0.07	0.29				
							n-Hexane	0.06	0.27				
							Formaldehyde	<0.01	0.01				
							Benzene	<0.01	<0.01				
							Toluene	<0.01	<0.01				
				· · · ·	Unit	t 310 – I	Hydrocracker			·	·		
310-H-101	Upward	310-H-	Point		С	8760	СО	0.26	1.13		Gas/	EE	
	Vertical Stack	101					NOx	0.39	1.69		Vapor, Solid		
	Oldek						SO ₂	<0.01	0.03				
							PM _{Total}	0.11	0.49				
							PM _{10/2.5}	0.05	0.20				
							PM _{Con}	0.07	0.29				
							Pb	<0.01	<0.01				
							VOC	0.07	0.30				
							Total HAPs	0.02	0.10				
							n-Hexane	0.02	0.09				
							Formaldehyde	<0.01	<0.01				
							Benzene	<0.01	<0.01				
							Toluene	<0.01	<0.01				
310-H-103	Upward	310-H-	Point		С	8760	СО	0.33	1.45		Gas/	EE	
	Vertical Stack	103					NOx	0.50	2.18		Vapor, Solid		
	0.001						SO ₂	<0.01	0.04				
							PM _{Total}	0.15	0.64				
							PM10/2.5	0.06	0.26				

				1		1	1		r		1			
							PMCon	0.09	0.38					
							Pb	<0.01	<0.01					
							VOC	0.09	0.39					
							Total HAPs	0.03	0.12					
							n-Hexane	0.03	0.12					
							Formaldehyde	<0.01	<0.01					
							Benzene	<0.01	<0.01					
							Toluene	<0.01	<0.01					
					Unit 3	20 - Cat	alytic Reformer				<u>.</u>			
320-H-201	Upward	320-H-	Point		С	8760	со	0.37	1.61			Gas/	EE	
320-H-202	Vertical Stacks	201					NOx	0.55	2.41			Vapor, Solid		
320-H-203	Oldoka	320-H- 202					SO ₂	0.01	0.04			Colla		
320-H-204		 320-Н-					PM Total	0.16	0.70					
		203					PM10/2.5	0.07	0.29					
		320-H- 204					PM _{Con}	0.10	0.42					
		204					Pb	<0.01	<0.01					
							VOC	0.10	0.43					
							Total HAPs	0.03	0.14					
							n-Hexane	0.03	0.13					
							Formaldehyde	<0.01	<0.01					
							Benzene	<0.01	<0.01					
							Toluene	<0.01	<0.01					
					Unit 44	0 – Sulf	ur Recovery Uni	t						
440-SRI-1	Upward	430-TK-1	Point	440-	С	8760	со	2.17	9.50	1.70	7.43	Gas/	EE	SO ₂ –
	Vertical Stack	440-CF-2		SRI-1			NOx			4.22	18.48	Vapor, Solid		250 ppmv
							SO ₂			5.64	24.71			1-1
							PM _{Total}			0.16	0.70			
							PM _{10/2.5}			0.04	0.18			

			· · · · ·		r					1			r	
							PMCon			0.12	0.53			
							H ₂ S	0.09	0.41	<0.01	<0.01			
							VOC	1.19	5.19	0.14	0.60			
							Total HAPs	1.10	4.84	0.06	0.27			
							n-Hexane	0.05	0.21	0.04	0.17			
							Benzene	<0.01	<0.01	<0.01	<0.01			
							Toluene	<0.01	0.03	<0.01	<0.01			
							Ethylbenzene	<0.01	0.01	<0.01	<0.01			
							Xylene	0.01	0.05	<0.01	<0.01			
							COS	1.03	4.52	0.02	0.09			
			L L	I	l	Jnit 500	– Utilities			L	1			
500-SB-1	Upward	500-SB-1	Point		Facility	60	СО	2.22	0.07			Gas/	0 -	
(Startup)	Vertical Vent				Startup		NOx	0.85	0.03			Vapor, Solid	EPA	
	Vent						SO ₂	0.02	<0.01			Solid		
							PM _{Total}	0.20	<0.01					
							PM _{10/2.5}	0.05	<0.01					
							PM _{Con}	0.15	<0.01					
							Pb	<0.01	<0.01					
							VOC	0.13	<0.01					
							Total HAPs	0.05	<0.01					
							n-Hexane	0.05	<0.01					
							Formaldehyde	<0.01	<0.01					
							Benzene	<0.01	<0.01					
							Toluene	<0.01	<0.01					
500-SB-1	Upward	500-SB-1	Point		С	8700	СО	0.58	2.51			Gas/	0 -	
(Normal Operation)	Vertical Vent						NOx	0.22	0.96			Vapor, Solid	EPA	
	Vont						SO ₂	<0.01	0.02			Colla		
							PM _{Total}	0.05	0.23					

				1		1			1			
							PM10/2.5	0.01	0.06	 4		
							PMcon	0.04	0.17			
							Pb	<0.01	<0.01			
							VOC	0.03	0.12			
							Total HAPs	0.01	0.06			
							n-Hexane	0.01	0.05			
							Formaldehyde	<0.01	<0.01			
							Benzene	<0.01	<0.01			
							Toluene	<0.01	<0.01			
500-EG-1	Upward	500-EG-1	Point		Critical	100	СО	4.06	0.20	Gas/	O -	
	Vertical Stack				Power Supply		NOx	18.85	0.94	Vapor, Solid	EPA	
					Events		SO ₂	1.24	0.06			
							PM Total	1.33	0.07			
							PM _{10/2.5}	<0.01	<0.01]		
							PM_{Con}	<0.01	<0.01			
							VOC	1.54	0.08			
							Total HAPs	0.01	<0.01			
							Formaldehyde	<0.01	<0.01			
							Benzene	<0.01	<0.01			
							Toluene	<0.01	<0.01			
							Ethylbenzene	<0.01	<0.01			
							Xylene	<0.01	<0.01			
500-CT-1	Upward	500-CT-1	Point		С	8760	PM _{Total}	6.34	27.79	Solid	EE	
	Vertical Stack						PM 10	6.34	27.79			
							PM _{2.5}	3.17	13.89			
					Unit 610 -	- Solid	Products Handli	ing				
610-TC-1	Vent	610-TC-1	Point		С	8760	PM _{Total}	0.05	0.23	Solid	EE	
							PM10	0.03	0.11	-		
		1	I	1 1	1	ı	8	I	I I	1	1	t

								PM _{2.5}	<0.01	0.02					
610-SS-1	Vent	610-SS-1	Point	610-	FF	С	8760	PM _{Total}			0.07	0.30	Solid	EE	0.01
				SS-1- FF				PM ₁₀			0.07	0.30			grain/ dscf
								PM _{2.5}			0.03	0.15			
610-TC-2	Vent	610-TC-2	Point	610-	FF	С	8760	PM _{Total}			0.10	0.45	Solid	EE	0.01
				TC-2- FF				PM 10			0.10	0.45			grain/ dscf
								PM _{2.5}			0.05	0.23			
610-SD-1	Vent	610-TC-3	Point	610- SD-1- FF	FF	С	8760	PM _{Total}			0.10	0.45	Solid	EE	0.01 grain/ dscf
		610-TC-4						PM ₁₀			0.10	0.45			
		610-SP-1													
		610-TH-1						PM _{2.5}			0.05	0.23			
		610-TC-6													
610-SD-2	Vent	610-TC-5	Point	610- SD-2-	FF	С	8760	PM _{Total}			0.10	0.45	Solid	EE	0.01 grain/
		610-SP-2		FF				PM ₁₀			0.10	0.45			dscf
		610-TH-2						PM _{2.5}			0.05	0.23			
		610-TC-6													
610-TC-7	Vent	610-TC-7	Point			С	8760	PM _{Total}	1.11	0.23			Solid	0 -	
								PM 10	0.53	0.11				EPA	
								PM _{2.5}	0.08	0.02					
610-TH-3	Vent	610-TH-3	Point			С	8760	PM Total	1.11	0.23			Solid	0-	
								PM ₁₀	0.53	0.11				EPA	
								PM _{2.5}	0.08	0.02					
610-TR-1		610-TR-1	Point			С	8760	PM Total	1.11	0.23			Solid	O - EPA	

							PM ₁₀	0.53	0.11				
							PM _{2.5}	0.08	0.02				
	610-TH-4	Point			С	8760	PM _{Total}	0.04	0.16			Solid	0 -
							PM ₁₀	0.02	0.08				EPA
							PM _{2.5}	<0.01	0.01				
	610-TC-8	Point			С	8760	PM _{Total}	0.04	0.16			Solid	O -
							PM ₁₀	0.02	0.08				EPA
							PM _{2.5}	<0.01	0.01				
	610-SP-3	Point			С	8760	PM _{Total}	0.04	0.16			Solid	0 -
							PM 10	0.02	0.08				EPA
							PM _{2.5}	<0.01	0.01				
	610-TH-5	Point			С	8760	PM _{Total}	0.76	0.16			Solid	0 -
							PM 10	0.36	0.08				EPA
							PM _{2.5}	0.05	0.01				
	610-TC-9	Point			С	8760	PM _{Total}	0.76	0.16			Solid	0 -
							PM 10	0.36	0.08				EPA
							PM _{2.5}	0.05	0.01				
	610-TH-6	Point			С	8760	PM _{Total}	0.76	0.16			Solid	0 -
							PM 10	0.36	0.08				EPA
							PM _{2.5}	0.05	0.01				
	610-TR-2	Point			С	8760	PM _{Total}	0.76	0.16			Solid	O - EPA
							PM ₁₀	0.36	0.08				
							PM _{2.5}	0.05	0.01				
•	L	<u>.</u>	<u>. </u>		Unit	t 620 – F	Tare System	-		<u> </u>	I		
Upward Vertical Stack	620-FL-1	Point	620- FL-1	FL	Facility Emergency Events (30 min/event)	8	СО	1,543. 19	2.47	331.63	1.25	Gas/ Vapor, Solid	MB, EE
	Vertical	Upward 610-TC-8 610-SP-3 610-TH-5 610-TH-5 610-TC-9 610-TC-9 610-TH-6 610-TR-2	Upward Vertical620-FL-1PointUpward Vertical620-FL-1Point	Upward Vertical620-FL-1Point0620-FL-1Point0620-FL-1Point0620-FL-1Point	Upward Vertical620-FL-1PointI1620-FL-1Point620-FL-1	Image: series of the series	Image: Mark State Image: Mark State	610-TH-4 Point C 8760 PMTotal PM10 610-TC-8 Point C 8760 PMTotal PM10 610-TR-8 Point C 8760 PMTotal PM10 610-TH-5 Point C 8760 PMTotal PM10 610-TH-5 Point C 8760 PMTotal PM10 610-TH-6 Point C 8760 PMTotal PM10 PM10 E C 8760 PMTotal PM10 PM10 E C 8760 PMTotal PM10 PM10 E C 8760 PMTotal PM10 PM2.5 610-TH-6 Point C 8760 PMTotal PM10 PM2.5 610-TR-2 Point C 8760 PMTotal PM10 PM2.5 FL Facility Eme	610-TH-4 Point C 8760 PMTotal 0.04 PM10 0.02 PM2.5 <0.01	610-TH-4 Point C 8760 PMrout 0.04 0.16 PM10 0.02 0.08 PM25 <0.01	610-TH-4 Point Point C 8760 PMToull 0.04 0.16 610-TC-8 Point C 8760 PMtoull 0.04 0.16 610-TC-8 Point C 8760 PMtoull 0.04 0.16 610-TC-8 Point C 8760 PMtoull 0.04 0.16 610-SP-3 Point C 8760 PMtoull 0.04 0.16 610-SP-3 Point C 8760 PMtoull 0.04 0.16 610-TH-5 Point C 8760 PMtoull 0.04 0.16 PMtoull 0.02 0.08 PMtoull 0.04 0.16 PMtoull 0.04 0.16 PMtoull 0.04 0.16 PMtoull 0.02 0.08 PMtoull 0.04 0.16 PMtoull 0.05 0.01 PMtoull 0.76 0.16 PMtoull 0.76 0.16 PMtoull 0.76 0.16	610-TH-4 Point C 8760 PMronal 0.04 0.16 Image: constraint of the second secon	610-TH-4 Point C 8760 PMTodm 0.04 0.16 Solid 610-TC-8 Point C 8760 PMTodm 0.04 0.16 Solid 610-SP-3 Point C 8760 PMTodm 0.04 0.16 Solid 610-TL-5 Point C 8760 PMTodm 0.04 0.16 Solid PM10 0.02 0.08 C 8760 PMTodm 0.06 0.01 Solid PM10 0.03 0.08 0.08 O Solid PM10 0.36 0.08 C 610-TC-9 Point C 8760 PMTodm 0.76 0.16 Solid

I														
							NOx			67.32	0.27			
							SO ₂			165.99	0.17			
							PM _{Total}			10.57	0.04			
							PM _{10/2.5}			2.64	0.01			
							PM _{Con}			7.93	0.03			
							H ₂ S	89.70	0.09	1.79	<0.01			
							VOC	55,017 .01	55.04	1,107. 83	1.13			
							Total HAPs	16,849 .32	16.86	339.54	0.35			
							n-Hexane			2.50	0.01			
							Formaldehyde			0.10	<0.01			
							Benzene	255.25	0.26	5.11	<0.01			
							Toluene	3,828. 80	3.83	76.58	0.08			
							Ethylbenzene	6,381. 33	6.38	127.63	0.13			
							Xylene	6,381. 33	6.38	127.63	0.13			
				Unit	630 – Liquid F	Products	s and Intermedia	ates Stor	age					
630-TK-4	Vent	630-TK-4	Point		С	8760	VOC	0.06	0.28			Gas/	0 –	
630-TK-5		630-TK-5					Total HAPs	0.04	0.18			Vapor	EPA, EE	
							n-Hexane	<0.01	0.01					
							Benzene	<0.01	<0.01					
							Toluene	0.01	0.04					
							Ethylbenzene	0.02	0.07					
							Xylene	0.02	0.07					
630-TK-8	Vent	630-TK-8	Point		С	8760	VOC	0.29	1.28			Gas/	0 –	
630-TK-9		630-TK-9					Total HAPs	0.02	0.07			Vapor	EPA, EE	
							n-Hexane	<0.01	<0.01				_	
							Benzene	<0.01	<0.01					

						Toluene	<0.01	<0.01			
						Toldene	<0.01		-		
						Ethylbenzene	<0.01	0.01			
						Xylene	<0.01	0.01			
630-TK-12	Vent	630-TK-	Point	Plant	720	VOC	0.01	<0.01	Gas/	O –	
		12		Shutdown (1 month/yr)		Total HAPs	<0.01	<0.01	Vapor	EPA, EE	
						n-Hexane	<0.01	<0.01			
						Benzene	<0.01	<0.01			
						Toluene	<0.01	<0.01			
						Ethylbenzene	<0.01	<0.01			
						Xylene	<0.01	<0.01			
630-TK-13	Vent	630-TK-	Point	Plant	720	VOC	0.04	0.01	Gas/	0 –	
		13		Shutdown (1 month/yr)		Total HAPs	<0.01	<0.01	Vapor	EPA, EE	
				(**********		n-Hexane	<0.01	<0.01			
						Benzene	<0.01	<0.01			
						Toluene	<0.01	<0.01			
						Ethylbenzene	<0.01	<0.01			
						Xylene	<0.01	<0.01			
630-TK-14	Vent	630-TK-	Point	Plant	720	VOC	0.08	0.03	Gas/	0 –	
		14		Shutdown (1 month/yr)		Total HAPs	<0.01	<0.01	Vapor	EPA, EE	
						n-Hexane	<0.01	<0.01			
						Benzene	<0.01	<0.01			
						Toluene	<0.01	<0.01			
						Ethylbenzene	<0.01	<0.01			
						Xylene	<0.01	<0.01			
630-TK-15	Vent	630-TK- 15	Point	Plant Shutdown (1 month/yr)	720	VOC	0.04	0.01	Gas/ Vapor	0 – EPA, EE	

								Total HAPs	<0.01	<0.01					
								n-Hexane	<0.01	<0.01					
								Benzene	<0.01	<0.01					
								Toluene	<0.01	<0.01					
								Ethylbenzene	<0.01	<0.01					
								Xylene	<0.01	<0.01					
						Unit 640	– Liquic	Product Loado	out						
640-FL-1	Vertical	630-TK-2	Point	640-	FL	С	8760	СО			8.56	1.17	Gas/	0 –	
	Upward Stack			FL-1				NOx			1.88	0.26	Vapor	EPA, EE	
		630-TK-3						SO ₂			<0.01	<0.01			
		630-TK-6						PM _{Total}			0.04	<0.01			
		630-TK-7						PM _{10/2.5}			<0.01	<0.01			
								PM_{Con}			0.03	<0.01			
		630-TK- 10						VOC	1,345. 58	192.06	26.91	3.84			
		630-TK-						Total HAPs	466.72	70.31	9.34	1.41			
		11						n-Hexane	0.07	0.26	0.01	<0.01			
		640-TR-1						Formaldehyde			<0.01	<0.01			
								Benzene	8.34	1.17	<0.01	<0.01			
		640-RR-1						Toluene	201.77	28.52	4.04	0.57			
		640-BR-1						Ethylbenzene	54.43	10.33	1.09	0.21			
								Xylene	202.12	30.04	4.04	0.60			
640-TR-1	Vent	640-TR-1	Point			С	8760	VOC			4.06	1.18	Gas/	EE	
								Total HAPs			1.40	0.41	Vapor		
								Benzene			0.03	<0.01			
								Toluene			0.61	0.18			
								Ethylbenzene			0.16	0.05			
								Xylene			0.61	0.18			

640-TR-2	Vent	640-TR-2	Point	С	8760	VOC	1.31	0.13			Gas/	EE	
						Total HAPs	0.10	<0.01			Vapor		
						Benzene	<0.01	<0.01					
						Toluene	<0.01	<0.01					
						Ethylbenzene	0.02	<0.01					
						Xylene	0.02	<0.01					
640-TR-3	Vent	640-TR-3	Point	С	8760	VOC	4.08	3.80			Gas/ Vapor	EE	
640-RR-1	Vent	640-RR-1	Point	С	8760	VOC			1.70	0.15	Gas/	EE	
						Total HAPs			0.59	0.05	Vapor		
						Benzene			0.01	<0.01			
						Toluene			0.25	0.02			
						Ethylbenzene			0.07	<0.01			
						Xylene			0.25	0.02			
640-RR-2	Vent	640-RR-2	Point	С	8760	VOC	0.37	0.06			Gas/	EE	
						Total HAPs	0.03	<0.01			Vapor		
						Benzene	<0.01	<0.01					
						Toluene	<0.01	<0.01					
						Ethylbenzene	<0.01	<0.01					
						Xylene	<0.01	<0.01					
640-BR-1	Vent	640-BR-1	Point	С	8760	VOC			5.07	0.12	Gas/	EE	
						Total HAPs			1.76	0.04	Vapor		
						Benzene			0.03	<0.01			
						Toluene			0.76	0.02			
						Ethylbenzene			0.20	<0.01			
						Xylene			0.76	0.02			
640-BR-2	Vent	640-BR-2	Point	С	8760	VOC	1.09	0.35			Gas/	EE	
						Total HAPs	0.08	0.03			Vapor		

							Benzene	<0.01	<0.01			
							Toluene	<0.01	<0.01			
							Ethylbenzene	0.02	<0.01			
							Xylene	0.02	<0.01			
					Unit	700 – H	ydrogen Plant					
700-HR-1	Vertical	700-HR-1	Point	SCR	С	8700	CO	6.60	28.70	Gas/	EE	
(Normal Operation)	Upward Stack						NOx	4.13	17.95	Vapor, Solid		
oporation)	Claim						SO ₂	0.35	1.53			
							PM _{Total}	4.45	19.34			
							PM10/2.5	1.11	4.83			
							PMCon	3.33	14.50			
							Pb	<0.01	<0.01			
							VOC	3.23	14.04			
							Total HAPs	0.87	3.77			
							n-Hexane	0.82	3.56			
							Formaldehyde	0.04	0.19			
							Benzene	<0.01	<0.01			
							Toluene	<0.01	<0.01			
700-HR-1	Vertical	700-HR-1	Point		Facility	60	СО	6.60	0.20	Gas/	EE	
(Startup)	Upward Stack				Startup		NOx	34.37	1.03	Vapor, Solid		
							SO ₂	0.35	0.01			
							PM _{Total}	4.45	0.13			
							PM10/2.5	1.11	0.03			
							PMCon	3.33	0.10			
							Pb	<0.01	<0.01			
							VOC	3.23	0.10			
							Total HAPs	0.87	0.03			
							n-Hexane	0.82	0.02			

				Formaldehyde	0.04	<0.01			
				Benzene	<0.01	<0.01			
				Toluene	<0.01	<0.01			

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Control Device Type Key:

BH - Baghouse

FF - Fabric Filter

FL – Flare

SCR – Selective Catalytic Reduction

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Rel	ease Parame	ter Data			
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinat	es (km)
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (ºF)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
			Unit 100) – Coal Handlir	ng			
100-TH-1		68.0			560	5.0	4308.6456	403.1929
100-TC-1	0.62	68.0	1,200.00	66.25	560	3.0	4308.6550	403.2102
100-TC-2	0.62	68.0	1,200.00	66.25	580	3.0	4308.7255	403.3562
100-TH-2	0.62	68.0	1,200.00	66.25	610	5.0	4308.7875	403.6650
100-TC-3	0.62	68.0	1,200.00	66.25	610	10.0	4308.7875	403.6650
100-CSP-1		68.0			610	30.0	4308.7875	403.6650
100-CSP-2		68.0			610	30.0	4308.7875	403.6650
100-TU-1		68.0			610	0.0	4308.7875	403.6650
100-TH-3		68.0			610	5.0	4308.7875	403.6650
100-TC-4	0.62	68.0	1,200.00	66.25	610	3.0	4308.7875	403.6650
100-TH-4	0.62	68.0	1,200.00	66.25	610	5.0	4308.7875	403.6650
100-CMD-1	1.05	900.0	21,500.00	413.83	610	120.0	4308.7875	403.6650
100-BH-1	1.05	180.0	21,500.00	413.83	610	30.0	4308.7875	403.6650

100-TH-5	0.62	68.0	1,200.00	66.25	610	5.0	4308.7875	403.6650
100-TC-5	0.62	68.0	1,200.00	66.25	610	3.0	4308.7875	403.6650
100-CS-1	1.31	68.0	800.00	9.89	610	70.0	4308.7875	403.6650
100-CS-2	1.31	68.0	800.00	9.89	610	70.0	4308.7875	403.6650
100-TH-6	0.62	68.0	1,200.00	66.25	610	5.0	4308.7875	403.6650
100-TH-7	0.62	68.0	1,200.00	66.25	610	5.0	4308.7875	403.6650
100-TC-6	0.62	68.0	1,200.00	66.25	610	3.0	4308.7875	403.6650
100-TC-7	0.62	68.0	1,200.00	66.25	610	3.0	4308.7875	403.6650
				Unit 200 – H-Co	al	•		
200-S-105	0.62	68.0	1,200.00	66.25	620	5.0	4308.9554	403.8497
200-S-105	0.62	68.0	1,200.00	66.25	620	3.0	4308.9554	403.8497
200-H-102	4.91	490.0	2,8024.17	24.67	620	150.0	4308.9894	403.8606
200-H-101	2.58	811.0	7,741.67	24.68	620	120.0	4309.0142	403.9066
200-D-206	0.62	811.0	1,200.00	66.25	620	15.0	4308.9757	403.9434
200-D-207		200.0			620	10.0	4308.9373	403.9481
200-D-208		68.0			620	10.0	4308.9373	403.9481
200-D-209		68.0			620	10.0	4308.9373	403.9481
200-H-301	3.22	760.0	12,112.90	24.79	620	120.0	4308.8962	403.9503
	•	•	Uni	t 310 - Hydrocra	acker			
310-H-101	1.91	813.0	4,371.26	25.43	630	120.0	4308.8650	404.0824
310-H-103	2.08	709.0	5,103.13	25.03	630	120.0	4308.9112	404.0883
			•		-1 00	•		

	Unit 320 – Catalytic Reformer								
320-H-201	3.85	450.0	4,392.28	6.29	630	120.0	4308.9707	404.0843	
320-H-202	3.85	450.0	4,392.28	6.29	630	120.0	4309.0001	404.0816	
320-H-203	3.85	450.0	4,392.28	6.29	630	120.0	4308.9880	404.1211	
320-H-204	3.85	450.0	4,392.28	6.29	630	120.0	4308.9561	404.1262	
	Unit 440 – Sulfur Recovery Unit								
440-SRI-1	440-SRI-1 2.0 600 3,779.34 20.05 630 150.0 4309.0889 404.2711								
				Unit 500 - Utiliti	es				
500-SB-1	2.0	134.3	441.18	2.34	630	50.0	4308.7715	403.9626	
500-EG-1	0.42	1,022.00	3,400.00	409.01	630	23.6	4308.7402	403.9661	
500-CT-1	1.31	68.0	0.24	0.003	630	82.0	4308.7452	404.0102	
	-		Unit 610 ·	- Solid Product	s Handling	•			
610-TC-1		68.0			630	3.0	4309.0292	404.1193	
610-SS-1	0.62	68.0	800.00	44.16	630	70.0	4309.0292	404.1193	
610-TC-2	0.62	68.0	1,200.00	66.25	630	10.0	4309.0292	404.1193	
610-SD-1	0.62	68.0	1,200.00	66.25	630	40.0	4309.0292	404.1193	
610-SD-2	0.62	68.0	1,200.00	66.25	630	40.0	4309.0292	404.1193	
610-TC-7		68.0			630	15.0	4309.0292	404.1193	
610-TH-3		68.0			630	12.0	4309.0292	404.1193	
610-TR-1		68.0			630	10.0	4309.0292	404.1193	
610-TH-4		68.0			630	5.0	4309.0292	404.1193	
610-TC-8		68.0			630	3.0	4309.0292	404.1193	

610-SP-3		68.0			630	30.0	4309.0292	404.1193
610-TH-5		68.0			630	5.0	4309.0292	404.1193
610-TC-9		68.0			630	3.0	4309.0292	404.1193
610-TH-6		68.0			630	12.0	4309.0292	404.1193
610-TR-2		68.0			630	10.0	4309.0292	404.1193
			Uni	t 620 – Flare Sy	stem			
620-FL-1	0.41	1,832.0	33,643.55	4,247.10	660	150.0	4309.1721	403.9562
			Unit 630 – Liquid P	Products and Int	termediates Stora	ige		
630-TK-4	30.00	68.0			660	32.0	4309.3964	404.3081
630-TK-5	30.00	68.0			660	32.0	4309.3850	404.2916
630-TK-8	80.00	68.0			660	32.0	4309.4347	404.4152
630-TK-9	80.00	68.0			660	32.0	4309.4053	404.3977
630-TK-12	30.00	68.0			660	32.0	4309.2593	404.2397
630-TK-13	67.00	68.0			660	32.0	4309.2296	404.2430
630-TK-14	67.00	68.0			660	32.0	4309.2601	404.2890
630-TK-15	67.00	68.0			660	32.0	4309.2326	404.2918
			Unit 640	– Liquid Produc	ct Transfer			
640-FL-1	5.83	1,832.0	83.13	0.05	660	24.0	4309.1610	403.9926
640-TR-1	0.25	68.0	0.25	0.08	660	20.0	4309.5283	404.4110
640-TR-2	0.25	68.0	0.06	0.02	660	20.0	4309.5051	404.4600
640-TR-3	0.25	68.0	0.51	0.17	660	20.0	4309.4482	404.1616
640-RR-1	0.25	68.0	0.10	0.03	590	20.0	4309.0563	403.6279

640-RR-2	0.25	68.0	0.02	0.01	590	20.0	4309.0451	403.6233	
640-BR-1	0.25	68.0	0.31	0.11	560	20.0	4308.5522	403.1740	
640-BR-2	0.25	68.0	0.05	0.02	560	20.0	4308.5443	403.6279	
	Unit 700 – Hydrogen Reformer								
700-HR-1	7.50	300.00	52,743.94	19.90	630	100.0	4308.9743	403.7298	

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

Attachment K

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	Yes No
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	🖾 Yes 🗌 No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive issions Summary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method	
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴	
Haul Dood/Dood Duct Emissions	PM	36.94	15.06	9.24	3.77		
Haul Road/Road Dust Emissions Paved Haul Roads	PM10	7.39	3.01	1.85	0.75	O-EPA	
	PM _{2.5} 1.81 0.81 0.45		0.45	0.20			
Unpaved Haul Roads	N/A	N/A	N/A	N/A	N/A	N/A	
	PM	0.32	1.41	0.16	0.71	O-EPA	
Coal Storage Pile Emissions	PM ₁₀	0.15	0.66	0.08	0.33		
	PM _{2.5}	0.08	0.33	0.04	0.17		
	PM	0.05	0.23	0.05	0.23		
Sulfur Storage Pile Emissions	PM ₁₀	0.02	0.11	0.02	0.11	O-EPA	
	PM _{2.5}	0.01	0.05	0.01	0.05		
Loading/Unloading Operations**	See Attachment J						
Wastewater Treatment Evaporation & Operations	N/A	N/A	N/A	N/A	N/A	N/A	
Equipment Leaks	VOC	Does not apply	52.15	Does not apply	52.15	O-EPA	
General Clean-up VOC Emissions	N/A	N/A	N/A	N/A	N/A	N/A	
Other	N/A	N/A	N/A	N/A	N/A	N/A	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate ⁴	
Pumps⁵	Light liquid VOC ^{6,7}	All pumps will have	N/A	N/A	N/A	
	Heavy liquid VOC ⁸	seal-less design	N/A	N/A	N/A	
	Non-VOC ⁹		N/A	N/A	N/A	
Valves ¹⁰	Gas VOC	1,057	Monthly – Per NSPS GGGa	5 days - Per NSPS GGGa	10.94 tpy VOC - EPA	
	Light Liquid VOC	2,111	Monthly – Per NSPS GGGa	5 days - Per NSPS GGGa	11.11 tpy VOC – EPA	
	Heavy Liquid VOC	1,028	Monthly – Per NSPS GGGa	5 days - Per NSPS GGGa	2.28 tpy VOC – EPA	
	Non-VOC		N/A	N/A	N/A	
Safety Relief Valves ¹¹	Gas VOC	44	Routed to Control Device	N/A	N/A	
	Non VOC		Routed to Control Device	N/A	N/A	
Open-ended Lines ¹²	VOC	156	N/A	N/A	N/A	
	Non-VOC		N/A	N/A	N/A	
Sampling Connections ¹³	VOC	33			4.78 tpy VOC - EPA	
	Non-VOC		N/A	N/A	N/A	
Compressors	VOC	All compressors will have seal-less design	N/A	N/A	N/A	
	Non-VOC		N/A	N/A	N/A	
	Gas VOC	3,436	N/A	N/A	8.30 tpy VOC - EPA	
	Light Liquid VOC	3,631	N/A	N/A	8.77 tpy VOC - EPA	
Connectors	Heavy Liquid VOC	2,468	N/A	N/A	5.96 tpy VOC - EPA	
	Non-VOC		N/A	N/A	N/A	

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly followup of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

Attachment L

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

Unit 200 – H-Coal Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

Name or type and model of proposed affected source:
 Unit 200 – H-Coal Process Equipment
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
 Name(s) and maximum amount of incoming process material(s) per hour:

Coal - 213,411 lb/hr; Wash water - 66,193 lb/hr; Hydrogen (H₂) gas - 13,997 lb/hr; Lean amine - 7,970 lb/hr; Nitrogen (N₂) gas - 1,800 lb/hr; Steam - 39, 545 lb/hr; and Supplied air - 540 lb/hr

4. Name(s) and maximum amount of outgoing process material(s) produced per hour:

Diesel intermediate - 82,500 lb/hr; Vacuum gas oil - 19,549 lb/hr; Wild naphtha - 15,000 lb/hr; Vacuum bottom residue - 51,050 lb/hr; Sour water - 132,657 lb/hr; Rich amine - 8,106 lb/hr; and Process off gases to Unit 410 - 34,561 lb/hr

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
<u> </u>		<u> </u>					
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur	
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):		
		@		°F and		psia.	
	(d)	Dereent evenes ein					
		Percent excess air:					
	(e)	Type and BTU/hr of bu	rners and all other f	iring equipme	ent planned to	be used:	
	(6)						
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the	
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.						
						× 10 BT0/III.	
7.	Pro	jected operating schedu	lle:				
Ho	lours/Day 24 Days/Week 7 Weeks/Year 52						

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@		°F and	psia				
a.	SEE ATTACHMENT J						
b.							
c.							
d.							
e.							
f.							
g.							
h.	Specify other(s)						
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Repo	
Please propose monitoring, recordkeeping,	and reporting in order to demonstrate compliance
	Please propose testing in order to demonstrate
compliance with the proposed emissions lin	nits.
MONITORING	RECORDKEEPING
SEE ATTACHMENT O	SEE ATTACHMENT O
REPORTING	TESTING
SEE ATTACHMENT O	SEE ATTACHMENT O
SEE ATTACHMENT O	SEE ATTACHMENT O
	E PROCESS PARAMETERS AND RANGES THAT ARE
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
	OPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	
	nance procedures required by Manufacturer to
	nance procedures required by Manufacturer to
maintain warranty	

Unit 310 – Hydrocracker Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

1. Name or type and model of proposed affected source:

Unit 310 – Hydrocracker Process Equipment

- On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
- 3. Name(s) and maximum amount of incoming process material(s) per hour:

Diesel intermediate - 82,500 lb/hr; Vacuum gas oil - 19,549 lb/hr; Wild naphtha - 15,000 lb/hr; Hydrogen (H_2) gas - 3,745 lb/hr; and Wash water - 2,372 lb/hr

4. Name(s) and maximum amount of outgoing process material(s) produced per hour:

Diesel product - 83,088 lb/hr; Reformate (heavy naphtha) intermediate - 26,761 lb/hr; Sour water - 3,741 lb/hr; and Process offgas to Unit 410 - 9,575 lb/hr

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

6.	Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
<u> </u>		<u> </u>					
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur	
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):		
		@		°F and		psia.	
	(d)	Dereent evenes ein					
		Percent excess air:					
	(e)	Type and BTU/hr of bu	rners and all other f	iring equipme	ent planned to	be used:	
	(6)						
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the	
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.						
						× 10 B10/III.	
7.	Pro	jected operating schedu	lle:				
Ho	lours/Day 24 Days/Week 7 Weeks/Year 52						

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	@ °F and ps						
a.	SEE ATTACHMENT J	lb/hr	grains/ACF				
b.		lb/hr	grains/ACF				
c.		lb/hr	grains/ACF				
d.		lb/hr	grains/ACF				
e.		lb/hr	grains/ACF				
f.		lb/hr	grains/ACF				
g.		lb/hr	grains/ACF				
h.	Specify other(s)						
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Repo	
	and reporting in order to demonstrate compliance
	Please propose testing in order to demonstrate
compliance with the proposed emissions lin	
MONITORING	RECORDKEEPING
SEE ATTACHMENT O	SEE ATTACHMENT O
REPORTING	TESTING
SEE ATTACHMENT O	SEE ATTACHMENT O
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE
PROPOSED TO BE MONITORED IN ORDER TO DEMON	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
REPORTING. PLEASE DESCRIBE THE PRO	
RECORDING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	
	nance procedures required by Manufacturer to
maintain warranty	

Unit 320 – Catalytic Reformer Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

 Name or type and model of proposed affected source: 						
Unit 320 – Catalytic Reformer Process Equipment						
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 						
3. Name(s) and maximum amount of incoming process material(s) per hour:						
Reformate (heavy naphtha) intermediate - 26,761 lb/hr						
4. Name(s) and maximum amount of outgoing process material(s) produced per hour:						
Reformate (heavy naphtha) product - 23,912 lb/hr; Fuel gas - 109 lb/hr; LPG - 270 lb/hr; and Process offgas to Unit 410 - 2,470 lb/hr						
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:						

6.	Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
<u> </u>		<u> </u>					
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur	
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):		
		@		°F and		psia.	
	(d)	Dereent evenes ein					
		Percent excess air:					
	(e)	Type and BTU/hr of bu	rners and all other f	iring equipme	ent planned to	be used:	
	(6)						
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the	
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.						
						× 10 B10/III.	
7.	Pro	jected operating schedu	lle:				
Ho	lours/Day 24 Days/Week 7 Weeks/Year 52						

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	@ °F and psi						
a.	SEE ATTACHMENT J	lb/hr	grains/ACF				
b.		lb/hr	grains/ACF				
c.		lb/hr	grains/ACF				
d.		lb/hr	grains/ACF				
e.		lb/hr	grains/ACF				
f.		lb/hr	grains/ACF				
g.		lb/hr	grains/ACF				
h.	Specify other(s)	1					
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				
		lb/hr	grains/ACF				

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compli with the proposed operating parameters. Please propose testing in order to demons compliance with the proposed emissions limits. 						
MONITORING SEE ATTACHMENT O	RECORDKEEPING SEE ATTACHMENT O					
REPORTING	TESTING					
SEE ATTACHMENT O	SEE ATTACHMENT O					
	E PROCESS PARAMETERS AND RANGES THAT ARE NSTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PRO MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PR RECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE					
TESTING. PLEASE DESCRIBE ANY PROPOSED EM POLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR					
10. Describe all operating ranges and mainte maintain warranty	nance procedures required by Manufacturer to					

Unit 410 – Gas Recovery Unit Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

1.	Name or type and model of proposed affected source:	
----	---	--

Unit 410 – Gas Recovery Unit Process Equipment

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

3. Name(s) and maximum amount of incoming process material(s) per hour:

Unit 200, 310, and 420 process offgas - 41,550 lb/hr; and Wash water - 6,135 lb/hr

4. Name(s) and maximum amount of outgoing process material(s) produced per hour:

Fuel gas - 14,880 lb/hr; LPG - 11,581 lb/hr; Light naphtha - 13,915 lb/hr; and Sour water - 7,304 lb/hr

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

6.	Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
<u> </u>		<u> </u>					
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur	
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):		
		@		°F and		psia.	
	(d)	Dereent evenes ein					
		Percent excess air:					
	(e)	Type and BTU/hr of bu	rners and all other f	iring equipme	ent planned to	be used:	
	(6)						
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the	
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.						
						× 10 BT0/III.	
7.	Pro	jected operating schedu	lle:				
Ho	lours/Day 24 Days/Week 7 Weeks/Year 52						

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	@ °F and psia				
a.	SEE ATTACHMENT J	lb/hr	grains/ACF		
b.		lb/hr	grains/ACF		
c.		lb/hr	grains/ACF		
d.		lb/hr	grains/ACF		
e.		lb/hr	grains/ACF		
f.		lb/hr	grains/ACF		
g.		lb/hr	grains/ACF		
h.	Specify other(s)	1			
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance 				
	Please propose testing in order to demonstrate			
MONITORING	RECORDKEEPING			
SEE ATTACHMENT O	SEE ATTACHMENT O			
REPORTING SEE ATTACHMENT O	TESTING SEE ATTACHMENT O			
	IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			
maintaint warranty				

Unit 420 – Amine Regeneration Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

naonanoalion nambor (ao aooignoa on Equipmont Elot ronn). Nant
1. Name or type and model of proposed affected source:
Unit 420 – Amine Regeneration Process Equipment
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of incoming process material(s) per hour:
Rich amine from Unit 200 - 8,106 lb/hr; Rich amine from Unit 440 - 36,020 lb/hr; and Wash water - 75 lb/hr
4. Name(s) and maximum amount of outgoing process material(s) produced per hour:
Lean amine to Unit 200 - 7,970 lb/hr; Lean amine to Unit 440 - 35,809 lb/hr; Process offgas to Unit 440 - 416 lb/hr; and Process offgas to Unit 410 - 5 lb/hr
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

6.	. Combustion Data (if applicable):					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
┢	(b)		oposod fuol(s) ovelu	ding coal in		
	(U)	Chemical analysis of pr and ash:	oposed idei(s), exclu	ung coal, il	iciuuling maxim	ium percent sunui
┣						
	(c)	Theoretical combustion	air requirement (AC	F/unit of fue	el):	
		@		°F and		psia.
	(d)	Percent excess air:				
F	(e)	Type and BTU/hr of bu	rners and all other fir	ing equipme	ent planned to	be used:
┢	(f)	If and in proposed on a	agurag of fuel identi	fuquention		aive sizing of the
	(f)	If coal is proposed as a coal as it will be fired:	Source of fuel, identi	ily supplier a	and seams and	give sizing of the
	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.					× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ıle:		I	
Ho	Hours/Day 24 Days/Week 7 Weeks/Year 52					

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	@ °F and psia				
a.	SEE ATTACHMENT J	lb/hr	grains/ACF		
b.		lb/hr	grains/ACF		
c.		lb/hr	grains/ACF		
d.		lb/hr	grains/ACF		
e.		lb/hr	grains/ACF		
f.		lb/hr	grains/ACF		
g.		lb/hr	grains/ACF		
h.	Specify other(s)	1			
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complian with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 				
MONITORING SEE ATTACHMENT O	RECORDKEEPING SEE ATTACHMENT O			
REPORTING	TESTING			
SEE ATTACHMENT O	SEE ATTACHMENT O			
	E PROCESS PARAMETERS AND RANGES THAT ARE NSTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PRO MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PR RECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EM POLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mainte maintain warranty	nance procedures required by Manufacturer to			

Unit 430 – Sour Water Stripping Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

1.	1. Name or type and model of proposed affected source:				
U	Unit 430 – Sour Water Stripping Process Equipment				
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.				
3.	Name(s) and maximum amount of incoming process material(s) per hour:				
So	ur water from Unit 200, 310, 410, and 440 - 147,002 lb/hr				
4.	Name(s) and maximum amount of outgoing process material(s) produced per hour:				
	nmonia - 2,823 lb/hr;				
	ripped water - 139,507 lb/hr; and ocess offgas to Unit 440 - 4,672 lb/hr				
	ocess origas to onit 440 - 4,072 io/iii				
Б	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:				
5.	One chemical reactions, il applicable, that will be involved in the generation of all politiants.				

