	Ac	4.	Ì										S
F	EB	13 1	997	ENGINEER	ING DAT	TA TRAN	SMITTAL				F 1. EDT	52008	35
-	2. To: Dist 5. Pro	(Rece ribut	iving Orga iON ./Dept./Di	nization) v.:	3. S	From: (O NF Stora Design Au	riginating Or Ige Projec thority/ Desi	ganizati ts gn Agent	on) /Cog.	 Relate 7. Purchas 	d EDT No. 6200 se Order	:)84 No.:	
	SNF	Proje	ct/W-443	3	A	Engr.: . T. Kee				M	JK-SPX-	452727	, .
	8. Ori The	iginator attac	Remarks: hed docu	uments is	being s	ubmitted	l for rele	ase.		9. Equip.,	Componen/Componen/Componen/	t No.:	
	Desi HNF-	gn re SD-SN	view com F-DRCR-0	nments ar)01.	e docum	ented in	l			10. Syster K	n/Bldg./F Basin	acility: s/212H	
ľ	11. Re	eceiver	Remarks:	11A. De:	sign Basel	ine Documer	it? [X] Yes	» []	No	12. Major	Assm. Dw NA	g. No.:	
			00							13. Permi	t/Permit NA	Applicat \	ion No.:
										14. Requi	red Respo 2/5/	nse Date: /97	:
	15.				DATA T	ANSMITTED				(F)	(6)	(#)	(1)
1	(A) Item No.	(B)	Document/Dra	awing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Tr	Description ansmitted	n of Data	Approval Desig- nator	Reason for Trans- mittal	Origi- nator Dispo- sition	Receiv- er Dispo- sition
-	>1	· HNF-	SD-SNF-	FDR-003	A11	0	Design A Report f	nalysi or the	s	NA	1,2	1	
							TN-WHC C Transpor System	ask ar tatior	nd N				
	2	HNF-	SD-SNF-	OMM-003	A11	0	TN-WHC C Transpor System I Operatio and Main	ask ar tatior nstall ns, Re tenand	nd lation, epair,	NA	1,2	1	
							Manual (IORM)					
Ī	16.						KEY			Discositio	- 40 8 40		
	Appr E, S, O (see W Sec.12	oval Desi L, D or N// HC-CM-3-	gnator (F) A ·5,	1. Approval 2. Release 3. Information	4. Review 5. Post-F 6. Dist. (r Transmittal (w Review Receipt Ackno	G) ow, Required)	1. A 2. A 3. D	pproved pproved w/co isapproved w/	Dispositio mment comment	4. Reviewed 5. Reviewed 6. Receipt a	l no/comme l w/comme icknowledg	ent nt jed
ł					10.	17, SIG	NATURE/DISTRI	BUTION	turael				
	(G) Rea-	(H) Disp.	(J) Nam	e (K) Sig	nature (L)	Date (M) MS	SIN Rea-	(H) Disp.	(J) Nam	e (K)Si	gnature (l	L) Date (f	M) MSIN
	son 1	1	Design Au	thority A.	r. Kee	u 2/4/0	RZ -86						
			Design Ag	ent									
			Cog.Eng.			20							
	1	1	Cog. Mgr.	R. W. Rasi	nussen 🛺	Junn	R3-86						
			QA										
			Env										
	18.	1		19.			20.		_L	21. DOE A Ctrl.	No.	(if requi	red)
	S. A. E Signat Origina	Brisbin Bruch ure of ED ator	$\frac{1}{1}$ $\frac{1}{1}$ Date	Authori for Rec	zed Represen siving Organia	tative Date zation	R. W. Pasi Design Au Cognizant	nussen thority/ Manager	2-7-77 Date	[] Approv [] Approv [] Disapp	ved ved w/com proved w/c	ments comments	

BD-7400-172-2 (05/96) GEF097

Design Analysis Report for the TN-WHC Cask and Transportation System

S. A. Brisbin Duke Engineering and Services Hanford, Richland, WA 99352 U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN:	620085	UC: 600	
Org Code:	2T240	Charge Code:	LF026
B&R Code:	EW7040000	Total Pages:	658

Key Words: Design analysis, TN-WHC cask, cask and transportation system, conveyance

Abstract: This document presents the evaluation of the Spent Nuclear Fuel Cask and Transportation System. The system design was developed by Transnuclear, Inc. and its team members NAC International, Nelson Manufacturing, Precision Components Corporation, and Numatec, Inc. The cask is designated the TN-WHC cask. This report describes the design features and presents preliminary analyses performed to size critical dimensions of the system while meeting the requirements of the performance specification.

Photo Copied materials in this document have been reviewed and it has been determined that δ is NOT copyrighted.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

DESIGN ANALYSIS REPORT

FOR THE

TN-WHC CASK

AND

TRANSPORTATION SYSTEM

PROJECT 3035

Item no. 8 WHC Specification no. WHC-S-0396 DE&SH Purchase Order no. MJK-SPX-452727

Transnuclear Inc. Four Skyline Drive Hawthorne, NY 10532

HNF-SD-SNF-FDR-003 Rev. 0

E-15166

Final Design Analysis Report for the TN-WHC Cask and Transportation System

Initial Issue: Reviewed by P. Shi, Cask Design Task Leader) 12/5/41 Reviewed by -(Michael Mason, Chief Engineer) 15/96 Reviewed by 12. (Glenn Guerra, Project Manage LALAAAAA LICENS

TABLE OF CONTENTS

Page

PART A: DESCRIPTION AND OPERATIONS	A1-1
A1.0 INTRODUCTION	A1-1
A1.1 GENERAL INFORMATION	A1-1
A1.2 SYSTEM DESCRIPTION	A1-1
A1.2.1 Cask	A1-3
A1.2.2 Cask Lifting Attachment	A1-3
A1.2.3 Conveyance	A1-6
A1.2.4 Cask Operations Equipment	A1-6
References For Section A1.0	A1-8
A2.0 PACKAGING SYSTEM	A2-1
A2.1 CONFIGURATION AND DIMENSIONS	A2-1
A2.1.1 Cask	A2-1
A2.1.2 Cask Lifting Attachment	A2-3
A2.1.3 Convevance	A2-3
A2.1.4 Cask Operations Equipment	A2-4
A2.2 MATERIALS OF CONSTRUCTION	A2-6
A2.2.1 Cask	A2-6
A2.2.2 Cask Lifting Attachment	A2-6
A2.2.3 Conveyance	A2-6
A2.2.4 Cask Operations Equipment	A2-6
A2.3 MECHANICAL PROPERTIES OF MATERIALS	A2-7
A2.3.1 Cask	A2-7
A2.3.2 Cask Lifting Attachment	A2-8
A2.3.3 Conveyance	A2-8
A2.3.4 Cask Operations Equipment	A2-9
A2.4 DESIGN AND FABRICATION METHODS	A2-9
A2.4.1 Cask	A2-9
A2.4.2 Cask Lifting Attachment	42-10
A2.4.3 Conveyance	42-10
A2.4.4 Cask Operations Equipment	42-10
A2.5 WEIGHTS AND CENTER OF GRAVITY	42-11
A2.5.1 Cask	42-11
A2.5.2 Cask Lifting Attachment	42-11
A2.5.3 Conveyance	42-11
A2.5.4 Cask Operations Equipment	A2-12
A2.6 CONTAINMENT BOUNDARY	A2-12
A2.7 CAVITY SIZE	A2-13
A2.8 HEAT DISSIPATION	A2-13
A2.9 SHIELDING	A2-14
A2.10 CASK LIFTING ATTACHMENT	A2-15
A2.11 TIEDOWN ATTACHMENTS	A2-15
References For Section A2.0	A2-17
A3.0 PACKAGE CONTENTS	A3-1
A3.1 GENERAL DESCRIPTION	A3-1
A3.1.1 Physical Form	A3-1

	A3.1.2 MCO Weights and Dimensions	. A3-1
	References For Section A3.0	. A3-1
A4.0	TRANSPORT SYSTEM	. A4-1
	A4.1 TRANSPORTER	. A4-1
	A4.2 TIEDOWN SYSTEM	. A4-2
	A4.3 SPECIAL TRANSFER REQUIREMENTS	. A4-4
	A4.4 APPENDIX	. A4-5
A5.0	ACCEPTANCE OF PACKAGING FOR USE	. A5-1
	A5.1 NEW PACKAGING	. A5-1
	A5.1.1 Acceptance Requirements	. A5-1
	A5.1.2 Inspection and Testing	. A5-1
	A5.2 ANNUAL INSPECTION REQUIREMENTS	. A5-2
	A5.2.1 Acceptance Requirements	. A5-2
	A5.2.2 Inspection and Testing	. A5-3
	References For Section A5.0	. A5-4
A6.0	OPERATING REQUIREMENTS	. A6-1
	A6.1 GENERAL REQUIREMENTS	. A6-1
	A6.2 TN-WHC MCO LOADING OPERATIONS	. A6-2
	A6.3 CASK UNLOADING PROCEDURES	. A6-6
	A6.4 EMPTY PACKAGING PROCEDURES	. A6-7
	A6.5 CASK LOADING RADIATION DOSE ESTIMATES	. A6-8
	A6.6 LEAK TESTING TN-WHC CASK	A6-10
	A6.6.1 Containment System Periodic Verification Test	A6-10
	A6.6.2 Containment System Assembly Verification Test	A6-10
A7.0		. A7-1
		. A7-1
	A7.2 GENERAL REQUIREMENTS	. A/-1
		. A/-I
	A7.2.2 Quality Assurance Program	. A/-I
	A7.2.4 Procurement Control	. A7-2
	A7.2.5 Instructions Procedures and Drawings	. A7-2
	A7.2.6 Document Control	. A/-2
	A7.2.7 Control of Purchased Material Equipment and Services	· A7-2
	A7.2.8 Identification and Control of Materials, Parts and	· A/-2
	Components	Δ7-3
	A7 2.9 Control of Special Processes	Δ7-3
	A7.2.10 Inspection	A7-3
	A7.2.11 Test Control	A7-3
	A7.2.12 Control of Measuring and Test Equipment	. A7-3
	A7.2.13 Handling, Storage and Shipping	. A7-4
	A7.2.14 Inspection. Test and Operating Status	A7-4
	A7.2.15 Nonconforming Material, Parts or Components	. A7-4
	A7.2.16 Corrective Action	. A7-4
	A7.2.17 Records	. A7-4
	A7.2.18 Audits	. A7-4
A8.0	MAINTENANCE	. A8-1
	A8.1 GENERAL REQUIREMENTS	. A8-1
	A8.2 INSPECTION AND VERIFICATION SCHEDULES	. A8-1

HNF-SD-SNF-FDR-003 Rev. 0

A9.0 APPENDIX	A9-1
A9.1 TN-WHC CASK AND TRANSPORTATION SYSTEM DRAWINGS	A9.1-1
A9.2 CASK OPERATIONS EQUIPMENT ANALYSES	A9.2-1
PART B: PACKAGE EVALUATION	B1-1
B1.0 INTRODUCTION	B1-1
B1.1 SAFETY EVALUATION METHODOLOGY	B1-1
B1.2 EVALUATION SUMMARY AND CONCLUSIONS	B1-2
References For B1.0	B1-4
B2.0 CONTAINMENT EVALUATION	B2-1
B2.1 INTRODUCTION	B2-1
B2.2 CONTAINMENT SOURCE SPECIFICATION	B2-1
B2.3 NORMAL TRANSFER CONDITIONS	B2-1
B2.3.1 Conditions to be Evaluated	B2-1
B2.3.2 Containment Acceptance Criteria	B2-1
B2.3.3 Containment Model	B2-1
B2.3.4 Containment Calculations	B2-1
B2.4 ACCIDENT CONDITIONS	B2-1
B2.4.1 Conditions to be Evaluated	B2-1
B2.4.2 Containment Acceptance Criteria	B2-1
B2.4.3 Containment Model	B2-1
	B2-1
B2.5 CONTAINMENT EVALUATION AND CONCLUSIONS	. B2-1
	B2-1
	B3-1
	D3-1
B3.2 DIRECT RADIATION SOURCE SPECIFICATION	D3-1 D2-1
B3 2 2 Neutron Source	B3-2
	B3-3
B3.4 NORMAL TRANSFER CONDITIONS	D3-5 B3-6
B3 4 1 Conditions to be Evaluated	B3-6
B3 4 2 Acceptance Criteria	B3-6
B3 4 3 Shielding Model	B3-6
B3.4.4 Shielding Calculations	B3-7
B3.5 ACCIDENT CONDITIONS	B3-9
B3.5.1 Conditions To Be Evaluated	B3-9
B3.5.2 Acceptance Criteria	B3-9
B3.5.3 Shielding Model	B3-9
B3.5.4 Shielding Calculations	B3-9
B3.6 SHIELDING EVALUATION AND CONCLUSIONS	B3-9
References For Section B3.0	B3-10
B3.7 APPENDIX	B3-11
B4.0 STRUCTURAL EVALUATION	B4-1
B4.1 INTRODUCTION	B4-1
B4.2 STRUCTURAL EVALUATION OF PACKAGE	B4-1
B4.2.1 Structural Design and Features	B4-1
B4.2.2 Mechanical Properties of Materials	B4-1
B4.2.3 Chemical and Galvanic Reaction	B4-2

HNF-SD-SNF-FDR-003 Rev. 0

.

B4.2.4 Size of Package and Cavity	. B4-2
B4.2.5 Weights and Center of Gravity	. B4-5
B4.2.6 Tamper - Indicating Feature	. B4-5
B4.2.7 Positive Closure	. B4-5
B4.2.8 Cask Lifting Attachments	. B4-5
B4.2.9 Brittle Fracture	. B4-5
B4.3 NORMAL TRANSPORT CONDITIONS	. B4-6
B4.3.1 Conditions To Be Evaluated	B4-11
B4.3.2 Acceptance Criteria	B4-12
B4.3.3 Structural Model	B4-15
B4.3.4 Initial Conditions	B4-15
B4.4 ACCIDENT CONDITIONS	B4-39
B4.4.1 Conditions To Be Evaluated	B4-44
B4.4.2 Acceptance Unterla	B4-44
B4.4.3 Structural Model	B4-45
	B4-45
	D4-00
	B4-00 B5-1
B5.0 THERMAL EVALUATION	. D5-1 B5-1
B5.2 THERMAL SOURCE SPECIFICATION	. B5-1
B5.2.1 Normal Conditions of Transport	. B5-1
B5.2.2 Hypothetical Accident Conditions	. B5-2
B5.3 SUMMARY OF THERMAL PROPERTIES OF MATERIALS	. B5-2
B5.4 THERMAL EVALUATION FOR NORMAL TRANSFER CONDITIONS	. B5-4
B5.4.1 Conditions Evaluated	. B5-4
B5.4.2 Acceptance Criteria	. B5-6
B5.4.3 Thermal Model	. B5-6
B5.4.4 Thermal Analysis	. B5-7
B5.5 THERMAL EVALUATION FOR ACCIDENT CONDITIONS	B5-8
B5.5.1 Conditions Evaluated	. B5-8
B5.5.2 Acceptance Criteria	B5-9
B5.5.3 Thermal Model	B5-9
	. B5-10
B5.6 THERMAL EVALUATION AND CONCLUSIONS	. B5-11
	. B5-ZZ
	DO-I DE 1
	DO-1 DG 1
	B0-1 B6-1
	00-1 R7-1
B7.0 FACKAGE REDOWN STOTEM EVALUATION	B7-1
B7.2 ATTACHMENTS AND BATINGS	B7-1
B7.2.1 Design Load Factors	. B7-1
B7.2.2 Design Weight	. B7-2
B7.2.3 Design Loadings	B7-2
B7.2.4 Summary and Conclusions	B7-2
References For Section B7.0	. B7-13

LIST OF TABLES

			Page
Table A	43.1-1	Weights and Dimensions of MCO Components	A3-2
Table A	46.5-1	Estimated Total Dose	A6-9
Table E	33.2-1	Gamma Source Spectra	B3-2
Table E	33.2-2	Neutron Spectra	B3-3
Table E	33.3-1	Material Densities	B3-6
Table E	33.4-1	Summary of Maximum Dose Rates - Cask Surface	B3-7
Table E	33.4-2	Summary of Maximum Dose Rates - 2 meters from the Cask	
		Surface	B3-7
Table E	34.2-1	Temperature Dependent Material Properties	B4-2
Table E	34.2-2	Material of Construction	B4-3
Table E	34.3-1	Normal Conditions of Transport, TN-WHC Cask Performance	
		Evaluation Overview	B4-8
Table I	B4.3-2	Normal Conditions of Transport, Individual Load Cases for Cask	
		Body Analysis	B4-9
Table I	B4.3-3	Summary of Load Combinations for Normal Conditions of	
		Transport	B4-10
Table I	B4.3-4	Containment Structure/Fastener Allowable Stress	B4-14
Table I	B4.3-5	Cask Body Stresses Under Hot Environment	B4-23
l able l	B4.3-6	Cask Body Stresses Under Cold Environment	B4-24
Table I	B4.3-7	Cask Body Stresses Under Hot Environment Vibrations	B4-25
Table I	84.3-8	Cask Body Stresses Under Cold Environment Vibrations	B4-26
I able I	84.3-9	Cask Body Stresses Under Hot Environment 1 Foot Bottom End	D4 07
Tabla	D1 2 10	Drop	B4-27
Table	04.3-10	Drop	D1 20
Table	P/ 2.1	1 Cack Body Stresses Under Hot, Environment 1 East Lid End Dren	D4-20
Table	B4.3-1	2 Cask Body Stresses Under Cold Environment 1 Foot Lid End	D4-29
Table	D4.5-1.	Dron	B4-30
Table	R4 3-1	3 Cask Body Stresses Under Hot Environment 1 Foot Side Drop	04.00
Tuble	54.0 1	(contact side)	B4-31
Table	B4.3-1	4 Cask Body Stresses Under Hot Environment 1 Foot Side Drop	DIOI
		(opp. contact side)	B4-32
Table	B4.3-1	5 Cask Body Stresses Under Cold Environment 1 Foot Side Drop	
		(contact side)	B4-33
Table	B4.3-1	6 Cask Body Stresses Under Cold Environment 1 Foot Side Drop	
		(opp. contact side)	B4-34
Table	B4.3-1	7 Cask Body Stresses Under Hot Environment 1 Foot Corner Drop	
		(contact side)	B4-35
Table	B4.3-1	8 Cask Body Stresses Under Hot Environment 1 Foot Corner Drop	
		(opp. contact side)	B4-36
Table	B4.3-1	9 Cask Body Stresses Under Cold Environment 1 Foot Corner	
		Drop (contact side)	B4-37
Table	B4.3-2	0 Cask Body Stresses Under Cold Environment 1 Foot Corner	
		Drop (opp. contact side)	B4-38
Table	B4.4-1	Accident Conditions of Transport, TN-WHC Performance	
		Evaluation Overview	B4-41

Table B4.4-2	Accident Conditions of Transport, Individual Load Cases for Cask Body Analysis	B4-42
Table B4.4-3	Summary of Load Combinations for Accident Conditions of	D4 40
Table B4.4-4	Cask Body Stresses Under Hot Environment 30 Foot Bottom End	B4-43
Table B4.4-5	Drop Cask Body Stresses Under Cold Environment 30 Foot Bottom End	B4-53
Table B4.4-6	DropCask Body Stresses Under Hot Environment 30 Foot Lid End Drop	B4-54
Table B4 4-7	Cask Body Stresses Under Cold Environment 30 East Lid End	B4-55
	Drop Condition	B4-56
Table B4.4-8	(contact side)	B4-57
Table B4.4-9	Cask Body Stresses Under Hot Environment 30 Foot Side Drop (opp. contact side)	B4-58
Table B4.4-1	0 Cask Body Stresses Under Cold Environment 30 Foot Side Drop (contact side)	B4-59
Table B4.4-1	1 Cask Body Stresses Under Cold Environment 30 Foot Side Drop	B4 60
Table B4.4-1	2 Cask Body Stresses Under Hot Environ. 30 Foot Corner Drop	64-00
Table B4.4-1	(contact side)	B4-61
Table B4.4-1	(opp. contact side)	B4-62
Table B4 4-1	(contact side)	B4-63
	(opp. contact side)	B4-64
Table B5.4-1 Table B5.4-2	Maximum Solar Radiation Received (Btu/hr-ft ²)	. в5-5 . в5-5
Table B7.2-1	Load Factors for Tiedown Systems	. B7-1
10010 07.2*2	Quininary of fieldowin dystem offess Evaluation is a constraint second statement of the second s	. 07-0

LIST OF FIGURES

	Page
Figure A1.2-1 TN-WHC Cask and Conveyance System	A1-2
Figure A1.2-2 General Arrangement of the TN-WHC Cask	A1-4
Figure A1.2-3 TN-WHC Cask Lifting Attachment	A1-5
Figure A1.2-4 K-Basin Loadout Pit Operations Equipment	A1-7
Figure A2.6-1 TN-WHC Cask Containment Boundary	A2-16
Figure A3.1-1 Typical Arrangement of Spent Fuel in the MCO	A3-3
Figure A4.2-1 TN-WHC Cask Tiedown System - Opened and Closed Positions	A4-3
Figure A7.2-1 Chart Showing Organization	A7-5
Figure B3.3-1 Axial Models	B3-4
Figure B3.3-2 Radial Model	B3-5
Figure B3.3-3 Drain Port Model	B3-8
Figure B4.2-1 General Arrangement of TN-WHC CASK	. B4-4
Figure B4.3-1 Standard Stress Reporting Locations	B4-22
Figure B5.4.3-1 Normal Conditions Thermal Model	B5-12
Figure B5.4.4-1 Normal Conditions Temperature History at Hottest MCO	
	B5-13
Figure B5.4.4-2 Normal Conditions MCO and Cask Temp. Distribution -	
	85-14
Figure B5.4.4-3 Normal Conditions Cask Temperature Distribution - Maximum	DC 40
	B5-15
Figure B5.5.4-1 Accident Conditions Thermal Model	01-04
Location	DE 17
Figure B5 5 4-3 Accident Conditions Temperature History at Top Corper	B0-17
(Hottest Cask)	85-18
Figure B5 5 4-4 Accident Conditions MCO and Cask Temp. Distribution - Initial	00-10
Conditions	B5-19
Figure B5.5.4-5 Accident Conditions MCO and Cask Temp. Distribution - End of	20 10
Fire	B5-20
Figure B5.5.4-6 Accident Conditions MCO and Cask Temp. Distribution -	
Hottest MCO	B5-21
Figure B7.1-1 TN-WHC Cask Tiedown System - Opened and Closed Positions	. B7-5
Figure B7.2-1 TN-WHC Cask Transport Configuration	. B7-6
Figure B7.2-2 Tiedown Loading Condition - 2G Vertical Up	. B7-7
Figure B7.2-3 Tiedown Loading Condition - 3G Down	. B7-8
Figure B7.2-4 Tiedown Loading Condition - 1.5G Lateral	. B7-9
Figure B7.2-5 Tiedown Loading Condition - 2G Longitudinal	B7-10
Figure B7.2-6 Tiedown Loading Condition - 2G Longitudinal (aft)	B7-11
Figure B7.2-7 Tiedown Loading Condition - 1G Static Deflection	B7-12

PART A: DESCRIPTION AND OPERATIONS

A1.0 INTRODUCTION

A1.1 GENERAL INFORMATION

This Design Analysis Report (DAR) presents the evaluation of the design of the cask and transportation system (including a unique operations support system) to perform the on-site transfer of Type B, Highway Route Controlled Quantity (HRCQ) fissile spent fuel. The design of the system has been developed by Transnuclear, Inc. and its team members consisting of NAC International, Nelson Manufacturing, Precision Components Corporation and Numatec, Inc. The cask is designated the TN-WHC. This DAR describes design features and presents preliminary analyses performed to size critical dimensions of the system while meeting the requirements of the Specification for SNF Path Forward Cask and Transportation System, Hanford Specification⁽¹⁾.

The TN-WHC Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage.

The spent nuclear fuel is currently stored underwater in the two K-Basins. The fuel elements will be placed in special baskets and stacked in the Multiple Canister Overpacks (MCO) that have been previously placed in the cask. The MCO shield plug will be installed on the MCO. The cask will be removed from the K Basin load out area and taken to the cold vacuum drying station. Here the MCO shield plug retaining ring will be installed on the MCO, the water will be removed from the MCO and the cask prepared for transportation to the CSB. Shipments will occur exclusively on-site, specifically between the K-Basins and the CSB. Travel will be by road with one cask per trailer.

A1.2 SYSTEM DESCRIPTION

The Cask and Transportation System consists of a transport cask with a dedicated semi-trailer. It is designed to transport the cask in the vertical orientation. A single MCO loaded with spent fuel baskets will be transported from the K-Basins' Loadout Facility to the CSB. The System layout is shown on Figure A1.2-1. Unique operations equipment has been developed for the K-Basin

Loadout pit. The equipment has been engineered to:

- minimize cycle times
- achieve excellent control of contamination
- provide high margins of safety
- minimize waste generation
- minimize personnel exposure
- support ease of operations by facility personnel.

Descriptions of the cask, conveyance (trailer), cask lifting attachment and the operations equipment are provided below. Detailed design drawings are provided in Section A9.1 (Appendix).

A1.2.1 Cask

The cask consists of a body fabricated from stainless steel forging(s) and a bolted-on stainless steel lid with two welded on trunnions. The cask incorporates features for ease of loading, decontamination and routine handling. The design is engineered to minimize cask maintenance and maximize in-service time and for ease of fabricability to enhance project completion goals.

The overall dimensions of the cask are 170.25 inches long and 39.81 inches in diameter. The cask cavity has a length of 160.50 inches and a cavity ID of 25.19 inches. The general arrangement of the cask is depicted in Figure A1.2-2. The cask is designed to be lifted and placed in a vertical orientation only. Component terminology used in this DAR is also identified on Figure A1.2-2. The closure lid end is referred to as the top with the cask in the vertical orientation.

A1.2.2 Cask Lifting Attachment

The cask is lifted from the trailer and from the Cask Operations Equipment, and maneuvered by two trunnions welded on the lid. The layout of the attachment is shown on Figure A1.2-3. The lifting attachment is used for loading and unloading the cask from the conveyance system, for movement to and from the load out pit and the CSB, and for any other cask handling operations. It is designed to lift the cask vertically and move with the cask in the vertical orientation only. The lifting attachment structural members are constructed of stainless steel.

The lifting attachment consists of two trunnions which are welded to the cask lid by a set of brackets and gussets. The geometry and dimensions are shown in Figure A1.2.3. All components are made of 304 stainless steel.

IT	ΈM	Ν	О.

DESCRIPTION

 2 Closure Lid 3 Bottom Plate 4 Lid Bolts 5 Drain Port 6 Vent Port 7 Bolting Flange 8 Lid Alignment Pin 9 Cask Lifting Attachment 	1	Cask Body
 Bottom Plate Lid Bolts Drain Port Vent Port Vent Port Bolting Flange Lid Alignment Pin Cask Lifting Attachment 	2	Closure Lid
 4 Lid Bolts 5 Drain Port 6 Vent Port 7 Bolting Flange 8 Lid Alignment Pin 9 Cask Lifting Attachment 	3	Bottom Plate
5Drain Port6Vent Port7Bolting Flange8Lid Alignment Pin9Cask Lifting Attachment	4	Lid Bolts
 6 Vent Port 7 Bolting Flange 8 Lid Alignment Pin 9 Cask Lifting Attachment 	5	Drain Port
 7 Bolting Flange 8 Lid Alignment Pin 9 Cask Lifting Attachment 	6	Vent Port
8 Lid Alignment Pin9 Cask Lifting Attachment	7	Bolting Flange
9 Cask Lifting Attachment	8	Lid Alignment Pin
	9	Cask Lifting Attachment

A1.2.3 Conveyance

The conveyance system is a semi-trailer which can be attached to a standard tractor. The trailer provides the necessary supports and attachment points for securing the cask in the vertical orientation.

A1.2.4 Cask Operations Equipment

The K-Basin Loadout Pit Operations Equipment for the TN-WHC cask has been designed to support the concept of "start clean, stay clean". An immersion pail with a sealing lid encloses the cask in a clean demineralized water cavity. The entire enclosed immersion pail, cask, MCO, and seal lid assembly is then lowered into the K-Basin Loadout Pit for loading of the MCO. Pneumatic seal contact surfaces between the immersion pail seal lid and immersion pail, and between the seal lid and MCO, contain an internal immersion pail positive 2 psig relative pressure to external hydrostatic pressure during all in-pit operational sequences. Use of the sealed immersion pail precludes contamination of the exterior and interior surfaces of the cask.

The immersion pail is supported by a steel frame support structure extending from the floor of the loadout pit to the top of the loadout pit shield wall, or from lift slings and the facility crane. depending on the system's operational configuration. During immersion pail cask loading and unloading activities, the immersion pail is supported by the immersion pail support structure. The facility crane with slings is used to lower and raise the immersion pail from the pit side support structure to the pit floor for MCO loading. Worker access is provided to the immersion pail seal lid and system connections in the area opposite the fuel transfer canal during pre and post MCO loading by two worker platforms supported from the loadout pit shield wall. This loadout pit worker platform is provided for operational flexibility and not intended to be a required access point for normal operations. Normal operation of the immersion pail system is intended to be performed by operators from the main operations floor without the use of special tooling. The immersion pail support structure and worker platform are passive structures that, once installed prior to initiation of operations, do not need to be removed during the normal cask operations. Compressed air and demineralized water supply are required to support the MCO loading operation. Figure A1.2-4 presents the K-Basin Loadout Pit Operations Equipment as supported by both the in pool support structure and facility crane.

The immersion pail lid is handled by the facility crane during installation and removal for each loading cycle. The pail lid is lowered in place, seals are pressurized, and deionized water flow established. Seal integrity verification occurs at this point in the operation.

The immersion pail lid is fabricated of stainless steel to mitigate concerns about corrosion and abrasion. The lid is held in place through seal pressure, dead weight and four bolts to the main pail structure. The lid design limits seal crevasses and pool water entrapment. permits flushing of the seal surface prior to breaking the seal, and permits clean immersion pail water to flow from the seal boundary when seal pressure is removed. Each of these features supports ease of decontamination during the operation sequence.

Figure A1.2-4 K-Basin Loadout Pit Operations Equipment

A. Support Structure Configuration

B. Crane Support Configuration

References For Section A1.0

 Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.

.

A2.0 PACKAGING SYSTEM

The packaging system is the assembly of components necessary to ensure compliance with the materials containment and compliance requirements delineated in Hanford Specification⁽¹⁾. The Cask and Transportation System consists of the cask with lifting attachment, the dedicated trailer with the tiedown system, and the operations equipment.

A2.1 CONFIGURATION AND DIMENSIONS

A2.1.1 Cask

The structure of the cask is a right circular cylinder with a bottom and a closure lid. The basic components of the cask are the cask body, closure lid and the lid bolts. The cask body consists of the cylindrical shell and the bottom plate. The closure lid is attached to the cask body with twelve 1.5 inch diameter bolts. Two lifting trunnions with brackets and gussets are welded to the top end of the lid and are a 180° apart. Two penetrations into the containment are provided to support cask operations. One is located at the lid and the other is located in the cask bottom. The maximum gross weight of the loaded cask is 57,910 pounds including a payload of 18,950 pounds. The cask is transported in the vertical orientation with the lid end facing upward. During transport, the cask is supported on the trailer by an upper tiedown device and a lower cup shaped retainer.

The following sections provide a physical and functional description of each major component. Detailed drawings showing dimensions are provided in Section A9.1. A complete materials list is provided in Section A2.2. Reference to these drawings is made in the following physical description sections and in general, throughout this DAR. Fabrication of the cask will be performed in accordance with the design drawings.

Cask Body

The cask body assembly is shown on drawing H-1-81535, sheet 1 of 5 and consists of a circular cylinder (shell) welded to a bottom plate. The stainless steel material for the shell and bottom plate is ASME SA-336 Type F304 or equivalent. The shell is 7.31 inches thick. The bottom plate is 6.13 inches thick. The overall length and diameter of the cask body is 170.25 inches and 40.57 inches respectively. The welds in the shell assembly (containment boundary welds) are full penetration welds.

Attachments and subassemblies associated with the cask body include:

- Lifting attachment on top of the lid.
- MCO standoffs on the inner surface of bottom plate.

- Cask drain penetration through the bottom plate.
- Cask vent penetration through the lid.
- · Lid alignment pins.
- Lid bolts and washers

Closure Lid and Bolts

The design of the closure lid is shown on drawing H-1-81535, sheet 4 of 5. The closure lid is a 3.5 inch flanged plate made from ASME SA-336, Type F304 stainless steel or equivalent. This plate forms the lid portion of the containment boundary. The perimeter of the lid has 12 equally spaced holes for the closure bolts which are located on a 36.44 inch diameter bolt circle. The closure bolts are nominally 1.5 inch in diameter manufactured from ASME SA-479-XM19, hot rolled or equivalent material.

One dovetail seal groove is machined in the underside of the lid flange. A Butyl o-ring is installed in this seal groove. The o-ring provides the containment boundary function.

Two lid alignment pins are provided to ensure that the lid is properly aligned with respect to the cask body so that the lid bolts can be installed.

Cask Lifting Attachment

The lifting function is provided by a pair of lifting trunnions welded to the brackets and gussets. The brackets and gussets are welded to the top surface of the lid, 180° apart. Detailed dimensions of the lifting attachment are shown on drawing H-1-81535, sheet 4 of 5. This trunnion pair is sufficient for lifting a 30 ton loaded cask vertically.

Containment Penetrations

There are a total of two penetrations through the containment vessel, one located in the lid end (designated the Vent Port) and the other, in the cask bottom (designated the Drain Port). The penetrations are used to drain, dry, backfill and vent the containment boundary, or circulate warm water in the interspace between the cavity wall and the MCO. All penetrations are closed and sealed during transport. The configuration details of each penetration including seals, covers and bolts are shown on drawings H-1-81535, sheets 3 of 5, and 5 of 5.

Vent Port

The vent port is used for venting and back filling of the cask cavity. It is a direct penetration through the lid, 0.44 inch in diameter, with a threaded outer end to accept a quick-disconnect fitting.

The vent port is closed by a 6.0 inch diameter, 0.75 inch thick blind flange which is secured to the lid with four 0.5 inch diameter socket head cap screws. The penetration cover is recessed

into the outer plate of the lid so that the outer surfaces are flush. A single Butyl o-ring is mounted in a dovetail groove machined in the underside of the penetration cover.

Drain Port

This penetration is located in the bottom of the cask body. Access to this penetration is located on the side of the cask body at the bottom plate. A 0.63 inch hole is drilled from the inside surface of the cavity bottom to the cask body side and includes a 90° bend as shown on drawing H-1-81535, sheet 3 of 5. The drain port permits draining of the cask cavity with the TN-WHC cask in a vertical orientation. A quick-disconnect coupling is provided at this penetration. As on the vent port, a blind flange which maintains the containment boundary at this point is secured over the drain port by four bolts. A single butyl o-ring is located in the dovetail groove machined in the penetration cover.

A2.1.2 Cask Lifting Attachment

The lifting attachment for the cask is used for loading and unloading the cask from the conveyance system, for movement at the loadout pit and the CSB, and for any other cask handling operations. It is designed to lift the cask vertically with the cask in the vertical orientation only.

The lifting assembly consists of two trunnions which are attached to the cask lid by a set of brackets and gussets. The overall dimension of the lifting attachment is 43.83 inches. The design details are provided on drawing H-1-81535, sheet 4 of 5.

A2.1.3 Conveyance

The design of the trailer is shown on drawings H-1-81555, H-1-81556, and H-1-81557. The basic components are:

- Main Beams
- Frame
- Deck
- Kingpin
- Landing Legs
- Axles
- Suspensions
- Wheels
- Tires
- Brakes

The major dimensions are as follow:

- Overall length 40', With the tractor approximately 54'
- Overall width 10'
- Overall height 17'-7" (loaded at top of the cask lifting attachment)
- Loaded deck height 3'
- Loaded ground clearance 12"

A2.1.4 Cask Operations Equipment

The K-Basin Loadout Pit Operations Equipment consists of an immersion pail, support structure and operator work platform. In addition to pit side equipment an MCO Cold Vacuum Drying (CVD) Lid is provided to support conditioning/drying of the MCO. Drawings of the individual equipment components and pail assembly showing dimensions and materials for the operations equipment, and drawings of the system general arrangement include the following:

H-1-81543	K-Basin Immersion Pail, Lift Beam Assembly
H-1-81544	K-Basin Immersion Pail
H-1-81545	K-Basin Immersion Pail Support Structure
H-1-81546	K-Basin Immersion Pail Seal Lid
H-1-81547	K-Basin Immersion Pail Assembly
H-1-81549	K-Basin MCO / Cask Cold Vacuum Drying Lid
H-1-81550	K-Basin Immersion Pail Ancillary Equipment
H-1-81551	K-Basin Immersion Pail Interface Control Drawing
H-1-81552	K-Basin Immersion Pail Lock Pin Guide Assembly
H-1-81553	K-Basin Immersion Pail Support Structure Assembly
H-1-81554	K-Basin Immersion Pail Support Equipment

The immersion pail is a thin walled circular cylinder 165.5 inches long with a sealed foam filled floatation cavity. Use of the floatation cavity in the immersion pail design permits the existing crane hardware to lift the pail, cask and filled MCO to the top of the loadout pit shield wall without challenging the crane load capacity. Locating the top of the immersion pail at the top of the loadout pit shield wall for operator access reduces cumulative operator dose supporting project ALARA objectives.

The immersion pail base plate carries the cask load to the pail wall which uniformly transmits the cask load in tension to the top shell ring structure and four immersion pail lifting lugs. The immersion pail lift lugs interface with the loadout pit immersion pail support structure or the

crane lift slings. During system operation when the immersion pail is moving between support points the immersion pail lift lugs travel within a captured tracking provided by the support structure tub steel columns. The cross section envelop of the immersion pail is 42.75 inches x 53.5 inches which transmits the cask load to the immersion pail structure base plate in bearing when the immersion pail and cask is located on the floor of the loadout pit for the MCO loading operation. The immersion pail support structure base plate is 48.06 inches x 56.87 inches. These envelope dimensions permit pail operation without removal of existing rail structures mounted to the side of the loadout pit. Location control and guidance of the cask during insertion into the immersion pail is provided by a series of beveled, stepped concentric landings. Initial pail opening of 42 inches reduces to 40 inches over approximately 18 inches of axial cask travel.

The immersion pail loadout pit support structure is a steel frame two part structure approximately 320 inches high. Leveling feet are provided between each set of corner column tube steel supports for initial structure installation into the loadout pit. Solid foundation for the support structure is provided during the equipment installation process. Following initial location of the immersion pail, pit support structure grout is installed beneath the support structure base plate providing a solid load path from the support structure to the loadout pit floor. The immersion pail loadout pit support structure provides support for the empty MCO, cask and immersion pail during the task activities performed for maintaining a contamination free boundary prior to lowering the cask to the pit floor. Also, this structure provides support for the loaded system following fuel loading while performing activities for moving the contamination free cask to the cask transport trailer. Manually operated lock pin assemblies are mounted to the top of each of the immersion pail support structure corner columns. The lock pins are designed to be locked in the full open or full closed position.

Two worker platforms are suspended from opposite sides of the loadout pit shield wall to form a slotted work surface, permitting operator access to the immersion pail lid opposite the fuel transfer canal without the use of special tooling. Slotted access is maintained to provide MCO loading system flexibility permitting monorail cable access from the pool to the loadout pit during fuel loading of the MCO. Providing the slotted access permits system operation without movement of the work platform.

The immersion pail seal lid is a stainless steel weldment fitted with inflatable seals on the pail and MCO interface surfaces. The lid is sized to provide approximately 0.5 inch nominal clearance between the MCO and inside diameter of the seal lid. The seal lid and immersion pail boundary provides approximately 0.1 inch nominal clearance. Seal pressure of 45 psig activates the silicone seals which have been rated to withstand radiation environments of 150 Rem/hr. Three lifting lugs are provided for moving the immersion pail lid to and from the immersion pail using slings and the facility crane. Vent port design captures the highest fluid elevation in the inner radius of the lid cavity and is located in the outboard section of the lid to permit easier access during operation.

A2.2 MATERIALS OF CONSTRUCTION

A2.2.1 Cask

(Section A9.1).

 Component
 Material

 Cask Shell
 ASME SA-336, Type F304 or equivalent

 Bottom Plate
 ASME SA-336, Type F304 or equivalent

 Closure Lid
 ASME SA-336, Type F304 or equivalent

 Closure Bolts
 ASME SA-336, Type F304 or equivalent

 O-Ring
 Butyl, Parker B612-70 or equivalent

 Materials for other miscellaneous components are listed on drawings H-1-81535, sheets 1 to 5.

A2.2.2 Cask Lifting Attachment

The lifting attachment structural members are constructed of stainless steel, ASME SA-182, Grade F304. Materials for other miscellaneous components are listed on drawing H-1-81535, sheet 4 of 5.

A2.2.3 Conveyance

The materials of construction are summarized in the following table:

Component	Material
Main Beams	A514 (T1)
Frame	A-36
Kingpin	SAE-J700

Materials for other miscellaneous components are indicated on drawings H-1-81555, H-1-81556, and H-1-81557.

A2.2.4 Cask Operations Equipment

The K-Basin Loadout Pit Operations Equipment consists of an immersion pail, loadout pit mounted support structure and loadout pit shield wall suspended work platform. In addition to the loadout pit operations equipment an MCO Cold Vacuum Drying Lid is provided to support conditioning/drying of the MCO. Materials of construction are listed on each component drawing for the respective component item number. The primary immersion pail structure is constructed from Type 304 stainless steel. The immersion pail support structure and loadout pit work

platform are fabricated from Type A36 and Type A500 series carbon steel and coated to protect it against corrosion over the life of the system. The immersion pail lift beam is fabricated from Type 516 carbon steel and the sling storage box and the immersion pail positive pressure reservoir are made from Type 304 stainless steel. The lock pin is Type 17-4PH stainless steel in order to provide significant margin of safety when postulating a two support configuration with ANSI 14.6 load factors.

The immersion pail seal lid and the MCO conditioning lid are fabricated from Type 304 stainless steel.

A2.3 MECHANICAL PROPERTIES OF MATERIALS

A2.3.1 Cask

The mechanical properties of the structural materials used in the cask is shown on following table as a function of temperature. The materials are identified and procured by reference to ASME or corresponding ASTM specifications. The yield and ultimate strengths of the structural steels shown on table are the minimum values specified in the material specifications. The ASME⁽²⁾ design stress intensity values (S_m) for Class 1 components are used to establish allowable stresses for the elastic analyses performed for the cask. Stress intensity limits for the various stress categories are discussed in Sections B4.3 and B4.4.

Component	Material	Temp. °F	Ultimate S _u (ksi)	Yield S _y (ksi)	Allow. S _m (ksi)	E (E ⁶ psi)	α [*] (E ⁻⁶)
Cask Body SA-336 and Type F304 Lid	SA-336	70	70	30	20	28.3	8.55
	200	66.2	25	20	27.6	8.79	
		300	61.5	22.5	20	27.0	9.0
		400	60.0	20.7	18.7	26.5	9.19
Lid Bolt	SA-479	70	135	105		28.34	8.87
Hot R	XM19 Hot Rolled	200				27.6	9.02
		300				27.0	9.10
		400				26.5	9.14

Temperature Dependent Material Properties

* Mean Coefficient of Thermal Expansion (in/in-°F) from 70°F to the Indicated Temperature.

A2.3.2 Cask Lifting Attachment

Mechanical properties of the material used in the cask lifting attachment are listed in the following table.

Component	Material	Temp. °F	Ultimate S _u (ksi)	Yield S _y (ksi)
Trunnion	SA-182 F304	70 ⁰	75	30
Bracket	Type 304 SS	70 ⁰	75	30
Gusset	Type 304 SS	70 ⁰	75	30

The lifting attachment will be designed per ANSI N14. $6^{(3)}$ with a factor of safety of three to yield or five to ultimate, whichever is most restrictive.

A2.3.3 Conveyance

Mechanical properties of the material used in the trailer are listed in the following table.

Component	Material	Temp. °F	Ultimate S _u (ksi)	Yield S _y (ksi)
Main Beams	A-514 (T1)	70°	110	100
Frame	A-36	70 ⁰	58	36

A2.3.4 Cask Operations Equipment

Cask operational equipment load path structures are fabricated from 500 series carbon steel, 17-4 PH stainless steel or Type 304 stainless steel. Yield strength and material ultimate strength for these materials at service temperatures equal to or less than 150°F are as follows:

<u>Material</u>	<u>Yield Strength</u> (ksi)	<u>Ultimate Strength</u> (ksi)
Carbon Steel, ASTM A500, GR B	46.0	58.0
Type 304 Stainless Steel	30.0	75.0
17-4PH Stainless Steel	100.1	135.0

A2.4 DESIGN AND FABRICATION METHODS

A2.4.1 Cask

A2.4.1.1 Design

The cask is designed to comply with all the requirements of Hanford Specification⁽¹⁾ for normal and accident conditions. Part B of this DAR provides the details of the design analyses. The structural material selected is ASME/ASTM certified stainless steel (See design drawings, Section A9.1). Stainless steel has adequate resistance to the corrosive effects of materials (liquids, vapors, gases and solids) that it could come in contact with the cask during the cask's life cycle at the Hanford Nuclear Reservation site. The stainless steel material also minimizes contamination adhesion and chemical-galvanic reactions between the payload components and the cask. The material also complies with the material requirements identified in NUREG/CR-3854⁽⁴⁾. A minimum wall thickness of at least 3-in. (7.62-cm) of stainless steel has been provided as required by Hanford Specification⁽¹⁾. The design considers avoiding potential contamination traps to the greatest extent practicable.

A2.4.1.2 Fabrication Methods

Fabrication criteria for a Category I packaging, as delineated in NUREG/CR-3854 will be followed. Fabrication of the packaging will be performed in accordance with the ASME Code, Section III as required by NUREG/CR-3854.

The cask will be fabricated from stainless steel using proven manufacturing techniques for spent fuel transportation casks. The cask body will consist of one or more forged cylinders welded with a complete penetration weld to a bottom closure head forging. It is anticipated that the cask body welds will be narrow groove welds made primary by Gas Tungsten Arc Automatic Welding (GTAW) and the Submerged Arc Automatic Welding (SAW) process and welded from the outer diameter.

All welds and weld joints will be examined per the ASME Code, Section III. Welds will be inspected per ASME Section V by welders qualified to ASME Section IX. All containment welds will be radiographed per ASME requirements.

A2.4.2 Cask Lifting Attachment

The lifting Attachment is designed per ANSI N14.6 with a factor of safety of three to yield or five to ultimate, whichever is most restrictive. Fabrication of the lifting attachment will also be performed in accordance with the requirements of ANSI N14.6.

A2.4.3 Conveyance

The trailer will be designed per Hanford Specification⁽¹⁾ with a factor of safety of two to yield. All welding will be in accordance with AWS D1.1.

A2.4.4 Cask Operations Equipment

The K-Basin Loadout Pit Operations Equipment consists of an immersion pail, immersion pail support structure, and loadout pit operations work platform. Safety related load path components are designed in accordance with ANSI N14. $6^{(3)}$.

To supplement the requirements of ANSI N14.6, applicable design criteria from the American Institute of Steel Construction (AISC) and ASME Boiler and Pressure Vessel Code have been adopted for evaluation of support structures for loads other than tension loading.

A2.5 WEIGHTS AND CENTER OF GRAVITY

A2.5.1 Cask

The calculated gross weight of the cask (including contents) is 57,910 pounds. Approximate weights of major individual components or subassemblies are tabulated below:

Weight of Lid:	1,890 lbs
Weight of Shell:	34,300 lbs
Weight of Bottom:	2,270 lbs
Weight of Lifting Attachment:	500 lbs
Weight of Dry MCO:	18,950 lbs
Gross Cask Weight (Dry):	57,910 lbs

The center of gravity of the unloaded packaging is located on the cylindrical axis at 82.29 inches from the outer bottom surface.

The center of gravity for a loaded packaging (Dry) is located on the cylindrical axis at approximately 83.6 inches from the outer bottom surface.

A2.5.2 Cask Lifting Attachment

The calculated gross weight of the lifting attachment is 500 pounds. Approximate weights of major individual components are tabulated below:

Trunnions:	120 lbs
Brackets:	250 lbs
Gussets:	130 lbs

A2.5.3 Conveyance

The calculated gross weight of the trailer is 19,500 lbs. Approximate weights of the major individual components used for trailer design are tabulated below:

Tractor:	18,500#
Trailer:	19,500#
Cask & Loaded MCO:	57,910# (Dry), 59,370# (Wet)
Platform:	2,500#
Tie Down System:	5,000#
Total gross weight	103,410# (Dry), 104,870# (Wet)

The center of gravity of the loaded cask on the trailer is 104.27" above the ground and is not exceed 120% of the axle track (axle track is 95").

A2.5.4 Cask Operations Equipment

The K-Basin operations equipment components of interest relative to weight considerations include the immersion pail and immersion pail seal lid. These components represent the operational equipment which influence loading on the crane and loadout pit immersion pail support structure. Although the weight of these structures influence total load path loading, the design for the in-pit equipment incorporates buoyancy force of the submerged pail volume and retains full crane capacity for the loaded cask.

Summary of component and system weight loading:

Component	Pounds
Pail	5,700 (#)
Pail Lid	600 (#)
Cask	36,570 (#)
Cask Lid	1,890 (#)
Cask Lifting Attachment	500 (#)
мсо	1,900 (#)
MCO Contents	15,685 (#)
MCO Water	1,210 (#)
MCO Shield	1,360 (#)
MCO Loaded (wet)	20,160 (#)
Pail Slings	400 (#)
Pail Lift Beam	550 (#)
Pail Water w/cask	850 (#)
MCO/Cask Annulus Water	250 (#)

A2.6 CONTAINMENT BOUNDARY

The containment boundary consists of the cask body cylindrical shell, bottom plate and the lid. The lid bolts and seals are also part of the containment boundary as is the drain and vent cover plates, bolts and seals. The containment boundary is designed to be an ASME Section III, Subsection NB Class I component as applicable. The Subsection NB rules for materials, design, fabrication and examination are applied to all of the above components to the maximum practical extent. The containment boundary is shown on Figure A2.6-1. The acceptability of the containment boundary under the applied loads is based on the following criteria:

- ASME Code Design Stress Intensities
- Fatigue Failure to be Precluded
- Brittle Fracture to be Precluded
- Buckling to be Prevented

The values for material properties, design stress intensities (S_m) and design fatigue curves for Class 1 components given in Part D of Section II of the ASME B&PV Code shall be used for the containment boundary materials. Allowable stress levels for containment components are outlined in Table B4.3-4.

The design properties of other materials are based on industry-recognized specifications, or standards, or on appropriate test data.

A2.7 CAVITY SIZE

The basic structure of the cask cavity is a right circular cylinder. The cask cavity has a length of 160.50 inches and an internal diameter of 25.19 inches. A 4.0 inch land is located towards the top of the cavity. This land has an internal diameter of 24.25 inches. The cavity of the TN-WHC cask is depicted in Figure A2.6-1.

A2.8 HEAT DISSIPATION

The cask is designed to dissipate the design basis heat load of the payload while maintaining cask component temperatures within acceptable ranges. The thermal evaluation is provided in Section B5.0. The following is a summary of the heat to be dissipated during normal and accident conditions:

Normal Conditions

Payload	Surface Heat Flux At MCO Sidewalls	Surface Heat Flux At MCO Top	Surface Heat Flux At MCO Bottom	Total Watts Per MCO
Maximum	12.7 Watts/ft ²	6.0 Watts/ft ²	0	950
Minimum	0	0	0 .	0

(The defined sidewall surface heat flux occurs over the lower 11.7 ft. of the MCO)

Accident Conditions

Payload	Surface Heat Flux at Center 28 in Section of MCO Sidewall	Surface Heat Flux at Remainder of MCO Sidewall	Total Watts Per MCO
Maximum	30 Watts/ft ²	12.7 Watts/ft ²	1200
Minimum	0	0	0

A2.9 SHIELDING

The most significant shielding design features of the cask are the thick walled forged stainless steel cask body and lid. The cask body has a minimum wall thickness of 7.25 inches and a minimum bottom thickness of 6.13 inches. Additional shielding is provided by the fuel assemblies, the baskets, and the MCO. The cask design does not included separate neutron shielding because of the relatively low neutron source term in the spent fuel.

The shielding analysis of the cask is performed using industry standard codes and conservative modeling assumptions. An evaluation of the shielding performance of the cask was performed assuming dry cask conditions. This evaluation is based on the maximum source term payload.

The bounding source term used for the shielding evaluation is the Mark IV fuel elements, 0.95 U-235 irradiation to 16% Pu-240, thirteen years after discharge from the N reactor.

The gamma and neutron analyses are performed using the one dimensional SAS1 module of SCALE-4, with the 27n-18g coupled cross-section library. This uses the codes XSDRNPM and

XSDOSE to calculate surface flux and translate the flux into dose rates away from the cask surface. ANSI standard flux-to-dose factors, within SCALE-4, are used for the dose calculation at the selected points.

The method in which the cask and its contents are modeled for the shielding analysis and the shielding analysis results are described in the Section B3.0.

A2.10 CASK LIFTING ATTACHMENT

The lifting attachment for the cask are the two lifting trunnions, two brackets and two gussets. The trunnions, brackets and gussets are designed per ANSI N14.6 with a factor of safety of three to yield or five to ultimate, whichever is most restrictive.

A2.11 TIEDOWN ATTACHMENTS

The cask is held down by the cask hold down device which is part of the tiedown system. There are no tiedown attachments required at the cask. The tiedown system is designed to withstand the tiedown vertical 2g loads. The cask tiedown system design and load evaluations are provided in Section B7.0. Detailed dimensions of the tiedown system are shown on drawings H-1-81539, sheets 1 to 3.

Figure A2.6-1 TN-WHC Cask Containment Boundary

References For Section A2.0

- Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.
- ASME Boiler and Pressure Vessel Code, Section III, Subsection NB, American Society of Mechanical Engineers, NY, 1992. (1992 Revision).
- Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More, ANSI N14.6, American National Standards Institute Inc., NY, 1993,
- Fischer, L. E. and Lai, W., 1985, Fabrication Criteria for Shipping Containers, NUREG/CR-3854 UCRL-53544, Lawrence Livermore National Laboratory, Livermore, California.
A3.0 PACKAGE CONTENTS

A3.1 GENERAL DESCRIPTION

A3.1.1 Physical Form

The Cask contents consist of a Multiple Canister Overpack (MCO) which is the primary containment for the fuel elements. MCOs are 24 in. (0.61 m) outside diameter, stainless steel pipe slightly over 13 ft (4 m) long, with the metallic uranium fuel elements in baskets stacked inside (Figure A3.1-1). Approximately 400 of these fuel containers (MCOs) will be handled.

A3.1.2 MCO Weights and Dimensions

The approximate weights of the MCO components and some dimensions are supplied in Table A3.1-1.

References For Section A3.0

 Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.

Payload configuration	Figure 14 of Ref. 1
MCO length	Figure 15 of Ref. 1
MCO outer diameter	Figure 15 of Ref. 1
MCO wall thickness	Figure 15 of Ref. 1
Water - Kg (lb)	551 (1,210)
MCO w/o shield plug & empty Kg (lb)	862 (1,900)
MCO shield plug (30.5 cm thick) Fully assembled - Kg (lb)	616 (1,360)
Zr Clad - Kg (lb)	445 (980)
Fuel and Clad - Kg (lb)	6,835 (15,050)
5 MK IV Baskets w/54 Mk IV Elements per basket - Kg (lb)	7,115 (15,685)
Total flooded maximum MCO weight Wet - Kg (lb)	9,144 (20,160)

Table A3.1-1 Weights and Dimensions of MCO Components

A4.0 TRANSPORT SYSTEM

A4.1 TRANSPORTER

System Components

The design of the trailer is shown on drawings H-1-81555, H-1-81556, and H-1-81557. The basic components are:

- Main Beams
- Frame
- Deck
- Kingpin
- Landing Legs
- Axles
- Suspensions
- Wheels
- Tires
- Brakes

The major dimensions are as follow:

- Overall length 40', With the tractor approximately 54'
- Overall width 10'
- Overall height 17' 7" (loaded at top of cask lifting attachment)
- Loaded deck height 3'
- Loaded ground clearance 12"

The trailer has three axles. The axles have a nominal capacity of 22,000 lbs per axle. The axle track is 95". The trailer has three air ride suspensions. Each suspension has a rated capacity of 25,000#. The tri-axle assembly will be controlled by a single automatic height control valve. A manual override system will also be provided to raise or lower the rear of the trailer as needed.

Landing legs is adequately braced to the frame of the trailer. A 38" square bearing pad is provided for each landing leg to accommodate the soil bearing restrictions. The pad will be placed under the legs on an as needed basis and not permanently attached to the legs.

 $275/R \ge 22.5$ - Load Range H Bridgestone Tires stated rating on the side wall shall be 6,175# per tire. Actual load on the tire will not exceed 90% of the stated rating or exceed 600# per inch of the tire width. The loaded section for this tire is 11.9".

Design Load Factor

The trailer is designed to meet the requirements of the Hanford Specification. The trailer system is capable of resisting the forces for road, as described below.

Design load requirements:

2.5 G down vertical
2.0 G up vertical
1.5 G lateral both directions
2.0 G fore
1.5 G aft
Parked
1.5 G down vertical

The weight distribution (1G down) for the six axle combination shall be approximately 10,000 lbs on the steering axle, 37,250 lbs on the tractor drive axles, and 57,620 lbs on the trailer triaxle assembly.

A4.2 TIEDOWN SYSTEM

The basic components of the system are:

- · Frames and Beams
- Cask Tiedown Device
- Cask Hold Down Device
- · Cask Support Device

The eight frames, two cross beams and four support braces (including the weld attachments of the vertical support frames to the support pads of the trailer) are the major components of the tiedown system. The loads from the cask are transmitted by the frames to the trailer. The cask tiedown device consists of two rotating flanges, six tiedown bolts, and two hold down pins. The cask hold down device consists of four hold down arms which bolted to the brackets of the cask tiedown device. The cask support device consists of one cylindrical cup, bottom plate, and fourteen (14) attachment bolts. A detailed design drawing for the cask tiedown system is provided in Section A9.1.

The cask is supported by the support device (cylindrical cup) at the bottom and secured by the tiedown device (two rotating flanges) at the top. The two rotating flanges can be opened and closed (by removing the six tiedown bolts and rotated from the hold down pins) for loading and unloading the cask. Figure A4.2-1 shows the opened and closed positions of the rotating flanges of the cask tiedown device. The cask is transported in the vertical orientation with the lid end facing up.