6.	. Combustion Data (if applicable):					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
<u> </u>		<u> </u>				
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):	
		@		°F and		psia.
	(d)	Dereent evenes ein				
		Percent excess air:				
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:					be used:
	(6)					
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the
	(g) Proposed maximum design heat input: \times 10 ⁶ BTU/hr.					× 10 ⁶ BTU/hr.
						× 10 BT0/III.
7.	Pro	jected operating schedu	lle:			
Ho	lours/Day 24 Days/Week 7 Weeks/Year 52					

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	@ °F and psia				
a.	SEE ATTACHMENT J	lb/hr	grains/ACF		
b.		lb/hr	grains/ACF		
c.		lb/hr	grains/ACF		
d.		lb/hr	grains/ACF		
e.		lb/hr	grains/ACF		
f.		lb/hr	grains/ACF		
g.		lb/hr	grains/ACF		
h.	Specify other(s)	1			
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complian with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 				
MONITORING SEE ATTACHMENT O	RECORDKEEPING SEE ATTACHMENT O			
REPORTING	TESTING			
SEE ATTACHMENT O	SEE ATTACHMENT O			
	E PROCESS PARAMETERS AND RANGES THAT ARE NSTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PRO MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PR RECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EM POLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mainte maintain warranty	nance procedures required by Manufacturer to			

Unit 440 – Sulfur Recovery Unit Process Equipment

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): N/A

4	Nome or type and	model of pro	need offected courses
	Name of type and	model of bro	posed affected source:
•••	rianno or typo ana		

Unit 440 – Sulfur Recovery Unit Process Equipment

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

3. Name(s) and maximum amount of incoming process material(s) per hour:

Lean amine - 35,809 lb/hr; Process water - 571 lb/hr; Combustion air - 11,767 lb/hr; Process offgas from Unit 420 - 416 lb/hr; and Process offgas from Unit 430 - 4,672 lb/hr

4. Name(s) and maximum amount of outgoing process material(s) produced per hour:

Elemental sulfur - 4,565 lb/hr; Sour water - 3,300 lb/hr; Rich amine - 36,020 lb/hr; and Process gas to incinerator - 9,351 lb/hr

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

6.	. Combustion Data (if applicable):					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
<u> </u>		<u> </u>				
	(b)	Chemical analysis of pr and ash:	oposed fuel(s), excl	uding coal, in	icluding maxim	ium percent sulfur
	(c)	Theoretical combustion	air requirement (A	CF/unit of fue	el):	
		@		°F and		psia.
	(d)	Dereent evenes ein				
		Percent excess air:				
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:					be used:
	(6)					
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, iden	tify supplier a	and seams and	I give sizing of the
	(g) Proposed maximum design heat input: \times 10 ⁶ BTU/hr.					× 10 ⁶ BTU/hr.
						× 10 BT0/III.
7.	Pro	jected operating schedu	lle:			
Ho	Hours/Day 24 Days/Week 7 Weeks/Year 52					

8.	. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:							
@		°F and	psia					
a.	SEE ATTACHMENT J	lb/hr	grains/ACF					
b.		lb/hr	grains/ACF					
c.		lb/hr	grains/ACF					
d.		lb/hr	grains/ACF					
e.		lb/hr	grains/ACF					
f.		lb/hr	grains/ACF					
g.		lb/hr	grains/ACF					
h.	Specify other(s)							
		lb/hr	grains/ACF					
		lb/hr	grains/ACF					
		lb/hr	grains/ACF					
		lb/hr	grains/ACF					

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING SEE ATTACHMENT O	TESTING SEE ATTACHMENT O
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainte maintain warranty	nance procedures required by Manufacturer to

Attachment L Emission Unit Data Sheet (NONMETALLIC MINERALS PROCESSING)

Control Device ID No. (must match List Form):

		E	quipment l	nform	ation		
1.	Plant Type:						
	Hot-mix asphalt fa	acility that reduces the	size of nonn	netallio	c minerals embed	ded in recycled as	sphalt pavement
		shers or grinding mills a		-	tand-alone scree	ning operation	
	Sand and gravel	·	mmon clay p	olant			
	Crushed stone pl		mice plant				
	Other, specify Di	rect Coal Liquefaction	n Facility				
2.		Fixed Plant Portable Plant		3. P	lant Capacity:		tons/hr
4.	Underground mine:	🗌 Yes 🛛 🖂	No	5. S	torage: 🛛 🖂] Open 🛛 🖂 I	Enclosed
6.	Emission Facility Type	Equipment Type Used	ID Number Emission		Manufacturer	Model Number/ Serial Number	Date of Manufacture
			100-TC	-1			2020
			100-TC	-2			2020
		Coal Handling	100-TC	-3			2020
		Transfer Conveyors	100-TC	-4			2020
		with Mechanical Vents	100-TC-5				2020
			100-TC-6				2020
			100-TC	-7			2020
			200-S-105				2020
	Transfer Conveyors	Flaked Residue Transfer Conveyors (with Mechanical	610-TC-1				2020
			610-TC-	2*			2020
			610-TC-	3*			2020
			610-TC-	4*			2020
		Vents*)	610-TC-	5*			2020
			610-TC-6*				2020
			610-TC-7				2020
		Sulfur Handling	610-TC	-8			2020
		Transfer Conveyors	610-TC	-9			2020
	Crusher	Fixed Coal Mill	100-CM	-1			2020
	Secondary Crushers						
	Tertiary Crushers						
	Grinder						
			100-TH	-1			2020
			100-TH-	2*			2020
	Hannara	Coal Handling	100-TH	-3			2020
	Hoppers	Hoppers (with Mechanical Vents*)	100-TH-	4*			2020
		/	100-TH-	5*			2020
			100-TH-	6*			2020

	Coal Handling	100-TH-7*			2020
	Hoppers (with Mechanical Vents*)	200-D-110*			2020
		200-D-204			2020
		200-D-205			2020
	Catalyst Handling	200-D-206			2020
Hoppers	Hoppers	200-D-207			2020
(continued)		200-D-208			2020
		610-TH-1*			2020
	Flaked Residue Hoppers (with	610-TH-2*			2020
	Mechanical Vents*)	610-TH-3			2020
		610-TH-4			2020
	Sulfur Handling	610-TH-5			2020
	Hoppers	610-TH-6			2020
Rock Drills					
Screens					
	Storage Piles in	610-SP-1			2020
Enclosed Storage	Storage Domes	610-SP-2			2020
		100-CSP-1			2020
	Storage Piles	100-CSP-2			2020
Outdoor Storage		100-CSP-3			2020
		610-SP-3			2020
		100-CS-1			2020
Other	Coal Storage Silos	100-CS-2			2020
Other	Flake Storage Silo	610-SS-1			2020
Emission Facility Type	ID Number of Emission Unit	Max Hourly Operation Rate ton/hr	Max Annual Operation Rate tons/year	Number of Units	Air Pollution Control Device Used
	100-TC-1	1,000	912,500		FF
	100-TC-2	1,000	912,500		FF
	100-TC-3	1,000	912,500		FF
	100-TC-4	104.17	912,500		FF
	100-TC-5	104.17	912,500		FF
	100-TC-6	416.67	912,500		FF
Transfer Conveyors	100-TC-7	416.67	912,500		FF
	200-S-105	416.67	912,500		FF
	610-TC-1	25.53	223,599		None
	610-TC-2	25.53	223,599		None
	610-TC-3	25.53	223,599		None
	610-TC-4	25.53	223,599		None
	610-TC-5	25.53	223,599		None
	610-TC-6	536.03	223,599		None

	610-TC-7	536.03	223,599	None
Transfer Conveyors	610-TC-8	2.28	19,995	None
	610-TC-9	47.93	19,995	None
Crusher	100-CM-1	104.17	912,500	Baghouse
Secondary Crushers				
Tertiary Crushers				
Grinder				
	100-TH-1	1,000	912,500	None
	100-TH-2	1,000	912,500	FF
	100-TH-3	104.17	912,500	None
	100-TH-4	104.17	912,500	FF
	100-TH-5	104.17	912,500	None
	100-TH-6	416.67	912,500	None
	100-TH-7	416.67	912,500	None
	200-D-110	416.67	912,500	None
	200-D-204	2.20	803	FF
Hoppers	200-D-205	2.20	803	FF
	200-D-206	3.52	1,284.8	FF
	200-D-207	3.52	1,284.8	FF
	200-D-208	3.52	1,284.8	FF
	610-TH-1	536.03	223,599	None
	610-TH-2	536.03	223,599	None
	610-TH-3	536.03	223,599	None
	610-TH-4	2.28	19,995	None
	610-TH-5	47.93	19,995	None
	610-TH-6	47.93	19,995	None
Rock Drills				
Screens				
	610-SP-1		223,599	FF
Enclosed Storage	610-SP-2		223,599	FF
	100-CSP-1		912,500	Wind Shield
	100-CSP-2		912,500	Wind Shield
Outdoor Storage	100-CSP-3		912,500	None
	610-SP-3		19,995	None
0	100-CS-1		912,500	FF
Coal Storage Silos	100-CS-2		912,500	FF
Flake Storage Silo	610-SS-1		223,599	FF

7. Provide a diagram and/or schematic that shows the proposed process of the operation or plant. The diagram and/or schematic is to show all sources, components and facets of the operation or plant in an understandable line sequence of the operation. The diagram should include all the equipment involved in the operation; such as conveyors, transfer points, stockpiles, crushers, facilities, vents, screens, truck dump bins, truck, barge and railcar loading and unloading, etc. Appropriate sizing and specifications of equipment should be included in the diagram. The diagram shall logical follow the entire process load-in to load-out.

8.	Roads	Paved Miles of	Unpaved Mil	es	Wate	Other Control						
		Road	of Road		liles	Frequency	(Specify)					
	Plant Yard											
	Access Roads	-	See Haul Roads Emission Unit Data Sheet									
9.	Vehicle Type											
	.	Mean Vehicle	Mean Vehicle V Tons	Veight in	Number	Distance Trave	eled per Round Tri					
	Vehicle Type	Speed in mph	Empty	Full	of Wheels	Paved Feet or Miles	Unpaved Feet or Miles					
	Raw Aggregate											
	Loaders		See Haul	Roads En	nission Ur	nit Data Sheet						
	Product Trucks											
10.	Describe all prop	osed materials sto	rage facilities as	sociated v	/ith the Err	nission Units liste	ed.					

	Storage Activity										
ID of Emission Unit	610-SP-1	610-SP-2	100-CSP-1	100-CSP-2	100-CSP-3	610-SP-3					
Type Storage	SB	SB	OS	OS	OS	OS					
Material Stored	Flaked Residue	Flaked Residue	Coal	Coal	Coal	Sulfur					
Typical Moisture Content (%)	0.92	0.92	6	6	6	0.70					
Avg % of material passing through 200 mesh sieve											
Maximum Total Yearly Throughput in storage (tons)	223,599	223,599	912,500	912,500	912,500	19,995					
Maximum Stockpile Base Area (ft ²)	13,500	13,500	26,000	88,000	530	511					
Maximum Stockpile height (ft)	30	30	30	40	8	20					
Dust control method applied to storage			Other – Wind Shield	Other – Wind Shield							
Method of material load- in to bin or stockpile											
Dust control method applied during load- in											
Method of material load- out to bin or stockpile											
Dust control method applied during load- out											

Storage Piles	Estimated Annual Tons	Turnover Rate (Ton/Month)	Wetted as Piled	Number of Sides Enclosed	Other Dust Control	Loading Method (Loader, Conveyor) IN/OUT
Coarse: over 1"						
Fine: 1" to ¼"						
¼" and less						
MFG. Sand						
Other, specify						

Conveying and Transfer Describe the conveying system including transfer points associated with proposed Emission Units (crushers, etc...).

Describe any methods of emission control to be used with these proposed conveying systems:

ID of Emission	Type Conveyor or	Material Handled [Note		Conveying sfer Rate	Dust Control Measures	Approximate Material	
Unit	Transfer Point	nominal size of material transferred (e.g. ¾" × 0)]	Max. Maximum TPH TPY		Applied	Moisture Content (%)	
100-TC-1	BC		1,000	912,500	EM	6	
100-TC-2	BC		1,000	912,500	EM	6	
100-TC-3	BC		1,000	912,500	EM	6	
100-TC-4	BC		104.17	912,500	EM	6	
100-TC-5	BC		104.17	912,500	EM	3	
100-TC-6	BC		416.67	912,500	EM	3	
100-TC-7	BC		416.67	912,500	EM	3	
200-S-105	SC		416.67	912,500	EM	3	
610-TC-1	BC		25.53	223,599	N	0.92	
610-TC-2	BC		25.53	223,599	EM	0.92	
610-TC-3	BC		25.53	223,599	EM	0.92	
610-TC-4	BC		25.53	223,599	EM	0.92	
610-TC-5	BC		25.53	223,599	EM	0.92	
610-TC-6	BC		536.03	223,599	EM	0.92	
610-TC-7	BC		536.03	223,599	N	0.92	
610-TC-8	BC		2.28	19,995	Ν	0.70	
610-TC-9	BC		47.93	19,995	Ν	0.70	

Crushing and Screening

			ind Screening			
ID of Emission Unit	100-CM-1					
Type Crusher or Screen						
Material Sized						
Material Sized Throughp	ut:	L			•	
Tons/hr	104.17					
Tons/yr	912,500					
Material sized from/to	2 mesh/in to 50 mesh/in					
Typical moisture content as crushed or screened (%)	6%					
Dust control methods applied	EB					
Stack Parameters:				•	·	
Height (ft)						
Diameter (ft)						
Volume (ACFM)	20,304					
Temp (°F)	180					
Maximum operating sche	edule:		•	•		
Hour/day	24					
Day/year	365					
Hour/year	8760					
Approximate Percentage	of Operation fro	om:	1	1	Γ	
Jan – Mar	25					
April – June	25					
July – Sept	25					
Oct – Dec	25					
Maximum Particulate Em	issions:		I	1	Γ	
LB/HR	1.84					
Ton/Year	8.07					

List emission sources with request information:

ID of Emission Unit	Type of Emission Unit and Use	Operating	Schedule	Max. Amount of Stone Input to	Crushed or Screened	Date of Emission
		Actual (hrs/yr)	Design (hrs/yr)	Emission (lb/hr)	From/To (size)	Unit was Manufacture

List emission sources with request information:

ID of Emission	Maximum expec	cted emissions from	Emission Unit with	nout Air Pollution Co	ontrol Equipment
Unit	PM₁₀ (lbs/hr)	SO 2 (lbs/hr)	CO (lbs/hr)	NO _x (lbs/hr)	VOC (lbs/hr)

ID of Emission Unit	Maximum expected emissions from Emission Unit without Air Pollution Control Equipment				
	PM₁₀ (tons/yr)	SO ₂ (tons/yr)	CO (tons/yr)	NO _x (tons/yr)	VOC (tons/yr)

Please fill out a separate Air Pollution Control Device Sheet for each Emission Unit equipped with an air pollution control system.

What type of stone will be quarried at this site?

How will it be quarried?

Sawing

Blasting

Other, Specify:

If blasting is checked, complete the following:

Frequency of blasting:

What method of air pollution control will be employed during drilling and blasting?

Emission Unit ID No. (must match List Form): **100-CMD-1** Control Device ID No. (must match List Form):

Equipment	t Information
1. Manufacturer: Williams Patent Crusher and Pulverizer Company, Inc.	2. Model No. Serial No.
3. Number of units: 1	 Use: Coal Milling Dryer – Heat coal to specific moisture content for use in process before entering the Coal Mill 100-CM-1.
5. Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7. Date constructed: 2020	8. Date of last modification and explain: N/A
9. Maximum design heat input per unit:	10. Peak heat input per unit:
13.45 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11. Steam produced at maximum design output: LB/hr psig	12. Projected Operating Schedule: Hours/Day 24 Days/Week 7 Weeks/Year 52
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15. Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
Stack or	Vent Data
19. Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21. Height: ft.	22. Stack serves:
23. Gas flow rate: ft ³ /min	 This equipment only Other equipment also (submit type and rating of
24. Estimated percent of moisture: %	all other equipment exhausted through this stack or vent)

_			Fuel Requi	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	14,651.4 ft ³ /hr	ft ³ /hr	TPH	
	Annually	×10 ³ gal	128.3 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	0 ppmv	ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	918 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F				
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	27. Gas burner mar 28. Oil burner manu		
29.	If fuel oil is used, h		Oil Pressur			
	,			ed Air 🔲 Rotary Cu		
	Fuel oil preheated:			31. If yes, indicate t	-	°F
32.		ited theoretical air re ACF) per unit of fue		ombustion of the fu	el or mixture of fuels	described above
	0	°F,	PSIA,	% mo	oisture	
	Emission rate at ra	1 2	lb/hr			
34.	Percent excess air	actually required for	or combustion of t		%	
35.	Seams:					
36.	Proximate analysis	(),	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

37.	What quantities of pollutar	nts will be emitted from	the heat exchange	r before controls?	
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
		SEE A	TTACHMENT J	_	
-					
38.	What quantities of pollutar	1	the heat exchange	r after controls?	
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
		SEE A	TTACHMENT J		
39.	How will waste material from	om the process and co	ntrol equipment be	disposed of?	
40.	40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.				
41.	Have you included the air	pollution rates on the	Emissions Points I	Data Summary Sheet	?

42.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.
	SEE ATTACHMENT O
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
12	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Emission Unit ID No. (must match List Form): **200-H-301** Control Device ID No. (must match List Form):

	Equipment	Information
1.	Manufacturer: Heurtey Petrochem	2. Model No.
		Serial No.
3.	Number of units: 1	 Use: Vacuum Tower Feed Heater – To heat atmospheric bottoms feed from the Atmospheric Tower 200-T- 301 to promote hydrocarbon separation in Vacuum Tower 200-T-303.
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7.	Date constructed: 2020	8. Date of last modification and explain: N/A
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	24.79 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:
	LB/hr	Hours/Day 24 Days/Week 7
	psig	Weeks/Year 52
13.	Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Fuel Gas Burner	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
	Stack or	Vent Data
19.	Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21.	Height: ft.	22. Stack serves:
23.	Gas flow rate: ft ³ /min	This equipment onlyOther equipment also (submit type and rating of
24.	Estimated percent of moisture: %	all other equipment exhausted through this stack or vent)

			Fuel Requir	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	34,817 ft ³ /hr	TPH	
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	305.0 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source			Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	27. Gas burner man		
29	If fuel oil is used, h		Omatic on-off 2	8. Oil burner manu		
				ed Air 🗍 Rotary Cu		
	Fuel oil preheated:			31. If yes, indicate to	•	°F
32.		ated theoretical air re ACF) per unit of fue		mbustion of the fue	el or mixture of fuels	described above
	@	°F,	PSIA,	% mc	oisture	
33.	Emission rate at ra	ated capacity:	lb/hr			
34.	Percent excess air	r actually required for			%	
25	0		Coal Charac	teristics		
35.	Seams:					
36.	Proximate analysis	,	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
SEE ATTACHMENT J				
What quantities of pollu	tants will be emitted from	the heat exchanger	after controls?	
Pollutant	Pounds per Hour		@°F	PSIA
	lb/hr	grain/ACF	@ F	PSIA
SEE ATTACHMENT J				
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	

42.	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.
	SEE ATTACHMENT O
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
12	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Emission Unit ID No. (must match List Form): **320-H-201/202/203/204** Control Device ID No. (must match List Form):

	Equipment	t Information
1.	Manufacturer: Heurtey Petrochem	2. Model No.
		Serial No.
3.	Number of units: 4	 Use: Catalytic Reaction Heaters – To heat the naphtha fee from Unit 310 - Hydrocracker to desired fee temperature before entering the Unit 32 Catalytic Reactors.
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7.	Date constructed: 2020	8. Date of last modification and explain:
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	11.89 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:
	LB/hr	Hours/Day 24
		Days/Week 7
	psig	Weeks/Year 52
13.	Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Fuel Gas Burner	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
-	Stack or	Vent Data
19.	Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21.	Height: ft.	22. Stack serves:
23.	Gas flow rate: ft ³ /min	 This equipment only Other equipment also (submit type and rating of the second se
24.	Estimated percent of moisture: %	all other equipment exhausted through this stac or vent)

			Fuel Requir	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	16,699 ft ³ /hr	TPH	
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	146.3 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F		Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	27. Gas burner man 28. Oil burner manu		
29.	If fuel oil is used, h	iow is it atomized?	Oil Pressure	e 🔄 Steam Pre ed Air 🗌 Rotary Cu	essure	
	Fuel oil preheated:			31. If yes, indicate to	•	°F
		ated theoretical air r ACF) per unit of fue		ombustion of the fue	I or mixture of fuels	described above
<u> </u>	@	°F,	PSIA,	% mc	oisture	
	Emission rate at ra		Ib/hr	L . f	0/	
34.	Percent excess air	actually required in	or combustion of the Coal Charac		%	
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
E ATTACHMENT J	ID/Nr			
. What quantities of pollu	utants will be emitted from t	he heat exchanger a	after controls?	
	utants will be emitted from t Pounds per Hour	-		DSIA
. What quantities of pollu Pollutant	1	he heat exchanger a	after controls? @ °F	PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant E ATTACHMENT J	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
Pollutant E ATTACHMENT J	Pounds per Hour	grain/ACF	@ °F	PSIA

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. SEE ATTACHMENT O
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Emission Unit ID No. (must match List Form): **200-H-102** Control Device ID No. (must match List Form):

		Equipment	nt Information
1.	Manufacturer: Heurtey Petrochem		2. Model No.
			Serial No.
3.	Number of units: 1		 Use: Slurry Feed Heater – To heat the slurry feed from the Coal Slurry Mixing Drum 200-D-111 to desired feed temperature before entering Catalytic Reactor 200-R-101.
5.	Rated Boiler Horsepower:	hp	6. Boiler Serial No.:
7.	Date constructed: 2020		8. Date of last modification and explain: N/A
9.	Maximum design heat input per unit:		10. Peak heat input per unit:
	74.02 ×10	⁶ BTU/hr	×10 ⁶ BTU/hr
11.	Steam produced at maximum design out	put:	12. Projected Operating Schedule:
	LB/I	hr	Hours/Day 24
	psic		Days/Week 7 Weeks/Year 52
	psig)	
13.	Type of firing equipment to be used:		14. Proposed type of burners and orientation:
	Pulverized coal		Vertical Front Wall
	Oil burners		
	☐ Natural Gas Burner		☐ Tangential
	Others, specify Fuel Gas Burne	r	Others, specify
15.	Type of draft: Forced Indu	ced	16. Percent of ash retained in furnace: %
17.	Will flyash be reinjected?	🗌 No	18. Percent of carbon in flyash: %
		Stack or	or Vent Data
19.	Inside diameter or dimensions:	ft.	20. Gas exit temperature: °F
21.	Height: ft.		22. Stack serves:
23	Gas flow rate: ft ³ /min		This equipment only
	Estimated percent of moisture:	%	Other equipment also (submit type and rating c all other equipment exhausted through this stac or vent)

			Fuel Requir	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	103,961 ft ³ /hr	TPH	
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	910.70 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F		Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	27. Gas burner man 28. Oil burner manu		
29.	If fuel oil is used, h		Oil Pressure	e 🗌 Steam Pre ed Air 🗌 Rotary Cu	essure	
	Fuel oil preheated:			31. If yes, indicate to	•	°F
32.	Specify the calcula actual cubic feet (A	ated theoretical air re ACF) per unit of fue		ombustion of the fue	I or mixture of fuels	described above
	@	°F,	PSIA,	% mc	oisture	
	Emission rate at ra	1 7	lb/hr	to fuel described:	0/	
34.	Percent excess air	actually required to	or compustion of the Coal Charac		%	
35.	Seams:					
36.	Proximate analysis		Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
SEE ATTACHMENT J				
What quantities of pollu	tants will be emitted from	the heat exchanger	after controls?	
Pollutant	Pounds per Hour		@°F	PSIA
	lb/hr	grain/ACF	@ F	PSIA
SEE ATTACHMENT J				
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the propose operating parameters. Please propose testing in order to demonstrate compliance with the proposed emission limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) th ranges and how they were established for monitoring to demonstrate compliance with the operation of thi process equipment operation or air pollution control device. SEE ATTACHMENT O
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollutio control device.
SEE ATTACHMENT O
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Emission Unit ID No. (must match List Form): **200-H-301** Control Device ID No. (must match List Form):

	Equipment	Information
1.	Manufacturer: Heurtey Petrochem	2. Model No.
		Serial No.
3.	Number of units: 1	 Use: Hydrocracker Reaction Heater – To heat Unit 310 feed stream from the Feed Surge Drum 310-D-101 to desired feed temperature before entering Hydrotreater/Hydrocracker Reactor 310-R-101.
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7.	Date constructed: 2020	8. Date of last modification and explain: N/A
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	8.37 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11.	. Steam produced at maximum design output:	12. Projected Operating Schedule:
	LB/hr	Hours/Day 24 Days/Week 7
	psig	Weeks/Year 52
13.	 Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Fuel Gas Burner 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15.	. Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17.	. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
	Stack or	Vent Data
19.	. Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21.	. Height: ft.	22. Stack serves:
23.	. Gas flow rate: ft ³ /min	 This equipment only Other equipment also (submit type and rating of
24.	. Estimated percent of moisture: %	all other equipment exhausted through this stack or vent)

			Fuel Requir	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	11,756 ft ³ /hr	ТРН	
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	103.0 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F		Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode o	🗌 Auto	omatic hi-low	27. Gas burner man 28. Oil burner manu		
29.	If fuel oil is used, h		Oil Pressur	e 🔄 Steam Pre ed Air 🗌 Rotary Cu	essure	
30.	Fuel oil preheated:	: 🗌 Yes 🛛 [31. If yes, indicate to	emperature:	°F
32.		ated theoretical air r ACF) per unit of fue °F,		ombustion of the fue	el or mixture of fuels bisture	described above
33.	Emission rate at ra	ated capacity:	lb/hr			
34.	Percent excess air	r actually required for	or combustion of t	he fuel described:	%	
			Coal Charac	teristics		
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	

7. What quantities of poll	utants will be emitted f	rom the heat exch	anger before contro	ls?
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
SEE ATTACHMENT J			T	Γ
What quantities of poll	utants will be emitted f Pounds per Hour			
Pollutant	Ib/hr	grain/ACF	@ °F	PSIA
SEE ATTACHMENT J				[
-				
N 11		·		
). How will waste materia	ii from the process and	control equipmen	it be disposed of?	
). Have you completed a	n Air Pollution Control	Device Sheet(s) f	or the control(s) us	ed on this Emissi
. Have you included the	air pollution rates on t	ne Emissions Poin	ts Data Summary S	heet?

F	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions mits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. SEE ATTACHMENT O
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
_	
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
43. C	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
L	

Emission Unit ID No. (must match List Form): **200-H-101** Control Device ID No. (must match List Form):

	Equipment	Information
1.	Manufacturer: Heurtey Petrochem	2. Model No.
		Serial No.
3.	Number of units: 1	 Use: Hydrogen Heater – To heat hydrogen to desired temperature before being mixed with the coal slurry stream prior to entering Catalytic Reactor 200-R-101.
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:
7.	Date constructed: 2020	8. Date of last modification and explain: N/A
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	15.34 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr
11.	. Steam produced at maximum design output:	12. Projected Operating Schedule:
	LB/hr	Hours/Day 24 Days/Week 7
	psig	Weeks/Year 52
13.	 Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Fuel Gas Burner 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15.	. Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17.	. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
	Stack or	Vent Data
19.	. Inside diameter or dimensions: ft.	20. Gas exit temperature: °F
21.	. Height: ft.	22. Stack serves:
23.	. Gas flow rate: ft ³ /min	 This equipment only Other equipment also (submit type and rating of
24.	. Estimated percent of moisture: %	all other equipment exhausted through this stack or vent)

			Fuel Requir	rements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	21,545 ft ³ /hr	TPH	
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	188.73 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F		Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)			 		
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	7. Gas burner man 8. Oil burner manu		
29.	If fuel oil is used, h		Oil Pressure	e 🔄 Steam Pre ed Air 🗌 Rotary Cu	essure	
	Fuel oil preheated:			31. If yes, indicate to	•	°F
32.	Specify the calcula actual cubic feet (A	ated theoretical air r ACF) per unit of fue		ombustion of the fue	el or mixture of fuels	described above
_	@	°F,	PSIA,	% ma	bisture	
	Emission rate at ra		Ib/hr	- first standing of	0/	
34.	Percent excess air	actually required in	or combustion of the Coal Charac		%	
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		6 of Sulfur: 6 of Volatile Matter:	:

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
SEE ATTACHMENT J				
What quantities of pollu	tants will be emitted from	the heat exchanger	after controls?	
Pollutant	Pounds per Hour		@°F	PSIA
	lb/hr	grain/ACF	@ F	PSIA
SEE ATTACHMENT J				
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	
How will waste material	from the process and cor	ntrol equipment be di	isposed of?	

	Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
	MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
	TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. SEE ATTACHMENT O
	RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
	REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
43.	Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Emission Unit ID No. (must match List Form): **310-H-103** Control Device ID No. (must match List Form):

	Equipment Information				
1.	Manufacturer: Heurtey Petrochem	2. Model No.			
		Serial No.			
3.	Number of units: 1	 Use: Fractionation Reboiler – To heat the recycle diesel feed from Fractionator 310-C-201 to promote further hydrocarbon separation. 			
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:			
7.	Date constructed: 2020	8. Date of last modification and explain: N/A			
9.	Maximum design heat input per unit:	10. Peak heat input per unit:			
	10.78 ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr			
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:			
	LB/hr	Hours/Day 24 Days/Week 7			
	psig	Weeks/Year 52			
13.	Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Fuel Gas Burner	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify 			
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: %			
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %			
	Stack or	Vent Data			
19.	Inside diameter or dimensions: ft.	20. Gas exit temperature: °F			
21.	Height: ft.	22. Stack serves:			
23.	Gas flow rate: ft ³ /min	 This equipment only Other equipment also (submit type and rating of 			
24.	Estimated percent of moisture: %	all other equipment exhausted through this stack or vent)			

	Fuel Requirements					
25.	Туре	Fuel Oil No.	Natural Gas	Gas (Fuel Gas)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	15,140 ft ³ /hr	TPH	
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	132.63 ×10 ⁶ ft ³ /yr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	0 ppmv	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	712 BTU/ft ³	BTU/lb	
	Source	Lbs/Gal.@60°F		Unit 410 – Gas Recovery Unit		
	Supplier					
	Halogens (Yes/No)			 		
	List and Identify Metals					
26.	Gas burner mode o Manual Automatic full m	🗌 Auto	omatic hi-low	7. Gas burner man 8. Oil burner manu		
29.	If fuel oil is used, h		Oil Pressure	e 🔄 Steam Pre ed Air 🗌 Rotary Cu	essure	
	Fuel oil preheated:			31. If yes, indicate to	•	°F
32.	Specify the calcula actual cubic feet (A	ated theoretical air r ACF) per unit of fue		ombustion of the fue	el or mixture of fuels	described above
_	@	°F,	PSIA,	% ma	bisture	
	Emission rate at ra		Ib/hr	- first standing of	0/	
34.	Percent excess air	actually required in	or combustion of the Coal Charac		%	
35.	Seams:					
36. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile N % of Ash: %			6 of Sulfur: 6 of Volatile Matter:			

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
E ATTACHMENT J	ID/Nr			
. What quantities of pollu	utants will be emitted from t	he heat exchanger a	after controls?	
	utants will be emitted from t Pounds per Hour	-		DSIA
. What quantities of pollu Pollutant	1	he heat exchanger a	after controls? @ °F	PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant	Pounds per Hour	-		PSIA
Pollutant E ATTACHMENT J	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
Pollutant E ATTACHMENT J	Pounds per Hour	grain/ACF	@ °F	PSIA

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. SEE ATTACHMENT O
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 700-HR-1

1. Name or type and model of proposed affected source:
Hydrogen Reformer
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Natural gas and fuel gas – 1 238 MMRtu/br
Natural gas and fuel gas – 1,238 MMBtu/hr
4. Name(s) and maximum amount of proposed material(s) produced:
Hydrogen (H₂) gas – 75 MMscf/day
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
C_xH_y (mostly methane – CH ₄) + $O_2 \rightarrow H_2$ + CO + CO ₂

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable):					
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
		as – 28 MMscf/day;				
	·uei gas -	- 169.5 MMBtu/hr				
	(b) Che	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur				
		ash:		0 ,	5	
	(c) The	oretical combustion	n air requirement (ACF/unit of fu	iel):	
		@		°F and		psia.
		_				•
	(d) Percent excess air:					
	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:					
	(f) If co	pal is proposed as a	source of fuel, ide	entify supplier	and seams and	give sizing of the
	coa	l as it will be fired:				
-						
	(g) Pro	posed maximum de	esign heat input:		537	× 10 ⁶ BTU/hr.
7.	Project	ed operating sched	ule:			
Но	ours/Day	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@		°F and	psia	
a.	See Attachment J			
b.				
c.				
d.				
e.				
f.				

Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complianc with the proposed operating parameters. Please propose testing in order to demonstrat compliance with the proposed emissions limits. MONITORING				
See Attachment O	See Attachment O			
REPORTING	TESTING			
See Attachment O	See Attachment O			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARI PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.				
RECORDREPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR			
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to			

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 440-CF-1

1.	. Name or type and model of proposed affected source:					
с	Claus Furnace					
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.					
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:					
A	Acid and sour gas from Unit 420 and Unit 430 – 5,088 lb/hr					
4.	Name(s) and maximum amount of proposed material(s) produced per hour:					
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:					
2 F	H_2S + 3 $O_2 \rightarrow$ 2 SO_2 + 2 H_2O ;					
4 ⊦	H_2S + 2 SO ₂ \rightarrow 3 S ₂ + 4 H ₂ O					

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Co	Combustion Data (if applicable):					
(a)	(a) Type and amount in appropriate units of fuel(s) to be burned:					
	Fuel gas for startup operations; Acid and sour gases from Unit 420 and Unit 430 during normal operation					
(b)	 b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash: 					
				/// // \		
(C)) Theoretical	combustion a	air requirement	(lb/hr):		
	11,767	@	2250	°F and		psia.
(d	(d) Percent excess air:					
			ners and all othe			
(f)	If coal is pro	posed as a s Il be fired:	source of fuel, id	entify supplier	and seams and	give sizing of the
	-		ign heat input:	4	1.4	× 10 ⁶ BTU/hr.
7. Pr	ojected opera	ating schedul	e:		1	
Hours	/Day	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@		°F and	psia	
a.	See Attachment J			
b.				
c.				
d.				
e.				
f.				

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 							
See Attachment O	See Attachment O						
REPORTING	TESTING						
See Attachment O	See Attachment O						
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION							
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE						
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE						
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR						
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to						

Attachment L Emission Unit Data Sheet Sulfur Recovery Incinerator

Emission Unit ID No. (must match List Form): 440-SRI-1

Control Device ID No. (must match List Form): 440-SRI-1

Equipment Information

1.	Manufacturer:	2. Model No.
3.	out) of (1) the primary combustion chamber, (2) the auxiliary burners, and (5) dampers with special emp	cinerator showing the location and dimensions (inside and e secondary combustion chamber, (3) the flame port, (4) chasis on dimensions of the flame port and secondary e minimum distance the gas travels through the secondary
4.	Rated capacity of the incinerator for the type of waste	e to be burned: Maximum: 9,351 lb/hr
		Typical: Ib/hr
		Annual: 40,957.4 tons/yr
5.	By what means is waste charged?	Continuous Periodically
6.	Type: 🗌 Multiple Chamber 🛛 Single Chamber	Other, specify:
7.	Projected operating schedule: 24	hr/day 365 day/yr
	Primary Comb	ustion Chamber
8.	Volume: ft ³	9. Effective grate area: ft ²
10.	Maximum temperature: °F	11. Burning rate: Ib/ft ² /hr
12.	Heat release in primary chamber:	13. Total heat release in incinerator:
	BTU/hr/ft ³	BTU/hr/ft ³
	Secondary Com	bustion Chamber
14.	Volume: ft ³	15. Cross sectional area: ft ²
16.	Volume of gas through secondary combustion	17. Gas velocity through secondary combustion
	chamber: ACFM @ °F	chamber: ft/sec
18.	Minimum gas temperature: °F	19. Minimum retention time of gas: sec
20.	Minimum distance of gas travel through secondary	21. Location of air admission:
	combustion chamber: ft	
	Flam	e Port
22.	Flame port area: ft ²	23. Velocity through flame port: ft/sec
	Dan	npers
24.	Туре:	25. Number
26.	Diameter: inches	27. Capacity: ACFM @ °F

	Combu	stion Air				
28. Type of draft: Natural Sliding damper Forced Barametric damper Induced Windshielding? Yes		29. If draft is forced or induced, descri blowers: Number HP rating	be ID fans or HP			
30. Theoretical air/refuse ratio:	lb air/lb refuse	Rated flow	ft ³ /min			
31. Percent of total air applied as:		Rated speed	RPM			
	overfire air	Fan rated draft	in. H₂O			
	underfire air		III. 1120			
	Auxiliary	y Burners				
32. Proposed type and fuel: Fuel gas						
33. Primary Burner		34. Secondary Burner				
-	MMBTU/hr	Capacity:	MMBTU/hr			
Number: 1		Number:				
Manufacture:		Manufacture:				
Model:		Model:				
	BTU/hr	Estimated capacity:	BTU/hr			
Fuel: Fuel gas		Fuel: How controlled? Is there a temperature indicator? Yes No				
How controlled?						
	Yes 🗌 No					
How temperature recorded?		How temperature recorded?				
Misc	ellaneous De	vices and Controls				
35. Automatic loading device. Yes		36. Self closing doors. Yes	🗌 No			
37. Sparks arrestor	🗌 No	38. Flame failure protection equipment] Yes 🗌 No			
 Method of creating turbulence for comb Describe. 	ustion gases.	 Method of cleaning secondary or settli Describe. 	ng chamber.			
41. Other interlocking devices or controls.	lf ves, describ	le. ☐ Yes ☐ No				
5	3					
	Insta	llation				
42. Indoor Installation: 🗌 Yes	🗌 No	43. Outdoor Installation: Yes	🗌 No			
If yes, describe method of supplying combustion air.						

	Stack or Vent Data							
44.	Inside diameter or dimensions: ft	45. Gas exit temperature: °F						
46.	Height: ft	47. Stack serves:						
48.	Gas flow rate: ft/min	Other equipment also (submit type and rating of all other equipment exhausted through this stack						
49.	Estimated percent of moisture: %	or vent): Claus Furnace (440-CF-1)						
	Waste							
50.	Source of waste: Hospital Restaura CrematoryWarehousePublic Instaura	; _ ;						
51.	Describe fully, in detail, the composition of waste feed Water vapor (H ₂ O) – 5.6 mol % Hydrogen sulfide (H ₂ S) – 8 ppm _v Nitrogen (N ₂) – 90.0 mol % Hydrogen (H ₂) – 2.1 mol % Carbon dioxide (CO ₂) – 2.2 mol % Carbon monoxide (CO) – 50 ppm _v Carbonyl sulfide (COS) – 50 ppm _v	d to the incinerator:						
52.	Expected BTU/lb as fired: 119.85 BTU/lb	53. Daily amount: 224,424 lb						
54.	Does incinerator have a charge hopper	55. What is the volume of the charge hopper? ${\rm ft}^3$						
56.	56. Does the charge hopper have automatic control? S7. Is the waste charged to the incinerator weighed? Yes No							
58.	Is the secondary chamber preheated prior to charging waste?	59. At what secondary temperature does waste charging begin?						
60.	Is the ash waste quenched? Yes No	61. Is all the waste burned generated on site? ☐ Yes ☐ No						
62.	For hospital waste, is the ash inspected for recognization	able combustible components? Yes No						
63.	For hospital waste, are recognizable combustible con	nponents of the ash reburned? Yes No						
64.	Is any waste received from outside the local governme	nent boundary?						
65.	Are hazardous or special waste burned? Yes No If yes, please describe:	66. Are potential infectious waste burned? ☐ Yes						
	Tail gas to Sulfur Recovery Incinerator contair pollutant.	ns carbonyl sulfide (COS) which is a hazardous air						
67.	67. How will the waste material from process and control equipment be disposed of?							
68.	Method of charging waste solids: Manual Manual charge hopper Automatic charge hopper Other, specify:	 69. Method of feeding liquids: Lab pack Injection as a primary burner fuel Injection as a secondary burner fuel Other, specify: 						
70.	Rated steam flow – heat recovery boiler:	71. Rated pressure – recovery boiler:						
1	lbs/hr	PSIG						

72. Em	nission rates:		Emissions	Stream			
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA	Tons per Year Tons/yr	Parts per Million ppm
		S	SEE ATTACH		1		
		ontrol Device is not su tential and Maximum A					
74. Em	nissions rates sho	uld be substantiated by	y submitting s	stack tes	t data and	l/or calculations.	

Fuel Usage Data 75. Estimated annual fuel cost: \$ 76. Firing rate: Maximum: 10.6 mmBTU/hr 77. Fuel type: Natural Gas Coal mmBTU/hr Fuel Oil, No. Typical: Other: Fuel gas mmBTU/hr Design: 79. Typical fuel sulfur content: 0 78. Typical heating content of fuel: 712 Btu/scf wt. % 80. Typical fuel ash content: wt. % 81. Annual fuel usage: 82. Please complete an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit, if applicable. 83. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet?

Page 4 of 5

84. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions
limits. MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. SEE ATTACHMENT O
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution
control device. SEE ATTACHMENT O
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. SEE ATTACHMENT O
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. SEE ATTACHMENT O
85. Please describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Attachment L FUGITIVE EMISSIONS FROM PAVED HAULROADS

ltem Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
HR-1	Loaded Coal Delivery	43.0	0.13	11	30,660		75%
HR-2	Unloaded Coal Delivery Trucks	13.0	0.13	11	30,660		75%
HR-3	Loaded Flaked Residue Trucks	40.0	0.53	10	8,282		75%
HR-4	Unloaded Flaked Residue Trucks	13.0	0.53	10	8,282		75%
HR-5	Loaded Sulfur Product Trucks	40.0	0.53	2	741		75%
HR-6	Unloaded Sulfur Product Trucks	13.0	0.53	2	741		75%
HR-7	Loaded Diesel Tanker Trucks	45.65	0.59	12	11,315		75%
HR-8	Unloaded Diesel Tanker Trucks	13.0	0.59	12	11,315		75%
HR-9	Loaded Gasoline Tanker Trucks	42.1	0.59	8	5,840		75%
HR-10	Unloaded Gasoline Tanker Trucks	13.0	0.59	8	5,840		75%
HR-11	Loaded LPG Tanker Trucks	20.1	0.59	2	3,731		75%
HR-12	Unloaded LPG Tanker Trucks	6.5	0.59	2	3,731		75%
HR-13	Loaded Ammonia Trucks	36.2	0.59	1	730		75%
HR-14	Unloaded Ammonia Trucks	13.0	0.59	1	730		75%

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Chapter 13.2.1 Paved Roads – 01/2011 Version

 $E_{Hr} = [k \times (sL)^{0.91} x(W)^{1.02}] x [1 - (1.2P/N)] =$

Ib/Vehicle Mile Traveled (VMT)

$E_{Day} = [k \times (sL)]$.) ^{0.91} x (W) ^{1.02}] x [1 - (P/4N)] =	lb/Vehicle Mile Traveled (VMT)		
k =	Particle size multiplier	PM – 0.011, PM10 – 0.0022, PM2.5 – 0.00054		
SLLiquids =	Default road surface silt loading for low volume roads, <500 Average Daily Traffic (g/m ²) – Used to estimate emissions from liquid product tank trucks	0.6		
sL _{Solids} =	Mean road surface silt loading for paved roads at a quarry (g/m^2) – Used to estimate emissions from coal delivery trucks			
P =	Average number of days per year with precipitation >0.01 in	157		
N =	Annual averaging period	Hourly – 8760, Daily - 365		
W =	Mean vehicle weight (tons)			

For lb/hr: E_{Hr} [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] = lb/hr

For TPY: E_{Day} [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tor

Tons/year

Item No.	Uncont	rolled	Contr	olled	
item no.	lb/hr	TPY	lb/hr	TPY	
HR-1	4.84	6.15	1.21	1.54	
HR-2	1.43	1.82	0.36	0.45	
HR-3	16.67	6.30	4.17	1.57	
HR-4	5.30	2.00	1.32	0.50	
HR-5	3.33	0.56	0.83	0.14	
HR-6	1.06	0.18	0.26	0.04	
HR-7	2.36	1.01	0.59	0.25	
HR-8	0.66	0.28	0.16	0.07	
HR-9	1.45	0.48	0.36	0.12	
HR-10	0.44	0.15	0.11	0.04	
HR-11	0.17	0.14	0.04	0.04	
HR-12	0.05	0.05	0.01	0.01	
HR-13	0.16	0.05	0.04 0.01		
HR-14	0.05	0.02	0.01 <0.01		
TOTALS	37.96	19.19	9.49	4.80	

SUMMARY OF PAVED HAULROAD EMISSIONS - PM Emissions

SUMMARY OF PAVED HAULROAD EMISSIONS - PM10 Emissions

Item No.	Uncontro	olled	Contr	olled
item no.	lb/hr	TPY	lb/hr	TPY
HR-1	0.97	1.23	0.24	0.31
HR-2	0.29	0.36	0.07	0.09
HR-3	3.33	1.26	0.83	0.31
HR-4	1.06	0.40	0.26	0.10
HR-5	0.67	0.11	0.17	0.03
HR-6	0.21	0.04	0.05	<0.01
HR-7	0.47	0.20	0.12	0.05
HR-8	0.13	0.06	0.03	0.01
HR-9	0.29	0.10	0.07	0.02
HR-10	0.09	0.03	0.02	<0.01
HR-11	0.03	0.03	<0.01	<0.01
HR-12	0.01	<0.01	<0.01	<0.01
HR-13	0.03	0.01	<0.01	<0.01
HR-14	0.01	<0.01	<0.01 <0.01	
TOTALS	7.59	3.84	1.90	0.96

Item No.	Uncontro	olled	Controlled		
nem no.	lb/hr	TPY	lb/hr	TPY	
HR-1	0.24	0.33	0.06	0.08	
HR-2	0.07	0.10	0.02	0.02	
HR-3	0.82	0.34	0.20	0.08	
HR-4	0.26	0.11	0.07	0.03	
HR-5	0.16	0.03	0.04	<0.01	
HR-6	0.05	<0.01	0.01	<0.01	
HR-7	0.12	0.05	0.03	0.01	
HR-8	0.03	0.01	<0.01	<0.01	
HR-9	0.07	0.02	0.02	<0.01	
HR-10	0.02	<0.01	<0.01	<0.01	
HR-11	<0.01	<0.01	<0.01	<0.01	
HR-12	<0.01	<0.01	<0.01	<0.01	
HR-13	<0.01	<0.01	<0.01	<0.01	
HR-14	<0.01	<0.01	<0.01	<0.01	
TOTALS	1.86	1.02	0.42	0.26	

SUMMARY OF PAVED HAULROAD EMISSIONS - PM2.5 Emissions

	AT	TA	CHMENT L	– LOAI	DING RA	CK D	ATA S	НЕЕТ	
Emission Uni	t ID#: 64)-BR-	-2 Emission Point ID#: 640-BR-2				Year Installed/Modified: 2020		
Emission Uni	t Descript	ion: D	iesel Barge Loa	ding Rack		I			
				Loading	Area Data				
Number of Pu	mps: 3		Numbe	er of Liquids	Loaded: 1		Max num (1) time:	ber of barges loading at one 1	
Are barges pr If Yes, Please			r leaks at this or an	y other loca	tion? 🛛 Y	es 🗆	No 🗆	Not Required	
Provide descr	iption of o	closed	vent system and a	ny bypasses.					
Are any of the Closed Sy Closed Sy	e followin stem to ba stem to ba	g barg arge pa arge pa	e loadout systems assing a MACT lev assing a NSPS leve ot passing an annua	utilized? vel annual le el annual lea	ak test? k test?	return?			
	Proj	ected	Maximum Operat	ing Schedul	e (for rack o	or transfe	er point as	a whole)	
Time			Jan – Mar	Apr	- Jun	Ju	1 – Sept	Oct - Dec	
Hours/day			10	1	0		10	10	
Days/week			5		5		5	5	
			Bulk Liquid	Data (use e	xtra pages a	s necessa	ry)		
Liquid Name			Diesel F	uel					
Max. Daily T (1000 gal/day			1,080						
Max. Annual (1000 gal/yr)	Throughp	ut	68,384						
Loading Meth	od ¹		SUB						
Max. Fill Rate	e (gal/min)	3 x 600 gal/min						
Average Fill ((min/loading)			Dependent on Vessel Size						
Max. Bulk Lie Temperature (60						
True Vapor P	ressure ²		0.0065 psig						
Cargo Vessel	Condition	1 ³	U						
Control Equip Method ⁴	oment or		None						
Max. Collecti (%)	on Efficie	ency	0						
Max. Control (%)	Efficienc	у	0						
Max.VOC	Lb/hr		1.09						
Emission Rate	Ton/yr		0.35						
Max.HAP	Lb/hr		0.08						
Emission Rate	Ton/yr		0.03						
Estimation M	ethod ⁵		EPA						
BF	Bottom	Fill	SF		sh Fill		SUB	Submerged Fill	
At maxi B O	imum bulk Ballaste Other (e	liquid t ed Vess lescribe	emperature del C e)	Clea	ned		U	Uncleaned (dedicated service)	
List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)CACarbon AdsorptionVBDedicated Vapor Balance (closed system)ECDEnclosed Combustion DeviceFFlareTOThermal Oxidization or Incineration				closed system)					
EPAEPA Emission Factor in AP-42MBMaterial BalanceTMTest Measurement based upon test data submittalOOther (describe)									

Emission Uni	t ID#· 640	-RR-2	Emissie	on Point ID	#: 640-RR-2	2	Year Inst	alled/Modified: 2020
Emission Uni					#. 0 4 0-I\I\-2	i cai mst	fear installed/Modified: 2020	
	t Descripti			-	Amer Data			
				Loading	Area Data			
Number of Pu	•		Number of Liquids Loaded: 1				one (1) ti	
Are railcars pressure tested for leaks at this or any other location? \boxtimes Yes \Box No \Box Not Required If Yes, Please describe:								
Provide descr	iption of c	losed vent sy	stem and an	y bypasses	. None			
□ Closed Sy	stem to rai	lcar passing lcar passing	a MACT lev a NSPS leve	vel annual i el annual le		or return?	2	
	Proje	cted Maxim	um Operati	ng Schedu	le (for rack	or transf	er point a	s a whole)
Time		Jan –	Mar	Apr	- Jun	J	ul – Sept	Oct - Dec
Hours/day		10			10		10	10
Days/week		5			5		5	5
		В	ulk Liquid	Data (use	extra pages a	as necess	ary)	
Liquid Name			Diesel Fu	ıel				
Max. Daily T (1000 gal/day			301.10					
Max. Annual Throughput (1000 gal/yr)		t	10,043					
Loading Method ¹			SUB					
Max. Fill Rate (gal/min)			2 x 400 gal	/min				
Average Fill Time (min/loading)			endent on Size					
Max. Bulk Liquid Temperature (°F)			60					
True Vapor P			0.0065 ps	sia				
Cargo Vessel		3	U					
Control Equip Method ⁴			None					
Max. Collecti (%)	on Efficier	ncy	0					
Max. Control (%)	Efficiency		0					
Max.VOC	Lb/hr		0.37					
Emission Rate	Ton/yr		0.06					
Max.HAP	Lb/hr		0.03					
Emission Rate	Ton/yr		<0.01					
Estimation M	ethod ⁵		EPA					
BF	Bottom I		SP	Spla	sh Fill		SUB	Submerged Fill
At max B O	imum bulk li Ballastec Other (de		ure C	Clea			U	Uncleaned (dedicated servic
	many as a Carbon Enclose		on Device	VB F	ate Air Pollu Dedica Flare			e Sheets) (closed system)
EPA TM	EPA En	nission Facto easurement b	or in AP-42		omittal	MB O		al Balance lescribe)

ATTACHMENT L – LOADING RACK DATA SHEET Emission Unit ID#: 640-TR-2 Emission Point ID#: 640-TR-2 Year Installed/Modified: 2020 Emission Unit Description: Diesel Truck Loading Rack **Loading Area Data** Max number of trucks loading at one Number of Pumps: 6 Number of Liquids Loaded: 1 (1) time: 6 Are tanker trucks pressure tested for leaks at this or any other location? 🛛 Yes □ No □ Not Required If Yes, Please describe: Provide description of closed vent system and any bypasses. Are any of the following truck loadout systems utilized? No □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole) Time Apr - Jun Jul - Sept Oct - Dec Jan – Mar Hours/day 10 10 10 10 Days/week 5 5 5 5 Bulk Liquid Data (use extra pages as necessary) Diesel Fuel Liquid Name Max. Daily Throughput 1,080 (1000 gal/day) Max. Annual Throughput 22,000 (1000 gal/yr) Loading Method¹ SUB Max. Fill Rate (gal/min) 6 x 600 gal/min Average Fill Time **Dependent on Vessel** (min/loading) Size Max. Bulk Liquid 60 Temperature (°F) True Vapor Pressure² 0.0065 psig Cargo Vessel Condition³ U Control Equipment or None Method⁴ Max. Collection Efficiency 0 (%) Max. Control Efficiency 0 (%) Max.VOC Lb/hr 1.31 Emission Ton/yr 0.13 Rate Max.HAP Lb/hr 0.10 Emission 0.01 Ton/yr Rate Estimation Method⁵ EPA Bottom Fill 1 BF SP Splash Fill SUB Submerged Fill At maximum bulk liquid temperature 2 С 3 В Ballasted Vessel Cleaned U Uncleaned (dedicated service) Other (describe) 0 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) 4 CA Carbon Adsorption vв Dedicated Vapor Balance (closed system) ECD **Enclosed Combustion Device** F Flare

Thermal Oxidization or Incineration то

EPA EPA Emission Factor in AP-42

5

Material Balance MB ΤM Test Measurement based upon test data submittal 0 Other (describe)

	ATTA	CHMENT L	– LOAD	ING RAG	CK DAT	TA SHE	ET
Emission Unit	ID#: 640-BR-1	Emissi	on Point ID#:	640-BR-1, 640-FL-1	Y	ear Installed	/Modified: 2020
Emission Unit	Description: Ga	asoline Barge Lo	ading Rack				
			Loading A	Area Data			
Number of Pur	nps: 3	Numbe	er of Liquids I	Loaded: 1		ax number o) time: 1	f barges loading at one
Are barges pre If Yes, Please		leaks at this or any	other location	? 🛛 Yes	□ No	□ Not Req	uired
Provide descrip	ption of closed v	vent system and any	bypasses.				
Closed vent	t system to L	iquid Product Lo	adout Flare	e (640-FL-1).			
☑ Closed Sys□ Closed Sys	tem to barge pas tem to barge pas	loadout systems uti ssing a MACT level ssing a NSPS level a t passing an annual	annual leak te annual leak tes	st?	n?		
-	-	d Maximum Opera		-		oint as a wh	ole)
Time		Jan – Mar	Apr -			- Sept	Oct - Dec
Hours/day		10	1	0	1	0	10
Days/week		5	5	5		5	5
		Bulk Liqui	d Data (use e:	xtra pages as	necessary)		
Liquid Name		Gasoli	ne				
Max. Daily Th (1000 gal/day)		1,080)				
Max. Annual T (1000 gal/yr)	`hroughput	5,214	l I				
Loading Metho	od ¹	SUB					
Max. Fill Rate	Max. Fill Rate (gal/min) 3 x 600 ga		al/min				
Average Fill T (min/loading)	ime	Dependent o Size					
Max. Bulk Liq Temperature (*		60					
True Vapor Pro	essure ²	8.1621 p	osig				
Cargo Vessel G	Condition ³	U					
Control Equip Method ⁴	ment or	VB; I	-				
Max. Collectio	on Efficiency	99.2					
Max. Control H	Efficiency (%)	98					
Max.VOC Emission	Lb/hr	5.07					
Rate	Ton/yr	0.12					
Max.HAP	Lb/hr	1.76					
Emission Rate	Ton/yr	0.04					
Estimation Me	thod ⁵	EPA					
BF	Bottom Fill		plash Fill		SUB	Submerged Fi	ill
At maxin B O	mum bulk liquid te Ballasted Vess Other (describe	mperature el C		ed		U U	ncleaned (dedicated service)
	many as apply (Carbon Adso Enclosed Cor Thermal Oxid EPA Emissio	complete and submi	VB Flare tion	Dedicated		lance (closed Material Ba	•

	ATT	ACHMENT I	L – LOAD	ING RA	CK D	ATA S	HEET		
Emission Unit	ID#: 640-RR	-1 Emiss	sion Point ID#:	640-RR-1 640-FL-1		Year Inst	alled/Mod	ified: 2020	
Emission Unit	Description: G	asoline Rail Loa	iding Rack						
		1	Loading A	Area Data					
Number of Pur	mps: 2	Numb	er of Liquids l	Loaded: 1		Max num (1) time:		cks loading at one	
Are tanker trucks pressure tested for leaks at this or any other location? \boxtimes Yes \Box No \Box Not Required If Yes, Please describe:									
Provide descri	ption of closed	vent system and any	y bypasses.						
Closed vent	system to L	iquid Product Lo	oadout Flare	(640-FL-1)					
Closed Sys	stem to tanker t stem to tanker t	k loadout systems u ruck passing a MAC ruck passing a NSPS ruck not passing an	T level annual S level annual	leak test?	or return	?			
	Project	ted Maximum Oper	ating Schedul	e (for rack or	r transfe	r point as	a whole)		
Time		Jan – Mar	Apr	- Jun	J	ul – Sept		Oct - Dec	
Hours/day		10	1	0		10		10	
Days/week		5		5		5		5	
			Bulk Liquid Data (use extra pages as necessary)						
Liquid Name		Gasol	ine						
Max. Daily Th (1000 gal/day)		301.	1						
Max. Annual 7 (1000 gal/yr)	Fhroughput	5,21	4						
Loading Metho	nod ¹ SUB		3						
Max. Fill Rate (gal/min)		2 x 400 g	2 x 400 gal/min						
Average Fill Time Depe (min/loading)			Dependent on Vessel Size						
Max. Bulk Liq Temperature (60							
True Vapor Pr	essure ²	8.1621	psig						
Cargo Vessel	Condition ³	U							
Control Equip: Method ⁴	ment or	VB;	F						
Max. Collectio	on Efficiency	99.2	2						
Max. Control	Efficiency (%)	98							
Max.VOC	Lb/hr	1.70)						
Emission Rate	Ton/yr	0.1	5						
Max.HAP	Lb/hr	0.59	9						
Emission Rate	Ton/yr	0.0							
Estimation Me	ethod ⁵	EPA	4						
BF At maxi B	Bottom Fill mum bulk liquid Ballasted Ves	temperature	Splash Fill C Clean	ed	SUB	Submer	0	ned (dedicated servic	
0	Other (descril many as apply Carbon Ads Enclosed Co Thermal Ox EPA Emissi	be) (complete and subm	it appropriate VB F Flare ation	Air Pollution Dedicate	ed Vapor MB	Device She Balance (o	eets)	tem)	

EPA TM EPA Emission Factor in AP-42 Test Measurement based upon test data submittal O MB Material Balance Other (describe)

Emission Unit Number of Pun Are tanker truc	ID#: 640-TR-1 Description: Ga			640-FL-1				dified: 2020	
Number of Pun Are tanker truc	Description: Ga								
Are tanker truc		Emission Unit Description: Gasoline Truck Loading Rack Loading Area Data							
Are tanker truc	Max number of trucks loading at one							ucks loading at one	
	nps: 4	Numbe	r of Liquids I	Loaded: 1		(1) time		acks fouring at one	
Are tanker trucks pressure tested for leaks at this or any other location? \boxtimes Yes \Box No \Box Not Required If Yes, Please describe:									
Provide descrip	otion of closed v	ent system and any	bypasses.						
Closed vent	system to Lie	quid Product Loa	adout Flare	(640-FL-1).					
Closed Syst	tem to tanker tru	loadout systems util ick passing a MACT	level annual						
		ick passing a NSPS ick not passing an ai			or return	1?			
	Projecte	d Maximum Opera	ting Schedul	e (for rack or	transfe	r point as	s a whole))	
Time		Jan – Mar	Apr	- Jun	J	ul – Sept		Oct - Dec	
Hours/day		10	1	0		10		10	
Days/week		5		5		5		5	
		-		xtra pages as	necessa	ry)			
Liquid Name		Gasolir	ne						
Max. Daily Thi (1000 gal/day)	roughput	720							
Max. Annual Throughput (1000 gal/yr)		41,710							
Loading Method ¹		SUB							
Max. Fill Rate	(gal/min)	4 x 600 ga	4 x 600 gal/min						
Average Fill Ti (min/loading)	me	Dependent on Vessel Size							
Max. Bulk Liqu Temperature (°		60							
True Vapor Pre		8.1621 p	sig						
Cargo Vessel C	Condition ³	U							
Control Equipn Method ⁴	nent or	VB; F							
Max. Collection (%)	n Efficiency	99.2							
Max. Control E	Efficiency (%)	98							
Max.VOC	Lb/hr	4.06							
Emission Rate	Ton/yr	1.18							
Max.HAP	Lb/hr	1.40					1		
Emission Rate	Ton/yr	0.41							
Estimation Met	hod ⁵	EPA		L			-		
BF	Bottom Fill		lash Fill		SUB	Subme	rged Fill		
	num bulk liquid te Ballasted Vesse Other (describe	mperature el C	Clean	ed	505	U	0	aned (dedicated service	
	many as apply (o Carbon Adsor Enclosed Cor Thermal Oxio	complete and submit	VB Flare	Dedicate		Balance	ieets) (closed sy ial Balanc		

ATTACHMENT L – LOADING RACK DATA SHEET Emission Unit ID#: 640-TR-3 Emission Point ID#: 640-TR-3 Year Installed/Modified: 2020 Emission Unit Description: LPG Truck Loading Rack **Loading Area Data** Max number of trucks loading at one Number of Pumps: 2 Number of Liquids Loaded: 1 (1) time: **2** Are tanker trucks pressure tested for leaks at this or any other location? 🛛 Yes □ No □ Not Required If Yes, Please describe: Provide description of closed vent system and any bypasses. Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? □ Closed System to tanker truck not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole) Time Apr - Jun Jul - Sept Oct - Dec Jan – Mar Hours/day 10 10 10 10 Days/week 5 5 5 5 Bulk Liquid Data (use extra pages as necessary) Liquid Name LPG Max. Daily Throughput 324 (1000 gal/day) Max. Annual Throughput 22,906 (1000 gal/yr) SUB Loading Method¹ 600 Max. Fill Rate (gal/min) Average Fill Time **Dependent on Vessel** (min/loading) Size Max. Bulk Liquid 60 Temperature (°F) True Vapor Pressure² 20 psig Cargo Vessel Condition³ U Control Equipment or None Method⁴ Max. Collection Efficiency 0 (%) Max. Control Efficiency 0 (%) Max.VOC Lb/hr 1.42 Emission Ton/yr 1.33 Rate Max.HAP Lb/hr <0.01 Emission <0.01 Ton/yr Rate Estimation Method⁵ EE Bottom Fill 1 BF SP Splash Fill SUB Submerged Fill At maximum bulk liquid temperature 2 С 3 В Ballasted Vessel Cleaned U Uncleaned (dedicated service) Other (describe) 0 4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets) CA Carbon Adsorption vв Dedicated Vapor Balance (closed system)

ECD **Enclosed Combustion Device** F Flare

Thermal Oxidization or Incineration то

5

Material Balance EPA EPA Emission Factor in AP-42 MB ΤM

Test Measurement based upon test data submittal 0 Other (describe)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 630 – Liquid Products and Intermediates Storage		2. Tank Name Diesel Storage Tank 1 and 2				
3.	 Tank Equipment Identification No. (as assigned on Equipment List Form) 		Emission Point Identification No. (as assigned on Equipment List Form)				
	630-TK-8/9	630-TK-8/9					
5.	Date of Commencement of Construction (for existing	tank	3)				
6.	Type of change 🛛 New Construction 🗌 N	Stored Material Other Tank Modification					
7.	Description of Tank Modification (if applicable)						
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		🗌 Yes 🛛 No				
	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).						
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):						
	II. TANK INFORM	ATIC	N (required)				
8.							
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)					
	80.00 ft		32.00 ft				
10A	 Maximum Liquid Height (ft) 	10B	. Average Liquid Height (ft)				
	30.00 ft		16.00 ft				
11A	A. Maximum Vapor Space Height (ft)	11B	. Average Vapor Space Height (ft)				
12	Nominal Capacity (specify barrels or gallons) This i	s ale	o known as "working volume" and considers design				

12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.

13A. Maximum annual throughput (gal/yr) 100,426,830 gal/yr	13B. Maximum daily throughput (gal/day) 275,142 gal/day					
14. Number of Turnovers per year (annual net throughput						
	84					
15. Maximum tank fill rate (gal/min) 191.07 gal/min						
16. Tank fill method Submerged	Splash 🛛 Bottom Loading					
17. Complete 17A and 17B for Variable Vapor Space Tan	k Systems 🛛 Does Not Apply					
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year					
 18. Type of tank (check all that apply): ∑ Fixed Roof X verticalhorizontalflat roofcone roof X dome roofother (describe) External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical Underground Other (describe)						
III. TANK CONSTRUCTION & OPERATION INFO	DRMATION – See EPA Tanks 4.09d Simulation					
19. Tank Shell Construction:						
Riveted Gunite lined Epoxy-coated	rivets Other (describe)					
20A. Shell Color 20B. Roof Color	20C. Year Last Painted					
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense Ru						
□ No Rust □ Light Rust □ Dense Ru 22A. Is the tank heated? □ YES □ NO	ist Not applicable					
22B. If YES, provide the operating temperature (°F)						
22C. If YES, please describe how heat is provided to ta	ink.					
23. Operating Pressure Range (psig): to						
24. Complete the following section for Vertical Fixed Roc	of Tanks Does Not Apply					
24A. For dome roof, provide roof radius (ft)						
24B. For cone roof, provide slope (ft/ft)						
25. Complete the following section for Floating Roof Tanks Does Not Apply						
25A. Year Internal Floaters Installed:						
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resilier						
25C. Is the Floating Roof equipped with a Secondary S	eal? YES NO					
25D. If YES, how is the secondary seal mounted? (che	ck one) Shoe Rim Other (describe):					
25E. Is the Floating Roof equipped with a weather shie	Id? YES NO					

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.		
			•		
		RWELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:		
			SAMPLE WELL-SLIT FABRIC SEAL		
	ACTUATION, UN		(10% OPEN AREA)		
	,				
			•		
WEIGHTED MECHANICAL ACTUATI					
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.		
		1 1 1			
	RIM	VENT			
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
	STUB	DRAIN			
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks							
26A. Deck Type: Bolted Welded							
26B. For Bolted decks, provide deck construction:	26B. For Bolted decks, provide deck construction:						
26C. Deck seam:							
Continuous sheet construction 5 feet wide							
Continuous sheet construction 7 feet wide							
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide							
Other (describe)	·						
26D. Deck seam length (ft)	26E. Area of deck (ft ²)						
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:						
	See EPA Tanks 4.09d Simulation						
27. Provide the city and state on which the data in this							
28. Daily Average Ambient Temperature (°F)							
29. Annual Average Maximum Temperature (°F)							
30. Annual Average Minimum Temperature (°F)							
31. Average Wind Speed (miles/hr)							
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·c	day))						
33. Atmospheric Pressure (psia)							
V. LIQUID INFORMATION -	See EPA Tanks 4.09d Simulation						
34. Average daily temperature range of bulk liquid:							
34A. Minimum (°F)	34B. Maximum (°F)						
35. Average operating pressure range of tank:							
35A. Minimum (psig)	35B. Maximum (psig)						
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)						
37A. Average Liquid Surface Temperature (°F)	37A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (psia)						
38A. Maximum Liquid Surface Temperature (°F) 38B. Corresponding Vapor Pressure (psia)							
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.							
39A. Material Name or Composition							
39B. CAS Number							
39C. Liquid Density (lb/gal)							
39D. Liquid Molecular Weight (lb/lb-mole)							
39E. Vapor Molecular Weight (lb/lb-mole)							

Maximum Vapor Press	sure								
39F. True (psia)									
39G. Reid (psia)									
Months Storage per Y	ear								
39H. From									
39I. To									
40 Emission Control			,						
40. Emission Control Devices (check as many as apply): ⊠ Does Not Apply									
	Carbon Adsorption ¹								
	1								
	•	Pressure Se	etting						
	lief Valve (psig)								
Inert Gas Blan									
Insulation of Ta									
Liquid Absorpti									
Refrigeration o	f Tank								
Rupture Disc (•								
Vent to Incinera	ator ¹								
Other ¹ (describ	e):								
¹ Complete approp	oriate Air Pollution Conti	rol Device Sheet.							
41. Expected Emissio	n Rate (submit Test Dat	a or Calculations here	or elsewhere in the app	plication).					
Material Name &	Breathing Loss	Working Loss	Annual Loss						
CAS No.	(lb/yr)	(lb/yr)	(lb/yr)	Estimation Method ¹					
VOC	659.88	1,901.66	2,561.54	EPA					
HAPs	36.5	105.16	141.66	EPA					
Hexane	0.00	0.00	0.00	EPA					
Benzene	0.00	0.00	0.00	EPA					
Toluene	0.00	0.00	0.00	EPA					
Ethylbenzene	6.26	18.06	24.46	EPA					
Xylene	6.26	18.06	24.46	EPA					

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name				
	Unit 630 - Liquid Products and Intermediates Storage	۷.	Ethanol Storage Tank 1 and 2				
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>)	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>)				
	630-TK-10/11		640-FL-1				
5.	5. Date of Commencement of Construction (for existing tanks)						
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification				
7.	Description of Tank Modification (if applicable)						
7A.	. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		🗌 Yes 🛛 No				
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).						
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):						
	II. TANK INFORMATION (required)						
8.	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
		00 k					
9A.	. Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)				
	30.00 ft		NA				
10/	 Maximum Liquid Height (ft) 	10E	Average Liquid Height (ft)				
	NΔ		NΔ				

 11A.
 Maximum Vapor Space Height (ft)
 11B.
 Average Vapor Space Height (ft)

 NA
 NA

 12.
 Nominal Capacity (specify barrels or gallons).
 This is also known as "working volume" and considers design

12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers designing liquid levels and overflow valve heights.

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
4,600,352.5 gal/yr	12,603.7 gal/day					
14. Number of Turnovers per year (annual net throughpu	28					
15. Maximum tank fill rate (gal/min) 8.75 gal/min						
16. Tank fill method Submerged	Splash Bottom Loading					
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems 🛛 Does Not Apply					
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year					
18. Type of tank (check all that apply): □ Fixed Roof vertical horizontal flat roof cone roof dome roof other (describe) □ External Floating Roof pontoon roof double deck roof □ Domed External (or Covered) Floating Roof ☑ Internal Floating Roof vertical column support self-supporting □ Variable Vapor Space lifter roof diaphragm □ Pressurized spherical cylindrical						
Other (describe) III. TANK CONSTRUCTION & OPERATION INFO	ORMATION – See EPA Tanks 4 09d Simulation					
19. Tank Shell Construction:						
Riveted Gunite lined Epoxy-coated	rivets Other (describe)					
20A. Shell Color 20B. Roof Color	20C. Year Last Painted					
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense Ru	ust 🗌 Not applicable					
22A. Is the tank heated? YES NO						
22B. If YES, provide the operating temperature (°F)						
22C. If YES, please describe how heat is provided to ta	ank.					
23. Operating Pressure Range (psig): to						
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply					
24A. For dome roof, provide roof radius (ft)	24A. For dome roof, provide roof radius (ft)					
24B. For cone roof, provide slope (ft/ft)	24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tanks						
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resili	— .					
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO					
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):					
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO					

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.		
			•		
		RWELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:		
			SAMPLE WELL-SLIT FABRIC SEAL		
	ACTUATION, UN		(10% OPEN AREA)		
	,				
			•		
WEIGHTED MECHANICAL ACTUATI					
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.		
		1 1 1			
	RIM	VENT			
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
	STUB	DRAIN			
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply		
26A. Deck Type: Dolted Welded			
26B. For Bolted decks, provide deck construction:			
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
 Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide 			
Other (describe)			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:	ee EPA Tanks 4.09d Simulation		
27. Provide the city and state on which the data in this			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))			
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to be sto	bred in tank. Add additional pages if necessary.		
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
40 Emission Control			· · · /	
	Devices (check as many		а Арріу	
Carbon Adsorp	DTION'			
Conservation \				
	-	Pressure Se	etting	
	elief Valve (psig)			
Inert Gas Bland				
Insulation of Ta	ank with			
Liquid Absorpti	ion (scrubber) ¹			
Refrigeration o	f Tank			
Rupture Disc (psig)			
Vent to Inciner	ator ¹			
Other ¹ (describ	be):			
¹ Complete approp	priate Air Pollution Contr	rol Device Sheet.		
41. Expected Emissio	n Rate (submit Test Dat	a or Calculations here	or elsewhere in the ap	polication).
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).				
Motorial Nama 9	Breathing Loop	Working Loss	-	
Material Name & CAS No.	Breathing Loss (lb/vr)	Working Loss	Annual Loss	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
		_	Annual Loss	
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹
CAS No.	(lb/yr)	(lb/yr)	Annual Loss (Ib/yr)	Estimation Method ¹

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name	
	Unit 630 - Liquid Products and Intermediates Storage	2.	Gasoline Storage Tank 1 and 2	
3.	Tank Equipment Identification No. (as assigned on	4.	Emission Point Identification No. (as assigned on	
	Equipment List Form)		Equipment List Form)	
	630-TK-6/7		640-FL-1	
5.	Date of Commencement of Construction (for existing	tank	(S)	
6.	Type of change 🛛 New Construction	lew	Stored Material Other Tank Modification	
7.	Description of Tank Modification (if applicable)			
7A.	Does the tank have more than one mode of operation	ו?	🗌 Yes 🛛 No	
	(e.g. Is there more than one product stored in the tank?)			
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be			
	completed for each mode).			
70				
70.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):			
	II. TANK INFORMATION (required)			
8.	Design Capacity (specify barrels or gallons). Use			
	height.			
~ ^		000		
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)	
404	67.00 ft	4.05	NA	
10 <i>F</i>		10E	5 1 5 ()	
	NA		NA	

 11A.
 Maximum Vapor Space Height (ft)
 11B.
 Average Vapor Space Height (ft)

 NA
 NA
 NA

 12.
 Nominal Capacity (specify barrels or gallons).
 This is also known as "working volume" and considers design

liquid levels and overflow valve heights.

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
26,068,665 gal/yr 14. Number of Turnovers per year (annual net throughpu	71,421 gal/day	
	63	
15. Maximum tank fill rate (gal/min) 49.60 gal/min		
16. Tank fill method	Splash Bottom Loading	
17. Complete 17A and 17B for Variable Vapor Space Tar	nk Systems 🛛 Does Not Apply	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
18. Type of tank (check all that apply): □ Fixed Roofverticalhorizontalflat roofcone roofdome roofother (describe) □ External Floating Roofpontoon roofdouble deck roof □ Domed External (or Covered) Floating Roof ☑ Internal Floating Roof X vertical column supportself-supporting □ Variable Vapor Space lifter roof diaphragm □ Pressurizedsphericalcylindrical		
Other (describe) III. TANK CONSTRUCTION & OPERATION INFO	ORMATION - See EPA Tanks 4 09d Simulation	
19. Tank Shell Construction:		
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)	
20A. Shell Color 20B. Roof Color	20C. Year Last Painted	
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable	
22A. Is the tank heated? YES NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to tank.		
23. Operating Pressure Range (psig): to		
24. Complete the following section for Vertical Fixed Roof Tanks		
24A. For dome roof, provide roof radius (ft)		
24B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tanks Does Not Apply		
25A. Year Internal Floaters Installed:		
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resili	— .	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):	
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO	

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:
		N WELL	
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.
			•
		RWELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
			SAMPLE WELL-SLIT FABRIC SEAL
	ACTUATION, UN		(10% OPEN AREA)
	,		
			•
WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
	RIM	VENT	
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
		1 1 1	
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
STUB DRAIN			
1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Flo	loating Roof Tanks		
26A. Deck Type: Deck Type: Weld	ded		
26B. For Bolted decks, provide deck construct	tion:		
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
\Box Continuous sheet construction 5 × 7.5 fee			
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide		
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation		
27. I Tovide the city and state of which the data i			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))			
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION - See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to	b be stored in tank. Add additional pages if necessary.		
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y 39H. From	ear			
39H. FIOII 39I. To				
391. 10			DATA (required)	
40 Emission Control	Devices (check as many		、 i	
Carbon Adsorp				
Conservation \	lent (nsig)			
Vacuum S		Pressure Se	nutte	
	lief Valve (psig)		Stillig	
Inert Gas Blan				
Insulation of Ta				
Liquid Absorpti				
Refrigeration o	(<i>)</i>			
Rupture Disc (
Vent to Inciner				
Other ¹ (describ				
	priate Air Pollution Contr	rol Device Sheet.		
	n Rate (submit Test Dat		or elsewhere in the ap	nlication)
	i i i	Working Loss		
Material Name & CAS No.	Breathing Loss (lb/yr)	-	Annual Loss (lb/yr)	Estimation Method ¹
	(ועזעו)	(lb/yr)	(10/ 91)	
VOC	25,106.02	155.52	25,261.54	EPA
HAPs	16,477.44	102.07	16,579.51	EPA
Hexane	510.49	3.16	513.65	EPA
Benzene	114.75	0.71	115.46	EPA
Toluene	3,274.77	20.29	3,295.05	EPA
Ethylbenzene	6,289.02	38.96	6,327.97	EPA
Xylene	6,289.02	38.96	6,327.97	EPA

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name		
	Unit 630 - Liquid Products and Intermediates Storage		Heavy Slop Oil Storage Tank		
3.	Tank Equipment Identification No. (as assigned on	4.	Emission Point Identification No. (as assigned on		
	Equipment List Form)		Equipment List Form)		
	630-TK-14		630-TK-14		
5.	Date of Commencement of Construction (for existing	tank	(S)		
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification		
7.	Description of Tank Modification (if applicable)				
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		🗌 Yes 🛛 No		
	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
	II. TANK INFORM	ATIO	ON (required)		
8.	Design Capacity (specify barrels or gallons). Use height.				
	16,000 bbl				
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)		
	60.00 ft		32.00 ft		
10A	A. Maximum Liquid Height (ft)	10E	Average Liquid Height (ft)		
	32.00 ft		16.00 ft		
11 <i>A</i>	A. Maximum Vapor Space Height (ft)	11E	 Average Vapor Space Height (ft) 		

12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.