Figure A4.2-1 TN-WHC Cask Tiedown System - Opened and Closed Positions

A4-3

A4.3 SPECIAL TRANSFER REQUIREMENTS

None.

A4.4 APPENDIX

Structural Analysis of the Trailer

E-15166

TABLE OF CONTENTS

Section

1.	INTRODUCTION	1
2.	SUMMARY OF RESULTS	
з.	COMPUTER MODEL AND ANALYSIS	
4.	. LOADING CRITERIA	
	4.1 Trailer Weight	9
	4.2 Wind Loading	9
	4.3 Parked Loading	9
	4.4 Computer Load Cases	9
5.	5. SUPPLEMENTAL CALCULATIONS	
	5.1 Maximum Main Beam Stress	11
	5.2 Maximum Cross Beam and Other Structural Stress	11
	5.3 Loads on Seismic Lugs	12
	5.4 Deflections	12

APPENDIX A - MEMBER PROPERTIES

- APPENDIX C COMPUTER OUTPUT
- APPENDIX D SEISMIC ANALYSIS DATA
- APPENDIX E ~ CALCULATION OF OVERTURNING G LOAD
- APPENDIX F FATIGUE ANALYSIS

1. INTRODUCTION

This report contains a very detailed computer analysis made of this trailer. A computer model which is virtually identical with the actual trailer construction has been developed and the various loading conditions applied. There were seven separate computer analyses made. See Section 4.5 of this report for a listing of the load cases and their corresponding data. The computer output for all load cases is given in Appendix C.

All analyses were made in a conservative manner. Thus, the results and conclusions contained in this report will give a safe view of the trailer's ability to withstand the specified loading.

The computer model used is shown in considerable detail in Figures 1, 2, 3, and 4. The properties of the members are given in Appendix A.

The allowable stresses used are 50% of the yield stress for all loading cases. All allowables are in accordance with the specification.

C.K. McDonald, Ph.D., P.E. Alabama Registration No. 9586

2. SUMMARY OF RESULTS

The maximum stresses are compared to the allowables below. See Appendix C for the computer output for all loading conditions. The actual and allowable stresses are in psi.

<u>Components</u>

<u>Actual</u> Allowable

Maximum Main Beam Stress, psi43,38450,000Maximum Cross Beam and Other Structural Stress, Psi16,82818,000

The main beam is T1 steel with a minimum yield stress of 100,000 psi. All other structural is A-36 steel.

E-15166

HNF-SD-SNF-FDR-003 Rev. 0

3. COMPUTER MODEL AND ANALYSIS

The computer model for the trailer is shown in Figures 1, 2, 3, and 4. The model contains approximately 5,000 nodes and 6,000 elements/members. The units used in this analysis are lbs. and inches.

The analysis was made utilizing the computer code ANSYS 5.3 operating on a Pentium 100 Megaherz computer.

See Appendix C for the computer output all load cases.

Modeling a trailer, although appearing deceptively simple, presents some special modeling problems. This is because you are modeling an assemblege of plates and beams with a relatively course mesh. The purpose is to ascertain the overall structural integrity of the trailer, thus a coarse mesh is adequate. However, for a trailer, most of the beam type elements can only bend in one direction, the other direction is restrained by a continuous weld or closely spaced bolts. In some case, such as corners of the trailer, both directions are restrained from localized bending. Since the beams are only attached to the plates at nodes in the computer model, unrealistic bending stresses are sometimes predicted by the computer.

In this model, in order to eliminate these unrealistic bending stresses in some beam elements, the computer input is adjusted such that it does this without affecting the integrity and results of the model. This is done by setting the distance from the nuetral axis to near zero in the real constants for that element that cannot bend. This eliminates the stress without affecting the model. The reason that the value is set to near zero but not zero is because the computer will stop each time and question the zero and this is cumbersome in performing the analysis.

A4.4-3

The localized bending of the beams does not affect the overall structural integrity of the trailer which is maintained by the web plates and the floor deck.

MAIN BEAM Webs 54 53 57 50 56 17 52 51 . 28.5' 28.5" 8100 7. Figure 4 - Nodal Plot at X = 0 (Rear End of Trailer) Note: This pattern in increments of 100 is generated for the length of the beam. All nodes are not used at ever station on the trailer.

ANSYS 5.3 OCT 22, 1996 12:14:46 PLOT NO. 1 NODES NODE NUM CP ACEL XV=1 DIST=97.35 *ZF=-28.5

Z-BUFFER

A4.4-8

E-15166

4. LOADING CRITERIA

4.1 Trailer Weight

The total trailer weight used in the analysis is 86,100 lbs, including the cask and tie down system.

4.2 Shock Loads

The shock loads applied are 2.5 g downward, 2 g upward, 2g fore, and 1.5g aft. A load of 1.5 g lateral is specified but a load of 0.5g lateral overturns the trailer when loaded, see reactions for the lateral load analysis, page C-25, to confirm this. The seismic loads also includes a lateral load when the trailer is tied down with the seismic struts. See Section 4.4 below for a detailed discussion of the computer loading.

4.4 Parked Loading

The parked shock factor is 1.5 g vertical.

4.5 Computer Load Cases

The above loadings are imposed by computer in the following load cases.

A) 2.5g Vertical Down

The trailer is supported at the kingpin and on the rear axles.

B) 2.0g Vertical Up + Deadweight

The entire trailer will never see this load because it would leave the ground. However, an individual component could see it. Thus, to be

A4.4-9

conservative, the entire trailer is loaded with 2g upward plus deadweight and the trailer is supported at the seismic struts, which is conservative.

C) 2.0g Fore + Deadweight

The trailer is supported by the kingpin in the fore direction and by the kingpin and wheels in the vertical direction.

D) 1.5g Aft + Deadweight

The trailer is supported in the aft direction on the kingpin and vertically by the wheels and kingpin.

E) 1.5g Parked (File PARK.DAT)

The trailer is supported by the wheels and landing gear.

F) Seismic + Deadweight

The trailer is supported entirely by the four seismic struts. This is conservative because the trailer is also supported vertical by a pad directly under the cask. The trailer is also supported laterally by friction on the pad and on the tires and landing gear (or tractor).

G) 1.5 Lateral + Deadweight

The maximum load that can be applied laterally without overturning the trailer is 0.5g. An additional lateral load is applied by seismic, as noted above.

5. SUPPLEMENTAL HAND CALCULATIONS

5.1 Maximum Main Beam Stress

The main beam structal stresses are given on pages C-1 through C-7. The maximum stress is:

```
S = 43,384 \text{ psi} (\text{page C-4})
```

The allowable stress for T1 steel which has a minimum yield of 100,000 psi, is 50,000 psi. In additional to the conventional structural stresses, which are maximum in the beam flanges by well known beam theory, the concentrated stresses in the beam were calculated by use of finite elements in the web. These stresses are given on pages C-15 through C-21. The maximum concentrated stress is given on page C-17 and is 75,325 psi. This concentrated stress is only 75% of the yield stress and occurs at the 90 degree turn at the start of the gooseneck. Note that the plots on pages C-15 through 21 are of such scale that the location of the maximum cannot be seen. Therefore, to confirm the location of the maximum and to check the stresses at other locations.

5.2 Maximum Stress in Cross Beams and Other Structural

These stresses are given on pages C-8 through C-14. The maximum is:

S = 16,828 psi (page C-14) The allowable for A-36 steel is .5(36000) = 18,000 psi

A4.4-11

5.3 Loads on Seismic Strut Lugs

The loads on the seismic struts are shown on page C-28. The maximum loads for which the lugs on the trailer should be designed are:

 $F_X = 43,982$ lbs (Longitudinal load on lug) $F_Y = 35,185$ lbs (Vertical load on lug) $F_Z = 53,066$ lbs (Lateral load on lug)

5.4 Deflections

The deflections of the main beam along the 24" deep span are given on pages C-22 through C-28. For convenience in determining the locations of these deflections the coordinates of the nodes are given on page C-29. The x dimension on the coordinates is the location rear to front, measured from the rear of the trailer.

APPENDIX A

MEMBER PROPERTIES

E-15166

٦

AppENDIX A - Member Properties
Real I Main Beam Web

$$t = \frac{1}{2}$$
"
Real 2 Main Beam Flange Modeled As
A BEAM. Area is AdJUSTED to
Account for Distance to Outer
Fiber of Beam.
 $I = \frac{5}{12}$ "
 $I = \frac{625(9)^3}{12} = 37.97 \text{ m}^4$
 $I = \frac{9}{12} = \frac{1}{12} \cdot \frac{193}{12} = \frac{193}{12} \cdot \frac{193}{12} \cdot \frac{193}{12} = \frac{193}{12} \cdot \frac{193}{12} \cdot \frac{193}{12} \cdot \frac{193}{12} = \frac{1000}{12} \cdot \frac{193}{12} \cdot \frac{193}{12}$

E-12166

$$\begin{aligned} & -A \\ & -A$$

51-4.4A

A-4

$$\frac{P_{CNL}(1)}{A = 4, 27 \text{ in}^{2}} \frac{1}{1} = 35.3 \text{ in}^{4} \frac{1}{12} = 12.0 \text{ in}^{4}$$

$$\frac{A = 4, 27 \text{ in}^{2}}{A = 2.40 \text{ in}^{2}} \frac{1}{1} = 35.3 \text{ in}^{4} \frac{1}{12} = 12.0 \text{ in}^{4}$$

$$\frac{R_{COL}(12)}{A = 2.40 \text{ in}^{2}} \frac{1}{1} = 5.40 \text{ Jag} \text{ Ia}$$

$$\frac{R_{COL}(12)}{A = 2.40 \text{ in}^{2}} \frac{1}{1} = 7.49 \text{ in}^{4} \frac{1}{122} \cdot .479 \text{ in}^{4} \frac{1}{122} \cdot \frac{1}{10} \text{ in}^{4} \frac{1}{122} \frac{1}{10} \text{ in}^{4} \frac{1}{122} \cdot \frac{1}{12} \text{ in}^{4} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{10} \text{ in}^{4} \frac{1}{122} \cdot \frac{1}{10} \text{ in}^{4} \frac{1}{122} \frac{1}{10} \text{ in}^{4} \frac{1}{122} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{12} \frac{1}{10} \frac{1}{12} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{12} \frac{1}{10} \frac{1}{$$

A-5

$$\frac{R_{eAL} 19}{t = 3/8"} \quad \text{Web Stiffensens}$$

$$\frac{T_{eBL} 20}{t = 3/8"} \quad \text{Web + Stiffensens}$$

$$\frac{R_{eAL} 20}{t = 1/2" + 3/8" = 7/8"} \quad \text{Web + Stiffensens}$$

$$\frac{T_{eBL} 21}{t = 5/8 + 3/8 = 1"}$$

$$\frac{T_{eBL} 21}{t} \quad F_{eBL} + \quad \text{Stiffensens}$$

$$A = 8.5 \quad T_{1} = \frac{8.5(1)^{3}}{12} \cdot 708 \text{ in}^{4} \quad T_{2} = \frac{1}{10} \frac{(8.5)^{3}}{12} \cdot 51.17}{110!}$$

$$\frac{R_{eaL} 22}{t} \quad \text{Web Stiffensens}$$

$$A = 8.5 \quad T_{1} = \frac{8.5(1)^{3}}{12} \cdot 708 \text{ in}^{4} \quad T_{2} = \frac{1}{10!} \frac{(8.5)^{3}}{12} \cdot 51.17}{110!}$$

$$\frac{R_{eaL} 22}{t} \quad \text{Web Stiffensens}$$

$$A = 2(.375)(4) = 3 \text{ in}^{2}.$$

$$T_{1} = \frac{2(.375)(4)^{3}}{12} \cdot 4 \text{ in}^{4} \quad T_{2} = 2\frac{(4)(.375)^{3}}{12} \cdot .035}{110!}$$

Rev. 0

HNF-SD-SNF-FDR-003

A-6 Real 23 6xux 2 CASK Suppts A = 10.4 12 I = 50.5 11. Real 24 8×8× 2 CMSK Suppts A=14.4 102 I = 32.9 m. Real 25 Dummy Member to Represent Real 24 Dummy Member to Represent HOLD DOWN DEVICE.

APPENDIX B

(deleted)

APPENDIX C

COMPUTER OUTPUT DATA

HNF-SD-SNF-FDR-003

Rev. 0

E-15166

HNF-SD-SNF-FDR-003

ο

ANSYS 5.3 OCT 22 1996 10:09:09 FLOT NO. 2 ELEMENT SOLUTION SUB =1 TIME=1	51 (NOAVG) TOP DMX = .308347 SMN =-13139 SMX =15802 -13139 -13139 -13139 -13139 -13139 -13139 -13139 -276.221 -	
		A4.4-26
		red
н		1.5g park

HNF-SD-SNF-FDR-003

0

Rev.

E-15166

ο

ο

E-15166

0

0

E-15166

HNF-SD-SNF-FDR-003

Rev. 0

E-15166

0

0

C-22

PRINT F	REACTION S	DLUTIONS P	ER NODE				
***** POS	I TOTAL RE	ACTION SOL	UTION LISTI	NG	••		
LOAD STEP	1 SU	BSTEP-	1 E- 0				
THE FOLLO	NO X,Y,Z	SOLUTIONS	ARE IN GLOB	AL COO	RDINATES		
NODE	FX	FY	FZ				
1315		71584.	99501E-	04	~ ~	<u>и</u> —	
B391 -	10515E-05	72064.	.99605E-	04	2.5	VenT	
TOTAL VALUE	ES 105158-05	.215275+06	.101908-0	6			
/OUTPUT FI	LE. JOKE.DA	т					
NRSE FOR TOLERANCE	LABEL- Y .180000	BETWEEN	36.000	7)UD	36.000	KABS-	o
THE FOLLO	WING DEGREE	OF FREEDO	M RESULTS A	RE IN	GLOBAL CO	DRDINATES	
NODE	UY						
3413 -	1.1393						
3513 - 3613 -	1.1525 1.1593						
3713 - 3813 -	1.1996						
3913 -	1.2872						
4113 -	1.4987						
4313 -	1.5388						
4413 -	1.5826						
4613 - 4713 -	1.6061 1.6269						
4813 -	1.6408						
5013 -	1.6589						
5213 -	1.6668						
5413 -	1.6659						
5513 - 5513 -	1.6621 1.6562						
5713 - 5913 -	1.6402 1.6302						
5913 - 6913 -	1.6263						
6192 -	1.4155						
6154 -	1.3655						
6195 -	1.3992						
6270 -	1.4313						
6271 -	1.4466						
4272 -	1.4613						
•	TI NODAL DE	GREE OF FR	EEDCH LIST	1:23 ••			
1045 5757	. 1 51	195TEP-	1				
7192.	1.000	LOND CV8	0 21				
THE FOLLO	WING DEGREI	OF FREEDO	M RESULTS A	ASE IN	GLOBAL CO	ORDINATES	
NODE 6451	UY 1.6019						
6462	1.6085						
		100					
MARTINUM AN 1222	5313	16.5					
VA103 -0							

C-23

..... FOSTI TOTAL REACTION SOLUTION LISTING TINE 1.0000 LOAD LOAD STEP-LOAD CASE- 0 THE FOLLOWING X.Y.Z SOLUTIONS ARE IN GLOBAL COORDINATES HODE FX FY 37402. FZ
 NODE
 17402.

 1315
 37402.

 1305
 37415.

 8391
 .17222E+06
 11293.
29 Fore+ Dut 2.5113 TOTAL VALUES VALUE .17222E+06 86110. .41582E-07 /OUTPUT FILE- JOKE.DAT NRSE FOR LABEL- Y TOLERANCE- .180000 BETWEEN 36.000 AND 36.000 KABS- D. THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES
 IDDE
 UY

 211
 -.16313

 3413
 -.16638

 3513
 -.16537

 3613
 -.16537

 3813
 -.16537

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 3813
 -.15517

 4130
 -.12764

 4413
 -.12764

 4513
 -.12764

 4513
 -.1076

 4913
 -.97918-01

 5013
 -.96556-01

 5113
 .96556-01

 5113
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 .905428-01

 5513
 ۰. 6171 -.13245 6171 -.13793 ICETA NODAL DEGREE OF FREEDON LISTING LIAG STAF. 1 SUBSTEP. 1 CITTS 1.0000 LOAD CASE. 5 THE FOLLOWING DEGREE OF FREEDOM RESULTS AND IN GLOBAL CCORDINATES 5355 UV 6451 - 593922-01 6452 - 58226E-01 6453 - 92731E-01 MAXIST ASSOLUTE VALUES 1000 3113 NAUTE -116936

C-24

THE FOLLOWING X, Y, Z SOLUTIONS ARE IN GLOBAL COORDINATES NODE FX FY 22057. FZ 1315 1115 1335 22077. 8391 -.12916E+D6 41975. -1.8836 1.59 AFT + Dwt TOTAL VALUES VALUE - .12915E+06 86110. .406092-07 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES 3001 UY $\begin{array}{c} 1211 & -, 64155 \\ 12413 & -, 64155 \\ 3513 & -, 62106 \\ 3613 & -, 68747 \\ 3713 & -, 72064 \\ 3813 & -, 72374 \\ 3913 & -, 72674 \\ 3913 & -, 73574 \\ 3913 & -, 73574 \\ 3913 & -, 73574 \\ 4131 & -, 95876 \\ 4231 & -, 95876 \\ 4231 & -, 95876 \\ 4431 & -, 95876 \\ 4431 & -, 95876 \\ 4431 & -, 95876 \\ 4431 & -, 10180 \\ 4431 & -, 0180 \\ 4431 & -$ 6195 - .85994 6270 6271 -.89490 6272 - 91835 6273 - 92933 POSTI HODAL DEGREE OF FREEDOM LISTING LOAD STEP. 1 SUBSTEP. 1 TIME- 1.0000 LOAD CASE. 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLODAL COORDINATES ***** 16571 KODAL DEGREE OF FREEDOM LISTING ***** LOAD STEP: 1 SUBSTRD: 1 TIME: 1.0000 LOAD CASE: 0 THE FOLLOWING LEGREE OF FREEDOM RESULTS AND THE GLASSAL COORDINATES 5003 UY +151 -1.0455 5172 -1.0523 6451 -1.0195 MAXIMUM ABSOLUTE VALUES NGC2 5310 VALL2 -1.0535

C-25 THI + Dust TIME 1.0000 LOAD CASE 0 THE FOLLOWING X, Y, Z SOLUTIONS ARE IN GLOBAL COORDINATES FX FY 83133. -25849. .69122E-06 28826. NODE FZ 1315 28642. . 14413. 8391 TOTAL VALUES VALUE .69122E-06 86110. 43055. THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE UY 3211 -.45253 3413 -.46556 3513 -.47059 3713 -.48894 4013 -.52341 4013 -.54115 4113 -.60659 4213 -.62166 4313 -.64164 4513 -.64553 NODE 117 . 4513 -.65638 4613 -.66859 $\begin{array}{cccc} 4713 & - .68023 \\ 4813 & - .68063 \\ 4813 & - .68061 \\ 5913 & - .70184 \\ 5913 & - .70184 \\ 5913 & - .70182 \\ 5133 & - .71235 \\ 5513 & - .71235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .7235 \\ 5513 & - .5514 \\ 5135 & - .55235 \\ 6136 & - .55314 \\ 6271 & - .55623 \\ 6272 & - .5562$ 6272 -.59642 6273 -.60261 FOSTI NODAL DEGREE OF FREEDOM LISTING ***** 10AB STEP- 1 SUBSTEP- 1 TIME- 1.0010 LOAD CASE- 0 THE FULLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES N748 N7 6161 - 71989 6160 - 71933 6163 - 71962 102019000 ABSOLUTE VALUES 1102 5313 VALUE - .72102

E-15166

HNF-SD-SNF-FDR-003 Rev. 0

.

~		2	-
C.	-	2	ь

THE FOL	LOWING X, Y, Z	SOLUTIONS A	RE IN GLOBAL	COORDINATES
NODE	FX	FY	FZ	
1315 1335 6538 6984	-,578812-06	34236. 29269. 30359.	78444E-04 .78479E-04	
TOTAL VA	LUES • .578816-06	.12916B+06	.34632E-07	·
THE FOL	LOWING DEGREE	OF FREEDOM	RESULTS ARE	IN GLOBAL COORDINATES
NODE	UY	·		
3413 3513	26173			
3613	26250			
3813	26738			
4013	27399			
4113	26723			
4313	25372			
4513 4613	24721			
4713 4813	23438 22473			
4913	21452 20147			
5113	18853			•
5313	16077			•
5513	13063			
5613	986148-01			
5813 5913	82047E-01 65168E-01			
6013 6192	47974E-01 27501			
6193 6194	27452 27486			
6195	27508 27513			•
6270	27470			
6272	- 27348 - 27254			
	POSTI NODAL DI	GREE OF FR	SEDOM LISTIN	s •••••
LOAD ST TIME*	TEP- 1 SU 1.0000	LOAD CASE	1 E= 0	
THE FO	LLOWING DEGRES	E OF FREEDO	M RESULTS AR	E IN GLOBAL COORDINATES
NODE 6461	27065E-01			
6463	41094E-01 34013E-01			
NAX IMUM HODE VALUE	ABSOLUTE VAL	UES		
		1		•

.

E-15166

_					C-27
	THE FOI	LOWING X	Y,Z SOLUTIONS	ARE IN GLOBAL	COCRDINATES
	NODE	FX	FY	FZ.	
	4203			-3072.6	
	9100	28567.	-20494.	-34467	
	9101	28192.	-20217.	34002.	
	9102	-28214.	-22571.	-28471.	
	9103	-28533.	-22827.	28793.	
	TOTAL VAN	LUES 1.3722	-86109.	.22757E-01	
	/OUTPUT	PILE JOK	.DAT		
	TIMB-	1,0000	LOAD CAS	E- 0	
	THE FOL	LOWING DEC	TREE OF FREEDO	M RESULTS ARE	IN GLOBAL COORDINATES
	NODE	UY			
	3211	3798.4			
	3413	6738.5			
	3613	9200.0			
	3713	14123.			
	3813	19046.			
	3913	23969.			
	4113	20892.			
	4213	55147.			
	4313	60070.			
	4413	64993.			
	4613	34930			
	4713	79762			
	4813	64685.			
	4913	69608.			
	5013	94531.			
	5213	.104388+	06		
	5313	.10930E+	06		
	5413	.114226+	06		
	5513	.11915B+	06		
	5713	.128998+	06		
	5813	.13391E+	06		
	5913	.138848+	06		
	6013	.143768+	D6		
	6193	33558.			
	6194	33158			
	6195	35292.			
	6196	37425.			
	6271	43825			
	6272	45958.			
	6273	48091.			
	••••• PO.	ST1 NODAL	DEGREE OF FRE	BOOM LISTING .	••••
	LOAD STE TIME=	P. 1 1.0000	SUBSTEP= LOAD CASE	- 0	
	THE FOLL	WING DEG	RE OF FREEDOM	RESULTS ARE I	N GLOBAL COORDINATES
	NODE	UY			
	6461	.149508+0	6		1
	5462	.145678+(16		
	6463	147598+06			
M	XIMUM ABS	OLUTE VAL	UES		
NO	DE	6461			
"	. 200	13306+06			
-					

2	2	0
<u> </u>	~	0

THE FOL	LOWING X,Y.	Z SOLUTIONS	ARE IN GLOBAL	COORDINATES
NODE	FX	FY	FZ	
9100	-43982.	31553.	53066.	
9101	-43982.	31553.	- 53066.	1
9102	43981.	35185.	44361.	DELSA
9103	43981.	35185,	-44381.	- C. 3MIC
TOTAL VA	LUES			-
VALUE	-2.5872	.133478+06	.87420E-03	•

C-2	29
-----	----

	SELECTED	NODES, DSYS=	0			
DE	x	Y	Z	THXY	THYZ	THZX
211	170.42	36.023	-28.500	.00	.00	.00
413	174.00	36.000	-28.500	.00	.00	.00
-513	176.00	36.000	-28.500	.00	.00	.00
613	177.00	36,000	-28.500	.00	.00	.00
713	183.00	36.000	-28.500	.00	.00	.00
1813	189.00	36.000	-28.500	.00	.00	.00
1913	195.00	36.000	-28.500	.00	.00	.00
.013	201.00	36.000	-28.500	.00	.00	.00
213	227.00	36.000	-20.500	.00	.00	.00
213	233.00	36.000	-20.500	.00	.00	.00
412	239.00	36.000	-28 500	.00	.00	.00
512	251 00	36.000	-28.500	.00	.00	.00
613	257.00	36,000	~28.500	.00	-00	.00
713	263.00	36.000	-28.500	.00	.00	.00
.813	269.00	36.000	-28.500	.00	.00	.00
913	275.00	36.000	-28.500	.00	.00	.00
013	281.00	36.000	-28.500	.00	.00	.00
113	287.00	36.000	-28.500	.00	.00	.00
213	293.00	36.000	-28.500	.00	.00	.00
1						
υE	х	Y	Z	THXY	THYZ	THZX
די 3.	X 299.00	¥ 36.000	Z-28.500	THXY .00	THYZ ,00	THZX .00
те .3 413	X 299.00 305.00	¥ 36.000 36.000	Z -28.500 -28.500	THXY .00 .00	THYZ .00 .00	THZX .00 .00
DE .3 413 513	X 299.00 305.00 311.00	Y 36.000 36.000 36.000	Z -28.500 -28.500 -28.500	THXY .00 .00 .00	THYZ .00 .00 .00	THZX .00 .00 .00
DE .3 413 513 613	X 299.00 305.00 311.00 317.00	Y 36.000 36.000 36.000 36.000	Z -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00	THYZ .00 .00 .00	THZX .00 .00 .00 .00
DE .3 413 513 613 713	X 299.00 305.00 311.00 317.00 323.00	Y 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00	THYZ .00 .00 .00 .00	THZX .00 .00 .00 .00
DE .3 413 513 613 713 813 912	X 299.00 305.00 311.00 317.00 323.00 329.00	Y 36.000 36.000 36.000 36.000 36.000 36.000	Z -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00	THYZ .00 .00 .00 .00 .00	THZX .00 .00 .00 .00 .00
DE .3 413 513 613 713 813 913 012	X 299.00 305.00 311.00 317.00 323.00 329.00 335.00 341.00	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00	THYZ .00 .00 .00 .00 .00 .00	THZX .00 .00 .00 .00 .00 .00
DE .3 413 513 613 713 813 913 013 192	X 299.00 305.00 311.00 317.00 323.00 329.00 335.00 341.00 214.00	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00	THYZ .00 .00 .00 .00 .00 .00 .00	THZX .00 .00 .00 .00 .00 .00 .00
DE .3 413 513 613 713 813 913 013 192 193	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 214.00 203.60	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	Z -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
DE 413 513 613 713 813 913 013 192 193 194	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 214.00 203.60 206.20	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00	THYZ .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THZX .00 .00 .00 .00 .00 .00 .00 .0
DE 3 413 513 613 713 813 913 013 192 193 194 195	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 214.00 203.60 206.20 208.80	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	Z -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .00 .00 .0
DE .3 413 513 613 713 813 913 192 193 194 195 196	X 299.00 305.00 311.00 323.00 325.00 341.00 203.60 206.20 208.80 211.40	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .00 .00 .0
TE .3 413 513 613 713 813 913 192 193 194 195 196 270	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 203.60 206.20 208.80 211.40 211.40	$\begin{array}{c} Y\\ 36.000\\ 36.0$	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
DE .3 413 513 613 713 813 913 013 192 193 194 195 196 270 271	X 299.00 305.00 311.00 323.00 329.00 341.00 204.00 203.60 206.20 208.80 211.40 214.60 219.20	$\begin{array}{c} Y\\ 36.000\\ 36.0$	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
PE .3 413 513 613 713 813 913 013 192 193 194 195 196 270 271 272	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 203.60 206.20 208.80 211.40 216.60 219.20 221.80	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
PE .3 413 513 613 713 813 913 013 192 193 194 195 196 270 271 272 273	X 299.00 305.00 311.00 323.00 329.00 335.00 341.00 203.60 206.20 206.20 208.80 211.40 216.60 219.20 221.80 224.40	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	Z -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
.3 413 513 613 713 813 913 013 192 193 194 195 196 270 271 272 273 461	X 299.00 305.00 311.00 323.00 325.00 341.00 203.60 206.20 208.80 211.40 216.60 219.20 221.80 224.40 348.00	Y 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000	2 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
DE .3 413 513 613 713 813 013 192 193 194 195 196 270 271 272 461 162	X 299.00 305.00 311.00 323.00 335.00 341.00 203.60 206.20 208.80 211.40 216.60 219.20 221.80 224.40 348.00 343.33	$\begin{array}{c} Y\\ 36.000\\ 36.0$	2 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0
DE 3413 513 613 713 813 913 192 193 194 195 196 270 271 272 273 461 162 163	X 299.00 305.00 311.00 323.00 329.00 341.00 203.60 208.80 211.40 216.60 219.20 221.80 221.80 224.40 348.00 343.33 345.67	Y 36.000	2 -28.500	THXY .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	THYZ .00 .00 .00 .00 .00 .00 .00 .0	TH2X .00 .00 .00 .00 .00 .00 .00 .0

APPENDIX D

SEISMIC ANALYSIS DATA

A4.4-52

E-15166

APPENDIX E

CALCULATION OF OVERTURNING G LOAD

APPENDIX F

FATIGUE ANALYSIS

APPENDIX F - FATIGUE ANALYSIS

A fatigue analysis is made, using 400 events for all loading cases except the deadload case, which can have an infinite number of occurances as shown in the following. Figure I-9.1 from ASME Section III Boiler and Pressure Vessel Code is used for the analysis.

The deadweight peak stress can be obtained by linear ratio from the 2.5 g vertical stress, page C-15. Thus, S = (1/2.5)(66610) = 26,644 psi. One half of the total stress is the alternating stress, thus Salt = 13,322 psi. From Fig I-9.1, the allowable cycles are infinite and the usage factor is zero for deadweight. The peak stress for all load cases given on pages C-16 through C-21 is conservatively assumed to be the alternating stress. The peak stress for 2.5 g vertical down is halved for the alternating stress since it is known that this is one directional stress.

The usage factors are:

U1 = 0 (Deadweight calculated above) U2 = 400/19000 = .02 (page C-15) U3 = 400/6000 = .07 (page C-16) U4 = 400/1050 = .38 (page C-17) U5 = 400/2000 = .20 (page C-18) U6 = 400/12000 = .03 (page C-19) U7 = 400/11500 = .04 (page C-20) U8 = 400/3000 = .13 (page C-21) U = U1 + U2 + U3 + U4 + U5 + U6 + U7 + U8 = 0 + .02 + .07 + .38 + .20 + .03 + .04 + .13 = .87 < 1.0, thus adequate.

A5.0 ACCEPTANCE OF PACKAGING FOR USE

A5.1 NEW PACKAGING

A5.1.1 Acceptance Requirements

Acceptance of the Cask and Transportation System will based on inspection and tests that will be performed by the fabricators prior to shipment to the Hanford Nuclear Reservation site. These tests will be performed in accordance with written procedures prepared by the fabricators and approved by Transnuclear. In addition documentation packages will be submitted for acceptance. The documentation will be unit specific and demonstrate that the unit fulfills the final material, welding and dimensional requirements of the approved design drawings and the procurement specification, as required by the Hanford Specification.

A5.1.2 Inspection and Testing

A5.1.2.1 Cask

The inspection and testing requirements will satisfy the requirements of the Hanford Specification. All cask containment boundary welds will be radiographically inspected. The final surface of all welds will be liquid penetrant inspected. The fabrication drawings will show cask regions that require the following inspections:

- a. Liquid Penetrant Inspection: This inspection will be performed in accordance with ASME⁽¹⁾ Section V based upon the acceptance criteria from ASME Section III. Any indication of a defect will be removed, repaired and reinspected as required by the Hanford Specification.
- b. Radiographic Inspection: Welds that require radiographic inspection will performed in accordance with the ASME Code, Section III. Any indication of a defect will be removed, repaired and reinspected as required by the Hanford Specification.

The following tests will be performed to satisfy the requirements of the Hanford Specification:

- a. Leakage Rate Testing: Helium leakage rate tests will be performed to verify the leak tightness of the seals of the containment boundary of the cask. Leakage shall not exceed 1 x 10⁻⁷ scc/sec, air.
- b. Pressure Testing: Each unit will be hydrostatically tested in accordance with the requirements of the Hanford Specification. The acceptance criteria is no evidence of leakage.

After fabrication and prior to first use, a visual inspection shall be performed to verify that all accessible cask surfaces have no damage (cracks, surface discontinuities with depth exceeding minimum wall thickness requirements, etc.), and are free of grease, oil or other contamination. The sealing surfaces will be examined for cracks or scratches that may result in acceptable leakage. In general, a confirmation will be made that all cask components are in acceptable condition for use.

A5.1.2.2 Cask Lifting Attachment

The lifting attachment will be subjected to a load test of 150% of the maximum service load. A confirmation will be made that all components of the lifting attachment are in acceptable condition for use.

A5.1.2.3 Conveyance

Standard pre trip inspection shall be performed by the driver in accordance with CDL requirements. Annual inspection shall be performed in accordance with standard DOT specification.

Upon completion of the trailer fabrication and prior to the installation of the upper tiedown system, the trailer will have a static load test. It will be tested at 120% of the expected concentrated load.

A5.1.2.4 Cask Operations Equipment

The immersion pail and loadout pit support structure are both designed to meet the criteria of ANSI $14.6^{(2)}$. These structures will be subjected to a load test of 150% of the maximum service load, which is testing to 90,000 pounds.

Assembly testing will be performed at the fabricators facility for each of the component interface boundaries permitted to be evaluated prior to shipment.

A5.2 ANNUAL INSPECTION REQUIREMENTS

The annual inspection and testing requirements will be provided in the Installation, Operation, Repair, and Maintenance Manuals (IORM) for the System. Included in the manuals will be the inspection and testing to be performed, and the acceptance requirements.

A5.2.1 Acceptance Requirements

The annual inspection requirements for the cask is the visual inspection of the cask components including seals and sealing surfaces. Typically the replacement of the seal and

bolts (depending on usage) occur at this time. The Containment Verification Leak Test is performed after the change of the seals using approved procedures. Acceptance requirements is the leakage rate of 1×10^{-7} scc/sec, air.

A5.2.2 Inspection and Testing

Load testing of the cask operational equipment will be required following any major maintenance or alteration to the load path structure, or if an incident occurred in which any of the load-bearing components may have been subjected to stresses substantially in excess of those for which the structure has been qualified by previous testing, or following an incident that may have caused permanent distortion of the load-bearing parts.

Inspection of the equipment including the cask lifting attachment and the cask will be performed by operating personnel for indications of damage or deformation prior to each use. Maintenance personnel, or other non-operating personnel, will be required to visually inspect load path components at intervals not to exceed three months in length for indications of damage or deformation.

The annual Containment System Verification Test is required to be performed on the cask in accordance with ANSI N14.5⁽³⁾.

References For Section A5.0

- ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, NY, 1992.
- Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More, ANSI N14.6, American National Standards Institute Inc., NY, 1993.
- Leakage Tests on Packages for Shipment of Radioactive Materials, ANSI N14.5, American National Standards Institute Inc., NY, 1987.

A6.0 OPERATING REQUIREMENTS

A6.1 GENERAL REQUIREMENTS

The TN-WHC Transport Cask and the K-Basin Operational Equipment have been designed to facilitate the loading of fuel from the K-Basins into the Multi-Canister Overpacks (MCOs). The procedures provided in this Section provide the necessary steps associated with the operation of the TN-WHC Transport Cask and the K-Basin Operational Equipment. Integration of these procedures into site specific procedures will form the bases for system facility operation.

The Operational Equipment and procedures are based on the concept of "start clean, stay clean". This concept has been incorporated into the design of the K-Basin immersion pail, support structure and loadout pit work platform.

The immersion pail support structure is a welded steel structure which provides an operations guide system and support for the TN-WHC cask during loadout pit MCO loading operations. When loaded into the support structure at the operator access level, the cask is lowered into and sealed with the immersion pail system which precludes contamination of the cask's surfaces. This "start clean, stay clean" operational system thereby improves turnaround time and reduces operator dose rates by eliminating the need for extensive cask decontamination efforts following MCO loading operations.

As part of the operational procedures development, a radiation dose evaluation has been performed for the MCO loading operations. This evaluation provides a baseline for the development of site specific operating procedures which incorporate As Low As Reasonably Achievable (ALARA) principles to minimize the dose to operators during the MCO loading operations.

A6.2 TN-WHC MCO LOADING OPERATIONS

The following operating procedures are provided to permit understanding of operations sequencing and generic task identification. Detailed system operating procedures are provided in the "Installation, Operation, Repair and Maintenance Manual, (IORM)".

A6.2.1 Receiving Cask in K Basin

- 1. Prepare cask receiving area for TN-WHC cask and trailer receipt.
- 2. Open door and back loaded cask trailer into facility.
- 3. Set tractor brakes, shut off tractor engine, change trailer override valve to manual, lower the rear of the trailer, set trailer brakes and install wheel chocks. Connect building air supply to the landing leg air supply glad hand, lower the landing legs until the trailer is lifted off the tractor.
- 4. Disconnect tractor electrical and air connections from trailer, release the fifth wheel and remove tractor from facility. Lower the front of the trailer until the trailer becomes relatively level.
- 5. Remove the four quick release locking pins from the vertical hold down devices and disengage the arms. Place the pins in the unlock position.
- 6. Align crane hooks with cask lifting trunnions and raise crane hoist to apply slight load on crane.
- 7. Remove the six tie-down bolts from the cask tie-down device. Place the bolts in the storage positions provided on the work platform.
- Lower the removable trailer work platform from the working side of the trailer and disconnect cable. Relocate the safety chain.
- 9. Swing both sides of the tie-down device to the open position.
- 10. Raise the cask to clear the trailer.
- 11. Move the cask over the safe load path to the load out pit.
- 12. Align the cask with the immersion pail and lower into the pail until weight of cask is removed from crane hook.
A6.2.2 In-Pool Loading Operations

- 1. Detorque the cask lid bolts in sequence indicated. Ensure all bolts have disengaged from cask. Note: Bolts are captive on the cask lid.
- 2. Slowly raise crane hoist to remove cask lid. Position cask lid in area where lid oring can be visually inspected for feathering, crack, etc.. If damage is noted reject cask and send for maintenance. If no damage is noted place cask lid in storage position. Take care to protect cask and lid sealing surfaces.
- 3. Retrieve immersion pail lid from storage location with crane and lifting slings, and place in position on top of immersion pail structure. Check alignment of bolt holes. (Note: Immersion pail lid sealing surfaces will now be mated to the external surface of the MCO and the inner edge of the immersion pail structure.) Release immersion pail lid and remove slings from crane. Store immersion pail slings.
- 4. Engage the four immersion pail lid fasteners and inflate the immersion pail seal.
- 5. Tighten the pail lid fasteners "hand tight" and inflate the MCO seal.
- 6. Connect immersion pail water vent line.
- 7. Fill MCO with processed water until within one inch of top of pail structure.
- 8. Fill pail with clean deionized water through the fill connection while venting from the pail lid vent line. When fill water discharges from vent line, disconnect vent line from valve quick disconnect, and configure water fill line to the immersion pail water control box. Observe pail and MCO seals for any water leakage, correct as required.
- 9. Install the immersion pail lift beam on the crane hooks. Retrieve pail system slings from storage location and connect pail system slings to crane.
- 10. Slowly raise pail system until the alignment lines on the immersion pail lifting lugs are exposed at the lock pin housing. Lift lock pin gate and retract lock pins until the pin gate can close again. This ensures full retraction.
- 11. Using the crane, slowly lower the immersion pail system to the bottom of the loadout pit. Remove slings from master link and secure sling hooks to the sling storage boxes. Position immersion pail lift beam and crane for MCO loading.
- 12. Perform MCO loading operations per MCO loading procedures.
- Position the crane with immersion pail lift beam and reattach pail lifting slings to the master link. Lift the immersion pail to the water surface using the lifting slings.

- 14. Rinse all surfaces free of possible fuel particulate with water at a hold point where the immersion pail lid is approximately 6 inches above the water surface. Continue raising the immersion pail while rinsing the MCO and pail lid surfaces with clean deionized water to remove any residual contamination.
- 15. Slowly raise pail into the support structure guides until the pin engagement point is reached. Stop crane and engage immersion pail locking pins.
- 16. Slowly lower immersion pail until resting on locking pins.
- 17. Remove immersion pail lifting slings and lift beam from crane.
- Complete MCO closure and transport preparation using MCO operations procedures.

A6.2.3 Preparation of Loaded Cask for Transport

- Decontaminate MCO shield plug top surfaces and immersion pail lid, as required. Vent air from MCO and pail seals. Permit water to flow past seals to flush contamination. Isolate deionized water supply.
- 2. Survey the pail lid prior to removing the lid.
- 3. Disengage four pail lid fasteners and attach lifting slings from immersion pail lid to crane.
- 4. Lift immersion pail lid, place it in storage and disengage the lift beam from crane.
- 5. Inspect lid end of cask body for cleanliness. Attach the cask lid to the crane and align with alignment pins and slowly lower the lid onto the cask body. Remove any weight from crane hoist.
- Disengage crane hook from cask lid. Torque cask lid bolts in appropriate sequence.
- 7. Raise cask from the immersion pail.
- Verify cask surfaces are free of contamination. Monitor surface radiation dose rates. (Note: Take pail water sample to verify water cleanliness prior to next MCO loading cycle.)
- 9. Transfer the cask to the trailer. Lower cask on to the trailer. Reposition cask operations platform on trailer and engage cask tie-down system.
- 10. Disengage crane from the trunnions and move free of trailer.

- Perform cask and trailer final radiation and contamination surveys. Decontaminate as required.
- 12. Connect building air supply to the landing leg air supply glad hand. Open door and back tractor to front of trailer. Raise the front of the trailer to match the tractor fifth wheel and lock in place. Set tractor brake and shut off tractor engine.
- 13. Retract landing legs, change building air supply from landing leg to trailer air glad hand. Raise the rear of the trailer to defined location. Change the override valve to automatic, disconnect the building air supply and connect tractor air lines and electrical cable. Remove wheel chocks.
- 14. Release cask for transfer to CVD.

A6.3 CASK UNLOADING PROCEDURES

Transfer of the MCO to the Cold Vacuum Drying facility and subsequent transfer to the Canister Storage Building dose not require movement of the transfer cask from the transfer trailer. Site specific operating procedures will be developed using trailer and cask general operating procedures outlined in Section 6.2 of this report and the Systems "Installation, Operation, Repair and Maintenance Manuals". MCO unloading procedures will be provided with supply of the MCO.

A6.4 EMPTY PACKAGING PROCEDURES

Similar to the discussion provided in Section 6.3 the transfer cask is not intended to be moved from the transfer trailer during Cold Vacuum Drying, unloading the MCO in the Canister Storage Building and reloading the transfer cask with an empty MCO for the return to 105 K East and 105 K West Basins. Site specific operating procedures will be developed using trailer and cask general operating procedures outlined in Section 6.2 of this report and the Systems "Installation, Operation, Repair and Maintenance Manuals". Empty MCO loading procedures will be provided with supply of the MCO.

A6.5 CASK LOADING RADIATION DOSE ESTIMATES

Table 6.5-1 provides the estimated total dose for operators loading the MCO at the K-Basins. These dose estimates have been prepared based on the cask loading procedures described in Section 6.2 and estimates of the number of operators and time required to perform specific cask loading operations. The background dose rates were provided by WHC. The cask dose rate estimates were provided by TN based on the limiting MCO source terms. Cask dose rates were adjusted to reflect average source for integrated dose assessment. The factor representative of the average source has been defined as 42 % of the design bases maximum source.

Table A6.5-1 Estimated Total Dose

	Number of Time		Total Man	Problem and	My. Source			
Activity	Pacola		Notes Anders	Discussion		Background Dose	Cask Faid Does	Total Dose
Receiving Cask in K-Basin		(m)	noure	LUX BUAN	(mmmn)	(man-mrem)	(men-mram)	(man-mrem)
1) Prepare receiving area	,			-				
2) Back trailer into facility	:			2	0	4	0	4
3) Prepare trailer for tractor deconnect	-	0.0	0.25	2	0	0.5	0	0.5
4) Disconnert trailer		0.25	0.6	2	0	1	0	1
St Reisson for down lock size	1	0.25	0.25	2	0	0.5	٥	0.5
6) Attack come		0.1	0.1	2	٥	0.2	0	0.2
7) Rentrate the datase halter	1	0.25	0.5	2	0	1	0	1
B) Come builter electric	2	0.4	0.5	2	0	1.6	à	1.6
	1	0.1	0.1	2	0	0.2	ō	0.2
10) Bains make two of the los		0.1	0.2	2	0	0.4	ò	04
11) Manual Caller Free of Piller	2	0.2	0.4	2	0	0.8	ò	0.8
T LI MOVE CREK EI KREGOLK PK	•	0.2	0.2	5		1	õ	
12) Cower cases into invivension part	1	0.Z	0.2	6	0	i	ã	
							•	
6.2.1 Total						12.2	•	
							•	122
In Pool Loading Operations								
1) Detorque cask al bolts and desengage	2	0.5	1	10	0	10	•	*7
2) Kemove cask lid	1	0.3	0.3	10	Ď		ž	10
3) Instal inversion pail 3d	2	0.5	1	10	ō	10	ž	
4) Engage immersion pail Id fasteners	1	0.3	0.3	10	ā		š	10
Tighten pell id fastaners and inflate MCO seal	1	0.2	0.2	10				3
6) Attach water vent lines	1	0.1	0.1	10	ă	;		2
7) Fill MCO with water	1	0.4	04	10				
 Fill peå and cask with water 	1	0.4	0.4	10		1		•
9) Inetal pail iff beam and eings	2	02	0.4	5	ň	;		1
10) Raise pail and release lock pins	2	0.2	0.4	10		:		- <u></u>
 Lower pail, release sings and move crone / beam 	2	0.2	0.4	10				1
12) Load MCO with fuel baskets (2)	2	4	a	2	ň			
13) Position M beam, ettach sings, M to surface	2	0.4	0.8	10	Ň	10		16
14) Rinse lid free of residual contemination	1	0.2	0 2	10	0.044	2		
15) Lift pail and engage lock ping	2	0.2	0.4	10	0 257		0.0168	2.017
16) Lower pail onto lock pine	1	0.1	0.1	10	0.252	1	0.1008	4.101
17) Remove sings and Lift beam	2	0.2	04		0.202	1	0.0252	1.025
18) Complete MCO transport preparation (3)	ō	0	0	ō	0.632	2	0.1008	2.101
		-	-			Ŷ	0	0
6.2.2 Total					-	60	0.2438	80.24

					Avg. Source			
	Number of	Time	Total Man	Sackround	(1)	Backpround Dose	Cast Field Done	Total Cose
Activity	People	(hr)	Hours	(month)	(mmmm)	(man.mmm)	((
5.2.3 Preparation for Cask Departure							(distriction)	(distant for the p)
 Decon Id, vent seal, isolate water supply 	2	0.5	1	10	0.252	**		
2) Servey lid	ī	0.1		10	1 200	10	0.202	10.25
3) Remove pail id festeners and attach since	÷	0.1	0.7	10	1.302	1	0.1302	1.13
4) Remove pail 5d and place in storage		0.7	02	10	0.252	2	0.0504	2.05
5) Attach and install cask 5d	÷	0.2		10	0.252	2	0.0604	2.05
6) Disencess crace books and some lid bolts	:	0.4		10	0.568		0.2352	4.235
7) Raine cask from neil	:	0.0	-	10	0.568	10	0.588	10,59
Bi Subury onek suffran and and unter (d)		0.1	01	10	3,854	1	0.3864	1.388
B) Mout out and any Key Marine on the los	2	0.1	0.1	10	7.224	1	0.7224	1.722
10) Relates they and more store has of builts	2	0.3	0.6	5	3 884	3	2.3184	5.316
10) Reduce Cask and move crane tree or traver	2	0.2	0.4	2	2 184	0.5	0.8736	1.874
11) / wrom that receipen survey	1	02	02	2	7.224	0.4	1,4448	1.545
12) Connect stactor to stater	1	02	02	2	0.84	04	0.168	0.560
13) Keract landing gear	1	01	01	2	0.84	02	0.084	0.284
14) Release cask for transfer to CVD								
6.2.3 Total					-	35.8	7,3038	431
Summary								
6.2.1 Total Dose								
6 2.2 Total Come						12.2	9	12.2
6.2.3 Total Oose						80	0.2438	80.24
					-	35.8	7.3038	43.1
						128	7 5474	135 5
Total Intigrated Time for MCO Loading Operation	14.5	hours						
Total Dose for MCO Loadies Operation								

 Average Source is 42% of Maximum
 Time and Dose are based on MCC Loading :
 Time and Dose To Be Determined by Others
 System Design Precludes Contamination ng Specification

A6.6 LEAK TESTING TN-WHC CASK

A6.6.1 Containment System Periodic Verification Test

Method: Helium Mass Spectrometer Envelope, Pressurized Envelope Method (ANSI 14.5, A3.10.2)

Equipment required: Helium Mass Spectrometer Leak Detector Vacuum Pump

Inspection of the Vent Port and Lid Seals

- a. Verify that the cask is dry.
- b. Remove quick-disconnect from Vent Port and install cover.
- c. Connect the vacuum pump/helium mass spectrometer to the Drain Port quickdisconnect. Evacuate the cask cavity.
- d. Install plastic hood around the top of the cask to cover the lid and the Vent Port.
- e. The plastic hood is purged and pressurized with helium to slightly above atmospheric pressure.
- f. Perform leak test using the leak detector.
- g. Acceptance criteria is 1×10^{-7} std cc/sec, air.

Inspection of Drain Port Seal

- a. Install quick-disconnect in Vent Port.
- b. Remove quick-disconnect from Drain Port and install cover.
- Connect the vacuum pump/helium mass spectrometer to the Drain Port quickdisconnect. Evacuate the cask cavity.
- d. Install plastic bag to cover the Drain Port cover.
- e. Purge bag with helium and pressurize to slightly above atmospheric pressure.
- f. Perform leak test using the leak detector.
- g. Acceptance criteria is 1×10^{-7} std cc/sec, air.

A6.6.2 Containment System Assembly Verification Test

Method: Pressure Rise (ANSI 14.5, A3.5)

Equipment required: Vacuum pump Vacuum bell

Inspection of the Lid Seal

- a. Verify that the cask is dry.
- b. Evacuate the cask cavity using the Vent Port quick-disconnect.
- c. Perform leak test.

- d. Test sensitivity is 1×10^{-3} std cc/sec, air.
- e. Install Vent Port cover.
- f. Backfill with the appropriate fill gas.

Inspection of Vent and Drain Port Seals

- a. Place vacuum bell over Vent Port cover.
- b. Evacuate the vacuum bell.
- c. Perform leak test
- d. Test sensitivity is 1×10^{-3} std cc/sec, air.
- e. Place vacuum bell over Drain Port cover.
- f. Repeat steps b-d.

A7.0 QUALITY ASSURANCE REQUIREMENTS

A7.1 INTRODUCTION

Transnuclear's Quality Assurance Program is applicable to the safety related items (WHC Safety Class I) and activities performed on this project.

TN's QA Program Manual, " Quality Assurance Program for Design, Fabrication, Assembly, Testing, Maintenance, Repair, Modification and Use of Packaging for Transport of Radioactive Materials, E-1473", was prepared and implemented to satisfy the criteria of Subpart H to 10CFR71. This QA Program has been approved by the USNRC. In addition, WHC has reviewed the program and concluded that it is acceptable for use on this project.

All Transnuclear cask components are designated as "safety-related" except quick-disconnects and associated seals, lubricants, and nameplates. Lifting attachments and other hardware associated with lifting the cask at the K-Basin sites are designated "safety-related". All other equipment (e.g. trailer, platform, pail) of the cask transportation system and operational equipment are non-safety related.

A7.2 GENERAL REQUIREMENTS

A7.2.1 Organization

The organizational line relationships within TN and between TN, WHC and a Major Participating Organization are identified in Figure A7.2-1. Dotted lines on the organization chart (Figure A7.2-1) indicate communication and solid lines indicate direction, as appropriate.

A7.2.2 Quality Assurance Program

Transnuclear will follow the requirements of their QA Program, E-1473 for all components that are designated safety-related. Major Participating Organizations, whose services are used during the course of this project, will develop and implement their own Quality Assurance programs, as approved by Transnuclear.

A7.2.3 Design Control

TN has established measures to assure that regulatory requirements and packaging design have been or are correctly translated into drawings, specifications, procedures and instructions. Design inputs are documented and approved in accordance with QA procedures. Changes to design shall be identified, reviewed, approved and incorporated into the appropriate revision of design documents. These changes require the same review and approval as the original.

A7.2.4 Procurement Control

TN's safety related procurement documents shall identify which documents are to be prepared by a major participating organization and which documents are to be submitted to TN for review, information and/or approval. The procurement documents shall also specify which documents are to be retained, controlled and maintained by the major participating organizations for specified periods and which records shall be transmitted to TN prior to use of the packaging.

A7.2.5 Instructions, Procedures and Drawings

Instructions, procedures and drawings shall include quantitative and/or qualitative acceptance criteria to verify that activities affecting quality have been satisfactorily accomplished.

A7.2.6 Document Control

TN has established and implemented procedures to control the issuance of TN documents which prescribe activities affecting quality. These procedures define document control measures to assure adequate review, approval, release and distribution of original documents and subsequent revisions. Major participating organizations shall establish and implement document control procedures in accord with their approved QA program.

A7.2.7 Control of Purchased Material, Equipment and Services

Measures have been established and implemented to assure that all purchased material, equipment, and services conform to procurement documents. Major participating organizations shall provide objective evidence that safety-related components meet all quality requirements.

A7.2.8 Identification and Control of Materials, Parts and Components

Measures have been established and implemented to identify and control materials, parts and components. These measures shall assure identification and control by appropriate means during the fabrication, installation and use of the material/part/component. This shall prevent the inadvertent use of incorrect or defective items. The identification and control of safety-related items shall be traceable through procurement, fabrication, inspection and test records.

A7.2.9 Control of Special Processes

Measures have been established and implemented for the control of special processes used in the fabrication, modification and repair of safety-related components. Special processes shall be performed in accordance with approved written procedures. Personnel who perform special processes shall be formally trained and qualified in accordance with applicable codes, standards or specifications.

A7.2.10 Inspection

Measures shall be established and implemented to inspect materials, parts, processes or other activities affecting quality to verify conformance with documented instructions, procedures, specifications, drawings, or other procurement documents. These inspections shall be performed by personnel other than those who performed the activity being inspected. Modifications and/or repairs to and replacement of safety related components shall be inspected in accordance with the original design and inspection requirements or approved alternatives.

A7.2.11 Test Control

A program has been established and implemented to perform required acceptance and operational tests, as identified in procurement documents and the application for component approval. The tests shall be performed by qualified personnel in accordance with approved written instructions, procedures, and/or checklists. Test results shall be documented and evaluated to demonstrate that the acceptance criteria has been met.

A7.2.12 Control of Measuring and Test Equipment

Major participating organizations are responsible for appropriate selection, calibration and control of measuring and test equipment. Measuring and test equipment used for verifying safety related characteristics shall have documented, valid relationships to nationally recognized standards. Instrumentation and test equipment supplied by TN for testing following loading operations shall be calibrated and controlled in accordance with QA procedures.

A7.2.13 Handling, Storage and Shipping

TN documents shall identify handling, storage and shipping requirements. These shall include instructions for marking, special lift points, orientation for storage, shipping and preservation. Based on this, the major participating organizations shall invoke all required handling, storage and shipping requirements in accordance with their approved, written procedures.

A7.2.14 Inspection, Test and Operating Status

Major participating organizations shall implement their established systems for determining and identifying the acceptability of safety-related components regarding inspections and tests to be performed. Only those safety-related components which have met the required acceptance criteria shall be used. Nonconforming components shall be clearly identified to prevent inadvertent use.

A7.2.15 Nonconforming Material, Parts or Components

Measures shall be established and implemented to control materials, parts and components which do not conform to requirements to prevent their inadvertent use in subsequent manufacturing operations or during service. Nonconformance reports will be utilized for the procedural control of nonconformances.

A7.2.16 Corrective Action

TN personnel shall assess the need for corrective action based on audit findings, inspection reports, test reports, nonconformance reports, etc. as required by our QA procedures.

A7.2.17 Records

For each safety related component a program shall be established and implemented to assure that sufficient written records are maintained to furnish evidence of activities affecting quality.

A7.2.18 Audits

TN internal audits and audits of major participating organizations' activities shall be planned and conducted by the TN Project QA Engineer as required by QA procedures. Major participating organizations shall perform audits as required by their QA programs.

A8.0 MAINTENANCE

A8.1 GENERAL REQUIREMENTS

All manuals necessary for the operation and maintenance of the Cask and Transportation System will be provide at the time of delivery.

The general requirements for the cask would be the replacement of the seals on an annual basis. In addition, a visual inspection of all bolt holes is required to detect damage or galling. Replacement of damaged helicoils would occur at this time. A Containment System Verification Leak Test is required whenever the seals are replaced.

The cask operations equipment for the K-Basin loadout pit includes few mechanical systems and requires little maintenance activity. Maintenance support is limited to that required as a result of system operations inspections performed prior to each cask loading cycle and other system inspections performed monthly, tri-monthly and annually. Components which may require maintenance include immersion pail seal lid seals; immersion pail seal lid fasteners; support structure lock pins; demineralized water reservoir seals, hoses, and connectors; air lines and connectors; and lift slings and pail attachments. Due to the integrity of the design and limited operational components maintenance support is minimal.

A8.2 INSPECTION AND VERIFICATION SCHEDULES

Installation, Operation, Repair, and Maintenance Manuals (IORM) will be provided with the delivery of the Cask and Transportation System. These manuals will contain the required inspection and verification schedules.

Periodic inspection requirements for the operational system are minimal and include the following:

Support inspection - Prior to each submersion cycle, the pail lifting slings and clevis pins are to be visually inspected for wear, frayed slings, or other signs of deterioration. If detected, part replacement is performed with the pail supported by the immersion pail support structure.

Immersion pail seal verification - When the immersion pail lid is in place between the pail and the MCO and seals are inflated, a positive pressure head of deionized water is applied to the contained space between the two seal boundaries. Loss of air pressure in the seal or evidence of water leakage around the seal provides evidence of seal failure. The immersion pail lid is removed to contaminated equipment repair and the spare immersion pail seal lid is substituted.