16,000 bl	J
-----------	---

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
1,316,572 gal/day	1,835.62 gal/day	
14. Number of Turnovers per year (annual net throughput		
	2	
15. Maximum tank fill rate (gal/min) 1.27 gal/min		
16. Tank fill method Submerged	Splash 🛛 Bottom Loading	
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems Does Not Apply	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
 18. Type of tank (check all that apply): 	double deck roof	
Internal Floating RoorVentical column so Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe)	diaphragm	
III. TANK CONSTRUCTION & OPERATION INF	ORMATION - See EPA Tanks 4.09d Simulation	
19. Tank Shell Construction:		
Riveted Gunite lined Epoxy-coated		
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted	
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable	
22A. Is the tank heated? YES NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to tank.		
23. Operating Pressure Range (psig): to		
24. Complete the following section for Vertical Fixed Roof Tanks		
24A. For dome roof, provide roof radius (ft)		
4B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tanks Does Not Apply		
25A. Year Internal Floaters Installed:		
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):	
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO	

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:
		N WELL	
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.
			•
		RWELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
			SAMPLE WELL-SLIT FABRIC SEAL
	ACTUATION, UN		(10% OPEN AREA)
	,		
			•
WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
	RIM	VENT	
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
STUB DRAIN			
1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Flo	loating Roof Tanks		
26A. Deck Type: Deck Type: Weld	ded		
26B. For Bolted decks, provide deck construct	tion:		
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
\Box Continuous sheet construction 5 × 7.5 fee			
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide		
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation		
27. I Tovide the city and state of which the data i			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft ² ·day))			
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION - See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to	b be stored in tank. Add additional pages if necessary.		
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
VI. EMISSIONS AND CONTROL DEVICE DATA (required)				
40. Emission Control Devices (check as many as apply): Does Not Apply				
Carbon Adsorption ¹				
Condenser ¹				
Conservation Vent (psig)				
Vacuum Setting Pressure Setting				
Emergency Relief Valve (psig)				
Inert Gas Blanket of				
Insulation of Tank with				
Liquid Absorption (scrubber) ¹				
Refrigeration of Tank				
Rupture Disc (psig)				
Vent to Incinerator ¹				
Other ¹ (describe):				
¹ Complete appropriate Air Pollution Control Device Sheet.				
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).				
Material Name &	· · ·	Working Loss	Annual Loss	
CAS No.	Breathing Loss (Ib/yr)	-	(lb/yr)	Estimation Method ¹
	(10/ 3.)	(lb/yr)	(10, 5.7	
VOC	25.51	32.9	58.41	EPA
HAPs	1.41	1.82	3.23	EPA
Hexane	0.00	0.00	0.00	EPA
Benzene	0.00	0.00	0.00	EPA
Toluene	0.00	0.00	0.00	EPA
Ethylbenzene	0.25	0.32	0.56	EPA
Xylene	0.25	0.32	0.56	EPA

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 630 - Liquid Products and Intermediates Storage	2.	Tank Name HYK Heavy Feed Storage Tank		
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-12	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-12		
5.	Date of Commencement of Construction (for existing	tank	s)		
6.	Type of change 🛛 New Construction	lew	Stored Material Other Tank Modification		
7.	7. Description of Tank Modification (if applicable)				
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No		
	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
	II. TANK INFORMATION (required)				
8.	Design Capacity (specify barrels or gallons). Use height.				
~ ^	3,000 bbl				
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)		
40/	30.00 ft	4.05	24.00 ft		
10/	A. Maximum Liquid Height (ft) 24.00 ft	10E	 Average Liquid Height (ft) 12.00 ft 		
11/		11E			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
209,454 gal/yr	573.58 gal/day				
	 Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 2 				
15. Maximum tank fill rate (gal/min) 0.40 gal/min					
16. Tank fill method	Splash 🛛 Bottom Loading				
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
 18. Type of tank (check all that apply): ☐ Fixed Roof <u>X</u> verticalhorizontalflat roofcone roof <u>X</u> dome roofother (describe) ☐ External Floating Roofpontoon roofdouble deck roof ☐ Domed External (or Covered) Floating Roof ☐ Internal Floating Roofvertical column supportself-supporting ☐ Variable Vapor Spacelifter roofdiaphragm ☐ Pressurizedsphericalcylindrical ☐ Underground ☐ Other (describe)					
III. TANK CONSTRUCTION & OPERATION INF	ORMATION - See EPA Tanks 4.09d Simulation				
19. Tank Shell Construction:					
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted				
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable				
22A. Is the tank heated? YES NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to tank.					
23. Operating Pressure Range (psig): to					
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply				
24A. For dome roof, provide roof radius (ft)					
24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tanks Does Not Apply					
25A. Year Internal Floaters Installed:					
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	— .				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shield	eld? YES NO				

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.		
			•		
		RWELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:		
			SAMPLE WELL-SLIT FABRIC SEAL		
	ACTUATION, UN		(10% OPEN AREA)		
	,				
			•		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.		
		1 1 1			
	RIM	VENT			
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
STUB DRAIN					
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks				
26A. Deck Type: Deck Type: Weld	ded			
26B. For Bolted decks, provide deck construct	tion:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
\Box Continuous sheet construction 5 × 7.5 fee				
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation			
27. I Tovide the city and state of which the data i				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liqui	id:			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.				
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
			, i ,	
	Devices (check as many	/ as apply): ⊠ Does No	ot Apply	
Carbon Adsorp	otion ¹			
Conservation \				
Vacuum S	•	Pressure Se	etting	
	elief Valve (psig)			
Inert Gas Blank				
Insulation of Ta	ank with			
🗌 Liquid Absorpti	ion (scrubber) ¹			
Refrigeration o	f Tank			
🗌 Rupture Disc (psig)			
Vent to Incinera	ator ¹			
Other ¹ (describ	be):			
¹ Complete approp	priate Air Pollution Cont	rol Device Sheet.		
41. Expected Emissio	n Rate (submit Test Dat	ta or Calculations here	or elsewhere in the app	olication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	
CAS No.	(lb/yr)	(lb/yr)	(lb/yr)	Estimation Method ¹
VOC	2.38	5.23	7.61	EPA
HAPs	0.13	0.29	0.42	EPA
Hexane	0.00	0.00	0.00	EPA
		2.20		
Benzene	0.00	0.00	0.00	EPA
Toluene	0.00	0.00	0.00	EPA
Ethylbenzene	0.03	0.05	0.08	EPA
Xylene	0.03	0.05	0.08	EPA
	0.03	0.05	0.08	EPA
	0.03	0.05	0.08	EPA
	0.03	0.05	0.08	EPA

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name			
	Unit 630 - Liquid Products and Intermediates Storage	۷.	HYK Light Feed Storage Tank			
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-13	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-13			
_						
5.	Date of Commencement of Construction (for existing	tank	S)			
6.	л <u>э</u> Ц	lew	Stored Material Other Tank Modification			
7.	7. Description of Tank Modification (if applicable)					
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No			
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).					
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):					
	II. TANK INFORMATION (required)					
8.	 Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 					
<u> </u>	16,000 bbl					
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)			
104	60.00 ft	105	NA			
10A		10E	5 1 5 ()			
44.4	NA	445				
11A	A. Maximum Vapor Space Height (ft)	11E	 Average Vapor Space Height (ft) 			

16,000 bł	וכ
-----------	----

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
670,000 gal/yr	1,835.62 gal/day				
14. Number of Turnovers per year (annual net throughpu	2				
15. Maximum tank fill rate (gal/min) 1.27 gal/min	2				
16. Tank fill method Submerged	Splash Bottom Loading				
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal flat roof cone roof dome roof other (describe) External Floating Roof pontoon roof double deck roof Domed External (or Covered) Floating Roof 					
☐ Variable Vapor Space lifter roof	_ •				
III. TANK CONSTRUCTION & OPERATION INF	ORMATION - See EPA Tanks 4.09d Simulation				
19. Tank Shell Construction:					
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Colo					
21. Shell Condition (if metal and unlined):					
☐ No Rust ☐ Light Rust ☐ Dense R	ust 🗌 Not applicable				
22A. Is the tank heated? YES NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to t	ank.				
23. Operating Pressure Range (psig): to					
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply				
24A. For dome roof, provide roof radius (ft)					
24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tanks					
25A. Year Internal Floaters Installed:					
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resident					
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shi	eld? 🗌 YES 🗌 NO				

25F. Describe deck fittings; indicate the number of each type of fitting:					
	ACCESS	S НАТСН			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
		JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:		
		N WELL			
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.		
			•		
		RWELL			
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:		
			SAMPLE WELL-SLIT FABRIC SEAL		
	ACTUATION, UN		(10% OPEN AREA)		
	,				
			•		
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.		
		1 1 1			
	RIM	VENT			
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:		
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
STUB DRAIN					
1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks				
26A. Deck Type: Deck Type: Weld	ded			
26B. For Bolted decks, provide deck construct	tion:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
\Box Continuous sheet construction 5 × 7.5 fee				
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation			
27. I Tovide the city and state of which the data i				
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liqui	id:			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.				
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
			, i ,	
	Devices (check as many	/ as apply): Does No	ot Apply	
Carbon Adsorp	vtion ¹			
Conservation \				
Vacuum S	•	Pressure Se	etting	
	elief Valve (psig)			
Inert Gas Bland				
Insulation of Ta				
Liquid Absorpti	ion (scrubber) ¹			
Refrigeration o	f Tank			
🗌 Rupture Disc (psig)			
Vent to Inciner	ator ¹			
Other ¹ (describ	be):			
¹ Complete approp	priate Air Pollution Contr	rol Device Sheet.		
41. Expected Emissio	n Rate (submit Test Dat	a or Calculations here	or elsewhere in the app	plication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	
CAS No.	(lb/yr)	(lb/yr)	(lb/yr)	Estimation Method ¹
VOC	24.16	5.53	29.69	EPA
HAPs	2.67	0.31	1.64	EPA
Hexane	0.00	0.00	0.00	EPA
Benzene	0.00	0.00	0.00	EPA
Toluene	0.00	0.00	0.00	EPA
Ethylbenzene	0.23	0.06	0.29	EPA
Xylene	0.23	0.06	0.29	EPA

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 630 - Liquid Products and Intermediates	2.	Tank Name		
	Storage		Light Naphtha Storage Tank 1 and 2		
3.	Tank Equipment Identification No. (as assigned on	4.	Emission Point Identification No. (as assigned on		
	Equipment List Form)		Equipment List Form)		
	630-TK-2/3		640-FL-1		
5.	Date of Commencement of Construction (for existing	tank	s)		
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification		
7.	7. Description of Tank Modification (if applicable)				
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No		
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
	II. TANK INFORMATION (required)				
8.	 Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 				
	3,000 bbl				
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)		
	30.00 ft		NA		
10A		10E			
	NA		NA		
11A	A. Maximum Vapor Space Height (ft)	11E	 Average Vapor Space Height (ft) 		

3,000 bb	I
----------	---

 Maximum annual throughput (gal/yr) 10,845,975 gal/yr 	13B. Maximum daily throughput (gal/day) 29,715 gal/day		
14. Number of Turnovers per year (annual net throughput			
87			
15. Maximum tank fill rate (gal/min) 20.64 gal/min			
16. Tank fill method Submerged	Splash 🛛 Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Tar	k Systems Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
18. Type of tank (check all that apply): □ Fixed Roofverticalhorizontalflat roofcone roofdome roofother (describe) □ External Floating Roofpontoon roofdouble deck roof □ Domed External (or Covered) Floating Roof ☑ Internal Floating Roofpontoon supportself-supporting □ Variable Vapor Spacelifter roofdiaphragm □ Pressurizedsphericalcylindrical □ Underground			
Other (describe) III. TANK CONSTRUCTION & OPERATION INFO	DPMATION - See EPA Tanks 4 09d Simulation		
19. Tank Shell Construction:			
Riveted Gunite lined Epoxy-coated	rivets Other (describe)		
20A. Shell Color 20B. Roof Color	20C. Year Last Painted		
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense Ru	ust 🗌 Not applicable		
22A. Is the tank heated? YES NO			
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to tank.			
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Roof Tanks			
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks Does Not Apply			
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type: □ Metallic (Mechanical) (check one) □ Vapor Mounted Resili	— .		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	ck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shie	Id? YES NO		

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:
		N WELL	
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.
			•
		RWELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
			SAMPLE WELL-SLIT FABRIC SEAL
	ACTUATION, UN		(10% OPEN AREA)
	,		
			•
	WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:		
		1 1 1	
	RIM	VENT	
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Flo	loating Roof Tanks		
26A. Deck Type: Deck Type: Weld	ded		
26B. For Bolted decks, provide deck construct	tion:		
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
\Box Continuous sheet construction 5 × 7.5 fee			
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide		
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation		
27. I Tovide the city and state of which the data i			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))		
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation		
34. Average daily temperature range of bulk liqui	id:		
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
<u>39G.</u> Reid (psia)	00r			
Months Storage per Yo 39H. From	eai			
39I. To				
001. 10	VI EMISSIONS A		DATA (required)	
40. Emission Control I	Devices (check as many		· · /	
Carbon Adsorp	· · ·			
Conservation \	/ent (psig)			
Vacuum S		Pressure Se	atting	
	lief Valve (psig)		Stang	
Inert Gas Blan				
Liquid Absorpti				
	· · · ·			
Refrigeration o				
Rupture Disc (•,			
Vent to Inciner				
Other ¹ (describ	,			
	priate Air Pollution Contr			
41. Expected Emissio	n Rate (submit Test Dat	1	or elsewhere in the ap	plication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	Estimation Method ¹
CAS No.	(lb/hr)	(lb/hr)	(lb/yr)	Estimation method
voc	11,183.24	140.92	11,324.16	EPA
HAPs	9,783.78	124.86	9,908.64	EPA
Hexane	3,354.44	42.81	3,397.25	EPA
Benzene	447.26	5.71	452.97	EPA
Toluene	1,956.76	24.97	1,981.73	EPA
Ethylbenzene	670.89	8.56	679.45	EPA
Xylene	3,354.44	42.81	3,397.25	EPA
	Emissi	ons above are uncon	trolled	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 630 - Liquid Products and Intermediates Storage	2.	Tank Name LPG Storage Tank	
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-1	4.	Emission Point Identification No. (as assigned on Equipment List Form)	
5.	Date of Commencement of Construction (for existing	tank	S)	
6.	Type of change 🛛 New Construction	lew	Stored Material Other Tank Modification	
7.	Description of Tank Modification (if applicable)			
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		🗌 Yes 🛛 No	
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).			
7C.	Provide any limitations on source operation affecting variation, etc.):	emi	ssions, any work practice standards (e.g. production	
	II. TANK INFORM	ATIO	DN (required)	
8.	Design Capacity (specify barrels or gallons). Use height.			
	•	000		
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)	
10A	A. Maximum Liquid Height (ft)	10E	 Average Liquid Height (ft) 	
11 <i>A</i>		11E		
12.	Nominal Capacity (specify barrels or gallons). This is	s als	so known as "working volume" and considers design	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
15. Maximum tank fill rate (gal/min)				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	ank Systems Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): Fixed Roof vertical horizontal flat roof cone roof				
III. TANK CONSTRUCTION &	& OPERATION INFORMATION			
19. Tank Shell Construction: ☐ Riveted ☐ Gunite lined ☐ Epoxy-coate	ed rivets 🔄 Other (describe)			
20A. Shell Color White 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
No Rust 🗌 Light Rust 🗌 Dense F	Rust 🗌 Not applicable			
22A. Is the tank heated?				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to	tank.			
23. Operating Pressure Range (psig): 20 to 200				
24. Complete the following section for Vertical Fixed Roof Tanks 🛛 Does Not Apply				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks 🛛 Does Not Apply				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical (check one)(check one)Image: Vapor Mounted Res	· _ ·			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (ch	neck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather sh	ield? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:			
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
		JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:
		N WELL	
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.
			•
		RWELL	
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
			SAMPLE WELL-SLIT FABRIC SEAL
	ACTUATION, UN		(10% OPEN AREA)
	,		
			•
	WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:		
		1 1 1	
	RIM	VENT	
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Floati	ing Roof Tanks 🛛 Does Not Apply		
26A. Deck Type: Bolted Welded			
26B. For Bolted decks, provide deck construction	:		
26C. Deck seam:			
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 			
Continuous sheet construction 7 feet wide			
 Continuous sheet construction 5 × 7.5 feet w Continuous sheet construction 5 × 12 feet with 			
Other (describe)			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data in the			
Charleston, WV			
28. Daily Average Ambient Temperature (°F)	54.98		
29. Annual Average Maximum Temperature (°F)	65.75		
30. Annual Average Minimum Temperature (°F)	44.22		
31. Average Wind Speed (miles/hr)	6.05		
32. Annual Average Solar Insulation Factor (BTU/(ft	² ·day)) 1,250.57		
33. Atmospheric Pressure (psia)	14.25		
V. LIQUI	ID INFORMATION		
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig) 20	35B. Maximum (psig) 200		
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for each liquid or gas to be stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

39F. True (psia)	sure			
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
	Devices (check as many	/ as apply): 🗌 Does No	t Apply	
Carbon Adsorp	otion ¹			
Condenser ¹				
Conservation \	/ent (psig)			
Vacuum S	Setting	Pressure Se	etting	
Emergency Re	elief Valve (psig)			
🗌 Inert Gas Blan	ket of			
Insulation of Ta	ank with			
Liquid Absorpt	ion (scrubber) ¹			
Refrigeration o				
Rupture Disc (
Vent to Inciner				
Other ¹ (describ				
	priate Air Pollution Contr	ol Device Sheet		
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).				
-	1 1	1		lication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	lication). Estimation Method ¹
-	1 1	1		
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	
Material Name &	Breathing Loss	Working Loss	Annual Loss	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 630 - Liquid Products and Intermediates Storage	2.	Tank Name Reformate Storage Tank 1 and 2		
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-4/5	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-4/5		
5.	Date of Commencement of Construction (for existing	tank	s)		
6.	л ^з Ц	lew	Stored Material		
7.	7. Description of Tank Modification (if applicable)				
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No		
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
	II. TANK INFORMATION (required)				
8.	8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
	4,000 bbl				
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)		
	30.00 ft		NA		
10A		10E	5 1 5 ()		
	NA	4.45	NA		
11A	A. Maximum Vapor Space Height (ft)	11E	 Average Vapor Space Height (ft) 		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
15,222,690 gal/yr	41,706 gal/day			
14. Number of Turnovers per year (annual net throughpu	91			
15. Maximum tank fill rate (gal/min) 28.96				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	ink Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): Fixed Roofverticalhorizontalflat roofcone roofdome roof other (describe) External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof				
 ☐ Internal Floating Roof X vertical column support self-supporting ☐ Variable Vapor Space lifter roof diaphragm ☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe) 				
III. TANK CONSTRUCTION & OPERATION INF	ORMATION - See EPA Tanks 4.09d Simulation			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate 20A. Shell Color 20B. Roof Color				
20A.Shell Color20B.Roof Color20C.Year Last Painted21.Shell Condition (if metal and unlined):				
☐ No Rust ☐ Light Rust ☐ Dense R	Rust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to	tank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)	24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)	. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical (check one)(check one)Image: Vapor Mounted Resident Control	·			
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
		JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:	
		N WELL		
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:	
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.	
			•	
		RWELL		
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	/SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
			SAMPLE WELL-SLIT FABRIC SEAL	
	ACTUATION, UN		(10% OPEN AREA)	
	,			
			•	
WEIGHTED MECHANICAL ACTUATI				
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.	
		1 1 1		
	RIM	VENT		
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
		1 1 1		
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Flo	loating Roof Tanks		
26A. Deck Type: Deck Type: Weld	ded		
26B. For Bolted decks, provide deck construct	tion:		
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
\Box Continuous sheet construction 5 × 7.5 fee			
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide		
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation		
27. I Tovide the city and state of which the data i			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))		
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation		
34. Average daily temperature range of bulk liqui	id:		
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y 39H. From	ear			
391. To				
391. 10		I ND CONTROL DEVICI		
40 Emission Control	Devices (check as many		、 i	
Carbon Adsorp				
Conservation \	lent (nsia)			
Vacuum S		Pressure Se	ettina	
	lief Valve (psig)		etting	
Inert Gas Blan	u e ,			
Liquid Absorpti				
Refrigeration o	· · · ·			
Rupture Disc (
Vent to Inciner	- - ,			
Other ¹ (describ				
	oriate Air Pollution Conti	rol Device Sheet.		
	n Rate (submit Test Dat		or elsewhere in the ap	plication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	
CAS No.	(lb/yr)	(lb/yr)	(lb/yr)	Estimation Method ¹
VOC	315.36	235.52	550.88	EPA
HAPs	231.84	155.42	387.26	EPA
Hexane	65.38	4.80	70.18	EPA
Benzene	14.40	1.74	16.14	EPA
Toluene	70.98	30.76	101.74	EPA
Ethylbenzene	44.26	59.06	103.32	EPA
Xylene	36.82	59.06	95.88	EPA

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name	2.	Tank Name		
	Unit 630 - Liquid Products and Intermediates Storage	۷.	Light Slop Oil Storage Tank		
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-15	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 630-TK-15		
5.	Date of Commencement of Construction (for existing	tank	(S)		
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification		
7.					
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		🗌 Yes 🛛 No		
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):				
	II. TANK INFORMATION (required)				
8.	Design Capacity (specify barrels or gallons). Use height.				
٥٨	16,000 bbl				
эA.	Tank Internal Diameter (ft) 60.00 ft	9B. Tank Internal Height (or Length) (ft)			
10 <i>F</i>		10E	NA 3. Average Liquid Height (ft)		
10/	NA		NA		
11 <i>A</i>		11E			
10	Nominal Canadity (anadity barrals or callens) This i		a known on "working volume" and considere design		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
1,316,572 gal/yr 14. Number of Turnovers per year (annual net throughpu	3,607.05 gal/day			
1 4. Number of Fulliovers per year (annual net throughput maximum tank liquid volume) 2				
15. Maximum tank fill rate (gal/min) 2.51 gal/min				
16. Tank fill method	Splash 🛛 Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): □ Fixed Roofverticalhorizontalflat roofcone roofdome roofother (describe) □ External Floating Roofpontoon roofdouble deck roof □ Domed External (or Covered) Floating Roof ☑ Internal Floating Roofvertical column supportself-supporting □ Variable Vapor Space lifter roofdiaphragm □ Pressurizedsphericalcylindrical				
Other (describe) III. TANK CONSTRUCTION & OPERATION INF	ORMATION - See EPA Tanks 4.09d Simulation			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coated rivets Other (describe)				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)	B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks Does Not Apply				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Residence	<u> </u>			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
		JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI		UNBOLTED COVER, UNGASKETED:	
		N WELL		
BUILT-UP COLUMN – SLIDING COVER, GASKETED:	BUILT-UP COLU COVER, UNGASK		PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:	
COVER, GASKETED.	COVER, UNGASP	KETED.	FADRIC SLEEVE SEAL.	
			•	
		RWELL		
PIP COLUMN – SLIDING COVER, G	ASKETED:	PIPE COLUMN –	SLIDING COVER, UNGASKETED:	
	GAUGE-HATCH	/SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:	
			SAMPLE WELL-SLIT FABRIC SEAL	
	ACTUATION, UN		(10% OPEN AREA)	
	,			
			•	
WEIGHTED MECHANICAL ACTUATI				
	ION, GASKETED.		ANICAL ACTUATION, UNGASKETED.	
		1 1 1		
	RIM	VENT		
WEIGHTED MECHANICAL ACTUATI	ON GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:	
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Flo	loating Roof Tanks		
26A. Deck Type: Deck Type: Weld	ded		
26B. For Bolted decks, provide deck construct	tion:		
26C. Deck seam:			
Continuous sheet construction 5 feet wide			
Continuous sheet construction 7 feet wide			
\Box Continuous sheet construction 5 × 7.5 fee			
 Continuous sheet construction 5 × 12 feet Other (describe) 	a wide		
26D. Deck seam length (ft)	26E. Area of deck (ft ²)		
For column supported tanks:	26G. Diameter of each column:		
26F. Number of columns:			
27. Provide the city and state on which the data i	ON - See EPA Tanks 4.09d Simulation		
27. I Tovide the city and state of which the data i			
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))		
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation		
34. Average daily temperature range of bulk liqui	id:		
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)		
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)		
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)		
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press	sure			
39F. True (psia)				
39G. Reid (psia)				
Months Storage per Y	ear			
39H. From				
39I. To				
			, i ,	
	Devices (check as many	/ as apply): Does No	ot Apply	
Carbon Adsorp	otion ¹			
Conservation \				
Vacuum S	0	Pressure Se	etting	
	lief Valve (psig)			
Inert Gas Bland				
Insulation of Ta	ank with			
🗌 Liquid Absorpti	ion (scrubber) ¹			
Refrigeration o	f Tank			
Rupture Disc (psig)			
Vent to Inciner	ator ¹			
Other ¹ (describ	be):			
¹ Complete approp	oriate Air Pollution Conti	rol Device Sheet.		
41. Expected Emissio	n Rate (submit Test Dat	a or Calculations here	or elsewhere in the app	olication).
Material Name &	Breathing Loss	Working Loss	Annual Loss	·
CAS No.	(lb/yr)	(lb/yr)	(lb/yr)	Estimation Method ¹
VOC	24.16	5.27	29.43	EPA
HAPs	2.86	0.63	3.48	EPA
Hexane	0.05	0.01	0.06	EPA
Benzene	0.02	0.01	0.03	EPA
Toluene	0.33	0.07	0.4	EPA
Ethylbenzene	0.84	0.19	1.02	EPA
Xylene	0.84	0.19	1.02	EPA

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1.	Bulk Storage Area Name Unit 430 - Sour Water Stripping	2.	Tank Name Sour Water Storage Tank	
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) 430-TK-1	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 430-TK-1	
5.	Date of Commencement of Construction (for existing	tanl	ks)	
6.	Type of change 🛛 New Construction 🗌 N	lew	Stored Material Other Tank Modification	
7.	Description of Tank Modification (if applicable)			
7A.	. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		☐ Yes	
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).			
7C	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):			
	II. TANK INFORMATION (required)			
8.	 Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by interna height. 5,000 bbl 			
QΔ	. Tank Internal Diameter (ft)	1	. Tank Internal Height (or Length) (ft)	
073	30.00 ft		NA	
10/		10		
	NA		NA	

11A.	Maximum Vapor Space Height (ft)	11B.	Average Vapor Space Height (ft)

13A. Maximum annual throughput (gal/yr) 165,179,261 gal/yr	13B. Maximum daily throughput (gal/day) 452,545 gal/day		
14. Number of Turnovers per year (annual net throughput			
	789		
15. Maximum tank fill rate (gal/min) 314.27 gal/min			
16. Tank fill method Submerged	Splash 🛛 Bottom Loading		
17. Complete 17A and 17B for Variable Vapor Space Tar	k Systems Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year		
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalflat roofcone roofdome roofother (describe) External Floating Roofpontoon roofdouble deck roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column supportself-supporting Variable Vapor Spacelifter roofdiaphragm Pressurizedsphericalcylindrical 			
Underground Other (describe)			
III. TANK CONSTRUCTION & OPERATION INFO	ORMATION - See EPA Tanks 4.09d Simulation		
 19. Tank Shell Construction: Riveted Gunite lined Epoxy-coated 	l rivets 🔲 Other (describe)		
20A. Shell Color 20B. Roof Color			
21. Shell Condition (if metal and unlined):			
□ No Rust □ Light Rust □ Dense Ru 22A. Is the tank heated? □ YES □ NO	ust Not applicable		
22B. If YES, provide the operating temperature (°F)			
22C. If YES, please describe how heat is provided to ta	ank		
23. Operating Pressure Range (psig): to			
24. Complete the following section for Vertical Fixed Roof Tanks			
24A. For dome roof, provide roof radius (ft)			
24B. For cone roof, provide slope (ft/ft)	B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tanks			
25A. Year Internal Floaters Installed:			
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resili	— .		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO		
25D. If YES, how is the secondary seal mounted? (che	ck one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shie	Id? YES NO		

25F. Describe deck fittings; indicate the number of each	ch type of fitting:			
ACCESS	S HATCH			
BOLT COVER, GASKETED: UNBOLTED COV	ER, GASKETED: UNBOLTED COVER, UNGASKETED:			
AUTOMATIC GAL				
BOLT COVER, GASKETED: UNBOLTED COV				
COLUM	N WELL			
	MN – SLIDING PIPE COLUMN – FLEXIBLE			
COVER, GASKETED: COVER, UNGASK	ETED: FABRIC SLEEVE SEAL:			
LADDE	RWELL			
PIP COLUMN – SLIDING COVER, GASKETED:	PIPE COLUMN – SLIDING COVER, UNGASKETED:			
	/SAMPLE PORT SLIDING COVER, UNGASKETED:			
SLIDING COVER, GASKETED.	SLIDING COVER, UNGASKETED.			
ROOF LEG OR	HANGER WELL			
	MECHANICAL SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED: ACTUATION, UNG	GASKETED: (10% OPEN AREA)			
VACUUM	BREAKER			
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
WEIGHTED MECHANICAL ACTUATION GASKETED:	WEIGHTED MECHANICAL ACTUATION, UNGASKETED:			
DECK DRAIN (3-INCH DIAMETER)				
OPEN:	90% CLOSED:			
STUB DRAIN 1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADI	DITIONAL PAGES IF NECESSARY)			

26. Complete the following section for Internal Floating Roof Tanks				
26A. Deck Type: Deck Type: Weld	ded			
26B. For Bolted decks, provide deck construct	tion:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
\Box Continuous sheet construction 5 × 7.5 fee				
 Continuous sheet construction 5 × 12 feet Other (describe) 	it wide			
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
	ON - See EPA Tanks 4.09d Simulation			
27. Provide the city and state on which the data i	in this section are based.			
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU	J/(ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION	ON - See EPA Tanks 4.09d Simulation			
34. Average daily temperature range of bulk liqui	id:			
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F	F) 36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F	F) 37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°	°F) 38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.				
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

39F. True (psia) 39G. Reid (psia) 39H. From 39H. From 39H. From 39H. To VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): □ Does Not Apply □ Carbon Adsorption¹ □ Conservation Vent (psig) ∨acuum Setting Pressure Setting □ Emergency Relief Valve (psig) □ Inert Gas Blanket of □ Insulation of Tank with □ Liquid Absorption (scrubber)¹ □ Refrigeration of Scrubber)¹ □ Refrigeration of Scrubber)¹ □ Refrigeration of Tank □ Ubvint blackerabe? ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) King Loss (Ib/yr) VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA <t< th=""><th>Maximum Vapor Press</th><th>sure</th><th></th><th></th><th></th></t<>	Maximum Vapor Press	sure			
Months Storage per Year 39H. From Image: Storage per Year 39H. From VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Does Not Apply Does Not Apply Carbon Adsorption! Condenser! Condenser! Does Not Apply Condenser! Pressure Setting Emergency Relief Valve (psig) Vacuum Setting Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber)' Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator' Other' (describe): 'Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Estimation Method' Material Name & Breating Loss (Ib/yr) (Ib/yr) Stimation Method' VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Hexane 9.02 90.38 99.41 EPA Benzene	39F. True (psia)				
39H. From 39I. To VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Does Not Apply Carbon Adsorption ¹ Condenser ¹ Condenser ¹ Condenser ¹ Conservation Vent (psig) Pressure Setting Emergency Relief Valve (psig) Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber) ¹ Refrigeration of Tank Vent to Incinerator ¹ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (lb/yr) Working Loss (lb/yr) Annual Loss (lb/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Ethylbenzene 1.80 18.08 19.88 EPA					
391. To VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Does Not Apply Cendenser* Carbon Adsorption* Condenser* Condenser* Pressure Setting Emergency Relief Valve (psig) Pressure Setting Insulation of Yank with Figure 1 Liquid Absorption (scrubber)* Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator* Other* (describe): ************************************		ear			
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Does Not Apply Carbon Adsorption' Condenser' Conservation Vent (psig) Vacuum Setting Pressure Setting Insulation of Tank with Ilquid Absorption (scrubber)' Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator' Other' (describe): 'Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (lb/yr) Working Loss (lb/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA					
40. Emission Control Devices (check as many as apply): Does Not Apply Carbon Adsorption¹ Condenser¹ Condenser¹ Condenser¹ Conservation Vent (psig) Pressure Setting Emergency Relief Valve (psig) Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber)¹ Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator¹ Other¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Korking Loss (Ib/yr) (Ib/yr) (Ib/yr) VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA		VI. EMISSIONS A		E DATA (required)	<u>. </u>
□ Carbon Adsorption1 □ Condenser1 □ Conservation Vent (psig) ∨acuum Setting □ Emergency Relief Valve (psig) □ Inert Gas Blanket of □ Insulation of Tank with □ Liquid Absorption (scrubber)1 □ Refrigeration of Tank □ Numeration of Tank □ Rupture Disc (psig) □ Vent to Incinerator1 □ Other1 (describe): 1 Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) (Ib/yr) (Ib/yr) VOC 30.08 301.27 Annual Loss (Ib/yr) Estimation Method1 VOC 30.08 301.27 HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA					
Condenser1 Conservation Vent (psig) Pressure Setting Emergency Relief Valve (psig) Pressure Setting Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber)1 Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator1 Other1 (describe): '' Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) Estimation Method1 VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Ethylbenzene 1.80 18.08 19.88 EPA		· · ·			
Vacuum Setting Pressure Setting Emergency Relief Valve (psig) Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber) ¹ Refrigeration of Tank Refrigeration of Tank Quite Disc (psig) Vent to Incinerator ¹ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA					
Vacuum Setting Pressure Setting Emergency Relief Valve (psig) Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber) ¹ Refrigeration of Tank Refrigeration of Tank Quiter Disc (psig) Vent to Incinerator ¹ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA		/ent (psig)			
Emergency Relief Valve (psig) Inert Gas Blanket of Insulation of Tank with Liquid Absorption (scrubber) ¹ Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator ¹ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) Kib/yr) Kib/yr) VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 Ethylbenzene 1.80					
□ Inert Gas Blanket of □ Insulation of Tank with □ Liquid Absorption (scrubber) ¹ □ Refrigeration of Tank □ Rupture Disc (psig) □ Vent to Incinerator ¹ □ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (Ib/yr) Working Loss (Ib/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA		-		0	
Liquid Absorption (scrubber) ¹ Refrigeration of Tank Rupture Disc (psig) Vent to Incinerator ¹ Other ¹ (describe): ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). Material Name & Breathing Loss (lb/yr) Working Loss (lb/yr) Annual Loss (lb/yr) Estimation Method ¹ VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA		u e ,			
Refrigeration of TankRupture Disc (psig)Vent to Incinerator1Other1 (describe):1 Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & Breathing Loss (lb/yr)Working Loss (lb/yr)CAS No.Breathing Loss (lb/yr)Annual Loss (lb/yr)VOC30.08301.27331.35EPAHAPs26.32263.61PAHexane9.0290.3899.41Benzene1.2012.0513.25EPAToluene5.2652.7257.99Ethylbenzene1.801.8018.0819.88EPA	Insulation of Ta	ank with			
Refrigeration of TankRupture Disc (psig)Vent to Incinerator1Other1 (describe):1 Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & Breathing Loss (lb/yr)Working Loss (lb/yr)CAS No.Breathing Loss (lb/yr)Annual Loss (lb/yr)VOC30.08301.27331.35EPAHAPs26.32263.61PAHexane9.0290.3899.41Benzene1.2012.0513.25EPAToluene5.2652.7257.99Ethylbenzene1.801.8018.0819.88EPA					
Rupture Disc (psig)Vent to Incinerator1Other1 (describe):1 Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & CAS No.Breathing Loss (lb/yr)Morking Loss (lb/yr)Annual Loss (lb/yr)VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA		(<i>)</i>			
Vent to Incinerator1Other1 (describe):1 Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & Breathing Loss (lb/yr)Working Loss (lb/yr)Annual Loss (lb/yr)VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA	-				
¹ Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & CAS No.Breathing Loss (lb/yr)Morking Loss (lb/yr)Estimation Method ¹ VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA		- - ,			
¹ Complete appropriate Air Pollution Control Device Sheet.41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & CAS No.Breathing Loss (lb/yr)Morking Loss (lb/yr)Estimation Method ¹ VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA	Other ¹ (describ	be):			
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).Material Name & CAS No.Breathing Loss (lb/yr)Working Loss (lb/yr)Annual Loss (lb/yr)Estimation Method1VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA		•	rol Device Sheet.		
Material Name & CAS No.Breathing Loss (lb/yr)Working Loss (lb/yr)Annual Loss (lb/yr)Estimation Method1VOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA				or elsewhere in the app	olication).
CAS No.Drum group (lb/yr)ConstraintEstimation MethodVOC30.08301.27331.35EPAHAPs26.32263.61289.93EPAHexane9.0290.3899.41EPABenzene1.2012.0513.25EPAToluene5.2652.7257.99EPAEthylbenzene1.8018.0819.88EPA	-	I			
VOC 30.08 301.27 331.35 EPA HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA			-		Estimation Method ¹
HAPs 26.32 263.61 289.93 EPA Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA					
Hexane 9.02 90.38 99.41 EPA Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA	VOC	30.08	301.27	331.35	EPA
Benzene 1.20 12.05 13.25 EPA Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA	HAPs	26.32	263.61	289.93	EPA
Toluene 5.26 52.72 57.99 EPA Ethylbenzene 1.80 18.08 19.88 EPA	Hexane	9.02	90.38	99.41	EPA
Ethylbenzene 1.80 18.08 19.88 EPA	Benzene	1.20	12.05	13.25	EPA
	Toluene	5.26	52.72	57.99	EPA
Xylene 9.02 90.38 99.41 EPA	Ethylbenzene	1.80	18.08	19.88	EPA
	Xylene	9.02	90.38	99.41	EPA

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	DSF - Sour Water Storage Tank Point Pleasant West Virginia DSF Internal Floating Roof Tank 5,000 BBL storage tank for sour water holding storage in the Unit 430 - Sour Water Stripping process. In order to provide a conservative estimate of emissions, sour water is assumed to be 80% water and 20% light naphtha.			
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	30.00 210,000.00 786.57 N 1.00 1.00			
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good			
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe None			
Deck Characteristics Deck Fitting Category: Deck Type: Construction: Deck Seam: Deck Seam Len. (ft):	Typical Bolted Panel Panel: 5 x 12 Ft 197.92			

Deck Fitting/Status

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

288 of 427

Quantity

1 1

> 8 1

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Sour Water Storage Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Sour Water	All	56.67	51.31	62.04	55.00	0.2625	N/A	N/A	28.2755			21.71	
Jet naphtha (JP-4)						1.2002	N/A	N/A	80.0000	0.2000	0.4681	120.00	Option 1: VP50 = 1 VP60 = 1.3
Water						0.2273	N/A	N/A	18.0200	0.8000	0.5319	18.02	Option 2: A=8.10765, B=1750.286, C=235

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Sour Water Storage Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	22.8596
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.0046
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.2625
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	28.2755
Product Factor:	1.0000
Withdrawal Losses (lb):	1,506.3384
Number of Columns:	1.0000
Effective Column Diameter (ft):	1.0000
Annual Net Throughput (gal/yr.):	165,179,261.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	7.8613
Tank Diameter (ft):	30.0000
Deck Fitting Losses (lb):	36.7594
Value of Vapor Pressure Function:	0.0046
Vapor Molecular Weight (lb/lb-mole):	28.2755
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	279.8000
Deck Seam Losses (lb):	4.6350
Deck Seam Length (ft):	197.9200
Deck Seam Loss per Unit Length Factor (lb-mole/ft-yr):	0.1400
Deck Seam Length Factor(ft/sqft):	0.2800
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	28.2755
Product Factor:	1.0000

Total Losses (lb):

			Roof Fitting Loss Factors		
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	4.7296
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	1.8393
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	1	47.00	0.00	0.00	6.1747
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	9.9847
Roof Leg or Hanger Well/Adjustable	10	7.90	0.00	0.00	10.3788
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	1.5765
Stub Drain (1-in. Diameter)/	8	1.20	0.00	0.00	1.2612
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	0.8145

1,570.5924

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Sour Water Storage Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Sour Water	22.86	1,506.34	36.76	4.63	1,570.59
Water	12.16	1,205.07	19.55	2.47	1,239.24
Jet naphtha (JP-4)	10.70	301.27	17.21	2.17	331.35

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	DSF - Light Slop Oil Tank Point Pleasant West Virginia DSF Internal Floating Roof Tank 16,000 BBL internal floating roof storage tank for the light slop oil for plant shutdowns estimated to occur for one (1) month. To provide a conservative estimate for emissions, storage is assumed to occur during July.
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	60.00 670,000.00 1.97 N 1.00 1.00
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe None
Deck Characteristics Deck Fitting Category: Deck Type: Construction: Deck Seam: Deck Seam Len. (ft):	Typical Bolted Panel Panel: 5 x 12 Ft 791.68

Deck Fitting/Status Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

295 of 427

Quantity

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Light Slop Oil Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Light Slop Oil	Jul	66.29	60.27	72.31	55.00	0.2369	N/A	N/A	81.4403			177.49	
Distillate fuel oil no. 2						0.0081	N/A	N/A	130.0000	0.8955	0.0460	188.00	Option 1: VP60 = .0065 VP70 = .009
Jet naphtha (JP-4)						1.4887	N/A	N/A	80.0000	0.1045	0.9540	120.00	Option 1: VP60 = 1.3 VP70 = 1.6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Light Slop Oil Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Rim Seal Losses (lb):							9.8970					
Seal Factor A (lb-mole/ft-yr):							5.8000					
Seal Factor B (lb-mole/ft-yr (mph) ⁿ):							0.3000					
Value of Vapor Pressure Function:							0.0042					
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):							0.2369					
Tank Diameter (ft):							60.0000					
Vapor Molecular Weight (lb/lb-mole):							81.4403					
Product Factor:							1.0000					
Withdrawal Losses (lb):							5.2741					
Number of Columns:							1.0000					
Effective Column Diameter (ft):							1.0000					
Net Throughput (gal/mo.):						1,31	6,572.0000					
Shell Clingage Factor (bbl/1000 sqft):							0.0015					
Average Organic Liquid Density (lb/gal):							7.0198					
Tank Diameter (ft):							60.0000					
Deck Fitting Losses (lb):							10.2469					
Value of Vapor Pressure Function:							0.0042					
Vapor Molecular Weight (lb/lb-mole):							81.4403					
Product Factor:							1.0000					
Tot. Roof Fitting Loss Fact. (Ib-mole/yr):							360.3000					
Deck Seam Losses (lb):							4.0134					
Deck Seam Length (ft):							791.6800					
Deck Seam Loss per Unit Length												
Factor (lb-mole/ft-yr):							0.1400					
Deck Seam Length Factor(ft/sqft):							0.2800					
Tank Diameter (ft):							60.0000					
Vapor Molecular Weight (lb/lb-mole):							81.4403					
Product Factor:							1.0000					

Total Losses (lb):			29.4314		
			Roof Fitting Loss Factors		
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	1.0435
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	0.4058
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	1	47.00	0.00	0.00	1.3623
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	2.2029
Roof Leg or Hanger Well/Adjustable	17	7.90	0.00	0.00	3.8927
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	0.3478
Stub Drain (1-in. Diameter)/	29	1.20	0.00	0.00	1.0087
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	0.1797

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Light Slop Oil Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

			Losses(lbs)		
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Light Slop Oil	9.90	5.27	10.25	4.01	29.43
Distillate fuel oil no. 2	0.46	4.72	0.47	0.18	5.83
Jet naphtha (JP-4)	9.44	0.55	9.78	3.83	23.60

TANKS 4.0.9d

Emissions Report - Detail Format

Quantity 1 1

> > 8 1

Tank Indentification and Physical Characteristics

Identification	
User Identification:	DSF - Light Naphtha v0.2
City:	Point Pleasant
State:	West Virginia
Company:	DSF
Type of Tank:	Internal Floating Roof Tank
Description:	3,000 BBL internal floating roof storage tanks for light naphtha storage at the DSF facility
Tank Dimensions	
Diameter (ft):	30.00
Volume (gallons):	126,000.00
Turnovers:	86.08
Self Supp. Roof? (y/n):	Ν
No. of Columns:	1.00
Eff. Col. Diam. (ft):	1.00
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	None
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Bolted
Construction:	Panel
Deck Seam:	Panel: 5 x 12 Ft
Deck Seam Len. (ft):	197.92

Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Sluit-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diametr/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

${\rm DSF}$ - Light Naphtha v0.2 - Internal Floating Roof Tank Point Pleasant, West Virginia

					Liquid								
		Da	ily Liquid S	urf.	Bulk				Vapor	Liquid	Vapor		
		Tem	perature (de	eg F)	Temp	Vapor	Pressure	(psia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.0)	All	56.67	51.31	62.04	55.00	7.6647	N/A	N/A	60.0000			92.00	Option 4: RVP=15, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

${\rm DSF}$ - Light Naphtha v0.2 - Internal Floating Roof Tank Point Pleasant, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	1,989.3304
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.1905
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.6647
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	70.4579
Number of Columns:	1.0000
Effective Column Diameter (ft):	1.0000
Annual Net Throughput (gal/yr.):	10,845,975.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	5.6000
Tank Diameter (ft):	30.0000
Deck Fitting Losses (lb):	3,198.9347
Value of Vapor Pressure Function:	0.1905
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	279.8000
Deck Seam Losses (lb):	403.3535
Deck Seam Length (ft):	197.9200
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.1400
Deck Seam Length Factor(ft/sqft):	0.2800
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	60.000
Product Factor:	1.0000

Total Losses (lb):	5,662.0764							
		Roof Fitting Loss Factors						
Roof Fitting/Status		Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)		
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed		1	36.00	5.90	1.20	411.5856		
Automatic Gauge Float Well/Unbolted Cover, Ungasketed		1	14.00	5.40	1.10	160.0611		
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Unga	isk.	1	47.00	0.00	0.00	537.3479		
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed		1	76.00	0.00	0.00	868.9029		
Roof Leg or Hanger Well/Adjustable		10	7.90	0.00	0.00	903.2017		
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	n	1	12.00	0.00	0.00	137.1952		
Stub Drain (1-in. Diameter)/		8	1.20	0.00	0.00	109.7562		
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, G	ask.	1	6.20	1.20	0.94	70.8842		

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

 $\rm DSF$ - Light Naphtha v0.2 - Internal Floating Roof Tank Point Pleasant, West Virginia

	Losses(bs)								
Components	Rim Seal Loss Withdrawl Loss Deck Fitting Loss Deck Seam Loss Total Emiss								
Gasoline (RVP 15.0)	1,989.33	70.46	3,198.93	403.35	5,662.08				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	DSF - HYK Light Feed Tank Point Pleasant West Virginia DSF Internal Floating Roof Tank 16,000 BBL internal floating roof storage tank for the HYK Light Feed for plant shutdowns estimated to occur for one (1) month. To provide a conservative estimate for emissions, storage is assumed to occur during July.
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	60.00 670,000.00 1.97 N 4.00 1.00
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good
Rim-Seal System Primary Seal: Secondary Seal	Mechanical Shoe None
Deck Characteristics Deck Fitting Category: Deck Type: Construction: Deck Seam: Deck Seam Len. (ft):	Typical Bolted Panel Panel: 5 x 12 Ft 791.68

Deck Fitting/Status

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

308 of 427

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - HYK Light Feed Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
HYK Light Feed	Jul	66.29	60.27	72.31	55.00	0.2369	N/A	N/A	81.4403			177.49	
Distillate fuel oil no. 2						0.0081	N/A	N/A	130.0000	0.8955	0.0460	188.00	Option 1: VP60 = .0065 VP70 = .009
Jet naphtha (JP-4)						1.4887	N/A	N/A	80.0000	0.1045	0.9540	120.00	Option 1: VP60 = 1.3 VP70 = 1.6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - HYK Light Feed Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

Value of Vapor Pressure Function:0.0042Vapor Molecular Weight (Ib/Ib-mole):81.4403Product Factor:1.0000Tot. Roof Fitting Loss Fact.(Ib-mole/yr):360.3000		
Seal Factor B (lb-mole/ft-yr (mph)^n): 0.3000 Value of Vapor Pressure Function: 0.0042 Vapor Pressure at Daily Average Liquid 0.2369 Tank Diameter (ft): 60.0000 Vapor Pressure at Daily Average Liquid 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 5.5335 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1,316,572.0000 Shell Clingage Factor (bb//1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 0.00015 Value of Vapor Pressure Function: 0.0000 Value of Vapor Pressure Function: 0.00015 Value of Vapor Pressure Function: 0.0042 Value of Vapor Pressure Function: 0.0042 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact. (lb-mole/yr): 360.3000		
Value of Vapor Pressure Function: 0.0042 Vapor Pressure at Daily Average Liquid 0.2369 Surface Temperature (psia): 60.0000 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (galmo.): 1.0167 Shell Clingage Factor (bb/1000 sqft): 1.0000 Shell Clingage Factor (bb/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 0.0422 Value of Vapor Pressure Function: 0.042 Vapor Molecular Weight (lb/lb-mole): 10.02469 Value of Vapor Pressure Function: 0.0422 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Output Pressure Function: 0.0422 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tank Diameter (ft): 360.3000 Deck Seam Losses (lb): 360.300		
Vapor Pressure at Daily Average Liquid 0.2369 Surface Temperature (psia): 0.0000 Tank Diameter (ft): 81.4403 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1.316,572.0000 Shell Clingage Factor (bb/1000 sqft): 0.0015 Average Cryanic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 81.4403 Value of Vapor Pressure Function: 81.4403 Value of Kitting Loss Fact. (lb/mole): 81.4403 Product Factor: 1.02469 Value of Kitting Loss Fact. (lb/mole): 81.4403 Product Factor: 1.0000 Deck Fitting Loss Fact. (lb/mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact. (lb/mole/yr): 360.3000		
Surface Temperature (psia): 0.2369 Tank Diameter (ft): 60.000 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1,316,572.0000 Shell Cilingage Factor (bb/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 1.0000 Deck Fitting Losses (lb): 10.2469 Vapor Molecular Weight (lb/lb-mole): 1.0000 Deck Fitting Losses (lb): 1.0000 Deck Seam Losses (lb): 360.3000		
Tank Diameter (ft): 60.0000 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 4.0000 Staff and St		
Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1,316,572.0000 Shell Clingage Factor (bb/1000 sqft): 0.0015 Average Crganic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 0.0042 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Deck Fitting Losses (lb): 360.3000 Deck Seam Losses (lb): 360.3000		
Product Factor: 1.0000 Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1,316,572.0000 Shell Clingage Factor (bbl/1000 sqft): 0.015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 1.0000 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact. (lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Withdrawal Losses (lb): 5.5335 Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1.316,572.0000 Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Number of Columns: 4.0000 Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mo.): 1,316,572.0000 Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 1.0000 Product Factor: 1.0000 Tot. Roof Fitting Losses (lb): 360.3000 Deck Seam Losses (lb): 4.0134		
Effective Column Diameter (ft): 1.0000 Net Throughput (gal/mc.): 1.316,572.0000 Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Net Throughput (gal/mo.): 1,316,572.0000 Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 0.0042 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 1.0000 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact. (lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Seam Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 9.0042 Product Factor: 1.0000 Tot. Roof Fitting Losses (lb): 360.3000		
Shell Clingage Factor (bbl/1000 sqft): 0.0015 Average Organic Liquid Density (lb/gal): 7.0198 Tank Diameter (ft): 60.0000 Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Losses (lb): 360.3000		
Tank Diameter (ft):60.0000Deck Fitting Losses (lb):10.2469Value of Vapor Pressure Function:0.0042Vapor Molecular Weight (lb/lb-mole):81.4403Product Factor:1.0000Tot. Roof Fitting Loss Fact. (lb-mole/yr):360.3000Deck Seam Losses (lb):4.0134		
Deck Fitting Losses (lb): 10.2469 Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact. (lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Value of Vapor Pressure Function: 0.0042 Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Vapor Molecular Weight (lb/lb-mole): 81.4403 Product Factor: 1.0000 Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Product Factor: 1.0000 Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Tot. Roof Fitting Loss Fact.(lb-mole/yr): 360.3000 Deck Seam Losses (lb): 4.0134		
Deck Seam Losses (lb): 4.0134		
Deck Seam Length (ft) 791 6800		
Deck Seam Loss per Unit Length		
Factor (lb-mole/ft-yr): 0.1400		
Deck Seam Length Factor(ft/sqft): 0.2800		
Tank Diameter (ft): 60.0000		
Vapor Molecular Weight (Ib/Ib-mole): 81.4403		
Product Factor: 1.0000		

Total Losses (lb):	29.6908							
	Roof Fitting Loss Factors							
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)			
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	1.0435			
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	0.4058			
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	1	47.00	0.00	0.00	1.3623			
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	2.2029			
Roof Leg or Hanger Well/Adjustable	17	7.90	0.00	0.00	3.8927			
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	0.3478			
Stub Drain (1-in. Diameter)/	29	1.20	0.00	0.00	1.0087			
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	0.1797			

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - HYK Light Feed Tank - Internal Floating Roof Tank Point Pleasant, West Virginia

	Losses(lbs)									
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions					
HYK Light Feed	9.90	5.53	10.25	4.01	29.69					
Distillate fuel oil no. 2	0.46	4.96	0.47	0.18	6.07					
Jet naphtha (JP-4)	9.44	0.58	9.78	3.83	23.62					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification: City:	DSF - HYK Heavy Feed Storage Tank Point Pleasant	
State:	West Virginia	
Company:	DSF	
Type of Tank:	Vertical Fixed Roof Tank	
Description:	3,000 BBL vertical fixed roof storage tank for the HYK Heavy Feed for plant shutdowns estimated to occur about one (1) month. To provide a conservative estimate for HYK Heavy Feed emissions, storage is assumed to occur during July.	
Tank Dimensions		
Shell Height (ft):	24.00	
Diameter (ft):	30.00	
Liquid Height (ft) :	23.83	
Avg. Liquid Height (ft):	12.00 126,000.00	
Volume (gallons): Turnovers:	1.66	
Net Throughput(gal/yr):	209,454.00	
Is Tank Heated (y/n):	N	
Paint Characteristics		
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White	
Roof Condition:	Good	
Roof Characteristics		
Туре:	Dome	
Height (ft)	0.00	
Radius (ft) (Dome Roof)	0.00	
Breather Vent Settings		
Vacuum Settings (psig):	-0.03	
Pressure Settings (psig)	0.03	

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - HYK Heavy Feed Storage Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jul	66.29	60.27	72.31	55.00	0.0081	0.0066	0.0097	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - HYK Heavy Feed Storage Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (Ib):		•			•		2.3793		·			
Vapor Space Volume (cu ft):							9,936.8122					
Vapor Density (lb/cu ft):							0.0002					
Vapor Space Expansion Factor:							0.0418					
Vented Vapor Saturation Factor:							0.9940					
Tank Vapor Space Volume:												
Vapor Space Volume (cu ft):							9.936.8122					
Tank Diameter (ft):							30.0000					
Vapor Space Outage (ft):							14.0577					
Tank Shell Height (ft):							24.0000					
Average Liquid Height (ft):							12.0000					
Roof Outage (ft):							2.0577					
Roof Outage (Dome Roof)												
Roof Outage (ft):							2.0577					
Dome Radius (ft):							30.0000					
Shell Radius (ft):							15.0000					
Vapor Density												
Vapor Density (lb/cu ft):							0.0002					
Vapor Molecular Weight (lb/lb-mole):							130.0000					
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):							0.0081					
Daily Avg. Liquid Surface Temp. (deg. R):							525.9609					
Daily Average Ambient Temp. (deg. F):							75.0500					
Ideal Gas Constant R												
(psia cuft / (lb-mol-deg R)):							10.731					
Liquid Bulk Temperature (deg. R):							514.6733					
Tank Paint Solar Absorptance (Shell):							0.1700					
Tank Paint Solar Absorptance (Roof):							0.1700					
Daily Total Solar Insulation												
Factor (Btu/sqft day):							1,836.9933					
Vapor Space Expansion Factor												
Vapor Space Expansion Factor:							0.0418					
Daily Vapor Temperature Range (deg. R):							24.0801					
Daily Vapor Pressure Range (psia):							0.0031					
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid							0.0600					
Surface Temperature (psia):							0.0081					
Vapor Pressure at Daily Minimum Liquid												
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid							0.0066					
Surface Temperature (psia):							0.0097					
Daily Avg. Liquid Surface Temp. (deg R):							525.9609					
Daily Min. Liquid Surface Temp. (deg R):							519.9409					
Daily Max. Liquid Surface Temp. (deg R):							531.9810					
Daily Ambient Temp. Range (deg. R):							21.3000					
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor:							0.9940					
Vapor Pressure at Daily Average Liquid:							0.00-10					
Surface Temperature (psia):							0.0081					
Vapor Space Outage (ft):							14.0577					
Working Losses (Ib):							5.2336					

Vapor Molecular Weight (Ib/Ib-mole):	130.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Net Throughput (gal/mo.): Annual Turnovers: Turnover Factor: Maximum Liquid Volume (gal): Maximum Liquid Height (ft): Tank Diameter (ft): Working Loss Product Factor:	0.0081 209,454.0000 1.6623 1.0000 126,000.0000 23.8290 30.0000 1.0000
Total Losses (lb):	7.6130

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - HYK Heavy Feed Storage Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	5.23	2.38	7.61					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	DSF - Heavy Slop Oil Tank Point Pleasant West Virginia DSF Vertical Fixed Roof Tank 16,000 BBL vertical fixed roof storage tank for the heavy slop oil feed for plant shutdowns estimated to occur about one (1) month. To provide a conservative estimate for heavy slop oil emissions, storage is assumed to occur during July.
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	32.00 60.00 31.68 16.00 670,000.00 1.97 1,316,572.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 32.00 60.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Heavy Slop Oil Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

-		Liquid Daily Liquid Surf. Bulk Temperature (deg F) Temp			Bulk	Vapor Pressure (psia)					Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jul	66.29	60.27	72.31	55.00	0.0081	0.0066	0.0097	130.0000			188.00	Option 1: VP60 = .0065 VP70 = .009

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Heavy Slop Oil Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (Ib):	,				,		25.5122					
Vapor Space Volume (cu ft):						107	7,635.1530					
Vapor Density (lb/cu ft):							0.0002					
Vapor Space Expansion Factor:							0.0418					
Vented Vapor Saturation Factor:							0.9840					
Tank Vapor Space Volume:												
Vapor Space Volume (cu ft):						107	7,635.1530					
Tank Diameter (ft):							60.0000					
Vapor Space Outage (ft):							38.0681					
Tank Shell Height (ft):							32.0000					
Average Liquid Height (ft):							16.0000					
Roof Outage (ft):							22.0681					
Roof Outage (Dome Roof)												
Roof Outage (ft):							22.0681					
Dome Radius (ft):							60.0000					
Shell Radius (ft):							30.0000					
Vapor Density												
Vapor Density (lb/cu ft):							0.0002					
Vapor Molecular Weight (lb/lb-mole):							130.0000					
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):							0.0081					
Daily Avg. Liquid Surface Temp. (deg. R):							525.9609					
Daily Average Ambient Temp. (deg. F):							75.0500					
Ideal Gas Constant R							40 704					
(psia cuft / (lb-mol-deg R)): Liguid Bulk Temperature (deg. R):							10.731 514.6733					
Tank Paint Solar Absorptance (Shell):							0.1700					
Tank Paint Solar Absorptance (Soler).							0.1700					
Daily Total Solar Insulation							0.1700					
Factor (Btu/sqft day):						1	1,836.9933					
Vapor Space Expansion Factor												
Vapor Space Expansion Factor:							0.0418					
Daily Vapor Temperature Range (deg. R):							24.0801					
Daily Vapor Pressure Range (psia):							0.0031					
Breather Vent Press. Setting Range(psia):							0.0600					
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):							0.0081					
Vapor Pressure at Daily Minimum Liquid							0.0001					
Surface Temperature (psia):							0.0066					
Vapor Pressure at Daily Maximum Liquid							0.0097					
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):							0.0097 525.9609					
Daily Avg. Liquid Surface Temp. (deg R). Daily Min. Liquid Surface Temp. (deg R):							525.9609					
Daily Max. Liquid Surface Temp. (deg R):							531.9810					
Daily Ambient Temp. Range (deg. R):							21.3000					
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor:							0.9840					
Vapor Pressure at Daily Average Liquid:												
Surface Temperature (psia):							0.0081					
Vapor Space Outage (ft):							38.0681					
Working Losses (lb):							32.8972					

Vapor Molecular Weight (Ib/Ib-mole):	130.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0081
Net Throughput (gal/mo.):	1,316,572.0000
Annual Turnovers:	1.9650
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	670,000.0000
Maximum Liguid Height (ft):	31.6774
Tank Diameter (ft):	60.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	58.4094

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Heavy Slop Oil Tank - Vertical Fixed Roof Tank Point Pleasant, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	32.90	25.51	58.41					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	DSF - Heavy Naphtha
City:	Point Pleasant
State:	West Virginia
Company:	DSF
Type of Tank:	Internal Floating Roof Tank
Description:	4,000 BBL internal floating roof storage tanks for heavy naphtha storage at the DSF facility
Decemption	
Tank Dimensions	
	30.00
Diameter (ft):	
Volume (gallons):	168,000.00
Turnovers:	90.61
Self Supp. Roof? (y/n):	N
No. of Columns:	1.00
Eff. Col. Diam. (ft):	1.00
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	None
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Bolted
Construction:	Panel
Deck Seam:	Panel: 5 x 12 Ft
Deck Seam Len. (ft):	197.92
Dock Fitting/Statue	

Deck Fitting/Status Quantity Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Access Hatch (24-in: Diam.)/Ohbbited Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

329 of 427

1

1

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Heavy Naphtha - Internal Floating Roof Tank Point Pleasant, West Virginia

			ily Liquid S perature (de		Liquid Bulk Temp	Vapor	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Heavy Naphtha	All	56.67	51.31	62.04	55.00	0.1858	N/A	N/A	98.2949			105.82	
Benzene						1.0642	N/A	N/A	78.1100	0.0074	0.0456	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Ethylbenzene						0.0966	N/A	N/A	106.1700	0.2508	0.1404	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.7536	N/A	N/A	86.1700	0.0204	0.2073	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Octane (-n)						0.1344	N/A	N/A	114.2300	0.3400	0.2649	114.23	Option 1: VP50 = .112388 VP60 = .145444
Toluene						0.2974	N/A	N/A	92.1300	0.1306	0.2251	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.0803	N/A	N/A	106.1700	0.2508	0.1167	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Heavy Naphtha - Internal Floating Roof Tank Point Pleasant, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	56.0981
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.0033
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.1858
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	98.2949
Product Factor:	1.0000
Withdrawal Losses (Ib):	117.7588
Number of Columns:	1.0000
Effective Column Diameter (ft):	1.0000
Annual Net Throughput (gal/yr.):	15,222,690.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.6685
Tank Diameter (ft):	30.0000
Deck Fitting Losses (Ib):	90.2083
Value of Vapor Pressure Function:	0.0033
Vapor Molecular Weight (lb/lb-mole):	98.2949
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	279.8000
Deck Seam Losses (lb):	11.3744
Deck Seam Length (ft):	197.9200
Deck Seam Loss per Unit Length Factor (Ib-mole/ft-yr):	0.1400
Deck Seam Length Factor(ft/sgft):	0.2800
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	98.2949
Product Factor:	1.0000

Total Losses (lb):

	Roof Fitting Loss Factors							
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)			
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	11.6065			
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	4.5136			
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	1	47.00	0.00	0.00	15.1529			
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	24.5026			
Roof Leg or Hanger Well/Adjustable	10	7.90	0.00	0.00	25.4698			
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	3.8688			
Stub Drain (1-in. Diameter)/	8	1.20	0.00	0.00	3.0951			
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	1.9989			

332 of 427

275.4396

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Heavy Naphtha - Internal Floating Roof Tank Point Pleasant, West Virginia

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Heavy Naphtha	56.10	117.76	90.21	11.37	275.44				
Octane (-n)	14.86	40.04	23.90	3.01	81.81				
Hexane (-n)	11.63	2.40	18.70	2.36	35.09				
Benzene	2.56	0.87	4.12	0.52	8.07				
Toluene	12.63	15.38	20.30	2.56	50.87				
Ethylbenzene	7.87	29.53	12.66	1.60	51.66				
Xylenes (mixed isomers)	6.55	29.53	10.53	1.33	47.94				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	DSF - Gasoline Tanks Point Pleasant West Virginia DSF Internal Floating Roof Tank 20,000 BBL internal floating roof storage tanks for gasoline product at the DSF facility
Tank Dimensions Diameter (ft):	67.00
Volume (gallons):	420.000.00
Turnovers:	62.07
Self Supp. Roof? (y/n):	Ν
No. of Columns:	4.00
Eff. Col. Diam. (ft):	1.00
Daint Characteristics	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	None
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Bolted
Construction:	Panel
Deck Seam:	Panel: 5 x 12 Ft
Deck Seam Len. (ft):	987.18
Dook Fitting/Status	

Deck Fitting/StatusQuantityAccess Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed1Automatic Gauge Float Well/Unbolted Cover, Ungasketed1Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask.4Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed1Roof Leg or Hanger Well/Adjustable20Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open36Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.1

336 of 427

file:///C:/Program%20Files%20(x86)/Tanks409d/summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Gasoline Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 15.0)	All	56.67	51.31	62.04	55.00	7.6647	N/A	N/A	60.0000			92.00	Option 4: RVP=15, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Gasoline Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	4,442.8378
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.1905
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.6647
Tank Diameter (ft):	67.0000
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	77.7623
Number of Columns:	4.0000
Effective Column Diameter (ft):	1.0000
Annual Net Throughput (gal/yr.):	26,068,665.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	5.6000
Tank Diameter (ft):	67.0000
Deck Fitting Losses (lb):	6,098.3265
Value of Vapor Pressure Function:	0.1905
Vapor Molecular Weight (lb/lb-mole):	60.000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	533.4000
Deck Seam Losses (lb):	2,011.8358
Deck Seam Length (ft):	987.1800
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.1400
Deck Seam Length Factor(ft/sqft):	0.2800
Tank Diameter (ft):	67.0000
Vapor Molecular Weight (lb/lb-mole):	60.000
Product Factor:	1.0000

Total Losses (lb):

	Roof Fitting Loss Factors							
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)			
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	411.5856			
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	160.0611			
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	4	47.00	0.00	0.00	2,149.3914			
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	868.9029			
Roof Leg or Hanger Well/Adjustable	20	7.90	0.00	0.00	1,806.4034			
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	137.1952			
Stub Drain (1-in. Diameter)/	36	1.20	0.00	0.00	493.9027			
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	70.8842			

12,630.7624

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Gasoline Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (RVP 15.0)	4,442.84	77.76	6,098.33	2,011.84	12,630.76				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	DSF - Ethanol Tanks Point Pleasant West Virginia DSF Internal Floating Roof Tank 4,000 BBL internal floating roof storage tanks for ethanol storage at the DSF facility
Tank Dimensions	30.00
Diameter (ft): Volume (gallons):	168,000.00
Turnovers:	27.38
Self Supp. Roof? (y/n):	N
No. of Columns:	1.00
Eff. Col. Diam. (ft):	1.00
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade: Roof Condition:	White/White Good
Roof Condition.	9000
Rim-Seal System	
Primary Seal:	Mechanical Shoe
Secondary Seal	None
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Bolted
Construction:	Panel
Deck Seam:	Panel: 5 x 12 Ft
Deck Seam Len. (ft):	197.92
Deek Eitting/Statue	

Deck Fitting/Status Quantity Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Column Well (24-in. Diam.)/Built-Up Col.-Sliding Cover, Ungask. Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Stub Drain (1-in. Diameter)/Slit Fabric Seal 10% Open Vacuum Brocker (10 in Diam.)/Weinbtod Mach Actuation Cask Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

343 of 427

1

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Ethanol Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

	Daily Liquid Surf.			Liquid Bulk Temp	Bulk			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Ethyl alcohol	All	56.67	51.31	62.04	55.00	0.5863	N/A	N/A	46.0700			46.07	Option 2: A=8.321, B=1718.21, C=237.52

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Ethanol Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

Annual Emission Calcaulations	
Rim Seal Losses (lb):	84.1771
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.0105
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.5863
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	46.0700
Product Factor:	1.0000
Withdrawal Losses (lb):	35.2749
Number of Columns:	1.0000
Effective Column Diameter (ft):	1.0000
Annual Net Throughput (gal/yr.):	4,600,352.5000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.6100
Tank Diameter (ft):	30.0000
Deck Fitting Losses (lb):	135.3607
Value of Vapor Pressure Function:	0.0105
Vapor Molecular Weight (lb/lb-mole):	46.0700
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	279.8000
Deck Seam Losses (lb):	17.0676
Deck Seam Length (ft):	197.9200
Deck Seam Loss per Unit Length Factor (lb-mole/ft-yr):	0.1400
Deck Seam Length Factor(ft/sqft):	0.2800
Tank Diameter (ft):	30.0000
Vapor Molecular Weight (lb/lb-mole):	46.0700
Product Factor:	1.0000

Total Losses (Ib):

	Roof Fitting Loss Factors								
Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	KFb(lb-mole/(yr mph^n))	m	Losses(lb)				
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	17.4160				
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	6.7729				
Column Well (24-in. Diam.)/Built-Up ColSliding Cover, Ungask.	1	47.00	0.00	0.00	22.7375				
Ladder Well (36-in. Diam.)/Sliding Cover, Ungasketed	1	76.00	0.00	0.00	36.7670				
Roof Leg or Hanger Well/Adjustable	10	7.90	0.00	0.00	38.2183				
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	5.8053				
Stub Drain (1-in. Diameter)/	8	1.20	0.00	0.00	4.6443				
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	2.9994				

271.8803

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Ethanol Tanks - Internal Floating Roof Tank Point Pleasant, West Virginia

		Losses(lbs)									
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions						
Ethyl alcohol	84.18	35.27	135.36	17.07	271.88						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	DSF - Diesel Tanks v0.2
City:	Point Pleasant
State:	West Virginia
Company:	DSF
Type of Tank:	Vertical Fixed Roof Tank
Description:	28,500 BBL vertical fixed roof tanks with dome roof for diesel product at the ${ m DSF}$ facility
Tank Dimensions	
Shell Height (ft):	32.00
Diameter (ft):	80.00
Liquid Height (ft) :	30.00
Avg. Liquid Height (ft):	16.00
Volume (gallons):	1,197,000.00
Turnovers:	83.90
Net Throughput(gal/yr):	100,426,830.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Dome
Height (ft)	32.00
Radius (ft) (Dome Roof)	80.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

DSF - Diesel Tanks v0.2 - Vertical Fixed Roof Tank Point Pleasant, West Virginia

	Daily Liquid Surf. Bulk		Liquid Bulk Temp	lk			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure		
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	56.67	51.31	62.04	55.00	0.0058	0.0048	0.0070	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0065

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

DSF - Diesel Tanks v0.2 - Vertical Fixed Roof Tank Point Pleasant, West Virginia

Annual Emission Coloculations	
Annual Emission Calcaulations Standing Losses (Ib):	329.9439
Vapor Space Volume (cu ft):	178,006.8283
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0375
Vented Vapor Saturation Factor:	0.9892
vented vapor Saturation ractor.	0.9092
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	178,006.8283
Tank Diameter (ft):	80.0000
Vapor Space Outage (ft):	35.4133
Tank Shell Height (ft):	32.0000
Average Liquid Height (ft):	16.0000
Roof Outage (ft):	19.4133
Roof Outage (Dome Roof)	
Roof Outage (ft):	19.4133
Dome Radius (ft):	80.0000
Shell Radius (ft):	40.0000
Vapor Density	0.0004
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	0.0050
Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	516.3441
Daily Average Ambient Temp. (deg. F):	54.9833
Ideal Gas Constant R	10 721
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	514.6733 0.1700
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	1 250 5726
Factor (Btu/sqft day):	1,250.5726
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0375
Daily Vapor Temperature Range (deg. R):	21.4567
Daily Vapor Pressure Range (psia):	0.0022
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0048
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0070
Daily Avg. Liquid Surface Temp. (deg R):	516.3441
Daily Min. Liquid Surface Temp. (deg R):	510.9799
Daily Max. Liquid Surface Temp. (deg R):	521.7082
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9892
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0058
Vapor Space Outage (ft):	35.4133
Working Losses (lb):	950.8261

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	130.0000
Surface Temperature (psia):	0.0058
Annual Net Throughput (gal/yr.):	100,426,830.0000
Annual Turnovers:	83.8988
Turnover Factor:	0.5242
Maximum Liquid Volume (gal):	1,197,000.0000
Maximum Liquid Height (ft):	30.0000
Tank Diameter (ft):	80.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	1,280.7700

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

DSF - Diesel Tanks v0.2 - Vertical Fixed Roof Tank Point Pleasant, West Virginia

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Distillate fuel oil no. 2	950.83	329.94	1,280.77					

Attachment M

Attachment M Air Pollution Control Device Sheet (BAGHOUSE)

Control Device ID No. (must match Emission Units Table): 100-BH-1

Equipment Information and Filter Characteristics

1.	Manufacturer: CAMCORP	2. Total number of compartments:							
	Model No.	3. Number of compartment online for normal operation:							
4.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.								
5.	5. Baghouse Configuration: Open Pressure Closed Pressure Closed Suction (check one) Electrostatically Enhanced Fabric Other, Specify								
6.	Filter Fabric Bag Material: Nomex nylon Wool Polyester Polypropylene Acrylics Ceramics Fiber Glass oz./sq.yd Cotton Weight oz./sq.yd Teflon Thickness in Others, specify Others, specify	 7. Bag Dimension: Diameter Length 8. Total cloth area: 8262 9. Number of bags: 10. Operating air to cloth ratio: 	in. ft. ft ² ft/min						
11.	Baghouse Operation: 🛛 Continuous	Automatic Intermittent							
	12. Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet								
13.	Cleaning initiated by: Timer Expected pressure drop range in. of water	Frequency if timer actuated Other							
14.	Operation Hours: Max. per day: 24 Max. per yr: 8760	15. Collection efficiency: Rating: Guaranteed minimum:	% %						
	Gas Stream C	haracteristics							
16.	Gas flow rate into the collector: 31,112 ACFNACFM:Design:PSIAMaximum:	Lat 180 °F and PSIA Average Expected:	PSIA PSIA						
17.	Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air							
18.	Gas Stream Temperature: 180 °F	19. Fan Requirements: 150 OR	hp ft ³ /min						
20.	Stabilized static pressure loss across baghouse. Pre	ssure Drop: High Low	in. H ₂ O in. H ₂ O						
21.	Particulate Loading: Inlet:	grain/scf Outlet: 0.01	grain/dscf						

22. Type of Pollutant(s) to be collecter PM, PM ₁₀ , and PM _{2.5}	d (if particul	ate give specific	; type):			
23. Is there any SO ₃ in the emission s	stream?	No 🗋	res SC	0₃ conte	ent:	ppmv
24. Emission rate of pollutant (specify	/) into and o	1		design		
Pollutant		lb/hr	IN grains/	acf	0	UT grains/acf
РМ					1.84	
PM ₁₀					1.84	
PM _{2.5}					0.92	
25. Complete the table:	Particle S	Size Distributio to Collector		Frac	tion Efficienc	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size R	ange	v	Veight % for S	ize Range
0 – 2						
2 – 4						
4 – 6						
6 - 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 - 60						
60 – 70						
70 – 80						
80 - 90						
90 – 100						
>100						

26.	How is filter monitored for indications of deterioration (e.g., broken bags)?
	Continuous Opacity Pressure Drop
	Alarms-Audible to Process Operator
	Visual opacity readings, Frequency:
	Other, specify:
27.	Describe any recording device and frequency of log entries:
28	Describe any filter seeding being performed:
20.	Describe any liner seeding being performed.
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
	reheating, gas humidification):
30.	Describe the collection material disposal system:
<u> </u>	
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet?

Please propose mo		and Testing ting in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions
MONITORING:		RECORDKEEPING:
See Attachment O		See Attachment O
REPORTING:		TESTING:
See Attachment O		See Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING:	Please describe the proposed re-	cordkeeping that will accompany the monitoring.
REPORTING:		nissions testing for this process equipment on air pollution
TEOTINO	control device.	ninging to the fact this was a service and the size of the line.
TESTING:	control device.	nissions testing for this process equipment on air pollution
	aranteed Capture Efficiency for ea	
34. Manufacturer's Gua	aranteed Control Efficiency for eac	h air pollutant.
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 100-TC-1-FF, 100-TC-2-FF, 100-TH-2-FF, 100-TC-3-FF, 100-TC-4-FF, 100-TH-4-FF, 100-TH-5-FF, 100-TC-5-FF, 100-TH-6-FF, 100-TH-7-FF, 100-TC-6-FF, 100-TC-7-FF, 200-S-108FF, 200-S-105-FF, 610-TC-2-FF, 610-SD-1-FF, and 610-SD-2-FF

Equipment Information

1.	Manufacturer: Model No.	2.	Conveyor 2 Filter, Conveyor Filter, Hopper 1 Filter, Conveyor 2 Filter, Hopper Filter, Co Conveyor 2 Filter,	
3.				em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	On a separate sheet(s) supp	ly al	II data and calculation	ns used in selecting or designing this collection device.
5.	Provide a scale diagram of the	ne co	ontrol device showir	g internal construction.
6.	Submit a schematic and diag	Iram	with dimensions ar	nd flow rates.
7.	Guaranteed minimum collect	ion	efficiency for each p	ollutant collected:
8.	Attached efficiency curve and	d/or	other efficiency info	rmation.
9.	Design inlet volume:		1200 SCFM	10. Capacity:
11.	Indicate the liquid flow rate a	nd c	describe equipment	provided to measure pressure drop and flow rate, if any.
12.	Attach any additional data inc equipment.	ludi	ing auxiliary equipme	ent and operation details to thoroughly evaluate the control
13.	Description of method of han	dlin	g the collected mate	rial(s) for reuse of disposal.

Gas Stream Characteristics

14. Are halogenated organics present?	🗌 Yes	🛛 No	
Are particulates present?	🖂 Yes	🗌 No	
Are metals present?	🗌 Yes	🖂 No	

_									
15. Inlet Emission stream parameters:			Maximum			Typical			
	Pressure	e (mmHg):							
	Heat Co	ntent (BTU/scf):						
	Oxygen	Content (%):							
	Moisture	Content (%):							
	Relative	Humidity (%):							
16.	Type of pollutant(s)	controlled:) _x	Odor	I			
	Particulate (type)		and PM		Other				
17.	Inlet gas velocity:			ft/sec	18. Pollutant	specific gra	avity:		
19.	Gas flow into the col 1200 SCFM @		117	PSIA	20. Gas strea	am tempera Inlet			°F
			14.7	FSIA		Out			°F
21.	Gas flow rate:				22. Particulat			in grains/scf:	
	Design Maximum: Average Expected:	1200		SCFM SCFM		Inlei Out		.01 grains/dso	f
23.	Emission rate of eac	h pollutant (sp	ecify) in		of collector:	Cut	•	ion granic, acc	
	Pollutant		ollutan		Emission	OL	JT Po	ollutant	Control
		lb/hr	gr	ains/acf	Capture	lb/hr		grains/dscf	Efficiency
					Efficiency %				%
	РМ					0.10			
	PM 10					0.10			
	PM _{2.5}					0.05			
24.	Dimensions of stack	: He	eight		ft.	Diam	neter	1	ft.
25.	Supply a curve show rating of collector.	wing proposed	collecti	on efficien	icy versus gas	volume fro	om 29	5 to 130 perce	nt of design
			Pa	articulate	Distribution				
26.	Complete the table:		Partic		stribution at Ir Collector	nlet Fra	ctior	n Efficiency of	Collector
Ра	articulate Size Range	e (microns)	We	eight % fo	or Size Range		Weig	ght % for Size	Range
	0 – 2								
	2 – 4								
	4-6								
	6-8								
	8 – 10 10 – 12								
	10 - 12								
	12 - 10								
	20 - 30								
	30 - 40								
	40 - 50								

50 - 60

60 – 70						
70 - 80						
80 - 90						
90 - 100)					
>100						
27. Describe any air p reheating, gas hun		utlet gas conditioning processes (e.g., gas cooling, gas				
28. Describe the collection material disposal system:						
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?				
Please propose mo		and Testing ting in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions				
MONITORING: See Attachment O		RECORDKEEPING: See Attachment O				
REPORTING: See Attachment O		TESTING: See Attachment O				
Monitoring: Recordkeeping: Reporting:	monitored in order to demonstrate or air control device. Please describe the proposed re	ccess parameters and ranges that are proposed to be compliance with the operation of this process equipment cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution				
TESTING:		nissions testing for this process equipment on air pollution				
31. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.				
32. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.				
33. Describe all operat	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 100-CS-1-FF, 100-CS-2-FF, and 610-SS-1-FF

Equipment	Information
-----------	-------------

1.	Manufacturer: Model No.		Surge Flake Silo Filter	Silo 1 Filter, Coal Storage Silo				
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.							
4.	On a separate sheet(s) supply all d	lata and calculation	ons used in selecting or de	esigning this collection device.				
5.	Provide a scale diagram of the con	trol device showir	ng internal construction.					
6.	Submit a schematic and diagram w	vith dimensions ar	nd flow rates.					
7.	7. Guaranteed minimum collection efficiency for each pollutant collected:							
8.	Attached efficiency curve and/or ot	her efficiency info	rmation.					
9.	Design inlet volume: 800	SCFM	10. Capacity:					
11.	Indicate the liquid flow rate and des	scribe equipment	provided to measure pres	sure drop and now rate, ii any.				
12.	Attach any additional data including equipment.	auxiliary equipm	ent and operation details t	o thoroughly evaluate the control				
13.	Description of method of handling t	the collected mate	erial(s) for reuse of dispos	al.				
		Gas Stream (Characteristics					
14.	Are halogenated organics present? Are particulates present? Are metals present?		□ Yes					
15.	Inlet Emission stream parameters:		Maximum	Typical				
	Pressure (mmHg):							

Heat Content (BTU/scf):

Oxygen Content (%): Moisture Content (%): Relative Humidity (%):

16.	Type of pollutant(s) control Particulate (type):		SO _x PM _{2.5}	Odor Other			
17.	Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19.	Gas flow into the colle 800 SCFM @		14.7 PSIA	20. Gas strea	im temperature: Inlet: Outlet:		°F °F
21.	Gas flow rate: Design Maximum: Average Expected:	800	SCFM SCFM	22. Particulat	e Grain Loading Inlet: Outlet: 0) in grains/dscf: .01 grains/dsc	
23.	Emission rate of each	n pollutant (spec	ify) into and out	of collector:			
	Pollutant	IN Po	llutant	Emission	OUT Po	ollutant	Control
	Pollutant	IN Po Ib/hr	llutant grains/acf	1 1	OUT Po lb/hr	ollutant grains/acf	Control Efficiency %
	Pollutant PM		1	Emission Capture Efficiency		1	Efficiency
			1	Emission Capture Efficiency	lb/hr	1	Efficiency
	PM		1	Emission Capture Efficiency	lb/hr 0.07	1	Efficiency
24.	PM PM ₁₀		grains/acf	Emission Capture Efficiency	lb/hr 0.07 0.07	grains/acf	Efficiency

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4 - 6		
6 – 8		
8 - 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 – 50		
50 - 60		
60 – 70		
70 – 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):							
28. Describe the collection material disposal system:							
29. Have you included Other Collectores	Control Devic	e in the Emissions Points Data Summary Sheet?					
	ping, and reporti	and Testing ng in order to demonstrate compliance with the proposed to demonstrate compliance with the proposed emissions					
MONITORING:		RECORDKEEPING:					
See Attachment O		See Attachment O					
REPORTING: See Attachment O		TESTING: See Attachment O					
monitored in order or air control devic	to demonstrate	cess parameters and ranges that are proposed to be compliance with the operation of this process equipment					
REPORTING: Please describe ar		cordkeeping that will accompany the monitoring. issions testing for this process equipment on air pollution					
Control device. TESTING: Please describe an control device.	ny proposed em	issions testing for this process equipment on air pollution					
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.							
33. Describe all operating ranges and main	ntenance proce	dures required by Manufacturer to maintain warranty.					

Attachment M **Air Pollution Control Device Sheet** (FLARE SYSTEM)

Cor	ntrol Device ID No. (must match Emission Units Table Equipment): 620-FL-1 Information
1.	Manufacturer:	2. Method: 🛛 Elevated flare
	Model No.	∐ Other Describe
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
4.	Method of system used:	Pressure-assisted Non-assisted
5.	Maximum capacity of flare:	6. Dimensions of stack:
	scf/min	Diameter ft.
	6,230,769 scf/hr Average flow to flare: 2,138,613 scf/hr	Height ft.
7.	Estimated combustion efficiency:	8. Fuel used in burners:
	(Waste gas destruction efficiency)	Natural Gas
	Estimated: %	☐ Fuel Oil, Number
	Minimum guaranteed: 98 %	Other: Fuel gas11. Describe method of controlling flame:
9.	Number of burners: Maximum Relieving Rate: 2,614 MMBTU/hr Average Relieving Rate: 990 MMBTU/hr	
10.	Will preheat be used? Yes No	
12.	Flare height: ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min
13.	Flare tip inside diameter: ft	scf/hr
15.	Number of pilot lights:	16. Will automatic re-ignition be used?
	Total BTU/hr	Yes No
17.	If automatic re-ignition will be used, describe the met	hod:
18.	Is pilot flame equipped with a monitor?	No
		-Red
		era with monitoring control room
	Other, Describe:	
19.	Hours of unit operation per year: 8 (Maximum of fou	r 30-min flaring events per process unit)

Steam Injection						
20. Will steam injection be used?	i 🗌 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG			
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F			
24. Velocity	ft/sec	25. Number of jet streams				
26. Diameter of steam jets: in 27. Design basis for steam injected: LB steam/LB hydrocarb						
28. How will steam flow be controlled if stea	28. How will steam flow be controlled if steam injection is used?					

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
	Unit 200 Emergency Flaring Event		25,000	
	Unit 310 Emergency Flaring Event		81,000	
	Unit 320 Emergency Flaring Event		18,000	
	Unit 420 Emergency Flaring Event		15,000	
30.	Estimate total combustible t Maximum mass flow rate of	, ,		
31.	Estimated total flow rate to	flare including materials to LB/hr or ACF/hr	b be burned, carrier gases, a	uxiliary fuel, etc.:
32.	Give composition of carrier	gases:		
33.	Temperature of emission st	ream: °F	34. Identify and describe burned.	all auxiliary fuels to be
	Heating value of emission s			BTU/scf
	2,614 990	BTU/ft ³ (Maximum)		BTU/scf
	Mean molecular weight of e	BTU/ft ³ (Average)		BTU/scf
	MW = Ib/Ib-me			BTU/scf BTU/scf
35.	Temperature of flare gas:	°F	36. Flare gas flow rate:	scf/min
37.	Flare gas heat content:	BTU/ft ³	38. Flare gas exit velocity:	scf/min
39.	Maximum rate during emerg	gency for one major piece	of equipment or process uni	t: scf/min
40.	Maximum rate during emerg	gency for one major piece	of equipment or process uni	t: BTU/min

- 41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
- 42. Describe the collection material disposal system:

43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet?

Please propose r proposed operatir	ig parameters. Please propose	and Testing porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the								
proposed emissior MONITORING:	ns limits.	RECORDKEEPING:								
See Attachment O		See Attachment O								
REPORTING: See Attachment O		TESTING: See Attachment O								
MONITORING:		process parameters and ranges that are proposed to be trate compliance with the operation of this process								
RECORDKEEPING: REPORTING:	Please describe the proposed re Please describe any proposed	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air								
TESTING:	pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air								
45. Manufacturer's Gu	aranteed Capture Efficiency for ea	ch air pollutant.								
46. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.								
47. Describe all operation	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.								