Immersion pail integrity - Visual inspection for leakage when the pail is supported by

the immersion pail support structure can be performed by observing a lowering of the water elevation when the reservoir is isolated from the immersion pail. While such failure is highly unlikely, the inspection process is capable of detecting this condition so that repairs can be affected prior to significant deterioration.

Miscellaneous - Monthly inspection of painted surfaces, air fittings and water fittings is performed in addition to the normal daily observation by operating personnel.

A9.0 APPENDIX

A9.1 TN-WHC CASK AND TRANSPORTATION SYSTEM DRAWINGS

A9.2 CASK OPERATIONS EQUIPMENT ANALYSES

A9.1 TN-WHC CASK AND TRANSPORTATION SYSTEM DRAWINGS

.....

DRAWING/DOCUMENT NO.	IIILE
WHC Dwg. No. H-1-81533	TN-WHC Cask Transportation System, Arrangement Drawing
WHC Dwg. No. H-1-81534	TN-WHC Cask Transportation System, Assembly Drawing
WHC Dwg. No. H-1-81535	
Sheet 1	TN-WHC Cask Transportation System, Assembly and Parts List
Sheet 2	TN-WHC Cask Transportation System, Cask Body and Parts List
Sheet 3	TN-WHC Cask Transportation System, Cask Body Details
Sheet 4	TN-WHC Cask Transportation System, Lid
Sheet 5	TN-WHC Cask Transportation System, Lid
WHC Dwg. No. H-1-81536	TN-WHC Cask Name Plate
WHC Dwg. No. H-1-81537	TN-WHC Cask Transportation System, Seismic Restraint System
WHC Dwg. No. H-1-81539	
Sheet 1 Sheet 2	TN-WHC Cask Transportation System, Tiedown System TN-WHC Cask Transportation System, Tiedown System Details
Sheet 3	TN-WHC Cask Transportation System, Tiedown System Details
WHC Dwg. No. H-1-81543 WHC Dwg. No. H-1-81544	K Basin Immersion Pail, Lift Beam assembly (2 Sheets) K Basin Immersion Pail, TN-WHC Transport Cask
WHC Dwg. No. H-1-81545	K Basin Immersion Pail Support Structure (2 Sheets)
WHC Dwg. No. H-1-81546	K-Basin Immersion Pail Seal Lid (2 Sheets)
WHC Dwg. No. H-1-81547	K Basin Immersion Pail Assembly
WHC Dwg. No. H-1-8148	K Basin Transport Trailer Work Platform (7 Sheets)
WHC Dwg. No. H-1-81549	K Basin MCO/Cask CVD Lid (2 Sheets)

HNF-SD-SNF-FDR-003 Rev. 0 E-15166

WHC Dwg. No. H-1-81550	K Basin Immersion Pail Ancillary Equipment
WHC Dwg. No. H-1-81551	K Basin Immersion Pail Interface Control Drawing (2 Sheets)
WHC Dwg. No. H-1-81552	K Basin Immersion Pail Lock Pin Guide Assembly
WHC Dwg. No. H-1-81553	K Basin Immersion Pail Support Structure Assembly
WHC Dwg. No. H-1-81554	K Basin Immersion Pail Support Equipment (3 Sheets)
WHC Dwg. No. H-1-81555	Transport Trailer Design (3 Sheets)

E-15166

A9.2 CASK OPERATION EQUIPMENT ANALYSES

Structural analyses of the cask operation equipment has been performed relative to ANSI 14.6 criteria for safety related components in the immersion pail and loadout pit support structure. AISC criteria has been employed for structural evaluations of the steel support structure in combination with the ANSI N14.6 load factors. In addition to analyses of the safety related load path cask operational equipment, the cold vacuum drying lid is evaluated to assure the MCO is contained during cold vacuum drying operations. Table A9.2-1 summarizes results for each of the safety related system operational load path components.

Component analyses performed for non-safety related components include evaluation of the system support structures, including the immersion pail lid, the loadout pit work platform and the trailer work platform. Structural analyses results for these components are summarized in Table A9.2.2.

The following discussion provides a brief description of each calculation package documenting structural evaluations of the operation equipment components.

Immersion Pail - Safety Related Support Load Path (Calculations 457-2003.2 and 2003.3)

Calculation Package 457-2003.2 evaluates the immersion pail against the lifting requirements defined in ANSI N14.6. The calculation includes a determination of the pail weight and buoyancy force, along with evaluations of the bottom plate, lifting lug, lug to shell welds, and primary shell. The design is based on a two (2) point lift load.

Two analysis calculation packages encompass the evaluation of the pail under stand resting conditions. Both calculation packages invoke the load factor requirements defined in ANSI N14.6. The calculation package scopes are delineated as follows:

- Calculation 457-2003.2 evaluates the immersion pail upper flange forging subjected to support structure loading conditions. The design is based on a normal condition four (4) point support load.
- Calculation 457-2003.3 analyzes the immersion pail upper flange forging subjected to support structure loading conditions. The analyses considers a two (2) point support load. A general purpose finite element program, ANSYS, Version 5.2, is used to evaluate this condition.

Additionally, Calculation 457-2003.2 documents the maximum lift load under various loading scenarios. These loading scenarios are summarized below:

E-15166

Load Condition	Description	Load (lbs)
Ι	Setting Pail In Water In Support Stand	9,096
II	Lowering Pail / Empty Cask To Pit Bottom	36,680
III	Raising Pail / Full Cask Off Bottom	53,730
IV	Raising Pail / Full Cask To Stand Height	57,877
V	Raising Fully Loaded Cask From Pit	59.820

Immersion Pail Support Structure - Safety Related Support Load Path (Calculation 457 2005.2)

Calculation Package 457-2005.2 evaluates the immersion pail support structure utilizing the load factor requirements defined in ANSI N14.6. Documented in the calculation package are evaluations of the pail support structure for composite frame buckling and corner post assembly buckling. Tie plates used to provide stability to the structure are sized and evaluated for compression loads. Bearing and shear stress evaluations were performed for the guide assembly and lock pin.

Lift Beam - Safety Related Support Load Path (Calculation 457-2005.3)

Calculation Package 457-2005.3 evaluates the lift beam utilizing the load factor requirements defined in ANSI N14.6. The evaluation documents the structural adequacy of the lift beam weldment and the eye plate.

Cold Vacuum Drying Lid - Safety Related Operations Pressure Loading (Calculation 457-2001.2)

Calculation Package 457-2001.2 evaluates the conditioning lid for internal pressure and lid lifting load conditions. The conditioning lid is used during the MCO vacuum drying operation in the conditioning facility immediately after the MCO is loaded. The internal pressure load is developed as a result of circulating hot water between the MCO outer surface and the inner surface of the cask. Once the cask is within the conditioning facility, the cask lid is removed and the conditioning lid installed. The lid is a "Z" shaped ring. The lower leg of the Z rests on the top of the cask. Three (3) lid bolts are used to join the conditioning lid to the cask. The upper Z leg bears against the MCO top surface. The lid provides pressure boundary (two seals) and pressure restraint during MCO draining/drying in addition to providing additional shielding during the vacuum drying operation.

The lid is assessed utilizing a pressure loading of 60 psi. The lid bolting and the upper Z leg of the lid are influenced by pressure loading.

Additionally, the lid lifting lugs and welds are designed and evaluated to carry the lid weight loading.

Immersion Pail Seal Lid - Non Safety Related (Calculation 457-2004.2)

Calculation Package 457-2004.2 evaluates the immersion pail lid for internal pressure and lid lifting load conditions. Maximum internal pressure of 5 psi is developed by the positive pressure anti-contamination water system. Only the lid bolting and adjacent flange are influenced by a pressure loading of this level.

Additionally, the lid lifting lugs and welds are designed and evaluated to carry the lid weight loading only.

Loadout Pit Work Platform - Non Safety Related (Calculation 457-2007.2)

Calculation Package 457-2007.2 evaluates the loadout pit platform for design loads based on OSHA requirements defined in Title 29 of the Code Of Federal Regulations. Frame brace, weld, and wall plate stresses are limited to the acceptance criteria defined in the requirements of the AISC Code.

Transport Trailer Work Platform - Non Safety Related (Calculation 457-2002.2)

Calculation Package 457-2002.2 evaluates the transport trailer work platform for design loads based on OSHA requirements defined in Title 29 of the Code Of Federal Regulations. Channels, support pipes, end caps, and end cap weld stresses are limited to the acceptance criteria defined in the requirements of the AISC Code.

The following Appendix Sections contain analyses calculation documentation.

A9.2.1 Infinersion Fan Calculation 437-2003.2	
---	--

- A9.2.2 Immersion Pail Calculation 457-2003.3
- A9.2.3 Support Structure Calculation 457-2005.2
- A9.2.4 Lift Beam Calculation 457-2005.3
- A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2
- A9.2.6 Seal Lid Calculation 457-2004.2
- A9.2.7 Loadout Pit Work Platform 457-2007.2
- A9.2.8 Trailer Work Platform 457-2002.2

Table A9.2-1 K Basin Loadout Pit and Related Operation Equipment Safety Related Load Path Components Summary of Stress Analysis

Calculation No.	Drawing No./ Component	Item No.	ltem	Applied Load	Design Check	Calculated Loading	Allowable	Basis	M.S.	
457-2003.2 457-2003.3	457-101/		Bottom Plate	3W	plate bending	17.728 ksi	30 ksi	N14.6	0.41	1
	Immersion	19,1	Pail shell to	3W,	net tension	3.6 ksi	30 ksi	N14.6	0.88	ł
			bottom plate interface	pressure	shell bending & shear	16.636 ksi	30 ksi		0.45	
	Pail	10-11	lug to shell weld	3W	shear	90.680 kips	594 kips	N14.6	0.85	
		10	pail shell flange	3W	lifting - longitudinal bending	24.970 ksi	30 ksi	N14.6	0.17	
		10	pail shell flange, stiffening ring	3W	lifting circumferential bending + torsion circumferential shear	17.938 ksi 0.53 ksi	, 30 ksi 18 ksi	N14.6	0.40 large	HNF-S
		10	pail shell flange, stiffening ring	3W	stand resting bending + torsion (4 pt lift) memb. + bending, Von Mises (2 pt)	17.104 ksi 28.16 ksi	30 ksi 30 ksi	N14.6	0.43 0.065	J-SNF-I
		<u> </u>	lug plate	3W	bearing - lifting lug location	35.771 ksi	75 ksi	N14.6	0.52	Ě
		11	lug plate	5W	net tension - lifting lug location	30.440 ksi	75 ksi	N14.6	0.62	Į
		11	lug plate	5W	shear pull out - lifting lug location	30.434 ksi	48 ksi	N14.6	0.37	Ē
		11	lug plate	3W	bearing - guide assembly location	60.453 ksi	75 ksi	N14.6	0.19	
457-2005.2	457-102/	98,99	assembly	5W	buckling	300 kips	1,064 kips	AISC	0.72	-
	Support	4, 15	tie plates	5W	compression	0.48 ksi	0.694 ksi	AISC	0.31	lev
	Structure	5	corner post	5W	buckling	72.5 kips	75.0 kips	AISC	0.03	•
457-2005.2	457-109/	4	lock pin	5W	double shear	49 ksi –	81 ksi	AISC	0.40	0
	Lock Pin	10	guide assembly	5W	bearing	16 ksi	54 ksi	NC	0.70	
457-2005.3	457-112/	1	lift beam	3W -	beam bending	25.447 ksi	30 ksi	AISC	0.15	
1	Lift Beam		weldment	3W	beam shear	2.769 ksi	18 ksi		0.85	
		L		5W	trunnion shear	11.933 ksi	40.20 ksi		0.70	
		10	eye plate	3 W	tension	14.4 ksi	30 ksi	AISC	0.52	
100 0001 0	100 1000				bearing	10.65 ksi	45 ksi		0.76	
457-2001.2	457-106/		lid flange	pressure	torsion	5.031 ksi	16.7 ksi	NC	0.70	
	Cold	2	bolt	pressure	tension	13.59 ksi	16.7 ksi	NC	0.19	
	Vacuum	8	lifting lug	3 W	bearing	4.093 ksi	30 ksi	AISC	0.86	
	Drying Lid				tension	4.093 ksi	30 ksi		0.86	
					shear	8.187 ksi	18 ksi		0.55	

HNF-SD-SNF-FRD-003

E-15166

	Table A9.2-2	
K	Basin Loadout Pit and Related Operation	Equipment
	Non-Safety Related Components	
	Summary of Stress Analysis	

Calculation	Drawing	Item	Item	Applied	Design Check	Calculated	Allowable	Basis	M.S.
No.	No./	No.		Load		Loading			
	Component			}	1		1		1 1
457-2004.2	457-103/	2	lid flange	pressure	bending	8.936 ksi	25.05 ksi	NC	0.70
	Seal Lid								
		20	bolt	pressure	tension	4.201 ksi	16.7 ksi	NC	0.75
		3	lifting lug	3W	bearing	1.6 ksi	30 ksi	AISC	0.95
		l		Į	tension	1.6 ksi	30 ksi		0.95
					shear	3.2 ksi	18 ksi		0.82
457-2002.2	457-105/	24	channel	125 lbs / ft	bending	8.676 ksi	21 ksi	AISC	0.59
	Trailer				shear	0.820 ksi	14 ksi		0.94
	Work								
	Platform								
		26	plank hook	591 lbs	bearing	1.182 ksi	35 ksi	AISC	0.97
457-2007.2	457-111	4, 5,	brace, extension,	2000 lbs	tube bending	22.077 ksi	27.6 ksi	AISC	0.20
		3	brace		shear	2.0 ksi	18.4 ksi		0.89
		5 to	weld	2000 lbs	combined shear and torsion	1,824 lbs / in	2,545 lbs / in	AISC	0.28
		9							
		9 to	weld	2000 lbs	shear	0.133 ksi	14.4 ksi	AISC	0.99
		7							

HNF-SD-SNF-FRD-003 Rev. 0

E-15166

A9.2-5

Appendix A9.2.1 Immersion Pail Calculation 457-2003.2

	AC ITERNATION	AL CALCUL	ATION PACK VER SHEET	AGE Work	Request/Calc No: 003.2
PROJECT	NAME:		CLIENT:		ORG
K Basin O	perations Equ	ipment	Hanford (Transm	uclear, Inc.)	CALLSTER CON
Immersion PROBLEM	ATION TITL n Pail M STATEME	E: NT OR OBJECTIVE	OF THE CALCUL	ATION:	AN M. WEIT
ANSI NI- System to The two po	4.6 (Reference be used at the oint lift evalue	es the immersion pare e 7.3). The immersion K-Basin Area of the I ttion is performed in C	against the fifting on pail is part of the Hanford site. Calculation 457-2003	a design criteria ae TN-WHC Ca:	requirements listed sk and Transportatio
Revision	Affected Pages	Revision Description	Preparer Name, Initials, Date	Checker Name, Initials, Date	Project Manager Approval/Date
0	1 thru 38	Original Issue	Jeffrey R. Dargis 11-10-96	Ravi Singh 11-14-96	Thomas A. Danne 11-15-96
1	1, 3 thru 39	Revised method of calculating margin of safety, revised weights of components. Correct administrative oversights.	Jeffrey R. Dargis JRD 12-2-96	Ravi Singh 25 12/2/96	Thomas & Daniel Strand Configure 12/15/20

	INDEP	NDENT DESIGN VERIFICAT	ION CHEC	K SHEE	т
Work	Request/Calculatio	n No: <u>457-2003.2</u> Revisio	on _0		
Scop	e Of Analysis File:	This calculation structurally e the lifting design criteria requ	irements of	e immen ANSI N	sion pail again: 14.6.
Revie	w Methodology:	Check Of Calculations Alternate Analyses Other (Explain)		ES_	
Confi	rm That The Work F	equest / Calculation Package	Reviewed	includes	:
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis F Statement of Conc	ose Analysis ions Record Iusions / Recommendations (i	f applicable	- - -	PS PS PS PS PS
Step			Verifi Yes	No N	A Commente
	A. Are the required 1. Material pro- 2. Geometry (c 3. Loading sou if a support define the lo defined? B. Are boundary co	data input complete? perties inawing reference) irce term ing analysis is required to ad state, has it been inditions acceptable?	1111		
2	is the method of analysi	s adequate for the defined scope?	-		
3	is the worst case loading	configuration documented?	V		
4	Are the acceptance crite	ria defined and complete?	~	-	
5	Has all concurrent loadir	g been considered?	V		1
6	are analyses consistent approach?	with previous work for method and		V	PACK-AGE
7	Are the records for input	and output complete?	V		
8 1	s traceability to verified s	software complete?		V	NO SOFTWA
9 1	s the statement of concl and acceptable for the pr	usions and recommendations comple oject and objectives of the defined	ete 🗸		

		NDENT DESIGN VERIFICATI	UN CHECK	SHEET	
Wo	rk Request/Calculation	n No: <u>457-2003.2</u> Revision	_1_		
Sco	ope Of Analysis File:	This calculation structurally ev the lifting design criteria requir	aluates the i	mmersie NSI N14	on pail against
Rev	iew Methodology:	Check Of Calculations			
Còr	nfirm That The Work F	equest / Calculation Package F	Reviewed In	cludes:	
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis f Statement of Conc	ose Analysis ions Record Iusions / Recommendations (if	applicable)		
Sted		Activities	Verificat	ion No N/A	Community
1	A re the required A Are the required Material pro Geometry (A Loading soi H a suppor define the k defined? B. Are boundary co	Ined analysis: data input complete? perties drawing reference) ing analysis is required to wad state, has it been onditions acceptable?	233 253 2		
2	is the method of analys	s adequate for the defined scope?			
3	is the worst case loadin	g/configuration documented?	~		
4	Are the acceptance crite	eria defined and complete?	~		
5	Has all concurrent loadi	ng been considered?	~		†
6	Are analyses consistent approach?	with previous work for method and	-		
7	Are the records for inpu	and output complete?	~		
8	is traceability to verified	software complete?		~	NO SOFTWARE
9	is the statement of conc and acceptable for the p purpose?	tusions and recommendations complete roject and objectives of the defined	rte 🗸		

Á9.2-8

		т	ABLE OF CO	INTENTS	
		-			
Section	Descripti	on			Page
	Calculati	on Package Cov	er Sheet		
	Independ	ent Design Veri	ification Check	Sheet	2
	Table of	Contents		••••••	4
1.0	Synopsis	of Results			
2.0	Introduct	ion/Purpose			6
3.0	Method of	of Analysis			6
4.0	Assumpt	ions/Design Inp	ut		
5.0	Analysis	Detail			
6.0	Summary	of Results / Co	onclusions		
7.0	Referenc	es			
				,	
		Performed		Data	Calculation No. 457 2003

1.0 SYNOPSIS OF RESULTS

Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-101	1	bottom plate	3W	plate bending	17,728 psi	30,000 psi	0.41
457-101	19, 1	pail shell to bottom	3W, pressure	net tension	3605 psi	30,000 psi	0.88
		interface	ļ	& shear	10,030 psi	50,000 psi	0.45
457-101	10 to 11	lug to shell weld	3W	shear	90.68 kips	594 kips	0.85
457-101	10	flange shell	3W	lifting longitudinal bending	24,970 psi	30,000 psi	0.17
457-101	10	flange shell	3W	lifting circumferential bending + torsion	17,938 psi	30,000 psi	0.40
				circumferential shear	530 psi	18,000 psi	large
457-101	10	flange shell	3W	stand resting bending + torsion	17,104 psi	30,000 psi	0.43
457-101	11	lug plate	3W	bearing: lifting lug location	35,771 psi	75,000 psi	0.52
457-101	11	lug plate	5W	net tension: lifting lug location	30,440 psi	75,000 psi	0.62
457-101	11	lug plate	5W	shear pull out: lifting lug location	30,434 psi	48,000 psi	0.37
457-101	11	lug plate	3W	bearing: guide assembly location	60,453 psi	75,000 psi	0.19

Summary of Stress Analysis

The immersion pail design meets the criteria defined in Section 4.2.

NAC INTERNATIONAL	Performed by:	Date: 11-25-96	Calculation No. 457-2003.2 Revision 1	ì
	Checked by: RS	Date: 11/25/96	Page 5 of 39	1

4.0	ASS	UMPT	TONS / DESIGN INPUTS
	4.1	<u>Assur</u>	nptions
		There	are no unverified assumptions within this calculation.
	4.2	Desig	<u>n Criteria</u>
		4.2.1	Tensile Stresses
			$ \begin{array}{ll} \mbox{Calculated tensile stress (based on load factor of 3) } & < \mbox{Syith} \\ \mbox{Calculated tensile stress (based on load factor of 5) } & < \mbox{Syithmate} \\ \mbox{Kutmate} \end{array} (Ref. 7.3) \\ \end{array} $
		4.2.2	Shear Stresses
			$ \begin{array}{ll} \mbox{Calculated shear stress (based on load factor of 3)} & < 0.6 \ x \ S_{ykld} \\ \mbox{Calculated shear stress (based on load factor of 5)} & < 0.6 \ x \ S_{ultimate} \end{array} $
		4.2.3	Bearing stresses
			Calculated bearing stress $\leq 1.5 \times S_y$ (Ref. 7.7.4)
		4.2.4	Material Properties
			Poison's ratio: v =0.3Modulus of Elasticity:E=28.3 x10^6 psi(Ref. 7.7.2)Steel density: ρ_{steel} =0.288 lbs / in ³ .Water density: ρ_{water} =0.036 lbs / in ³ .Form density: ρ_{water} =0.00347 lbe / in ³ .
		4.2.5	Stress Design Checks
			All components evaluated within this calculation package are made of A240 Type 304 stainless steel or or A533 carbon steel. Normalizing the material yield and ultimate strengths by the Reference 7.3 load factors yields the following (See Section 4.2.1 for load factors):
		·	A240 Type 304 Stainless Steel (Reference 7.7.1) Fy: 30 ksi Fu: 75 ksi F/3 30,000 / 3 = 10,000 psi Fy/5 75,000 / 5 = 15,000 psi
A	NAC INTER	NATIONA	AL Performed by:
			Checked by Date: Date: Date 7 of 19

A9.2-12

ASTM A533 Carbon Steel (Reference 7.7.3) Fy: 50 ksi 80 ksi Fu: $F_{\rm v}/3 = 50,000/3$ = 16,700 psi $F_{u}/5 = 80,000/5$ = 16,000 psi Based on the above comparisons of yield and ultimate allowables for the two (2) materials, comparing a factor (LF) of 3 against yield is more restrictive for A240, while comparing a factor (LF) of 5 against ultimate is more restrictive for A533. Only the limiting conditions are evaluated within this calculation package. 4.3 Design Conditons 4.3.1 Temperature Ambient, 100 °F. 4.3.2 Lifting Two Point Lift (set) condition is design controlling. 4.3.3 Pressure Effects Internal Pressure: 5 psi. For a worst case condition, where pail loses internal pressure: $62.4 \frac{lbs}{a^3} \times 25.75 \text{ ft}$ Hydrostatic Pressure at Pit Bottom = in 144 ft2 11.2 psi Hoop Stress, Inner Shell (11.2 psi) Pxr/t75 11.2 x 21.1875 / 0.375 633 psi Longitudinal Stress Hoop Stress / 2 633/2 317 psi = Both the pail hoop and longitudinal pressure stresses are insignificant. Pressure effects on the lid are addressed in a separate calculation. Performed b Date NAC Calculation No. 457-2003.2 geo INTERNATIONAL 11-25-96 Revision 1 Checked by: Date Page 8 of 39 11/25/96

4.4	Weights			
	Cask weight (loaded, o MCO weight (full, dry Cask lid weight MCO cask annulus wa MCO water weight	Iry) =) = ter weight =	57,600 lbs (R 18,320 lbs (R 2,044 lbs (R 250 lbs (R 1,200 lbs (R	eference 7.1.1) eference 7.1.1) eference 7.1.2) eference 7.1.2) eference 7.1.2)
4.5	Elevations of the Fuel	Pit (Reference 7.	<u>l.3)</u>	
	Pit floor elevation: Fuel floor elevation: Load pit floor elevation Top of pit wall elevation Water elevation:	- 25'-9" - 20'-9" a: 0'-0" on: + 2'-0" - 4'-9"		
4.6	Pail Dimensional Data	(Reference 7.6.1)	Ŀ	
	4.6.1 <u>Inner Shell</u> ID _{shell}	= 42.	0 in	
	t _{shcli}	= 0.3	75 in	
	length _{shell-inner}	= 163	.5 in	
	$length_{shell}$ (t = 0	.375 in) = 163	.5 - 23 = 140.5 i	n
	A_{shell} (t = 0.375	$\begin{array}{ll} \text{in} &=& \pi x \\ &=& 49.4 \end{array}$	[((42.0 / 2) + 0.3 922 in ²	375) ² - (42.0 / 2) ²]
	V _{pail}	$= \pi$ $= \pi$ $= 226$	x $(ID_{shell} / 2)^2$ x $(42.0 / 2)^2$,520 in ²	x length _{shell} (total) x 163.5
	OD _{flange}	= 46.0) in	
	t _{flange}	= 2.0	in, 1.375 in (sha	ived)
	length _{flange}	≅ 8 .0	in	
	A _{flange}	$= \pi x$ = 276	[(46.0 / 2) ² - (42 460 in ²	0 / 2) ²]
	Performed	or geo	Date:	Calculation No. 457-2003.2 Revision I
	Checked by	-20	Date:	Page 9 of 39

	ID _{upper guide}	-	41.25 in
	lengthupper guide	ĩ	2.0 in
	Aupper guide	=	$\pi x [(46.0 / 2)^2 - (41.25 / 2)^2]$ 325.50 in ²
	ID _{lower} guide	-	40.0 in
	length _{lower guide}	×	2.0 in
	A _{lower guide}	Ŧ	$\pi x [(44.75 / 2)^2 - (40.0 / 2)^2]$ 316.17 in ²
4.6.2	Outer Shell Containing (consider as circular sec	Foar tion)	11)
	ID _{shell-outer}	-	50.15 in
	L _{shell-outer}	-	0.1196 in (11 gauge)
	length _{shell-outer}	æ	102 in
	A _{shell-outer}	2	$\pi \times [(50.15 / 2)^2 - ((50.15 / 2) - 0.1196))^2]$ 18.798 in ²
4.6.3	Bottom Plate		
	L _{holkum} plate	87	2.0 in
	size	=	53.5" x 42.75" with 11.75" x 15" chamfered corners
	Abottom plate	- 4	(53.5 x 42.75) - (4 x 0.5 x 11.75 x 15) 1,934 in ²
4.6.4	Lifting Lug		
	tiug	u,	1.5 in
	size	=	24.5" x 9.0" with 6.42" x 5.39" and 10.38" x 7.00" chamfered corners
NAC INTERNATION	AL Performed by		Date: Calculation No. 457-2003.2)1-25-74 Revision 1
	Checked by:	2	Date: Page 10 of 39

A_{heg} \approx (24.5 x 9.0) - (0.5 x 10.38 x (10.38 x tan 34°)) - $(0.5 \times 6.42 \times (6.42 \times \tan 40^\circ))$ $\cong 166.870 \text{ in}^2$ 4.6.5 Foam $\stackrel{\cong}{=} A_{\text{bottom plate}} - [\pi x ((42.0 + (2 \times 0.375))/2)^2] \\ \stackrel{\cong}{=} 1.934 - 1435 \\ \stackrel{\cong}{=} 499 \text{ in}^2$ Afoam Performed by: NAC INTERNATIONAL Date: Calculation No. 457-2003.2 800-3 11-25-96 Revision 1 Date: 11/25/9 Checked by: Page 11 of 39 RS

Г

5.0 ANAL	YSIS DETAIL	
5.1 <u>C</u>	component Weight Determination	
5.	.1.1 <u>Pail</u>	
	Inner Shell (t = 0.375 in)	= ρ _{steel} x length _{shell} x A _{shell} = 0.288 x 140.5 x 49.922 = 2020 lbs
	Inner Shell Flange	= ρ_{steel} x length _{flange} x A _{flange} = 0.288 x 8.0 x 276.460 = 637 lbs
	Inner Shell Upper Guide	= ρ_{sacel} x length _{apper} x A_{upper} = 0.288 x 2.0 x 325.50 = 188 lbs
	Inner Shell Between Upper And Lower Guides	$= \rho_{steel} \times \text{ length } x A_{upper}$ = 0.288 x 8.0 x [\pi x (44.75 / 2)^2 - (42.0 / 2)^2] = 432 lbs
	Inner Shell Lower Guide	= ρ_{neel} x length _{lower} x A _{lower} = 0.288 x 2.0 x 316.17 = 182 lbs
	Lugs	= p _{stree1} x t _{lug} x A _{lug} x 4 lugs = 0.288 x 1.5 x 166.870 x 4 = 288 lbs
	Outer Shell	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	Foam	$= \rho_{foam} x length_{shell-outer} x A_{foam}$ = 0.00347 x 102 x 499 = 177 lbs
	Bottom Plate	= $\rho_{steel} \times t_{bottom plate} \times A_{botom plate}$ = 0.288 x 2 x 1934 = 1114 lbs
A NAC INTERNATE	ONAL Performed by: 9RO Checked by: 90	Date: Calculation No. 457-2003.2 11-25-56 Revision 1 Date: /a. Page 12 of 39

A9.2-17

.....
	Total Pail Weight = 5590 (Note: Approximated weight	lbs ∉ ht on a	≤ 6000 lbs drawing (Reference 7	.6.1) is 5,700 lbs.)
5.1.2	Other Components			
	Pail Seal Lid	-	600 lbs	(Reference 7.6.3)
	Cask		35,043 + 2017 + 10 37,160 lbs	0 (Reference 7.1.1)
	Cask Lid	-	2000 lbs	(Reference 7.1.2)
	MCO Shell	=	1540 lbs	(Reference 7.1.2)
	MCO Contents	=	15,550 lbs	(Reference 7.1.2)
	MCO Water (Loaded)	-	1200 ibs	(Reference 7.1.2)
	MCO Water (Empty)		Calculated per Refe I_{MCO} x π x (14 x 12) x π x 2568 lbs	rence 7.1.4 R^{2}_{MCO} x ρ_{watc} $(23.25/2)^{2}$ x 0.03
	MCO Shield Plug	-	1230 lbs	(Reference 7.1.2)
	MCO Wet (Loaded)	-	19,520 lbs	(Reference 7.1.2)
	MCO / Cask Annulus Water	=	250 lbs	(Reference 7.1.2)
	Lift Beam	. ==	750 lbs	(Reference 7.1.2)
	Pail Slings		200 lbs	(Reference 7.1.2)
1	Pail Water	-	V _{pail} x ρ _{water} 8,155 lbs	= 226,520 x 0.036
5.2 Buoyan	v Force and Buoyancy Rate	Deter	mination	
Displace (pail int	d Volume mersed)	-	$[\pi \times (OD_{shell-outer} / 2)^{2} [\pi \times (OD_{shell-inner} / 2)^{2} [\pi \times (50.39 / 2)^{2} \times 100 [\pi \times (42.75 / 2)^{2} \times (16) 291,688 in^{3}$	x l _{shell-outer}] + x (l _{shell-inner} - l _{shell-outer})] 2] + 53.5 - 102)]
INTERNATIONAL	Performed by: Checked by:		Date: C. //-25-96 R.	alculation No. 457-2003.2 evision 1
	TS TS		1/25/96 PE	age 13 of 39

Buoyant	Force	 Displaced Volume x ρ_{water} 291.688 x 0.036 10 500 lbs
		- 10,000 103
Buoyant I	Rate	
(above no	patation interface)	$= \rho_{water} x \left[\pi x \left(OD_{shell-inner} / 2 \right)^* x \right]$
		$= 0.036 \times [\pi \times (42.75 / 2)^{2} \times (163.5 - 102)] /$
		(163.5 - 102)
		= 51.67 lbs / in
Buoyant !	Rate	
(below flo	patation interface)	$= \rho_{water} x \left[\pi x \left(OD_{abeli-outer} / 2 \right)^2 x l_{shell-outer} \right] /$
		$= 0.036 \times [\pi \times (50.39 / 7)^2 \times (103)] /$
		(102)
		= 71.79 lbs / in
5.3 Maximum	Lift Load Determinat	ation
The maxim lift condit	mum lift load will be d ions:	determined as the enveloping condition for the following
Condition	I: Setting pail in y	water on support stand
Condition	II: Lowering pail /	/ empty cask to pit bottom.
Condition	Ill: Raising pail / fr	full cask off bottom.
Condition	(Pail raised to f	full cask to stand height.
Condition	V: Raising fully lo	oaded cask from pit.
5.3.1 <u>Li</u> i	ft Load for Condition	I: Setting Pail In Water On Support Stand
Pa	il	5,700 lbs
Pa	il Slings	400 lbs
Lil	il Water (conservative)	550 lbs
4 f	eet of water in pail,	
30	% of 8155 lbs)	2,446 lbs
Lif	ft Load I	9,096 lbs
NAC	Performed by:	Date: Calculation No. 457-2003.2
1 TERDAL COLOR	yke	12-2-46 Revision 1
INTERNATIONAL	Checked h	

5.3.2	Lift Load for Condition II: Lou	ering Bail / E-attai	Coole Tra Die Dave
	An Boug for Condition II. Low	ering Fail / Emply	Cask 10 Pit Bottom
	Pail	5,700 lbs	
	Pail Seal Lid	600 lbs	
	Pail Slings	400 lbs	
	Lift Beam	550 lbs	
	Cask	36,570 lbs	
	MCO / Cask Annulus Water	250 lbs	
	MCO Shell	1,900 lbs	
	MCO Water (Empty)	1,210 lbs	
	Buoyant Force	-10,500 lbs	
	Lift Load II	36,680 lbs	
5.3.3	Lift Load for Condition III: Rais	aing Pail / Full Cask	Off Bottom
	Pail ·	5.700 lbs	
	Pail Seal Lid	600 lbs	
	Pail Slings	. 400 lbs	
	Lift Beam	550 lbs	
	Cask	36,570 lbs	
	MCO / Cask Annulus Water	250 lbs	
	MCO Wet (Loaded)	20,160 lbs	
	Buoyant Force	-10,500 lbs	
	Lift Load III	53,730 lbs	
5.3.4	Lift Load for Condition IV: Rais	ing Pail / Full Cask	To Stand Height
	(Pail raised to floor elevation 1'-	6", water level at -4	·-9")
	Pail	5,700 lbs	
	Pail Seal Lid	600 lbs	
	Pail Slings	400 lbs	
	Lift Beam	550 lbs	
	Lask	36,570 lbs	
	MCO / Cask Annulus Water	250 lbs	
	MCO wet (Loaded)	20,160 lbs	
	Calculate Buoyant Force		
	Pail submerged 163.5" - 75" =	88.5 in	
	$\mathbf{n} = \mathbf{n} + $	-6,353 lbs	
	Buoyant Force - Ba.5 x /1.79 =		
•	Lift Load IV	57,877 lbs	
	Lift Load IV	57.877 lbs	Calculation No. 457-2003.2
	Lift Load IV Performed by:	57.877 lbs Date: +2-2-54	Calculation No. 457-2003.2 Revision 1

	5.3.5 <u>Lif</u>	Load for Condi	tion V: Raising	Fully Loaded Cas	k From Pit
	Cas	k .		36.570 lbs	
	Cas	k Lid		1,890 lbs	
	MC	O / Cask Annul	us Water	250 lbs	
	MC	O Wet (Loaded)	20,160 lbs	
	Pai	Slings		400 lbs	
	Lif	Beam		550 lbs	
	Lif	Load V		59,820 lbs	•
	5.3.6 <u>M</u> a	simum Lift Load	1		
	The Pit. 59,0	limiting lift loa The lift load ass 320 lbs.	d condition is C sociated with Co	condition V, Raisin andition V as deter	ig Fully Loaded Cask Fro mined in Section 5.3.5 is
	The	lift load used in	the design of t	he immersion pail	will be:
	Pun	= 60,000 lbs			
5.4	Lug Load I	Determination			
	The Hanfor at the cente is:	d crane configu r of the lift bean	ration employs n. The lug-to-lu	a hook design, all : g distance in one d	attached to a shackle loca irection per Reference 7.6
	$l_3 = 44$ $= 31$	1.5 - (2 x 4.5 x c 7.41 in	os 38°)		
	The lug-to-	lug distance in t	he opposite dire	ction per Reference	e 7.6.1 is:
	$l_2 = 34$ = 28	l.77 - (2 x 4.5 x 8.6 in	sin 38°)		
	The sling is	to be 16 feet lo	ng per Referenc	æ 7.6.5:	
	l3 =	16 ft			
	The angle i	n the vertical pla	ine with the hoo	oks, 0, is:	
		Performed by:	ORO	Date:	Calculation No. 457-2003.2
AND THE			0	12-2-76	Nevision J

5.3.5 Lift Load for Condition V: Raising Fully Loaded Cask From Pit Cask 36,570 lbs Cask Lid 1.890 lbs MCO / Cask Annulus Water 250 lbs 20,160 lbs MCO Wet (Loaded) Pail Slings 400 lbs Lift Beam 550 lbs Lift Load V 59,820 lbs 5.3.6 Maximum Lift Load The limiting lift load condition is Condition V, Raising Fully Loaded Cask From Pit. The lift load associated with Condition V as determined in Section 5.3.5 is 59,820 lbs. The lift load used in the design of the immersion pail will be: $P_{\text{lift}} = 60,000 \text{ lbs}.$ 5.4 Lug Load Determination The Hanford crane configuration employs a hook design, all attached to a shackle located at the center of the lift beam. The lug-to-lug distance in one direction per Reference 7.6.1 is: $= 44.5 - (2 \times 4.5 \times \cos 38^{\circ})$ l, = 37.41 in The lug-to-lug distance in the opposite direction per Reference 7.6.1 is: $= 34.77 - (2 \times 4.5 \times \sin 38^{\circ})$ Ь = 28.6 in The sling is to be 16 feet long per Reference 7.6.5: h = 16 ft The angle in the vertical plane with the hooks, θ , is: NAC INTERNATIONAL Performed by: Calculation No. 457-2003.2 Date: gro 12-2-96 Revision 1 Checked by: Date: Page 16 of 39 RS 12/2/96

	$L_{lug} = LF x P_{lift} / (2 x \cos \alpha)$ = 3 x 60,000 / (2 x 0.) \approx 90,680 lbs	7.04°) 9925)	
5.5 Bottom P	ate Evaluation		•
Treating t inner shel plate stres	he bottom plate as a simply su l with uniform loading along it s is:	pported plate along is surface, the maxim	the radial location of the mum radial and tangential
σ, = σ,	$= \frac{3 W}{8 \pi m t^2} (3 m + 1) $ (Reference 7.4.1)	
where:	$W = LF \times P_{\text{lift}}$		
. I	F = Load factor based on = 3	yield strength comp	arison
F	$h_{\rm lift} = 60,000 \rm lbs$		
л	= Reciprocal of Poisson $= 1/v = 1/0.3 = 3$'s ratio 33	
t	plate thickness2.0 in		
Therefore:			
$\sigma_r = \sigma_r =$	$\frac{3(3 \times 60,000)}{8 \pi (3.33) (2)^2} (3 (3.33) +$	1)	
$\sigma_r = \sigma_1 =$	17,728 psi		
Plate mater	ial is A240 Type 304. The safe	ty margin is:	
Safety Mar	$gin = 1 - \frac{17,728}{30,000} = 0.41$		
▲ NAC	Performed by	Date	
INTERNATIONAL	Checked by	11-25-96	Revision 1
	RS	11/25/96	Page 18 of 39

A9.2-23

5.6 Inner Shell Evaluation (Primary Shell) 5.6.1 Net Tension Check The net tension stress on the minimum cross section, t = 0.375 in, is: = $P_{iift} \times LF / A_{shell}$ (t=0.375 in) = 60,000 x 3 / 49.922 σ, = 3605 psi Shell material is A240 Type 304. The safety margin is: Safety Margin = $1 - \frac{3,605}{30,000} = 0.88$ 5.6.2 Inner Shell To Bottom Plate Interface The inner shell to bottom plate interface will be assessed by comparing the rotational stiffness of a plate at the outer edge to the rotational stiffness of a cylinder with an applied end moment. The cylinder stiffness, M_0 / θ , is determined from Reference 7.4.2, where: $\theta = M_0 / \lambda D$ where: $\lambda = \sqrt{\frac{3(1-v^2)}{R_2^2 t^2}}$ $D = \frac{Et^{3}}{12(1 - v^{2})}$ and: when: R = Outer radius of inner shell = (42.0 + (2) (0.375)) / 2= 21.375 in v = 0.3 $E = 28.3 \times 10^6 \text{ psi}$ t = inner shell thickness = 0.375 in Calculation No. 457-2003.2 NAC INTERNATIONAL Performed by Date: ORO 11-25-96 Revision | Checked by Date Page 19 of 39 RS 11/25/ 36

Appendix A9.2.1

Immersion Pail Calculation 457-2003.2 (Continued)

E-15166

3 (3 x 60,000) (3.33-1) 21.375 $2\pi(28.3 \times 10^6)(3.33)(2)^3$ = 0.0057 radians = 0.33° Applying this rotation to the end of the cylinder and solving for the edge moment. Mo: $M_0 = \theta \times \lambda \times D$ (Reference 7.4.2) = 0.0057 x 0.454 x 136,665 = 354 in-lbs The maximum inner shell bending stress due to Ma is: $s_2 = \frac{2 M_0}{1} \lambda^2 R$ $= \frac{2(354)}{0.375} (0.454)^2 (21.375)$ = 8,318 psi The bending stress due to edge shear will yield smaller stresses than those due to Mo. Therefore, the maximum local bending stress due to edge bending and shear will be conservatively considered as 2 x s2: $2 \times s_2 = 2 \times 8318$ = 16,636 psi Plate material is A240 Type 304. The safety margin is: Safety Margin = $1 - \frac{16,636}{30,000} = 0.45$ 5.6.3 Inner Shell To Top Flange, Determination of Reaction Loads Under a two (2) point lift, a radial load, a vertical load, and a bending moment Performed by Date Calculation No. 457-2003.2 NAC INTERNATIONAL geo 11-25-56 Revision 1 Checked by: Date:/2 Page 21 of 39 RS 191

٩

Location A B C D	Description Lug Location Shave Section Start	Angular Location °
A B C D	Lug Location Shave Section Start	0
B C D	Shave Section Start	20
D	and the formation of the second se	
	Shave Section End	
E E	Lug Location	180
5.6.6.1 <u>Maximum Circur</u> The properties of the flange	nferential Bending In Non e section in the non-shave	<u>-Shaved Areas</u> 1 areas are:
$length_{flange} = (9.88 + 8.0)$ $= 8.94 in$	00)/2 (R	eference 7.6.1, Detail 11)
width _{0enge} = $(46 - 42) / = 2.00$ in	2 (R	eference 7.6.1, Section A-A
$A_{\text{flange}} = 8.94 \times 2.00$ = 17.88 in ²	•	
$I_{\text{flange}} = 8.94 \text{ x} (2.00)$ = 5.96 in ⁴)) ³ / 12	
$length_{guide} = \int (4.63 - 2.32) = 1.64 in$	2) + (3.98 - 3.01)]/2 (R	eference 7.6.1, Section B-E
width _{guide} = $(42 - 41.25)$ = 0.375 in)/2 (R	eference 7.6.1, Section A-A
$A_{guide} = 1.64 \times 0.37$ = 0.615 in ²	5 .	
$l_{guide} = 1.64 \times (0.37)$ = 0.007 in ⁴	(5) ³ / 12	
length _{guide} width _{guide}		
k length _{flange}	j width _{flange}	
Performed by:	Date:	Calculation No. 457-2003.2

```
= 17.88 + 0.615
                     Atensile
                                  = 18.495 in<sup>2</sup>
                                 = 2/3 Atensile
                     Ashcar
                                  = 12.33 in
                     The neutral axis is:
                    total area
                         = \frac{(2 \times 8.94 \times 1) + (0.375 \times 1.64 \times (2 + (0.375 / 2)))}{(0.375 + 0.001)}
                                           (2 \times 8.94) + (0.375 \times 1.64)
                         = 1.04 in
                    y_{flange} = 1.04 - 1.00 = 0.04 in
                    y_{\text{exide}} = (2.0 + (0.375/2)) - 1.04 = 1.1475 in
                     I_n = I_{\text{flange}} + (A_{\text{flange}} \times y_{\text{flange}}^2) + I_{\text{guide}} + (A_{\text{guide}} \times y_{\text{guide}}^2)
                        = 5.96 + (17.88 \times (0.04)^2) + 0.007 + (0.615 \times (1.1475)^2)
                        ≠ 6.806 in<sup>4</sup>
                    c_{inder} = (2 + 0.375) - 1.04
= 1.335 in
                    c_{outer} = 1.04 in
                     \left(\frac{c}{l}\right)
                            = 1.335 / 6.806
                            = 0.196
                    Per Reference 7.4.5:
                    M = W R (0.3183 - 0.5 \sin \theta)
NAC
INTERNATIONAL
                           Performed by:
                                                                                     Calculation No. 457-2003.2
                                                                  Date:
                                            geo
                                                                   11-25-96
                                                                                    Revision 1
                           Checked by:
                                                                 Date 11/25/76
                                                                                    Page 28 of 39
                                           RS
```

	T = 0.5 W (sin	1 θ)				
	V = 0.5 W (co	sθ)				
	where: W =	13,067 lbs				
	R =	22 in				
	$\sigma_t = \text{tensile stres}$ = $(M \times (c / I))$	is _{max}) + (T/A	A _{tensile})			
н 	$\sigma_v = \text{shear stress}$ = V / A _{shear}					
		Т	able 5.6.6-	1		
	Angle Angle (degrees) (radians)	Moment (in-lbs)	Tension (lbs)	Shear (lbs)	Tensile Stress	Shear Stress
			(100)	(103)	(psi)	(psi)
	13 0.000	91,503	0	6,534	17,935	530
	26 0.454	78 491	-1,4/0	6,306	11,517	516
	38 0.663	3.007	-4 023	5.148	3,429	476
	66 1.152	-39,810	-5.969	2.657	-8125	- 418
	78 1.361	-49,094	-6.391	1.358	-9.968	110
	90 1.571	-52,234	-6,533	0	-10.591	
	112.5 1.964	-41,289	-6,036	-2,501	-8,419	-203
	135 2.356	-10,126	-4,620	-4.620	-2.235	-375
	157.5 2.749	36,510	-2,500	-6,036	7.021	-490
1	180 3.142	91,518	1 .	-6,533	17.938	-530
כ ז א	The properties of the ength _{tlange} = (9.88) \approx 8.94 width _{flange} = (44.7)	cfreumferei e flange sect (+ 8.00) / 2 in (5 42) / 2	ntial Bendi	<u>ing In Sha</u> shaved are (R (R	ved <u>Areas</u> as are: deference 7.	6.1, Detail 1 6.1, Section
. А	= 1.375 fiange = 8.94 = 12.29	s in x 1.375 9 in ²			•	
٦ ₁	lange = 8.94	x (1.375) ³ /	12			
INTERNATIONAL	Performed by:	gro	Date //	-25-96	Calculatio Revision	n No. 457-200
	Checked by: -	RS	Date 11	25/96	Page 29 of	139

 $I_n = I_{\text{flange}} + (A_{\text{flange}} \times y_{\text{flange}}^2) + I_{\text{guide}} + (A_{\text{guide}} \times y_{\text{guide}}^2)$ $= 1.937 + (12.29 \times (0.0415)^{2}) + 0.007 + (0.615 \times (0.8335)^{2})$ = 2.392 in⁴ $c_{inner} = (1.375 - 0.375) - 0.8335$ = 0.9165 in $c_{outer} = 0.8335$ in $\left(\frac{c}{1}\right) = 0.9165 / 2.392$ = 0.383 Per Reference 7.4.5: $M = W R (0.3183 - 0.5 \sin \theta)$ $T = 0.5 W (\sin \theta)$ $V = 0.5 W (\cos \theta)$ where: W = 13,067 lbs R = 22 in σ_1 = tensile stress = $(M \times (c / I)_{max}) + (T / A_{tensile})$ $\sigma_v = \text{shear stress}$ = V / A_{shear} Table 5.6.6-2 Tensile Shear Angle Angle Moment Tension Shear Stress Stress (degrees) (radians) (in-lbs) (Jbs) (lbs) (psi) (psi) 0.681 30 1,044 4.112 5,077 81 412 52 0.908 . -21,766 -5.149 4,022 -4,545 326 65 1.135 -38.769 -5,921 2,761 -7,919 224 Performed by: NAC INTERNATIONAL Date: Calculation No. 457-2003.2 gro-11-25-96 Revision 1 Checked by: Page 31 of 39 Date: 11/2.5/56 ES

			P			unation Of	Ring Mor	nent and Twi	st					
				r Blake's	Practical S	tress Analy	sis In Eng	ineering Des	ign (Referend	ce 7.15)				
						Table	30.4, Pag	e 394						
R (a. + R) (5 - 0	R ²	1	$Z = b h^2/$	6		1 - h h ³ /	1	r	Notes	T			
(a + R)	C7 - 0 R	² C ₈		b =	1 375	 i	- h-	1 175		(1)	Shaved at	en of noil	ا منابعة منابعة	Jahla
4 SIN(x)		-0.		h=	23.000	1	h=	23.000			Shaved a	l of pair	is stratucu ti	
8 COS(x)			;	Z =	121.23		:]= ·	19.93		· ·				
8 - (x)				1			c =	1 375	· .					
		1	ļ						r					
R				sb = Mg	z		st - Ta x	c/J						
				<u> </u>			1 · · · · ·					t		
Radians	Р	R	a	q	Ċ5	C7	_C8	Mq	Τq	Z	sр	1	st	s _b +s _t
0.00	43,288	21.6875	8	635	0.0000	1.5708	1.57	-298,832	173,152	121.23	-2,465	19.93	11,946	14,411
0.23	43,288	21.6875	8	635	0.1767	1.5305	1.34	-154,288	224,487	121.23	-1,273	19.93	15,487	16,760
0.45	43,288	21.6875	8	635	0.3443	1.4118	1.12	17,153	243,727	121.23	-141	19.93	16,813	16,956
0.66	43,288	21.6875	8	635	0.4835	1.2378	0.91	96,766	235,130	121.23	798	19.93	16,222	17,020
0.08	43,288	21.08/3	8	635	0.4943	1.2207	0.89	105,543	233,364	121.23	871	-19.93	16,100	16,970
1.13	43,244	21.0875		615	0.0189	0.90/1	0.66	207,510	197,404	121.23	1,712	19.93	13,619	15,331
1.15	41 288	21.6875	8	635	0.7176	0.0030	0.42	283,523	141,100	121.23	2,339	19.93	9,739	12.078
1.36	43.288	21 6875	8	635	0.7687	0.3766	0.42	200,174	71,007	121.23	2,311	19.93	9,395	1,//2
1.57	43.288	21.6875	8	635	0.7854	0.0000	0.00	343,726	1,007	121.25	2,720	19.95	4,899	2 935
1.96	43,288	21.6875	8	635	0.7256	-0.6011	-0.39	294,814	-128,546	121.23	2.432	19.93	-8.868	11.300
2.36	43,288	21.6875	8	635	0.5554	-1.1107	-0.79	155,525	-219,656	121.23	1,283	19.93	-15,154	16.437
2.75	43,288	21.6875	8	635	0.3006	-1.4512	-1.18	-52,936	-241,594	121.23	-437	19.93	-16,668	17,104
	43 300	21 6875	8	635	0.0000	-1.5708	-1.57	-298.832	-173,155	121.23	-2.465	19.93	-11.946	14411
	a + R) 4 SIN(x) 8 COS(x) 8 - (x) R R R R R 0.00 0.23 0.45 0.66 0.68 0.91 1.13 1.36 1.57 1.96 2.36 2.75	a + R) C7 - q R 4 SIN(x) 8 COS(x) 8 - (x) R R 8 - (x) R R 0.00 43,288 0.45 0.23 43,288 0.66 0.68 43,288 0.68 1.13 43,288 1.15 1.36 43,288 1.36 1.37 43,288 1.36 1.57 43,288 1.26 1.57 43,288 2.36 2.36 43,288 2.36 2.36 43,288 2.36 2.37 43,288	a + R) C7 - q R² C8 4 SIN(x) 8 4 SIN(x) 8 COS(x) 8 21 6875 R 2 1 6875 21 R 2 1 6875 21 6875 0.00 43,288 21 6875 21 6875 0.45 43,288 21 6875 21 6875 0.66 43,288 21 6875 1 1.3 43,288 21 6875 1.13 43,288 21 6875 1 .13 43,288 21 6875 1.36 43,288 21 6875 1 .13 43,288 21 6875 1.36 43,288 21 6875 2.36 43,288 21 6875 1.57 43,288 21 6875 2.36 43,288 21 6875 1.96 43,288 21 6875 2.36 3,288 <td>a + R) C7 - q R Z Q 4 SIN(x) 8 COS(x) 8 8 8 COS(x) R 8 COS 8 21.6875 8 0.00 43.288 21.6875 8 0.00 43.288 21.6875 8 0.45 43.288 21.6875 8 0.45 43.288 21.6875 8 0.66 43.288 21.6875 8 0.68 43.288 21.6875 8 1.13 43.288 21.6875 8 1.13 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.6875 8 1.96 43.288 21.6875 8 1.6875 8 2.36</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	a + R) C7 - q R Z Q 4 SIN(x) 8 COS(x) 8 8 8 COS(x) R 8 COS 8 21.6875 8 0.00 43.288 21.6875 8 0.00 43.288 21.6875 8 0.45 43.288 21.6875 8 0.45 43.288 21.6875 8 0.66 43.288 21.6875 8 0.68 43.288 21.6875 8 1.13 43.288 21.6875 8 1.13 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.657 8 1.36 43.288 21.6875 8 1.6875 8 1.96 43.288 21.6875 8 1.6875 8 2.36	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

HNF-SD-SNF-FRD-003 Rev. 0

Appendix A9.2.1

Immersion Pail Calculation 457-2003.2 (Continued)

.

BAC 0

E-15166

```
The maximum stress intensity is:
                              s_{h} + s_{t} = 17,104 \text{ psi}
                              Safety Margin = 1 - \frac{17,104}{30,000} = 0.43
                    5.6.7.2 Other Than Normal Resting Condition (2 point)
                             The analysis of the upper flange under stand resting conditions
                             conditions using a two (2) point lift is contained in a separate
                             calculation (Reference 7.16).
   5.8
           Lug Evaluation, Lifting Lug Region
           5.8.1 Bearing Check
                                                                                                           ł
                   The pin bearing area is:
                   Bearing area = t \times D_{hole}
= 1.5 \times 1.69
                                  = 2.535 \text{ in}^2
                   The bearing stress is:
                   Stress
                              = L_{lug} / area
= 90,680 / 2.535
                              = 35,771 psi
                  The safety margin is:
                  Safety Margin = 1 - (stress / (1.5 S<sub>v</sub>))
                                = 1 - (35,771 / (1.5 x 50,000))
                                  = 0.52
          5.8.2 Net Tension
                  Area = t (D_{lug} - D_{hnle})
= 1.5 (5.0 -1.69)
= 4.965 in<sup>2</sup>
                  Since Su / 5 is controlling:
                                    gro
 NAC
                       Performed by:
                                                                           Calculation No. 457-2003.2
                                                         Date:
INTERNATIONAL
                                                          11-25-46
                                                                           Revision 1
                      Checked by:
                                                         Date:
                                    RS
                                                                           Page 34 of 39
                                                                                                         1
                                                          11/25/90
```

```
Liug
                        = 90680 \times (5/3)
                          = 151,133 lbs
                  The stress is:
                  Stress = L_{hug} / (Area)
= 151,133 / (4.965)
                          = 30,440 psi
                  The safety margin is:
                  Safety Margin
                                      = 1 - (stress / S_{o})
                                      = 1 - (30,440 / 80,000)
                                      = 0.62
           5.8.3 Shear Pull Out At 45 Degrees
                   Shear Area = t (R_{lug} - R_{hois})
= 1.5 (2.5 -0.845)
                                  = 2.483 \text{ in}^2
                  The shear stress is:
                  Stress = L_{hug} / 2 x (Shear Area)
= 151,133 / 2 x (2.483)
                          = 30,434 psi
                  The safety margin is:
                                    = 1 - (\text{stress} / (0.6 \text{ S}_u))
                  Safety Margin
                                      = 1 - (30,434 / (0.6 \times 80,000))
                                      = 0.37
  5.9
        Lug Evaluation, Stand Resting Lug Region
          5.9.1 Bearing Check
                  The bearing area is:
                  The pin is 1.5" x 1.25" with 1 / 8" chamfers. The bearing line is conservatively
                  determined to be:
NAC
INTERNATIONAL
                       Performed by
                                                          Date:
                                                                            Calculation No. 457-2003.2
                                      900
                                                           11-25-96
                                                                            Revision 1
                       Checked by:
                                                          Date: 11/25/96
                                                                            Page 35 of 39
                                   "PS
```

٦

	W = 1.25 - 0.125 - 0.125
	= 1.0 in
	Bearing area = $t \times W$ = 15×10
	$= 1.5 \text{ in}^2$
	The bearing stress is:
	Stress = $L_{tug} / area$ = 90.680 / 1.5
	= 60,453 psi
	The safety margin is:
	Safety Margin = 1 - (stress / (1.5 \$,)) = 1 - (60,453 / (1.5 x 50,000))
	× 0.19
5.9.2	Net Tension & Shear
	The tensile and shear stress areas are larger than that evaluated in Section 5.8. Therefore, tension and shear stresses are acentable by comparison to stresses
	Section 5.8.
NC	Performed by:
NAC INTERNATIONAL	Performed by:

			Summary	of Stress Analys	is		
Drawing No.	Item No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.
457-101	1	bottom plate	3W	plate bending	17.728 psi	30,000 psi	0.4
457-101	19, 1	pail shell to bottom plate	3W, pressure	net tension shell bending	3605 psi 16,636 psi	30,000 psi 30,000 psi	0.8 0.4
457-101	10 to 11	lug to shell weld	3W	& shear shear	90.68 kips	594 kips	0.8
457-101	10	flange shell	3W	lifting longitudinal bending	24,970 psi	30,000 psi	0.1
457-101	10	flange shell	3W	lifting circumferential bending + torsion	17,938 psi	30,000 psi	0.4
	ļ			circumferential shear	530 psi	18,000 psi	larg
457-101	10	flange sheli	3W	stand resting bending + torsion	17,104 psi	30,000 psi	0.4
457-101	11	lug plate	3W	bearing: lifting lug	35,771 psi	75,000 psi	0.52
457-101	11	lug plate	5W	net tension: lifting lug	30,440 psi	75.000 psi	0.62
457-101	11	lug plate	5W	shear pull out: lifting lug	30,434 psi	48,000 psi	0.37
457-101	11	lug plate	3W	bearing: guide assembly	60,453 psi	75,000 psi	0.19
The immers	ion pail	design meets	the criteria	defined in Sectio	n 4.2.		