Attachment N

Domestic Synthetic Fuels I Site Emission Levels

	VO	Cc	L U/	APs		0	,	NO _x				'M ₁₀	DA	M _{2,5}	DM		DM			0,
		1				-				Total		1		-		ndensable		ilterable		-
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr Unit 100 - C	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		r	r			r				ř	4.77	2.40	0.40	0.05	1	1	2.00	2.04		
Coal Handling Transfer Points									3.06 0.16	2.94	1.77 0.08	2.18	0.48	0.85			3.06 0.16	2.94 0.71		
Coal Stockpiles										-				-				-		
Coal Milling Dryer	0.08	0.35	0.03	0.12	1.23	5.39	1.47	6.42	0.11	0.49	0.03	0.12	0.03	0.12	0.08	0.37	0.03	0.12	<0.01	0.04
Coal Milling Baghouse and Storage Silos									2.60 D - H-Coal	11.38	2.60	11.38	1.30	5.69			2.60	11.38		
		r	r			r				0.00	0.04	0.00	0.10	0.45	1	1	0.24	0.00		
Unit 200 Coal Handling									0.21	0.90	0.21	0.90	0.10	0.45			0.21	0.90		
Slurry Feed Heater	0.56	2.43	0.20	0.86	2.28	9.98	2.96	12.97	1.00	4.38	0.41	1.78	0.41	1.78	0.59	2.60	0.41	1.78	0.01	0.06
Hydrogen Heater	0.13	0.55	0.04	0.18	0.47	2.07	0.71	3.10	0.21	0.91	0.08	0.37	0.08	0.37	0.12	0.54	0.08	0.37	0.01	0.06
Feed Catalyst Bins			< 0.01	0.02					0.10	0.45	0.10	0.45	0.05	0.23			0.10	0.45		
Spent Catalyst Drums			< 0.01	< 0.01					< 0.01	< 0.01	< 0.001	<0.01	<0.01	<0.01			< 0.001	< 0.01		
Vaccuum Tower Feed Heater	0.21	0.90	0.07	0.29	0.76	3.34	1.15	5.02	0.34	1.47	0.14	0.60	0.14	0.60	0.20	0.87	0.14	0.60	0.02	0.09
									lydrocracke	1										
Hydrocracker Reaction Heater	0.07	0.30	0.02	0.10	0.26	1.13	0.39	1.69	0.11	0.49	0.05	0.20	0.05	0.20	0.07	0.29	0.05	0.20	< 0.01	0.03
Fractionation Reboiler	0.09	0.39	0.03	0.12	0.33	1.45	0.50	2.18	0.15	0.64	0.06	0.26	0.06	0.26	0.09	0.38	0.06	0.26	<0.01	0.04
	0.40	0.42	0.02		0.07		0.55	Unit 320 - Cata	· ·	1	0.07	0.20	0.07	0.20	0.40	0.42	0.07	0.00	0.04	0.01
Catalytic Reaction Heater 1	0.10	0.43	0.03	0.14	0.37	1.61	0.55	2.41	0.16	0.70	0.07	0.29	0.07	0.29	0.10	0.42	0.07	0.29	0.01	0.04
Catalytic Reaction Heater 2	0.10	0.43	0.03	0.14	0.37	1.61	0.55	2.41	0.16	0.70	0.07	0.29	0.07	0.29	0.10	0.42	0.07	0.29	0.01	0.04
Catalytic Reaction Heater 3	0.10	0.43	0.03	0.14	0.37	1.61	0.55	2.41	0.16	0.70	0.07	0.29	0.07	0.29	0.10	0.42	0.07	0.29	0.01	0.04
Catalytic Reaction Heater 4	0.10	0.43	0.03	0.14	0.37	1.61	0.55	2.41	0.16	0.70	0.07	0.29	0.07	0.29	0.10	0.42	0.07	0.29	0.01	0.04
					. = 0			Unit 440 - Sulfu	,											
SRU Incinerator	0.14	0.60	0.06	0.27	1.70	7.43	4.22	18.48	0.16	0.70	0.04	0.18	0.04	0.18	0.12	0.53	0.04	0.18	5.64	24.71
Charles Dellas Charles	0.42	-0.01	0.05	.0.01	2.22	0.07	0.05		- Utilities	-0.04	0.05	-0.04	0.05	-0.01	0.45	.0.01	0.05	-0.01	0.02	-0.01
Steam Boiler - Start Up	0.13	<0.01	0.05	< 0.01	2.22	0.07	0.85	0.03	0.20	< 0.01	0.05	<0.01	0.05	<0.01	0.15	<0.01	0.05	< 0.01	0.02	<0.01
Steam Boiler - Normal Operations	0.03	0.12	0.01	0.06	0.58	2.51	0.22	0.96	0.05	0.23	0.01	0.06	0.01	0.06	0.04	0.17	0.01	0.06	< 0.01	0.02
Emergency Generator	1.54	0.08	0.01	<0.01	4.06	0.20	18.85	0.94	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	1.24	0.06
Cooling Towers								 nit 610 - Solid F	6.34	27.79	6.34	27.79	3.17	13.89			6.34	27.79		
elated was determined.	1	T	r			1		1	3.77	2.58	1.98	2.09	0.43	0.89	1	1	0.77	2.58	1	
Flaked Residue Handling									-								3.77			
Sulfur Product Stockpile									0.05	0.23	0.02	0.11	0.01	0.05			0.05	0.23		
Sulfur Product Transfer Points									3.17 lare System	1.12	1.50	0.53	0.23	0.08			3.17	1.12		
Emerana Eleca		1.13		0.35		1.25		0.27	· · ·	0.04		0.01		0.01		0.03		0.01		0.17
Emergency Flare		1.13		0.35		-		0.27 iquid Products				0.01	-	0.01		0.03		0.01		0.17
Character Manager	0.53	1.62	0.07	0.26					anu interni	eulates Stol	age 									
Storage Vessels	0.53	1.62	0.07	0.26				 nit 640 - Liquid												
Liquid Loading - Gasoline Trucks	4.06	1.18	1.40	0.41				liit 040 - Liquid	FIGUULLE	auout				-		1				
Liquid Loading - Diesel Trucks	1.31	0.13	0.10	0.41																
Liquid Loading - LPG Trucks	4.08	3.80										-								
	4.08	0.15	0.59	0.05																
Liquid Loading - Gasoline Railcar Liquid Loading - Diesel Railcar	0.37	0.15	0.59	<0.05																
· · · · · · · · · · · · · · · · · · ·	5.07	0.08	1.76	0.01											-					
Liquid Loading - Gasoline Barge	1.09	0.12	0.08	0.04																
Liquid Loading - Diesel Barge									0.04			<0.01			0.03					
Liquid Loading and Storage Vessel Flare	26.91	3.84	9.34	1.41	8.56	1.17	1.88	0.26 Unit 700 - Hy		<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01
Hydrogen Refermer Normal Operations	2.22	14.04	0.97	2 77	6.60	28.70	4 1 2				1 1 1	4.93	1 1 1	4.93	2.22	14 50	1 1 1	4 92	0.25	1 5 2
Hydrogen Reformer - Normal Operations Hydrogen Reformer - Startup	3.23 3.23	14.04 0.10	0.87	3.77 0.03	6.60 6.60	28.70	4.13 34.37	17.95 1.03	4.45	19.34 0.13	1.11	4.83 0.03	1.11 1.11	4.83 0.03	3.33	14.50 0.10	1.11 1.11	4.83 0.03	0.35	1.53 0.01
nyurogen kelormer - startup	3.23	0.10	0.87	0.03	0.00	0.20		1.03 scellaneous DS			1.11	0.03	1.11	0.03	3.33	0.10	1.11	0.03	0.35	0.01
Haul Roads							IVII	scendrieous DS	9.24	3.77	1.85	0.75	1.85	0.75			3.77	3.77		
Initial Catalyst Handling			0.07	<0.01					2.45	<0.01	1.85	<0.01	0.22	<0.01			2.45	<0.01		
Fugitive Leaks	11.91	52.15	1.84	<0.01 8.06					2.45	<0.01	1.21	<0.01	0.22	<0.01			2.45	<0.01		
i ugitive Leaks	11.91	32.13	1.04	0.00																
Totals	66.83	86.10	17.66	16.96	37.12	71.32	73.88	80.91	43.05	83.49	21.02	56.11	11.23	32.65	8.54	22.04	29.03	61.45	7.69	26.98

	Tota	I HAPs		Idehyde	<u>,</u>	IC FUEIS I exane		zene		uene		enzene	Xv	lene	Carbon	yl Sulfide	ΗΔΡΙ	Metals
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr
	10/111	tons/y	10/111	tons/yr	10/11		100 - Coal		10/11	tons/yi	10/11	tons/yr	10/11	tons/y		tons/y	10/111	tons/yr
Coal Handling Transfer Points																		
Coal Stockpiles																		
Coal Milling Dryer	0.03	0.12	<0.01	<0.01	0.03	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	<0.01
Coal Milling Baghouse and Storage Silos																		
							Jnit 200 - H											1
Unit 200 Coal Handling																		
Slurry Feed Heater	0.20	0.86	<0.01	0.03	0.19	0.82	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01			<0.01	< 0.01
Hydrogen Heater	0.04	0.18	< 0.01	<0.01	0.04	0.17	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	< 0.01
Feed Catalyst Bins	< 0.01	0.02															<0.01	0.02
Spent Catalyst Drums	< 0.01	<0.01															<0.01	< 0.01
Vaccuum Tower Feed Heater	0.07	0.29	<0.01	0.01	0.06	0.27	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			< 0.01	< 0.01
	0.01	0.20		0.01	0.00		310 - Hydr		10101		10101	10101		10101		I		
Hydrocracker Reaction Heater	0.02	0.10	<0.01	<0.01	0.02	0.09	<i>.</i> <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	< 0.01
Fractionation Reboiler	0.03	0.12	< 0.01	< 0.01	0.03	0.12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	< 0.01
	0.00							c Converter							1	1		1
Catalytic Reaction Heater 1	0.03	0.14	<0.01	<0.01	0.03	0.13	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	< 0.01
Catalytic Reaction Heater 2	0.03	0.14	< 0.01	< 0.01	0.03	0.13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	< 0.01
Catalytic Reaction Heater 3	0.03	0.14	< 0.01	< 0.01	0.03	0.13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	<0.01
Catalytic Reaction Heater 4	0.03	0.14	< 0.01	< 0.01	0.03	0.13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	< 0.01
	0.00	0	10101	10101	0.00		440 - Sulfer				10101	10101		10101	1			
SRU Incinerator	0.06	0.27	<0.01	<0.01	0.04	0.17	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.09		
	0.00	0.27		10101	0.01		nit 500 - U					10101		10101	0.02	0.00		1
Steam Boiler - Startup	0.05	<0.01	<0.01	<0.01	0.05	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	< 0.01
Steam Boiler - Normal Operation	0.01	0.06	< 0.01	<0.01	0.01	0.05	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01			<0.01	<0.01
Emergency Engine 1	0.01	<0.01	< 0.01	<0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Cooling Towers																		
						Unit 610 -	- Solid Prod	lucts Handli	ng									<u> </u>
Flaked Residue Handling																		
Sulfur Product Stockpile																		
Sulfur Product Transfer Points																		
						Unit	t 620 - Flare	System			ļ	Į			ļ			4
Emergency Flare		0.35		< 0.01		0.01		<0.01		0.08		0.13		0.13				
		0.00		-0101	Unit 6	30 - Liquid Pr	oducts and		tes Storag		Į	0.10		0.110	I	Į		4
Storage Vessels	0.07	0.26			< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0.04	0.02	0.08	0.02	0.08				
								duct Loado								I		<u></u>
Liquid Loading - Gasoline Trucks	1.40	0.41			< 0.01	< 0.01	0.03	< 0.01	0.61	0.18	0.16	0.05	0.61	0.18				
Liquid Loading - Diesel Trucks	0.10	0.01			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	<0.01	0.02	< 0.01				
Liquid Loading - LPG Trucks																		
Liquid Loading - Gasoline Railcar	0.59	0.05			<0.01	<0.01	0.01	<0.01	0.25	0.02	0.07	< 0.01	0.25	0.02				
Liquid Loading - Diesel Railcar	0.03	<0.01			<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01				
Liquid Loading - Gasoline Barge	1.76	0.04			< 0.01	<0.01	0.03	<0.01	0.76	0.02	0.20	<0.01	0.76	0.02				
Liquid Loading - Diesel Barge	0.08	0.03			< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	0.02	<0.01	0.02	< 0.01				
Liquid Loading and Storage Vessel Flare	9.34	1.41	<0.01	< 0.01	0.01	<0.01	0.17	0.02	4.04	0.57	1.09	0.21	4.04	0.60				
	5.6 .			5.02			700 - Hydro								ļ	Į		4
Hydrogen Reformer - Normal Operations	0.87	3.77	0.04	0.19	0.82	3.56	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01			< 0.01	< 0.01
Hydrogen Reformer - Startup	0.87	0.03	0.04	< 0.01	0.82	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01			<0.01	< 0.01
,								cility Emissi							1	1		1
Haul Roads																		
Catalyst Handling	0.07	< 0.01			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01			0.07	< 0.01
Fugitive Leaks	1.84	8.06			0.10	0.42	0.03	0.12	0.39	1.69	0.64	2.79	0.67	2.92				
										1								1
Totals	17.66	16.96	0.12	0.29	2.33	6.37	0.27	0.16	6.05	2.60	2.22	3.27	6.40	3.95	0.02	0.09	0.07	0.02

PM Emissions from Coal Handling Transfer to Coal Mill 100-CM-1

Constant									
Constant	PM	PM-10	PM-2.5						
k	0.74	0.35	0.05						
where									
k		Particle size m	Particle size multiplier 1						
U	7.0	Wind Speed (Wind Speed (mph) ²						

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M (%)	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf) ³	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)⁴	PM-2.5 Emissions (tons/yr) ⁴
100-TH-1	Barge Unloading to Barge Receiving Hopper	6	1,000.00	912,500.00					0.79	0.36	0.37	0.17	0.06	0.03
100-TC-1	Barge Receiving Hopper to Coal Transfer Conveyor 1	6	1,000.00	912,500.00	1200	0.010			0.10	0.15	0.10	0.15	0.05	0.08
100-TC-2	Coal Transfer Conveyor 1 to Coal Transfer Conveyor 2	6	1,000.00	912,500.00	1200	0.010			0.10	0.15	0.10	0.15	0.05	0.08
100-TH-2	Coal Transfer Conveyor 2 to Radial Stacker Hopper	6	1,000.00	912,500.00	1200	0.010			0.10	0.15	0.10	0.15	0.05	0.08
100-TC-3	Radial Stacker Hopper to Radial Stacker Transfer Conveyor	6	1,000.00	912,500.00	1200	0.010			0.10	0.15	0.10	0.15	0.05	0.08
100-CSP-1	Radial Stacker Transfer Conveyor to Storage Piles	6	1,000.00	912,500.00					0.79	0.36	0.37	0.17	0.06	0.03
100-TH-3	Front Loader to Coal Surge Hopper	6	104.17	912,500.00					0.08	0.36	0.04	0.17	<0.01	0.03
100-TC-4	Coal Surge Hopper to Coal Milling Transfer Conveyor 1	6	104.17	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TH-4	Coal Milling Transfer Conveyor 1 to Coal Milling Hopper	6	104.17	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TU-1	Coal Truck Unloading to Truck Dump Pile	6	1,000.00	912,500.00					0.79	0.36	0.37	0.17	0.06	0.03
Totals:									3.06	2.94	1.77	2.18	0.48	0.85

Notes:

1 - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - PM limit from any mechanical vent on coal processing or conveying equipment, coal storage system, or coal transfer and loading system affected facility per NSPS Subpart Y

 4 - For transfer points with mechanical vents, $\text{PM}_{2.5}$ is conservatively estimated to be 50% of PM_{10}

⁵ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})^{5}]$

If not equipped with mechanical vent

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate $(ton/yr) \times (1 \text{ ton } PM/2000 \text{ lb } PM)$

If equipped with mechanical vent

Emissions (lb/hr) = Mechanical Vent Exhaust Concentration (grain/scf) x Fan Flow Rate (scf/min) x (60 min/1 hr) x (1 lb/7000 grain)

Emissions (ton/yr) = Emissions (lb/hr) x (1 ton/2000 lb) x Annual Hours of Operation (8760 hr/yr)

Fugitive PM Emissions from Coal Stockpiles

Constant									
Constant	PM	PM-10	PM-2.5						
k	1.70	0.80	0.40						
where									
k		Particle size mu	tiplier 1						
f	20	Percentage of til	me the unobstru						
Р	157	Number of d	ays per year wit						

ucted wind speed is greater than 12 mph at the mean pile height ²

Number of days per year with precipitation >0.01 in. 3

Fugitive Emission Point ID Number	Storage Pile Description	⁴ Material Silt Content, s (%)	Stockpile Base Area (ft ²)	Stockpile Base Area (acres)	Control Device	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
100-CSP-1	Active Storage Pile	2.2	26,000	0.60	Wind Shield	50%	0.04	0.16	0.02	0.08	<0.01	0.04
100-CSP-2	Backup Storage Pile	2.2	88,000	2.02	Wind Shield	50%	0.12	0.54	0.06	0.26	0.03	0.13
100-CSP-3	Truck Dump Pile at Active Storage Pile	2.2	530	0.01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals:							0.16	0.71	0.08	0.33	0.04	0.17

Notes:

¹ - PM and PM₁₀ Particle Size Multiplier from WVDAQ Coal Preparation Plant G10-D Emission Calculation Spreadsheet. PM₂₅ was conservatively estimated to be 50% of PM₁₀ emissions.

² - f value WVDAQ Coal Preparation Plant 610-D Emission Calculation Spreadsheet.

³ - Number of days per year with precipitation >0.01 inches for Zone 1 - Western Plateau found in Table B - Precipitation Zones in West Virginia on Page 22 of the West Virginia G10-D Instructions and Forms document

⁴ - Mean silt content (%) for coal in Table 13.2.4-1 - Typical Silt and Moisture Contents of Materials at Various Industires in AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

⁵ - Equation for lb PM/day/acre from WVDAQ Coal Preparation Plant G10-D Emission Calculation Spreadsheet.

Example Calculations:

Emissions (lb PM/day/acre) - E = $[k \times (s/1.5) \times (365-P)/235 \times (f/15)]^{5}$

Emissions (lb/hr) = [E (lb PM/day/acre) x Stockpile Base Area (acres)]/ 24 (hr/day) Emissions (ton/yr) = [E (lb PM/day/acre) x Stockpile Base Area (acres) *365 days] / 2000 (lb/ton)

Coal Milling Dryer (100-CMD-1)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	0.08	0.35
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	0.03	0.12
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	1.23	5.39
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	1.47	6.42
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	0.03	0.12
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	0.08	0.37
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	0.11	0.49
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	13.45	918	8,760	<0.01	0.04
Total HAPs							0.03	0.12

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Coal Milling Dryer (100-CMD-1) in Unit 100 - Coal Handling.

- Heat value 918 Btu/scf is the heat value for pipeline quality natural gas that will be used at the DSF facility.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

PM Emissions from Milled Coal Handling

Constant											
Constant	PM	PM-10	PM-2.5								
k	0.74	0.35	0.05								
where											
k		Particle size multiplier ¹ Wind Speed (mph) ²									
U	7.0										

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M (%)	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf) ³	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr) ⁴	PM-2.5 Emissions (tons/yr) ⁴
100-BH-1	Coal Mill Baghouse	3	104.17	912,500.00	21500	0.010			1.84	8.07	1.84	8.07	0.92	4.04
100-TH-5	Coal Mill/Coal Mill Baghouse to Coal Milling Hopper 2	3	104.17	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TC-5	Coal Milling Hopper 2 to Coal Milling Transfer Conveyor 2	3	104.17	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-CS-1	Coal Milling Transfer Conveyor 2 to Coal Storage Silo 1	3	104.17	912,500.00	800	0.010			0.07	0.30	0.07	0.30	0.03	0.15
100-CS-2	Coal Milling Transfer Conveyor 2 to Coal Storage Silo 2	3	104.17	912,500.00	800	0.010			0.07	0.30	0.07	0.30	0.03	0.15
100-TH-6	Milled coal from Coal Storage Silo 1 to Coal Storage Silo Hopper 1	3	416.67	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TH-7	Milled coal from Coal Storage Silo 2 to Coal Storage Silo Hopper 2	3	416.67	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TC-6	Coal Storage Silo Hopper 1/2 to Coal Silo Transfer Conveyor 1	3	416.67	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
100-TC-7	Coal Silo Transfer Conveyor 1 to Coal Silo Transfer Conveyor 2	3	416.67	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
Totals:									2.60	11.38	2.60	11.38	1.30	5.69

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - PM limit from any mechanical vent on coal processing or conveying equipment, coal storage system, or coal transfer and loading system affected facility per NSPS Subpart Y

 4 - For transfer points with mechanical vents, PM_{2.5} is conservatively estimated to be 50% of PM₁₀

⁵ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})]^5$

If not equipped with mechanical vent

 $\begin{array}{l} {\sf Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr) \\ {\sf Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM) \\ \end{array}$

If equipped with mechanical vent

Emissions (lb/hr) = Mechanical Vent Exhaust Concentration (grain/scf) x Fan Flow Rate (scf/min) x (60 min/1 hr) x (1 lb/7000 grain) Emissions (ton/yr) = Emissions (lb/hr) x (1 ton/2000 lb) x Annual Hours of Operation (8760 hr/yr)

PM Emissions from Unit 200 Feed Coal Handling

Constant			
Constant	PM	PM-10	PM-2.5
k	0.74	0.35	0.05
where			
k		Particle size n	nultiplier ¹
U	7.0	Wind Speed (mph) ²

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M (%)	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf) ³	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr) ⁴	PM-2.5 Emissions (tons/yr) ⁴
200-S-108	Coal Silo Transfer Conveyor to Feed Coal Bin 200-D-110	3	416.67	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
200-S-105	Feed Coal Bin 200-D-110 to Feed Coal Conveyor 200-S-105	3	156.25	912,500.00	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
Totals:									0.21	0.90	0.21	0.90	0.10	0.45

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - PM limit from any mechanical vent on coal processing or conveying equipment, coal storage system, or coal transfer and loading system affected facility per NSPS Subpart Y

 4 - For transfer points with mechanical vents, PM_{2.5} is conservatively estimated to be 50% of PM₁₀

⁵ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})]^5$

If not equipped with mechanical vent

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

If equipped with mechanical vent

Emissions (lb/hr) = Mechanical Vent Exhaust Concentration (grain/scf) x Fan Flow Rate (scf/min) x (60 min/1 hr) x (1 lb/7000 grain)

Emissions (ton/yr) = Emissions (lb/hr) x (1 ton/2000 lb) x Annual Hours of Operation (8760 hr/yr)

Slurry Feed Heater (200-H-102)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Fuel Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0075	lb/MMBtu	Vendor Guarantee	74.02	712	8,760	0.56	2.43
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	0.19	0.82
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	<0.01	0.03
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	74.02	712	8,760	2.28	9.98
NO _x	0.040	lb/MMBtu	NSPS Subpart Ja	74.02	712	8,760	2.96	12.97
PM _{10/2.5}	0.006	lb/MMBtu	Vendor Guarantee	74.02	712	8,760	0.41	1.78
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	0.59	2.60
PM _{Total}				74.02	712	8,760	1.00	4.38
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	74.02	712	8,760	0.06	0.27
Total HAPs							0.20	0.86

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Slurry Feed Heater (200-H-102) in Unit 200 - H-Coal.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Hydrogen Heater (200-H-101)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Fuel Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0082	lb/MMBtu	Vendor Guarantee	15.34	712	8,760	0.13	0.55
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	0.04	0.17
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	15.34	712	8,760	0.47	2.07
NO _x	0.046	lb/MMBtu	Vendor Guarantee	15.34	712	8,760	0.71	3.10
PM _{10/2.5}	0.0055	lb/MMBtu	Vendor Guarantee	15.34	712	8,760	0.08	0.37
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	0.12	0.54
PM _{Total}				15.34	712	8,760	0.21	0.91
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	15.34	712	8,760	0.01	0.06
Total HAPs							0.04	0.18

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Hydrogen Heater (200-H-101) in Unit 200 - H-Coal.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

PM Emissions from Feed Catalyst Bins 200-D-204/205/206 Loading

Constant			
	РМ	PM-10	PM-2.5
k	0.74	0.35	0.05
where			
k		Particle size r	
U	7.0	Wind Speed	(mph) ²

ĺ		Catalyst Inf	ormation	
	Unit Catalyst Used Within	Catalyst Name	HAP Metals Composition (%)	HAP Metals in Catalyst
	Unit 200	Axens HF 858	4	CoO, NiO

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M ³ (%)	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf)	PM Emissions (Ib/hr)	PM Emissions (ton/yr)	HAP Metals (Ib/hr)	HAP Metals (ton/yr)	PM-10 Emissions (lb/hr)	PM-10 Emissions (ton/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (ton/yr)
200-D-206	Axens HF 858 to Feed Catalyst Bins 200-D-204/205/206	0.9	2.20	803.00	1200	0.010	0.10	0.45	<0.01	0.02	0.10	0.45	0.05	0.23
Totals:							0.10	0.45	<0.01	0.02	0.10	0.45	0.05	0.23

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - Moisture content of pellets used from AP-42 Chapter 13.2.4-1 Typical Silt and Moisture Contents of Materials at Various Industries - 11/2006 Version

 4 - For transfer points with mechanical vents, PM $_{2.5}$ is conservatively estimated to be 50% of PM $_{10}$

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})]^3$

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

HAP Metal Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr) x Percent Metal Composition (%)

HAP Metal Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/yr) x Percent Metal Composition (%)

PM Emissions from Spent Catalyst Drums (200-D-209) Loading

Constant			
	PM	PM-10	PM-2.5
k	0.74	0.35	0.05
where			
k		Particle size mu	Itiplier ¹
U	7.0	Particle size mu Wind Speed (m	ph) ²

Catalyst Information									
nit Catalyst Jsed Within	Catalyst Name	HAP Metals Composition (%)	HAP Metals in Catalyst						
Unit 200	Axens HF 858	2.5	CoO, NiO						

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M (%) ⁴	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	PM Emissions (lb/hr)	PM Emissions (ton/yr)	HAP Metals (Ib/hr)	HAP Metals (ton/yr)	PM-10 Emissions (Ib/hr)	PM-10 Emissions (ton/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (ton/yr)
200-D-206	Spent Catalyst Addition/Withdrawal Bin	38	3.52	1,284.80	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
200-D-207	Spent Catalyst Cooling Bin	38	3.52	1,284.80	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
200-D-208	Spent Catalyst Loading Hopper	38	3.52	1,284.80	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
200-D-209	Spent Catalyst Drum Loading	38	3.52	1,284.80	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals:					<0.01	<0.01	<0.01	<0.01	<0.001	<0.01	<0.01	<0.01

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

⁴ - Spent catalyst is generally saturated with hydrocarbon liquid. Moisture content is calculated from engineering estimates for similar operations.

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})]^3$

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr) Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

HAP Metals Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr) x Percent HAP Metals Composition (%)

HAP Metals Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/yr) x Percent HAP Metals Composition (%)

Vacuum Tower Feed Heater (200-H-301)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Fuel Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	24.79	712	8,760	0.21	0.90
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	0.06	0.27
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	<0.01	0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	24.79	712	8,760	0.76	3.34
NO _x	0.046	lb/MMBtu	Vendor Guarantee	24.79	712	8,760	1.15	5.02
PM _{10/2.5}	0.006	lb/MMBtu	Vendor Guarantee	24.79	712	8,760	0.14	0.60
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	0.20	0.87
PM _{Total}				24.79	712	8,760	0.34	1.47
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.79	712	8,760	0.02	0.09
Total HAPs							0.07	0.29

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Vacuum Tower Feed Heater (200-H-301) in Unit 200 - H-Coal.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (**Ib/hr**) = Emission Factor (**Ib/10⁶ scf**) ÷ Heating Value of Natural Gas (**Btu/scf**) × Boiler Rating (**MMBtu/hr**) Max. Hourly Emission Rate (**Ib/hr**) = Emission Factor (**Ib/MMBtu**) × Heater Rating (**MMBtu/hr**)

Hydrocracker Reaction Heater (310-H-101)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0082	lb/MMBtu	Vendor Guarantee	8.37	712	8,760	0.07	0.30
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	0.02	0.09
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	8.37	712	8,760	0.26	1.13
NO _x	0.046	lb/MMBtu	Vendor Guarantee	8.37	712	8,760	0.39	1.69
PM _{10/2.5}	0.005	lb/MMBtu	Vendor Guarantee	8.37	712	8,760	0.05	0.20
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	0.07	0.29
PM _{Total}				8.37	712	8,760	0.11	0.49
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	8.37	712	8,760	<0.01	0.03
Total HAPs							0.02	0.10

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Hydrocracker Reaction Heater (310-H-101) in Unit 310 - Hydrocracker.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/MMBtu) x Heater Rating (MMBtu/hr)

Fractionation Reboiler (310-H-103)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	10.78	712	8,760	0.09	0.39
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	0.03	0.12
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	10.78	712	8,760	0.33	1.45
NO _x	0.046	lb/MMBtu	Vendor Guarantee	10.78	712	8,760	0.50	2.18
PM _{10/2.5}	0.006	lb/MMBtu	Vendor Guarantee	10.78	712	8,760	0.06	0.26
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	0.09	0.38
PM _{Total}				10.78	712	8,760	0.15	0.64
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	10.78	712	8,760	<0.01	0.04
Total HAPs							0.03	0.12

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Fractionation Reboiler (310-H-103) in Unit 310 - Hydrocracker.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/MMBtu) x Heater Rating (MMBtu/hr)

Catalytic Reaction Heater 1 (320-H-201)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.10	0.43
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.03	0.13
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.37	1.61
NO _x	0.046	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.55	2.41
PM _{10/2.5}	0.0055	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.07	0.29
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.10	0.42
PM _{Total}				11.89	712	8,760	0.16	0.70
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.01	0.04
Total HAPs							0.03	0.14

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Catalytic Reaction Heater 1 (320-H-201) in Unit 320 - Catalytic Reformer.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Catalytic Reaction Heater 2 (320-H-202)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.10	0.43
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.03	0.13
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.37	1.61
NO _x	0.046	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.55	2.41
PM _{10/2.5}	0.0055	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.07	0.29
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.10	0.42
PM _{Total}				11.89	712	8,760	0.16	0.70
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.01	0.04
Total HAPs							0.03	0.14

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Catalytic Reaction Heater 2 (320-H-202) in Unit 320 - Catalytic Reformer.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Catalytic Reaction Heater 3 (320-H-203)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.10	0.43
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.03	0.13
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.37	1.61
NO _x	0.046	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.55	2.41
PM _{10/2.5}	0.0055	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.07	0.29
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.10	0.42
PM _{Total}				11.89	712	8,760	0.16	0.70
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.01	0.04
Total HAPs							0.03	0.14

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Catalytic Reaction Heater 3 (320-H-203) in Unit 320 - Catalytic Reformer.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Catalytic Reaction Heater 4 (320-H-204)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0083	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.10	0.43
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.03	0.13
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	<0.01	<0.01
со	0.031	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.37	1.61
NO _x	0.046	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.55	2.41
PM _{10/2.5}	0.0055	lb/MMBtu	Vendor Guarantee	11.89	712	8,760	0.07	0.29
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.10	0.42
PM _{Total}				11.89	712	8,760	0.16	0.70
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	11.89	712	8,760	0.01	0.04
Total HAPs							0.03	0.14

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Catalytic Reaction Heater 4 (320-H-204) in Unit 320 - Catalytic Reformer.

- Heat Value of Fuel Gas from Unit 410 - Gas Recovery Unit.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

SRU Incinerator (440-SRI-1)

Emissions from Input Streams to SRU Incinerator

Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to SRU Incinerator (Ibs/hr)	to SRU Incinerator (ton/yr)	SRU Incinerator Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Unit 440 Amine Treating Tail Gas Stream Components	Unit 440 Amine Treating Tail Gas Stream Mole Fraction	Unit 440 Amine Treating Tail Gas Stream Mass Fraction	Unit 430 Sour Water Storage Tank Gas Stream Components	Unit 430 Sour Water Storage Tank Gas Stream Mole Fraction	Water Storage Tank Gas Stream Mass Fraction
	VOCs	1.03	4.52	98%	0.02	0.09	COS	5.00E-05	1.10E-04	VOC	1.00	1.00
	HAPs	1.03	4.52	98%	0.02	0.09	H2S	8.00E-06	1.00E-05	Hexane	0.30	0.26
Unit 440 Amine Treating Tail	COS	1.03	4.52	98%	0.02	0.09	CO	5.00E-05	5.14E-05	Benzene	0.04	0.03
Gas	H ₂ S	0.09	0.41	98%	<0.01	<0.01	CO2	0.02	0.04	Toluene	0.18	0.17
	SO ₂			98%	5.64	24.71				Ethylbenzene	0.06	0.07
	CO	0.48	2.11	98%	<0.01	0.04				Xylene	0.30	0.33
	VOCs	0.04	0.17	98%	<0.01	<0.01						
	HAPs	0.03	0.14	98%	<0.01	<0.01						
1 [Hexane	0.01	0.04	98%	<0.01	<0.01		Vent Gas Properties				
Unit 430 Sour Water Storage	Benzene	<0.01	<0.01	98%	<0.01	<0.01	Vent Gas	Mass Flow Rate				
Tank	Toluene	<0.01	0.03	98%	<0.01	<0.01	Properties	(lb/hr)	Density (lb/ft ³)			
	Ethylbenzene	<0.01	0.01	98%	<0.01	<0.01	Troperties	(15/11)				
	Xylene	0.01	0.05	98%	<0.01	<0.01	Unit 440 Amine Treating Tail Gas	9351	0.07			
	VOCs	1.07	4.68	-	0.02	0.09	Sour Water Tank Flash Gas	0.04	0.27			
1 [HAPs	1.06	4.66		0.02	0.09				-		
	Hexane	0.01	0.04		<0.01	<0.01						
	Benzene	<0.01	<0.01		<0.01	<0.01						
Totals	Toluene	<0.01	0.03		<0.01	<0.01						
1	Ethylbenzene	<0.01	0.01		<0.01	<0.01	1					
1	Xylene	0.01	0.05		<0.01	<0.01	-					
	H ₂ S	0.09	0.41		<0.01	<0.01	1					
	SO ₂				5.64	24.71	1					
	CO	0.48	2.11		<0.01	0.04	1					

SRU Incinerator (440-SRI-1)

Emissions from	firing SRU Incinerato	r and Claus Furnace

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (Ib/MMBtu)	Heat Value of Fuel Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Combined SRU Incinerator and Claus Furnace Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (Ib/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50	-	712	30,000	15,000,000	<0.01	<0.01	0.12	0.51	0.12	0.51
Hexane	1.80		712	30,000	15,000,000	<0.01	<0.01	0.04	0.17	0.04	0.17
Formaldehyde	0.075		712	30,000	15,000,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CO		0.11	712	30,000	15,000,000					1.69	7.39
NO _x		0.28	712	30,000	15,000,000	-	-			4.22	18.48
PM _{Condensable}	5.70		712	30,000	15,000,000	< 0.01	<0.01	0.12	0.53	0.12	0.53
PM _{10/2.5}	1.90	-	712	30,000	15,000,000	<0.01	<0.01	0.04	0.18	0.04	0.18
PM _{Total}	7.60		712	30,000	15,000,000	<0.01	<0.01	0.16	0.70	0.16	0.70
Total HAPs										0.16	0.68

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	0.14	0.60
HAPs	0.06	0.27
Hexane	0.04	0.17
Formaldehyde	<0.01	<0.01
CO	1.70	7.43
NO _x	4.22	18.48
PM _{Condensable}	0.12	0.53
PM _{10/2.5}	0.04	0.18
PM _{Total}	0.16	0.70
H ₂ S	<0.01	<0.01
SO ₂	5.64	24.71

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- SO2 emissions from the SRU Incinerator are calcualated to comply with the 250 ppm, emission limitation for Sulfur Recovery Units per NSPS Subpart Ja. Density of SO₂ gas at normal pressure and temperature conditions (68°F and 14.7 psia) is 0.1703 lb/scf per Engineering Toolbox.

- CO and NO_x emission factors in lb/MMBtu from firing the SRU Incinerator and Claus Furnace are manufacturer guaranteed emission rates.

Example Calculations:

- Max Hourly SO₂ emissions from SRU Incinerator (Ib/hr) = [250 x 10⁴ (scf SO₂/scf Incinerator Gas) x Density SO₂ Gas (Ib SO₂/scf SO₂) x Incinerator Gas Flow Rate (Ib Incinerator Gas/hr)] + Incinerator Gas Density (Ib Incinerator Gas/scf Incinerator Gas)

- Max Hourly emissions from Input Streams to SRU Incinerator (Ib/hr) = Amount of Gas sent to SRU Incinerator (Ib/hr) x (100 - SRU Incinerator Combustion Efficiency (%)(100)

- Max Hourly Emissions from SRU Incinerator and Claus Furnace (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Rating (Btu/hr))/10⁶] + [(Emission factor (Ib/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Combined SRU Incinerator and Claus Furnace Heat Rating (MMBtu/hr)

- Max Yearly Emissions (ton/yr) = Max Hourly Emissions (lb/hr) x 8760 (hr/yr) ÷ 2000 (lb/ton)

Steam Boiler (500-SB-1) - Startup Operation

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.01	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.13	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.05	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	2.22	0.07
NO _x	32	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.85	0.03
PM _{10/2.5}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.05	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.15	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.5	24.3	918	60	0.20	<0.01
SO ₂	0.60	lb/10 ⁶ scf	AP-42 Chapter 1.4	24.3	918	60	0.02	<0.01
Total HAPs							0.05	<0.01

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the startup emissions from the Steam Boiler (500-SB-1) in Unit 500 - Utilities.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 60 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr) Max. Annual Emission Rate (tpy) = Max Hourly Emissions (lb/hr) × Annual Operating Hours (hr/yr) × (1 ton/2000 lb)

Steam Boiler (500-SB-1) - Normal Operation

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.01	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.03	0.12
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.01	0.05
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.58	2.51
NO _x	32	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.22	0.96
PM _{10/2.5}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.01	0.06
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	0.04	0.17
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.5	4.9	712	8,700	0.05	0.23
SO ₂	0.60	lb/10 ⁶ scf	AP-42 Chapter 1.4	4.9	712	8,700	<0.01	0.02
Total HAPs							0.01	0.06

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the normal operation emissions from the Steam Boiler (500-SB-1) in Unit 500 - Utilities.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8700 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) × Boiler Rating (MMBtu/hr) Max. Annual Emission Rate (tpy) = Max Hourly Emissions (lb/hr) × Annual Operating Hours (hr/yr) × (1 ton/2000 lb)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (gal/hr)	Heat Value of Diesel (MMBtu/gal)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOC	3.60E-01	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	1.54	0.08
Formaldehyde	1.18E-03	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
Benzene	9.33E-04	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
Toluene	4.09E-04	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
Ethylbenzene	0.00E+00	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
Xylene	2.85E-04	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
со	9.50E-01	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	4.06	0.20
NO _x	4.41E+00	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	18.85	0.94
PM _{Filterable}	2.20E-03	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
PM _{Condensable}	0.00E+00	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	<0.01	<0.01
PM _{Total}	3.10E-01	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	1.33	0.07
SO ₂	2.90E-01	lb/MMBtu	AP-42 Chapter 3.3	671	500	31.20	0.14	100.00	1.24	0.06
Total HAPs									0.01	<0.01

Emergency Generator (500-EG-1)

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one 500 kW Generac SD500 Diesel Emergency Generator. A specification sheet for the Generac SD500 Diesel Emergency Generator is attached with this application.

- AP-42, Chapter 3.3, Table 3.3-1 and 3.3-2 - Emission factors for uncontrolled gasoline and diesel industrial engines

- Heat Value of Diesel calculated via the average heating value of diesel and density of diesel in Footnote "a" in AP-42 Chapter 3.4, Table 3.4-1.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption (gal/hr) x Heat Value of Diesel (MMBtu/gal) Max. Annual Emission Rate (ton/yr) = Max. Hourly Emission Rate (lb/hr) x Annual Operating Hours (hr/yr) ÷ 2000 (lb/ton)

PM Emissions from Cooling Towers (500-CT-1)

Emission Point ID	Cooling Water Flow Rate ¹ (gpm)
CT-1	5,565

Emission Point ID	Emission Point Description	PM Emission Factor ² (lb/10 ³ gal)	Annual Operating Hours (hr/yr)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr) ³	PM-2.5 Emissions (tons/yr) ³
500-CT-1	Unit 520 Cooling Water Towers	0.019	8,760	6.34	27.79	6.34	27.79	3.17	13.89
Totals:				6.34	27.79	6.34	27.79	3.17	13.89

Notes:

1 - Cooling water flow rate requirement for the Domestic Synthetic Fuels I facility was determined to be 5,565 gpm.

² - PM Emission Factor for Cooling Towers from AP-42 Chapter 13.4, Table 13.4-1 Particulate Emissions Factors for Wet Cooling Towers.

³ - Assume PM Emission Factor is emitted as PM/PM10. PM2.5 is assumed to be 50% of PM/PM10.

Example Calculations:

Max Hourly PM Emissions (lb/hr) = [PM Emission Factor (lb/10³ gal) x Cooling Water Flow Rate (gal/min) x 60 (min/hr)] ÷ 1000 (gal/10³ gal) Max Annual PM Emissions (ton/yr) = Max Hourly PM Emissions (lb/hr) *8,760 (hr/yr) / 2,000 (lb/ton)

PM Emissions from Flaked Residue Product Handling

Constant			
Constant	PM	PM-10	PM-2.5
k	0.74	0.35	0.05
where			
k		Particle size m	nultiplier ¹
U	7.0	Wind Speed (mph) ²

Emission Point ID Number	Transfer Point Description	Material Moisture Content, M (%) ⁶	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf) ³	Control Device ID Number	Control Efficiency (%)	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr) ⁴	PM-2.5 Emissions (tons/yr) ⁴
610-TC-1	Slurry Residue to Flaker Transfer Conveyor	3	25.53	223,599					0.05	0.23	0.03	0.11	<0.01	0.02
610-SS-1	Flaker Tansfer Conveyor to Surge Flake Silo	3	25.53	223,599	800	0.010			0.07	0.30	0.07	0.30	0.03	0.15
610-TC-2	Surge Flake Silo to Pipe Conveyor 1	3	25.53	223,599	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
	Pipe Conveyor 1 to Stacker Conveyor 1	3	25.53	223,599										
	Pipe Conveyor 1 to Pipe Conveyor 2	3	25.53	223,599										
610-SD-1	Stacker Conveyor 1 to Dome 1 Storage Pile	3	25.53	223,599	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
	Dome 1 Storage Pile to Loading Hopper 1	3	536.03	223,599										
	Loading Hopper 1 to Flake Loading Conveyor	3	536.03	223,599										
	Pipe Conveyor 2 to Stacker Conveyor 2	3	25.53	223,599										
610-SD-2	Stacker Conveyor 2 to Dome 2 Storage Pile	3	25.53	223,599	1200	0.010			0.40	0.45	0.10	0.45	0.05	0.00
610-SD-2	Dome 2 Storage Pile to Loading Hopper 2	3	536.03	223,599	1200	0.010			0.10	0.45	0.10	0.45	0.05	0.23
	Loading Hopper 2 to Flake Loading Conveyor	3	536.03	223,599										
610-TC-7	Flake Loading Conveyor to Truck Loading Conveyor	3	536.03	223,599					1.11	0.23	0.53	0.11	0.08	0.02
610-TH-3	Truck Loading Conveyor to Truck Loading Hopper	3	536.03	223,599					1.11	0.23	0.53	0.11	0.08	0.02
610-TR-1	Truck Loading Hopper to Flake Hauling Truck	3	536.03	223,599					1.11	0.23	0.53	0.11	0.08	0.02
Totals:									3.77	2.58	1.98	2.09	0.43	0.89

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

3 - Mechanical vent exhaust concentration per Domestic Synthetic Fuels I operations.

 4 - For transfer points with mechanical vents, PM_{2.5} is conservatively estimated to be 50% of PM₁₀

⁵ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

⁶ - Moisture content conservatively assumed to be equivalent to input coal moisture content.

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})^5)$

If not equipped with mechanical vent

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

If equipped with mechanical vent

Emissions (lb/hr) = Mechanical Vent Exhaust Concentration (grain/scf) x Fan Flow Rate (scf/min) x (60 min/1 hr) x (1 lb/7000 grain)

Emissions (ton/yr) = Emissions (lb/hr) x (1 ton/2000 lb) x (8760 hr/1 yr)

PM Emissions from Sulfur Product Handling

Constant			
Constant	PM	PM-10	PM-2.5
k	0.74	0.35	0.05
where			
k		Particle size mul	tiplier 1
U	7.0	Wind Speed (mp	oh) ²

Material Maximum Maximum PM-2.5 PM-2.5 РМ РМ PM-10 PM-10 Emission Control Moisture Transfer Transfer Control Point ID **Transfer Point Description** Device ID Emissions Emissions Emissions Emissions Emissions Emissions Content, M³ Rate Rate Efficiency (%) Number Number (lbs/hr) (tons/yr) (lbs/hr) (tons/yr) (lbs/hr)4 (tons/yr)4 (ton/hr) (ton/yr) (%) Sulfur Product from Sulfur Pit to 610-TH-4 0.70 19,995 0.16 0.02 0.08 2.28 0.04 <0.01 0.01 Sulfur Storage Pile Hopper Sulfur Product from Sulfur Storage Pile Hopper to Sulfur 610-TC-8 0.70 19,995 0.04 0.08 0.01 2.28 0.16 0.02 < 0.01 Storage Pile Conveyor Sulfur Product from Sulfur 610-SP-3 Storage Pile Conveyor to Sulfur 0.70 2.28 19.995 0.04 0.16 0.02 0.08 < 0.01 0.01 Storage Pile Sulfur Product from Sulfur 610-TH-5 Storage Pile to Sulfur Loading 0.70 47.93 19,995 0.76 0.16 0.36 0.08 0.05 0.01 Hopper 1 Sulfur Product from Sulfur 610-TC-9 Loading Hopper 1 to Sulfur 0.70 47.93 19.995 0.76 0.16 0.36 0.08 0.05 0.01 Loading Conveyor Sulfur Product from Sulfur 610-TH-6 Loading Conveyor to Sulfur 0.70 47.93 19,995 0.76 0.16 0.36 0.08 0.05 0.01 Loading Hopper 2 Sulfur Product from Sulfur Loading Hopper to Sulfur Product 610-TR-2 0.70 47.93 19.995 0.76 0.16 0.36 0.08 0.05 0.01 Trucks Totals: 3.17 1.12 1.50 0.53 0.23 0.08

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

³ - Moisture content of crushed limestone used from AP-42 Chapter 13.2.4-1 Typical Silt and Moisture Contents of Materials at Various Industries - 11/2006 Version

⁴ - Equation 1 from AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

Example Calculations:

Emissions (lb PM/ton transferred) - E = $[k \times (0.0032 \times ((U/5)^{1.3}/(M/2)^{1.4})]^4$

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

Fugitive PM Emissions from Sulfur Stockpiles

Constant			
Constant	PM	PM-10	PM-2.5
k	1.70	0.80	0.40
where			

k	
f	20
Р	157

Particle size multiplier ¹ Percentage of time the unobstructed wind speed is greater than 12 mph at the mean pile height ² Number of days per year with precipitation >0.01 in. 3

Material Silt Stockpile Stockpile Control РМ PM PM-10 PM-10 PM-2.5 PM-2.5 Transfer Poin Control Storage Pile Description Content, s⁴ Base Area Base Area Device ID Emissions Emissions Emissions Emissions Emissions Emissions Number Efficiency (%) (%) (ft²) (acres) Number (lbs/hr) (tons/yr) (lbs/hr) (tons/yr) (lbs/hr) (tons/yr) 80.0 610-SP-3 Sulfur Storage Pile 511 0.01 0.05 0.23 0.02 0.11 0.01 0.05 Totals: 0.05 0.23 0.02 0.11 0.01 0.05

Notes:

1 - PM and PM₁₀ Particle Size Multiplier from WVDAQ Coal Preparation Plant G10-D Emission Calculation Spreadsheet. PM_{2.5} was conservatively estimated to be 50% of PM₁₀ emissions.

² - f value WVDAQ Coal Preparation Plant 610-D Emission Calculation Spreadsheet.

³ - Number of days per year with precipitation >0.01 inches for Zone 1 - Western Plateau found in Table B - Precipitation Zones in West Virginia on Page 22 of the West Virginia G10-D Instructions and Forms document

⁴ - Mean silt content (%) for fly ash in Table 13.2.4-1 - Typical Silt and Moisture Contents of Materials at Various Industires in AP-42 13.2.4 Aggregate Handling and Storage Piles - 11/2006 Version

⁵ - Equation for lb PM/day/acre from WVDAQ Coal Preparation Plant G10-D Emission Calculation Spreadsheet.

Example Calculations:

Emissions (lb PM/day/acre) - E = [k × (s/1.5) × (365-P)/235 × (f/15)] ⁵

Emissions (lb/hr) = [E (lb PM/day/acre) x Stockpile Base Area (acres)]/ 24 (hr/day)

Emissions (ton/yr) = [E (lb PM/day/acre) x Stockpile Base Area (acres) *365 days] / 2000 (lb/ton)

Emergency Flare (620-FL-1)

		Emissions from Emergenc	y Flaring Events				Gas Compositions from P	rocess Units sent to	Emergency Flare (6	20-FL-1)			
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Emergency Flare (lbs/hr)	Amount of Gas Sent to Emergency Flare (tons/year)	Emergency Flare Combustion Efficiency	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction - Unit 200 and Unit 310 Feed Streams	Weight Fraction - Unit 200 and 310 Feed Streams	Mole Fraction - Unit 320 Feed Stream	Weight Fraction - Unit 320 Feed Stream	Mole Fraction - Unit 420 Feed Stream	Weight Fraction - Unit 420 Feed Stream
	VOCs	6989.41	6.99	98%	139.79	0.14	Methane	0.063	0.210	0.007	0.002	0.082	0.077
	HAPs	1126.60	1.13	98%	22.53	0.02	Ethane	0.020	0.125	0.047	0.021	0.071	0.125
	Benzene	17.07	0.02	98%	0.34	<0.01	Propane	0.015	0.138	0.078	0.052	0.091	0.235
Unit 200 Depressurization	Toluene	256.05	0.26	98%	5.12	<0.01	Butane	0.008	0.097	0.051	0.045	0.080	0.272
Unit 200 Depressunzation	Ethylbenzene	426.74	0.43	98%	8.53	<0.01	Pentanes	0.003	0.045	0.811	0.881	0.003	0.013
	Xylene	426.74	0.43	98%	8.53	<0.01	Carbon Monoxide	0.002	0.012	0.000	0.000	0.000	0.000
	CO	291.58	0.29	98%	5.83	<0.01	Vent Co	s Properties					
	CH ₄	1575.00	1.58	98%	31.50	0.03	Vent Gas	s Properties					
	VOCs	22645.70	22.65	98%	452.91	0.45	Vent Gas Properties	Mass Flow Rate	Density (lb/ft ³)				
	HAPs	3650.19	3.65	98%	73.00	0.07	1	(lb/hr)					
	Benzene	55.31	0.06	98%	1.11	<0.01	Unit 200 Emergency Flare Feed	25000.00	0.014				
Unit 310 Depressurization	Toluene	829.59	0.83	98%	16.59	0.02	Unit 310 Emergency Flare Feed	81000.00	0.014				
	Ethylbenzene	1382.65	1.38	98%	27.65	0.03	Unit 320 Emergency Flare Feed	18000.00	0.265				
	Xylene	1382.65	1.38	98%	27.65	0.03	Unit 420 Emergency Flare Feed	15000.00	0.045				
	CO	944.70	0.94	98%	18.89	0.02							
	VOCs	17583.51	17.58	98%	351.67	0.35	1						
	HAPs	11880.00	11.88	98%	237.60	0.24							
Unit 320 Stabilizer Feed Loss	Benzene	180.00	0.18	98%	3.60	<0.01	1						
Unit 320 Stabilizer Feed Loss	Toluene	2700.00	2.70	98%	54.00	0.05							
	Ethylbenzene	4500.00	4.50	98%	90.00	0.09							
	Xylene	4500.00	4.50	98%	90.00	0.09	1						
	VOCs	7790.74	7.79	98%	155.81	0.16	J						
	HAPs	189.93	0.19	98%	3.80	<0.01							
	Benzene	2.88	<0.01	98%	0.06	<0.01							
Unit 420 Control Valve Failure	Toluene	43.16	0.04	98%	0.86	<0.01							
	Ethylbenzene	71.94	0.07	98%	1.44	<0.01							
	Xylene	71.94	0.07	98%	1.44	<0.01	4						
	H ₂ S	89.70	0.09	98%	1.79	<0.01	-						
	SO ₂			98%	165.15	0.17	4						
	VOCs	55009.36	55.01		1,100.19	1.10							
	HAPs	16846.72	16.85		336.93	0.34	4						
	Benzene	255.25	0.26		5.11	<0.01	4						
	Toluene	3828.80	3.83		76.58	0.08	4						
Totals	Ethylbenzene	6381.33	6.38		127.63	0.13	4						
	Xylene	6381.33	6.38		127.63	0.13	4						
	H ₂ S	89.70	0.09		1.79	<0.01	4						
	CO SO ₂	1236.28	1.24		24.73	0.02	4						
	5U ₂				165.15	0.17	1						

Emergency Flare (620-FL-1)

Emissions from firing Emergency Flare (620-FL-1)

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (Ib/MMBtu)	Heat Value of Fuel Gas (Btu/scf)	Emergency Flare Pilot Gas Rating (Btu/hr)	Emergency Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/yr)	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50		712	30,000	990,004,881	<0.01	<0.01			7.65	0.03
Hexane	1.80		712	30,000	990,004,881	<0.01	<0.01			2.50	0.01
Formaldehyde	0.075		712	30,000	990,004,881	<0.01	<0.01			0.10	< 0.01
CO	84	0.31	712	30,000	990,004,881	<0.01	<0.01	306.90	1.23	306.91	1.23
NOx	100	0.07	712	30,000	990,004,881	<0.01	<0.01	67.32	0.27	67.32	0.27
PM _{Condensable}	5.70		712	30,000	990,004,881	<0.01	<0.01	7.93	0.03	7.93	0.03
PM _{Filterable}	1.90		712	30,000	990,004,881	<0.01	<0.01	2.64	0.01	2.64	0.01
PM _{Total}	7.60		712	30,000	990,004,881	<0.01	<0.01	10.57	0.04	10.57	0.04
SO ₂	0.60		712	30,000	990,004,881	<0.01	<0.01	0.83	<0.01	0.83	<0.01
Total HAPs										10.25	0.04

Emergency Flare (620-FL-1)

Total Emergency Flare (620-FL-1) Emissions

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1,107.83	1.13
HAPs	339.54	0.35
Hexane	2.50	0.01
Formaldehyde	0.10	<0.01
CO	331.63	1.25
NOx	67.32	0.27
PM _{Condensable}	7.93	0.03
PM _{Filterable}	2.64	0.01
PM _{Total}	10.57	0.04
SO ₂	165.99	0.17

Notes:

- Emission Factors in Ib/10⁶ scf are from AP-42 Chapter 1.4, Table 1.4-2 Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion for combustion of facility fuel gas.

- Emission Factor for NO₄ in Ib/MMBtu is from AP-42 Chapter 13.5, Table 13.5-1 THC, NO₄₀ and Soot Emission for Flare Operations for Certain Chemical Manufacturing Processes (02/2018 Version)

- Emission Factor for CO in Ib/MMBtu is from AP-42 Chapter 13.5, Table 13.5-2 Emission Factors for Elevated Flare Operations for Certain Refinery and Chemical Manufacturing Processes (02/2018 Version)

- Max. Annual Emissions based upon Max. Hourly Emissions at a maximum of 8 hr/yr. Each unit sending streams to Emergency Flare (620-FL-1) is assumed to have a maximum of four (4), 30 minute emergency events per year.

Example Calculations:

- Max Hourly emissions from Input Streams to Emergency Flare (Ib/hr) = Amount of Gas sent to Emergency Flare (Ib/hr) x (100 - Emergency Flare Combustion Efficiency (%)/100)

- Max Hourly Emissions from Emergency Flare (lb/hr) = [(Emission factor (lb/h0⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Emergency Flare Rating (Btu/hr))/10⁶] + [(Emission factor (lb/h0⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Emergency Flare Rating (Btu/hr))/10⁶]

- Max Hourly Emissions from Emergency Flare (Ib/hr) = Emission Factor (Ib/MMBtu) x Emergency Flare Heat Rating (MMBtu/hr)

- Max Yearly Emissions (ton/yr) = Max Hourly Emissions (lb/hr) x 8760 (hr/yr) ÷ 2000 (lb/ton)

Liquid Product and Intermediate Storage Tanks

								Liquid	Product and Ir	ntermediate Sto	rage Tank Emis	ssions to the At	mosphere									
Emission Unit ID	Storage Tank		VOC			HAPs			n-Hexane			Benzene			Toluene			Ethylbenzene			Xylene	
Number	Description	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr
	Diesel Storage Tank 1 and 2	0.29	2561.54	1.28	0.02	141.66	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.46	0.01	0.00	24.46	0.01
630-TK-4 and 630- TK-5	Reformate Storage Tank 1 and 2	0.06	550.88	0.28	0.04	363.56	0.18	0.00	11.22	0.01	0.00	4.07	0.00	0.01	71.95	0.04	0.02	138.17	0.07	0.02	138.16	0.07
	HYK Heavy Feed Storage Tank	0.01	7.61	0.00	0.00	0.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.07	0.00
630-TK-13	HYK Light Feed Storage Tank	0.04	29.69	0.01	0.00	3.51	0.00	0.00	0.06	0.00	0.00	0.02	0.00	0.00	0.40	0.00	0.00	1.03	0.00	0.00	1.03	0.00
630-TK-14	Heavy Slop Oil Storage Tank	0.08	58.41	0.03	0.00	3.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56	0.00	0.00	0.56	0.00
	Light Slop Oil Storage Tank	0.04	29.43	0.01	0.00	3.48	0.00	0.00	0.06	0.00	0.00	0.02	0.00	0.00	0.40	0.00	0.00	1.02	0.00	0.00	1.02	0.00
Total:		0.53	3,237.56	1.62	0.07	515.86	0.26	<0.01	11.34	<0.01	<0.01	4.11	<0.01	<0.01	72.75	0.04	0.02	165.31	0.08	0.02	165.29	0.08

Liquid Product and Intermediate Storage Tank Emissions to Liquid Product Loadout Flare (640-FL-1)

Emission Unit ID	Storage Tank		VOC			HAPs			n-Hexane			Benzene			Toluene			Ethylbenzene			Xylene	
Number	Description	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr
630-TK-6 and 630- TK-7	Gasoline Storage Tank 1 and 2	2.88	25261.52	12.63	1.89	16579.50	8.29	0.06	513.65	0.26	0.01	115.46	0.06	0.38	3295.05	1.65	0.72	6327.97	3.16	0.72	6327.37	3.16
630-TK-2 and 630- TK-3	Light Naphtha Storage Tank 1 and 2	1.29	11324.16	5.66	1.13	9908.64	4.95	0.39	3397.25	1.70	0.05	452.97	0.23	0.23	1981.73	0.99	0.08	679.45	0.34	0.39	3397.25	1.70
630-TK-10 and 630-TK-11	Ethanol Storage Tank 1 and 2	0.06	543.76	0.27			-	-														
Total:		4.24	37,129.44	18.56	3.02	26,488.14	13.24	0.45	3,910.90	1.96	0.06	568.42	0.28	0.60	5,276.78	2.64	0.80	7,007.42	3.50	1.11	9,724.62	4.86

								Liquid Prod	uct and Interme	ediate Storage 1	Fank Emission	s to SRU Inciner	ator (440-SRI-1)									
Emission Unit ID	Storage Tank		VOC			HAPs			n-Hexane			Benzene			Toluene			Ethylbenzene			Xylene	
Number	Description	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr	lb/hr	lb/yr	ton/yr
430-TK-1	Sour Water Storage Tank	0.04	331.35	0.17	0.03	289.93	0.14	0.01	99.41	0.05	0.00	13.25	0.01	0.01	57.99	0.03	0.00	19.88	0.01	0.01	99.41	0.05
Total:		0.04	331.35	0.17	0.03	289.93	0.14	0.01	99.41	0.05	<0.01	13.25	<0.01	<0.01	57.99	0.03	<0.01	19.88	<0.01	0.01	99.41	0.05

Notes: - VOC Annual emission rates in Ib/yr calculated via EPA TANKs 4.09d simulations. Printouts of the EPA TANKs 4.09d simulations are attached with this application.

- HYK Heavy Feed Storage Tank (630-TK-12), HYK Light Feed Storage Tank (630-TK-13), Havy Stop Oil Storage Tank (630-TK-14), and Light Stop Oil Storage Tank (630-TK-15) are only in operation during a plant shutdown and are assumed to be in service for one (1) month or 720 hours per year. Maximum Hourly Emissions (lb/hr) for these storage tanks are calculated by tasking the annual emissions in b/y from the EPA TANKs 4.09d simulations and dividing by 720 hours.

Total HAPs and speciated HAPs annual emission rates calculated based upon weight fraction of the components in the liquid products and intermediates.

- Total here's and spectrate here's and/a emission rates calculated cases upon weight instant or the components in the injust products with the Global Companies, LLC Safety Data Sheet (SDS) for Unleaded Gasoline with Ethanol. The Global Companies, LLC SDS for unleaded gasoline is included as a part of this application. - Global here of the companies of the composition representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Unleaded Gasoline with Ethanol. The Global Companies, LLC SDS for unleaded gasoline is included as a part of this application. - Deservice Hard here are a composition representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Unleaded Gasoline with Ethanol. The Clobal Companies, LLC SDS for Unleaded gasoline is included as a part of this application. - Used Hard here are a compassion representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Voleaded Gasoline with Ethanol. The CloCO Perturbation Company SDS for diseafue (Law Safety). - Used Hard here are a compassion representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Voleaded Gasoline with Ethanol. The CloCO Perturbation Company SDS for diseafue (Law Safety). - Used Hard here are a compassion representative to the gasoline compositions within the Testor Relining Safety Data Sheet (SDS) for Voleaded Safety (SDS for naphtha is included as a part of this application.

Example Calculations: Max Hourly Emission Rate (lb/hr) = Max Annual Emission Rate per EPA TANKs 4.09d (lb/yr) x Weight Composition of Fluid (%) ÷ 8760 (hr/yr)

Max Annual Emission Rate (ton/yr) = Max Annual Emission Rate per EPA TANKs 4.09d (Ib/yr) x Weight Composition of Fluid (%) ÷ 2000 (Ib/ton)

Liquid Product and Intermediate Storage Tanks

					Weight Com	position (%)			
Component	Gasoline	Diesel	Light Naphtha	Heavy Naphtha	HYK Heavy Feed	HYK Light Feed	Heavy Slop Oil	Light Slop Oil	Sour Water (VOC Content)
VOC	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
HAP	65.63	5.53	87.50	66.00	5.53	11.82	5.53	11.82	87.50
n-Pentane			12.50						
Octane	34.37	0.00		34.00	0.00	3.54	0.00	3.54	12.50
n-dodecane	0.00	94.47		0.00	94.47	84.65	94.47	84.65	
n-Hexane	2.03	0.00	30.00	2.04	0.00	0.21	0.00	0.21	30.00
Benzene	0.46	0.00	4.00	0.74	0.00	0.08	0.00	0.08	4.00
Toluene	13.04	0.00	17.50	13.06	0.00	1.36	0.00	1.36	17.50
Ethylbenzene	25.05	0.95	6.00	25.08	0.95	3.46	0.95	3.46	6.00
Xylene	25.05	0.95	30.00	25.08	0.95	3.46	0.95	3.46	30.00
Naphthalene	0.00	1.15		0.00	1.15	1.03	1.15	1.03	
Cumene	0.00	1.08		0.00	1.08	0.97	1.08	0.97	
Biphenyl	0.00	1.39		0.00	1.39	1.24	1.39	1.24	

	Mol Composition (%)								
Component	Gasoline	Diesel	Light Naphtha	Heavy Naphtha	HYK Heavy Feed	HYK Light Feed	Heavy Slop Oil	Light Slop Oil	Molecular Weight
VOC	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
HAP	68.12	7.50	0.84	68.50	7.50	16.93	7.50	16.93	
n-Pentane			0.16						72.15
Octane	31.88		0.00	31.50		4.87		4.87	114.23
n-dodecane		92.50	0.00		92.50	78.20	92.50	78.20	170.34
n-Hexane	2.50		0.32	2.50		0.39		0.39	86.18
Benzene	0.62		0.05	1.00		0.15		0.15	78.11
Toluene	15.00		0.17	15.00		2.32		2.32	92.14
Ethylbenzene	25.00	1.50	0.05	25.00	1.50	5.13	1.50	5.13	106.17
Xylene	25.00	1.50	0.26	25.00	1.50	5.13	1.50	5.13	106.16
Naphthalene		1.50	0.00		1.50	1.27	1.50	1.27	128.17
Cumene		1.50	0.00		1.50	1.27	1.50	1.27	120.19
Biphenyl		1.50	0.00		1.50	1.27	1.50	1.27	154.21

Truck Loading Operations - Gasoline and Diesel

Emission Unit ID	Description	S, Saturation Factor ²	P, psi ³	MW (lb/lb-mol) ³	Temperature (°F)	Temperature (°R)	L (lb/Mgal) ¹	Throughput (Mgal/hr)	Throughput (Mgal/yr) ⁴
640-TR-1	Gasoline Truck Loading	0.6	8.1621	60	60	520	7.05	72	41,710
640-TR-2	Diesel Truck Loading	0.6	0.0065	130	60	520	0.01	108	22,000

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency ⁵	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr) ⁶	Post-Control Max. Yearly Emissions (tons/yr) ⁶	Max. Hourly Emissions Not Collected by Loading Rack (Ib/hr) ⁷	Max. Annual Emissions Not Collected by Loading Rack (tons/vr) ⁷
VOCs	507.26	146.93	0.992	0.98	10.06	2.92	4.06	1.18
HAPs	175.61	50.87	0.992	0.98	3.48	1.01	1.40	0.41
Benzene	3.14	0.91	0.992	0.98	0.06	0.02	0.03	<0.01
Toluene	76.09	22.04	0.992	0.98	1.51	0.44	0.61	0.18
Ethylbenzene	20.29	5.88	0.992	0.98	0.40	0.12	0.16	0.05
Xylene	76.09	22.04	0.992	0.98	1.51	0.44	0.61	0.18

Emissions from Gasoline Truck Loading Operations

Component	Gasoline Composition (Volume %) ⁸	Diesel Composition (Volume %) ⁹
HAPs	34.62	7.50
Benzene	0.62	
Toluene	15.00	
Ethylbenzene	4.00	1.50
Xylene	15.00	1.50
Naphthalene		1.50
Cumene		1.50
Biphenyl		1.50

Emissions from Diesel Truck Loading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1.31	0.13
HAPs	0.10	0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	0.02	<0.01
Xylene	0.02	<0.01

Notes:

1 - Loading loss emission factor in Ib/Mgal calculated in accordance with Equation 1 in AP-42 Chapter 5.2 - Transportation and Marketing of Petroleum Liquids.

² - Saturation factor of 0.6 used in the loading loss emission factor equation for submerged loading of dedicated normal service tank trucks from AP-42 Table 5.2-1.

³ - Gasoline (RVP 15) and diesel (Distillate No. 2) true vapor pressure (psia) and molecular weight (lb/lb-mol) at 60°F from AP-42 Table 7.1-2 Properties of Selected Petroleum Liquids.

4 - Gasoline and diesel fluid throughput for the tank truck loading rack is the maximum amount of product that will be trucked from the facility per year according to Domestic Synthetic Fuels I operations.

⁵ - Minimum loading rack collection efficiency in accordance with NESHAP Subpart BBBBBB.

⁶ - Gasoline vapors from truck loading operations are vapor-balanced to the liquid product storage tanks and are realized at the Storage Tank and Loadout Flare.

⁷ - Max hourly and annual emissions that are not collected by the loading rack and are emitted to atmosphere.

Has A ready and and and a construction of the observed of the second of the observed of the ob

9 - Diesel fuel product from the Domestic Synthetic Fuels I facility will have a composition representative to the gasoline compositions within the CITGO Petroluem Corpoartion Safety Data Sheet (SDS) for No.2 Diesel Fuel, Low Sulfur. The CITGO Petroluem Company SDS for diesel fuel is included as a part of this application.

Truck Loading Operations - LPG Product (640-TR-3)

Pipe Length (ft)	Loading Pipe Diameter (in)	Volume of Hose Connection (cm ³)
1.25	3	1737.50

Specific Gravity of	Amount Gas Vented Per
LPG	Loading Event (Ib/event)
0.53	2.04

Maximum Number of Events per Year (events/yr)	Maximum Number of Events per Hour (events/hr)	Total Amount of Gas Vented per Year (lb/yr)	
3731	2	7604.59	
Total VOC Weight	Maximum Amount of VOC Vented per Hour	Tons of Gas Vented per Year	Tons of VOC Vented per Year
Fraction	(lb/hr)	(ton/yr)	(ton/yr)
1.0000	4.08	3.80	3.80

Notes:

- This calculation assumes that a 5 ft long section of 3-inch inner diameter hose is between the LPG Loading Rack disconnection valves after the loading of each LPG truck.

- This calculation assumes that all the LPG volume in the LPG Loading Hose between the disconnection valves is volatilized and released to the atmosphere after each loading event.

- Number of events per year is based off the number of 6,000 gallon LPG tank trucks needed to be loaded annually for a facility LPG production rate of 1,460.2 bbl/day.

- The Domestic Synthetic Fuels I facility will require 11 LPG tank trucks to be loaded per day. Assuming an 8 hour shift at the product loading racks, this would require a maximum of 2 tanker truck loading events per hour.

Example Calculations

Volume of Hose Connection (cm³)= [(PI*(Loading Pipe Diameter (in)*2.54 (cm/in))^2)/4)*(Pipe Length (ft) * 12 (in/ft) * 2.54 (cm/in))]

Specific Gravity of LPG = (Mole Fraction of Propane x 0.495 + Mole Fraction of Butane x 0.601)

Amount of Gas Vented Per Loading Event (lb/event) = Volume of Hose Connection (cm³) x Specific Gravity of LPG x Density of Water(g/cm³) x 0.002205 (lb/g) Total Gas Amount of Gas Vented per Year (lb/yr) = Number of Events per Year (events/yr) x Amount of Gas Vented Per Event (lb/event) Maximum Amount of VOC Vented per Hour (lb/hr) = Amount of Gas Vented per Event (lb/event) x Maximum Number of Events per Hour (event/hr) Tons of VOC Vented per Year (ton/yr) = Tons of Gas Vented per Year (ton/yr) x Total VOC Weight Fraction

LPG Product Information								
	Weight Fraction of Mole Fraction of L							
Component	Molecular Weight	LPG (%)	(%)					
Propane	44.10	0.55	0.61					
Butane	58.12	0.45	0.38					
Pentane	72.15	0.002	0.00					

Railcar Loading Operations

Emission Unit ID	Description	S, Saturation Factor ²	P, psi ³	MW (lb/lb-mol) ³	Temperature (°F)	Temperature (°R)	L (Ib/Mgal) ¹	Throughput (Mgal/hr) ⁴	Throughput (Mgal/yr) ⁴
640-RR-1	Gasoline Rail Car Loading	0.6	8.1621	60	60	520	7.05	30.11	5,214
640-RR-2	Diesel Rail Car Loading	0.6	0.0065	130	60	520	0.01	30.11	10,043

Emissions from Gasoline Railcar Loading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency ⁵	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr) ⁶	Post-Control Max. Yearly Emissions (tons/yr) ⁶	Max. Hourly Emissions Not Collected by Loading Rack (lb/hr) ⁷	Max. Annual Emissions Not Collected by Loading Rack (tons/vr) ⁷
VOCs	212.13	18.37	0.992	0.98	4.21	0.36	1.70	0.15
HAPs	73.44	6.36	0.992	0.98	1.46	0.13	0.59	0.05
Benzene	1.32	0.11	0.992	0.98	0.03	<0.01	0.01	<0.01
Toluene	31.82	2.75	0.992	0.98	0.63	0.05	0.25	0.02
Ethylbenzene	8.49	0.73	0.992	0.98	0.17	0.01	0.07	<0.01
Xylene	31.82	2.75	0.992	0.98	0.63	0.05	0.25	0.02

Component	Gasoline Composition (Volume %) ⁸	Diesel Composition (Volume %) ⁹
HAPs	34.62	7.50
Benzene	0.62	
Toluene	15.00	
Ethylbenzene	4.00	1.50
Xylene	15.00	1.50
Naphthalene		1.50
Cumene		1.50
Biphenyl		1.50

Emissions from Diesel Railcar Loading Operations

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	0.37	0.06
HAPs	0.03	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01

Notes:

1 - Loading loss emission factor in Ib/Mgal calculated in accordance with Equation 1 in AP-42 Chapter 5.2 - Transportation and Marketing of Petroleum Liquids.

² - Saturation factor of 0.6 used in the loading loss emission factor equation for submerged loading of dedicated normal service railcars from AP-42 Table 5.2-1.
³ - Gasoline (RVP 15) and desel fluid throughput for the railcair loading rail and molecular weight (Ib/b-mol) at 60°F from AP-42 Table 5.1-2. Properties of Selected Petroleum Liquids.
4 - Gasoline and desel fluid throughput for the railcair loading rack is the maximum amount of product that will be transported via rail from the facility according to Domestic Synthetic Fuels 1 operations.

5 - Minimum loading rack collection efficiency in accordance with NESHAP Subpart BBBBBB.

⁶ - Gasoline vapors from railcar loading operations are vapor-balanced to the liquid product storage tanks and are realized at the Storage Tank and Loadout Flare.

⁷ - Max hourly and annual emissions that are not collected by the railcar loading rack and are emitted to atmosphere.

8 - Gasoline product from the Domestic Synthetic Fuels I facility will have a composition representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Unleaded Gasoline with Ethanol. The Global Companies, LLC SDS for unleaded gasoline is included as a part of this application. 9 - Diesel fuel product from the Domestic Synthetic Fuels I facility will have a composition representative to the gasoline compositions within the CITGO Petroluem Corpoantion Safety Data Sheet (SDS) for No. 2 Diesel Fuel, Low Sulfur. The CITGO Petroluem Company SDS for diesel fuel is included as a part of this application.

Barge Loading Operations

Emission Unit ID	Description	S, Saturation Factor ²	P, psi ³	MW (lb/lb-mol) ³	Temperature (°F)	Temperature (°R)	L (lb/Mgal) ¹	Throughput (Mgal/hr)	Throughput (Mgal/yr) ⁴
640-BR-1	Gasoline Barge Loading	0.5	8.1621	60	60	520	5.87	108	5,214
640-BR-2	Diesel Barge Loading	0.5	0.0065	130	60	520	0.01	108	68,384

Pollutant	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency ⁵	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (lb/hr) ⁶	Post-Control Max. Yearly Emissions (tons/yr) ⁶	Max. Hourly Emissions Not Collected by Loading Rack (Ib/hr) ⁷	Max. Annual Emissions Not Collected by Loading Rack (tons/vr) ⁷
VOCs	634.07	15.30	0.992	0.98	12.58	0.30	5.07	0.12
HAPs	219.52	5.30	0.992	0.98	4.36	0.11	1.76	0.04
Benzene	3.93	0.09	0.992	0.98	0.08	<0.01	0.03	<0.01
Toluene	95.11	2.30	0.992	0.98	1.89	0.05	0.76	0.02
Ethylbenzene	25.36	0.61	0.992	0.98	0.50	0.01	0.20	<0.01
Xylene	95.11	2.30	0.992	0.98	1.89	0.05	0.76	0.02

Emissions from Gasoline Barge Loading Operations

Component	Gasoline Composition (Volume %) ⁸	Diesel Composition (Volume %) ⁹
HAPs	34.62	7.50
Benzene	0.62	
Toluene	15.00	
Ethylbenzene	4.00	1.50
Xylene	15.00	1.50
Naphthalene		1.50
Cumene		1.50
Biphenyl		1.50

Emissions from Diesel Barge Loading Operations

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	1.09	0.35
HAPs	0.08	0.03
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	0.02	<0.01
Xylene	0.02	<0.01

Notes:

1 - Loading loss emission factor in Ib/Mgal calculated in accordance with Equation 1 in AP-42 Chapter 5.2 - Transportation and Marketing of Petroleum Liquids.

² - Saturation factor of 0.5 used in the loading loss emission factor equation for submerged loading of barges from AP-42 Table 5.2-1.

³ - Gasoline (RVP 15) and diesel (Distillate No. 2) true vapor pressure (psia) and molecular weight (lb/lb-mol) at 60°F from AP-42 Table 7.1-2 Properties of Selected Petroleum Liquids.

4 - Gasoline and diesel fluid throughput for the barge loading rack is the maximum amount of product that will be transported via barge from the facility according to Domestic Synthetic Fuels I operations.

⁵ - Minimum loading rack collection efficiency in accordance with NESHAP Subpart BBBBBB.

⁶ - Gasoline vapors from railcar loading operations are vapor-balanced to the liquid product storage tanks and are realized at the Storage Tank and Loadout Flare.

⁷ - Max hourly and annual emissions that are not collected by the barge loading rack and are emitted to atmosphere.
 8 - Gasoline product from the Domestic Synthetic Fuels I facility will have a composition representative to the gasoline compositions within the Global Companies, LLC Safety Data Sheet (SDS) for Unleaded Gasoline with Ethanol. The Global Companies, LLC SDS for unleaded gasoline is included as a part of this application.

9 - Diesel fuel product from the Domestic Synthetic Fuels I facility will have a composition representative to the gasoline compositions within the CITGO Petroluem Corpoartion Safety Data Sheet (SDS) for No.2 Diesel Fuel, Low Sulfur. The CITGO Petroluem Company SDS for diesel fuel is included as a part of this application.

Liquid Product Loadout Flare (640-FL-1)

	Emissi	ons from Liquid Product Lo	adout Flare (640-FL-1)			
Input to Enclosed Combustion Device	Pollutant	Amount of Vapor Sent to Liquid Product Loadout Flare (Ib/hr)	Amount of Vapor Sent to Liquid Product Loadout Flare (ton/yr)	Liquid Product Loadout Flare Combustion Efficiency	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
	VOCs	503.20	145.75	98%	10.06	2.92
	HAPs	174.21	50.46	98%	3.48	1.01
Truck Loading Rack	Benzene	3.12	0.90	98%	0.06	0.02
Truck Edauling Rack	Toluene	75.48	21.86	98%	1.51	0.44
	Ethylbenzene	20.13	5.83	98%	0.40	0.12
	Xylene	75.48	21.86	98%	1.51	0.44
	VOCs	210.43	18.22	98%	4.21	0.36
	HAPs	72.85	6.31	98%	1.46	0.13
Railcar Loading Rack	Benzene	1.30	0.11	98%	0.03	<0.01
Railcal Edauling Rack	Toluene	31.57	2.73	98%	0.63	0.05
	Ethylbenzene	8.42	0.73	98%	0.17	0.01
	Xylene	31.57	2.73	98%	0.63	0.05
	VOCs	629.00	15.18	98%	12.58	0.30
	HAPs	217.76	5.26	98%	4.36	0.11
Barge Loading Rack	Benzene	3.90	0.09	98%	0.08	<0.01
Barge Loading Rack	Toluene	94.35	2.28	98%	1.89	0.05
	Ethylbenzene	25.16	0.61	98%	0.50	0.01
	Xylene	94.35	2.28	98%	1.89	0.05
	VOCs	2.88	12.63	98%	0.06	0.25
	HAPs	1.89	8.29	98%	0.04	0.17
	n-Hexane	0.06	0.26	98%	<0.01	<0.01
Gasoline Storage Tanks	Benzene	0.01	0.06	98%	<0.01	<0.01
	Toluene	0.38	1.65	98%	<0.01	0.03
	Ethylbenzene	0.72	3.16	98%	0.01	0.06
	Xylene	0.72	3.16	98%	0.01	0.06
	VOCs	1.29	5.66	98%	0.03	0.11
	HAPs	1.13	4.95	98%	0.02	0.10
	n-Hexane	0.39	1.70	98%	<0.01	0.03
Light Naphtha Storage Tanks	Benzene	0.05	0.23	98%	<0.01	<0.01
	Toluene	0.23	0.99	98%	<0.01	0.02
	Ethylbenzene	0.08	0.34	98%	<0.01	<0.01
	Xylene	0.39	1.70	98%	<0.01	0.03
Ethanol Storage Tanks	VOCs	0.06	0.27	98%	<0.01	<0.01
	VOCs	1345.58	192.06		26.91	3.84
	HAPs	466.71	70.31		9.33	1.41
	n-Hexane	0.06	0.26		<0.01	<0.01
Totals	Benzene	8.34	1.17		0.17	0.02
	Toluene	201.77	28.52		4.04	0.57
	Ethylbenzene	54.43	10.33		1.09	0.21
	Xylene	202.12	30.04		4.04	0.60

Liquid Product Loadout Flare (640-FL-1)

Emissions from firing Liquid Product Loadout Flare (640-FL-1)

Pollutant	Emission Factor (Ib/10 ⁶ scf)	Emission Factors (Ib/MMBtu)	Max Hourly Relieving Rate (MMBtu/hr)	Max Annual Relieving Rate (MMBtu/yr)	Max Hourly Flow Rate to Flare (scf/hr)	Max Annual Flow Rate to Flare (scf/yr)	Heat Value of Fuel Gas (Btu/scf)	Loadout Flare Pilot Gas Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (Ib/hr)	Burner Max.Hourly Emissions (tons/yr)	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
Hexane	1.80		28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	<0.01		<0.01	<0.01
Formaldehyde	0.075		28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	<0.01		<0.01	<0.01
CO	84	0.31	28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	8.56	1.17	8.56	1.17
NO _x	100	0.07	28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	1.88	0.26	1.88	0.26
PM _{Condensable}	5.70		28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	0.03	<0.01	0.03	< 0.01
PM _{Filterable}	1.90	-	28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PM _{Total}	7.60		28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	0.04	<0.01	0.04	< 0.01
SO ₂	0.60		28	7,546	4,988	1,460,080	712	30,000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total HAPs													<0.01	<0.01

Total Liquid Product Loadout Flare (640-FL-1) Emissions

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	26.91	3.84
HAPs	9.34	1.41
Hexane	0.01	<0.01
Formaldehyde	<0.01	<0.01
CO	8.56	1.17
NO _x	1.88	0.26
PM _{Condensable}	0.03	<0.01
PM _{Filterable}	<0.01	<0.01
PM _{Total}	0.04	<0.01
SO ₂	<0.01	<0.01

Notes:

- Emission Factors in Ib/10⁶ scf are from AP-42 Chapter 1.4, Table 1.4-2 Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion for combustion of facility fuel gas.