7.0 REFERENCES 7.1 Preliminary Design Analysis Report For The TN-WHC Cask and Transporation System Project 3035 Transnuclear, Inc. 7.1.1 Page A2-10. 7.1.2 Page A2-11. 7.1.3 Drawing 457-008. 7.1.4 Page A3-2 7.2 Fax from Glenn Guerra to Tom Danner dated 11-26-96, "Component Weights". 7.3 ANSI N14.6 American National Standard for Radioactive Materials "special lifting devices for shipping containers weighing 10,000 lbs (4,500 kg) or more" 7.3.1 Section 4 2.1.1. 7.4 Roark's Formulas for Stress and Strain, 3rd edition. 7.4.1 Table X, Case 1, page 194. 7.4.2 Table XIII, Case 11, page 271. 7.4.3 Table X, Case 12, page 197. 7.4.4 Article 62, page 230. 7.4.5 Table VIII, Case 1, page 156. 7.4.6 Table XIII, Case 10, page 271. 7.5 Hanford ECN 191402. 7.6 K Basin Immersion Pail Assembly TN WHC Transport Cask Drawings. 7.6.1 Project 457, Drawing 101, sheet 1 / 1. 7.6.2 Project 457, Drawing 102, sheets 1, 2 / 2. 7.6.3 Project 457, Drawing 103, sheets 1, 2 / 2. 7.6.4 Project 457, Drawing 112, sheet 1, 2 / 2. 7.6.5 Project 457, Drawing 107, sheet 1 / 1. 7.7 ASME Boiler & Pressure Vessel Code, 1995 edition. 7.7.1 Section II-D, page 440, Table U & page 530, Table Y-1. 7.7.2 Section TM-1, page 614. 7.7.3 Section II-D, page 435. Table U & page 500, Table Y-1. 7.7.4 Section III, NB-3227.1(a). 7.8 Mark's Standard Handbook for Mechanical Engineers. 7.8.1 Page 6-7. NAC Performed by Date: Calculation No. 457-2003.2 820-INTERNATIONAL 12-2-96 Revision 1 Checked by: Date: , Page 38 of 39 ES 196 12/2

Á9.2-43

7	.16 Calcul			ng Design, Ta	one 50.4, 1 a	ge 394.	
		ation 457-2003.	.3, Revision 0	e arongu, 18	Jo. 1, 1 a	5v ./.	
		ation 457-2003.	.3, Kevision 0.				
			1				
					•		

Appendix A9.2.2 Immersion Pail Calculation 457-2003.3

	NAC	C	ALCULATIO	N Work	Request/Calc No:
lië	INTERNATIONA	L.	PACKAGE	457-20	103.3
		0	COVER SHEE	Г 457-20	JUJ.5
PROJEC	T NAME:		CLIENT:		LORE
K Basin	Operations Equip	oment	Hanford (Trans	nuclear. Ing.)	
CALCU	LATION TITLE	:		×	Constassional the
Immersi	on Pail Evaluatio	n For Two (2) Poi	int Iift Ioad		
				<u> </u>	AN M. ME
PROBL	EM STATEMEN	T OR OBJECTIV	E OF THE CALCU	LATION:	
This cale	culation analyzes	the immersion pa	il upper pail region f	for a two (2) point 1	ift load when the p
is resting	on the stand. Th	e resulting stresse	s are evaluated again	st the lifting design	criteria requiremer
Transpor	ANSI N14.6	(Reference 7.3). be used at the K-I	The immersion par Basin Area of the Har	il is part of the ford site	TN-WHC Cask a
				1010 010.	
All other	loadings of the i	mmersion pail are	evaluated in Calcula	tion 457-2003.2.	
Revision	Affected	Revision	Preparer	Checker	Project Manage
	Pages	Description	Name, Initials,	Name, Initials,	Approval/Date
			Date	Date	
0	1 thru 12	Original Issue	Michael C. Yaksh	Jeffrey R. Dargis	Thomas A. Dann
	Al thru All		11-11-96	11-11-96	11-15-96
			1]	
	C1 thru C2				
	C1 thru C2 D1 thru D12				
1	C1 thru C2 D1 thru D12	Revised to	Michael C. Vaksh	Jaffray P. Dornic	
1	C1 thru C2 D1 thru D12 1, 3 thru 13	Revised to incorporate	Michael C. Yaksh	Jeffrey R. Dargis	The news & Deser
1	C1 thru C2 D1 thru D12 1, 3 thru 13	Revised to incorporate design load	Michael C. Yaksh MY	Jeffrey R. Dargis	The was & Door
1	C1 thru C2 D1 thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12/2/16	Jeffrey R. Dargis JRO JRO JRO	The news & Dren. Sermel Me fan 12-2-96
1	C1 thru C2 D1 thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12/2/16	Jeffrey R. Dargis JRO JRO JRO	Two were & Down. Stormarkt fan 12-2-96
1	C1 thru C2 D1 thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MU 12 2 16	Jeffrey R. Dargis JRO 12-2-76	Two was & Derer Germelkt fin 12-2-96
1	El thru E2 Dl thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12 2 16	Jeffrey R. Dargis JRO J2-2-76	ты мы К Дин. Детыккрац 12-2-96
1	Ci thru C2 Di thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12/2/16	Jeffrey R. Dargis JRO ארג בו	Two was & Drev Lormal & fine 12-2-96
1	Cl thru C2 Dl thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12/2/16	Jeffrey R. Dargis JRO ערב גו	Tor me & Dren Lormal At face 12-2-96
1	Cl thru C2 Dl thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12 2 Fib	Jeffrey R. Dargis JRO 12-2-70	Tor wer & Dren Lormal At for 12-2-96
1	Cl thru C2 Dl thru D12 1, 3 thru 13	Revised to incorporate design load change.	Michael C. Yaksh MY 12/2 Fib	Jeffrey R. Dargis JRO 12-2-76	Tor we A Drew Lormal At for 12-2-96

	INDEP	ENDENT DESIGN VERIFICA	TION CHECK	SHEET				
Wor	k Request/Calculatio	on No: <u>457-2003.3</u> Revis	ion <u>0</u>					
Sco	pe Of Analysis File:	This calculation analyzes to point lift load when the pail stresses are evaluated age	ne immersion p is resting on th iinst the require	ail upper re e stand. Th ments of A	gion for a tw le resulting NSI N14.6.			
Review Methodology:		Check Of Calculations QRO Alternate Analyses N/A Other (Explain) N/A						
Con	firm That The Work I	Request / Calculation Packag	e Reviewed In	cludes:				
1. 2. 3. 4. 5.	Statement of Purp Defined Method o Listing of Assump Detailed Analysis Statement of Con-	oose f Analysis tions Record clusions / Recommendations	(if applicable)	adaption	RO RO RO RO			
Step		Activities	Verifica Yes	tion No N/A	Comments			
1	For the scope of the de A. Are the required 1. Material pr 2. Geometry 3. Loading sc <i>If a suppo</i> define the defined? B. Are boundary of	afined analysis: d data input complete? operties (drawing reference) surce term string analysis is required to load state, has it been conditions acceptable?	111 1					
2	is the method of analys	sis adequate for the defined scope	~ ~					
3	Is the worst case loadi	ng/configuration documented?	-					
4	Are the acceptance cri	teria defined and complete?	-					
5	Has all concurrent load	ling been considered?	-					
6	Are analyses consister approach?	t with previous work for method an	id					
7	Are the records for inp	ut and output complete?						
8	Is traceability to verifie	d software complete?						
9	Is the statement of con and acceptable for the purpose?	clusions and recommendations co project and objectives of the define	mplete					
_J;	FFREY R. DARGIS	ate (Horatte)						

	INDEPE	NDENT DESIGN VERIFICATIO	N CHEC	к ѕн	EET	
Wor	k Request/Calculatio	n No: <u>457-2003.3</u> Revision	1			
Sco	pe Of Analysis File;	This calculation analyzes the in point lift load when the pail is re stresses are evaluated against	nmersion esting on the requi	pail u the st reme	pper and	region for a tw The resulting ANSI N14.6.
Rev	iew Methodology:	Check Of Calculations 949* Alternate Analyses >/a Other (Explain) >/a				
Con	firm That The Work F	Request / Calculation Package Re	eviewed	Includ	ies:	
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis I Statement of Conc	ose : Analysis ions Record :lusions / Recommendations (if a	pplicable)		928 928 928 928 928
Sten		Activities	Verif	cation	N/4	Comments
1	For the scope of the de A. Are the required 1. Material pr 2. Geometry (3. Loading so <i>If a suppor</i> <i>defined</i> ?	fined analysis: (data input complete? operties drawing reference) urce term ting analysis is required to orad state, has it been	111 1			
2	is the method of analys	is adequate for the defined scope?				
3	Is the worst case loadin	g/configuration documented?				
4	Are the acceptance crit	ena defined and complete?				
5	Has all concurrent load	ing been considered?	~			
6	Are analyses consisten approach?	t with previous work for method and	-			
7	Are the records for input	t and output complete?	-			
8	Is traceability to verified	software complete?	-			
9	Is the statement of cond and acceptable for the purpose?	clusions and recommendations complete project and objectives of the defined	e /			
-	P Deser /	read Principal 13	-2-96			

A9.2-47

...

		TABLE O	CONTENTS	
Section	Description	<u>n</u>		Page
	Calculatio	on Package Cover Sheet		1
	Independ	ent Design Verification Ch	eck Sheet	2
	Table of	Contents		4
1.0	Synopsis	of Results		5
2.0	Introduct	ion/Purpose		
3.0	Method o	f Analysis		
4.0	Assumpti	ons/Design Input		5
5.0	Analysis	Detail		7
6.0	Summary	of Results / Conclusions		
7.0	Reference	25		
Appendix A	List of In	put Files for the Finite Ele	ment Model	11 total pages
Appendix B	Output Fi	le for the Finite Element M	dodel	
Appendix C	List of Fi	les on 3.5" Diskette		2 total pages
Appendix D	ANSYS	Software Verification		
A NAC	ATIONAL	Performed by: My	Date: 12/4(96	Calculation No. 457-2003 Revision 1
		Checked by: OPTO-	Date:	Page 4 of 13

1.0 SYNOPSIS OF RESULTS

Summary of Stress Analysis

Drawing No.	Item No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-101	10	flange shell	3W	stand resting Von Mises, membrane plus bending	28,160 psi	30,000 psi	0.065

The immersion pail design meets the criteria defined in Section 5.5 for a two (2) point lift load.

2.0 INTRODUCTION / PURPOSE

This calculation analyzes the immersion pail upper pail region for a two (2) point lift load when the pail is resting on the stand. The resulting stresses are evaluated against the lifting design criteria requirements listed in Reference 7.3. The immersion pail is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site. The immersion pail design was initially evaluated in Reference 7.1. The design was revised as a result of discussions documented in Reference 7.5.

3.0 METHOD OF ANALYSIS

ANSYS, Revision 5.2, a structural analysis finite element program, is used to generate a 180° structural model of the upper immersion pail region. Input files and macros used to construct the ANSYS models and perform a linear structural analysis are contained in Appendix A. All work under this calculation designation was performed on the DEC ALPHA XL 266 computer (NAC Serial No. 02207).

4.0 ASSUMPTIONS / DESIGN INPUTS

4.1 Assumptions

There are no unverified assumptions within this calculation.

NAC	Performed by:	Date:	Calculation No. 457-2003.3	
INTERNATIONAL	1114	12/2/96	Revision 1	
	Checked by: geo	Date: 12-2-96	Page 5 of 13	1

4.2 <u>Desig</u>	n Inputs			
4.2.1	Design Loa	d (Reference 7.8, Sect	on 5.3.4)	
	Load _{Design}	= 57,717* lbs for	Condition IV (Full	Cask At Stand Height).
	* Revised 1 57,877 - 4	oad from Reference 7.9, S 400 - 550 = 56,927 lbs. Us	ection 5.3.4 minus the v e of Revision 0 load is o	weight of the slings and lift bea conservative.
4.2.2	<u>Two Point I</u>	Lift Load		
	Load _{Pail}	= Total pail load		
		= Load _{Design} x L	oad Factor	
		= 57,717 x 3		
		= 173,151 lbs		
	Load _{2PT}	= Load _{Pail} / 2 Pc	int Lift	
		= 173,151 / 2		
		= 86,575 lbs		
		= 86,575 ibs		
4.2.3	Applied Lo	ad		
	The load us	ed in the analysis, Loa	d _{Applied} , is:	
	$Load_{Applied}$	= 86,871 lbs		
	The load ap calculated f	oplied in the ANSYS a for a two point lift, 86,	nalysis, 86,871 lbs. 575 lbs (conservativ	is greater than the load ve).
4.2.4	Upper Pail	Ring Configuration		
	The model "Project 45	was developed based of 7, Drawing 101, sheet	on data contained of 1 / 1" (Reference 7	n the drawing numbered .6.1).
	Perfo	med by: my	Date: 12/2/96	Calculation No. 457-2003. Revision 1
	Chec	ked by: ARS	Date:	Page 6 of 13

		4.2.5	Materia	l Yield S	trength				
			A240 T (Refere	ype 304	Stainless S	Steel			
			Fy: Fu	30 ksi 75 ksi					
			, u .	75 831					
5.0	ANA	LYSIS	DETA	IL.					
	5.1	Modeli	ng Con	sideration	22				
		This m analysi sharp d	odel has s. The n iscontur	i been de 10del wa 1ities.	veloped fo s not inten	r the sole ded for ev	purpose of aluation of	perfo stress	rming a cross sectional concentrations arising
	5.2	<u>Materi</u>	al Prope	rties					
		Modul	us of Ela	asticity, F	E ≕ 27	x 10 ⁸ psi			
		Poisso	n's ratio	v	÷ 0	3			
	5.3	Model	Descrip	tion			•		
		The org model half sy:	gin of th (see Fig mmetry,	e model jure 5-1). . a 180 de	is located a The cente egree section	at the cent riine of th on of the c	er line of the pail corrected to a series of the series of	he pail espond leled.	at the bottom surface is to the global Z axis.
		Dimen	sions in	the mode	el correspo	nd to nom	inal dimen	sions	provided in Reference
		The pa	il ring m	odel use	s element	SOLID45	The mod	el was	extended twenty-six (2
		inches represe	(26") fro nt the di	om the to istributio	p of the pa n of the loa	il. This co ad from th	orresponds e lugs into	to 3.3 the pa	\sqrt{rt} , which is sufficial.
		The lug a three to the l- the load cross so load sin model inertia)	g attachr (3) dime ocation d reaction ectional nee only by point	nent was ensional where the m point. area and 1/2 of th mass ele	modeled w beam (See e pail is pin The beam moments moments ine pail was ements (i.e	with a spic Figure 5- nned to the elements a of inertia. modeled) Element	ler of beam 1). The cer e support s are rigid, w The applie was distri- t Type 21,	n elem ster po tructus vith inj ed load buted using	ents using element BE, int of the spider corresp re. This point also repro- put values of 1000 for t of 86,871 lbs (1/2 the along the lower edge o 3D, without rotational
0	NAC	ATIONA	P	erformed	inu.		Date:	96	Calculation No. 457-200 Revision 1
a? 2			Ċ	hecked by			Date:		Page 7 of 13

The method used to generate the model was to initiate a cross section in the XZ plane with area elements and then rotate them about the Z axis for 180 degrees. The pail outer diameter has a shaved section between 39° and 65°. The shaved section was modeled by detaching the solid model and moving the nodes to form a flat surface (See Figure 5-1). The input file to generate the model is contained in Appendix A. The output file corresponding to the input file is contained in Appendix B. 5.4 Analysis Description Symmetrical displacement boundary conditions were applied at the plane of symmetry. (UY=0). The center point of one spider of beam elements was modeled with all displacement degrees of freedom restrained. The opposite centerpoint restrained the UY and UZ degrees of freedom only, to avoid introduction of artifical stiffness into the pail. Only a inertia load of 1G was applied, since the real constants for the mass element was in pounds (not slugs). The input for the linear static analysis is contained in the file K PAIL.MAC, which is listed in Appendix A. To generate the model, perform the analysis, and to obtain the plots and the section data, enter ANSYS, then enter k_pail The output file is denoted kbas1.out and the plots are contained in the file kbasin.plt. 5.5 Stress Criteria Per ANSI 14.6, the stress is not to exceed the yield stress with a safety factor of three (3). For this application, stress linearization is used to determine the stress components acting on a section. The stress components are then combined to determine the Von Mises Stress, which corresponds to a distortion energy stress criteria. ANSYS, upon selecting the two nodes on the surface, detemines the Von Mises stress due to membrane plus bending components. Local stress concentrations will occur next to the beam elements. These stress concentrations are purely a result of techniques used in modeling. Local stress concentrations will also arise at the radii of the juncture of the rib and the pail. Performed by Calculation No. 457-2003.3 NAC INTERNATIONAL Date: 12/2/96 my Revision 1 Checked by Page 8 of 13 Date aro-12-2-50

5.6 Stress Results The section stresses resulting from the analysis are contained in the output file of Appendix B. A series of sectional stresses were extracted. The output file contains the stress results with the polar coordinates of the nodes forming the section. The polar system designation is: X = radial;Y = circumferential angle (measured +Z rotation); and Z = axial location (measured from the bottom of the model). The maximium membrane plus bending Von Mises stress (SEQV) was determined to be 28,160 psi, which corresponds to a positive margin of +.065 when compared to a yield strength of 30,000 psi for A240 stainless steel. A plot of the Von Mises stress is shown in Figure 5-2. Each circumferential divison corresponds to a 5 degree increment. Calculation No. 457-2003.3 Performed by: Date NAC INTERNATIONAL my 12/2/96 Revision 1 Page 9 of 13 Checked by: Date: 200

A9.2-54

6.0 SUMMARY OF RESULTS/CONCLUSIONS

Drawing | Item Component Applied Design Check Calculated Allowable M.S. No. No. Load Loading 457-101 10 flange shell 3W 28,160 psi | 30,000 psi stand resting 0.065 Von Mises, membrane plus bending

Summary of Stress Analysis

The immersion pail design meets the criteria defined in Section 5.5 for a two (2) point lift load.

INTERNATIONAL	Performed by:	ing	Date: 12/2/96	Calculation No. 457-2003.3 Revision 1
·	Checked by:	980	Date: 1-2-96	Page 12 of 13

7.0	REF	ERENCES				
	7.1	Preliminar Project 30 Transnuch 7.1.1 Pa 7.1.2 Pa 7.1.3 Dr 7.1.4 Pa	rý Design Ana 35 ear, Inc. ge A2-10. ge A2-11. rawing 457-00 ge A3-2	dysis Report i 18.	for The TN-WHC Ca	isk and Transporation Sy
	7.2	Not Used.				
	7.3	ANSI N14 American "special li more" 7.3.1 Se	4.6 National Stan fting devices f ection 4.2.1.1.	dard for Radi for shipping c	oactive Materials ontainers weighing 1	0,000 lbs (4,500 kg) or
	7.4	ANSYS, J	Revision 5.2 U	Jser Manual		
	7.5	Hanford F	ECN 191402.			
	7.6	K Basin lı 7.6.1 Pr	mmersion Pail oject 457, Dra	Assembly Tr wing 101, she	N WHC Transport Ca set 1 / 1.	isk Drawings.
	7.7	ASME Bo 7.7.1 Se	iler & Pressur ction 11-D, pa	re Vessel Cod ge 440, Table	e, 1995 edition. U & page 530, Table	. Y-1.
	7.8	Calculatic	on 457-2003.2.	, Revision 0.		
	7.9	Calculatic	m 457-2003.2.	, Revision 1.		
G	NAC INTER	NATIONAL	Performed by	my	Date: 12/2/96	Calculation No. 457-2003 Revision 1
1			Checked by:	000	Date:	Page 13 of 13

	List Of Input	APPEN Files For Th	DIX A ac Finite Element M	odel
	There a a t	otal of <u>11</u> p	ages in Appendix A	
		Input I	Files	
	File Name		Descrip	tion
	k_pail.mac		Маіл Іпрі	n File
	mas21.mac		Applies The Ma	ss Elements
	r_beam.mac		Generates The Spide Represent The Att	er Of Beams To tachment Lug
			•	
INTERNATIONAL	Performed by:	my	Date:	Calculation No. 457-2003.3
	Checked by:	gro	Date: //-//-96	Page A1 of 11

Immersion Pail Calculation 457-2003.3 (Continued) Appendix A9.2.2

```
ţ
      k_pail.mac
      Builds pail upper model of ring and attachment
 1
      solves/plots S_EQV stress
 .
  ł
 ! macros used:
      mas21.mac builds the mass elements
 1
       r_beam.mac builds the attachement with stiff beams
 /out, kbas1, out
 /nerr,0,1e5
 *if,arg1,eq,0,then
 fini
 /cle,all
 /prep7
 et,1,45
et,2,21 ! use real = 2
et,3,4 . ! use real = 3
et,4,63 ! use real = 4
et,5,21,,,2 ! use real = 5
mp,ex,1,27e6
shpp, off
local, 11, 0, -23, 0
k,1,0,,26
k,2,,,18
k, 3, .625, ,16.125
k,4,.625,,3
k,5,2
k,6,2,,4.66
k,7,3,,6.39
k,8,3,,8.22
k,9,2,,9.96
k,10,2,,21.37
k,11,2.375,,22.02
k, 12, 2.375, , 22.99
k,13,2,,23.68
k,14,2,,26
k,15,.625,,26
k,16,.625+.5,,26
k,17,.625+.5,,18
k,18,2,,18
*do,i1,1,9
  1,i1,i1+1
*enddo
 INAC INTERNATIONAL
                                                              Calculation No. 457-2003.3
                                                              Revision 0
                                                              Page A2 of 11
```

INTERNATIONAL	Calculation No. 457-2003.3 Revision 0 Page A3 of 11
<pre>! triangle transition NAC</pre>	 Columbia No. 477
<pre>! upper right ksel,,10,14 ksel,a,.,16,18 ls1k,,1 al,all</pre>	
! upper left ksel,all a,1,16,17,2	
alls ldel,9	
<pre>cmsel,u,c_11 cmsel,u,c_12 lesi,al1,2</pre>	
<pre>lsel,,,,14,17 lsel,a,,,19,20 lsel,a,,,10 cm,c_12,line lesi,all,.6 alls</pre>	
<pre>lsel,,,,13,21,8 lsel,a,,,2,12,10 lesi,all,,,1 cm,c_l1,line</pre>	
<pre>lsel,,,,1,11,10 lesi,al1,.6 cm,c_13,line</pre>	
1,10,11 1,11,12 1,13,14 1,9,18 1,17,18 1,12,13 1,2,17	
1,14,16 1,16,17 1,17,3 1,1,16 1,18,10	

ksel,all lsel,all a,2,3,17,17 ! lower ksel,,,,3,9 ksel,a,,,17,18 lslk,,1 al,all alls type,4 mat,1 real,1 ames,all /vup,1,z /view,1,1,1,1 eplo CSVS k,20 k,21,0,0,20 esize,,18 type,1 real,1 mat,1 vrot, all, ,,,, 20, 21, 180, 2 *endif csys nsel,,loc,y,-.01,1 d,all,uy nsel,all add the mass elements for the weight 1 et,5,21,,,2 *get, zmin, node, , mnloc, z nsel,,loc,z,zmin-1,zmin+.01
mas21,86871*2/2,5,5 /out, kbas1, out, , append /gopr alls NAC INTERNATIONAL Calculation No. 457-2003.3 **Revision** 0 Page A4 of 11

```
! add the beam elements for the attachments
 *get,ndmx,node,,num,max
gndmx=ndmx+1
csys,11
n,gndmx,-5.24,,21.46
d, gndmx, ux
d, gndmx, uy
d, gndmx, uz
r, 3, 1000, 1000, 1000, 1000, 1000
csys
esel,all
nsle
*get,r_o,node,,mnloc,x
nsel,, loc, y, -.01, 1
nsel,r,loc,x,r_o-.1,r_o+.01
r_beam,gndmx,1,3,3
/out, kbas1, out, , append
/gopr
csys
*get,s_x,node,gndmx,loc,x
"get,s_z,node,gndmx,loc,z
n,gndmx+1,-s_x,,s_2
d, gndmx+1, uy
d, gndmx+1, uz
nsel,,loc,y,-.01,1
nsel,r,loc,x,-r_o-.1,-r_o+.01
r_beam,gndmx+1,1,3,3
alls
modm, detach
! move the nodes for the flat
csys,1
esel,,ename,,45
nsle
nsel,r,loc,y,-41,-39
nmod,all,,-39
nsle
*get,r_o,node,,mxloc,x
nsel,r,loc,x,r_o-.1,r_o+1
nsel,r,loc,y,-66,-38
local,12,0,0,0,0,-52
nmod, all, 44.75/2
esel,,type,,4
edel,all
 NAC
INTERNATIONAL
                                                            Calculation No. 457-2003.3
                                                            Revision 0
                                                            Page A5 of 11
```

```
etdel,4
 alls
 fini
 /solu
 ace1,,,1
 solve
 fini
 /post1
alls
fsum
 /sho,kbasin,plt,1
 /title,K Basin Pail Ring Lift Analysis
/device, vector, on
/type,,3
/num, -1
/view,1,1,1,1
eplo
/num,2
esel,,ename,,45
nsle
/aut
/view,1,1,-1,1
/vup,1,z
csys,1
nsel, r, loc, y, -161, -29
esln,,1
plns, s, eqv
dsys,1
nlis,2221,2630,2630-2221
dsys
lpath, 2221, 2630
prsect
dsys,1
nlis,2272,2596,2596-2272
dsys
lpath, 2272, 2596
prsect
dsys,1
nlis,1847,2392,2392-1847
 INTERNATIONAL
                                                       Calculation No. 457-2003.3
                                                       Revision 0
                                                       Page A6 of 11
```

A9.2-63

dsys lpath, 1847, 2392 prsect dsys,1 nlis,129,742,742-129 dsys lpath,129,742 prsect dsys,1 nlis,231,912,912-231 dsys lpath,231,912 prsect dsys,1 nlis, 333, 861, 861-333 dsys lpath, 333, 861 prsect dsys,1 nlis,1367,1486,1486-1367 dsys lpath,1367,1486 prsect dsys,1 nlis,1373,1492,1492-1373 dsys lpath,1373,1492 prsect dsys,1 nlis, 3082, 3201, 3201-3082 dsys lpath, 3082, 3201 prsect NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page A7 of 11

A9.2-64

dsys,1 nlis,2184,2474,2474-2184 dsys lpath,2184,2474 prsect /sho,xxx /sho,term /type,,3 /out Calculation No. 457-2003.3 Revision 0 NAC INTERNATIONAL Page A8 of 11

```
/out,m21,out,,append
  *msg, info, arg1, arg2
   mas21 arg1, arg2: %g %g
  ! mas21.mac
     Generates the mass elements off a surface of nodes
      and forms the real constant set so that the
  1
      total mass equals that of the input mass (weight)
  1
     argl = total weight to be simulated (lb)
  1
    arg2 = element type for the mass element
arg3 = real constant set for the mass element
  ı
  1
· 1
     et,arg2,21,,0,2
 type, arg2
 real, arg3
                  ! current set of nodes for the mass generation
 cm,c masn,node
  *get,ndmn,node,,num,min
 *get, nmasse, node,, count
 r,arg3,arg1/nmasse
  ! define the node number array
 alls
 *get,ndmx,node,,num,max
 cmsel,,c_masn
 *set,_mskv
 *dim, mskv,, ndmx
  *vget,_mskv(1),node,1,nsel
 *voper,_mskv(1),_mskv(1),gt,0
 *set,nd_ns
*dim,nd_ns,,ndmx
  *set,nd_nsg
  *dim, nd nsg, , ndmx
  *vmask,_mskv(1)
  *vfill,nd ns(1),ramp,1,1
     write the nodes to generate the elements
 *vmask,_mskv(1)
 /nopr
 /out,mas,tmp
 *vwrite,nd ns(1)
  ('e,',f15.0)
 /out, mas, out, , append
 /inp,mas,tmp
 /gopr
 /out, mas, sum
 *msg,info,argl
  Total mass distributed:
                                              ۶g
  *msg,info,nmasse
                                                          Calculation No. 457-2003.3
   NAC
INTERNATIONAL
                                                          Revision 0
                                                          Page A9 of 11
```

Number of mass elements generated:_____ %i /out *list,_mas,sum
! parsav,all,temp,par NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page A10 of 11

t r beam.mac arg1 = node to which all beams will be connected 1 arg2 = material arg3 = real 1 arg4 = type Į. mat, arg2 real, arg3 type, arg4 nsel, u, , , arg1 cm,c_n,node cm,c_nn,node *get, ncnt, node, , count *do,il,l,nent *get, ndmx, node, , num, max nsel,a,,,argl e, arg1, ndmx cmsel,,c_nn nsel,u,,,arg1 nsel,u,,,ndmx cm,c_nn,node *enddo cmsel,,c_n nsel,a,,,argl /pnum.mat,1 /num,1 /aut eplo NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page All of 11

	Output	APPEN File for the F	VDIX B Tinite Element Mo	del	
	There a a	total of <u>37</u>	pages in Append	x B.	
		Outpu	t Files		
	File Name		Des	cription	
	kbasl.out		Output File For St	Model / Solution /	
L					
NAC INTERNATIONAL	Performed by:	779	Date:	Calculation No. 4	57-2003.3
	Checked by:	ARO	Date:	Page Bl of 37	

Computer Output Cover She	et
Title of Analysis: Immersion Pail Evaluation For Two (2) Point	Lift Load
Work Request And Report Number: 457-2003.3, Revision 0	
Program: ANSYS Version: 5.2 Orig	inator: Michael C. Yaksh
Date of Verification: 06 / 28 / 96	
Computer Identification/NAC Control Number: DEC ALPH, NAC Serial	4 XL 266 No. 02207
Title of Case: Deadweight (Inertia Load = 1g).	
Total Number of Pages: 35 (Not including this cover sheet).	
Performed By: My Date: 11-11-94	
Checked By: JRO Date: 1/-1/-96	
NAC INTERNATIONAL	Calculation No. 457-2003. Revision 0

...

NUMBER OF DI NUMBER OF EI	SPLAYED ERRORS ALLOWED PER COMMAND= 0 RRORS ALLOWED PER COMMAND BEFORE ANSYS ABORT= 100000	
*IF arg1 0	(= 0.000000E+00) EQ (= 0.000000E+00) THEN	
EXIT THE ANS	YS POSTI DATABASE PROCESSOR	•
***** ROUTINE	2 COMPLETED ***** CP - 562.727	
*** NOTE *** A total of 347 wa	CP= 562.727 TIME= 21:59:57 amings and errors written to flube.err.	
CLEAR ANSYS	DATABASE AND RESTART	
***** ANS	YS ANALYSIS DEFINITION (PREP7) *****	
ENTER /SHOW ENTER FINISH PRINTOUT KEY	,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY TO LEAVE PREP7 Y SET TO /GOPR (USE /NOPR TO SUPPRESS)	
ELEMENT TYP KEYOPT(1-12)=	E IIS SOLID45 3-D STRUCTURAL SOLID = 0 0 0 0 0 0 0 0 0 0 0 0	
CURRENT NOD THREE-DIMEN	SIONAL MODEL	
ELÉMENT TYP KEYOPT(1-12)-	E 2 IS MASS21 STRUCTURAL MASS - 0 0 0 0 0 0 0 0 0 0 0	
CURRENT NOD THREE-DIMEN	IAL DOF SET IS UX UY UZ ROTX ROTY ROTZ ISJONAL MODEL	
ELEMENT TYPI KEYOPT(1-12)*	E 31S BEAM4 3-D ELASTIC BEAM - 000 000 000 000	
CURRENT NOD THREE-DIMEN	JAL DOF SET IS UX UY UZ ROTX ROTY ROTZ ISIONAL MODEL	
ELEMENT TYPE KEYOPT(1-12)=	E 4ISSHELL63 ELASTICSHELL = 00000000000000	
CURRENT NOD THREE-DIMEN	AL DOF SET IS UX UY UZ ROTX ROTY ROTZ ISIONAL MODEL	
ELEMENT TYPE KEYOPT(1-12)=	E 51S MASS21 STRUCTURAL MASS = 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	
CURRENT NOD	AL DOF SET IS UX UY UZ ROTX ROTY ROTZ	457 2002 2
INTERNAT	Calculation No TIONAL Revision 0	457-2003.3
	Page B3 of 37	

			Page B4 of 37
INTERNATIONAL		· · · · · · · · · · · · · · · · · · ·	Calculation No. 457-2003.3 Revision 0
-21.0000 0.000000	E+00 21.3700 IN CSYS= 0		
KEYPOINT 10 X,Y,Z- 2.0000	0 0.000000E+00 21.3700 I	N CSYS= 11	
-21.0000 0.000000	E+00 9.96000 IN CSYS= 0		
KEYPOINT 9 X,Y,Z= 2.00000	0.000000E+00 9.96000 D	N CSYS= 11	
-20.0000 0.000000	E+00 8.22000 IN CSYS= 0		
KEYPOINT 8 X,Y,Z= 3.00000	0.000000E+00 8.22000 II	N CSYS≃ 11	
-20.0000 0.000000	E+00 6.39000 IN CSYS= 0		
KEYPOINT 7 X,Y,Z= 3.00000	0.000000E+00 6.39000 II	CSYS=11	
-21.0000 0.000000	0E+00 4.66000 IN CSYS= 0		
KEYPOINT 6 X.Y,Z= 2.00000	0.000000E+00 4.66000 T	N CSYS= 11	
-21.0000 0.000000	0E+00 0.000000E+00 IN CSYS=	0	
KEYPOINT 5 X,Y,Z= 2.0000	0.000000E+00 0.000000E+0	0 IN CSYS= 11	
-22.3750 0.000000	0E+00 3.00000 IN CSYS≠ 0		
KEYPOINT 4 X,Y,Z= 0.62500	0 0.000000E+00 3.00000	N CSYS= 11	
-22.3750 0.00000	0E+00 16.1250 IN CSYS= 0		
KEYPOINT 3 X,Y,Z= 0.62500	0 0.000000E+00 16.1250	N CSYS= 11	
-23.0000 0.00000	0E+00 18.0000 IN CSYS= 0		
KEYPOINT 2 X.Y,Z= 0.00000	0E+00 0.000000E+00 18.0000	IN CSYS=11	
-23.0000 0.00000	0E+00 26.0000 IN CSYS= 0		
KEYPOINT 1 X,Y,Z= 0.00000	0E+00 0.000000E-00 26.0000	IN CSYS~11	
ACTIVE COORDINATE SYSTEM	SET TO 11 (CARTESIAN)		
COORDINATE SYSTEM 11 DE XC,YC,ZC=-23.000 0.00000E4 ANGLES= 0.00 0.00 0.00 F ORIENTATION= 1.00 0.00 0.00	FINITION. TYPE=0 (CARTES 00 0.00000E+00 ARAMETERS= 1.000 1.000 0.00 1.00 0.00 0.00 0.00 1.0	(AN) ·	
TORN OFF ELEMENT SHAPE CH			
MATERIAL 1 EX = 0.27000	00E+08		
TIREPOINT NODEL	•		

E-15166

KP	= 2 TAN2= 0.0000 0.0000 -1.0000	
•DO LOOP O LINE CONNE LINE NO.=	₹PARAMETER=11 FROM 1.0000 TO 9.0000 BY 1.0000 CTS KEYPOINTS 1 2 1 XPI= 1.0000 1.0000 1 KPI= 1 TANI= 0.0000 1.0000 1.0000	
	-21.0000 0.000000E+00 18.0000 IN CSYS- 0	
KEYPOINT	-21.8750 0.000000E+00 18.0000 IN CSYS= 0 18 X,Y,Z= 2.00000 0.000000E+00 18.0000 IN CSYS= 11	
KEYPOINT	17 X,Y,Z- 1.12500 0.000000E+00 18.6000 IN CSYS= 11	
	-21.8750 0.0000000E+00 26.0000 IN CSYS= 0	
KEYPOINT	-22.3750 0.000000E+00 26.0000 IN CSYS= 0 16 X,Y,Z= 1.12500 0.000000E+00 26.0000 IN CSYS= 11	
KEYPOINT	15 X,Y,Z= 0.625000 0.000000E+00 26.0000 IN CSYS= 11	
	-21.0000 0.000000E+00 26.0000 IN CSYS= 0	
KEYPOINT	14 X,Y,Z= 2.00000 0.000000E+00 26.0000 IN CSYS=11	
KETPUINI	-21.0000 0.000000E+00 23.6800 IN CSYS= 11	
KEWDODIE	-20.6250 0.000000E+00 22.9900 IN CSYS= 0	
KEYPOINT	12 X,Y,Z= 2.37500 0.000000E+00 22.9900 IN CSYS= 11	
	-20.6250 0.000000E+00 22.0200 IN CSYS= 0	

LINE CONNECTS KEYPOINTS 1 16 LINE NO.= 13 KP1= 1 TAN1= -1.0000 0.0000 0.0000 KP2= 16 TAN2= 1.0000 0.0000 0.0000 LINE CONNECTS KEYPOINTS 18 10 LINE NO.= 14 KP1= 18 TAN1= 0.0000 0.0000 -1.0000 KP2= 10 TAN2= 0.0000 0.0000 1.0000 LINE CONNECTS KEYPOINTS 10 11 LINE NO.= 15 KPI= 10 TAN1= -0.4997 0.0000 -0.8662 KP2= 11 TAN2= 0.4997 0.0000 0.8662 LINE CONNECTS KEYPOINTS 11 12 LINE NO.= 16 KP1= 11 TAN1= 0.0000 0.0000 -1.0000 KP2= 12 TAN2= 0.0000 0.0000 1.0000 LINE CONNECTS KEYPOINTS 13 14 LINE NO.- 17 KP1- 13 TAN1= 0.0000 0.0000 -1.0000 KP2- 14 TAN2- 0.0000 0.0000 1.0000 LINE CONNECTS KEYPOINTS 9 18 LINE NO.= 18 KP1= 9 TAN1= 0.0000 0.0000 -1.0000 KP2= 18 TAN2= 0.0000 0.0000 1.0000 LINE CONNECTS KEYPOINTS 17 18 LINE NO.= 19 KP1= 17 TAN1= -1.0000 0.0000 0.0000 KP2= 18 TAN2= 1.0000 0.0000 0.0000 LINE CONNECTS KEYPOINTS 12 13 LINE NO.= 20 KPI* 12 TAN1= 0.4775 0.0000 -0.8786 KP2* 13 TAN2= -0.4775 0.0000 0.8786 LINE CONNECTS KEYPOINTS 2 17 LINE NO.= 21 KPI= 2 TAN1= -1.0000 0.0000 0.0000 KP2= 17 TAN2= 1.0000 0.0000 0.0000 SELECT FOR ITEM*LINE COMPONENT= IN RANGE 1 TO 11 STEP 10 2 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND. SET DIVISIONS ON ALL SELECTED UNMESHED LINES FOR ELEMENT SIZE = 0.60000 SPACING RATIO = 1.0000 DEFINITION OF COMPONENT = C L3 ENTITY=LINE SELECT FOR ITEM=LINE COMPONENT= IN RANGE 13 TO 21 STEP 8 2 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND. Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B6 of 37

A9.2-74

.

	Page B7 of 37
NAC INTERNATIONAL	Calculation No. 457-2003.3 Revision 0
18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE I TO 18 STEP 1	
21 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE TO 2! STEP	
0 AREAS (OF 0 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM-AREA COMPONENT- IN RANGE 0 TO 0 STEP	
0 VOLUMES (OF 0 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 0 TO 0 STEP 1	
SELECT ALL ENTITIES OF TYPE= ALL AND BELOW	
SET DIVISIONS ON ALL SELECTED UNMESHED LINES FOR ELEMENT SIZE = 0.60000 SPACING RATIO = 1.0000	
DEFINITION OF COMPONENT = C_L2 ENTITY=LINE	
7 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND.	
ALSO SELECT FOR ITEM=LINE COMPONENT= IN RANGE 10 TO 10 STEP 1	
6 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND.	
ALSO SELECT FOR ITEM=LINE COMPONENT= IN RANGE 19 TO 20 STEP 1	
4 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND.	·
SELECT FOR ITEM=LINE COMPONENT= IN RANGE 14 TO 17 STEP 1	
DEFINITION OF COMPONENT = C_L1 ENTITY=LINE	
SET DIVISIONS ON ALL SELECTED UNMESHED LINES TO NDIV = 1, SPACING RATIO = 1.000	
4 LINES (OF 2) DEFINED) SELECTED BY LSEL COMMAND.	

INTERNATIONAL	Calculation No. 457-2003.3 Revision 0
DELETED I LINES	
DELETE SELECTED LINES FROM 9 TO 9 BY 1	
0 NODES (OF 0 DEFINED) SELECTED BY NSEL COMMAND.	
ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 0 TO 0 STEP 1	
0 ELEMENTS (OF 0 DEFINED) SELECTED BY ESEL COMMAND.	
IN RANGE 0 TO 0 STEP 1	
18 NETFOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
IN RANGE 1 TO 18 STEP 1	
ALL SELECT FOR ITEM-KP COMPONENT-	
21 LINES (OF 21 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM-LINE COMPONENT= IN RANGE 1 TO 21 STEP 1	
0 AREAS (OF 0 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM-AREA COMPONENT- IN RANGE 0 TO 0 STEP I	
0 VOLUMES (OF 0 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 0 TO 0 STEP 1	
SELECT ALL ENTITIES OF TYPE= ALL AND BELOW	
SET DIVISIONS ON ALL SELECTED UNMESHED LINES FOR ELEMENT SIZE = 2.0000 SPACING RATIO = 1.0000	
UNSELECT COMPONENT C_L2	
UNSELECT COMPONENT C_LI	
0 NODES (OF 0 DEFINED) SELECTED BY NSEL COMMAND.	
ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 0 TO 0 STEP 1	
0 ELEMENTS (OF 0 DEFINED) SELECTED BY ESEL COMMAND.	
IN RANGE 0 TO 0 STEP 1	

AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= VRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTE DY LISLK COMMAND.	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES	
AREA NUMBER - 1 SLECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES LINE LIST = ALL SELECTED LINES LINE LIST = ALL SELECTED LINES LINE AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= KANCE 1 T0 15 STEP 1	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (SANCE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT=	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 20 DEFINED SELECTED BY LSEL COMMAND.	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= (RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (ITRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 21 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF VEVENDENTE	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF KEYPOINTS 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF KEYPOINTS 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND.	
AREA NUMBER - 1 SLECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 2) STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 TO 2) STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS EVPONT LIST = 2 3 17 17 ANEA NUMBER = 2	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. STENE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= 'RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= 'RANGE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= 'RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= 'RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= 'RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= 'RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 1 21 JSLECT FOR ITEM=1 1 22 JSLECT FOR ITEM=1 1 23 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=1 2 3 17 17 AREA NUMBER = 3	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= VRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST - ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (RANGE 1TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= (RANGE 1TO 2) STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS (RANGE 1TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS EVPORNT LIST = 2 3 17 17 AREA NUMBER = 3	
AREA NUMBER - 1 SLECT FOR ITEM-KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM-KP COMPONENT- RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM-KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM-KP COMPONENT= (RANGE 1 TO 2) STEP 1 18 KEYPOINTS (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= (RANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF KEYPOINTS EFINE AREA BY LIST OF KEYPOINTS	
AREA NUMBER - 1 SLECT FOR ITEM-KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM-KP COMPONENT- NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM-KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= RANGE 1 TO 21 STEP 1 19 LINE (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= FRANCE 1 TO 21 STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. FINE AREA BY LIST OF KEYPOINTS EYPONNT LIST = 2 3 17 17 AREA NUMBER = 3 LECT FOR ITEM-KP COMPONENT=	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LISELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 TO 2) STEP 1 18 KEYPOINTS (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 TO 2) STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS EVPORIT LIST = 2 3 17 17 AREA NUMBER = 3 LECT FOR ITEM=KP COMPONENT= (LANCE 3) LECT FOR ITEM=KP COM	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. STENE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LISELECT FOR ITEM=KP COMPONENT= NRANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 2 3 IT 7 NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LY COMPONENT= NRANGE 2 3 IT 7 SELECT FOR ITEM=LY COMPONENT= SELECT FOR ITEM=LY COMPONENT= SELECT FOR ITE	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. STENE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LISELECT FOR ITEM=KP COMPONENT= NRANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LINE COMPONENT= NRANGE 2 3 IT 7 NRANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SELECT FOR ITEM=LY COMPONENT= NRANGE 2 3 IT 7 SELECT FOR ITEM=LY COMPONENT= SELECT FOR ITEM=LY COMPONENT= SELECT FOR ITE	
AREA NUMBER - 1 SLECT FOR ITEM-KP COMPONENT- NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM-KP COMPONENT- NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 1 SELECT FOR ITEM-KP COMPONENT= 1 RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM-LINE COMPONENT= 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. FINE AREA BY LIST OF KEYPOINTS EFTOR ALLIST OF KEYPOINTS EFTOR ALLIST OF KEYPOINTS AREA NUMBER = 3 LECT FOR ITEM-KP COMPONENT=	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= VRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST - ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 2) STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS (RANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFINE AREA BY LIST OF KEYPOINTS EVPORNT LIST = 2 3 17 17 AREA NUMBER = 3	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= (RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 19 LINE S(OF 20 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. HERAREA BY LIST OF KEYPOINTS EYPOINT LIST = 2 3 17 17 AREA NUMBER = 3	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= ISANCE 1 T0 1S STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= IRANGE 1 T0 21 STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF KEYPOINTS EVEN ULST = 2 3 17 17	
AREA NUMBER - 1 SLECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLS COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= 18 KEYPOINTS (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFILE AREA BY LIST OF KEYPOINTS 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. SFILE AREA BY LIST OF KEYPOINTS 20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. 21 SET 2 3 10 17	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (RANGE 1 T0 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 T0 2) STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND. EFINE AREA BY LIST OF KEYPOINTS	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 2) STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 2) STEP 1 10 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= VRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTE DE LINES LINE LIST = ALL SELECTED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= 18 KEYPOINTS (OF 20 DEFINED) SELECTED BY LSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= 18 KEYPOINTS (OF 20 DEFINED) SELECTED BY LSEL COMMAND.	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= (RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= RANGE 1 TO 20 SELECTED DENES (RANCE 1 TO 21 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= RANGE 1 TO 21 STEP 1 19 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 T0 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 T0 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= (RANGE 1 T0 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 T0 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT= (RANGE 1 T0 15 STEP 1	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= NANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=KP COMPONENT= 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSELECT FOR ITEM=LINE COMPONENT=	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. ELECT ALL SELECTED LINES LINE LIST - ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= (RANCE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= NANGE 1 TO 18 STEP 1 18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SILINE LIST = ALL SELECTED LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= (RANGE 1 TO 18 STEP 1 IN EXEMPTION S(I & DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 L SELECT FOR ITEM=KP COMPONENT= (RANGE 1) TO 18 STEP 1	
AREA NUMBER = 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SELECTED KEYPOINTS BY LSLK COMMAND. SILINE LIST - ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 LSELECT FOR ITEM=KP COMPONENT= (SANCE 1 TO 18 STEP 1	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (IRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2 1 SELECT FOR UTEMAKP. COMPONENT=	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= RANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10) AREA NUMBER = 2	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 10)	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES (TRAVERSED IN SAME DIRECTION AS LINE 10)	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SELECT ALL SELECTED LINES LINE LIST = ALL SELECTED LINES LINE LIST = ALL SELECTED LINES	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. EFINE AREA BY LIST OF LINES	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND. SFINE AREA BY LIST OF LINES	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTED KEYPOINTS BY LSLK COMMAND.	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= VRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM 8 SELECTE DY LISLK COMMAND.	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET. 8 LINES (OF 20 DEFINED) SELECTED FROM	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT SET.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. ELECT ALL LINES COMPLETELY CONTAINED BUTTION KEYPONET STT	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT- NANGE 16 TO 18 STEP 1 8 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= NRANGE 16 TO 18 STEP 1	
AREA NUMBER - 1 SLECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT= VRANGE 16 TO 18 STEP 1	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND. LSO SELECT FOR ITEM=KP COMPONENT=	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1 5 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
AREA NUMBER = 1 ELECT FOR ITEM=KP COMPONENT= VRANGE 10 TO 14 STEP 1	
AREA NUMBER - 1 ELECT FOR ITEM=KP COMPONENT= NRANGE 10 TO 14 STEP 1	
AREA NUMBER - 1 SLECT FOR ITEM=KP COMPONENT=	
AREA NUMBER - 1	
KEYPOINT LIST = 1 16 17 2	
EFINE AREA BY LIST OF KEYPOINTS	
18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND	•
NANGE 110 18 SIEP 1	

INTERNATIONAL	Revision 0 Page B10 of 37
► NAC	Calculation No. 457-2003
MATERIAL NUMBER SET TO I	
ELEMENT TYPE SET TO 4	
0 NODES (OF 0 DEFINED) SELECTED BY NSEL COMMAND	
ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 0 TO 0 STEP 1	
0 ELEMENTS (OF 0 DEFINED) SELECTED BY ESEL COMMAND.	
ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 0 TO 0 STEP 1	
18 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMANE).
ALL SELECT FOR ITEM-KP COMPONENT= IN RANGE TO 18 STEP	
20 LINES (OF 20 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE I TO 21 STEP I	
4 AREAS (OF 4 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM-AREA COMPONENT= IN RANGE TO 4 STEP	
0 VOLUMES (OF 0 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 0 TO 0 STEP J	
SELECT ALL ENTITIES OF TYPE- ALL AND BELOW	
AREA NUMBER = 4	
DEFINE AREA BY LIST OF LINES LINE LIST = ALL SELECTED LINES (TRAVERSED IN SAME DIRECTION AS LINE 3)	
9 LINES (OF 20 DEFINED) SELECTED FROM 9 SELECTED KEYPOINTS BY LSLK COMMAND.	
SELECT ALL LINES COMPLETELY CONTAINED WITHIN KEYPOINT	SET.
9 KEYPOINTS (OF 18 DEFINED) SELECTED BY KSEL COMMAND.	
IN RANGE 17 TO 18 STEP 1	

.....

REAL CONSTANT NUMBER - I	
GENERATE NODES AND ELEMENTS IN ALL SELECT	TED AREAS
 ** Meshing of area 1 in progress ** ** Meshing of area 1 completed ** 14 elements. 	
** Meshing of area 2 in progress **	
 Initial meshing of area 2 complete ** ** AREA 2 MESHED WITH 32 QUADRILATERALS, * Meshing of area 2 completed ** 32 elements. 	0 TRIANGLES **
** Meshing of area 3 in progress **	
 ** Initial meshing of area 3 complete ** ** AREA 3 MESHED WITH 0 QUADRILATERALS, ** Meshing of area 3 completed ** 1 elements. 	I TRIANGLES ••
** Meshing of area 4 in progress **	
 Initial meshing of area 4 complete ** *AREA 4 MESHED WITH 18 QUADRILATERALS. * Meshing of area 4 completed ** 22 elements. 	4 TRIANGLES **
NUMBER OF AREAS MESHED = 4 MAXIMUM NODE NUMBER = 95 MAXIMUM ELEMENT NUMBER = 69	
VIEW UP DIRECTION FOR WINDOW 1 IS GCS Z AXIS	
view point for window 1 1.0000 1.0000 1.0000	
PRODUCE ELEMENT PLOT IN DSYS = 0	
ACTIVE COORDINATE SYSTEM SET TO 0 (CARTES).	AN)
KEYPOINT 20 X,Y,Z= 0.000000E+00 0.000000E+00 0.	000000E+00 IN CSYS= 0
KEYPOINT 21 X,Y,Z= 0.000000E+00 0.000000E+00 2	0.0000 IN CSYS= 0
DEFAULT ELEMENT DIVISIONS PER LINE = 18	
ELEMENT TYPE SET TO 1	
REAL CONSTANT NUMBER≠ I	
MATERIAL NUMBER SET TO	
ROTATE AREAS 1, 2, 3, 4, ABOUT THE AXIS DEFINED BY KEYPOINTS 20 21	
NAC INTERNATIONAL	Calculation No. 457-2003. Revision 0
	Page B11 of 37

....

DEGREES OF ARC= 180.00 NUMBER OF SEGMENTS= 2	
MAXIMUM NODE NUMBER - 3515 MAXIMUM ELEMENT NUMBER - 2553	
*ENDIF	
ACTIVE COORDINATE SYSTEM SET TO 0 (CARTESIAN)	
SELECT FOR ITEM=LOC COMPONENT=Y BETWEEN-0.10000E-01 KABS= 0. TOLERANCE= 0.000000E+00	AND 1.0000
190 NODES (OF 3515 DEFINED) SELECTED BY NSEL COMMAND.	
SPECIFIED CONSTRAINT UY FOR SELECTED NODES 1 TO 3515 REAL=0.00000000000000000000000000000000000	BY 1
ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 1 TO 3515 STEP 1	
3515 NODES (OF 3515 DEFINED) SELECTED BY NSEL COMMAND.	
ELEMENT TYPE 5 IS MASS21 STRUCTURAL MASS KEYOPT(1-12)= 0 0 2 0 0 0 0 0 0 0 0 0 0	
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL MODEL	
GET zmin FROM NODE ITEM=MNLO Z VALUE= 0.00000000000000000000000000000000000	0
SELECT FOR ITEM=LOC COMPONENT=2 BETWEEN-1.0000 A) KABS= 0. TOLERANCE= 0.000000E+00	ND 0.10000E-01
37 NODES (OF 3515 DEFINED) SELECTED BY NSEL COMMAND.	
USE COMMAND MACRO MAS21 ARGS= 86871. 5.0000 5.0000	
OUTPUT FILE= m21.out	
PRINTOUT RESUMED BY /GOP	
SELECT ALL ENTITIES OF TYPE= ALL AND BELOW	
ALL SELECT FOR ITEM-VOLU COMPONENT= IN RANGE TO 8 STEP 1	
8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1	
A NAC ANTERNATIONAL	Calculation No. 457-2003.3
	Page B12 of 37

52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE I TO 94 STEP ?	
94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM-KP COMPONENT- IN RANGE TO 54 STEP	
54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND.	
ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE TO 2590 STEP	
2590 ELEMENTS (OF 2590 DEFINED) SELECTED BY ESEL COMMAND.	
ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 1 TO 3515 STEP 1	
3515 NODES (OF 3515 DEFINED) SELECTED BY NSEL COMMAND.	
*GET ndmx FROM NODE ITEM=NUM MAX VALUE= 3515.00000	
PARAMETER GNDMX = 3516.000	
ACTIVE COORDINATE SYSTEM SET TO 11 (CARTESIAN)	
NODE 3516 KCS= 11 X,Y,Z=-5.2400 0.00000E+00 21.460	
SPECIFIED CONSTRAINT UX FOR SELECTED NODES 3516 TO 3516 BY REAL= 0.000000000E+00 IMAG= 0.000000000E+00	1
SPECIFIED CONSTRAINT UY FOR SELECTED NODES 3516 TO 3516 BY REAL= 0.000000000E+00 IMAG= 0.00000000E+00	1
SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 3516 TO 3516 BY REAL= 0.000000000E+00 IMAG= 0.00000000E+00	1
REAL CONSTANT SET 3 ITEMS I TO 6 1000.0 1000.0 1000.0 1000.0 1000.0 0.00000E+00	
ACTIVE COORDINATE SYSTEM SET TO 0 (CARTESIAN)	
ALL SELECT FOR ITEM-ELEM COMPONENT- IN RANGE 1 TO 2590 STEP 1	
2590 ELEMENTS (OF 2590 DEFINED) SELECTED BY ESEL COMMAND.	
SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.	
3515 NODES (OF 3516 DEFINED) SELECTED FROM	
RAC INTERNATIONAL	Calculation No. 457-2003.3 Revision 0 Page B13 of 37

STOR PET FOTED EL ENTENDE DU SIGLE CONTUNIO	
2390 SELECTED ELEMENTS BY NSLE COMMAND.	
"GET r_o FROM NODE ITEM-MNLO X VALUE23.0000000	
SELECT FOR ITEM=LOC COMPONENT=Y BETWEEN-0.10000E-01 KABS= 0. TOLERANCE* 0.000000E+00	AND 1.0000
191 NODES (OF 3516 DEFINED) SELECTED BY NSEL COMMAND.	
RESELECT FOR ITEM-LOC COMPONENT=X BETWEEN -23.100 A KABS= 0. TOLERANCE= 0.000000E-00	ND -22.990
15 NODES (OF 3516 DEFINED) SELECTED BY NSEL COMMAND.	
USE COMMAND MACRO R_BEAM ARGS= 3516.0 1.0000 3.0000 3.0000	
MATERIAL NUMBER SET TO 1	
REAL CONSTANT NUMBER- 3	
ELEMENT TYPE SET TO 3	
UNSELECT FOR ITEM=NODE COMPONENT= IN RANGE 3516 TO 3516 STEP 1	
15 NODES (OF 3516 DEFINED) SELECTED BY NSEL COMMAND.	
DEFINITION OF COMPONENT = C_N ENTITY=NODE	
DEFINITION OF COMPONENT = C_NN ENTITY=NODE	
*GET nent FROM NODE ITEM=COUN VALUE= 15.0000000	
DO LOOP ON PARAMETER= 11 FROM 1.0000 TO 15.000 BY 1.0	000
•GET ndmx FROM NODE ITEM=NUM MAX VALUE= 30.0000000	
ALSO SELECT FOR ITEM=NODE COMPONENT- IN RANGE 3516 TO 3516 STEP 1	
16 NODES (OF 3516 DEFINED) SELECTED BY NSEL COMMAND.	
ELEMENT 2591 3516 30 0	
SELECT COMPONENT C_NN	
UNSELECT FOR ITEM=NODE COMPONENT= IN RANGE 3516 TO 3516 STEP 1	
15 NODES (OF 3516 DEFINED) SELECTED BY NSEL COMMAND.	
	Calculation No. 457-2003 Revision 0
	Page B14 of 37

INTERNATIONAL	Revision 0 Page B15 of 37
NAC	Calculation No. 457-2003
RESELECT FOR ITEM=LOC COMPONENT=X BETWEEN (KABS= 0. TOLERANCE= 0.000000E+00	22.900 AND 23.010
192 NODES (OF 3517 DEFINED) SELECTED BY NSEL CON	IMAND.
KABS= 0. TOLERANCE= 0.000000E+00	10000C-01 AND 1.0000
REAL= 0.00000000E+00 IMAG= 0.00000000E-00	
REAL= 0.000000000E+00 IMAG= 0.00000000E+00 SPECIFIED CONSTRAINT UZ FOR SELECTED NODES 3517	TO 3517 BY
SPECIFIED CONSTRAINT UY FOR SELECTED NODES 3517	TO 3517 BY 1
NODE 3517 KCS= 0 XYZ= 28.240 0.00000E+00.21.460	
*GET s.z. FROM NODE 3516 ITEM-LOC Z. VALUE= 2	1 4600000
•GET s x FROM NODE 3516 ITEM=LOC Y VALUE= 2	8 2400000
ACTIVE COORDINATE SYSTEM SET TO () (CARTESIAN)	
PRINTOUT RESUMED BY /GOP	
/OUTPUT FILE= kbas1.out	
PRODUCE ELEMENT PLOT IN DSYS = 0	AIED
AUTOMATIC SCALING FOR WINDOW I	
NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NL	JMBER
MAT NUMBERING KEY - 1	
16 NODES (OF 3516 DEFINED) SELECTED BY NSEL CON	IMAND.
ALSO SELECT FOR ITEM=NODE COMPONENT= IN RANGE 3516 TO 3516 STEP)	
SELECT COMPONENT C_N	
*ENDDO INDEX=11	
DEFINITION OF COMPONENT = C NN ENTITY=NODE	
14 NODES (OF 3516 DEFINED) SELECTED BY NSEL COM	MAND

USE COMMAND MACRO R_BEAM ARGS= 3517.0 1.0000 3.0000 3.0000	
MATERIAL NUMBER SET TO I	
REAL CONSTANT NUMBER= 3	
ELEMENT TYPE SET TO 3	
UNSELECT FOR ITEM-NODE COMPONENT- IN RANGE 3517 TO 3517 STEP I	
15 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
DEFINITION OF COMPONENT - C_N ENTITY-NODE	
DEFINITION OF COMPONENT = C_NN ENTITY=NODE	
*GET nent FROM NODE ITEM=COUN VALUE= 15.0000000	
*DO LOOP ON PARAMETER= 11 FROM 1.0000 TO 15.000 BY 1.00	900
*GET ndmx FROM NODE ITEM-NUM MAX VALUE= 1835.00000	
ALSO SELECT FOR ITEM=NODE COMPONENT= IN RANGE 3517 TO 3517 STEP 1	
16 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
ELEMENT 2606 3517 1835 0	
SELECT COMPONENT C_NN	
UNSELECT FOR ITEM=NODE COMPONENT= IN RANGE 3517 TO 3517 STEP I	
15 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
UNSELECT FOR ITEM-NODE COMPONENT= IN RANGE 1835 TO 1835 STEP 1	
14 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
DEFINITION OF COMPONENT = C_NN ENTITY-NODE	
•ENDDO (NDEX=1)	
SELECT COMPONENT C_N	
ALSO SELECT FOR ITEM-NODE COMPONENT- IN RANGE 3517 TO 3517 STEP I	
NAC INTERNATIONAL	Calculation No. 457-2003. Revision 0
· ·	Page B16 of 37

THE NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 25 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 54 ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 3417 NODES (OF 54) DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=DEM COMPONENT= IN RANGE 1 TO 2517 STEP 1 3317 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND. ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 1 TO 3517 DEFINED) SELECTED BY NSEL COMMAND. ALL SELECT FOR ITEM=SUSCONNECTED FROM NODES AND ELEMENTS = 154 ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) EELECT FOR ITEM=ENAM COMPONENT= IN RANGE 45 TO 45 STEP 1 CARDING 457-2003 3 DESTROY ASSOCIATIVITY OF FINITE ELEMENT MODEL AND SOLID MODEL NUMBER OF MESH ITEMS DISCONNECTED FROM NODES AND ELEMENTS = 154 ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)		Page B17 of 37
MAT NUMBERING KEY = 1 NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANCE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 92 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE 1 TO 34 STEP 1 94 LINES (OF 54 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=LEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=NELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 540 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=SELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=NDDE COMPONENT= IN RANGE 1 TO 2620 STEP 1 3317 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND. ALL SELECT FOR ITEM=NDDE COMPONENT= IN RANGE 1 TO 3517 STEP 1 3317 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND. ALL SELECT FOR ITEM=SUSCONNECTED FROM NODES AND ELEMENTS = 154 ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) EELECT FOR ITEM=REM COMPONENT= IN RANGE 45 TO 45 STEP 1	A NAC INTERNATIONAL	Calculation No. 457-2003.3
MAT NUMBERING KEY = 1 NUMBERING KEY = 1 NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=-RAEA COMPONENT= IN RANGE 1 TO 25 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=-LINE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=-LINE COMPONENT= IN RANGE 1 TO 34 STEP 1 94 LINES (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELM COMPONENT= IN RANGE 1 TO 2620 STEP 1 3617 NODES (OF 1517 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 3617 NODES (OF 1517 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 3617 NODES (OF 1517 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=NDDE COMPONENT= IN RANGE 1 TO 34 STEP 1 3617 NODES (OF 1517 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=NDDE COMPONENT= IN RANGE 1 TO 3457EP 1 3617 NODES (OF 1517 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=SUSCONNECTED FROM NODES AND ELEMENTS = 154 ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)	SELECT FOR ITEM=ENAM COMPONENT= IN RANGE 45 TO 45 STEP 1	
THE RODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1-NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 25 STEP 1 52 AREAS (OF 32 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 54 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=KEY COMPONENT= IN RANGE 1 TO 54 STEP 1 94 LINES (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ENT OMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 3620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 3617 STEP 1 3317 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND. DESTROY ASSOCIATIVITY OF FINITE ELEMENT MODEL AND SOLID MODEL NUMBER OF MESH ITEMS DISCONNECTED FROM NODES AND ELEMENTS = 154	ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)	
THE RODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=-REA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 52 STEP 1 54 ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 54 STEP 1 54 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE 1 TO 248 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=NELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=NELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY NEEL COMMAND. ALL SELECT FOR ITEM=NDE COMPONENT= IN RANGE 1 TO 3517 STEP 1 3317 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	DESTROY ASSOCIATIVITY OF FINITE ELEMENT MODEL AND SOLID NUMBER OF MESH ITEMS DISCONNECTED FROM NODES AND ELE	MODEL EMENTS = 154
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=KEN COMPONENT= IN RANGE 1 TO 54 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=KE COMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=KE COMPONENT= IN RANGE 1 TO 260 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 260 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 260 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=FILM COMPONENT= IN RANGE 1 TO 261 STEP 1 2620 ELEMENTS (OF 160 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM=FILM COMPONENT= IN RANGE 1 TO 3517 STEP 1	3517 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
THE RODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1-NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 25 STEP 1 52 AREAS (OF 32 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1 2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY ESEL COMMAND.	ALL SELECT FOR ITEM=NODE COMPONENT= IN RANGE 1 TO 3517 STEP 1	
THE RODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=-AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=-LINE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=-LINE COMPONENT= IN RANGE 1 TO 34 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=-LINE COMPONENT= IN RANGE 1 TO 2620 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND. ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1	2620 ELEMENTS (OF 2620 DEFINED) SELECTED BY ESEL COMMA	ND.
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 54 STEP 1 54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND.	ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1	
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1-NONE 0=BOTH 1=COLOR 2-NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=-AREA COMPONENT= IN RANGE 1 TO 25 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=-INE COMPONENT= IN RANGE 1 TO 94 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 54 STEP 1	54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAN	ND.
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 54 STEP 1 94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND.	ALL SELECT FOR ITEM-KP COMPONENT= IN RANGE 1 TO 54 STEP I	
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND. ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 94 STEP 1	94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND.	
IN RODES (UF 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1-NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=-VOLU COMPONENT= IN RANCE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND, ALL SELECT FOR ITEM=AREA COMPONENT= IN RANCE 1 TO 52 STEP 1 52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.	ALL SELECT FOR ITEM-LINE COMPONENT= IN RANGE 1 TO 94 STEP 1	
MAT NUMBERING KEY = 1 NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANCE 1 TO 8STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND. ALL SELECT FOR ITEM=AREA COMPONENT= IN RANCE 1 TO 52 STEP 1	52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.	
IN RODES (UT 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1 8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND.	ALL SELECT FOR ITEM-AREA COMPONENT- IN RANGE TO 52 STEP	
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 1 TO 8 STEP 1	8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND).
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0 SELECT ALL ENTITIES OF TYPE= ALL AND BELOW	ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE I TO 8 STEP I	
TE RODES (UT 3517 DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED PRODUCE ELEMENT PLOT IN DSYS = 0	SELECT ALL ENTITIES OF TYPE= ALL AND BELOW	
MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED	PRODUCE ELEMENT PLOT IN DSYS = 0	
IN NOUSS (UT 351) DEFINED) SELECTED BY NSEL COMMAND, MAT NUMBERING KEY = 1 NUMBER KEY SET TO 1 -1-NONE 0=BOTH 1=COLOR 2=NUMBER	AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED	
MAT NUMBERING KEY = 1	NUMBER KEY SET TO 1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER	
16 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	MAT NUMBERING KEY = 1	
	16 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	

LUKKENT NODAL DOF SET IS UX UY UZ RO	DTX ROTY ROTZ		Calculation No. 457-2003.3
DELETE ELEMENT TYPES FROM 4 TO 4 BY			
DELETE ALL SELECTED ELEMENTS.			
69 ELEMENTS (OF 2620 DEFINED) SELECTED	BY ESEL COMMA	ND	
SELECT FOR ITEM=TYPE COMPONENT= IN RANGE 4 TO 4 STEP I			
MODIFY ALL SELECTED NODES IN COORDINAT NEW COORDS X= 22.38	E SYSTEM 12		
ACTIVE COORDINATE SYSTEM SET TO 12 (CA	RTESIAN)		
COORDINATE SYSTEM 12 DEFINITION. TYPE- XC,YC,ZC=0.00000E+00 0.00000E+00 0.0000E+00 0.00000E+00 0.0000E+00 0.000 0.0000E+00 0.000	0 (CARTESIAN) 0 1.000 1.000 0.00 0.00 1.00		
90 NODES (OF 3517 DEFINED) SELECTED BY	NSEL COMMAND		
RESELECT FOR ITEM=LOC COMPONENT=Y KABS= 0. TOLERANCE= 0.000000E+00	BETWEEN -66.000	AND -	38.000
555 NODES (OF 3517 DEFINED) SELECTED BY	Y NSEL COMMAND		
RESELECT FOR ITEM=LOC COMPONENT=X KABS= 0. TOLERANCE= 0.000000E+00	BETWEEN 22.900	AND	24.000
*GET r_o FROM NODE ITEM=MXLO X · VA	LUE= 23.000000		
3515 NODES (OF 3517 DEFINED) SELECTED FE 2484 SELECTED ELEMENTS BY NSLE COMMAN	ROM ID.		
SELECT ALL NODES HAVING ANY ELEMENT	IN ELEMENT SET.		
MODIFY ALL SELECTED NODES IN COORDINAT NEW COORDS= Y= -39.00	E SYSTEM 1		
95 NODES (OF 3517 DEFINED) SELECTED BY	NSEL COMMAND		
RESELECT FOR ITEM=LOC COMPONENT=Y KABS= 0. TOLERANCE= 0.000000E+00	BETWEEN -41.000	AND	-39.000
3515 NODES (OF 3517 DEFINED) SELECTED F 2484 SELECTED ELEMENTS BY NSLE COMMAN	ROM		
SELECT ALL NODES HAVING ANY ELEMENT	IN ELEMENT SET.		

THREE-DIMENSIONAL MODEL	
SELECT ALL ENTITIES OF TYPE" ALL AND BELOW	
ALL SELECT FOR ITEM=VOLU COMPONENT= IN RANGE 1 TO 8 STEP (
8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=AREA COMPONENT= IN RANGE 1 TO 52 STEP 1	
52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM-LINE COMPONENT= IN RANGE 1 TO 94 STEP 1	
94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE TO 54 STEP	
54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND.	
ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1	
2551 ELEMENTS (OF 2551 DEFINED) SELECTED BY ESEL COMMAND.	
ALL SELECT FOR ITEM-NODE COMPONENT- IN RANGE 1 TO 3517 STEP 1	
3517 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND.	
••••• ROUTINE COMPLETED ••••• CP = 570.773	
••• NOTE •••• CP* 570.781 TIME= 22:00:07 A total of 353 warnings and errors written to flube.err.	
***** ANSYS SOLUTION ROUTINE *****	
ACEL= 0.00000E+00 0.00000E-00 1.0000	
***** ANSYS SOLVE COMMAND *****	
•••• NOTE •••• CP∞ 570.789 TIME= 22:00:07 There is no title defined for this analysis.	
*** NOTE *** CP= 571.820 TIME= 22:00:08	
INAC INTERNATIONAL	Calculation No. 457-2003. Revision 0
	Page B19 of 37

The model data was checked and warning messages were found	
Please review output or errors file (fube.err) for these warning	
messages.	
SOLUTION OPTIONS	
DEGREES OF FREEDOM UV UV UV DOTY BOTY BOTY	
ANALYSIS TYPE	
*** NOTE *** CP- 572.055 TIME= 22:00:08	
Present time D is less than or equal to the previous time.	
Time will default to 1.	
** Reordering still in progress **	
** Reordering still in progress **	
LOAD STEP OPTIONS	
LOAD STEP NUMBER 1	
TIME AT END OF THE LOAD STEP 1.0000	
NUMBER OF SUBSTEPS.	
INERTIALOADS V V 7	
ACEL	
PRINT OUTPUT CONTROLS NO PRINTOUT	
DATABASE OUTPUT CONTROLSALL DATA WRITTEN	
FOR THE LAST SUBSTEP	
Element Formation Elements 10 Cum. Rev. a 1 CBr 573 242	
Time= 1.0000 Load Ster= 1 Subster= 1 Equilibrium Iteration= 1	
Element Formation Element= 1810 Cum. Iter.= 1 CP= 582.734	
Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 1.	
***** CENTROID, MASS, AND MASS MOMENTS OF INERTIA *****	
CALCULATIONS ASSUME ELEMENT MASS AT ELEMENT CENTROID	
TOTAL MASS - 86871.	
MOM OF DIERTIA MOM OF DIERTI	
CENTROID ABOUT ORIGIN ABOUT CENTROID	
CENTROID ADOUT ON ON ADOUT CENTROID	
XC = 0.63009E-02 IXX = 0.1862E+08 IXX = 0.3957E+07	
YC = -12.992 $IYY = 0.1969E+08$ $IYY = 0.1969E+08$	
ZC = 0.00000E+00 IZZ = 0.3831E+08 IZZ = 0.2365E+08	
IXY = -3448, $IXY = -0.1056E+05$	
IZX = 0.0000E+00 $IZX = 0.0000E+00$	
ONLY THE X-DIRECTION MASS TERMS ARE USED FOR MASS21 ELEME	ENTS.
	Calculation No. 457-2003
	Page B20 of 37

*** MASS SUMMARY BY ELEMENT TYPE ***	
TYPE MASS	
Range of element maximum matrix coefficients in global coordinates Maximum= 2.061031631E+10 at element 2596. Minimum= 7637221.94 at element 1754.	
*** ELEMENT MATRIX FORMULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP	
1 2484 SOLID45 13.250 0.005	
3 30 BEAM4 0.039 0.001	
5 37 MASS21 0.008 0.000 Time at end of element matrix formulation CP= 586.632813	
Estimated number of active DOF= 10452. Maximum wavefront= 397.	
Equation Solution Element= 500 Curn. Iter. = 1 CP= 592.461 Turne= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 1. Equation Solution Element= 1920 Curn. Iter. = 1 CP= 601.836 Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 1. Time at end of matrix triangularization CP= 605.734373. Equation solver minimum pivot= 15005774171. Equation solver minimum pivot= 15005774171. Equation solver minimum pivot= 15005774171. Equation solver minimum pivot= 15005774575. Time= 1.0000 Load Step= 1 Substep= 1 Equilibrium Iteration= 1. **** ELEMENT RESULT CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 2484 SOLID45 8.453 0.003 3 30 BEAM4 0.047 0.002 5 37 MASS21 0.008 0.000 3 30 BEAM4 0.008 0.000 3 30 BEAM4 0.008 0.000	
LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 1 TIME = 1.00000 TIME INC = 1.00000 NEW TRIANG MATRIX	
*** PROBLEM STATISTICS ACTUAL NO. OF ACTIVE DEGREES OF FREEDOM = 10452 R.M.S. WAVEFRONT SIZE = 305.2	
INTERNATIONAL	Calculation No. 457-2003.3 Revision 0
	Page B21 of 37
*** ANSYS BINARY FILE STATISTICS BUFFER SIZE USED— 8192 13.031 MB WRITTEN ON ELEMENT MATRIX FILE: flube.emat 9.063 MB WRITTEN ON ELEMENT SAVED DATA FILE: flube.esav	
---	---
4.344 MB WRITTEN ON TRIANGULARIZED MATRIX FILE: flube.tri 4.344 MB WRITTEN ON RESULTS FILE; flube.rst	
FINISH SOLUTION PROCESSING	
••••• ROUTINE COMPLETED ••••• CP = 617.820	
•••• NOTE •••• CP= 617.828 TIME= 22:01:01 A total of 355 warnings and errors written to flube.err.	
***** ANSYS RESULTS INTERPRETATION (POSTI) *****	
ENTER /SHOW,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1	
An active coordinate system is not zero. RSYS= 0 CSYS= 12 DSYS= 0.	
SELECT ALL ENTITIES OF TYPE- ALL AND BELOW	
ALL SELECT FOR ITEM-VOLU COMPONENT- IN RANGE 1 TO 8 STEP 1	
8 VOLUMES (OF 8 DEFINED) SELECTED BY VSEL COMMAND.	
ALL SELECT FOR ITEM=AREA COMPONENT≈ IN RANGE 1 TO 52 STEP 1	
52 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.	
ALL SELECT FOR ITEM=LINE COMPONENT= IN RANGE 1 TO 94 STEP 1	
94 LINES (OF 94 DEFINED) SELECTED BY LSEL COMMAND.	
ALL SELECT FOR ITEM=KP COMPONENT= IN RANGE 1 TO 54 STEP 1	
54 KEYPOINTS (OF 54 DEFINED) SELECTED BY KSEL COMMAND.	
ALL SELECT FOR ITEM=ELEM COMPONENT= IN RANGE 1 TO 2620 STEP 1	
INTERNATIONAL	Calculation No. 457-2003. Revision 0
	Page B22 of 37

.

2551 ELEMENTS (OF 2551 DEFINED) SELECTED BY ESEL COMMAND. ALL SELECT FOR ITEM-NODE COMPONENT= IN RANGE 1 TO 3517 STEP 1 3517 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND. ***** SUMMATION OF TOTAL FORCES AND MOMENTS IN GLOBAL COORDINATES ***** FX = -0.4228059E-07 FY = 0.4213598E-07 FZ = -86871.00 MX = 1128610. MY = 547 3622 MZ = -0.1312711E-05 SUMMATION POINT= 0.00000E+00 0.00000E+00 0.00000E+00 DISPLAYS PUT ON PLOT FILE kbasin.plt - VECTOR MODE. TITLE= K Basin Pail Ring Lift Analysis DEVICE VECTOR KEY SET TO 1 HIDDEN DISPLAY (PRECISE) IN WINDOW 1 NUMBER KEY SET TO -1 -1=NONE 0=BOTH 1=COLOR 2=NUMBER view point for window 1 1.0000 1.0000 1.0000 PRODUCE ELEMENT PLOT IN DSYS = 0 CUMULATIVE DISPLAY NUMBER | WRITTEN TO FILE kbasin.plt - VECTOR MODE. DISPLAY TITLE-K Basin Pail Ring Lift Analysis *** NOTE *** CP= 618.758 TIME= 22:01:01 CUMULATIVE DISPLAY NUMBER 1 WRITTEN TO FILE kbasin.plt - VECTOR MODE. DISPLAY TITLE= K Basin Pail Ring Lift Analysis. NUMBER KEY SET TO 2 -I=NONE 0=BOTH 1=COLOR 2=NUMBER SELECT FOR ITEM=ENAM COMPONENT= IN RANGE 45 TO 45 STEP 1 2484 ELEMENTS (OF 2551 DEFINED) SELECTED BY ESEL COMMAND. SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET. 3515 NODES (OF 3517 DEFINED) SELECTED FROM 2484 SELECTED ELEMENTS BY NSLE COMMAND. Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B23 of 37

INTERNATIONAL	Revision 0 Page B24 of 37
THE FOLLOWING X,Y,Z STRESSES ARE IN GLOBAL COORDINATES.	Calculation No. 457-2003
LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0	
INSIDE NODE = 2221 OUTSIDE NODE = 2630	
PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPA	TH COMMAND. DSYS= 0
DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NOD 2221 2630	ES:
DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN)	
NODE X Y Z THXY THZX THZX 2221 23.000 -30.000 22.571 0.00 0.00 0.00 2630 20.625 -30.000 22.505 0.00 0.00 0.00	
LIST ALL SELECTED NODES IN RANGE 2221 TO 2630 STEP 409 I	DSYS- 1
DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)	
••• NOTE ••• CP= 623.000 TIME= 22:01:06 CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE kbasin.pit - VEC DISPLAY TITLE= K Basin Pail Ring Lift Analysis.	CTOR MODE.
CUMULATIVE DISPLAY NUMBER 2 WRITTEN TO FILE kbasin.plt DISPLAY TITLE- K Basin Pail Ring Lift Analysis	- VECTOR MODE.
DISPLAY NODAL SOLUTION, ITEM-S COMP-EQV	
1821 ELEMENTS (OF 2551 DEFINED) SELECTED FROM 2565 SELECTED NODES BY ESLN COMMAND.	
SELECT ONLY ELEMENTS COMPLETELY CONTAINED WITHIN NO	DDE SET.
2565 NODES (OF 3517 DEFINED) SELECTED BY NSEL COMMAND) .
RESELECT FOR ITEM=LOC COMPONENT=Y BETWEEN -161.00 KABS= 0, TOLERANCE= 0.000000E+00	AND -29.000
ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)	
VIEW UP DIRECTION FOR WINDOW 1 IS GCS Z AXIS	
view point for window 1 1.0000 -1.0000 1.0000	
AUTOMATIC SCALING FOR WINDOW 1 DISTANCE AND FOCUS POINT AUTOMATICALLY CALCULATED	

** MEMBRANE ** SX SY SZ SXY SYZ SXZ -580.5 -34.39 -135.5 -495.1 -521.9 -219.9 \$1 \$2 \$3 \$INT SEQV 495.5 -139.9 -1106. 1602, 1397. ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX 5Y SZ SXY SYZ SXZ I-1002, -2782, 725.8 -2057, 01180E+05 6857 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 1002. 2782. -725.8 2057. -0.1180E+05 -6852. SI S2 S3 SINT SEQV I 0.1217E+05 336.0 -0.1556E+05 0.2773E+05 0.2410E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1556E+05 -336.0 -0.1217E+05 0.2773E+05 0.2410E+05 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE ** MEMBRANE PLUS BENDING ** I=INSIDE C-GE SX SY SZ SXY SYZ SXZ I -1583 -2816 5903 -2552 0.1128E+05 6632. C -580.5 -34.39 -135.5 -495.1 -521.9 -219.9 0 421.6 2747 -861.3 1562 -0.1233E+05 -7072. S1 SZ S3 SINT SEQV I 0.1130E+05 331.6 -0.1544E+05 0.2675E+05 0.2329E+05 C 4955 -139.9 -1106 1055E+05 0.237E+05 0.2107E+05 0.2107E+05 0.1571E=05.313.2 -0.1205E+05 0.275E+05 0.2107E+05 0.1571E=05.313.2 -0.1205E+05 0.2107E+05 0.1571E=05.313.2 -0.1205E+05 0.2107E+05 0.1571E=05.313.2 -0.1205E+05 0.2107E+05 0.1571E=05.5 -0.1205E+05 0.2105E+05 O 0.1571E+05 -351.2 -0.1305E+05 0.2876E+05 0.2496E+05 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SXZ
 SXZ

 1 -7.176
 -27.64
 27.29
 164.2
 704.6
 376.9

 C
 23.07
 13.26
 -10.07
 -130.4
 -546.0
 -291.8

 0 -105.5
 115.3
 155.7
 118.8
 1143.
 611.4

 S1
 S2
 S3
 S1NT
 SEQV

 1875.7
 -145.4
 -737.8
 1614.
 1414.

 C
 573.9
 127.5
 -675.1
 1249.
 1096.

 O
 1458.
 -155.0
 -1135.
 2593.
 2268.
 ** TOTAL ** I-INSIDE C=CENTER O-OUTSIDE **TOTAL ** INISIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1-J500 -2844. 617.6 -2388. 0.1199E-05 7009. C -557.5 -211.3 -145.6 -625.5 -1068. -511.7 0 316.2 2862. -702.6 -1681. -0.1118E+05 -6461. S1 S2 S3 SINT SEQV TEMP 10.1215E+05 172.9 -0.1614E+05 0.2829E+05 0.2459E+05 0.0000E+00 C 944.9 -7.545 -1712. 2706. 2370. O 0.1459E-05 -503.0 -0.1161E+05 0.2621E+05 0.2278E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 2272 TO 2596 STEP 324 DSYS= 1 NODE X THXY THYZ THZX Z NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page B25 of 37

2272 23.000 -30.000 20.857 0.00 0.00 0.00 2596 21.000 -30.000 20.808 0.00 0.00 0.00 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 2272 2596 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 2272 OUTSIDE NODE = 2596 LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES. ** MEMBRANE ** SX SY SZ SXY SYZ SXZ -85.87 123.4 -109.4 36.11 -141.8 16.32 sx SZ SXY SI S2 S3 SINT SEQV 192.8 -78.97 -185.7 378.6 338.1 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -805.1 -2385. 694.7 -1732. 0.1237E+05 7148. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0 805.1 2385. -694.7 1732. -0.1237E+05 -7148. S1 S2 S3 SINT SEQV 1 0.1304E+05 300.4 -0.1584E+05 0.2888E+05 0.2507E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1584E+05 -300.4 -0.1304E+05 0.2888E+05 0.2507E+05 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXX SYZ SXZ 1-8910 -2262 5853 -1696 0.1223E+05 7164. C 45587 123.4 -109.4 36.11 -141.8 16.32 O 719.3 2508 -804 1 769 -0.1251E+05 -7132. S1 S2 S3 SINT SEQV 1 0.1291E+05 238.6 -0.1572E+05 0.2863E+05 0.2485E+05 C 192.8 -78.97 -185.7 378.6 338.1 O 0.1596E+05 -363.8 -0.1318E+05 0.2914E+05 0.2530E+05 ** PEAK ** I~INSIDE C=CENTER O+OUTSIDE SX SX SY SZ SXY SYZ SXZ I -87.16 49.86 -35.67 61.27 -332.3 -208.0 C 88.30 -44.07 34.19 -55.73 289.7 180.8 O 8.675 58.61 -34.08 82.29 -545.0 -343.0 **S**1 S2 S3 SINT SEQV 1 412.0 -103.1 -381.9 793.9 697.6 C 335.4 100.5 -357.5 692.9 610.3 NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page B26 of 37

O 690.9 -51.34 -606.3 1297. 1127. ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SX
 SY
 SX
 SZ
 SX
 SY
 SZ
 SX
 SY
 SZ
 SX
 SY
 SX
 SX< C 222.1 67.78 -283.3 505.5 448.7 O 0.1665E+05 -414.2 -0.1378E+05 0.3043E+05 0.2642E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 1847 TO 2392 STEP 545 DSYS= 1 NODE X Ŷ Z THXY THYZ THZX 1847 23.000 -30.000 26.000 0.00 0.00 0.00 2392 21.000 -30.000 26.000 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 1847 2392 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1847 OUTSIDE NODE = 2392 LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X,Y,Z STRESSES ARE IN GLOBAL COORDINATES. ** MEMBRANE **
 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 -7607.
 3503.
 363.6
 -5999.
 -173.8
 -111.5

 S1
 S2
 S3
 SINT
 SEOV
 \$3 SINT SEOV \$2 6126. 364.1 -0.1023E+05 0.1636E+05 0.1437E+05 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I-(499. -901.0 291.0 -1803. 4276. 2445. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 1499. 901.0 -291.0 1803. -4276. -2445. S1 S2 S3 SINT SEQV I 4107. 207.5 -6423. 0.1053E+05 9221. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 6423. -207.5 -4107. 0.1053E+05 9221. ** MEMBRANE PLUS BENDING ** I-INSIDE C=CENTER O=OUTSIDE NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page B27 of 37

 SX
 SY
 SZ
 SXY
 SY2
 SXZ

 1-9106
 2602
 654.6
 7802.
 4102.
 2334.

 C -7607.
 3503
 363.6
 -5999.
 -173.8
 -111.5

 O -6108.
 4404.
 72.61
 -4196.
 -4449.
 -2557.
 S1 S2 S3 SINT SEQV I 7612. 613.4 -0.1407E+05 0.2169E+05 0.1917E+05. C 6126. 364.1 -0.1023E+05 0.1636E+05 0.1437E+05 O 7597. 92.87 -9321. 0.1692E+05 0.1468E+05 ** PEAK ** I×INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 I
 876.0
 -973.1
 -48.63
 567.5
 -78.35
 -45.63

 C
 -746.5
 822.2
 41.84
 -489.3
 -6.043
 -3.962

 O
 1430.
 -1641.
 -76.63
 877.8
 -816.9
 -479.6

 SI
 S2
 S3
 SINT
 SEQV

 I
 1040.
 -48.89
 -1137.
 2177.
 1886.

 C
 962.4
 41.85
 -886.6
 1849.
 1601.

 O
 1906.
 -87.07
 -2106.
 4013.
 3475.
 ** TOTAL ** I-INSIDE C-CENTER O-OUTSIDE
 SX
 SY
 SZ
 SXY
 SX
 SX
 SX
 SX
 SX
 SZ
 SZ
 SZ
 I-8230,
 1629,
 605,9
 -7235,
 4023,
 2258
 C
 8353,
 425,4
 648,8
 -179,9
 -115,5
 O
 -678,
 2763,
 -4.011,
 -3318,
 -5266,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 -3037,
 SI S2 S3 SINT SEQV TEMP 6640. 552.4 -0.1319E+05 0.1983E+05 0.1759E+05 0.0000E+00 L 6640. C 7059. 405.9 -0.1109E+05 0.1815E+05 0.1590E+05 O 6886. 29.11 -8834. 0.1572E+05 0.1365E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 129 TO 742 STEP 613 DSYS= 1 NODE X v Z THXY THYZ THZX 129 23.000 -160.00 26.000 0.00 0.00 0.00 742 21.000 -160.00 26.000 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 129 742 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE - 129 OUTSIDE NODE = 742 LOAD STEP | SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES. Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B28 of 37

A9.2-96

1.1.1

** MEMBRANE ** SX SZ SXY SY SYZ SY7 52 5.41 512 524.1 8449. -317.2 53 SINT SEOV -5907. 3233. 27.93 SI \$2 518.5 -0.1095E+05 0.1922E+05 0.1675E+05 8277 ** BENDING ** 1~INSIDE C=CENTER O=OUTSIDE SY SZ SXY SYZ SXZ -4246. 678.9 3276. 5389. -1959. SX SY C 0.0000E+00 0.0000E-00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 1151. 4246. -678.9 -3276. -5389. 1959. SI S2 S3 SINT SEQV 1 4146. 596.9 -9460. 0.1361E+05 0.1222E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 9460. -596.9 -4146. 0.1361E+05 0.1222E+05 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE ** MEMBRANNE PLUS BENDING ** (=INSIDE C=6
 SX SY SZ SXY SYZ SXZ
 I-7058 -1013. 1203. 0.1173E+05 5072. -1931.
 C -5907. 3233. 524.1 8449. -317.2 27.93
 O 4756 - 7478. -154.8 5173. -5707. 1986.
 S1 SZ S3 SINT SEGV
 I 9192. 1263. -0.1732E+05 0.2651E+05 0.2137E+05
 C 8277. 518.5 -0.1092E+05 0.2015E+05 0.1972E+05
 O 1134E+05 0.176. 4469. 0.0007E+05 0.0137E+05 O 0.1141E+05 -179.6 -8659 0.2007E+05 0.1745E+05 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE

 PEAK
 **
 I=INSIDE
 C=CENTER
 O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ
 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SXY
 SXZ
 SXZ

 1-6389
 -1909.
 1075.
 0.1068E+05.
 4970.
 -1886.

 C
 -6467.
 4002.
 6405.
 5938.
 -323.4
 25.83

 O
 -3576.
 6097.
 -300.1
 3472.
 -6759.
 2395.

 S1
 S2
 S3
 S11T
 SEQV
 TEMP

 1
 7960.
 1119.
 -0.1630E+05
 0.2426E+05
 0.2167E+05
 0.0000E+00

 C
 9481.
 635.3
 -0.1194E+05
 0.2142E+05
 0.1865E+05
 O 0.1058E+05 -306.3 -8056. 0.1864E+05 0.1622E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 231 TO 912 STEP 681 DSYS= 1 NODE NODE X Y Z THXY THYZ THZX 231 23.000 -160.00 24.286 0.00 0.00 0.00 Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B29 of 37

DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN)	
DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUG 231 912	H NODES:
PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED I	BY LPATH COMMAND. DSYS= 0
***** PÔSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 231 OUTSIDE NODE = 912	
LOAD STEP I SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0	
THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDIN	ATES.
** MEMBRANE **	
SX SY SZ SXY SYZ SXZ	
SI S2 S3 SINT SEQV	
1028. 12.69 -3062. 4090. 3689.	
** BENDING ** 1=INSIDE C=CENTER 0=0UTSIDE SX SY SZ SXY SYZ SXZ 1 -533.2 -5151. 392.5 2619. 0.1423E+05 -5183. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0 533.2 5151392.5 -2619. 0.1423E+05 5183. S1 S2 S3 SINT SEQV 1 0.1257E+05 6098 -0.1847E+05 0.3104E+05 0.2712E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+05	0.0000E+00
O 0.1847E+05 -609.8 -0.1257E+05 0.3104E+05 0.2712E+05	
** MEMBRANE PLUS BENDING ** 1-INSIDE C=CENTEL SX SY SZ SXY SYZ SXZ 1-15486-280. 514.9 4420. 0.133E+05 -4991. C -10141129. 122.4 1802879.5 192.2 O -481.0 4022270.1 -816.9 -0.1511E+05 5375. SI SZ S3 SINT SEQU I 0.1103E+05 767.7 -0.1911E+05 0.3014E+05 0.2655E+05 C 1028. 12.69 -3062. 4090. 3.689. O 0.1808E+05 -490.7 -0.1432E+05 0.3240E+05 0.2816E+05	R O-OUTSIDE
** PEAK ** I=INSIDE C=CENTER O=OUTSIDE	
5X 5Y 5Z 5XY 5YZ 5XZ 1 35.60 -96.44 6.536 -261.1 -410.3 160.0	
C -12.28 87.01 2.268 217.0 333.9 -129.7	
O 230.0 -113.0 67.51 -501.1 -858.1 338.7 S1 S2 S3 SINT SEOV	
1 541.0 -117.2 -478.1 1019. 894.9	
C -399.4 110.0 -432.4 831.8 731.4 O 1199 -106.7 -908.2 2108 1843	
NAC	Calculation No. 457-2003
	Revision 0
INTERNATIONAL	1

** TOTAL ** I=INSIDE C=CENTER O*OUTSIDE ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1-1512. -6377. 521.4 4159 0.1294E+05 4831. C-1027. -1042. 124.6 2019. -545.5 62.50 0-251.0 3909. -202.6 -1318. -0.1597E+05 5714. S1 S2 S3 SINT SEQV TEMP 1 0.1062E+05 617.2 -0.1661E+05 0.2252E+05 0.2578E+05 0.0000E+00 C 1108. 58.80 -3111. 4219. 3804. O 0.1915E+05 -614.9 -0.1508E+05 0.3422E+05 0.2976E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO i (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 333 TO 861 STEP 528 DSYS= 1 THXY THYZ THZX NODE X v Z 333 23.000 -160.00 20.857 0.00 0.00 0.00 861 21.000 -160.00 20.808 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 133 861 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS- 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 333 OUTSIDE NODE = 861 LOAD STEP | SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES. ** MEMBRANE **
 SX
 SY
 SZ
 SXY
 SYZ

 49.17
 356.0
 202.7
 -89.04
 -343.9

 S1
 S2
 S3
 SINT
 SEQV
 SX7 162.0 678.5 42.77 -113.5 792.0 726.6 ** BENDING ** I=INSIDE C=CENTER O-OUTSIDE SX SY SZ SXY SYZ SXZ L-624.6 -6017. -294.8 2703. 0,1426E+05 -5234. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 624.6 6017. 224.8 -2703. -0.1426E105 5234. SI S2 S3 SINT SEQV I 0.1186E+05 483.7 -0.1928E+05 0.3114E+05 0.2730E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1928E+05 -483.7 -0.1186E+05 0.3114E+05 0.2730E+05 ** MEMBRANE PLUS BENDING ** 1-INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page B31 of 37

E-15166

 I -575.4
 -5661.
 -92.14
 2614.
 0.1392E+05.-5073.

 C 49.17
 356.0
 202.7
 -89.04
 -343.9
 162.0

 O 673.8
 6372.
 497.5
 -2792.
 -01460E+05
 5396.

 S1
 S2
 S3
 SINT
 SEQ
 1.0460E+05
 0.3037E+05
 0.2659E+05

 I 0.1177E+05
 S10.4
 -01480E+05
 0.3037E+05
 0.2659E+05
 C
 678.5
 42.77
 -113.5
 792.0
 726.6
 O 0.1996E+05 -457.0 -0.1196E+05 0.3192E+05 0.2800E+05 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SZ
 1.479.3
 -5476.
 -32.97
 2542.
 0.1351E405.4930.
 C
 1519.9
 0.63.2
 0.63.2
 0.653.2
 0.653.2
 0.641.4
 -2925.
 -0.130E+03
 0.630.5
 SI
 0.20000E+00
 0.2000E+05
 0.393
 -0.180B+05
 0.291E+05
 0.2582E+05
 0.0000E+00
 C
 21.02
 18.38
 112.0
 98.13
 87.95
 C
 0.2000E+00
 C
 21.02
 18.38
 12.00
 98.13
 87.95
 C
 0.2000E+00
 0.200 O 0.2094E+05 -526.6 -0.1244E+05 0.3338E+05 0.2930E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 1367 TO 1486 STEP 119 DSYS= 1 NODE х Y z THXY THYZ THZX 1367 20.000 -160.00 6.3900 0.00 0.00 0.00 1486 22.375 -160.00 6.7500 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 1367 1486 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 1367 OUTSIDE NODE = 1486 LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE~ 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES. ** MEMBRANE ** Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B32 of 37

 SX
 SY
 SZ
 SXY
 SYZ
 SXZ

 1146.
 -4760.
 860.1
 -792.8
 653.2
 -301.0

 S1
 S2
 S3
 SINT
 SEQV
 1104.
 672.4
 -4930.
 6431.
 6061.
 .
 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1 -819.4 -0.1003E+05 -1645. 2069. -8455. 3117. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 819.4 0.1003E+05 1645. -2069. 8455. -3117. S1 S2 S3 SINT SEQV I 4154. -608.0 -0.1604E+05 0.2020E+05 0.1829E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1604E+05 608.0 -4154. 0.2020E+05 0.1829E+05 ** MEMBRANE PLUS BENDING ** 1=INSIDE C=CENTER O=OUTSIDE ** MEMBRANE PLUS BENDING ** I=NSIDE C=0 SX SY SZ SXY SYZ SXZ 1 326.6 -0.1479E+05 -784.6 1276, -7797, 2816. C 1146. -4760. 880.1 -792.8 658.2 -301.0 0 1966. 5274. 2505. -2862. 9113. -3418. S1 SZ S3 SINT SEQV 1 3940. -635.5 -0.1856E+05 0.2250E+05 0.2059E+05 C 1504. 672.4 -4930. 6433. 6061. C 0 1464E+05 519.0 -5412. 0.2055E+05 0.1784E+05 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SXZ

 139.71
 -959.9
 -333.7
 -504.1
 456.3
 -169.1

 C - 81.94
 842.7
 198.3
 440.1
 -335.1
 117.0

 O
 159.9
 -1212.
 -115.4
 -612.8
 380.2
 -131.2

 S1
 S2
 S3
 SINT
 SEQU

 I 414.4
 -358.3
 -1310.
 1724.
 1496.

 C
 1102.
 221.7
 -364.3
 1466.
 1278.

 O
 509.5
 -161.4
 -1515.
 2025.
 1787.
 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1 366.3 -0.1575E+05 -1118. 772.2 -7341, 2647,
 Store
 Clipse
 <thClipse</th>
 <thClipse</th>
 <thClipse</th> O 0.1471E+05 180.8 -6315. 0.2103E+05 0.1865E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 1373 TO 1492 STEP 119 DSYS= 1
 NODE
 X
 Y
 Z
 THXY
 THYZ
 THZ

 1373
 20.000
 -130.00
 6.3900
 0.00
 0.00
 0.00

 1492
 22.375
 -130.00
 6.7500
 0.00
 0.00
 0.00
 NODE X THXY THYZ THZX INTERNATIONAL Calculation No. 457-2003.3 **Revision** 0 Page B33 of 37

DISPLA	COORDINATE SYSTEM	SET TO	0 (CARTESIAN)	
DEFINE 1373	A PATH FOR SUBSEQUEN 1492	IT CALCU	LATIONS THROUGH NOI	DES:
PRINT	NEARIZED STRESS THRO	UGH A S	ECTION DEFINED BY LPA	TH COMMAND. DSYS= 0
	* POSTI LINEARIZED ST	RESS LIS	TING *****	
INS	DE NODE = 1373 OUTS	IDE NOD	E = 1492	
LOAD : TIME=	TEP I SUBSTEP= 1 1.0000 LOAD CASE=	0		
THE FO	LOWING X, Y,Z STRESSES	6 ARE IN (GLOBAL COORDINATES.	
	MEMBRANE **			
SX	SY SZ SXY	SYZ	SXZ	
3316.	-1474. 446.1 -419.9	9.073	8.458	
3353.	446.1 -1510. 4863.	4238.		
		-		
sx	SY SZ SXY	SYZ	SXZ	
1 5315.	552.2 1411, -2029.	-7795.	9465.	
C 0.000	+00 0.0000E+00 0.0000E	+00 0.000	0E+00 0.0000E+00 0.0000	E+00
O -5315	-552.2 -1411. 2029	. 7795	-9465.	
\$1	S2 S3 SINT	SEQV		
1 0.1596	+05 509.3 -9191. 0.2	515E-05	0.2197E+05	
C 0.000	500 2 0 1604E+00 0.0000E	+00 0.000	0E+00 0.0000E+00	
0 7171	-303.3 -0.13302.03 0.	23136-03	0.21976+05	
	MEMBRANE PLUS BENE	NG ** I	-INSIDE C=CENTER O=O	UTSIDE
SX	SY SZ SXY	SYZ	SXZ	
1 8632.	-921.7 18572449.	-7786.	9474.	
C 3316	-14/4. 446.1 -419.	9.073	8.458	
\$1	-2020904.3 IBUS	SEOV	•945/-	
1 0.1770	+05 674 1 -8811 02	52E-05	0.2327E+05	
C 3353	446.1 -1510, 4863	4238.		
O 0.100	2+05 -435.7 -0.1461E+05	0.2467E-	05 0.2144E+05	
	PEAK ** I=INSIDE C=CE	NTER O=	OUTSIDE	
SX	SY SZ SXY	SYZ	SXZ	
1 993.2	-635.4 -27.00 147.8	471.2	-545.9	
C -900.8	600.9 9.365 -119.1	-358.9	403.4	
0 [34]	-907.5 19.10 157.1	430.4	-475.4	
51	52 53 5INI 74 52 075 6 3307	SEQV		
1 1252.	-55 31 -1054 1873	1623		
C 818.8	78.64 -1120. 2615	. 2267.		
C 818.8 O 1494				
C 818.8 O 1494	TONATIONAL			Calculation No. 457-2003.3
C 818.8 O 1494				Revision 0
C 818.8 O 1494	ERWATIONAL			
C 818.8 O 1494	ERMITONAL			Page B34 of 37

** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE ** 101AL ** 1=INSIDE C=CENTER C=C015BDE SX SY SZ SXY SYZ SXZ 1 9625. -1557. 1830. -2301. -7314. 8928. C 2416. -472.9 4554. -539.6 -349.8 411.8 O -657.9 -2934. -945.4 1767. 8234. -9932. S1 SZ S3 SINT SEQV TEMP 10.1743E+05 8693. -8407. 0.2584E+05 0.2267E+05 0.0000E+00 C 2602. 410.8 -1015. 3617. 3156. O 0.1091E+05 -279.0 -0.1517E+05 0.2607E+05 0.2266E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 3082 TO 3201 STEP 119 DSYS= 1 NODE X Y Z THXY THYZ THZX 3082 20.000 -45.000 6.3900 0.00 0.00 0.00 3201 22.375 -45.000 6.7500 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 3082 3201 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 3082 OUTSIDE NODE = 3201 LOAD STEP I SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES. ** MEMBRANE ** SX SY SZ 2926, -2054, 463.8 SXY SYZ SXZ 408.5 240.6 229.0 \$1 S3 SINT SEQV \$7 2984. 458.5 -2106. 5090. 4408. ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ [3497. -700.0 926.7 1137. -9210, -9286. C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O -3497. 700.0 -926.7 -1137. 9210. 9286. S1 S2 S3 SINT SEQV 1 0.1500E+05 261.1 -0.1154E+05 0.2654E+05 0.2303E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1154E+05 -261.1 -0.1500E+05 0.2654E+05 0.2303E+05 ** MEMBRANE PLUS BENDING ** 1-INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1390. 1546. -8969. -905 1 6423. -2754. -9057 Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B35 of 37

C 2926. -2054. 463.8 408.5 240.6 229.0 O -571.3 -1354. -462.8 -728.9 9450. 9515. S1 S2 S3 SINT SEQV I 0.1593E+05 377.1 -0.1125E+05 0.2718E+05 0.2362E+05 C 2984. 458.5 -2106. 5090. 4408. O 0.1235E+05 -236.5 -0.1451E+05 0.2686E+05 0.2328E+05 ** PEAK ** 1=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 956.3 -790.1 -83.09 -8.789 551.9 540.9 C -877.5 729.3 46.03 -2.945 -417.7 -400.1 O 1311. -1088. -16.65 21.06 497.8 470.4 \$2 S3 SINT SEQV S1 1 1210. 1.856 -1129. 2340. 2026. C 944.0 -6.025 -1040. 1984. 1719. O 1473. 26.55 -1293. 2766. 2396. ** TOTAL ** I=INSIDE C-CENTER O=OUTSIDE
 SX
 SY
 SZ
 SXY
 SYZ
 SXZ
 SXY
 SYZ
 SXZ
 I 0.1554E+05 489.1 -0.1089E+05 0.2642E+05 0.2296E+05 0.0000E+00 C 2119. 500.0 -1386. 3505. 3038 O 0.1318E+05 -153.4 -0.1521E+05 0.2839E+05 0.2460E+05 0.0000E+00 DISPLAY COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) LIST ALL SELECTED NODES IN RANGE 2184 TO 2474 STEP 290 DSYS= 1 NODE x Y 2 THXY THYZ THZX 2184 22.550 -44.860 23.714 0.00 0.00 0.00 2474 21.000 -45.000 23.680 0.00 0.00 0.00 DISPLAY COORDINATE SYSTEM SET TO 0 (CARTESIAN) DEFINE A PATH FOR SUBSEQUENT CALCULATIONS THROUGH NODES: 2184 2474 PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY LPATH COMMAND. DSYS= 0 ***** POSTI LINEARIZED STRESS LISTING ***** INSIDE NODE = 2184 OUTSIDE NODE = 2474 LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOWING X, Y, Z STRESSES ARE IN GLOBAL COORDINATES ** MEMBRANE ** SX SY SZ SXY SYZ \$XZ Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page B36 of 37

-3637. 414.0 -17.31 -1318. -1045. -606.1 S1 S2 S3 SINT SEQV 1361. -384.1 -4218. 5580. 4944. ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ 1 1528. -1088. 1616. 20.35 9201. 0.1008E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0 -1528. 1088. -1616. -20.35 -9201. -0.1008E+05 S1 S2 S3 SINT SEQV 1 0.1470E+05 95.24 -0.1274E+05 0.2744E+05 0.2378E+05 C 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O 0.1274E+05 -95.24 -0.1470E+05 0.2744E+05 0.2378E+05 ** MEMBRANE PLUS BENDING ** I-INSIDE C=CENTER O=OUTSIDE
 SX
 SY
 SZ
 SZ< C 1361. -384.1 -4218. 5580, 4944, O 0.1275E+05 -416.6 -0.1763E+05 0.3037E+05 0.2638E-05 ** PEAK ** I-INSIDE C=CENTER O-OUTSIDE

 FEAK **
 I=INSIDE C=CENTER O=OUTSIDE

 SX
 SY
 SZ
 SXY
 SYZ

 I-550.5
 195.6
 -231.3
 -120.9
 -470.6
 -362.5

 C 378.6
 -134.0
 159.8
 82.16
 337.7
 270.9

 O -536.7
 188.8
 -402.3
 -110.4
 -943.0
 -875.8

 S1
 S2
 S3
 S1NT
 SEQV
 1
 508.6
 -178.7
 -916.0
 1423.5
 1234.
 C
 543.7
 150.9
 362.5
 1020.
 883.7
 0
 1021.
 -106.8
 -1665.
 2686.
 2336.
 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE ** TOTAL ** I=INSIDE C=CENTER G=OUTSIDE SX SY SZ SXY SYZ SXZ I -2660, -478.1 1368, -1418, 7685, 9107, C -3259, 280.0 142.5 -1236, -707.1 -335.2 0 -5702, 1691, -2036, -1457, -0.119E+05, 0.1156E+05 S1 SZ S3 SINT SEQV TEMP 1 0.1126E+05 18.89 -0.1305E+05 0.2432E+05 0.2108E+05 0.0000E+00 C 1055. -169.2 -3722. 4777. 4298. O 0.1375E+05 -509.1 -0.1929E+05 0.3304E+05 0.2870E+05 0.0000E+00 DISPLAYS PUT ON PLOT FILE XXX - RASTER MODE /SHOW SET WITH DRIVER NAME- WIN32 , RASTER MODE, GRAPHIC PLANES - 8 HIDDEN DISPLAY (FACE SORT) IN WINDOW 1 NAC INTERNATIONAL Calculation No. 457-2003.3 Revision 0 Page B37 of 37

APPENDIX C List of Files on 3.5" Diskette There a a total of 2 pages in Appendix C. INTERNATIONAL Performed by: Calculation No. 457-2003.3 my 11-11-96 Revision 0 Checked by: gro-Date: // -//-96 Page Cl of 2

Volume in drive A is EF4572 Volume Serial Number is 00	003_3 00-0000
Directory of A:\	
07/17/96 03:25p 11/06/96 02:57p 11/07/96 09:59p 11/01/96 01:20p 11/07/96 05:48p 11/07/96 09:36p 11/07/96 10:01p 15 File(s)	1,242 MAS21.MAC 421 R_BEAM.MAC 3,588 k_pail.mac 100 MABBR.MAC 577 NDIS.MAC 863 TEST1.MAC 75,593 kbasl.out 828,116 bytes 627,200 bytes free
A NAC	Calculation No. 457-2003.
INTERNATIONAL	Revision 0 Page C2 of 2

	ANSYS Softw	vare Verification	
	There a a total of <u>12</u>	pages in Appendix D.	
Provided in Attachment XL266 Computer Serial Due to the enormous nu with this appendix. Com Norcross, Georgia.	D is the software verification No. 02207. The verification mber output pages, actual of oputer run documentation is	ion package for ANSYS 5 on test runs are listed in a computer run documentat s maintained in files locat	2 on DEC-ALPHA table provided on page ion has not been include ed at NAC International
1. 1.			
NAC INTERNATIONAL	Performed by:	Date: 11-11-01	Calculation No. 457-2003.3 Revision 0
-	Checked by: JRO	Date: 11-11-96	age D1 of 12