- Emission Factor for NO_x in Ib/MMBtu is from AP-42 Chapter 13.5, Table 13.5-1 THC, NO_x, and Soot Emission for Flare Operations for Certain Chemical Manufacturing Processes (02/2018 Version)

- Emission Factor for CO in Ib/MMBtu is from AP-42 Chapter 13.5, Table 13.5-2 Emission Factors for Elevated Flare Operations for Certain Refinery and Chemical Manufacturing Processes (02/2018 Version)

Example Calculations:

- Max Hourly emissions from Input Streams to Liquid Product Loadout Flare (Ib/hr) = Amount of Gas sent to Liquid Product Loadout Flare (Ib/hr) x (100 - Liquid Product Loadout Flare (Ib/hr) = Amount of Gas sent to Liq

- Max Hourly Emissions from Liquid Product Loadout Flare (lb/hr) = [(Emission factor (lb/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Pilot Gas Rating (Btu/hr))/10⁶] + [(Emission factor (lb/10⁶ scf) + Heat Value of Fuel Gas Gas (Btu/scf) x Diate (Btu/hr))/10⁶]

- Max Hourly Emissions from Liquid Product Loadout Flare (lb/hr) = Emission Factor (lb/MBtu) x Liquid Product Loadout Flare Heat Rating (MMBtu/hr)

- Max Yearly Emissions from Input Streams to Liquid Product Loadout Flare (ton/yr) = Amount of Gas sent to Liquid Product Loadout Flare (ton/yr) x (100 - Liquid Product Loadout Flare (ton/yr) + Amount of Gas sent to Liquid Product Loadout Flare (ton/yr) = Amount of Gas sent to Liquid Product Loadout Flare (to

Hydrogen Reformer (700-HR-1) - Normal Operation

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0060	lb/MMBtu	Vendor Guarantee	537	918	8,700	3.23	14.04
Hexane	1.40	lb/10 ⁶ scf	Engineering Estimate	537	918	8,700	0.82	3.56
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	0.04	0.19
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	<0.01	<0.01
со	0.012	lb/MMBtu	Vendor Guarantee	537	918	8,700	6.60	28.70
NO _x	0.008	lb/MMBtu	Vendor Guarantee	537	918	8,700	4.13	17.95
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	1.11	4.83
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	3.33	14.50
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	4.45	19.34
SO ₂	6.00E-01	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	8,700	0.35	1.53
Total HAPs							0.87	3.77

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Hydrogen Reformer (700-HR-1) in Unit 700 - Hydrogen Plant.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Hexane emission factor is an engineering estimate based on the ratio of n-Hexane in the VOC AP-42 Chapter 1.4 emission factor

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Max. Annual Emission Rate (tpy) = Max Hourly Emissions (lb/hr) x Annual Operating Hours (hr/yr) x (1 ton/2000 lb)

Hydrogen Reformer (700-HR-1) - Startup

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Heater Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions (Ib/hr)	Max. Annual Emissions (tpy)
VOCs	0.0060	lb/MMBtu	Vendor Guarantee	537	918	60	3.23	0.10
Hexane	1.40	lb/10 ⁶ scf	Engineering Estimate	537	918	60	0.82	0.02
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	0.04	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	<0.01	<0.01
СО	0.012	lb/MMBtu	Vendor Guarantee	537	918	60	6.60	0.20
NO _x	0.064	lb/MMBtu	Vendor Guarantee	537	918	60	34.37	1.03
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	1.11	0.03
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	3.33	0.10
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	4.45	0.13
SO ₂	6.00E-01	lb/10 ⁶ scf	AP-42 Chapter 1.4	537	918	60	0.35	0.01
Total HAPs							0.87	0.03

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for the Hydrogen Reformer (700-HR-1) in Unit 700 - Hydrogen Plant.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

- Hexane emission factor is an engineering estimate based on the ratio of n-Hexane in the VOC AP-42 Chapter 1.4 emission factor

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Heater Rating (MMBtu/hr)

Max. Annual Emission Rate (tpy) = Max Hourly Emissions (lb/hr) x Annual Operating Hours (hr/yr) x (1 ton/2000 lb)

Fugitive Emissions from Paved Haul Roads

Constant					
Constant	PM	PM-10	PM-2.5		
k (lb/VMT)	0.011	0.0022	0.00054		
where					
k		Particle size mu	ultiplier ¹		
sL _{Liquids}	0.6	Road surface s	ilt loading (g/m ²		
sL _{Solids}	8.2	Road surface silt loading (g/m ²)			

0.2	(g/m)
157	Number of days per year with precipitation >0.01 in. 4

Haul Road Fugitive Emissions ID	Description	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%) ⁷	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
HR-1	Loaded Coal Delivery Trucks	43.0	0.13	6	15,330		75%	0.66	0.77	0.13	0.15	0.03	0.04
HR-2	Unloaded Coal Delivery Trucks	13.0	0.13	6	15,330		75%	0.19	0.23	0.04	0.05	<0.01	0.01
HR-3	Loaded Flaked Residue Trucks	40.0	0.55	10	8,282		75%	4.32	1.63	0.86	0.33	0.21	0.09
HR-4	Unloaded Flaked Residue Trucks	13.0	0.75	10	8,282		75%	1.87	0.71	0.37	0.14	0.09	0.04
HR-5	Loaded Sulfur Product Trucks	40.0	0.55	2	741		75%	0.86	0.15	0.17	0.03	0.04	<0.01
HR-6	Unloaded Sulfur Product Trucks	13.0	0.75	2	741		75%	0.37	0.06	0.07	0.01	0.02	<0.01
HR-7	Loaded Diesel Tanker Trucks	45.65	0.20	12	2,445		75%	0.20	0.02	0.04	<0.01	<0.01	<0.01
HR-8	Unloaded Diesel Tanker Trucks	13.0	1.10	12	2,445		75%	0.31	0.03	0.06	<0.01	0.01	<0.01
HR-9	Loaded Gasoline Tanker Trucks	42.1	0.22	8	5,840		75%	0.13	0.04	0.03	<0.01	<0.01	<0.01
HR-10	Unloaded Gasoline Tanker Trucks	13.0	1.08	8	5,840		75%	0.20	0.07	0.04	0.01	<0.01	<0.01
HR-11	Loaded LPG Tanker Trucks	20.1	0.40	2	3,731		75%	0.03	0.02	<0.01	<0.01	<0.01	<0.01
HR-12	Unloaded LPG Tanker Trucks	6.5	0.90	2	3,731		75%	0.02	0.02	<0.01	<0.01	<0.01	<0.01
HR-13	Loaded Ammonia Trucks	36.2	0.55	1	730		75%	0.04	0.01	<0.01	<0.01	<0.01	<0.01
HR-14	Unloaded Ammonia Trucks	13.0	0.75	1	730		75%	0.02	<0.01	<0.01	<0.01	<0.01	<0.01
HR-15	Loaded Ethanol Tank Trucks	42.6	0.40	2	869		75%	0.06	0.01	0.01	<0.01	<0.01	<0.01
HR-16	Unloaded Ethanol Tank Trucks	13.0	0.90	2	869		75%	0.04	<0.01	<0.01	<0.01	<0.01	<0.01
Totals:								9.24	3.77	1.85	0.75	0.45	0.20

Notes:

Ρ

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.1 Table 13.2.1-1 Particle Size Multipliers for Paved Road Equation - 01/2011 Version

² - Finished liquid product road surface silt loading based on AP-42 Table 13.2.1-2 Ubiquitous Silt Loading Default Values with Hot Spot Contributions from Anti-Skid Abrasives, ADT Category <500 - 01/2011 Version

³ - Raw materials and solid product road surface silt loading based on AP-42 Table 13.2.1-3 Typical Silt Content and Loading Values for Paved Roads at Industrial Facilities, Quarry Industry - 01/2011 Version

⁴ - Number of days per year with precipitation >0.01 inches for Zone 1 - Western Plateau found in Table B - Precipitation Zones in West Virginia on Page 22 of the West Virginia G10-D Instructions and Forms document

⁵ - Hourly Emissions equation from Equation 3 in AP-42 13.2.1 Paved Roads - 01/2011 Version. For an annual averaging period, N is equal to 8760 for the emission calcuations in this permit application.

⁶ - Daily Emissions equation from Equation 2 in AP-42 13.2.1 Paved Roads - 01/2011 Version. For an annual averaging period, N is equal to 365 for the emission calcuations in this permit application.

7 - Control Efficiency of 75% is taken for the use of a street sweeper to control haul road PM emissions at the Domestic Synthetic Fuels I facility.

Example Calculations:

Hourly Emissions (lb/Vehicle Mile Traveled - VMT), $E_{hr} = [k \times (sL)^{0.91} x(W)^{1.02}] x [1 - (1.2P/N)]^5$

Hourly Emissions (lb/hr) = E_{hr} (lb/VMT) x Maximum Trips per Hour (Trip/hr) x Distance of Trip (VMT/Trip)

Daily Emissions (lb/VMT), $E_{day} = [k \times (sL)^{0.91} x(W)^{1.02}] x [1 - (P/4N)]^{6}$

Annual Emissions (ton/yr) = E_{day} (lb/VMT) x Maximum Trips per Year (Trip/yr) x Distance of Trip (VMT/Trip)

Domestic Synthetic Fuels I Facility Fugitive Leaks

			Median Equipmen	nt Leak Comp	onent Counts f	or Small Re	fineries					
Process Linit		Valves			Connectors		Compress	Sampling	Open-ended Lines	Pressure Relief Valves	Pu	
FIGURES OIL	Gas	Light Liquid	Heavy Liquid	Gas	Light Liquid	Heavy Liquid	or Seals	Connections	Open-enoted Lines	Gas	Light Liquid	Heavy Liquid
Unit 200 - H-Coal (Vacuum Distillation)	54	26	84	105	121	230	2	4	16	2	6	6
Unit 310 - Hydrocracking	300	375	306	1038	892	623	2	10	25	9	12	9
Unit 310 - Hydrotreating	100	208	218	290	456	538	2	6	20	5	5	5
Unit 320 - Catalytic Reforming	138	234	293	345	566	732	3	6	27	5	8	5
Unit 440 - Sulfur Recovery	58	96	127	165	240	345	3	3	50	3	6	6
Hydrogen Reformer	168	41	0	304	78		2	4	8	4	3	

			Process Unit I	Equipment Sp	pecific Leak Co	mponent Co	ounts					
		Valves			Connectors		Compress	Sampling		Pressure	Pur	
Process Unit	Gas	Light Liquid	Heavy Liquid	Gas	Light Liquid	Heavy Liquid	or Seals	Connections	Open-ended Lines	Gas	Light Liquid	Heavy Liquid
Unit 200 - H-Coal (Gas Sweetening - Amine)	60	702	0	702	3		-		3	2	-	
Unit 410 - Gas Recovery Unit (Gas Header, GRU Stripper, Debutanizer, and Knockout Drum)	164	161	0	390	436		-		5	12	-	
Unit 420 Amine Regeneration				-			-		-	-	-	
Unit 430 - Sour Water Stripping	3	4	0	26	32						-	
Unit 500 - Utilities	2	0	0	25			-				-	
Unit 620 - Emergency Flare System	3	1		26	20		-	**				
Unit 630 - Liquid Product Storage (LPG Header, Naphtha Header, and Tank Farm)		36		-	140		-		2		-	
Unit 640 - Product Loadout and Shipping	7	227	0	22	647					2	2	
				10	it Component (_	_			
			1002	Il Process un		Counts						
		Valves			Connectors		Compress	Sampling		Pressure	Pur	nps
Process Unit	Gas	Light Liquid	Heavy Liquid	Gas	Light Liquid	Heavy	or Seals	Connections	Open-ended Lines	Gas	Light Liquid	Heavy Liquid
Unit 200 - H-Coal	114	728	84	807	124	230	2	4	19	4	6	6
Unit 310 - Hydrocracker	400	583	524	1328	1348	1161	4	16	45	14	17	14
Unit 320 - Catalytic Reforming	138	234	293	345	566	732	3	6	27	5	8	5
Unit 410 - Gas Recovery Unit	164	161	0	390	436		-		5	12	-	
Unit 420 - Amine Regeneration	0	0	0				-				-	
Unit 430 - Sour Water Stripping	3	4	0	26	32		-				-	

Unit 440 - Sulfur Recovery	58	96	127	165	240	345	3	3	50	3	6	6
Unit 500 - Utilities	2	0	0	25			-				-	
Unit 620 - Emergency Flare System	3	1	0	26	20		-				-	
Unit 630 - Liquid Product Storage	0	36	0	-	140		-		2	-	-	-
Unit 640 - Product Loadout and Shipping	7	227	0	22	647		-			2	2	-
Hydrogen Reformer	168	41	0	304	78		2	4	8	4	3	
Total	1057	2111	1028	3438	3631	2468	14	33	156	44	42	31

	Године саяк соннок сперание сопротить сопротить (пу														
Source of Fugitive Leak Control		Valves			Connectors		Compress	Samolog		Pres	sure Relief Val		Pu	mps	
Efficiency	Gas	Light Liquid	Heavy Liquid	Gas	Light Liquid	Heavy Liquid	or Seals	Connections	Open-ended Lines	Gas	Light Liquid	Heavy Liquid	Light Liquid	Heavy Liquid	
EPA Fugitive Guidance - Quarterly Monitoring ³	70%	61%		-	-		33%		-	44%	-		45%		
EPA Fugitive Guidance - Monthly Monitoring ³	88%	76%		-	-		-			-	-		68%	-	
HON MACT ³	96%	95%		81%	81%		-				-	-	88%		
NSR Fugitive Guidance - 28 LAER ⁶	97%	97%	0%	97%	97%	30%	95%	97%	97%	97%	-		93%		

Stream Composition (mol %)													
Process Stream	VOC	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylene							
Unit 320	100	3	1	15	25	25							
Unit 630	100	30	4	17.50	6	30							
Unit 640	100	2.03	0.46	13	25	25							

									om Fugitive Compos										
Facility Equipment Type		Total Count	Emission Rate (kg/hr /component) ⁵	Hours of Operation (hr/yr)	Control Efficiency (%)	VOCs (lb/hr)	VOCs (ton/yr)	HAPs (Ib/hr)	HAPs (ton/yr)	n-Hexane (Ib/hr)	n-Hexane (ton/yr)	Benzene (Ib/hr)	Benzene (ton/yr)	Tokiene (lb/hr)	Toluene (ton/yr)	Ethylbenzene (lb/hr)	Ethylbenzene (ton/yr)	Xylene (B/hr)	Xylene (ton/yr)
	Gas	1,057	0.0268	8.760	96%	2.50	10.94	0.23	1.03	<0.01	0.04	<0.01	0.01	0.05	0.22	0.09	0.38	0.09	0.38
Connectors L	Light Liquid	2,111	0.0109	8.760	95%	2.54	11.11	0.41	1.79	0.03	0.11	<0.01	0.03	0.09	0.37	0.14	0.62	0.15	0.66
	Heavy Liquid	1,028	0.00023	8,760		0.52	2.28	0.10	0.45	<0.01	0.02	<0.01	<0.01	0.02	0.10	0.04	0.16	0.04	0.16
	Gas	3,438	0.00025	8,760		1.90	8.30	0.17	0.73	<0.01	0.02	<0.01	<0.01	0.03	0.13	0.05	0.22	0.05	0.22
Connectors	Light Liquid	3,631	0.00025	8.760		2.00	8.77	0.52	2.26	0.04	0.17	<0.01	0.03	0.11	0.47	0.17	0.75	0.19	0.83
	Heavy Liquid	2,468	0.00025	8,760		1.36	5.96	0.28	1.21	0.01	0.04	<0.01	0.02	0.06	0.27	0.10	0.44	0.10	0.44
		14	0.636	8,760	100%	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sampling Connections		33	0.0150	8,760		1.09	4.78	0.14	0.60	<0.01	0.02	<0.01	<0.01	0.03	0.13	0.05	0.22	0.05	0.22
Open-ended Lines ⁷		156	0.0023	8.760	100%	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pressure Relief Valves [®]		44	0.16	8,760	100%	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pumps*	Light Liquid	42	0.114	8,760	100%	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
r unipti	Heavy Liquid	31	0.021	8,760	100%	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
Total Emissions:	NDS:						52.15	1.84	8.06	0.10	0.42	0.03	0.12	0.39	1.69	0.64	2.79	0.67	2.92

Net: Advances of the component outer from Table 14.1 In the LST PA Revolume Refinese Source Oraxestandiation and Ensuison Model for Revolution Relia Assessment (Jule 2020) Soundate dorseast on the component outers of the Table 12.1 In the CVPP Values of Parative Englisher Ensuison Tables of Parative Englisher Component outers (Parative Englisher (Parative Englisher Component outers (Parative Englisher Component outers)) - Accuma on englisher obstances that Component outers (Parative Englisher Component outers (Parative Englisher Component outers)) - Accuma on englisher obstances (Parative Component outers) (Parative Englisher Component outers)) - Component outers (Parative Component outers) (Parative Component outers) - Parative Reliable Component outers) (Parative Component outers) - Parative Reliable Component outers (Parative Component outers) (Parative Component outers)) - Parative Reliable Component outers (Parative Component outers) (Parative Component outers)) - Parative Reliable Component outers) (Parative Component outers) (Parative Component outers)) - Paratis and Valances douters outers) (Parative Component outers)

Example Equations: Fuolive Emissions (bitri = Court (Components) x Emission Rate NoNrikomoonent) x 2:205 Bulka x 11-Control Efficience (%1) x Stream Composition (mel %3 Fuolive Emission Indevini = Fuolitive Emissions (Bhitrix x Hous of Coencilion (Bhitrix x Hou2000 Ib

Equipment Specific Component Counts ³														
			Valves	с	onnectors	Open	-Ended Lines	Pressu Val	re Relief ves					
Equipment Type	Count on Site	Gas	Gas Light Liquid		Light Liquid	Gas	Light Liquid	Gas	Liquid	Pumo Seals				
Deethanizer and Debutanizer Fractionation Tower	2	79	80	177	208		2	6						
Gas Sweetening: Amine	1	60	1	702	3	3		2						
Header Tie-in: Flow Line	2		3		10		1							
Header Tie-in: Gas Line	1	3		10		1								
Pump Station	1	7	227	22	647			2	17	2				
Knockout Drum	2	3	1	26	20									
Separation Units	2													
Tank Farm Tank			3		12									
Utility Boiler	1	2		25										

PM Emissions from Initial Loading of Catalysts

Constant								
	PM	PM-10	PM-2.5					
k	0.74	0.35	0.05					
where								
k		Particle size multiplier 1						
U	7.0 Wind Speed (mph) ²							

	Catalyst Inf	ormation	
Unit Catalyst Used Within	Catalyst Name	HAP Metals Composition (%)	HAP Metals in Catalyst
Unit 200	Axens HF 858	4	CoO, NiO
Unit 310	Axens HDK 786	3	NiO
Unit 310	Axens PR 156	0	
Unit 320	AxTrap 867	0	
Unit 440	Axens CR-3S	0	NiO
Unit 440	Axens CRS-31	0	
Unit 440	Axens TG 107	10	CoO

Transfer Point Number	Transfer Point Description	Material Moisture Content, M ⁴ (%)	Maximum Transfer Rate (ton/hr)	Maximum Transfer Rate (ton/yr)	Fan Flow Rate (scf/min)	Mechanical Vent Exhaust Concentration (grain/dscf) ⁵	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ib/hr)	PM Emissions (ton/yr)	HAP Metals (Ib/hr)	HAP Metals (ton/yr)	PM-10 Emissions (lb/hr)	PM-10 Emissions (ton/yr)	PM-2.5 Emissions (Ibs/hr) ⁴	PM-2.5 Emissions (ton/yr)
CTH-1	Axens HF 858 to Feed Catalyst Bins 200-D-204/205/206	0.9	177.50	177.50	1,200	0.01			0.10	<0.01	<0.01	<0.01	0.10	<0.01	0.05	<0.01
CTH-2	Axens HDK 786 Catalyst to Loading Hopper	0.9	180.00	180.00					2.02	<0.01	0.06	<0.01	0.95	<0.01	0.14	<0.01
CTH-3	Axens PR 156 Catalyst to Loading Hopper	0.9	10.35	10.35					0.12	<0.01	<0.01	<0.01	0.05	<0.01	<0.01	<0.01
CTH-4	AxTrap 867 Catalyst to Loading Hopper	0.9	2.50	2.50					0.03	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01
CTH-5	Axens CR-3S Catalyst to Loading Hopper	0.9	11.57	11.57					0.13	<0.01	<0.01	<0.01	0.06	<0.01	<0.01	<0.01
CTH-6	Axens CRS-31 Catalyst to Loading Hopper	0.9	1.65	1.65					0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
CTH-7	Axens TG 107 to Loading Hopper	0.9	3.31	3.31					0.04	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
Totals:									2.45	<0.01	0.07	<0.01	1.21	<0.01	0.22	<0.01

Notes:

¹ - Particle Size Multiplier used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

² - Mean Wind Speed used from AP-42 Chapter 13.2.4 Particle Size Multipliers for Aggregate Handling and Storage Piles - 11/2006 Version

- Mean wind speed used from AP-42 chapter 15.2.4 randle size multiplets to raggregate handling and Storage Piles - 172000 Version

- Guation Torm AP-42 13.2.4 Aggregate Handling and Storage Piles - 172000 Version

- Moisture content of pellets used from AP-42 Chapter 13.2.4-1 Typical Silt and Moisture Contents of Materials at Various Industries - 11/2006 Version

5 - Mechanical vent exhaust concentration per Domestic Synthetic Fuels I operations.

Example Calculations: Emissions (lb PM/ton transferred) - E = [k × $(0.0032 \times ((U/5)^{1.3})(M/2)^{1.4}]^5$

If not equipped with mechanical vent

Emissions (lb/hr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr)

Emissions (ton/yr) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton/yr) x (1 ton PM/2000 lb PM)

 If equipped with mechanical vent
 Exhaust concentration (carrin/sch vent

 Emissions (bh/n) = Mechanical Vent
 Exhaust Concentration (grain/sch x Fan Flow Rate (scl/min) x (60 min/1 hr) x (1 lb/7000 grain)

 Emissions (bh/n) = A mechanical Vent
 Exhaust Concentration (grain/sch x Fan Flow Rate (scl/min) x (60 min/1 hr) x (1 lb/7000 grain)

 HAP Metal Emissions (bh/n) = E (lb PM/ton transferred) x Maximum Transfer Rate (ton transferred/hr) x Percent Metal Composition (%)

 HAP Metal Emissions (ton/yr) = E (Ib PM/ton transferred) x Maximum Transfer Rate (ton transferred/yr) x Percent Metal Composition (%)

Description	Units	H-Coal (Slurry	Feed)	H-Coal (H2 F	eed)	H-Coal (VT Fee	ed)	HyK Feed		HyK Frac Rel	ooiler	Reform	er	То	tal
Design Heater Duty		200 -	H - 102	200	- H-101	200 - H	l - 301	310 - H	H - 101	310	- H - 103	320 - H -	201/2/3/4		
APH System	Yes / No	1	No		No	N	0	N	0		No		No		
SCR System	Yes / No	1	No		No	N	0	N	0		No		No		
Excess Air	%	15	10	15	10	15	10	15	10	15	10	15	10	15	10
Absorbed Duty (Design)	MMBtu/hr	65.00	65.00	12.10	12.10	19.90	19.90	6.60	6.60	8.80	8.80	27.00	27.00	139.40	139.40
Process Inlet Temp.	۴	390	390	711	711	660	660	713	713	609	609	853	853		· · · ·
Type of Fuel	-	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas	Fuel Gas		
Fuel Gas LHV	Btu/lb	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2	23,704.2		
Flue Gas per Fuel Flow	lb/lb	21.54	20.65	21.54	20.65	21.54	20.65	21.54	20.65	21.54	20.65	21.54	20.65		1
Heat Loss (LHV)	%	1.5	1.5	2	2	2	2	2	2	2	2	2	2		1
Flue Gas Temp for Efficiency	۴F	490	490	811	811	760	760	813	813	709	709	1600	1620		1
Net Calculated Fuel Efficiency (LHV)	%	87.82	88.22	78.90	79.61	80.26	80.92	78.85	79.56	81.62	82.23	56.77	57.72		1
Fired Duty (LHV)	MMBtu/hr	74.02	73.68	15.34	15.20	24.79	24.59	8.37	8.30	10.78	10.70	47.56	46.78	180.86	179.25
Fuel Flowrate	lb/hr	3,122	3,108	647	641	1,046	1,037	353	350	455	451	2,006	1,973	7629.83	7561.83
Flue Gas Flowrate	lb/hr	67,258	64,187	13,935	13,240	22,530	21,423	7,606	7,227	9,798	9,323	43,220	40,752	164346.52	156151.75
Combustion Air Flowrate	lb/hr	64,135	61,079	13,288	12,599	21,484	20,386	7,253	6,877	9,343	8,872	41,213	38,778	156716.69	148589.92
NOx Emission	lb/MMBtu (LHV)	0.046	0.046	0.046	0.046	0.046	0.046	0.047	0.046	0.046	0.046	0.046	0.046		
	lb/hr	3.42	3.40	0.71	0.70	1.15	1.14	0.39	0.38	0.50	0.49	2.20	2.16	8.36	8.28
(Considering 8760 hr in a year)	lb/year	29,954.89	29,819.48	6,206.31	6,150.95	10,034.26	9,952.44	3,387.57	3,357.25	4,363.59	4,331.24	19,249.03	18,931.94	73195.65	72543.29
	tons(short)/year	14.98	14.91	3.10	3.08	5.02	4.98	1.69	1.68	2.18	2.17	9.62	9.47	36.60	36.27
CO Emission	lb/MMBtu (LHV)	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031		· · · ·
	lb/hr	2.28	2.27	0.47	0.47	0.76	0.76	0.26	0.26	0.33	0.33	1.46	1.44	5.57	5.52
(Considering 8760 hr in a year)	lb/year	19,969.92	19,879.65	4,137.54	4,100.63	6,689.51	6,634.96	2,258.38	2,238.17	2,909.06	2,887.49	12,832.69	12,621.29	48797.10	48362.19
	tons(short)/year	9.98	9.94	2.07	2.05	3.34	3.32	1.13	1.12	1.45	1.44	6.42	6.31	24.40	24.18
PM10/2.5 Emission	lb/MMBtu (LHV)	0.006	0.006	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.006		1
	lb/hr	0.41	0.41	0.08	0.08	0.14	0.14	0.05	0.05	0.06	0.06	0.26	0.26	0.99	0.99
(Considering 8760 hr in a year)	lb/year	3,566.06	3,549.94	738.85	732.26	1,194.56	1,184.81	403.28	399.67	519.48	515.62	2,291.55	2,253.80	8713.77	8636.11
	tons(short)/year	1.78	1.77	0.37	0.37	0.60	0.59	0.20	0.20	0.26	0.26	1.15	1.13	4.36	4.32
VOC Emission	lb/MMBtu (LHV)	0.0082	0.0083	0.0085	0.0086	0.0081	0.0081	0.0084	0.0084	0.0083	0.0084	0.0082	0.0083		· · · · ·
	lb/hr	0.61	0.61	0.13	0.13	0.20	0.20	0.07	0.07	0.09	0.09	0.39	0.39	1.49	1.48
(Considering 8760 hr in a year)	lb/year	5,349.09	5,324.91	1,108.27	1,098.38	1,791.83	1,777.22	604.92	599.51	779.21	773.44	3,437.33	3,380.70	13070.65	12954.16
	tons(short)/year	2.67	2.66	0.55	0.55	0.90	0.89	0.30	0.30	0.39	0.39	1.72	1.69	6.54	6.48

Heurtey Petrochem

Description	Normal	SCR System	Excess Air	Type of Fuel	Fired Duty	NOx Emission	CO Emission	PM10/2.5	VOC Emission	SO2 Emission
	Heater Duty				(LHV)			Emission		
Units		Yes / No	%	-	MMBtu/hr	tons(short)/year	tons(short)/year	tons(short)/year	tons(short)/year	tons(short)/year
Hydrogen Plant	Reformer	Yes	10	Fuel Gas	537.00	18.07	28.90		14.10	
T lanc	Furnace									

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

Standby Power Rating 500 kW, 625 kVA, 60 Hz

Prime Power Rating* 450 kW, 563 kVA, 60 Hz

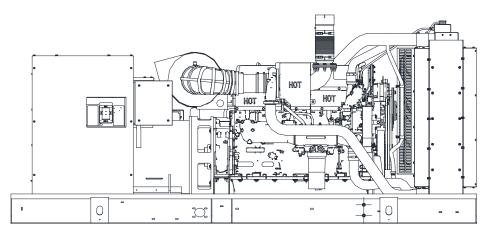


Image used for illustration purposes only

Codes and Standards

*EPA Certified Prime ratings are not available in the US or its Territories *Built in the USA using domestic and foreign parts

Generac products are designed to the following standards:

IS UL2200, UL508, UL142, UL489

NFPA 37, 70, 99, 110

NEC700, 701, 702, 708

ISO 3046, 7637, 8528, 9001

NEMA ICS10, MG1, 250, ICS6, AB1

" ANSI C62.41

IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

Powering Ahead

For over 50 years, Generac has provided innovative design and superior manufacturing.

GENERAC

INDUSTRIAL

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial applications under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

1 of 6

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

STANDARD OPTIONS

ENGINE SYSTEM

- Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel Flexible Exhaust Connection
- Critical Exhaust Silencer (Enclosed Only)
- Factory Filled Oil & Coolant
- Radiator Duct Adapter (Open Set Only)

Fuel System

• Primary Fuel Filter

Cooling System

- Closed Coolant Recovery System
- UV/Ozone Resistant Hoses
- Factory-Installed Radiator
- 50/50 Ethylene Glycol Antifreeze
- Radiator Drain Extension
- 120 VAC Coolant Heater

Electrical System

- Battery Charging Alternator
- Battery Cables
- Battery Tray
- Rubber-Booted Engine Electrical Connections
- Solenoid Activated Starter Motor

ALTERNATOR SYSTEM

- UL2200 GENprotect™
- Class H Insulation Material
- Vented Rotor
- 2/3 Pitch
- Skewed Stator
- Amortisseur Winding
- Permanent Magnet Excitation
- Sealed Bearings
- Full Load Capacity Alternator
- Protective Thermal Switch

GENERATOR SET

- Rust-Proof Fasteners with Nylon Washer to Protect Finish
- High Performance Sound-Absorbing Material
- Gasketed Doors
- Air Discharge Hoods for Radiator-Upward Pointing
- Stainless Steel Lift off Door Hinges
- Stainless Steel Lockable Handles
- Rhino Coat[™] Textured Polyester Powder Coat

ENCLOSURE (if selected)

• Rust-Proof Fasteners with Nylon Washers to Protect Finish

INDUSTRIAL

- High Performance Sound-Absorbing Material (L1 & L2)
- Gasketed Doors

GENERAC

- Stamped Air-Intake Louvers
- Air Discharge Hoods for Radiator-Upward Pointing
- Stainless Steel Lift Off Door Hinges
- Stainless Steel Lockable Handles
- Rhino Coat[™] Textured Polyester Powder Coat

TANK (if selected)

- UL 142
- Double Wall
- Vents
- Sloped Top
- Sloped Bottom
- Factory Pressure Tested (2 psi)
- Rupture Basin Alarm
- Fuel Level

Alarms

• Check Valve in Supply and Return Lines

Oil Pressure (Pre-Programmable Low

Coolant Temperature (Pre-Programmed High Temp

Coolant Level (Pre-Programmed Low Level Shut-

Engine Speed (Pre-Programmed Over Speed Shut-

Alarms & Warnings for Transient and Steady State

Snap Shots of Key Operation Parameters During

Alarms and Warnings Spelled Out (No Alarm Codes)

419 of 427

SPEC SHEET

2 of 6

Alarms & Warnings Time and Date Stamped

Pressure Shutdown)

Shutdown)

Low Fuel Alarm

Battery Voltage Warning

Alarms & Warnings

down)

down)

Conditions

٠

- Rhino Coat[™] Textured Polyester Powder Coat
- Stainless Hardware

CONTROL SYSTEM

Control Panel

- Digital H Control Panel Dual 4x20 Display
- Programmable Crank Limiter
- 7-Day Programmable Exerciser
- Special Applications Programmable PLC
- RS-232/485
- All-Phase Sensing DVR
- Full System Status
- Utility Monitoring
- 2-Wire Start Compatible
- Power Output (kW)
- Power Factor
- kW Hours, Total & Last Run
- Real/Reactive/Apparent Power

All Phase AC Voltage

- All Phase Currents
- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage
- Frequency

٠

•

•

٠

٠

٠

Display

- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/Sealed Connectors
- Audible Alarms and Shutdowns
- Not in Auto (Flashing Light)
- Auto/Off/Manual Switch

Modbus protocol

Sealed Boards

Single Point Ground

15 Channel Data Logging

- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)

Predictive Maintenance Algorithm

0.2 msec High Speed Data Logging

• Customizable Alarms, Warnings, and Events

Password Parameter Adjustment Protection

Alarm Information Automatically Comes Up On the

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

CONFIGURABLE OPTIONS

ENGINE SYSTEM

- Block Heater (Coolant)
- Crankcase Heater (Oil)
- Critical Grade Silencers
- Fan and Belt Guard (Optional)
- Flexible Fuel Lines Included with Base Tank
- Stone Guard (Open Set Only)

ELECTRICAL SYSTEM

- Battery
- 10A UL Battery Charger
- Battery Warmer

ALTERNATOR SYSTEM

- Alternator Upsizing
- Anti-Condensation Heater

CIRCUIT BREAKER OPTIONS

- Main Line Circuit Breaker
- 2nd Main Line Circuit Breaker
- Shunt Trip and Auxiliary Contact
- Electronic Trip Breakers

GENERATOR SET

- O Gen-Link Communications Software (English Only)
- 8 Position Load Center
- Alarm Horn
- Extended Factory Testing
- 2 Year Extended Warranty
- 5 Year Warranty
- 5 Year Extended Warranty
- 7 Year Extended Warranty
- 10 Year Extended Warrantv

ENCLOSURE

- Standard Enclosure (Weather)
- Level 1 Sound Attenuation
- Level 2 Sound Attenuation
- Steel Enclosure
- Aluminum Enclosure
- IBC Seismic Certification
- O 180 MPH Wind Kit
- AC/DC Enclosure Lighting Kit

CONTROL SYSTEM

GENERAC

- 21-Light Remote Annunciator
- Ground Fault Indication and Protection Functions

INDUSTRIAL

- Engine Run Relay 10A (1-NO, 1- NC)
- 120 VAC GFCI outlet
- Oil Temperature Indication
- Remote Relay Panel (8 or 16)
- Remote E-Stop (Break Glass-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Flush Mount)
- Remote Communication Modem

TANKS (Size On Last Page)

- Electronic Fuel Level
- Mechanical Fuel Level

ENGINEERED OPTIONS

ENGINE SYSTEM

- Fluid Containment Pans
- Coolant Heater Ball Valves

ALTERNATOR SYSTEM

- 3rd Breaker Systems
- Unit Mounted Load Banks

CONTROL SYSTEM

Spare Inputs (x4) / Outputs (x4) - H Panel Only

GENERATOR SET

- Special Testing
- Battery Box

ENCLOSURE

- Intrusion Alert Door Switch

TANKS

- Overfill Protection Valve
- UL 2085 Tank
- ULC S-601 Tank
- Stainless Steel Tank
- Special Fuel Tanks
- Vent Extensions
- 5 Gallon Spill Containment Box
- O Dealer Supplied AHJ Requirements

RATING DEFINITIONS

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition.

3 of 6

Motorized Dampers

INDUSTRIAL	DIESEL	GENERATOR	SET
------------	--------	-----------	-----

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

ENGINE SPECIFICATIONS

General

Make	Perkins
Cylinder #	6
Туре	In-Line
Displacement - L (cu in)	15.2 (927.56)
Bore - mm (in)	137 (5.39)
Stroke - mm (in)	171 (6.73)
Compression Ratio	16.0:1
Intake Air Method	Turbocharged/Aftercooled
Cylinder Head Type	4-Valve
Piston Type	Aluminum
Crankshaft Type	I-Beam Section

Engine Governing

Governor	Electronic Isochronous
Frequency Regulation (Steady State)	±0.25%

Lubrication System

Oil Pump Type	Gear
Oil Filter Type	Full Flow
Crankcase Capacity - L (qts)	45 (47.55)

Cooling System

Cooling System Type	Closed Recovery
Water Pump Type	Centrifugal Type, Belt-Driven
Fan Type	Pusher
Fan Speed (rpm)	1658
Fan Diameter - mm (in)	927 (36.5)
Coolant Heater Wattage	1500
Coolant Heater Standard Voltage	120 V

ALTERNATOR SPECIFICATIONS

Standard Model	WEG
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	Н
Total Harmonic Distortion	<3%
Telephone Interference Factor (TIF)	<50

Fuel System

Fuel Type	Ultra Low Sulfur Diesel #2
Carburetor	ASTM
Fuel Filtering (microns)	Primary 10 - Secondary 2
Fuel Inject Pump Make	Electronic
Injector Type	MEUI
Engine Type	Pre-Combustion
Fuel Supply Line - mm (in)	12.7 (0.5) NPT
Fuel Return Line - mm (in)	12.7 (0.5) NPT

Engine Electrical System

System Voltage	24 VDC
Battery Charger Alternator	Standard
Battery Size	See Battery Index 0161970SBY
Battery Voltage	(2) 12 VDC
Ground Polarity	Negative

Standard Excitation	Permanent Magnet
Bearings	Single Sealed Cartridge
Coupling	Direct, Flexible Disc
Prototype Short Circuit Test	Yes
Voltage Regulator Type	Full Digital
Number of Sensed Phases	All
Regulation Accuracy (Steady State)	±0.25%

INDUSTRIAL POWER

OPERATING DATA

EPA Certified Stationary Emergency

POWER RATINGS

		Standby
Three-Phase 120/208 VAC @0.8pf	500 kW	Amps: 1735
Three-Phase 120/240 VAC @0.8pf	500 kW	Amps: 1504
Three-Phase 277/480 VAC @0.8pf	500 kW	Amps: 752
Three-Phase 346/600 VAC @0.8pf	500 kW	Amps: 601

STARTING CAPABILITIES (sKVA)

							sKVA vs.	Voltage Di	р						
480 VAC								208/240 VAC							
Alternator	kW	10%	15%	20%	25%	30%	35%	Alternator	kW	10%	15%	20%	25%	30%	35%
Standard	500	457	686	914	1143	1371	1600	Standard	500	429	643	857	1071	1286	1500
Upsize 1	642	471	707	943	1179	1414	1650	Upsize 1	689	543	814	1086	1357	1629	1900
Upsize 2	832	757	1136	1514	1893	2271	2650	Upsize 2	723	571	857	1143	1429	1714	2000

FUEL CONSUMPTION RATES*

	Diesel	Diesel - gph (lph)		
Fuel Pump Lift - ft (m)	Percent Load	Standby		
12 (3.7)	25%	10.5 (39.7)		
	50%	19.5 (73.8)		
Total Fuel Pump Flow (Combustion + Return) gph (lph)	75%	23.7 (89.7)		
121 (457)	100%	31.2 (118.1)		
* Fuel supply	installation must accommodate fuel o	consumption rates at 100% load.		

COOLING

		Standby
Coolant Flow per Minute	gpm (lpm)	114.1 (432)
Coolant System Capacity	gal (L)	264 (999)
Heat Rejection to Coolant	BTU/hr	1,198,080
Inlet Air	cfm (m ³ /min)	30,582 (866)
Max. Operating Ambient Temperature (Before Derate)	°F (°C)	104 (40)
Maximum Radiator Backpressure	in H ₂ O	0.50

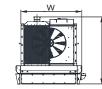
COMBUSTION AIR REQUIREMENTS

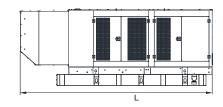
				Standby		
			Flow at Rated Power cfm (m ³ /min)	1483 (42)		
ENGINE			EXHAUST			
		Standby				Standby
Rated Engine Speed	rpm	1800	Exhaust Flov	v (Rated Output)	cfm (m ³ /min)	3400 (96)
Horsepower at Rated kW**	hp	835	Max. Backpi	ressure (Post Silencer)	in Hg (Kpa)	2.01 (6.8)
Piston Speed	ft/min	2020	Exhaust Ten	np (Rated Output - Post Silencer)	°F (°C)	1022 (550)
BMEP	psi	366	Exhaust Out	et Size (Open Set)	mm (in)	127 (5)

** Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

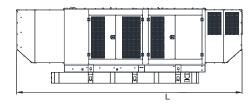
Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions.

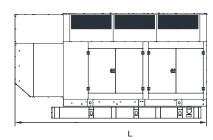
Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528 and DIN6271 standards.

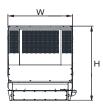

5 of 6

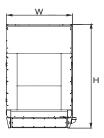


INDUSTRIAL DIESEL GENERATOR SET


EPA Certified Stationary Emergency


DIMENSIONS AND WEIGHTS*




٥

OPEN SET (Includes Exhaust Flex)

Run Time Hours	Usable Capacity Gal (L)	L x W x H (in (mm)	Weight Ibs (kg)
No Tank	-	154.4 (3923) x 71 (1803) x 67 (1702)	10580 (4799)
10	334	158.5 (4026) x 71 (1803) x 81 (2057)	12255 (5559)
32	1001	158.5 (4026) x 71 (1803) x 103 (2616)	13180 (6228)
32	1001	228 (5791) x 71 (1803) x 103 (2616)	13730 (6228)
64	2002	290 (7366) x 71 (1803) x 103 (2616)	15430 (6999)

STANDARD ENCLOSURE

Run Time Hours	Usable Capacity	L x W x H (in (mm)	0	lbs (kg) ure Only
noui s	Gal (L)		Steel	Aluminum
No Tank	-	207.4 (5268) x 71 (1803) x 80 (2032)		
10	334	207.4 (5268) x 71 (1803) x 94 (2388)	1999 (907)	869 (394)
32	1001	207.4 (5268) x 71 (1803) x 116 (2946)		
32	1001	228 (5791) x 71 (1803) x 105 (2667)		(004)
64	2002	290 (7366) x 71 (1803) x 116 (2946)		

LEVEL 1 ACOUSTIC ENCLOSURE

Run Time Hours	Usable Capacity	L x W x H (in (mm)	0	lbs (kg) ure Only
nouis	Gal (L)		Steel	Aluminum
No Tank	-	247.5 (6285) x 71 (1803) x 80 (2032)	2782 (1262)	1291 (586)
10	334	247.5 (6285) x 71 (1803) x 94 (2388)		
32	1001	247.5 (6285) x 71 (1803) x 116 (2946)		
32	1001	247.5 (6285) x 71 (1803) x 105 (2667)		
64	2002	290 (7366) x 71 (1803) x 116 (2946)		

LEVEL 2 ACOUSTIC ENCLOSURE

Run Time Hours	Usable Capacity			lbs (kg) ure Only
Hours	Gal (L)		Steel	Aluminum
No Tank	-	207.4 (5268) x 71 (1803) x 114 (2899)		
10	334	207.4 (5268) x 71 (1803) x 128 (3251)	3330 (1510)	1522 (692)
32	1001	207.4 (5268) x 71 (1803) x 150 (3810)		
32	1001	228 (5791) x 71 (1803) x 139 (3531)		(002)
64	2002	290 (7366) x 71 (1803) x 150 (3810)		

* All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER

SPEC SHEET

6 of 6

Specification characteristics may change without notice. Dimensions and weights are for preliminary purposes only. Please consult a Generac Power Systems Industrial Dealer for detailed installation drawings.

Attachment O

Attachment O

Monitoring, Recordkeeping, Reporting, and Testing Plans

DSF will comply with the monitoring, recordkeeping, reporting, and testing requirements of the federal and state regulations as outlined in Sections 4 and 5 of the permit application. DSF will additionally comply with the conditions of the issued R13 permit.

Attachment P

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Domestic Synthetic Fuels I, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Minor Source Construction Permit for a Direct Liquefaction Coal to Liquids Refining Operation to be located West of State Route 62, North of Point Pleasant, Mason County, West Virginia. The latitude and longitude coordinates are: 39.92554, -82.10807.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Nitrogen Oxides (NOx): 82.27 tons per year Sulfur Dioxide (SO2): 27.03 tons per year Carbon Monoxide (CO): 71.35 tons per year Volatile Organic Compounds (VOCs): 86.35 tons per year Total Particulate Matter (PM): 84.14 tons per year Particulate Matter <10 microns (PM₁₀): 56.11 tons per year Particulate Matter <2.5 microns (PM_{2.5}): 32.65 tons per year Particulate Matter Condensable (PM_{Con}): 22.69 tons per year Total Hazardous Air Pollutants (HAPs): 17.17 tons per year

Startup of operation is planned to begin on or about October 2021. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 11th day of January, 2019.

By: Domestic Synthetic Fuels I, LLC Kevin Whited President 19 Gemini Way Summit Point, WV 25446