Date of Request: 11-140-80 Work Request Lag No: 10025 Buildpettreeter: Request Lag No: 10025 Buildpettreeter: Request Lag No: 10025 Description of Work Request Lag No: 10025 Constant structure and turners workington do Description of Work Request Lag No: 10025 Constant structure and turners workington do Structure and turners workington do Structure and turners workington and turners prevention of ADD and turners to the stand during the ADD and Structure and Add and Add Add Add Add Add Add Add Add A	Date of Request: 11-66-05 Work Request: Lag Ro: 1005C. BudgetProject: LaS Dasign, Analysis and Licensary Requests: By: Honor Last Construction and conserver type second to be used during the URLS can be developed in the other and under and underset by the second on the ARSY's in t	Deter Haquet: 1140-08 Work Request Lay No.: CORE- Reductive and Request: LASS Design, Ashyos and Lionary Anguines of the Control of Barrel vertication actualition for each almost type expected to be used dorup the USA of the generation and the Active of theory and the Active of t
Description of West to be Performed. Requested By: Norm Maniari Description of West to be Performed. Comparison and West to be Performed. Description of West to be Performed. S.3 Winnison. Description of West to be Performed. S.3 Winnison. S.3 Winnison. Description of West to Barnel visit factor. S.3 Winnison. S.3 Winnison. Performed Description of West to Barnel visit factor. ACM & 32* Tak @ 32* To be performed and west to Barnel visit factor. ACM @ 32* Tak @ 32 Comparison of Completion Date: 24 Market Requested Completion Date: 24 Market Requested Completion Date: 24 Market Response Codest Description Description of West Market Description of West Market Description of West Market Description of West Market TAX @ 32 TAX @ 32 Comparison Codest Description Description Market Description of West Market Reference Codest Description Description Market OAM 221 - Software Codest Description Market Market OAM 221 - Software Codest Description Reference Codest Descripting Reference Codest Description	Interview Loss Datage, Addyna and Lobrarg Interview of Normal Security inflation oblighted for each allowed by: Nerrit Manual Description of West Induction oblighted for each allowed by Exceeded to be and during the USA gas during the addyna and the oblight of the material for each allowed by the Charge and allowed by the USA gas during the addyna and the oblight of the Addyna	memory regions of the last Datage, Andreas and Liberary Requested By: Nerm Manual Contrains analytic and the Cardinal order and adverse to be used dones to be added order to added o
Compared on work to be Performed. Compared an Unit of the content of the content and advances to be used during the UAS cash. Compared and the checking of their contents and parts. Evaluate according to NAC Clearly Assume Throwsen & A S Verification of the Advances of their contents and parts. Evaluate according to the contents and parts. Evaluate according to the contents and parts. Advances of the contents and parts are been approved as a total during the AdVATS and the AdVATS an	Compared or most is to Performed. Compares and call and the Performance of the call decision and the context of the call decision and the call of the	Consider and the develop of the performed. Consider and the develop of the performant subject and develop the UAS of Consider and the develop of their performs subject. Evaluate according to BAC County Assume Proceeding Data Version the Address of their performs and performed. Evaluate according to BAC County Assume Proceeding Data Version the Address of their performs and performs and the County Assume to Bac Assume Proceeding Data Version to BAC State Provide Data Data Data Data Data Data Data Dat
Antip second and Antip Review of the control and control of the County Antip Residence in the Add county of Reside and Antip Per (RAS county Antip Reside 2) and County Antip RAS county Antip Reside 2) and County Antip RAS county Antip RAS and a second provide a	Antipine stands and the charters of the service meaning the stand of the UAS can be added and the UAS ca	Autor and the and the deside of the references and the design and the design the design of the desig
TAC 6 32 Count publicity: Schedelule, Stips: Undeit Installing Programmed Comparison Date: 24 Market The Country of the	TAC 6 32 Construction Construction Scientific Life 28 Scientific Life 28 TAD 6 4 If Scientific Construction If Scientific Construction Production Construction Construction Scientific Construction Scientific Construction Production Construction Construction Scientific Construction Scientific Construction DAM 22.1 - Bathering Construction Scientific Construction Scientific Construction Week Bathering Construction Scientific Construction Scientific Construction Restinger Construction Scientific Construction Actual Work Charges Restinger Construction Scientific Construction Construction Restinger Construction Scientific Construction Construction Restinger Construction Scientific Construction Construction Construction Scientific Construction Construction Construction Scientific Construction Construction Construction Scientific Construction Project Barager Approval: W.I	TAC @ 32 Can Q bit 20%. Stand Q bit 20%. Stand Q bit 20%. Requested Compation Date: 2 bits of a super-advance Q. Requested Compation Date: 2 bits of a super-advance Q. Requested Compation Date: 2 bits of a super-advance Q. Read of the super-advance Q. Reduested Compation Date: 2 bits of a super-advance Q. Read of the super-advance Q. Reduested Compation Date: 2 bits of a super-advance Q. Read of the super-advance Q. OAM 22.1 - Subsect Rev 20 bits of advances 16, 1883 Subject Charges Actual Work Charges Actual Charges Actual Charges Actual Charges Actual Work Charges Actual
TAD @ 4 \$ Subjected is operation on the second se	TAD & 4 # Subject Number Construction Requested Completion Date: 28-blan-de Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction Reference Construction West Ham-hours (Mr. 20.2 Loade / Saturary 15, 1885 Reference Construction Actual Work Charges <	TAD @ 4 # SufficialList is operating works from the second seco
Requested Completion Date: 28-Mar-08 Reference Codextifectuations: RES Decomment No. 80-50 - UAS ** Design Specification, Dated January 23, 1968 QAM 22.1 - Sethers Control, Rev 2, Dated February 16, 1985 Werk Man-Anoung Reference Charges Review Man-Anoung 10 (H-A) Review Man-Anoung (Date (f) regerined) 20 Compare: RUAD; Sampaster (RUAD) Compare: RUAD; 10 (H-R) Review Man-Anoung (Date (f) regerined) Compare: RUAD; Compare: RUAD; Sampaster (RUAD); Processing Date:: Sampaster (RUAD); Review Man-Anoung; 10 (Date (f) regerined) Compare: RuaD); Compare: RUAD; Sampaster (Compare: Ruad); Processing Date:: Sampaster (Compare: Ruad); Results Bynopails (Compare: Rundsci werk Alascherk) Manage: Approval: VLA	Requested Completion Date: 28-lar-40 Reference Codestification: Reference Codestification: RED Document ND. 88-50-11.UK 9* Design Specification. Dated January 23, 1980 QAM 22.1 - Software Control Rev 2. Dated February 16, 1983 Work Man-hours (Dr.) 59 Review Man-hours (Dr.) 59 Work Man-hours (Dr.) 59 Review Man-hours (Dr.) 59 Review Man-hours (Dr.) 59 Review Man-hours (Dr.) 50 Compositer (BAA) (Pre-alree) 10 Review Man-hours (Dr.) 50 Compositer (BAA) (Pre-alree) 10 Review Man-hours (Dr.) 51 Compositer (BAA) (Pre-alree) 10 Review Man-hours (Dr.) Review Man-hours (Dr.) Review Man-hours (Dr.) Composite Review (Review Gr.) 10 Review Man-hours (Dr.) Review (Dr.) Review (Dr.) Composite Date: 20 Review (Dr.) <	Requested Completer Date: 22-Mar-48 Reference Control Read Section Section Date January 23, 1988 Control Reference Control Reference West Nam-hours (In:) Seffected Charges Budget Charges Actual Work Charges
Reference Codes/Epecification: EDS Document NO. 880-801 - LMS* Design Socialisation. Dated January 23, 1998 QAM 22.1 - Softwer Control Rev 2, Dated Faborary 15, 1885 Estimated Charges Actual Work Charges Work Man-houre (hr.) 54 Independent Charges Actual Work Charges Work Man-houre (hr.) 54 Independent Charges Actual Work Charges Review Man-houre (hr.) 54 Independent Charges Actual Work Charges Review Man-houre (hr.) 54 Independent Charges Actual Work Charges Review Man-houre (hr.) 10 Independent Charges Actual Work Charges Computer (BLA) 10 Independent Charges Actual Review Charges Computer (BLA) 10 Independent Charges Independent Charges Computer (BLA) 10 Independent Charges Independent Charges Charge Manifer: EATO 1008 - AKSTG 5.2 generate cole vertration Project Manager Approval: W.I. (J. / X.) J. / X Results Bringer Approval: Computer and Detailed with Absched) Independent Review By: Approval by Functifient Approval by Functifient C/10 / 74 / J Independent Review By: Approval by Functifien	Reference Code@lacetheaters: EDD Dacoment NOL 860-801 - MKR ¹⁰ Design Socialization, Dated January 23, 1988 QAM 22.1 - Software Control, Rev 2, Dated February 15, 1985 Actual Work Charges Actual	Reference CodeSignationation: EBS Document NO, 800-801 - UA/S** Design Specification, Dated January 23, 1988 CAV2 1: Software Control Rev 2: Dated Featurery 16, 1883 Went Nam-Incure (Inc.) 58 Random Nam-Incure (Inc.) 58 Random Nam-Incure (Inc.) 58 Comparison 10
EDE Document NO. 880-6-01 - LMS* Design Spectations, Dated January 23, 1988 OAM 22.1 - Software Control. Rev 2, Dated February 16, 1985 OAM 22.1 - Software Control Rev 2, Dated February 16, 1985 Software Control Rev 2, Dated February 16, 1985 Actual Work Charges Actual Work Charges Actual Work Charges Actual Rev 2, Dated February 16, 1985 West Stan-Insure (Rr.) 58 Important Stan-Control Rev 2, Dated February 16, 1985 Actual Work Charges Actual Rev 2, Dated February 16, 1985 Reveal Stan-Insure (Rr.) 58 Important Stan-Control Rev 2, Dated February 16, 1985 Actual Rev 2, Date 1,	EDE Document NO. 880-8-01 - LIKE* Design Spectation, Dated January 23, 1988 OAM 22.1 - Software Control Rev 2, basic develops 1, 1985 OAM 22.1 - Software Control Rev 2, basic develops 1, 1985 Revelops 1, 1985 Actual North Charges Actual North Char	EtB Deximent KD, 880-8-01 - UK3* Design Gendlinkon, Dated January 23, 1980 OAM 22.1 - Software Control: Mar 2, Dated Falowary 16, 1982 Wenk Blan-hours (fr.2) Bartimated Chargen Wenk Blan-hours (fr.2) Bartimated Chargen Comparise (BLA) Chargen Number: Extra 1000 - ANST'S 2.2 persperse code vedication Functional Barteger Approval: Chargen Number: Extra 1000 - ANST'S 2.2 persperse code vedication Functional Barteger Approval: Chargen Number: Extra 1000 - ANST'S 2.2 persperse code vedication Functional Barteger Approval: Partimet By: register Partimet By: register Appro
CAM Z2.1 - Scherers Control, Rev 2, Dated Fabouray 15, 1985 Mark 20.1 - Scherers Control, Rev 2, Dated Fabouray 15, 1985 Werk Man-hours (br.) Review Man-hours (br.) Review Man-hours (br.) Computer (BUA) Computer (Buay (BUA) Computer (Buay (BUA) Computer (Buay (BUA) Computer (Buay (BUA) Charge Approval Data Manufactor Project Manager Approval Manufactor Project Manager Approval Addition (Buay (BUA) Manufactor Project Manager Approval Manufactor Manufactor Manufactor Manufactor Manufactor Manufactor Manufacto	CMA Z2.1: Selfwere Control, Rev 2. Dated Celevroy 15, 1983 Werk Man-houre (m) Bartmania Charges Burgesmall Actual Work Charges Composite Date: Charges Manber Charges Charges Manber Approval Actual Work Charges Actual Work Charges Charges Manber Approval Charges Manber Approval Actual Work Charges Charges Actual Work Charges	CAN ZZ.1 - Saftwere Carrier, Rev. 2, Detel Februry 16, 1885 Werk Man-houre (m) Saftware (m) Review Man-houre (m) Saftware Man-houre (m) Saftware Man-houre (m) Composite (Saftware) Charge Munice: EATAD 1000 - ANDY 5.12 propulse code vertration Functional Manager Approval: VLA Processed Date: Charge Munice: EATAD 1000 - ANDY 5.12 propulse code vertration Functional Manager Approval: VLA Charge Munice: EATAD 1000 - ANDY 5.12 propulse code vertration Functional Manager Approval: VLA Charge Munice: EATAD 1000 - ANDY 5.12 propulse code vertration Functional Manager Approval: VLA Processed Barger Charge Total
Internet Cranges Under Clarges Actual Work Clarges Actual Work Clarges Work Man-Asure (br.) 53 Imposed Clarges Actual Work Clarges <t< th=""><th>Winet Man-Asure (br.) 54 Indian Regime Actual Work Charges Actual Work Charges Actual Recome Service (br.) Review San-Asure (br.) 10 10 Indian Recome Service (br.) Indian Recome Service (br.) Composite Date: 10 Indian Recome Service (br.) Indian Recome Service (br.) Indian Recome Service (br.) Composite Date: Charge Number: EAPErturn Service (br.) Indian Recome Approval: Indian Recome Approval: Indian Recome Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval:</th><th>Work Man-house (kr.) 53 Bank Bankacore Actual Work (Chargen And Chargen And And And And And And And And And An</th></t<>	Winet Man-Asure (br.) 54 Indian Regime Actual Work Charges Actual Work Charges Actual Recome Service (br.) Review San-Asure (br.) 10 10 Indian Recome Service (br.) Indian Recome Service (br.) Composite Date: 10 Indian Recome Service (br.) Indian Recome Service (br.) Indian Recome Service (br.) Composite Date: Charge Number: EAPErturn Service (br.) Indian Recome Approval: Indian Recome Approval: Indian Recome Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval: Purceional Service Approval: Indiane Approval: Indiane Approval: Indiane Approval: Indiane Approval:	Work Man-house (kr.) 53 Bank Bankacore Actual Work (Chargen And Chargen And And And And And And And And And An
Work Stor-Acure (Dr.) 58 Review Stor-Acure 10 Computer (BLA) 10 Product Banager Approval: VLA (DATA) 10 Product Banager Approval: VLA (DATA) 10 Product Banager Approval by Functional 10 Writer Banager Approval by Functional	Work Stan-Accure (Ir.) 50 Review Stan-Accure (Ir.) 10 (Ir.) 10 Computer (BLA) 10 Computer (BLA) 10 Charge Stan-Score 10 Project Manager Approval: W.II. 10 Computer Styres and Disaldo work Abschedo 10 March 10/10 11/10 10 Date: 54/15/100 10 Date: 54/15/100 10 Nor 4. 12/48 10 10	Work Blanchours (br.) 54 Revelopment Blanchours 10 Compositer (BLA) 0 Other (F revented) 0 Charge (Burgened) 0 Charge (Burgened) 0 Charge (Burgened) 0 Charge (Burgened) 0 Charge Number: EATS(1000 - ANST'S 3.2 generate code verification Project Blance Functional Blance Approved: Market code verification Project Blance Approved: VLII
Image:	Image: State Image: State State Computer (BLA) (I required) (I required) Other (I required) (I required) (I required) Computer (BLA) (I required) (I required) Computer (BLA) (I required) (I required) Computer (BLA) (I required) (I required) Computer State (I required) (I required) Results Byrospain Computer and Databled with Allsched) Project Manager Approval by Functional Results Byrospain (I required) (I required) (I required) Computer Structure (I required) (I required) (I required) Comporting transformer	Br.3 10 Camputer (BLA) Camputer (BLA) (If required) Computer (BLA) Computer (BLA) Computer (BLA) Protocomel (Barney Approval (BLA) Protocomel (Barney Approval (BLA) Results Byrogenia (Computer and Decaded south Alached) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Computer (BLA) Independence (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Computer (BLA) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Computer (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne) Protocomel (Browne)
Computer (BLA)	Computer (Bild) Independent Other (I required) Independent Computer Data: Independent Code vertration Functional Manager Approval: Project Manager Approval: Weit,	Computer (BLA) (If required) Charge informatic computer (BLA) (If required) Provention (Browner) (If required)
Other (In register) Other (In register) Charge Rumber: EATO 1008 - AVGTS 12 2 prepare code vertication Charge Rumber: EATO 1008 - AVGTS 12 2 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 2 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Gradie Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Date: Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Date: Functional Barger Approval: EATO 1008 - AVGTS 12 prepare code vertication Date: Functional Barger Approvalis vertication EATO 1008 - AVGTS 12	Other products Independent Restore By: Charge Humber: EAPCrocks and Detailed won Alsoned) Product Manager Approval: Walk (Complete and Detailed won Alsoned) Product Manager Approval: Walk (Complete and Detailed won Alsoned) Product Manager Approval: Walk (Complete and Detailed won Alsoned) Product Manager Approval: Walk (Complete and Detailed won Alsoned) Product Manager Approval: Walk (Complete and Detailed won Alsoned) Product Manager (Complete and Detailed won Alsoned) Date: End (Complete and Detailed won Alsoned)	(If request) (Other Inspects) Charge Hamber: Charge Hamber: Charge Hamber: Charge Hamber: Percention Banger Approval: Charge Hamber: Percention Banger Approval: Charge Hamber: Project Banger Approval:
Compare in another particular Charge in the particular Charge interface Date: Charge interface Charge interface Charge interface Functional Barrowsit Charge interface Product Barrowsit Compare interface Product Barrowsit Compare interface Results Bynophile (Compare interface Product Barrowsit W.R	Compared Date: Charge Number: EAPO1006 - ANSYS 5.2 generation Functional Banager Approval: <u>Additional</u> Project Nameser Approval: <u>W.I. additional</u> Project Nameser Approval: <u>M.I. additional</u> Proj	Comparison Comparison Charge Marsher EARD 1000 - AASYS 3.2 property code vertication Functional Binarger Approved Comparison code vertication Functional Binarger Approved Comparison code vertication Preside Byropelis Comparison and Datable vertication Project Marsger Approved: W.R
Charge Humber: EX7001000 - ANSYS 12 gargester code verification Project Manager Approval: VIA	Charge Humber: EAD01000 - AKSYS 2 2 general code vertication Functional Banger Approval Project Hamager Approval Walt Asstrated By- C/16 C/16 Date: S/S/S Date: S/S Date: S/S S/S <td>Charge Number: EXPOSICE - ANSYS 5.2 property code vertication Functional Manager Approval: <u>State Have</u> Project Manager Approval: <u>W.J. (J. J.)</u> Results Byrnpale (Corrolate and Desaillo von Allacher) extormed By- TC1: 10-79.5 Des: 54042.5 Des: 54042.5 Res. 4, 137-49</td>	Charge Number: EXPOSICE - ANSYS 5.2 property code vertication Functional Manager Approval: <u>State Have</u> Project Manager Approval: <u>W.J. (J. J.)</u> Results Byrnpale (Corrolate and Desaillo von Allacher) extormed By- TC1: 10-79.5 Des: 54042.5 Des: 54042.5 Res. 4, 137-49
Punctional Manager Approval State Project Manager Approval W.R. () Results By nogale (Complete and Datable won Allached) Project Manager Approval W.R. () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractional By nogale (Complete and Datable won Allached) () () () extractio	Functional Manager Approval Image: Approval W.A	Principer Approvel Difference Project Manager Approvel: W.A. D.F. Results Bringsis (Carolets and Detaildo uch Absched) Project Manager Approvel: W.A. D.F. Profermed By: TCH_1 Independent Raview By: Approved by Functional Profermed By: TCH_2 Independent Raview By: Approved by Functional Disc. C/16 / RS Util/9V Approved by Functional Disc. C/16 / RS Date: C/15 / RS Disc. C/15 / RS Date: C/15 / RS Disc. C/15 / RS Date: C/15 / RS
Results Byrnopelie (Corrolete and Decado won Associed)	Results Byrnopains (Completes and Detailed wan Associed)	Results By-mpain (Compete and Details with Albecher) P. (Tormed By-mplan) (Compete and Details with Albecher) P. (Tormed By-mplan)
Approved by Trans. Approved by Functional Approved b	Protorned By That I Advandant Review By: Approved by Functional Approved by Functional App	Approved by Purchant Approved
Antoniad By MCA I Haddan davies By: Hold and the former flavies By: Hold I Haddan davies By:	Antoninad By - Tan 1 Independent Review By: Hom	Antoninal By JULL Independent Review By: Approval by Functional Antonio Approval by Functional Antonio Antoni
Antoniana By The Tank and the the terminant By The termin	Antoniana By-TCA-1 Antoniana By-TCA-1 C/10/26 Date: 640/26 Approximate By-TCA-1 C/10/26 Date: 640/26 Date:	Antonina By Tang Independent Raview By: Approval by Functional Antonio De Functional Contract of the Standard Market Antonio De Functional Contract of the S
Proformed By Tang Independent Review By: Approved by Functional Anthropy By Fright Approved by Functional Independent Review By: Approved by Functional Independent Review By: Approved by Functional Independent	Antonned By-Tang Independent Review By: Approved by Functional Review By: Approved b	ANTOINED BY TCA11 ADMAN BY ADMAN BY: Approved by Functional Approved by Functional Barrow By: ADMAN BY TCA11 Approved by Functional Barrow By: Approved
Anthorned By TCA1 Independent Review By: ADDM ADM IN ADM IN ADMINISTRATION ADMINISTRATION ADDITIONAL AND ADMINISTRATION ADDITIONAL AND ADMINISTRATION ADDITIONAL AND ADMINISTRATION ADDITIONAL ADMINISTRATIONAL ADMINISTRATION ADDITIONAL ADMINISTRATIONAL ADMINISTRATIONAL ADMINISTRATION ADDITIONAL ADMINISTRATIONAL ADMINISTRATION	Autorned by Transformed by Transform	Approved by Functional Approved Ap
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date: 54242 Date: 54242 Mar 6 13740 Date: 16 859 Date: 16 859
Rev. 4, 12-7-89	Rev. 4, 12-7-89	Rer 4, 127-89
		C'ume-projevontragi.s008.doc
Clume professivel(100.doc	ciume professionali IOB. doc	Vic Calculation No. 457.2
Eluru-projentelengi (006.doc	Churre-sraftwardrage1006.dec	INTERNATIONAL Revision 0
Care segmented 1008 doc NAC Calculation No. 457-2003 INTERNATIONAL Revision 0	Calculation No. 457-200 NAC Calculation No. 457-200 INTERNATIONAL Revision 0	-
Curre professionados NAC INTERNATIONAL Page 7/2 of 12	Clare professived/1008.doc NAC INTERNATIONAL Page 12 of 12	Page D2 of 12

	Wor	k Request Number:	(ODied					
	Scot	e of Analysis File:	ANSYS Verify	ca.tt.	~ ·			
	Revi	ew Methodology:	Check of Calculations:					
	/		Alternate Analysis:					
			Others (explain):				-	
	Coni	firm that the Work P	lequest and Report Includes:					
	1.	Statement of Purp	D\$8					·····
	2.	Defined Method of	Analysis					· · · · · · · · · · · · · · · · · · ·
	3.	Listing of Assumpt	ions			•••		
	4.	Detailed Analysis F	lecord			• • •		·····
	5.	Statement of Conc	dusions with appropriate recomm	nendatio	nis #3 :	appli	cable .	·····
	Step		Activities		Veri Yes	ficet No	ion N/A	Commente
	1	For the scope of th	ne defined Analyses:		4	ł		
					-			1
		Are the require Material Pro	ed input data completer					
		 Geometry (I 	Drawing Reference)		Į –	(1 1
	l.	 Loading/Sor 	urce Term					[]
	ĺ	load state,	has it been verified?	ie the		(
	L	Are Boundary	conditions acceptable?					
	2	is the method of a scope?	nalysis adequate for the defined		1	1		
	3	Is the worst case I	pading/configuration_documente	d?		1	1-	
	4	Are the acceptance	e criterie defined and complete?		~	1		
	5	Has all concurrent	loading been considered?					
	6 ·	Are analyses consi and approach?	stent with previous WRR for met	thod			-	1
	7	Are the records for	Input and Output complete?				1-	t
	8	Is traceability to ve	idated software complete?				~	t
	9	Is the Statement of complete and according the defined purpos	Conclusions and recommendat ptable for the project and objecte?	tions tives of			-	-
	L	Anthony	O Moore	_	6.11	1/91	ADW	<u></u>
			7 440		<i>u</i> //	۷ <u>(</u>		
		Centhin	10 Those		510	1	TP I	
		Revie	ver (Name/Signature)		Date	•		
						_		
I NA	с					C	alculatio	on No. 457-2003.3
	ERNA	TIONAL				R	evision	0
						Pa	age D3 (of 12

....

CONFUTER RESOLECES MANDAL Category: (1) 2 (Circle Applicable Category) Project No: Computer Program Nama: ANSYS, BEUSIN 5.2 Author: DNAYS, INC Responsible Program Engineer: N/A Hardware System(s) where installed: DEC- ALMAA XLZGG (seein no 02207) Program Description: & general purpose four elevent code Applicable to proderio in storics, syramics, theory reavester; magnetics, fluigher and Acoustics. User's Guide Document No: N/A Accorded By: . Design and Analysis Calculation No. 457-2003.3 NAC INTERNATIONAL Revision 0 Page D4 of 12

	CONTRACTOR OF VERDELEMENT /VALUE AND
•.	V Verification Velicetion
	Anistanti version
	ANALIAN TING LANDARD ON
	,
	Brief Description of Brown
	ANOW 13 A PEATRAL WIRPANS SINCE SIEME, F.C. DO
	ADDILLABLE TO DECELEMAD ILL ATATICA DUM BULLCO
	HEAT TRANSFER I MURANOTICA FILLIDA PORTA
	the contraction function, Acauatics,
	Tested For Which Arelication
	STRUCK LAW + THEA WAY
	Nethod Used To Verify/Validate Program
	WED WREDITED INDUT DATA PEON THE ANDUS IS REFUTURE WE
	MISTURE TO OBTAIN ANDER Solutions Out Time (on more
	ROOMD TO THEORY IN THE ANDUS VERIF. MANUAL FOR AGOREN
	References/Documents To Support Verification/Velidetion
	1. ANDER VERELEATION MANUAL (POU. 5.2)
	2. ANTOP WORD MONNAL, IN THE (REV. 5.2
	P. WIR number UMS-100G
	Title of User's Manual
	though 12220 monual
	Description of Benchmark Tests/Alternate Calculations
	N/4
	The The
	Performed By Data Data Data
	Checked By HOW
	Dece
	Approved By Date (128/99
	Approved By August Date 1/27/90 Nanager, Design and Analysis
	Approved By Jack August Deta 1/27/90 Manager, Design and Analysis
	Approved By Jack Approved By Deta 1/27/99 Narager, Design and Analysis
	Approved By Arager, Design and Analysis Calculation No. 457-2003.3
	Approved By Arager, Design and Analysis C Calculation No. 457-2003.3 Revision 0
	Approved By Arager, Design and Analysis C (ERNATIONAL Calculation No. 457-2003.3 Revision 0 Page DS of 12
	Approved By Approv

ANSYS, REVISION 5.2, VERIFICATION ON XL-266 COMPUTER; S	COMPUTER CODE N DEC-ALPHA ERIAL NO: 02207
Propused By: Date: 06/10/1994	WRR No. 1006a 6 Page ef 343

A9.2-113

....

TABLE OF CONTENTS	
Contents	Page
Overview	¥Ü
Objective	ü
Methodology	
Result Comparison	iv
Conclusion	v
Test Cases and Result Comparison Table	vi
References	vii
Test Cases Input and Output Listing	1
List of ANSYS Element in the Verification Procedure	Арр. А
Property By The Date Of 10/1996	WRR Nor 1006a
Checked By Deter (s/11/9/s	hup 12 of \$43
	Revision 0
	Page D7 of 12

1.0 OVERVIEW

ANSYS, Revision 5.2 (ANSYS), an unpublished, general purpose finite element computer code developed by ANSYS, Inc., is currently installed on two DEC-ALPHA, XL-266 computer workstations serial numbers 02207 and 02209. ANSYS is delievered to NAC precompiled, with inaccessible source codes and sufficiently thorough guidelines on installation and computer hardware requirements. The ANSYS code on DEC-ALPHA, XL-266 computer platform serial number 02207 is verified in this work request for structural and thermal disciplines in accordance with NAC International Quality Assurance procedures.

2.0 OBJECTIVE

ANSYS, Inc. documented the verification of a wide range of ANSYS elements and capabilities in the ANSYS Verification Manual (Ref. 1) for straightforward problems with classical or readilyavailable theoretical solutions. The verification of the program, according to ANSYS Inc, is conducted in line with written procedure that form part of an overall Quality Assurance program at ANSYS, Inc. The main objective of this package, therefore, is to *further* verify the quality of ANSYS solutions obtained on DEC-ALPHA XL-266 computer platform serial number 02207 to similar ANSYS solutions documented in the ANSYS Verification Manual (Ref. 1).

3.0 METHODOLOGY

A set of thermal and structural elements (Appendix A) that are commonly used for structural and heat transfer analyses in the EDS group are selected from the ANSYS Revision 5.2 element library for verification. The ANSYS Verification Manual (Ref.1) demonstrates a wide range of ANSYS elements and capabilities in simple problems which have classical or readily obtainable theoretical solutions, and it demonstrates, futhermore, the close agreement of the ANSYS solutions to the theoretical results i.e., texbooks or technical publications. The applicable problems documented in the ANSYS Verification Manual serve as the basis for additional

		Properad By:	Date: 66/10/1996	WZR No.1006s
		Checked By ADM	- u/11/9v	Page <u>5</u> of 543
A	NAC INTERNATIONAL			Calculation No. 457-2003. Revision 0
				Page D8 of 12

verification and qualification of ANSYS capabilities for structural and heat transfer applications on the DEC-ALPHA XL-266 computer platform serial number 02207.

The selected ANSYS elements and capabilities that are specific to EDS engineering applications are verified using the input data from the ANSYS Verification Manual for all applicable elements. The relevant input data used for the verification were extracted from the ANSYS Verification Manual database (Ref. 2), and executed for ANSYS solution without any modification to the input data. The ANSYS solution obtained on the DEC-ALPA XL266 computer platform serial number 02207 for selected ANSYS elements and capabilities were then compared to similar solutions documented in the ANSYS Verification Manual. Total of 50 structural and heat transfer test cases, some involving more than one element type in a single analysis pass, were examined.

4.0 RESULT COMPARISON

The verification of the ANSYS code on DEC-ALPHA XL266 computer platform serial number 02209 is completed and documented in work request number UMS-1006 (Ref. 3). The verification package in work request number UMS 1006 compares analyses solutions from the DEC-ALPHA XL266 computer platform serial number 02209 to similar solutions in the ANSYS Verification Manual and presented the result in terms of percentage differences between the two ANSYS solution outputs. The DEC-ALPHA XL266 computer platform serial number 02207 upon which the ANSYS verification is performed in this work request is identical to the DEC-ALPHA XL266 computer serial number 02209 upon which ANSYS is verified in work request number UMS 1006. It follows, therefore, that the ANSYS solutions obtained from DEC-ALPHA XL266 serial number 02207 in this work request (WRR 1006a) must be identical to the ANSYS solution obtained from DEC-ALPHA XL266 computer serial number 02209 in work request number UMS-1006 (Ref. 3), given identical problems and hierachy of ANSYS commands in the analysis input streams. This is the corollary upon which the verification of the ANSYS code on DEC-ALPHA XL266 computer serial number 02209 in this work request is based. In line with the asserted crollary, the verification test case and result table below shows that there is no difference in the ANSYS solution in this package for DEC-ALPHA XL266 computer platform

	43
NAC INTERNATIONAL Calcu Revis Page	lation No. 457-2003. ion 0 D9 of 12

serial number 02207 and the ANSYS solution in the analysis package number UMS-1006 for DEC-ALPHA XL266 computer platform serial number 02209.

5.0 CONCLUSION

ANSYS, Revision 5.2 finite element computer code that is currently installed on the DEC-ALPHA XL266 computer platform, serial number 02207, gives solution that are in agreement with the ANSYS solution documented in the ANSYS Verification Manual for all related identified NAC verification test cases.

		WRR Not1006a
Checked By Abr	Den: 6/11/94	Prop. S. or Sel
	·····	Calculation No. 457-2003.3 Revision 0
		Page D10 of 12

13 14	Ē
9' 13 14 41	
14 14 41	
4	
2	
2	
24	
31	
32	
1 3	1-
38	
4	
	-
	-
100	<u> </u>
95	
108	
1 100	
112	
127	
140	
45 141	-
143	
148	
156	
150	
171	
179	_
1.63 201	
202	
131	_
184	_
195	
	27 31 32 34 35 37 41 68 67 67 68 67 103 103 103 103 103 103 103 103 103 103 103 104 105 105 106 107 103 104 105 106 107 108 109 109 101 102 103 104 105 107 108 109 101 102 203 103 104 105 107

REF	ERENCES			
1.0	ANSYS Revision	5.2 Verific	ation Manual, ANSY	(S, Inc.
2.0	DEC-ALPHA XL (Computer Serial	266 Comp No 02207)	uter Platform; D:\ans	rys52\data\verif\
3.0	"ANSYS Revision WRR No. UMS-1	n 5.2 Verifi 006, Dated	cation" DEC-ALPH 1 5/2/96, Prepared By	A XL266 Computer, Serial No. (Anthony Moore.
			ï	
	.	~		
	Charlend By:	 DM	Dete: 06/10/1996	WRR Na: 1006a
	NAT	<u> </u>	<u></u>	Calculation No. 457-2 Revision 0
				Page D12 of 12

Appendix A9.2.3 Support Structure Calculation 457-2005.2

	IAC NTERNATIO		ULÂ COV	TION PAC	KAGE Г	Work 457-20	Request/Calc No: 005.2
PROJECT	NAME:	h		CLIENT:			(ORC)
K Basin (Operations Eq	uipment		Hanford (Trans	snuclear. Inc	5	LOUSTE A
CALCUL	ATION TIT	LE:		L=`	(A MERSSIONIN
Immersion	n Pail Stand						73 Conterna
PROBLE	M STATEM	ENT OR OBJECT	VE C	F THE CALCU	LATION		WWW. MC
This opta	ulation analy						
ANSI N1	4.6 (Reference	e 7.3). The immersion	sion p	ail stand utilizing	the load fa	tor req HC Ca	puirements defined sk and Transportati
System to	be used at th	e K-Basin Area of	the Ha	anford site.			
Revision	Affected	Revision	Τ,	Preparer	Check	er	Project Manage
	rages	Description	1	vame, initials,	I Name in	itiale	A managem 1/Date
				Date	Date	:	Approval/Date
0	1 thru 22	Original Issue	Īe	Date	Date Pavi Si	nais,	Thomas A. Dave
0	1 thru 22	Original Issue	Je	Date ffrey R. Dargis 11-10-96	Date Ravi Si 11-14-	ngh 96	Thomas A. Dann 11-15-96
0	1 thru 22	Original Issue Revised method	Je	Date ffrey R. Dargis 11-10-96 ffrev R. Dargis	Date Ravi Si 11-14- Ravi Si	ngh 96	Thomas A. Dann 11-15-96
0	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating	Je Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis	Date Ravi Si 11-14- Ravi Si E	ngh 96 ngh	Thomas A. Dann 11-15-96 Thomas H Dannet Storman Delanet
Ð	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\mathcal{R}\mathcal{B}'$ $\mathcal{R}\mathcal{D}'$ $\mathcal{R}\mathcal{D}'$	Date Ravi Si 11-14 Ravi Si \overline{E} S 12/2/7	ngh 96 ngh 6	Thomas A. Dann 11-15-96 Thomas A Dannes Homas Deline Maraz Deline Maraz Deline
0	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis	Date Ravi Si 11-14 Ravi Si $E \leq 12/2/9$	ngh 96 ngh	Thomas A. Dann 11-15-96 Thomas A. Dann 11-15-96 Thomas A. Danne Sharaz Delaw Maja / 96
Ð	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\mathcal{P}_{12}^{\mathcal{R}\mathcal{P}}$ $\mathcal{P}_{12-2-9}^{\mathcal{R}\mathcal{L}}$	Date Ravi Si 11-14- Ravi Si $\overline{E} \leq 12/2 \sqrt{7}$	ngh 96 ngh	Thomas A. Dann 11-15-96 Thomas A bunnet Storage Refuse Mar 196
0	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\int_{12^{-2}-9}^{R\mathcal{D}'} \mathcal{L}$	Date Ravi Si 11-14- Ravi Si $E \leq 12/2/9$	ngh 96 ngh 6	Thomas A. Dan 11-15-96 Thomas A Dames Homas Define Marag Define Marag 26
Ð	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\int R \partial'$ $\int \mu_{\mu,2-2-9} c$	Date Ravi Si 11-14- Ravi Si E S 12/2/9	ngh 96 ngh	Thomas A. Danr 11-15-96 Thomas A Damas Homas Define Margalefor
Ð	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je Je:	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\int R \partial'$ $\int \mu_{\mu,2-2-9} c$	Date Ravi Si 11-14- Ravi Si $\overline{E^2} \leq 12/2/7$	ngh 96 ngh 6	Thomas A. Danr 11-15-96 Thomas A Dames Homas Define Margalefor
0	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\int R \partial'$ $\int \mu_{\mu,2-2-9} c$	Date Ravi Si 11-14- Ravi Si $E \leq 12/2/7$	ngh 96 mgh	Thomas A. Danr 11-15-96 Thomas A Damases Homas Define Marga
0	1 thru 22 1, 3 thru 23	Original Issue Revised method of calculating margin of safety.	Je	Date ffrey R. Dargis 11-10-96 ffrey R. Dargis $\int R \partial'$ $\int \mu_{\mu,2-2-9} c$	Date Ravi Si 11-14- Ravi Si E S 12/2/7	ngh 96 ngh	Thomas A. Dan 11-15-96 Thomas A Dansee Strang Defra

Work Request/Calculation No: 457-2005.2 Revision _0_ Scope Of Analysis File: This calculation evaluates the immersion pail stand stand utilizite the load factor requirements defined in ANSI N14.6. Review Methodology: Check Of Calculations	INDEPE	INDENT DESIGN VERIFICATION	N CHEC	K SH	EET		
Scope Of Analysis File: This calculation evaluates the immension pail stand stand utilizi the load factor requirements defined in ANSI N14.6. Review Methodology: Check Of Calculations Alternate Analyses Other (Explain) Confirm That The Work Request / Calculation Package Reviewed Includes: 1. Statement of Purpose 2. Defined Method of Analysis 3. Listing of Assumptions 4. Detailed Analysis Record 5. Statement of Conclusions / Recommendations (if applicable) Step Activitias 1 For the scope of the defined analysis A Are the required data input complete? No 1 Material propertus 2 Geometry (drawing reference) 3 Loading source term 1 For the scope of the defined scope? 2 Geometry (drawing reference) 3 Loading source term 1 Re supporting analysis is required to defined the load state, has it been defined scope? 2 Is the worst case loading/configuration documented? 2 Is the worst case loading/configuration documented? 4 Are the	Work Request/Calculatio	n No: <u>457-2005.2</u> Revision _	0				
Review Methodology: Check Of Calculations Alternate Analyses Other (Explain) Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 1 Statement of Purpose Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 1 Statement of Purpose Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 1 Statement of Purpose Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 3 Listing of Assumptions Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 3 Listing of Assumptions Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 4 Defined Method of Analysis Image: Confirm That The Work Request / Calculation Package Reviewed Includes: 5 Statement of Conclusions / Recommendations (if applicable) Image: Confirm That The Work Request / Cancer 5 Are the required data input complete? Image: Confirm That and properties Image: Confirm That and Complete? 6 Are the acceptance criteria defined and complete? Image: Configuration documented? Image: Calculation Package: Calculation 7 Are the acceptance criteria defined and complete? Image: Calculation Image: Calculation 6 Are analyses consistent with previous work for	Scope Of Analysis File:	This calculation evaluates the in the load factor requirements def	ined in <i>i</i>	n pail ANSI I	stan N14.	<u>d stand utilizi</u> 6.	
Confirm That The Work Request / Calculation Package Reviewed Includes: 1. Statement of Purpose 2. Defined Method of Analysis 3. Listing of Assumptions 4. Defined Method of Analysis 5. Statement of Conclusions / Recommendations (if applicable) Step Activities Verification No Activities Verification No Activities Verification No Activities Verification Verification Activities Verification Activities Verification Activities Verification Activities Verification Activities Activities Activities Verification <td colspa<="" td=""><td>Review Methodology:</td><td>Check Of Calculations Alternate Analyses Other (Explain)</td><td></td><td></td><td></td><td></td></td>	<td>Review Methodology:</td> <td>Check Of Calculations Alternate Analyses Other (Explain)</td> <td></td> <td></td> <td></td> <td></td>	Review Methodology:	Check Of Calculations Alternate Analyses Other (Explain)				
1. Statement of Purpose Image: Statement of Analysis 2. Defined Method of Analysis Image: Statement of Assumptions 3. Detailed Analysis Record Image: Statement of Conclusions / Recommendations (if applicable) Statement of Conclusions / Recommendations (if applicable) Image: Statement of Conclusions / Recommendations (if applicable) Statement of Conclusions / Recommendations (if applicable) Image: Statement of Conclusions / Recommendations (if applicable) State of the defined analysis A centrication recommendations (if applicable) Image: Statement of Conclusions / Recommendations (if applicable) State of the defined analysis A recent recourse of the defined analysis is required to define the load state, has it been defined state, has it been defined of analysis adequate for the defined scope? Image: Statement of Conclusions acceptable? 2 Is the worst case loading/configuration documented? Image: Statement of Conclusions and recomplete? Image: Statement of Conclusions and recommendations complete and acceptable for input and output complete? 3 Is the records for input and output complete? Image: Statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined and approach? Image: Statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined and application of conclusions and recommendations complete and acceptable for the project and objectives of th	Confirm That The Work R	equest / Calculation Package Re	viewed	Includ	les:		
Step Activitias Verification Yes No N/A Comments 1 For the scope of the defined analysis: A. Are the required data input complete? 1. Material properties 2. Geometry (drawing reference) 3. Loading source term define the load state, has it been define the load state, has it been define the load state, has it been define? ////////////////////////////////////	 Statement of Purpu Defined Method of Listing of Assumpti Detailed Analysis F Statement of Conc 	ose Analysis ions Record Record Recommendations (if ap	plicable	•)		KANA K	
1 For the scope of the defined analysis: Image: Complete in the required data input complete? 1 Material properties 2 Geometry (drawing reference) 2 Geometry (drawing reference)	Step	Activities	Verif	ication	bira.	C	
2 Is the method of analysis adequate for the defined scope? ✓ 3 Is the worst case loading/configuration documented? ✓ 4 Are the acceptance criteria defined and complete? ✓ 5 Has all concurrent loading been considered? ✓ 6 Are analyses consistent with previous work for method and approach? ✓ 7 Are the records for input and output complete? ✓ 8 Is traceability to verified software complete? ✓ 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined ✓	A. Are the required 1. Material pro- 2. Geometry (c 3. Loading sou if a support define the ic defined? B. Are boundary cc	data input complete? pertus inawing reterence) ince term ing analysis is required to red state, has it been ondritions acceptable?	1221				
3 Is the worst case loading/configuration documented? 4 Are the acceptance criteria defined and complete? 5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined output and objectives of the defined outp	2 Is the method of analysi	s adequate for the defined scope?	~				
A Are the acceptance criteria defined and complete? Are analyses consistent with previous work for method and approach? Are analyses consistent with previous work for method and approach? Are the records for input and output complete? Are the records for input and output complete? No SOFTMI SoFTMI	3 Is the worst case loading	g/configuration documented?	1				
> Has all concurrent loading been considered? V 6 Are analyses consistent with previous work for method and approach? NEW CAL PACKAGE. 7 Are the records for input and output complete? V 8 Is traceability to verified software complete? V 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined VSED.	A Are the acceptance crite	ria defined and complete?	~				
Are analyses consistent with previous work for method and approach? Are the records for input and output complete? Are the records for input and output complete? Is traceability to venified software complete? Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined	> Has all concurrent loadir	ng been considered?	~				
7 Are the records for input and output complete? V 8 Is traceability to verified software complete? V 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined VSED	 Are analyses consistent approach? 	with previous work for method and			V	NEW CAL	
8 Is traceability to verified software complete? V No SoFTWI 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined VSED.	7 Are the records for input	and output complete?	V				
9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined	8 Is traceability to verified	software.complete?			~	NO SOFTWO	
	9 Is the statement of concl and acceptable for the puppose?	usions and recommendations complete roject and objectives of the defined					

	INDEPE	ENDENT DESIGN VERIFICAT	ION CHECK	SHEET	
Work Requ	est/Calculatio	n No: 457-2005.2 Revisio	on <u>1</u>		
Scope Of A	Analysis File:	This calculation evaluates th the load factor requirements	e immersion p defined in AN	ail stan SI N14.	d stand utilizing 6.
Review Me	thodology;	Check Of Calculations Alternate Analyses Other (Explain)	72.S		· · · · · · · · · · · · · · · · · · ·
Confirm Th	at The Work F	Request / Calculation Package	Reviewed Inc	ludes:	
1. State 2. Defin 3. Listin 4. Deta 5. State	ement of Purp ned Method of ng of Assumpt illed Analysis ement of Cond	ose f Analysis tions Record clusions / Recommendations (i	f applicable)	-	P P P P P P P P P P P P P P P P P P P
Step		Activities	Verificat	ion No N/A	Comments
A.	Are the required Are the required 1. Material pn 2. Geometry (3. Loading so If a suppor define the i defined? Are boundary o	nimed analysis: (data input complete? operties (drawing reference) urce term ting analysis is required to oad state, has it been onditions acceptable?	1111		
2 Is the	method of analys	is adequate for the defined scope?	~		-
3 Is the	worst case loading	g/configuration documented?	1		
4 Are th	e acceptance crit	eria defined and complete?	V		
5 Has al	concurrent load	ing been considered?	1		
6 Are an approx	alyses consisten ach?	t with previous work for method and	~		
7 Are the	e records for inpu	It and output complete?	- 1		
8 Is trac	eability to verified	software complete?		V	NO SOFTWAN
9 is the and ac	statement of cont ceptable for the	clusions and recommendations comp project and objectives of the defined	piete		03227

A9.2-122

			TABLE OF	CONTENTS	
Section	Descripti	on			Pa
	Calculati	on Package (Cover Sheet		
-	Independ	lent Design V	erification Che	ck Sheet	2
	Table of	Contents			4
1.0	Synopsis	of Results			5
2.0	Introduct	ion/Purpose .			5
3.0	Method c	of Analysis			5
4.0	Assumpti	ions/Design I	nput		
5.0	Analysis	Detail			
6.0	Summary	of Results /	Conclusions		21
7.0	Reference	25			
				*	
A NAC	ATIONAL	Performed b	y gre	Date:	Calculation No. 457-200
THE CO. 100		Checked by:	-776	Date:	Page 4 of 23

1.0 SYNOPSIS OF RESULTS

Drawing No.	Item No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-102	98, 99	frame stand assembly	5W	buckling	300 kips	1,064 kips	0.72
457-102	4, 7, 8, 9, 15, 16, 17, 18	tie plates	5W	compression	480 psi	694 psi	0.31
457-102	5	corner post	5W	buckling	72,500 lbs	75,000 lbs	0.03
457-109	4	lock pin	5W	double shear	49.0 ksi	81.0 ksi	0.40
457-109	10	guide assembly	5W	bearing	16.0 ksi	54 ksi	0.70

Summary of Stress Analysis

The immersion pail support structure design meets the criteria defined in Section 4.2.

2.0 INTRODUCTION / PURPOSE

This calculation evaluates the immersion pail stand utilizing the load factor requirements defined in Reference 7.3. The immersion pail stand configuration is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site. The immersion pail stand design was initially evaluated in Reference 7.1.

3.0 METHOD OF ANALYSIS

Hand calculations using classic textbook solutions are used to structurally evaluate the immersion pail support structure. Per Reference 7.14, the design considers the entire pail resting weight will be distributed to two (2) of the four (4) corner column supports.

The design will be assessed using the load factors discussed in Section 4.2. The acceptance criteria defined in Reference 7.3 limits the lifting induced tensile stresses to the lesser of:

	Performed by:	gro	Date: 11-25-96	Calculation No. 457-2005.2 Revision I	1
L	Checked by:	-RS	Date: 11/25/96	Page 5 of 23	l

(a) one-third ma (b) one-fifth the	material yield strength; or material ultimate strength.		
Shear stresses v	vill be limited to 0.6 times the te	nsile stress limits.	
Buckling loads be determined p	will be determined based on a lo er Reference 7.10.	oad factor of 5.0. T	he critical buckling load wi
The following e	valuations are documented with	in this calculation.	
 Frame Stand Tie Plate Ex Corner Post 	l Buckling Evaluation; aluation; Assembly Buckling Evaluation;		
 Guide Asser Base Asser 	nbly Evaluation; and bly - Upper Assembly Joint Eva	luation.	
3.1 Frame Sta	nd Buckling Evaluation	•	
single uni section of Reference To evaluat	t, (simultaneous buckling of the all eight tube steel columns, to 7.10.2 will be used. The applied the net stand buckling, the following	the entire assembly the plates excluded i load will be 5 x the ing steps are perfor	 vising the combined cross The buckling criteria c the dead weight loading.
 The ne The kl The m The cr The ap 	t cross section properties are det /r parameter is determined; aximum allowable section axial ttical buckling load is determine plied axial load (5W) is compare	ermined; stress is determined; d; and ed to the critical bu	d; ickling load.
3.2 <u>Tie Plate I</u>	Evaluation		
Tie plates the mid-se in the insta	are used to reduce the buckling ction (upper-to-lower stand sect illation/fabrication of the stand.	potential of the c tion joint) behave	orner assemblies by makin as a frame unit and to assig
The tie pl treated as movement	ates are concentrated at the mi an inflection point (pinned-pi under load) for the corner assen	d stand height to inned end condition nbly buckling evalu	ensure the midpoint can b on, no tendency for laterz lation (See Section 3.3).
NAC	Performed by:	Date:	Calculation No. 457-2005.2
INTERNATIONAL	yro	11-25-94	Revision 1

A9.2-125

-
The foll	owing steps are performed:
• The	size of the tie plates is determined;
• The	required spacing between tie plates is determined:
• The	compression load on the tic plates is evaluated; and
• The	tie plate welds are evaluated.
3.3 Upper F	rame Corner Post Assembly Buckling Evaluation
Each co	mer post assembly is composed of two 4x4 tubing sections connected by
plates. 7	he corner plates are installed in pairs of two.
The buc tubing c availabl	kling capacity is evaluated by determining the critical buckling length of the only. The length determined is then compared to the existing maximum e to buckle in the critical mode.
• The buc	kling length is determined by the following steps:
• The	tube cross section properties are determined;
• The • The	axial load is determined; and maximum allowable load is determined and compared to the axial load.
3.4 Guide A	ssembly Evaluation
The gu arranger adequate shear de	ide assembly is comprised of a solid block element and a slide loc nent. By inspection the solid block guide and lock pin flange (with boltin e. Only the lock pin requires evaluation. For the lock pin, bearing and o sign checks are evaluated.
3.5 Base As	sembly-Upper Assembly Joint Evaluation
The bas within the tubing. The steel in function	e and upper stand assemblies are connected by a solid connector plug in he 4x4 column tubing. The connector is full penetration welded to the bass the load path under loading conditions is through bearing at the tube steel-to terface. The connector and its weldment serve alignment and connect s only. No structural evaluation is required.
	Performed by:
	Chuthdha

4.0	ASS	JUMPTI	ONS / DESIGN INPUTS
	4.1	Assum	ptions
		There a	re no unverified assumptions within this calculation.
	4.2	Design	Criteria
		4.2.1	Tensile Stresses
			Calculated tensile stress (based on load factor of 3) $< S_{yield}$ (Ref. 7.3) Calculated tensile stress (based on load factor of 5) $< S_{ultimate}$ (Ref. 7.3)
		4.2.2	Shear Stresses
			$ \begin{array}{llllllllllllllllllllllllllllllllllll$
		4.2.3	Bearing stresses
			Calculated bearing stress $< 1.5 \times S_y$ (Ref. 7.7.3)
		4.2.4	Buckling Design
			Calculated buckling load (based on load factor of 5) $< P_{er}$
		4.2.5	Material Properties / Stress Design Checks
			All components evaluated within this WRR are made of A500, A36 or Au carbon steel.
			Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3×10^6 psi (Ref. 7.7)
			Normalizing the material yield and ultimate strengths by the Reference 7.3 h factors yields the following (See Section 4.2.1 for load factors):
			A500 GR B Carbon Stee! (Reference 7.10.7) Fy: 46 ksi Fa: 58 ksi Fy/3 = 46,000 / 3 = 15,333 psi Fy/5 = 58,000 / 5 = 11,600 psi
A	NAC INTER	INATIONA	L Performed by: Performed by: Date: 1/-2-5-96 Calculation No. 457-2005.2 Revision 1

ASTM A36 Carbon Steel (Reference 7,10.8) 36 ksi Fy: 58 ksi Fu: $F_{\rm v}/3 = 36,000/3$ = 12,000 psi $F_{\rm w}/5 = 58,000/5 = 11,600 \, \rm psi$ ASTM A564 Carbon Steel Guide Pin Only (Reference 7.15) Fy: 105 ksi Fu: 135 ksi $F_y/3 = 105,000/3 = 35,000 \text{ psi}$ $F_{\mu}/5 = 135,000/5 = 27,000 \text{ psi}$ Based on the above comparisons of yield and ultimate allowables for the three (3) materials, comparing a factor (LF) of 5 against ultimate is more restrictive. Only the limiting condition is evaluated within this WRR. 4.3 Design Conditons Load: 60,000 lbs Temperature: Ambient, 100 °F Lifting: Two Point Lift (set) condition is design controlling per Reference 7.14. 4.4 Component Properties 4.4.1 Tube steel (Reference 7.10.1) size: 4 x 4 x 0.5 12.3 in4 1: 1.39 in r: area: 6.36 in² matl: A36 4.4.2 Tie Plates size: 1/2" plate Performed by: NAC INTERNATIONAL Date: Calculation No. 457-2005.2 OP 12-2-96 Revision 1 Checked by: Date; 12/2/96 Page 9 of 23 1 $\mathcal{D}($

4.5 Elevation	ons of the Fuel Pit (Reference 7.1)
Pit floor Fuel flo Load pi Top of j Water e	r elevation: - 25'-9" or elevation: - 20'-9" t floor elevation: 0'-0" pit wall elevation: + 2'-0" levation: - 4'-9"
5.0 ANALYSIS	DETAIL
5.1 Frame S	Stand Buckling Evaluation
5.1.1	Net Cross Section Properties
	The frame stand consists of eight (8) vertical $4^{\circ} \times 4^{\circ} \times 0.5^{\circ}$ tube steel members Since the I and r of a tube are the same for any orientation, consider the effectiv section as follows (Reference 7.6.2):
	6.18" 6.18" 6.18" 6.65" 48.06" Centarine of tube steel
I	Per Reference 7.6.2:
	$z_1 = 56.87" \cdot (2 \times 6.18")$ = 44.51 in $z_2 = 48.06" \cdot (2 \times 6.65")$ = 34.76 in
	Performed by: Date: Calculation No. 457-2005.2

The moment of inertia of the effective section, I, is: $I = \Sigma Ay^2 + \Sigma I$ = $[(8 \times 6.36) \times (34.76 / 2)^2] + [8 \times (12.3)]$ = 15,467 in⁴ $\sqrt{\frac{1}{2}}$ r = 15,467 8 x 6.36 = 17.44 5.1.2 ki/r Parameter Due to the location of struts at each corner assembly of the upper stand, consider k = 0.8 (Reference 7.10.3). The length, 1, is: I = 160" + 156.5" (Reference 7.6.2) = 316.5" ≅ 317 in Therefore: kl/r = 0.8 x (317) / 17.44 = 14.54 5.1.3 Maximum Allowable Section Axial Stress Per Reference 7.10.2 and conservatively using the A36 allowable in lieu of the A500 Gr B allowable (i.e., A500 Gr B has a yield strength of 42 ksi compared to 36 ksi for A36): at kl/r = 14.54, F, = 20.92 ksi Performed by: NAC INTERNATIONAL Date: Calculation No. 457-2005.2 gro 11-25-94 Revision I Checked by: Date:/25/96 Page 11 of 23 1 -25

5.1.4	Critical Buckling Load
	$ P_{cr} = F_{a} \times A = 20,920 \times (8 \times 6.36) = 1,064,410 lbs $
5.1.5	Axial Load (5W, for buckling considerations)
	Axial load = $5 \times 60,000$
	= 300,000 lbs
	The axial load is less than the critical buckling load, P_{cr} :
	300,000 lbs < 1,064,410 lbs
	The stand will not buckle as a frame assembly if the tie plate bracing is demonstrated to be adequate (Section 5.2).
5.2 <u>Tie Pla</u>	ate Evaluation
5.2.1	Sizing Of Tie Plates
	The frame will be braced using $1/2^{n}$ tie plates on all four (4) sides. The upper frame (stand) assembly is designed with one (1) open side for placement and removal of the immersion pail.
	The tie plate requirements per Reference 7.10.9 are:
	" the end tie plates shall have a length of not less than the distance between the lines of fasteners or welds connecting them to the components of the member. Intermediate tie plates shall have a length not less than 1/2 of this distance. The thickness of tie plates shall not be less than 1/30 of the distance between the line of fasteners or welds connecting them to the components of the member."
	L ₁ = maximum distance between welds of tie plates. = 44 in
	L ₂ = minimum width of end tie plates = L ₁ = 44 in
A NAC INTERNATION	N. Performed by:
	Checked by: TEC Date; 11/2 5/96 Page 12 of 23

 $L_3 = minimum$ width of intermediate tie plates ≠ 1/2 L₁ = 22 in = minimum thickness of tic plates t $= 1/50 L_1$ = 0.88 in Tie plates used in this design are 0.5 in thick. Note that this is in violation of the requirements stated in the AISC Code. However, the AISC allows exception to these requirements, provided that stress allowable reduction factors for slender compression elements are applied (See Section 5.2.4). 5.2.2 Spacing Between Tie Plates The tie plate spacing requirements per Reference 7.10.9 are: "Compression members composed of two or more shapes separated by intermittent fillers shall be connected at these fillers at intervals such that the slenderness ratio kl/r of either shape, between the fasteners, does not exceed 3/4 times the governing slenderness ratio of the built-up member. The least radius of gyration r shall be used in computing the slenderness ratio of each component part." kl/r_{composite} = kl/r of composite section from 5.1.2 = 14.54 kl/r_{component} = kl/r of component section Per Reference 7.10.9: kl/r_{component} < 0.75 x kl/r_{composite} = radius of gyration of component section = 1.39 = effective length factor for component section k 1.0 ~ maximum length of component section (i.e., distance between tie component plates) 0.75 x 14.54 x 1.39 -----= 15.15 in Calculation No. 457-2005.2 Performed by Date: NAC geo INTERNATIONAL Revision I 11-25-96 Page 13 of 23 Checked by: Date: 11/25/9 RS

	Therefore, t	the maximum permissible spacing between the plates is 15".	
5.2.3	Tie Plate De	esien Load	
	The tic plate	es are not subject to any side loads, therefore they will be designed to	
	the load req	uirements of Reference 7.10.9:	
	"resist a sl total compre	hearing stress normal to the axis of the member equal to 2% of the essive stress in the member."	
	W	 Load on frame. 60,000 lbs 	
	LF =	= Load factor for ultimate.	
	-	= 5	
	f =	 Two point lift criteria reduction factor 2 	
	F _{design} =	= Frame Design Load	
		= 60,000 x 5 x 2 = 600,000 lbs	
	F _{tie place} =	= Tie Plate Design Load	
		$= 0.02 \text{ x } F_{\text{design}}$ = 0.02 x 600.000	
	=	12,000 lbs	
5.2.4	Tie Plate Ev	valuation	
	For the eval width equal page 5-36) o	luation of a tie plate of minimum width equal to 22" and maximum to 50", both with a thickness of 1/2", the AISC Code (Reference 7.10 contains the following limitations:),
	b/t ≤	$\frac{95}{\sqrt{F_{y}}} \leq \frac{95}{\sqrt{36}} \leq 16$	
	For 50" plat	le:	
	o/t = 1	100	
NAC	Perfor	med by: Calculation No. 457 2005 2	7
INTERNATIONA	u.	9K3 H-25-9C Revision 1	11
	Check	$\frac{11/2}{2} = \frac{14 \text{ of } 23}{11/2}$	1

For	22" plate:				
b/t	≃ 44				
Sin this	ce b/t > 16 i falls in line	n both cases, a with thicknes	stress reductions conclusion in	n factor n Section 5	nust be applied. Note th .2.1 of this calculation.
The	stress redu	ction factor is	calculated per l	Equation A	A-B5-4 of AISC Code:
wh	en: b/t >	$\frac{195}{\sqrt{F_{v}}} > \sqrt{\frac{F_{v}}{k_{v}}}$	$ \frac{195}{\sqrt{\frac{F_{y}}{4.05}}} $		•
whe	ere: k _c =	4.05/ (h / t) ⁰⁴	¹⁶ for $h / t > 70$; and	
	k _c =	1.0 for h / t ≤	70.		
	h =	Ъ			
ther	: Q _s = =	stress reducti 26,200 k _c / [F	on factor $f_y x (b/t)^2$		
For	50" plate:	$ \frac{\frac{36}{4.05}}{(100)^{0.46}} $	= 22.7		
For	22" plate:	$\frac{195}{\sqrt{\frac{36}{1.0}}}$	= 32.5		
Sinc	e b/t is grea	ter for both siz	e plates, for the	50" plate	1
Q _{\$50}	= 26,20 = 0.036	00 k _c / [F _y x (b)	^{(t)²]}		
For	he 22" plate				
Q.22	= 26,20 = 0.376	0 k _c / [F _y x (b/	(t) ²]		
NAC INTERNATIONAL	Performed b	gro	Date:	5-96	Calculation No. 457-2005.2 Revision 1
	Checked by	R8	Date: N/2	5/96	Page 15 of 23

For 22" plate: b/t = 44 Since b/t > 16 in both cases, a stress reduction factor must be applied. Note that this falls in line with thickness conclusion in Section 5.2.1 of this calculation. The stress reduction factor is calculated per Equation A-B5-4 of AISC Code: 195 195 when: b/t >F, √k, 4.05 $4.05/(h/t)^{0.46}$ for h/t > 70; and where: k_c = 1.0 for $h / t \le 70$. k. = h ь then: $Q_s =$ stress reduction factor 26,200 kc / [Fy x (b/t)2] 195 For 50" plate: 22.7 36 4.05 (100)0.46 195 For 22" plate: 32.5 136 11.0 Since b/t is greater for both size plates, for the 50" plate $Q_{s50} = 26,200 k_c / [F_v x (b/t)^2]$ = 0.036 For the 22" plate: $Q_{s22} = 26,200 \text{ k}_c / [F_y \times (b/t)^2]$ = 0.376 NAC Performed by: Date: Calculation No. 457-2005.2 9RO INTERNATIONAL Revision 1 11-25-96 Checked by: Date: Page 15 of 23 R8 1 11/25/9

A9.2-135

÷ 1

From Reference 7.10, page 5-101, $Q = Q_{s50} = 0.036$ $= Q_{s22} = 0.376$ $C_{c50}^{*} = \sqrt{\frac{2 x \pi^2 x E}{Q x F_y}}$ $\sqrt{\frac{2 \text{ x } \pi^2 \text{ x } 29\text{E3}}{0.036 \text{ x } 36}}$ = 647 $C'_{c22} = \sqrt{\frac{2 \times \pi^2 \times E}{Q \times F_y}}$ $\sqrt{\frac{2 \times \pi^2 \times 29E3}{0.376 \times 36}}$ = = 205 For a plate with both ends welded: k = 0.65 1 = L₁ = 44 in = 0.289 x t (Reference 7.10) r = 0.289 x 0.5 = 0.1445 $kl/r = .65 \times 44 / .1445$ = 198 NAC INTERNATIONAL Performed by: Date: Calculation No. 457-2005.2 920 11-25-96 Revision 1 Checked by: Date; Page 16 of 23 1 R 11/25/96


```
5.2.5 Tie Plate Weld Evaluation
               The plates will be welded on both edges with double line fillet welds. For 50"
               plate, the weld length is \approx 34^\circ, which is twice the AISC Code requirement of 1/3 the plate width = 50/3 = 16.7^\circ. Similarly, the 22° plate weld length is 14°, which
               is twice the AISC Code requirement of 22/3 = 7.3".
               Therefore, the weld design is adequate.
 5.3 Corner Post Assembly Buckling Evaluation
       5.3.1 Tube Cross Section Properties
               Per Section 4.4.1:
               Tube steel
               size = 4 \times 4 \times 0.5
                     = 12.3 \text{ in}^4
               1
               r
                     = 1.39 in
               area = 6.36 \text{ in}^2
       5.3.2 Axial Load
               Per Reference 7.16, the maximum lift load for Condition I and IV is < 58,000 lbs.
               For eight tube columns, the axial load per column is:
               F<sub>column</sub> = LF x W x 2 / 8 (2 point set)
                          = 5 \times 58,000 \times 2/8
                         = 72,500 lbs
       5.3.3 Buckling Load Evaluation
               The bracing configuration was designed to ensure the stand will effectively
               behave as a frame assembly. However, due to the non braced section on the upper
               frame assembly, a localized buckling evaluation is performed. The upper / lower
               frame assembly connection will serve as a pinned connection point (k = 1.0
               applies).
               Per drawing Reference 7.6.2, the maximum actual length, Lmax,
               L. ....
                      = 156 in
                       = 13.0 ft ,
                      Performed by
                                                                           Calculation No. 457-2005.2
NAC
INTERNATIONAL
                                                         Date:
                                    gro
                                                          11-25-96
                                                                           Revision 1
                                                                           Page 18 of 23
                      Checked by:
                                                         Date:
                                   PS
                                                          11/2
                                                                    96
```

Per Reference 7.10.6, with $kl = 1.0 \times 13 = 13.0$: The maximum allowable concentric load is = 75 kips. Since the applied load is less than the maximum allowable concentric load, the corner tube will not buckle and is adequately designed against buckling failure. 5.4 Guide Assembly, Evaluation 5.4.1 Bearing Check The pin bearing area is; Consider lock pin extends 90% thru guide, therefore extension length per item 98 of Reference 7.6.4. L = [0.9 x (10.58 - 0.5 end pin chamfer)] - 1.5 (gap) = 7.572 in Pin bearing width, W , is W = 1.5 - 2(0.13)= 1.24 in Bearing area = $L \times W$ = 7.572 x 1.24 $= 9.39 \text{ in}^2$ Therefore, the bearing stress (guide assembly is A36 material, pin is 17-4PH) is: Stressbearing = LF x (W/2) / area $= 5 \times (60,000 / 2) / 9.39$ = 15,974 psi Safety Margin = $1 - (\text{stress} / (1.5 \times S_v))$ $= 1 - (16.0 / (1.5 \times 36))$ = 0.70 Performed by: NAC INTERNATIONAL Date: Calculation No. 457-2005.2 gie 11-25-94 Revision 1 Checked by: Date Page 19 of 23 -PS 11/2

.

Appendix A9.2.3 Support Structure Calculation 457-2005.2 (Continued)

5.4.2 Double shear of the Lock Pin $= W^2$ shear area = 1.24 x 1.24 $= 1.53 \text{ in}^2$ shear stress = $LF \times (W/2)/(2 \times shear area)$ $= 5 \times (60,000 / 2) / (2 \times 1.53)$ = 49,020 psi Safety Margin = $1 - (\text{shear stress} / (0.6 \times S_n))$ $= 1 - (49.0 / (0.6 \times 135))$ = 1 - (49.0 / 81.0)= 0.40 Performed by NAC INTERNATIONAL Date: Calculation No. 457-2005.2 8R0 11-25-96 Revision 1 Checked by: Page 20 of 23 Date: 11/25/96 RS

6.0 SUMMARY OF RESULTS/CONCLUSIONS

Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-102	98, 99	frame stand assembly	5W	buckling	300 kips	1,064 kips	0.72
457-102	4, 7, 8, 9, 15, 16, 17, 18	tie plates	5W	compression	480 psi	694 psi	0.31
457-102	5	corner post	5W	buckling	72,500 lbs	75,000 lbs	0.03
457-109	4	lock pin	5W	double shear	49.0 ksi	81.0 ksi	0.40
457-109	10	guide assembly	5W	bearing	16.0 ksi	54 ksi	0.70

Summary of Stress Analysis

The immersion pail support structure design meets the criteria defined in Section 4.2.

NAC	Performed by:	Date:	Calculation No. 457-2005.2	1
INTERNATIONAL	9RO	11-25-96	Revision 1	
	Checked by: RS	Date; 11/25/96	Page 21 of 23	1

7.0	REFEREN	CES			
	7.1 Prel Proj Traj	liminary Design Ar ject 3035 nsnuclear, Inc.	alysis Report	For The TN-WHC Ca	ask and Transporation Syst
	7.2 Not	Used.			
	7.3 AN Am "spo mor	SI N14.6 erican National Sta ecial lifting devices e"	ndard for Radi for shipping c	oactive Materials ontainers weighing 1	0,000 lbs (4,500 kg) or
	7.4 Roa	rk's Formulas for S	Stress and Strai	n, 3rd edition.	
	7.5 Han	ford ECN 191402.		•	
	7.6 K B 7.6. 7.6. 7.6. 7.6.	asin Immersion Pai Project 457, Dr. Project 457, Dr. Project 457, Dr. Project 457, Dr. Project 457, Dr.	il Assembly T awing 101, she awing 102, she awing 103, she awing 109, she	N WHC Transport Ca et 1 / 1. ets 1, 2 / 2. ets 1, 2 / 2. et 1 / 1.	sk Drawings.
	7.7 ASN 7.7.1 7.7.2 7.7.2 7.7.4	ME Boiler & Pressu 1 Section II-D, pa 2 Section I-D, pa 3 Section III, NB 4 Section II-D, pa	ure Vessel Cod age 99, Table 1 ge 6, Table 1A -3227.1(a). age 432, 496.	e, 1995 edition. A.	
	7.8 Bloc 7.8.1 7.8.2 7.8.3	lgett's Design Of V Page 3.2-16 Page 3.2-1 Page 3.2-14 Page 3.2-14	Velded Structu	res, 1966.	
	7.9 Not	Used.			
9	NAC INTERNATION	Performed by	9RD-	Date:	Calculation No. 457-2005.2
		Checked by:		Date:	Page 22 of 23

-			Oth addition	
,	7.10 AISC M	Page 1-96	ion, 9in edition.	
	7.10.2	Page 3-16		
	7.10.3	Page 5-37 (Section B7) at	nd 5-42	
	7.10.5	Page 1-103		
	7.10.7	Page 1-92		
	7.10.8 7.10.9	Page 1-7 Page 5-43		
7	.11 Not Us	eđ.		
7	.12 Machin 7.12.1	nery's Handbook, 22 nd Edit Page 287	ion.	
7	.13 Mark's 7.13.1	Standard Handbook for M Page 5-30	lechanical Engineers.	
7	.14 Meeting	g Minutes, NAC/TN, Sept	ember 1996.	
7	15 ASTM Volume 1010 D	Annual Book of ASTM St e 01.01, Page 404 trawn Tubing.	andards.	
7	.16 WRR-4	157-2003.2.		
		5		
	AC TERNATIONAL	Performed by: gRD	Date:	Calculation No. 457-2005 Revision 1
		Checked by: PS	Date/25/96	Page 23 of 23

A9.2-144

.

. . . .

Appendix A9.2.4 Lift Beam Calculation 457-2005.3

	NAC NTERNATIO	NAL CALCU	ULATION PAC	KAGE 45	ork Request/Calc No: 7-2005.3
PROJEC	T NAME:		CLIENT:		KORC
K Basin	Operations Eq	uipment	Hanford (Trans	nuclear, hc	19 No. 1 5705
Lift Bean	n Evaluation				TE SALVER
Revision	Affected Pages	Revision Description	Preparer Name, Initials, Date	Checker Name, Initial Date	s, Approval/Date
0	1 thru 13	Original Issue	Jeffrey R. Dargis 11-13-96	Ravi Singh 11-14-96	Thomas A. Danr 11-15-96
	1.3 thru	Revised method	Jeffrey R. Dargis	Ravi Singh	4.20
1	14	of calculating margin of safety.	JRU 11-25-96	11/25/96	*/zs/sc
1	14	of calculating margin of safety.	980 11-25-96	11/25/96	*/25/96

	INDEPE	ENDENT DESIGN VERIFICATI	ON CHEC	K SH	EET	
Wa	rk Request/Calculatio	n No: <u>457-2005,3</u> Revisio	n <u>0</u>			
Sco	ope Of Analysis File:	This calculation structurally en factor requirements defined in	valuates th n ANSI N14	<u>e lift t</u> 4. <u>6.</u>	eam	utilizing the lo
Rev	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)		25		
Cor	nfirm That The Work F	Request / Calculation Package	Reviewed	Inclur	ies	
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis I Statement of Conc	ose / Analysis lions Record Jusions / Recommendations (if	applicable	e)		AS DANS
Step		Activities	Verif Yes	ication No	N/A	Comments
	A. Are the required 1. Material pro- 2. Geometry (3. Loading so <i>If a suppor</i> <i>defined</i> ? B. Are boundary c	imed analysis: data input complete? operties drawing reference) urce term ting analysis is required to oad state, has it been onditions acceptable?	1112			
2	Is the method of analys	is adequate for the defined scope?	V			
3	Is the worst case loadin	g/configuration documented?	~			
4	Are the acceptance crite	eria defined and complete?				
5	Has all concurrent loads	ing been considered?	~			
6	Are analyses consistent approach?	t with previous work for method and			~	NEW CALC PACKAGE
7	Are the records for inpu	t and output complete?	~			
8	Is traceability to verified	software complete?	-		~	NO SOFTWA
9	is the statement of conc and acceptable for the p purpose?	clusions and recommendations compli- project and objectives of the defined	ete			
_7	CAVI SINGH G	Raund Sung? 11	14/96			

1.000

	INDEP	ENDENT DESIGN VERIFICA	ATION CHE	K SH	EET		
Wo	rk Request/Calculatio	n No: <u>457-2005.3</u> Revi	sion <u>1</u>				
Sco	pe Of Analysis File:	This calculation structuraling factor requirements define	This calculation structurally evaluates the lift beam utilizing the factor requirements defined in ANSI N14.6.				
Rev	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)		1			
Cor	firm That The Work F	Request / Calculation Packa	ge Reviewed	Includ	les:		
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis Statement of Conc	ose i Analysis ions Record :lusions / Recommendations	(if applicabl	9)		N PS PS PS	
Step		Activities	Ver	fication		_	
1	For the scope of the de A. Are the required 1. Material pro- 2. Geometry (3. Loading so <i>If a suppor</i> <i>define the i</i> <i>defined</i> ? B. Are boundary o	fined analysis data input complete? perites drawing reference) urce term ting analysis is required to obad state, has it been onditions acceptable?	111				
2	is the method of analys	is adequate for the defined scope	· ·	-			
3	is the worst case loadin	g/configuration documented?	~				
4	Are the acceptance crite	eria defined and complete?	V				
5	Has all concurrent loadi	ng been considered?	1				
6	Are analyses consistent approach?	t with previous work for method an	id V				
7	Are the records for inpu	t and output complete?	~	<u> </u>			
8	Is traceability to verified	software complete?			7		
9	Is the statement of cond and acceptable for the p purpose?	lusions and recommendations corroject and objectives of the define	nplete				
KA	VI SINGH Cram	non sing .	11/25/96	-			

,

		T.	ABLE OF CO	NTENTS	
Section	Descriptio	n			Page
	Calculatio	n Package Cove	er Sheet		1
	Independe	nt Design Verif	fication Check S	Sheet	2
	Table of C	Contents			4
1.0	Synopsis	of Results			5
2.0	Introducti	on/Purpose			5
3.0	Method of	f Analysis			5
4.0	Assumptio	ons/Design Inpu	.ıt		6
5.0	Analysis I	Detail			7
6.0	Summary	of Results / Co	nclusions		
7.0	Reference	s			
	RNATIONAL	Performed by:	gro	Date: 11-05-76	Calculation No. 457-2005. Revision 1
		Checked by:	71	Date; (o)	Page 4 of 14

1.0 SYNOPSIS OF RESULTS

Calculated Allowable Drawing Item Component Applied Design Check M.S. No. Load Loading No. beam bending 457-112 1 weldment 180 kips 25,447 psi 30,000 psi 0.15 (plate) 150 kips 2,769 psi 18,000 psi | 0.85 beam shear (trunnion) trunnion shear 11,933 psi | 40,200 psi | 0.70 457-112 10 eye plate 180 kips tension 14,400 psi 30,000 psi 0.52 10,650 psi 45,000 psi 0.76 bearing

Summary of Stress Analysis

The lift beam design meets the criteria defined in Section 4.2.

2.0 INTRODUCTION / PURPOSE

This calculation evaluates the lift beam utilizing the load factor requirements defined in ANSI N14.6 (Reference 7.3). The lift beam is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site.

3.0 METHOD OF ANALYSIS

Hand calculations using classic textbook solutions are used to structurally evaluate the lift beam.

The design will be assessed using the load factors discussed in Section 4.2. The acceptance criteria defined in Reference 7.3 limits the lifting induced tensile stresses to the lesser of:

(a) one-third material yield strength; or(b) one-fifth the material ultimate strength.

The following evaluations are documented within this calculation.

- Design Load Development;
- Lift Beam Evaluation: and
- Pad Eye Evaluation.

NAC INTERNATIONAL	Performed by:	Date:	Calculation No. 457-2005.3 Revision 1	1
	Checked by: ZS	Date: 11/25/96	Page 5 of 14	

 4.1 Assumptions There are no unverified assumptions within this calculation. 4.2 Design Criteria 4.2.1 Tensile Stresses Calculated tensile stress (based on load factor of 3) < F_{yield} (Ref. 7.3) Calculated tensile stress (based on load factor of 5) < F_{wield} (Ref. 7.3) 4.2.2 Shear Stresses Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} (Ref. 7.3) 4.2.2 Shear Stresses Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} (Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} (Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} 4.2.3 Bearing stresses Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi F_y3 = 30,000/3 = 10,000 psi F_y3 = 30,000/5 = 11,000 psi 	4.0	ASS	SSUMPTIONS / DESIGN INPUTS					
There are no unverified assumptions within this calculation. 4.2 Design Criteria 4.2.1 Tensile Stresses Calculated tensile stress (based on load factor of 3) $< F_{yald}$ (Ref. 7.3) Calculated tensile stress (based on load factor of 5) $< F_{utimate}$ (Ref. 7.3) 4.2.2 Shear Stresses Calculated shear stress (based on load factor of 3) $< 0.6 \text{ x } F_{yeld}$ Calculated shear stress (based on load factor of 5) $< 0.6 \text{ x } F_{yeld}$ Calculated shear stress (based on load factor of 5) $< 0.6 \text{ x } F_{utimate}$ 4.2.3 Bearing stresses Calculated bearing stress $< 1.5 \text{ x } F_{yeld}$. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10 ⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy3 = 30,000/3 = 10,000 psi Fy5 = 55 000/5 = 111,000 psi		4.1	<u>Assum</u>	ptions				
 4.2 Design Criteria 4.2.1 Tensile Stresses Calculated tensile stress (based on load factor of 3) < F_{yuid} (Ref. 7.3) Calculated tensile stress (based on load factor of 5) < F_{utimate} (Ref. 7.3) 4.2.2 Shear Stresses Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} Calculated bearing stress = Calculated bearing stress < 1.5 x F_{yield}. 4.2.3 Bearing stresses Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy3 = 30,000/3 = 10,000 psi Fy5 = 55 000/5 = 11,000 psi 			There	re no unverified assumptions within this	calculation.		•	
 4.2.1 Tensile Stresses Calculated tensile stress (based on load factor of 3) < F_{yield} (Ref. 7.3) Calculated tensile stress (based on load factor of 5) < F_{utimate} (Ref. 7.3) 4.2.2 Shear Stresses Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} Calculated bearing stresses Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Stee</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi F_y3 = 30,000/3 = 10,000 psi F_y5 = 55 000 / 5 = 11,000 psi F_y5		4.2	Desigr	Criteria				
Calculated tensile stress (based on load factor of 3) $< F_{yield}$ (Ref. 7.3) Calculated tensile stress (based on load factor of 5) $< F_{utimate}$ (Ref. 7.3) 4.2.2 <u>Shear Stresses</u> Calculated shear stress (based on load factor of 3) $< 0.6 \text{ x } F_{yield}$ Calculated shear stress (based on load factor of 5) $< 0.6 \text{ x } F_{yield}$ 4.2.3 <u>Bearing stresses</u> Calculated bearing stress $< 1.5 \text{ x } F_{yield}$. 4.2.4 <u>Material Properties / Stress Design Checks</u> All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10 ⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy3 = 30,000/3 = 10,000 psi Fy5 = 55 000/5 = 11,000 psi			4.2.1	Tensile Stresses				
 4.2.2 <u>Shear Stresses</u> Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{utimate} 4.2.3 <u>Bearing stresses</u> Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 <u>Material Properties / Stress Design Checks</u> All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity , E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fy/3 = 30,000 / 3 = 10,000 psi Fy/3 = 30,000 / 5 = 11,000 psi Fy/5 = 55 000 / 5 = 11,000 psi 				Calculated tensile stress (based on load f Calculated tensile stress (based on load f	actor of 3) actor of 5)	< F _{yield} < F _{ultimate}	(Ref. 7.3) (Ref. 7.3)	
 Calculated shear stress (based on load factor of 3) < 0.6 x F_{yield} Calculated shear stress (based on load factor of 5) < 0.6 x F_{yield} 4.2.3 Bearing stresses Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000/3 = 10,000 psi Fy/3 = 30,000/5 = 11,000 psi Fy/5 = 55000/5 = 11,000 psi 			4.2.2	Shear Stresses				
 4.2.3 Bearing stresses Calculated bearing stress < 1.5 x F_{yield}. 4.2.4 Material Properties / Stress Design Checks All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 If factors yields the following (See Section 4.2.1 for load factors): A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000/(3 = 10,000 psi) Fy/3 = 30,000/(5 = 11,000 psi)				Calculated shear stress (based on load fa Calculated shear stress (based on load fa	ctor of 3) ctor of 5)	< 0.6 x F _{yiel} < 0.6 x F _{ulti}	ld	
Calculated bearing stress < 1.5 x F _{yield} . 4.2.4 <u>Material Properties / Stress Design Checks</u> All components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity , E = 28.3 x10 ⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 1 factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000 / 3 = 10,000 psi Fy/5 = 55000 / 5 = 11,000 psi			4.2.3	Bearing stresses				
 4.2.4 <u>Material Properties / Stress Design Checks</u> AJI components evaluated within this calculation are made of A516 GR51 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3 x10⁶ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000 / 3 = 10,000 psi F/3 = 35 000 / 5 = 11,000 psi F/3 = 55 000 / 5 = 11,000 psi 				Calculated bearing stress < 1.5 x Fyield				
AJI components evaluated within this calculation are made of A516 GR55 A588 GR A carbon steel. Poison's ratio = 0.3 Modulus of Elasticity, $E = 28.3 \times 10^6$ psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000/3 = 10,000 psi F/3 = 35,000/5 = 11,000 psi			4.2.4	Material Properties / Stress Design Chec	<u>ks</u>			
Poison's ratio = 0.3 Modulus of Elasticity, E = 28.3×10^6 psi (Ref. 7.7) Normalizing the material yield and ultimate strengths by the Reference 7.3 factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000 / 3 = 10,000 psi Fy/3 = 55 000 / 5 = 11,000 psi				All components evaluated within this A588 GR A carbon steel.	calculation a	re made of	A516 GR55	
Normalizing the material yield and ultimate strengths by the Reference 7.3 I factors yields the following (See Section 4.2.1 for load factors): <u>A516 GR 55 Carbon Steel</u> (Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000 / 3 = 10,000 psi Fy/3 = 55 000 / 5 = 11,000 psi				Poison's ratio = 0.3 Modulus of Elasticity , E = 28.3 x10 ⁶ psi	(Ref. 7.7)			
A516 GR 55 Carbon Stee] (Reference 7.10) Fy: 30 ksi Fu: 55 ksi $F_y/3$ = 30,000 / 3 = 10,000 psi $F_y/3$ = 55 000 / 5 = 11,000 psi				Normalizing the material yield and ultin factors yields the following (See Section	mate strength 4.2.1 for loa	ns by the Re d factors):	ference 7.3	
(Reference 7.10) Fy: 30 ksi Fu: 55 ksi Fy/3 = 30,000 / 3 = 10,000 psi Fy/5 = 55 000 / 5 = 11,000 psi				A516 GR 55 Carbon Stee]				
Fu: 55 ksi $F_y/3 = 30,000/3 = 10,000 psi$ $F_y/5 = 55,000/5 = 11,000 psi$				(Reference 7.10) Fy: 30 ksi				
$F_y/3 = 30,000/3 = 10,000 \text{ psi}$ $F_y/5 = 55,000/5 = 11,000 \text{ psi}$				Fu: 55 ksi				
				$F_y/3 = 30,000/3 = 10,000 \text{ psi}$ $F_z/5 = 55,000/5 = 11,000 \text{ psi}$				
	A	NAC INTE	RNATION	I. Performed by gRO	ale: 1-25-96	Calculation Revision 1	No. 457-2005.3	
NAC Performed by: INTERNATIONAL Performed by: JPD 5-74 Revision 1	1.			Checked by:	ate:	Page 6 of 1	4	

ASTM A588 GR A Carbon Steel (Reference 7.10) 46 ksi Fy: Fu: 67 ksi $F_y/3 = 46,000/3$ = 15,333 psi $F_u/5 = 67,000/5 = 13,400 \text{ psi}$ Based on the comparisons of yield and ultimate allowables for the two (2) materials, comparing a factor (LF) of 3 against yield is more restrictive for A516, while using a factor (LF) of 5 against ultimate is more restrictive for A588. Only the limiting condition is evaluated within this calculation. ANALYSIS DETAIL 5.0 5.1 Design Load Development The design loads, F, for the lift beam and trunnion are as follows: $F_{\text{lift beam}} = 60,000 \text{ x} 3$ = 180,000 lbs $F_{trunnion} = (60,000/2) \times 5$ = 150,000 lbs 5.2 Lift Beam Evaluation The load is applied by the eye plate to the lift beam as follows: L F where: $L = 36.81 + ((3/2) \times 2)$ = 34.81 in Calculation No. 457-2005.3 NAC INTERNATIONAL Performed by Date: 920 11-25-96 Revision 1 Checked by Date: Page 7 of 14 ES 11/25/96

The maximum bending stress is: $\sigma_{\rm b} = M / S_{\rm x}$ = 1,791,450 / 70.4 = 25,447 psi MS = $1 - \frac{\sigma_b}{F_s}$ = 1 - $\frac{25,447}{30,000}$ = 0.15 The maximum shear stress is: $\sigma_v = (F/2) / A_{shear}$ = (180,000/2) / (13 x 1.25 x 2) = 2,769 psi MS = $1 - \frac{\sigma_v}{(0.6 \text{ x F}_v)}$ $= 1 - \frac{2,769}{(0.6 \times 30,000)}$ = 0.85 The maximum shear stress for the trunnion section: $A_v = \pi x r_{transion}^2$ $= \pi x (2)^2$ $= 12.57 \text{ in}^2$ Performed by NAC INTERNATIONAL Calculation No. 457-2005.3 Date 880 11-25-96 Revision 1 1 Checked by: Date: 11/25/96 Page 9 of 14 1 RS

 $\sigma_v = F/(2 x A)$ = 150,000 / (12.57) = 11,933 psi The maximum allowable shear stress is: $F_v = 0.6 \times F_u$ = 40,200 psi The margin of safety is: $MS = 1 - \frac{\sigma_v}{F_v}$ = 1 - $\frac{11,933}{40,200}$ = 0.70 5.2 Eve Plate Evaluation Per Reference 7.6.1, the minimum tensile area of the eye plate is: $A_t = 5.00 \times 2.50$ $= 12.5 \text{ in}^2$ The maximum tensile stress in the eye plate is: $\sigma_t = \frac{F}{A_t}$ $\sigma_1 = \frac{180,000}{12.5}$ = 14,400 psi NAC INTERNATIONAL Performed by Calculation No. 457-2005.3 ate 11-25-96 Revision 1 Checked by: Page 10 of 14 ł Date RS 11/25/96

The maximum allowable tensile stress is: $\mathbf{F} = \mathbf{F}_{\mathbf{v}}$ = 30,000 psi The margin of safety is: $MS = 1 - \frac{\sigma_i}{F}$ $= 1 - \frac{14,400}{30,000}$ = 0.52 The eye plate bearing area, Abearing , is: $A_{\text{bearing}} = 3.38 \text{ in } \times 5 \text{ in}$ $= 16.9 \text{ in}^2$ The maximum bearing stress in the eye plate is: $\sigma_{\text{bearing}} = \frac{F}{A_{\text{branes}}}$ $\sigma_{bearing} \quad = \quad \frac{180,000}{16.9}$ = 10,650 psi The maximum allowable bearing stress is 1.5 F_y: $F = 1.5 \times F_y$ = 45,000 psi Performed by: Calculation No. 457-2005.3 NAC INTERNATIONAL Date: gro 11-25-96 Revision 1 Page 11 of 14 Checked by: Date: 11/25/96 PS

A9.2-155

....

The margin of safety is: $= 1 - \frac{\sigma_{\text{bearing}}}{F}$ MS $= 1 - \frac{10,650}{45}$ = 0.76 gro Calculation No. 457-2005.3 Revision I Performed by: NAC INTERNATIONAL Date: 11-25-96 Date: 11/25/9/0 Page 12 of 14 Checked by: 1 PS

6.0 SUMMARY OF RESULTS/CONCLUSIONS

Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-112	1	weldment	180 kips (plate) 150 kips (trunnion)	beam bending beam shear	25,447 psi 2,769 psi	30,000 psi 18,000 psi	0.15
		L '		trunnion shear	11,933 psi	40,200 psi	0.70
457-112	10	eye plate	180 kips	tension	14,400 psi	30,000 psi	0.52
				bearing	10,650 psi	45,000 psi	0.76

Summary of Stress Analysis

The lift beam design meets the criteria defined in Section 4.2.

NAC INTERNATIONAL	Performed by: gRO	Date: 11-25-96	Calculation No. 457-2005.3 Revision 1	1
	Checked by:	Date: 11/25/94	Page 13 of 14	11

7.0	REFE	RENCES				
	7.1	Preliminary Project 3035 Transnuclear	Design Ana	lysis Report	For The TN-WH	C Cask and Transporation Syste
	7.2	Not Used.				
	7.3	ANSI N14.6 American Na "special liftin more"	ational Stand ng devices f	dard for Radi or shipping c	oactive Materials ontainers weighir	ng 10,000 lbs (4,500 kg) or
	7.4	Roark's Forn	nulas for St	ress and Strai	in, 3rd edition.	
	7.5	Hanford EC?	V 191402.			
	7.6	K Basin Imn 7.6.1 Proje	ersion Pail et 457, Drav	Assembly TI wing 112, she	N WHC Transpor cets 1, 2 / 2.	t Cask Drawings.
	7.7	ASME Boile	r & Pressure	e Vessel Cod	e, 1995 edition.	
	7.8	Blodgett's D	esign Of We	elded Structu	res, 1966.	
	7.9	AISC Manua	I Of Steel C	onstruction,	9th edition.	
	7.10	ASTM Annu Volume 01.0	al Book of / 4.	ASTM Stand	ards.	
A	NAC INTERNA	PIONAL	erformed by:	gro-	Date:	Calculation No. 457-2005.3 Revision 1
1		С	hecked by:	RC	Date: / /	Page 14 of 14

Appendix A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2

	NAC INTERNATION		LATION PAC	KAGE	Work Request/C	alc No:
PROJE	CT NAME:	· ·	CLIENT:		Laisi	
K Basin	Operations Equi	pment	Hanford (Transi	nuclear, Inc) The	5706
Cold V PROBI	acuum Drying Lic	I VT OR OBJECTIVI	E OF THE CALCUI	LATION:	- Color	WEINT
The lid addition The col Basin A Revision	provides pressure to providing add d vacuum drying trea of the Hanfor on Affected Pages	lid is part of the TN d site. Revision Description	seals) and pressure r ring the streaming of N-WHC Cask and Tr Preparer Name Initials	estraint dur operation. ansportation Check	n System to be use	ed at the
			Date	Date	e	
0	1 thru 13	Original Issue	Jeffrey R. Dargis 11-10-96	Ravi Si 11-14	ingh Thomas -96 11-	A. Dann 15-96
1	1, 3 thru 14	Revised to incorporate change in lid terminology from conditioning lid to cold vacuum drying lid. Also, revised method	Jeffrey R. Dargis JRO 11-25-94	Ravi Si Re 11/25[9	ingh Thomas (c N/2	• A Daws • Cilfere • 74
		of calculating margin of safety.				

Appendix A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2 (Continued)

	INDEPE	INDENT DESIGN VERIFICAT	TION CHEC	K SHEET			
Wo	rk Request/Calculatio	n No: 457-2001.2 Revisi	on _0_				
Sco	ope Of Analysis File:	This calculation structurally internal pressure and lid lifting	This calculation structurally evaluates the conditioning lid for internal pressure and lid lifting load conditions.				
Re	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	¥	<u>-</u>			
Co	nfirm That The Work F	Request / Calculation Package	Reviewed	Includes:			
1. 2. 3	Statement of Purp Defined Method of Listing of Assumpt	ose Analysis ions		_	PPS PPS		
4.	Detailed Analysis I Statement of Conc	Record	if applicable	, -	Page 1		
υ.	Guternent of Cont	idaions / Recommendations (ii applicable	:) _	<u>_</u> <u></u>		
Step	1	Activities	Yes	No N/A	Comments		
1	For the scope of the de	fined analysis:					
ĺ	1. Material pro	Derties	V				
	Geometry (drawing reference)	11				
	Loading sort	urce term					
	If a suppor	ting analysis is required to					
	define (ne il defined?	oad state, has it been					
	B. Are boundary of	onditions acceptable?	~				
2	Is the method of analys	s adequate for the defined scope?	V				
3	Is the worst case loadin	g/configuration documented?	V				
4	Are the acceptance crite	aria defined and complete?	~				
5	Has all concurrent loadi	ng been considered?	~				
6	Are analyses consistent approach?	with previous work for method and		V	NEW CALC PACKAGE		
7	Are the records for input	and output complete?	V				
8	Is traceability to verified	software complete?		~	NO SOFTWAR		
9	Is the statement of conc and acceptable for the p purpose?	lusions and recommendations comp roject and objectives of the defined	plete				
R	AVI SINGH 6	minde Sig	11/14/96	<u> </u>	• <u> </u>		

Appendix A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2 (Continued)

	INDEPE	NDENT DESIGN VERIFIC	ATION CHEC	K SH	EET	
Wo	rk Request/Calculatio	n No: <u>457-2001.2</u> Revi	sion _1_			
Sco	pe Of Analysis File:	This calculation structurally for internal pressure and li	This calculation structurally evaluates the cold vacuum drying I for internal pressure and lid lifting load conditions.			
Rev	riew Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	Check Of Calculations			
Cor	firm That The Work F	Request / Calculation Packag	ge Reviewed	Includ	es:	
1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis I Statement of Conc	ose Analysis ions Record Iusions / Recommendations	i (if applicable	:)		N N N N N N N N N N N N N N N N N N N
Step		Activities	Verif Yes	No	N/A	Commente
1	For the scope of the de A. Are the required 1. Matenial pro- 2. Geometry (3. Loading son If a support defined the k defined? B. Are boundary cr	fined analysis: data input complete? operties drawing reference) urce term ting analysis is required to opad stale, has it been onditions acceptable?	~ ~ ~ ~ ~ ~			
2	Is the method of analys	s adequate for the defined scope	2 V			
3	Is the worst case loadin	g/configuration documented?	1			
4	Are the acceptance crite	eria defined and complete?	~			
5	Has all concurrent loadi	ng been considered?				
6	Are analyses consistent approach?	with previous work for method an	nd v			
7	Are the records for input	t and output complete?	V			
8	Is traceability to verified	software complete?			V	NO SOFTWAR
9	Is the statement of conc and acceptable for the p purpose?	lusions and recommendations co- roject and objectives of the define				

A9.2-161

.
ł

Appendix A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2 (Continued)

TABLE OF CONTENTS

Section	Description	Page
	Calculation Package Cover Sheet	1
	Independent Design Verification Check Sheet	2
	Table of Contents	4
1.0	Synopsis of Results	5
2.0	Introduction/Purpose	6
3.0	Method of Analysis	7
4.0	Assumptions/Design Input	8
5.0	Analysis Detail	9
6.0	Summary of Results / Conclusions	13
7.0	References	14

INTERNATIONAL	Performed by gRo	Date: 11-25-96	Calculation No. 457-2001.2 Revision I
	Checked by: RS	Date: 11/25/96	Page 4 of 14

A9.2-162

1.0 SYNOPSIS OF RESULTS

Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-106	1	lid flange	pressure	torsion	5,031 psi	16.7 ksi	0.70
457-106	2	bolt	pressure	tension	13,590 psi	16.7 ksi	0.19
457-106	8	lifting lug	3 times the weight	bearing tension	4,093 psi 4,093 psi	30 ksi 30 ksi	0.86 0.86
		_		shear	8,187 psi	18 ksi	0.55
457-106	Item 8 to Item 1	weld	3 times the weight	shear	620 psi	large compared to actual stress	large

Summary of Stress Analysis

Therefore the cold vacuum drying lid design meets the criteria defined in Section 4.2.

2.0 INTRODUCTION / PURPOSE

This calculation structurally evaluates the cold vacuum drying lid for internal pressure and lid lifting load conditions. The cold vacuum drying lid is used during the MCO vacuum drying operation in the conditioning facility immediately after the MCO is loaded. The internal pressure load is developed as a result of circulating hot water between the MCO outer surface and the inner surface of the cask. Once the cask is within the conditioning facility, the cask lid is removed and the cold vacuum drying lid installed. The lid is a "2" shaped ring. The lower leg of the Z rests on the top of the cask. Three (3) lid bolts are used to join the cold vacuum drying lid to the cask. The upper Z leg bears against the MCO top surface. The lid provides pressure boundary (two seals) and pressure restraint during MCO draining/drying in addition to providing additional shielding during the streaming operation.

The cold vacuum drying lid is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site. The cold vacuum drying lid was initially evaluated in Reference 7.1.

NAC INTERNATIONAL	Performed by:	gro	Date:	Calculation No. 457-2001.2 Revision 1	1
	Checked by:	RS	Date: 11/25/96	Page 5 of 14	ł

A9.2-163

3.0	METHOD OF ANALYSIS						
	Hand calculations using classic textbook solutions are used to structurally evaluate the colo vacuum drying lid design.						
	The lid design will be assessed utilizing a pressure loading of 60 psi (Reference 7.10). Only lid bolting and the upper Z leg of the lid are influenced by pressure loading. The pressure induced bolt stress will be compared to the ASME Code Class 2/3 stress allowable, S. For upper Z leg flange rotation, the pressure induced torsional stress will also be limited to S.						
	The lifting lug acceptance criteria is to limit tension and bearing stresses to the lesser of: (a) one-third material yield strength; or (b) one-fifth the material ultimate strength.						
	Shear stresses will be limited to 0.6 times the tensile stress limits.						
	The following evaluations are documented within this calculation:						
	 Lid Hold Down Evaluation: and Lifting Lug Assessment. 						
	3.1.1 Lid Hold Down Evaluation						
	The lid is connected to the cask by three (3) 1-1/2 6UNC fabricated bolts. The bol attach the lower lid flange to the cask shell. The lid-to-shell contact is metal-to-me An O-ring seal is used to maintain the pressure boundary between the lid and the ci A silicone seal is also incorporated to maintain the pressure boundary between the vacuum drying lid and the MCO shell. The MCO seal is located on the vertical leg the Z cold vacuum drying lid design. Sealing is achieved by pressurizing the silico seal internally.						
	To evaluate the lid hold down, the following steps will be performed:						
	 The net pressure cross section and pressure load will be determined; The lid bolt load will be determined; and The maximum upper flange stress due to rotation under pressure loading will be determined. 						
	3.1.2 Lifting Lug Evaluation						
	The lid has three (3) lifting lugs attached to the top surface of the lid. These lugs ar used to install/remove the lid to/from the cask. The lug bearing stress, net tension a shear pull out will be assessed. The lifting criteria of Reference 7.3 will be used to						
A	NAC: INTERNATIONAL Performed by: PRO Date: I(-25-96 Revision 1 Revision 1						
	Checked by: Date; / Page 6 of 14						

A9.2-164

1.1.1.1

HNF-SD-SNF-FRD-003 Rev. 0

Appendix A9.2.5 Cold Vacuum Drying Lid Calculation 457-2001.2 (Continued)

4.0 ASS	UMPTION	S / DESIGN IN	PUTS					
4.1	Assumption	ons						
	There are	no unverified as	sumptions wit	hin this calculation				
4.2	Design Criteria							
	4.2.1 <u>Bo</u>	lt and Flange Bo	ending Evaluat	ion				
	Ca Ca	lculated bolt ten lculated flange t	sile stress (due orsional stress	e to pressure) (due to pressure)	< S < S	(Ref. 7.7 (Ref. 7.7		
	4.2.2 <u>Li</u>	ft Lug Evaluatio	<u>n</u>					
	Ca Ca	lculated tensile	stress (hased o stress (based o	n load factor of 3) n load factor of 5)	< S _{yield} < S _{ultimate}	(Ref. 7.3 (Ref. 7.3		
	Ca Ca	lculated shear st lculated shear st	ress (based on tress (based on	load factor of 3) load factor of 5)	< 0.6S _{yiel} < 0.6S _{ultir}	d nate		
	Ca Ca	lculated bearing lculated bearing	stress (based stress (based	on load factor of 3 on load factor of 5	< S _{yield} < S _{ultimate}			
4.3	Design Co	onditions						
	Pressure: Temperat	60 psi ure: Ambier	(Reference 7.1 nt, 100 °F	0)				
4.4	Compone	nt Properties						
	Bolts:	(Reference Size: Material: Area: Threading:	7.6.1) 1.22" diam A276 TP3 = $\pi \times D^2$ = 1.17 ir 1-1/2 6UN	neter 04 SS / 4 2 (C-2A	(Reference	7.6.1)		
A NAC	INATIONAL	Performed by:	9R8-	Date:	Calculation N Revision 1	io. 457-2001.		

	Lid flange:	(Reference 7	.6.1)		
	(upper leg)	Size:	3.5" thick		
		D _{i flg} :	18.48 in		
		D _{o fig} : Material:	31.5 in ASTM A240), Type 304	
	Lid flange:	(Reference 7	761)		
	(vertical leg)	Size:	11 - 3.5 - 4 =	3.5 axial length	
	(D _{i fla} :	25.5 in		
		Do fig:	31.5 in		
		Material:	ASTM A240), Type 304	
	Lid flange:	(Reference 7	7.6.1)		
	(lower leg)	Size:	4.0" thick		
		D _{i flg} :	25.5 in		
		D _{o fig} : Material:	39,81 in ASTM 4240) Tune 304	
		WIRICH INT.	ASTIN A240	5, 13pc 504	
	Lift Lug:	(Reference 7	7.6.1)		
		Thickness:	0.375 in		
		D _{lug} :	2.0 in		
		Material:	ASTM A24	0, Type 304	
	Lid Weight:	W = 1535	lbs. (Reference	e 7.6.1)	
	O-ring:	Diameter:	31.8 in (Refi	erence 7.6.1)	
4.5	Material Prop	perties			
	 AST1 	A A240 (Refe	rence 7.7.1, 7.7	.2)	
	(Note	: use SA240, 7	Type 304 SS pr	operties)	
	Fy:	30 ksi			
	Fu:	/5 KSI (100°)			
	• SA27	6 TP304 (Refe	erence 7.5)		
	Fy:	30 ksi			
	Fu:	75 ksi			
	• SA24	0, Type 304 (1	Reference 7.7.4	·)	
	S :	16,700 psi (at	200 degrees)		
		·			
NAC		Performed by:		Date:	Calculation No. 457-200
INTER	NATIONAL		gro	11-25-96	Revision 1
		necked by:	R	Date	LARGE OI 14

```
ANALYSIS DETAIL
5.0
              Lid Hold Down Evaluation
       5.1
               5.1.1 Lid Bolt Pressure Load Evaluation
                      The o-ring diameter is used as the pressure load development area. This area,
                      A, is:
                      A = \Pi / 4 \left( D_{o - not}^{2} \right)
                       A = \Pi / 4 (31.8^2)
                       A = 795 in^{2}
                      The net pressure load, F, with no reduction for the weight of the MCO is;
                      F = pressure x area
                          = 60 x 795
                          = 47,700 lbs.
                      The lid bolt load, Fhair, is;
                      Fbolt
                            = F/no. bolts
                              = F/3
                              = 47,700/3
                              = 15,900 lbs.
                      The bolt tensile stress is:
                      Stress = F_{bolv} / area
= 15,900 / 1.17
                              = 13,590 psi
                      The bolt allowable stress, S is:
                      S = 16,700 psi
                      Safety Margin = 1 - (stress / S)
                                     = 1 - (13,590 / 16,700)
                                     ≈ 0.19
                           Performed by:
                                                                             Calculation No. 457-2001.2
      NAC
INTERNATIONAL
                                                            Date:
                                            980
                                                                11-25-96
                                                                             Revision 1
                                                            Date:
11/25196
                           Checked by
                                                                             Page 9 of 14
                                           PS
```

•

5.1.2	Lid Flange Pressure Stress Evaluation
	Conservatively, consider the pressure load is reacted at the cold vacuum drying lid upper flange. The maximum lid stress will then be developed by the rotatio of the upper flange. The reaction along the inner edge of the upper flange per circumferential inch, F_o , is:
	$F_o = F / (2 \times \Pi \times R_{i-upper flg})$
	= 47,700 / (2 x II x (18.48 / 2))
	= 822 lbs/in
	The uniform torque about the upper flange center of gravity due to F_0 is:
	$T_o = F_o x \left(R_{o-upper flg} - R_{i-upper flg} \right)$
	$= 822 \times [(31.5/2) - (18.48/2)]$
	= 5,351 in-lbs / in
	Per Reference 7.8.1, for a ring under distributed torque:
	$\sigma_{\text{torque}} = T_{\sigma} \times R / (I / c)$
	where R is equal to the mean radius of the ring.
	The effective section I/c is:
	$I/c = (R_{0-upperfig} - R_{1-upperfig}) x t^{2}/6$ = ((31.5/2) - (18.48/2)) x (3.5) ² /6 = 13.29 in ³
	The torsional stress, σ_{torque} , is therefore:
	$\sigma_{\text{tanque}} = T_o \ge R / (1 / c)$ = 5.351 \times ((31.5 + 18.48) / 4) / 13.29 = 5.031 \text{ psi}
	Safety Margin = $1 - (stress / S)$ = $1 - (5.031 / 16,700)$ = 0.70
NAC INTERNATIONAL	Performed by:
	Checked by: RS Date: Page 10 of 14

```
5.2 Lifting Lug Evaluation
            5.2.1 Bearing Check
                    The pin bearing area is:
                    Bearing area = t x D hole
                                  = 0.375 x 1.0
                                   = 0.375 \text{ in}^2
                    To determine the most conservative load factor, the material yield and ultimate
                    strengths will be normalized.
                    For SA240 Type 304 SS
                    F_y/3 = 30,000/3 = 10,000 \text{ psi}
                    F_u / 5 = 75,000 / 5 = 15,000 \text{ psi}
                    Therefore, comparing a factor (LF) of 3 against yield is more restrictive.
                    The bearing stress is:
                             = LF x (W / 3 lugs) / area
                    Stress
                               = 3 \times (1,535 / 3) / 0.375
                               = 4,093 psi
                    The safety margin is:
                    Safety Margin = 1 \cdot (\text{stress} / S_y)
                                  = 1 \cdot (4,093 / 30,000)
                                  = 0.86
            5.2.2 Net Tension
                    Area = t (D_{lug} - D_{hole})
= 0.375 (2.0 -1.0 )
                           = 0.375 \text{ in}^2
NAC
INTERNATIONAL
                        Performed by
                                                                           Calculation No. 457-2001.2
                                        geo
                                                          Date
                                                             11-25-96
                                                                           Revision 1
                         Checked by:
                                                          Date:
                                                                           Page 11 of 14
                                       RS
                                                            11/25/96
```

- ----

```
The tensile stress is:
                    Stress = LF x (W / 3 lugs) / (Area)
                           = 3 \times (1,535/3)/(0.375)
                            = 4,093 psi
                    The safety margin is:
                    Safety Margin
                                       = 1 - (\text{stress} / S_v)
                                        = 1 - (4,093 / 30,000)
                                        = 0.86
            5.2.3 Shear Pull Out At 45 Degrees
                    Shear Area = t (R_{iug} - R_{bole})
= 0.375 (1.0 -0.5)
                                    = 0.1875 \text{ in}^2
                    The shear stress is:
                    Stress = LF x (W / 3 lugs) / (Shear Area)
                            = 3 \times (1.535 / 3 \text{ lugs}) / (0.1875)
                            = 8,187 psi
                    Safety Margin
                                      = 1 - (stress / (0.6 S_y))
                                       = 1 - (8,187 / 18,000)
                                        = 0.55
            5.2.4 Lug To Lid Weld
                    The lug to lid is welded all-around with a 0.25" fillet. Consider the entire lug
                    load is carried in shear along the vertical weld section:
                    Ashcar
                               = 2 \times 0.707 \times 0.25^{"} \times (11^{"} - 4^{"})
                                = 2.475 \text{ in}^2
                                = LF x (W / no. of lugs) / A<sub>shcar</sub>
                    \sigma_{weld}
                                = 3 x (1535 / 3) / 2.475
                                = 620 psi
                    Allowable is large compared to actual stress. Therefore, weld is adequate.
                         Performed by
                                                                              Calculation No. 457-2001.2
                                                            Date:
NAC
INTERNATIONAL
                                          900
                                                               11-25-96
                                                                              Revision 1
                         Checked by:
                                                            Date: 125/96
                                                                              Page 12 of 14
                                       R
```

A9.2-170

			Sun	nmary of S	tress Analy	sis		
	Drawing No.	Item No.	Component	Applied Load	Design Check	Calculate Loading	d Allowable	М.
	457-106	1	lid flange	pressure	torsion	5,031 psi	16.7 ksi	0.7
	457-106	2	bolt	pressure	tension	13,590 ps	si 16.7 ksi	0.1
	457-106	8	lifting lug	3 times the	bearing	4,093 psi	30 ksi	0.8
				weight	tension	4,093 psi	30 ksi	0.8
					shear	8,187 psi	18 ksi	0.5
	457-106	Item 8 to Item 1	weld	3 times the weight	shear	620 psi	large compared to actual stress	ları
	Therefore th	ne cold v	vacuum drying	; lid design	meets the	criteria defir	ned in Section 4.2.	
	Therefore th	ne cold v	vacuum drying	, lid design	meets the a	criteria defir	ned in Section 4.2.	
ß	NAC INTERNATION	ne cold v	vacuum drying	lid design	Date 1	criteria defir r→S - 476	red in Section 4.2. Calculation No. 457 Revision 1	-2001.

A9.2-171

1 .

Appendix A9.2.6 Seal Lid Calculation 457-2004.2

	AC NTERNATION	AL CALCU	LATION PAC	KAGE	Work Request/Calc No. 457-2004.2
PROJEC	T NÁME:		CLIENT:		Carles Mark
K Basin (Operations Equ	lipment	Hanford (Trans	nuclear, Inc.) A MALLEROL
Immersio	n Pail Lid	L.			The Market
This calc load cond Addition	ulation structu litions. Maxim ally, the lid lift	urally evaluates the num internal pressu ting lugs and welds	immersion pail seal re is developed by th are designed and evel 1000 Cool and Trees	lid for inte the positive p aluated to ca	mal pressure and lid li ressure anti-c water sys my lid weight loading.
area at th	e Hanford site				
	1.00	D	D	<u>(11.</u> •	
Revision	Affected Pages	Revision Description	Preparer Name, Initials, Date	Check Name, In Date	er Project Mana itials, Approval/D:
Revision 0	Affected Pages	Revision Description Original Issue	Preparer Name, Initials, Date Jeffrey R. Dargis 11-10-96	Check Name, In Date Ravi Si 11-14-	er Project Mana itials, Approval/Da ngh Thomas A. Da 96 11-15-96
Revision • 0 I	Affected Pages 1 thru 13 1, 3 thru 14	Revision Description Original Issue Revised method of calculating margin of safety.	Preparer Name, Initials, Date Jeffrey R. Dargis 11-10-96 Jeffrey R. Dargis JRB 11-25-94	Check Name, In Date Ravi Si 11-14- Ravi Si ES II/z S/S	er Project Mana Approval/Dr mgh Thomas A. Da 11-15-96 mgh <i>Maximul Market</i> <i>Maximul Market</i>
Revision - 0 I	Affected Pages 1 thru 13 1, 3 thru 14	Revision Description Original Issue Revised method of calculating margin of safety.	Preparer Name, Initials, Date Jeffrey R. Dargis 11-10-96 Jeffrey R. Dargis <i>JRS</i> 11-25-96	Check Name, In Date Ravi Si 11-14- Ravi Si <i>PS</i> i1/z 5/5	er Project Mana Approval/De photometric photometric photometric Project Mana Approval/De 11-15-96 mgh Mana Approval/De 11-15-96 Project Mana Approval/De 11-15-96 Project Mana Appr
Revision	Affected Pages 1 thru 13 1, 3 thru 14	Revision Description Original Issue Revised method of calculating margin of safety.	Preparer Name, Initials, Date Jeffrey R. Dargis 11-10-96 Jeffrey R. Dargis JRO 11-25-96	Check Name, In Date Ravi Si 11-14- Ravi Si U/z S/5	er itials, Project Mana, Approval/De photo: Photo:
Revision	Affected Pages 1 thru 13 1, 3 thru 14	Revision Description Original Issue Revised method of calculating margin of safety.	Preparer Name, Initials, Date Jeffrey R. Dargis 11-10-96 Jeffrey R. Dargis <i>JRS</i> <i>11-25-96</i>	Check Name, In Date Ravi Si 11-14 Ravi Si U/z S/2	er itials, Project Mana, Approval/De ngh Thomas A. Da 11-15-96 ngh <i>Mana, Da</i> 11-15-96 <i>Mana, Da 11-15-96 <i>Mana, Da 11-15-96 <i>Mana, Da 11-15-96 <i>Mana, Da 11-15-96 <i>Mana, Da 11-15-96 <i>Mana, Da</i> 11-15-96 <i>Man</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>

A9.2-172

 $1 \leq 2$

	INDEPE	NDENT DESIGN VERIFICATI	ON CHECK	SHEET	r
We	vrk Request/Calculatio	n No: <u>457-2004.2</u> Revisio	n <u>0</u>		
Sc	ope Of Analysis File:	This calculation structurally en internal pressure and lid lifting	valuates the i	mmerş ons.	ion pail lid for
Re	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	25		
Co	ofirm That The Work R	lequest / Calculation Package I	Reviewed Inc	ludes:	
1.	Statement of Purp	ose			25
2.	Defined Method of	Analysis		~	25
3.	Listing of Assumpt	ions			25
4.	Detailed Analysis F	Record			25
5.	Statement of Conc	lusions / Recommendations (if	applicable)	_	25
Step		Activities	Verificati Yes	ion No N/A	Comments
1	For the scope of the del	ined analysis:		1	
	A. Are the required	data input complete?			
	2 Geometry (framing reference)			1
	3. Loading sou	rce term	1		
	If a support	ing analysis is required to			
	define the lo	ad state, has it been			
	defined?				
	B. Ale boundary co	inditions acceptable?		}	
2	is the method of analysi	s adequate for the defined scope?		+-	†
3	Is the worst case loading	configuration documented?		+	<u> </u>
4	Are the acceptance crite	na defined and complete?	1		
5	Has all concurrent loading	ng been considered?			
6	Are analyses consistent approach?	with previous work for method and		V	NEW CALC PACKAGE
7	Are the records for input	and output complete?		+	
8	Is traceability to verified	software complete?		V	NO SOFTWAN
9	is the statement of concil and acceptable for the p. purpose?	usions and recommendations comple roject and objectives of the defined	ite V		

	INDEPI	ENDENT DESIGN VERIFIC	TION CHEC	K SH	EET	
Wo	k Request/Calculation	n No: <u>457-2004.2</u> Revi	sion <u>1</u>			
Sco	pe Of Analysis File:	This calculation structurally internal pressure and lid life	This calculation structurally evaluates the immersion pail lid internal pressure and lid lifting load conditions.			
Review Methodology:		Check Of Calculations Alternate Analyses Other (Explain)		<u></u>		
Cor	firm That The Work I	Request / Calculation Packa	ge Reviewed	Incluc	les:	
1. 2. 3. 4. 5.	Statement of Purp Defined Method o Listing of Assump Detailed Analysis Statement of Con	oose f Analysis tions Record clusions / Recommendations	if applicable	•)		AS PS PS PS PS PS
Step		Activities	Veri Yes	fication No	N/A	Comments
. 1	For the scope of the di A. Are the require 1. Material p 2. Geometry 3. Loading sc <i>if a suppo</i> <i>define the</i> <i>define the</i> <i>defined</i> ? B. Are boundary	afined analysis: d data input complete? operties (drawing reference) yurce term urding analysis is required to load state, has it been conditions acceptable?	272 2			
2	Is the method of analy	sis adequate for the defined scope	? V.		[
3	Is the worst case loadi	ng/configuration documented?				
4	Are the acceptance cri	teria defined and complete?				
5	Has all concurrent load	ding been considered?	7			
6	Are analyses consister approach?	nt with previous work for method a	nd 🗸			
7	Are the records for inp	ut and output complete?	-7			
8	Is traceability to verifie	d software complete?		1	~	NO SOFTWA
9	Is the statement of cor and acceptable for the purpose?	clusions and recommendations of project and objectives of the define Rating - Sand	ed V			

	TABLE OF C	ONTENTS	
Section	Description		Page
	Calculation Package Cover Sheet		i
	Independent Design Verification Check	Sheet	
	Table of Contents		
1.0	Synopsis of Results		5
2.0	Introduction/Purpose		5
3.0	Method of Analysis		5
4.0	Assumptions/Design Input		6
5.0	Analysis Detail		
6.0	Summary of Results / Conclusions		
7.0	References		

A9.2-175

			Sum	mary of St	ress Analysi	S		
	Drawing No.	Item No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M.S
	457-103	2	lid flange	pressure	bending	8,936 psi	25.05 ksi	0.64
	457-103	20	bolt	pressure	tension	4.201 psi	16.7 ksi	0.75
	457-103	3	lifting lug	3 times the	bearing	1600 psi	30 ksi	0.95
				weight	tension	1600 psi	30 ksi	0.95
					shear	3200 psi	18 ksi	0.82
	This calcula lifting load	tion stru conditio	oturally evalu	ates the im n internal	mersion pai pressure lo	l seal lid for i ad is develop	nternal pressu red as by th	ure and e posi
1 ()	This calcula lifting load pressure ant evaluated to The immersi K-basin are: Reference 7.	tion stru condition ti-c wate carry lic ion pail a at the 1.	icturally evalu ons. Maximur ar system. Ad I weight loadir lid is part of t Hanford site	ates the im n internal ditionally t ng. he TN-WH 2. The imr	mersion pai pressure lo the lid liftir C Cask and nersion pai	l seal lid for i ad is develop ng lugs and v Transportatic l system was	nternal press beed as by th velds are des on System to initially ev	ure and e posi signed be use aluated
3.0	This calcula lifting load pressure ant evaluated to The immers K-basin are, Reference 7. METHOD O Hand calcula immersion p	tion stre condition ti-c wate carry lic ion pail a at the 1. OF ANA tions us ail lid de	acturally evalu ons. Maximur ar system. Auf ar system. Auf useight loadir lid is part of t : Hanford site ALYSIS ing classic tex :sign.	ates the im n internal ditionally t 1g. he TN-WH 2. The imr tbook solut	mersion pai pressure lo the lid liftin IC Cask and nersion pai ions are use	I seal lid for i ad is develop 1g lugs and v I Transportatic 1 system was d to structural	nternal pressa sed as by th velds are des on System to initially ev	ure and e posi- signed be use aluated
3.0	This calcula lifting load pressure and evaluated to The immers K-basin are Reference 7. METHOD (Hand calcula immersion p The lid desig the lid bolting, the p 7.7) bolting a 1.5 S.	tion stre conditi, ti-c wate carry lic ion pail a at the .1. OF ANA tions us ail lid de yn will be g and ad yressure allowable	acturally evalu ons. Maximur er system. Ad d weight loadir lid is part of t : Hanford site ALYSIS ing classic tex esign. e assessed for jacent flange : induced stress e, S. For flang	ates the im n internal ditionally 1 ng. he TN-WH e. The imr tbook solut an internal are influenc will be con e bending, 1	mersion pai pressure lo the lid liftin IC Cask and mersion pai ions are use pressure lo ed by a pres npared to th the pressure	l seal lid for i ad is develop ng lugs and v I Transportatic il system was d to structurall ading of 5 psi ssure loading o e ASME Code induced stress	nternal pressi eed as by th velds are des on System to i initially ev ly evaluate th (Reference 7 of this level, F Class 2/3 (R s will be limit	e e .4). Or or the eferen ed to
3.0	This calcula lifting load pressure and evaluated to The immers K-basin are Reference 7. METHOD Hand calcula immersion p The lid desig the lid boltin bolting, the p 7.7) bolting a 1.5 S.	tion stre condition ti-c water carry lic ion pail a at the 1. OF ANA tions us ail lid de in will be g and ad pressure allowable	inclurally evalu ons. Maximur system. Ad d weight loadir lid is part of t Hanford site LLYSIS ing classic tex sign. e assessed for ljacent flange a induced stress e, S. For flang	ates the im n internal ditionally t g. he TN-WH e. The imr tbook solut are influene will be con e bending, t	mersion pai pressure lo the lid liftin IC Cask and mersion pai ions are use pressure lo ed by a pres npared to th the pressure $Date:=\frac{1}{\sqrt{1-2}}$	l seal lid for i ad is develop ng lugs and v I Transportatic il system was d to structurall ading of 5 psi ssure loading o e ASME Code induced stress 5 -94 Cale	nternal pressived as by the velds are des on System to initially ev ly evaluate th (Reference 7 f this level, F : Class 2/3 (R i will be limit	e 4). Or vor the efferentied to

A9.2-176

1 . . .

	The lifting lug a	acceptance criteria is to limit	tension and bearing st	resses to the lesser of:
	(a) one-third ma	aterial yield strength; or		
	(b) one-fifth the	e material ultimate strength.		
	Shear stresses v	vill be limited to 0.6 times the	tensile stress limits	
	The following e	valuations are documented w	ithin this calculation:	
	 Lid Hold De Lifting Lug 	own Evaluation; and Assessment.		
	3.1 Lid Hol	d Down Evaluation		
	The lid i bolts att to-metal diameter canister	is connected to the upper flan ach the lid flange to the pail s . Two (2) silicon seals are als r seals the lid-to-pail shell con joint. The sealing is achieved	ge of the pail shell by hell flange. The lid-to o used in the lid desig anection. The inner see by pressurizing the se	four (4) ¾-10 bolts. The -pail shell contact is meta n. The seal at the outer lic al seals the lid-to-MCO eals internally.
	To evalu	ate the lid hold down, the fol	lowing steps will be p	erformed:
	TheTheThe	net pressure cross section and lid bolt load will be determin maximum lid flange bending	l pressure load will be ed; and stress due to pressure	determined; will be determined.
	3.2 Lifting I	ug Evaluation		
	The lid bused to it tension a used to o	has three (3) lifting lugs attac install/remove the lid to/from and shear pull out will be asso determine the adequacy of the	ned to the top surface the immersion pail. T essed. The lifting crite lug design.	of the lid. These lugs are he lug bearing stress, net ria of Reference 7.3 will b
4.0	ASSUMPTIO	NS / DESIGN INPUTS		
	4.1 Assump	tions		
	There ar	e no unverified assumptions	within this calculation	
<u> </u>				
1	NAC	renormed by: OP	Date:	Calculation No. 457-2004.2

4.2	Design Crit	eria			
	4.2.1 Bol	t and Flange Be	nding Evaluati	on	
	Cal	culated bolt ten	sile stress (due	to pressure)	< S (Reference 7.7
	Cal	culated flange l	ending stress	(due to pressure)	< 1.5 x S (Reference 7.7)
	4.2.2 Lift	Lug Evaluation	D		
	Cal	culated tensile	stress (based or	load factor of 3)	< S _{yield} (Ref. 7.3)
	Cal	culated tensile :	stress (based of	load factor of 5)	< S _{ultimate} (Ref. 7.3)
	Cal Cal	culated shear st culated shear st	ress (based on ress (based on	load factor of 3) load factor of 5)	< 0.6S _{yield} < 0.6S _{ultimate}
	Cal Cal	culated bearing culated bearing	stress (based o stress (based o	n load factor of 3 n load factor of 5) < S _{yield}) < S _{ultimate}
4.3	Design Cor	nditions			
	Pressure: Temperatur	5 psi re: Ambier	(Reference 7.4 ut, 100 °F)	
4.4	Componen	t Properties			
	Eye Bolts:	(Reference	7.6.3)		
		Size:	³ ⁄ ₄ - 10		
		Material:	Commercia	al SS	(D. C
		Area:	0.334 m		(Reference 7.9.1)
		Inreading:	74-10 U.NC	-2A Com	(Reference 7.0.5)
		supplier:	Part No. 88	091T84	
	Lid flange:	Size:	3/8 plate		
		$D_{i \cap g}$:	41.78 - (2	x (0.07) = 41.92	in (Reference 7.6.3)
		D _{o fig} :	45.75 in		
		Material:	ASTM A2	40, Type 304	
	Lift Lug:	(Reference	7.6.3)		
		I nickness:	0.375 In		
		Diag:	2.0 in		
		Material:	ASTM A2	40, Type 304	
	ATIONAL	Performed by:	gro	Date: 11-25-90	Calculation No. 457-2004.2 Revision 1
		Checked by:		Date;	Page 7 of 14

A9.2-178

· ·

	Lid Weig	ht: 600 lbs. (Reference 7.6.3)		
	4.5 <u>Material</u>	Properties		
	 A' (N (P) (P)	STM A240 otc: use SA240, Type 304 SS pro eference 7.7.1, 7.7.2) : 30 ksi : 75 ksi (100°) A240, Type 304 eference 7.7.4) 16,700 psi (at 200 degrees) 4 SS, commercial grade ote: SA240, Type 304 properties	perties) used.)	
5.0	ANALYSIS DE	TAIL		
	5.1 Lid Hold	Down Evaluation		
	5.1.1 <u>Li</u>	d Bolt Pressure Load Evaluation		
	т	e lid pressure surface area, A, is:		
	А А Л	$= \Pi / 4 \left(D_{o}^{2} - D_{i}^{2} \right)$ = $\Pi / 4 (45.75^{2} - 25.77^{2})$ = $I_{i}122 \text{ in}^{2}$ the net pressure load, F, is;		
	F	= pressure x area		
		= 5 x 1122		
		= 5,610 lbs.		
	TI	e lid bolt load, F _{bolt} , is;		
A	NAC INTERNATIONAL	Performed by:	Date: 11-25-96	Calculation No. 457-2004.2 Revision I
		Checked by: FS	Date: 11/25/96	Page 8 of 14

A'9.2-179

Т

	$F_{holt} \approx F / no.$ = $F / 4$ = $5610 /$	bolts 4		
	= 1,403	lbs.		
	Stress = F_{halt}/i	arca		
	= 1403 / = 4,201	0.334 psi		
	The bolt allowable	e stress, S is:		
	S = 16,700 psi			
	The safety margin	is:		
	Safety Margin = = =	1 - (stress / S 1 - (4,201 / 1) 0.75) 6,700)	
5.1.2	Lid Flange Pressu	re Stress Eval	uation	
	The lid flange is a tab due to the pres	tab type exter ssure load is de	asion from the center etermined below.	r ring. The bending of th
	Consider the tab a	s a cantilever	beam of length L wi	nere;
	$L = 0.5 (D_{o fig})$	- D _{i fig})		
	= 0.5 (45.75	- 41.92)		
	= 1.915 in			
	≅ 2.0 in.			
	The bending mon	ent , M, is (co	nsidering the bolt lo	cation at ½ L);
	$M = F_{bolt} \times L/2$			
	= 1403 x 2/2	!		
	= 1403 in-lb	s		
INTERNATIONAL	Performed by:	9.00	Date: //-25 - 96	Calculation No. 457-2004 Revision 1
	Checked by:	RS	Date: 11/25/96	Page 9 of 14

A9.2-180

```
Only four bolts are used to connect the lid. The bending moment, M, is reacted
                   by the effective flange arc length which is estimated to be 1/2 the geometric arc
                  associated with each bolt.
                  Therefore the bolt arc angle is;
                                 = 38^{\circ} - [(1.25 / (45.75 / 2)) \times (180^{\circ} / \Pi)]
                  arc∠
                                  = 34.87 °
                  Therefore the effective arc angle is:
                  arc ∠<sub>effective</sub> = 34.87 / 2
                                 = 17.44 °
                  The arc length is:
                  arc length = r_{bolt} x \operatorname{arc} \angle_{effectiv}
= (44/2) x (17.44 x \Pi / 180^\circ)
                                  = 6.7 in
                  The effective section I/c is:
                           \approx bt<sup>3</sup>/12
                  I
                           = 6.7(0.375)^3/12
                           = 0.0294 in
                         = bt^{2}/6
= 6.7 (0.375)<sup>2</sup>/6
= 0.157 in<sup>3</sup>
                   l/c
                  The bending stress, \sigma_{\text{b}} , is therefore:
                             = M x c / I
                  \sigma_{\rm b}
                             = 1403 \text{ x} (1 / 0.157)
                             = 8,936 psi
                   The safety margin is:
                   Safety Margin = 1 - (stress / (1.5 x S))
                                        = 1 - (8.936 / (1.5 \times 16,700))
                                        = 0.64
NAC
INTERNATIONAL
                        Performed by
                                                              Date:
                                                                                  Calculation No. 457-2004.2
                                        gro
                                                                11-25 -94
                                                                                  Revision 1
                                                              Date:
11/25/96
                                                                                  Page 10 of 14
                        Checked by:
                                      -ES
```

```
Appendix A9.2.6 Seal Lid Calculation 457-2004.2 (Continued)
```

c	onservatively computing the de	eflection of the flam	e:
-	$= E_{\rm orb} \times (L/2)^3 / (3 E I)$		
	$= 1403 \times (2/2)^3 / (3 \times 28)^3$	x 10 ⁶ x 0 0294)	
	= 0.00056 in		
т	be deflection of the flange is no	gligible.	
5.2 Lifting L	ug Evaluation	P. P. ott	
5.2.1 F	earing Check		
= T	he pin bearing area is:		
E	Bearing area = $t \ge D_{hole}$ = 0.375 x 1.0 = 0.375 in ²		
] s	o determine the most conserva- trengths will be normalized.	ive load factor, the	material yield and ultim
F	or SA240 Type 304 SS		
F	y/3 = 30,000/3 = 10,000) psi	
F	$r_u / 5 = 75,000 / 5 = 15,000$) psi	
г	herefore, comparing a factor (I	F) of 3 against yiel	d is more restrictive.
Т	he bearing stress is:		
S	tress = LF x (W / 3 lugs) = $3 x (600 / 3) / 0.3$ = 1,600 psi	/ area 75	
1	he safety margin is:		
S	afety Margin = 1 - (stress / S, = 1 - (1,600 / 36 = 0.95	.)),000)	
	Performed by:	Date: //-25-96	Calculation No. 457-2004 Revision 1
	Checked by: RS	Date: 11/2.5/9/6	Page 11 of 14

T

```
5.2.2 Net Tension
                     Area = t (D_{lug} - D_{hole})
= 0.375 (2.0 -1.0 )
                             = 0.375 \text{ in}^2
                     The stress is:
                     Stress = LF x (W / 3 lugs) / (Area)
                            = 3 \times (600 / 3) / (0.375)
                             = 1,600 psi
                     The safety margin is:
                     Safety Margin
                                        = 1 - (\text{stress} / S_y)
                                         = 1 - (1,600 / 30,000)
                                         = 0.95
             5.2.3 Shear Pull Out At 45 Degrees
                     Shear Area = t (R_{lug} - R_{hole})
= 0.375 (1.0 - 0.5 )
                                    = 0.1875 \text{ in}^2
                     The shear stress is:
                     Stress = LF x (W / 3 lugs) / (Shear Area)
                             = 3 x (600 / 3lugs) / (0.1875)
                             = 3.200 psi
                    The safety margin is:
                    Safety Margin = 1 - (stress / (0.6 x S<sub>v</sub>)
                                        = 1 - (3,200 / (0.6 x 30,000))
                                        = 0.82
            5.2.4 Lug to Lid Weld
                    The lug to lid weld is a 0.25" all-around weld and is negligibly loaded.
                    Allowable is very large compared to actual stress. Therefore, weld is adequate.
                         Performed by:
NAC
INTERNATIONAL
                                                            Date:
                                                                             Calculation No. 457-2004.2
                                        gro
                                                            11-25-96
                                                                             Revision 1
                         Checked by:
                                                           Date: 11/25/96
                                                                             Page 12 of 14
                                                                                                           ł
                                        PS
```

		Sum	mary of Su	ress Analysi	is		
Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculate Loading	ed Allowable	M.5
457-103	2	lid flange	pressure	bending	8,936 psi	25.05 ksi	0.6
457-103	20	bolt	pressure	tension	4.201 ps	16.7 ksi	0.7
457-103	3	lifting lug	3 times	bearing	1600 psi	30 ksi	0.9
			weight	tension	1600 psi	30 ksi	0.9
				shear	3200 psi	18 ksi	0.8
NAC INTERNATION	AL F	Performed by:	дев	Date: //- Date:	25-96	Calculation No. 45 Revision 1 Page 13 of 14	7-2004

A9.2-184

7.0	керр 7.1	Preliminary Design Analysis Report For The TN-WHC Cask and Transporation Syste Project 3035
		Transnuclear, Inc.
	7.2	Not Used.
	7.3	ANSI N14.6 American National Standard for Radioactive Materials "special lifting devices for shipping containers weighing 10,000 lbs (4,500 kg) or more"
	7.4	Memo to Project File From T. A. Danner, dated July 31, 1996.
	7.5	Hanford ECN 191402.
	7.6	K Basin Immersion Pail Assembly TN WHC Transport Cask drawings 7.6.1 Project 457 drawing 106 sheets 1, 2/2 7.6.2 Project 457 drawing 102 sheets 1, 2/2. 7.6.3 Project 457 drawing 103 sheets 1, 2/2. 7.6.4 Project 457 drawing 104 sheet 1/1
	7.7	ASME Boiler & Pressure Vessel Code, 1995 edition. 7.7.1 Section II-D, page 530, Table Y-1 7.7.2 Section II-D, page 441, Table U 7.7.3 Section II-D, page 392 Table 3 7.7.4 Section II-D, page 432, 496
	7.8	Shigley's Mechanical Engineering Design, McGraw Hill, 1963, Page 603
	7.9	AISC Manual Of Steel Construction, 9th edition. 7.9.1 Page 4-147.
A	NAC INTERN	ATIONAL Performed by: JRD Date: Calculation No. 457-2004.2 Revision 1
		Checked by: 725 Date: 25/96 Page 14 of 14

A9.2-185

Appendix A9.2.7 Loadout Pit Work Platform 457-2007.2

RIT	AC TERNATIO!	NAL CALCUI	LATION PAC	KAGE 4	Work Request/Calc N 157-2007.2	
PROJECT	NAME:	<u></u>	CLIENT:	l	KOR C	X
K Basin O	perations Equ	lipment	Hanford (Trans	nuclear, Ing.)		Ŷ
CALCULA	ATION TITL	iE: orm			A HICE AND	
Revision	Affected Pages	Revision Description	Preparer Name, Initials, Date	Checke Name, Init Date	a Project Ma ials, Approval/	nager Date
0	1 thru 14	Original Issue	Jeffrey R. Dargis 11-10-96	Ravi Sin 11-14-9	gh Thomas A. 1 6 11-15-9	Danne 96
1	1, 3 thru 15	Revised method of calculating margin of safety. Revised method of calculating weld allowable.	Jeffrey R. Dargis JED 1(-25-96	Ravi Sin PS 11/25/9	8h - Finnai Che 6 "/25/91	èm
•						

A9.2-186

1 . . .

Work Request/Calculation No: 457-2007.2 Revision Scope Of Analysis File: This calculation evaluates the loadout pit work platform for design loads based on OSHA requirements defined in Title 29 of the CF Review Methodology: Check Of Calculations		INDEPE	NDENT DESIGN VERIFIC	ATION CHEC	K SHEET	r –
Scope Of Analysis File: This calculation evaluates the loadout pit work platform for design loads based on OSHA requirements defined in Title 29 of the CF Review Methodology: Check Of Calculations Alternate Analyses Other (Explain) Image: Colspan="2">Confirm That The Work Request / Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Colspan="2">PS 2. Defined Method of Analysis Image: Colspan="2">PS 3. Listing of Assumptions Image: Colspan="2">PS 4. Detailed Analysis Record Image: Colspan="2">PS 5. Statement of Conclusions / Recommendations (if applicable) Image: Colspan="2">PS 8 A Are the required data input complete? Image: Net Commendations (if applicable) Image: Commendations (if applicable) 1 For the scope of the defined analysis: Yes Net Comments 1 A Are the required data input complete? Image: Net Colspan="2">Net Commendations (if applicable) 2 Geometry (drawing reference) Image: Net Colspan="2">Statement of conclusions acceptable? 2 Is the method of analysis is required to defined scope? Image: Net Colspan="2">Net Comments 3 Is the method of analysis adequate for the defined scope? Image: Net Colspan="2">Net Colspan="2"<	Wa	ork Request/Calculatio	n No: <u>457-2007.2</u> Rev	ision <u>0</u>		
Review Methodology: Check Of Calculations Alternate Analyses Other (Explain) Image: Check Of Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 2. Defined Method of Analysis Image: Check Of Calculation Package Reviewed Includes: 3. Listing of Assumptions Image: Check Of Calculation Package Reviewed Includes: 4. Defined Method of Analysis Record Image: Check Of Calculation Package Reviewed Includes: 5. Statement of Conclusions / Recommendations (if applicable) Image: Check Of Calculation Package Reviewed Includes: 1 For the scope of the defined analysis: Image: Check Of Calculation Package Reviewed Includes: 1 Material properties V Image: Check Of Calculation Package Reviewed Includes: 2 Geometry (drawing reference) V Image: Check Of Calculation Package Reviewed Includes: 2 Geometry (drawing reference) V Image: Check Of Calculation Package Reviewed Includes: 2 Geometry (drawing reference) V Image: Check Of Calculation Package Reviewed Includes: 2 Is the method of analysis adequate for the defined scope?	Sc	ope Of Analysis File:	This calculation evaluates loads based on OSHA re	the loadout p guirements de	it work pla fined in Ti	tform for design the 29 of the CF.
Confirm That The Work Request / Calculation Package Reviewed Includes: 1. Statement of Purpose 2. Defined Method of Analysis PS 3. Listing of Assumptions PS 4. Detailed Analysis Record PS 5. Statement of Conclusions / Recommendations (if applicable) PS Step Activities Verification 1 For the scope of the data input complete? No 1 Activities Verification 2 Geometry (drawng reference) X Identify and the load state, has it been defined properties and defined? 3 Lasting source term Y Identify and the load state, has it been defined? V 3 Is the method of analysis adequate for the defined scope? V Identify and the load state, has it been defined? 2 Is the method of analysis adequate for the defined scope? V Identify and the load state, has it been defined? 3 Is the worst case loading/configuration documented? V Identify and the load state, has it been defined and complete? 4 Are the acceptance criteria defined and complete? V Identify and the load state, has it been defined and complete?	Re	view Methodology:	Check Of Calculations Alternate Analyses Other (Explain)			
1. Statement of Purpose PS 2. Defined Method of Analysis PS 3. Listing of Assumptions PS 4. Deterialed Analysis Record PS 5. Statement of Conclusions / Recommendations (if applicable) PS 3. Extended Statement of Conclusions / Recommendations (if applicable) PS 3. Statement of Conclusions / Recommendations (if applicable) PS 3. Statement of Conclusions / Recommendations (if applicable) PS 3. Material properties V Verification 1. Material properties V Verification 2. Geometry (drawing reference) V V 3. Loading source term V V defined? V V V 3. Is the method of analysis adequate for the defined scope? V V 4. Are the acceptance criteria defined and complete? V V 5. Has all concurrent loading been considered? V V 6. Are statement for input and output complete? V V 7. Are	Co	nfirm That The Work F	equest / Calculation Packa	age Reviewed	Includes:	
Step Activities Verification No. No. Comments 1 For the scope of the defined data input complete? .	1. 2. 3. 4. 5.	Statement of Purp Defined Method of Listing of Assumpt Detailed Analysis f Statement of Conc	ose Analysis ions Record lusions / Recommendation	s (if applicable		25 25 25 25
1 For the scope of the defined analysis: A Are the required data input complete? 1 Material properties 2 Geometry (drawing reference) 3 Loading source term if a supporting analysis is required to define the load state, has it been defined? V 2 Is the method of analysis acceptable? 3 Is the method of analysis adequate for the defined scope? 4 Are boundary conditions acceptable? 5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 Is traceability to venified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined	Step		Activities	Verii Yes	ication No N/A	Comments
2 is the method of analysis adequate for the defined scope? V 3 is the worst case loading/configuration documented? V 4 Are the acceptance criteria defined and complete? V 5 Has all concurrent loading been considered? V 6 Are analyses consistent with previous work for method and approach? V 7 Are the records for input and output complete? V 8 Is traceability to ventified software complete? V 9 Is the statement of conclusions and recommendations complete and objectives of the defined visit. V		A. Are the required 1. Material pro- 2. Geometry (3. Loading so if a suppor- define the k defined? B. Are boundary of	data input complete? perties trawing reference) ing analysis is required to ed state, has it been inditions acceptable?	222		
3 Is the worst case loading/configuration documented? ✓ 4 Are the acceptance criteria defined and complete? ✓ 5 Has all concurrent loading been considered? ✓ 6 Are analyses consistent with previous work for method and approach? ✓ 7 Are the records for input and output complete? ✓ 8 Is traceability to venified software complete? ✓ 9 Is the statement of conclusions and recommendations complete of the project and objectives of the defined or purpose? ✓	2	is the method of analysi	s adequate for the defined scope	8? V		-
4 Are the acceptance criteria defined and complete? ✓ 5 Has all concurrent loading been considered? ✓ 6 Are analyses consistent with previous work for method and approach? ✓ 7 Are the records for input and output complete? ✓ 8 Is traceability to venfied software complete? ✓ 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined ✓	3	Is the worst case loadin	g/configuration documented?	1		
5 Has all concurrent loading been considered? V 6 Are analyses consistent with previous work for method and approach? V 7 Are the records for input and output complete? V 8 Is traceability to ventiled software complete? V 9 Is the statement of conclusions and recommendations complete of the project and objectives of the defined output complete V	4	Are the acceptance crite	ria defined and complete?	V		
6 Are analyses consistent with previous work for method and approach? V NEW_CALC PACKAGE 7 Are the records for input and output complete? V 8 Is traceability to venfied software complete? V 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? V	5	Has all concurrent loads	ng been considered?	V		
7 Are the records for input and output complete?	6	Are analyses consistent approach?	with previous work for method a	nd	V	NEW CALC PACKAGE
Is traceability to ventified software complete? Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose?	7	Are the records for input	and output complete?	V		
9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose?	8	Is traceability to verified	software complete?			NO SOFTHA
	9	Is the statement of conc and acceptable for the p purpose?	usions and recommendations co roject and objectives of the defin	ed /		

Work Request/Calculation No: 457-2007.2 Revision 1_ Scope Of Analysis File: This calculation evaluates the loadout pit work platform for design loads based on QSHA requirements defined in Title 29 of the CER Review Methodology: Check Of Calculations Atternate Analyses		INDEPE	ENDENT DESIGN VERIFICATI	ION CHEC	K SH	EET	
Scope Of Analysis File: This calculation evaluates the loadout pit work platform for design loads based on OSHA requirements defined in Title 29 of the CFR Review Methodology: Check Of Calculations Alternate Analyses Other (Explain) Image: Check Of Calculation Package Reviewed Includes: 1 Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 1. Statement of Purpose Image: Check Of Calculation Package Reviewed Includes: 2. Defined Method of Analysis Image: Check Of Calculation Package Reviewed Includes: 3. Datated Analysis Record Image: Check Of Canculations (if applicable) Statement of Conclusions / Recommendations (if applicable) Image: Check Of Canculation Package Reviewed Includes: 1 For the scope of the defined analysis: Image: Check Of Canculation Package Reviewed Includes: 2. Geometry (drawing reference) Image: No NA 3. Loading source term of the bad state, has it been defined? Image: No Image: NA 2. Is the worst case loading/configuration documented? Image: No Image: NA Image: NA	Work	Request/Calculatio	n No: <u>457-2007.2</u> Revisio	n <u>1</u>			
Review Methodology: Check Of Calculations ZS Alternate Analyses	Scop	e Of Analysis File:	This calculation evaluates the loads based on OSHA requin	e loadout pi ements def	i <u>t work</u> ined i	<u>platf</u> n T <u>itl</u> e	orm for design 29 of the CFR
Confirm That The Work Request / Calculation Package Reviewed Includes: 1. Statement of Purpose 2. Defined Method of Analysis 3. Listing of Assumptions 4. Detailed Analysis Record 5. Statement of Conclusions / Recommendations (if applicable) Step Activities 7 Are the required data input complete? 1. A Are the required data input complete? 2. Geometry (drawing reference) 3. Loading source term 1 A are boundary conditions acceptable? 2. Geometry (drawing reference) 3. Loading source term 1 If a supporting analysis is required to define the load state, has it been defined? 2. Is the method of analysis adequate for the defined scope? 3. Is the worst case loading/configuration documented? 4 Are the acceptance criteria defined and complete? 5 Has all concurrent loading been considered? 7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and	Revi	ew Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	¥	25		
1. Statement of Purpose PS 2. Defined Method of Analysis PC 3. Listing of Assumptions PS 4. Detailed Analysis Record PC 5. Statement of Conclusions / Recommendations (if applicable) PC 8tep Activities PC 1 For the scope of the defined analysis: A return required data input complete? Verification 1 Material properties Verification Verification 2 Geometry (drawing reference) Verification Verification 3 Loading source term Verification Verification 8 Are the required tot add state, has it been defined analysis is required to define the load state, has it been defined? Verification 2 Is the method of analysis adequate for the defined scope? Verification 3 Is the worst case loading/configuration documented? Verification 4 Are the acceptance criteria defined and complete? Verification 5 Has all concurrent loading been considered? Verification 6 Are the records for input and output complete? Verification 7 Are the records for input and output complete? Verificatin	Conf	irm That The Work F	Request / Calculation Package	Reviewed	Includ	les:	
Step Activities Verification Yes NA Comments 1 For the scope of the defined analysis: A first the required data input complete? NA Comments 1 Material input complete? . Material input complete? . 2 Geometry (drawing reference) . . 3 Loading source term If a supporting analysis is required to define the load state, has it been defined? . 2 is the method of analysis adequate for the defined scope? . 3 is the worst case loading/configuration documented? . 4 Are the acceptance criteria defined and complete? . 5 Has all concurrent loading been considered? . 6 Are the records for input and output complete? . 7 Are the records for input and output complete? . 8 is traceability to verified software complete? . 9 is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? .	1. 2. 3. 4. 5.	Statement of Purp Defined Method o Listing of Assump Detailed Analysis Statement of Con	oose f Analysis tions Record clusions / Recommendations (i	f applicable	a)		27 27 27 27 27
1 For the scope of the defined analysis: A. Are the required data input complete? 1. Material properties 2. Geometry (drawing reference) 3. Loading source term If a supporting analysis is required to define the load state, has it been defined? P. Are boundary conditions acceptable? 2 Is the method of analysis adequate for the defined scope? 3 Is the worst case loading/configuration documented? 4 Are the acceptance criteria defined and complete? 5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose?	Step		Activities	Verit Yes	lication No	N/A	Comments
2 is the method of analysis adequate for the defined scope? 3 is the worst case loading/configuration documented? 4 Are the acceptance criteria defined and complete? 5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 is traceability to verified software complete? 9 is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose?	1	For the scope of the or A. Are the required 1. Material pr 2. Geometry 3. Loading so <i>If a suppor</i> <i>define the</i> <i>defined?</i> B. Are boundary of	ethed analysis: data input complete? operties (drawing reference) surce term uning analysis is required to load state, has it been conditions acceptable?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
3 Is the worst case loading/configuration documented? 4 Are the acceptance criteria defined and complete? 5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and objectives of the defined purpose? 9 Dist the statement of conclusions and recommendations complete and objectives of the defined purpose?	2	is the method of analy	sis adequate for the defined scope?	~			
A re the acceptance criteria defined and complete? V Has all concurrent loading been considered? V Are analyses consistent with previous work for method and approach? Are the records for input and output complete? V B Is traceability to verified software complete? Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? Records and recommendations complete and acceptable for the project and objectives of the defined purpose. Records and recommendations complete Are statement of conclusions and recommendations Are statement of conclusions Are statement of conclusins	3	Is the worst case loadi	ng/configuration documented?				
5 Has all concurrent loading been considered? 6 Are analyses consistent with previous work for method and approach? 7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? Particle Particle Particle Particle Particle Particle	4	Are the acceptance cri	teria defined and complete?	V			
Are analyses consistent with previous work for method and approach? Are the records for input and output complete? Are the records for input and output complete? Is traceability to verified software complete? Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? Detune the project and objectives of the defined	5	Has all concurrent load	ding been considered?	~			
7 Are the records for input and output complete? 8 Is traceability to verified software complete? 9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose? Purpose? Purpose?	6	Are analyses consister approach?	nt with previous work for method and	V			
B Is traceability to verified software complete? Is the statement of conclusions and recommendations complete Jard acceptable for the project and objectives of the defined purpose? Development of the project and objectives of the defined	7	Are the records for inp	ut and output complete?	V	1	1	
9 Is the statement of conclusions and recommendations complete and acceptable for the project and objectives of the defined purpose?	8	Is traceability to verifie	d software complete?		1	~	NO SOFTWAR
	9	Is the statement of cor and acceptable for the purpose?	clusions and recommendations comp project and objectives of the defined				

A9.2-188

	TABLE OF CONT	ENTS	
Section I	Description		Page
0	Calculation Package Cover Sheet		
I	independent Design Verification Check Shee	t	2
1	Table of Contents		4
1.0 5	Synopsis of Results		5
2.0 I	introduction/Purpose		
3.0	Method of Analysis		
4.0	Assumptions/Design Input		6
5.0	Analysis Detail		
6.0 5	Summary of Results / Conclusions		
7.0 F	References		
	Performed by: OPO-4	Date	Calculation No. 457-200
INTERNAT	TIONAL JRD	11-25-96	Revision 1

1.0 SYNOPSIS OF RESULTS

Drawing No.	ltem No.	Component .	Applied Load	Design Check	Calculated Loading	Allowable	M.S.
457-111	4, 5, 3	brace, extension,	2000 lbs	tube bending	22,077 psi	27,600 psi	0.20
		brace		shear	2,000 psi	18,400 psi	0.89
457-111	5 to 9	weld	2000 lbs	combined shear and tension	1,824 lbs / in	2,545 lbs / in	0.28
457-111	9 to 7	weld	2000 lbs	weld shear	0.133 ksi	14.4 ksi	0.99

Summary of Stress Analysis

The loadout pit work platform design meets the criteria defined in Section 4.2.

2.0 INTRODUCTION / PURPOSE

This calculation evaluates the loadout pit work platform against the criteria requirements listed in Section 4.2. The loadout pit work platform is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site. The loadout pit work platform design was initially evaluated in Reference 7.1.

3.0 METHOD OF ANALYSIS

Hand calculations using classic textbook solutions are used to structurally evaluate the loadout pit work platform.

The design will be assessed using the design load developed in Section 5.1. The design loading considers OSHA requirements defined in Title 29 of the Code of Federal Regulations (Reference 7.5). The acceptance criteria limits the induced loads to the requirements of the AISC Code (Reference 7.7).

The work platform configuration consists of a tubing frame arrangement covered by steel decking. The frame is cantilevered off a wall plate and utilizes a brace for additional strength. The wall plate consists of three (3) plates welded in an inverted "U" configuration for suspension of the platform from the pit beam support structure. Drawing details are provided in Reference 7.6.

NAC INTERNATIONAL	Performed by:	ge o -	Date: 11-25-940	Calculation No. 457-2007.2 Revision 1	h
Ĺ	Checked by:	RS	Date: 11/25/96	Page 5 of 15	1

	The • I • I • I • I • I	followi Design I Brace E Extensio Frame / Wall Pla Wall Pla	ng eva Load I valuati on / Br. Wall F ate We ate Sad	uations evelop; on; ice Eva late Int d Evalu ile Eva	are do ment; luation erface uation; luation	n; Weld Eva and n.	l within duatior	n this calculation	<i>о</i> п.	
4.0	ASS	UMPT	IONS	DESI	GN IN	PUTS				
	4.1	Assun	ptions					al de colordad	_	
	12	Desig	are no	invern	ied as	sumptions	within	this calculatio	n.	
	7.4	4.2.1	Load	ng						
			See S	ection :	5.1.					
		4.2.2	Bend	ng Stre	ss Lin	nits				
			Bend	ng stre	ss < 0.	6 x S _y	(Re:	ference 7.7.2)		
		4.2.3	Shear	Stress	Limits	1				
			Shear	stress	< 0.4 >	κ S _y	(Re	ference 7.7)		
		4.2.4	<u>Weld</u>	Limits						
			Weld (Refe	Allowa	able St 17, AI	ress Limi SC Table	ts < 0.4 J2.5, pε	x F _y of base n age 5-70)	netal	(fillet, penetration)
		4.2.5	<u>Platfo</u>	rm Par	ameter	rs (Refere	nce <u>7.6</u>	.1)		
			Втас	:	Tube 2" x 4 ASTN	steel ''' x 0.25'' 4 A500 G	x 45.5(R B) in long		
	NAC			Perform	ned by:	. 085		Date:		Calculation No. 457-2007.
	INTER	INATION	AL	Checke	d by:	yro		11-25-56	-	Revision I Page 6 of 15

	Extension	Tube steel			
	Extension.	2" x 4" x 0.25" x 14.22 ir	long		
		ASTM A500 GR B	U		
	Brace:	Tube steel			
		2" x 4" x 0.25" x 15.33 ir	long		
		ASTM ASOUGK B			
	Wall Plate:	24" x 30" x 0.625 in			
		ASIM A36			
	Toe Kick				
	Plate / End Caps:	0.25 in thick			
	Life Cupb.	ASTM A36			
	Decking				
	Surface:	0.375" x 46.0" x 14.22 in	diamond plate		
4.2.6	Section Proj	perties (Reference 7.7.3)			
	Tube Steel 3	" x 4" x 0 25 in			
	Area	$= 2.59 \text{ in}^2$			
	I _{xx}	$= 4.69 \text{ in}^4$			
	S _x	$= 2.35 \text{ m}^{-1}$ = 1.54 in ⁴			
	S _y	$= 1.54 \text{ in}^3$			
4.2.7	Material Pro	perties			
	ASTM A36	Carbon Steel	•		
	(Reference	7.7.4)			
	Fy: 32	ksi			
	FU. 30	K31			
	ASTM A50	OGR B Carbon Steel			
	Fv: 46	(.1.5) ksj			
	Fu: 58	ksi			
NAC	Perfor	ned by:	Date:	Calculation No. 457-200	7.2
INTERNATION.	AL	gro	11-25-96	Revision 1	
	Check	ed by: - PS	Date: 11/25/96	Page 7 of 15	

A9.2-192

•

ANALYSIS DETAIL 5.0 5.1 Design Load Development The design load, F, is based on the larger of the following two (2) conditions: Condition A: The heavy duty uniform loading of 29CFR1910 (Reference 7.5.2) multiplied by a load factor (LF) of four (4). The uniform distributed load, p, is 75 lbs / ft2. Condition B: Each platform section carrying a load equal to the maximum intended load multiplied by a load factor (LF) of four (4). The maximum intended load, P, shall be considered to be equal to two men, each weighing 250 Ibs. $F_A = px (area) x LF$ $= 75 x \left(\frac{46.0 \times 14.22}{144}\right) x 4$ = 1363 lbs FR = Px4 $= (2 \times 250) \times 4$ = 2000 lbs = Greater of F_A or F_B F = 2000 lbs 5.2 Brace Evaluation The critical brace stress is located at the interface point with the extension. The notch connection will develop the full capacity of the brace (i.e., interface weld is full penetration on top and bottom, fillet on sides). 5.2.1 Bending Stress Evaluation Conservatively considering the brace as a cantilevered structure fixed at the extension interface with the design load applied as a concentrated load at the platform's edge: Performed by: Calculation No. 457-2007.2 Date NAC gro INTERNATIONAL 11-25-96 Revision 1 Page 8 of 15 Checked by Date 25 11/25/96

The margin of safety is: $MS = 1 - \frac{\sigma_b}{F_b}$ $= 1 - \frac{22,077}{27,600}$ = 0.20 5.2.2 Shear Stress Evaluation The shear stress is: $\sigma_v = F/(2 \text{ x area})$ $= 2000 / (2 \times 0.25 \times 2)$ The allowable shear stress is: $F_v = 0.4 \times F_y$ $= 0.4 \times 46,000$ = 18,400 psi The margin of safety is: MS = $1 - \frac{\sigma_v}{F_v}$ $= 1 - \frac{2,000}{18,400}$ = 0.89 NAC INTERNATIONAL Performed by: Date: Calculation No. 457-2007.2 gro Revision 1 11-25-96 Checked by: Date: 11/2.5/96 Page 10 of 15 I PR

A9.2-195

I.

5.2.3 Deflection Evaluation

Per Reference 7.4.1, the platform deflection, Δ, is:

$$\Delta = \frac{1}{3} \frac{F L^3}{(E) (l_{yy})}$$
$$= \frac{1}{3} \frac{(2000) (17.0)^3}{(28.3 \times 10^6) (1.54)}$$

= 0.075 in

The platform deflection is insignificant.

5.3 Extension / Brace Evaluation

Two (2) extensions are cantilevered from the wall, each a distance 14.22° . This is less than the distance of 17° previously evaluated in Section 5.1 for the brace. Therefore, the results from Section 5.1 are conservative for the extension pieces. No further evaluation is required.

5.4 Frame / Wall Plate Interface Weld Evaluation

The kicker is welded to the wall plate via a 0.25 in all-around fillet.

The shear stress in the weld is:

$$\sigma_v = F / L_{weld}$$

where:

 $L_{weld} = 2 + 2 + 4 + 4$

= 12 in (per kicker) Therefore:

 $\sigma_v = 2000 / (2 \times 12)$

= 83 lbs / in

The tensile stress in the weld is:

INTERNATIONAL	Performed by: 980	Date: 11-25-96	Calculation No. 457-2007.2 Revision 1	1
	Checked by: RS	Date; 11/25/96	Page 1) of 15	1

 $\sigma_t = M / (2 \times S_w)$ (for both kickers) where: M = 34,000 in-lbs (from Section 5.2.1) ь _..._. x $S_w = b d + \frac{d^2}{3}$ (Reference 7.10) $= (4 \times 2) + [(2)^2 / 3]$ $= 9.33 \text{ in}^2$ Therefore: $\sigma_t = 34,000 / (2 \times 9.33)$ = 1822 lbs / in The resultant weld stress, σ_r , is: I $\sigma_r = (\sigma_v^2 + \sigma_t^2)^{1/2}$ = $((83)^2 + (1822)^2)^{1/2}$ = 1,824 lbs / in The allowable weld stress per Section 4.2.4 is: $F_w = 0.4 \times F_y \times I_{throat}$ $= 0.4 \times 36.000 \times (0.707 \times 0.25)$ = 2,545 lbs / in The margin of safety is: NAC INTERNATIONAL Performed by: Calculation No. 457-2007.2 Date: goo 11-25-90 Revision 1 Checked by: Date: 11/25/96 Page 12 of 15 -ES

A9.2-197

Appendix A9.2.7 Loadout Pit Work Platform 457-2007.2 (Continued)

MS = $1 \cdot \frac{\sigma_r}{F}$ $\frac{1,824}{2,545}$ - 1 -= 0.28 5.5 Wall Plate Weld Evaluation The wall mounting plate is constructed by welding Items 7, 8, and 9. The 9 to 7 weld stress for the full penetration weld of a 0.625 in plate is as follows: $\sigma_v = F / A_{weld}$ where: t = plate thickness = 0.625 in I = weld length = 24.0 in $A_{weld} = t x l$ $= 0.625 \times 24.0$ $= 15.0 \text{ in}^2$ $\sigma_{\rm v} = 2000 / 15.0$ = 133 psi The weld stress is insignificant compared to the weld allowable, Fw: $F_w = 0.4 \text{ x } F_v \text{ (base metal)} = 14,400 \text{ psi.}$ 5.6 Wall Plate Saddle Evaluation The calculation performed under Section 5.5 demonstrates that the saddle itself will develop insignificant stresses. Performed by: Date: Calculation No. 457-2007.2 NAC INTERNATIONAL Des 11-25-96 Revision 1 Page 13 of 15 Checked by: Date: 125/96 TS

Appendix A9.2.7 Loadout Pit Work Platform 457-2007.2 (Continued)

			Summary	of Stress Analysi	s .		
Drawing No.	Item No.	Component	Applied Load	Design Check	Calculated Loading	Allowable	M
457-111	4, 5, 3	brace, extension,	2000 lbs	tube bending	22,077 psi	27,600 psi	0.2
457-111	5 to 9	weld	2000 lbs	shear combined shear and	2,000 psi 1,824 lbs / in	18,400 psi 2,545 1bs / in	0.2
457-111	9 to	weld	2000 lbs	weld shear	0.133 ksi	14.4 ksi	0.9
				·			
		Performed by.	Qre	Date:	Calcula	tion No. 457-20	107.2

Appendix A9.2.7 Loadout Pit Work Platform 457-2007.2 (Continued)

7.0	REF	RENCES
	7.1	Preliminary Design Analysis Report For The TN-WHC Cask and Transporation Sys Project 3035
		I ransnuclear, Inc.
	7.2	Not Used.
	7.3	ASME Code Case N-71-16, Table 2.
	7.4	Roark's Formulas for Stress and Strain, 3rd edition. 7.4.1 Table III, Case 1, page 100.
	7.5	Code Of Federal Regulations
		Title 29, Part 1910.28
		7.5.1 Page 114, (d)8, Tubular Weided Frame Scaffolds
		7.5.2 Page 112, Table D-9.
	7.6	K Basin Immersion Pail Assembly TN WHC Transport Cask Drawings. 7.6.1 Project 457, Drawing 111, sheets 1, 2 / 2.
	7.7	AISC Manual Of Steel Construction, 9th edition.
		7.7.1 Table J2.5.
		7.7.2 Page 5-45, Chapter F, Equation F1-1 (bending). 7.7.3 Page 1-103.
		7.7.4 Page 1-7, Table 1.
		7.7.5 Page 1-92, Table 3.
		7.7.6 Page 5-135, Table C-C2.1, 7.7.7 Page 3-52.
	7.8	ASME Boiler & Pressure Vessel Code, 1995 Edition, Section III, Division 1
	7.9	Hanford ECN 191402
	7.10	Blodgett's Design Of Welded Structures, 1966.
		· ·
0	NAC	Performed by: Date: Calculation No. 457-2007.
		Checked by The Date: Dat

Appendix A9.2.8 Trailer Work Platform 457-2002.2

IN IN	AC ITERNATION	AL CA	LCULATIO PACKAGE OVER SHEE	N Work 457-20	Request/Calc No:
PROJECT	NAMË:	· ·	CLIENT:		CONC)
K Basin O	perations Equip	pment	Hanford (Tra	nsnuclear, Inc.)	No. 15706
CALCUL	ATION TITLE Trailer Work P	iatform		Ś	
induced lo The transp the K-Basi	ads to the requ ort trailer work n Area of the F	irements of the AIS platform is part of Ianford site.	C Code.	c and Transportation	n System to be used
Revision	Affected	Revision	Preparer	Checker	Project Manager
	Pages	Description	Name, Initials, Date	Name, Initials, Date	Approval/Date
0	Pages 1 thru 12 A1 thru A4	Original Issue	Name, Initials, Date Ravi Singh 11-11-96	Name, Initials, Date Jeffrey R. Dargis 11-11-96	Approval/Date Thomas A. Danne 11-15-96
0	Pages 1 thru 12 A1 thru A4 1, 3 thru 13	Description Original Issue Revised method of calculating margin of safety.	Name, Initials, Date Ravi Singh 11-11-96 Ravi Singh TS 1/2.5/96	Name, Initials, Date Jeffrey R. Dargis 11-11-96 Jeffrey R. Dargis <i>JRG</i> <i>(1-25-96</i>)	Approval/Date Thomas A. Danne 11-15-96
0	Pages 1 thru 12 A1 thru A4 1, 3 thru 13	Description Original Issue Revised method of calculating margin of safety.	Name, Initials, Date Ravi Singh 11-11-96 Ravi Singh TE N/25/96	Name, Initials, Date Jeffrey R. Dargis 11-11-96 Jeffrey R. Dargis JRG 1/- 25-96	Approval/Date Thomas A. Danne 11-15-96 Himme Calferne "/==/96

	INDEPE	NDENT DESIGN VERIFICAT	ION CHEC	k shee	т
Wo	ork Request/Calculatio	n No: <u>457-2002.2</u> Revisio	on <u>0</u> nc		
Sc	ope Of Analysis File:	This calculation evaluates th loads based on OSHA require	e transport t rements def	railer pia	atform for desi
Re	view Methodology:	Check Of Calculations Alternate Analyses	918 N/A		
Co	nfirm That The Work F	equest / Calculation Package	Reviewed	ncluder	
1	Statement of Pum		Neviewed	nciuues	
2	Defined Method of	Analysis		-	Jus-
3.	Listing of Assumpt	ions		-	9.9
4.	Detailed Analysis F	Record		-	80
5.	Statement of Conc	lusions / Recommendations (i	f applicable)) -	geo
Step		Activities	Verifi Y es	No N/	A Comments
1	For the scope of the del	fined analysis:			
	A. Are the required	data input complete?		1	(.
	2. Geometry (perces	1-1	1	
	3. Loading sou	Ince term	1-	ļ	
	If a support	ing analysis is required to			
	define the lo	oad state, has it been		ł	
	B. Are boundary co	onditions acceptable?	-		
2	Is the method of analysi	s adequate for the defined scope?		-+-	
3	is the worst case loading	g/configuration documented?		-+-	
4	Are the acceptance crite	ria defined and complete?			†
5	Has all concurrent loadii	ng been considered?	-		
6	Are analyses consistent approach?	with previous work for method and		-	NO PREVIOUS
7	Are the records for input	and output complete?			ANALYSIS PERI
8	Is traceability to verified	software complete?			COMPUTER SO
9	Is the statement of conci and acceptable for the p numose?	usions and recommendations comp roject and objectives of the defined	lete		NOT USED
9	Is traceability to verified Is the statement of conci and acceptable for the p purpose?	software complete? Iusions and recommendations comp roject and objectives of the defined	lete	~	NOT USE

	INDEPE	ENDENT DESIGN VERIFICA	TION CHEC	K SHI	ET	
Wor	k Request/Calculatio	n No: <u>457-2002.2</u> Revis	sion <u>1</u>			
Sco	oe Of Analysis File:	This calculation evaluates loads based on OSHA req	the transport t uirements def	railer ned i	platfo Title	rm for design 29 of the CF
Revi	ew Methodology:	Check Of Calculations Alternate Analyses Other (Explain)	ARO NIA NIA			
Con	firm That The Work F	Request / Calculation Packag	ge Røviewed	Inclue	es:	
1. 2. 3. 4. 5.	Statement of Purp Defined Method o Listing of Assump Detailed Analysis Statement of Con	ose f Analysis tions Record clusions / Recommendations	(if applicable)		900 900 900 900 900
Step		Activities	Verif Yes	cation No	N/A	Comments
1	A. Are the required A. Are the required 1. Material pr 2. Geometry 3. Loading so if a suppo- define the defined? B. Are boundary of	strined analysis: d data input complete? operties (drawing reference) purce term tring analysis is required to load state, has it been conditions acceptable?	111 1			
2	Is the method of analy	sis adequate for the defined scope	?		-	
3	Is the worst case loadi	ng/configuration documented?				
4	Are the acceptance cri	teria defined and complete?	-			
5	Has all concurrent load	ling been considered?	-			
6	Are analyses consister approach?	nt with previous work for method a	nd 🗸			
7	Are the records for inp	ut and output complete?				
8	Is traceability to verifie	d software complete?		-	-	Computer Suff Nut Used.
9	Is the statement of con and acceptable for the purpose?	clusions and recommendations co project and objectives of the defin	ed			
JE	FREY R. DAROIS	(Jeffres R Daya	11-25-76	_		

A9.2-203

.

	TABLE OF CONTENTS	
Section	Description	Page
	Calculation Package Cover Sheet	
	Independent Design Verification Check Sheet	2
	Table of Contents	4
1.0	Synopsis of Results	5
2.0	Introduction/Purpose	5
3.0	Method of Analysis	5
4.0	Assumptions/Design Input	
5.0	Analysis Detail	
6.0	Summary of Results / Conclusions	12
7.0	References	
Appendix A	Kee Industrial Products Load Data	4 total pages
	ATIONAL Performed by: ES Date: II/D5/9(Checked by: approx	Calculation No. 457-2002 Revision 1

1.0 SYNOPSIS OF RESULTS

Drawing Item Component Applied Design Check Calculated Allowable M.S. No. No. Load Loading 457-105 24 channel 125 lb/ft bending 8.676 psi 21,000 psi 0.59 shear 820 psi 14,000 psi 0.94 457-105 26 plank hook 591 lbs bearing 1,182 psi 35,000 psi 0.97

Summary of Stress Analysis

The transport trailer work platform design meets the criteria defined in Section 4.2.

2.0 INTRODUCTION / PURPOSE

This calculation evaluates the transport trailer work platform for design loads based on OSHA requirements defined in Title 29 of the Code of Federal Regulations. The transport trailer work platform is part of the TN-WHC Cask and Transportation System to be used at the K-Basin Area of the Hanford site.

3.0 METHOD OF ANALYSIS

Hand calculations using classic textbook solutions are used to structurally evaluate the transport trailer work platform.

The design will be assessed using the design load developed in Section 5.1. The design loading considers OSHA requirements defined in Title 29 of the Code of Federal Regulations (Reference 7.5). The acceptance criteria limits the induced loads to the requirements of the AISC Code (Reference 7.7).

The work platform configuration evaluated herein consists of a plank 113.45" long and 29.29" wide supported by 4 \times 0.180 aluminum channels. The channels will rest on the platform pipe when in use.

The framing components of the platform are standard catalog components supplied to the requirements of Reference 7.5. Maximum unbraced lengths in the design are limited to 6- 0° as specified in Reference 7.2 (Appendix A). Therefore, these items do not require specific stress evaluations. Drawing details are provided in Reference 7.6.1.

NAC INTERNATIONAL	Performed by:	PS	Date: 11/25/96	Calculation No. 457-2002.2 Revision 1	
	Checked by:	800	Date: 11-25-96	Page 5 of 13	1

	The •	followi Design Channel Support End Caj	ng evaluat Load Deva 4 x .180 ing Pipe E Evaluation	ions are documen elopment; Evaluation; valuation; and on.	ted within	this calculation.		
4.0	ASS	SUMPT	IONS / D	ESIGN INPUTS				
	4.1	Aşsun	nptions					
		There	are no un	verified assumptio	ns within	this calculation.		
	4.2	Desig	n Criteria					
		4.2.1	Loading					
			See Sect	ion 5.1.				
		4.2.2	<u>Stress Li</u>	mits				
			Bending	stress < 0.6 x S_y	(Ref	erence 7.7)		
			Shear str	ess < $0.4 \times S_{y}$	(Ref	erence 7.7)		
		4.2.3	<u>Platform</u>	Parameters (Refe	rence 7.6)			
			Channel	4" x 0.180" x ASTM B308	113.45 in	long		
			Pipe:	1 1/2" NPS ASTM A53				
		4.2.4	Material	Properties				
			<u>ASTM I</u> (Referen Fy: Fu:	3 <u>308 Aluminum</u> ce 7.3) 35 ksi 38 ksi				
	NAC		Pe	rformed by:	(Date:	Calculation No. 457-200)2.2
	INTE	KNA LION	C	ecked by	<u>د</u>	Date:	Page 6 of 13	

The margin of safety is: $MS = 1 - \frac{\sigma_b}{F_b}$ = 1 - $\frac{8,676}{21,000}$ = 0.59 The shear stress is: $\sigma_v = (w \times L) / (2 \text{ channels } x \text{ width of channel web } x \text{ web thickness})$ $= 125 \times 9.45 / (2 \times 4 \times 0.18)$ = 820 psi The allowable shear stress is; $F_v = 0.4 \times F_y$ = 0.4 x 35,000 psi = 14,000 psi The margin of safety is: MS = $1 \cdot \frac{\sigma_v}{F}$ $= 1 - \frac{820}{14,000}$ = 0.94 NAC INTERNATIONAL Performed by Calculation No. 457-2002.2 Date RS Revision 1 11/25/96 Checked by: Date: //-25-96 Page 9 of 13 geo

5.2	Pipe Evaluation			
	10CFR29, Part 1 drawing calls or acceptance of the those of the 2 incl	910.28 specifies ut 1.5 inch con to 1.5 inch pipe v h tube.	s nominal two inch (2" mmercial pipe with a vill be justified by com) O.D. tube for scaffolding. schedule 40 designation. paring its sectional propertie
	PROPER	TIES	2 IN TUBE	1.5 IN SCH 40 PIPE
	Metal A	rea	0.7087 in ²	0.799 in ²
	Section Mo	odutus	0.314 in ³	0.326 in ³
5.4	The tube properti Reference 7.4). T page 6-20 of Refe Reference 7.7.	ies are based on The section modu erence 7.7. The p ion	2" tube with a 0.120 inc dus is based on the holl properties for 1.5 inch p	wall thickness (Page 8-21) ow circle formulas reference ipe are from page 1-93 of
5.4	The tube propertit Reference 7.4). T page 6-20 of Refe Reference 7.7. <u>End Cap Evaluat</u> The end cap is a bearing.	ies are based on The section modu erence 7.7. The j ion 1/4 inch thick al	2" tube with a 0.120 inc ilus is based on the holl properties for 1.5 inch p uminum plate. Its basic	wall thickness (Page 8-21) ow circle formulas reference ipe are from page 1-93 of loading scheme is in direct
5,4	The tube propertin Reference 7.4). T page 6-20 of Refe Reference 7.7. End Cap Evaluat: The end cap is a bearing. $\sigma_v = F / A_{bear}$ where:	ies are based on he section modu erence 7.7. The p <u>ion</u> 1/4 inch thick al ing	2" tube with a 0.120 inc alus is based on the holl properties for 1.5 inch p uminum plate. Its basic	wall thickness (Page 8-21) ow circle formulas reference ipe are from page 1-93 of loading scheme is in direct
5.4	The tube properting Reference 7.4). The page 6-20 of Reference 7.7. End Cap Evaluation The end Cap is a bearing. $\sigma_v = F / A_{bearing}$ where: $F = w \times x = 125 \times x = 591$ bits	ies are based on mode rence 7.7. The p ion 1/4 inch thick al img L / 2 channels c 9.45 / 2 05	2" tube with a 0.120 inc lus is based on the holl properties for 1.5 inch p uminum plate. Its basic	wall thickness (Page 8-21: www.ircle formulas reference ipe are from page 1-93 of loading scheme is in direct
	The tube properting Reference 7.4). The page 6-20 of Reference 7.7. Ind Cap Evaluation The end cap is a bearing. $\sigma_v = F / A_{bearing}$ where: F = w = x = 25 x = 591 km	ies are based on the section modu erence 7.7. The p 1/4 inch thick al imp L / 2 channels x 9.45 / 2 bs	2" tube with a 0.120 inc lus is based on the holl properties for 1.5 inch p uminum plate. Its basic	h wall thickness (Page 8-21: ww circle formulas reference ipe are from page 1-93 of loading scheme is in direct

A9.2-210

2.00" 0.25" Section View Bearing Area $= 2 \times 0.25$ Abearing = 0.5 inch² The bearing stress is: $\sigma_{\rm b} = 591/0.5$ = 1182 psi The allowable bearing stress is: $F_b = F_y$ = 35,000 psi The margin of safety is: $MS = 1 - \frac{\sigma_b}{E}$ = 1 - $\frac{1,182}{35,000}$ = 0.97 The plate is welded with 1/4 inch fillet weld on both sides. Therefore, the weld stress is insignificant. No further evaluation is required. Calculation No. 457-2002.2 Performed by NAC INTERNATIONAL 11/25/96 Revision 1 Date: //-25-96 Page 11 of 13 Checked by: gro

Drawing No. Item No. Component No. Applied Load Design Check Loading Calculated Loading Allowable 457-105 24 channel 125 lb/ft bending 8.676 psi 21,000 psi 457-105 26 plank hook 591 lbs bearing 1,182 psi 35,000 psi 457-105 26 plank hook 591 lbs bearing 1,182 psi 35,000 psi				Summary	of Stress Analysi	s	
457-105 24 channel 125 lb/ft bending 8,676 psi 21,000 psi 457-105 26 plank hook 591 lbs bearing 1,182 psi 35,000 psi The transport trailer work platform design meets the criteria defined in Section 4.2.	Drawing No.	ltem No.	Component	Applied Load	Design Check	Calculated Loading	Allowable
457-105 26 plank hook 591 bs bearing 1,182 psi 35,000 psi The transport trailer work platform design meets the criteria defined in Section 4.2.	457-105	24	channel	125 lb/ft	bending	8,676 psi	21,000 psi
457-105 26 plank hook 591 lbs bearing 1,182 psi 35,000 psi The transport trailer work platform design meets the criteria defined in Section 4.2.					shear	820 psi	14,000 psi
The transport trailer work platform design meets the criteria defined in Section 4.2.	457-105	26	plank hook	591 lbs	bearing	1,182 psi	35,000 psi
	NAC INTERNA HON	IAL	Performed by:	725	Dave; 11/2-57	9 6 Revisio	tion No. 457-20 n l

[-----

	7.1	Preliminary Design Analysis Report For The TN-WHC Cask and Transporation Syste Project 3035 Transnuclear, Inc.
	7.2	Kee Industrial Products. Test Report: Ultimate Load Capacities of Set Screws. (Provided in Appendix A)
	7.3	1989 Annual Book of ASTM Standards, Volume 02.02, page 330.
	7.4	Standard Handbook for Mechanical Engineers, Baumeister & Marks, 7th edition.
	7.5	Code Of Federal Regulations Title 29, Part 1910.28 Safety Requirements For Scaffolding
	7.6	K Basin Immersion Pail Assembly TN WHC Transport Cask Drawings. 7.6.1 Project 457, Drawing 105.
	7.7	AISC Manual Of Steel Construction, 9th edition.
A	NAC INTERNA	Performed by: Date: Calculation No. 457-2002.2 HIDSAL HIDSE(96) Revision 1 Checked by: Date: Page 13 of 13

APPENDIX A Kee Industrial Products Load Data There a a total of 4 pages in Appendix A. NAC INTERNATIONAL Performed by: Date: 11/11/96 Calculation No. 457-2002.2 Revision 0 ES Checked by: 9RD-Date: Page Al of 4

A9.2-214

•

.

Appendix A9.2.8 Trailer Work Platform 457-2002.2 (Continued)

CCC AN OWNER AND
And Andrews and Andrews

PART B: PACKAGE EVALUATION

B1.0 INTRODUCTION

B1.1 SAFETY EVALUATION METHODOLOGY

This section of the Design Analysis Report (DAR) presents the structural evaluation of the cask. This package evaluation describes the design features and presents the safety analyses which demonstrate that the cask complies with applicable requirements of the Hanford Specification⁽¹⁾.

Detailed structural analyses of various cask components subjected to individual loads are provided in the Appendix B4.5C. The limiting results from these analyses are used in Section B4.3 to quantify package performance in response to the normal condition of transport load combinations and Section B4.4 to quantify package performance in response to the accident condition of transport load combinations. Tables B4.3-1 and B4.4-1 provide an overview of the performance evaluations reported in each load combination subsection for normal and accident conditions, respectively. Each subsection provides the limiting structural analysis result for the affected cask component(s) in comparison to the established design criteria. This comparison permits the minimum margin of safety for a given component subjected to a given loading condition to be readily identified. In all cases, the acceptability of the cask design with respect to established criteria and consequently with respect to the Specification performance requirements is demonstrated.

Several other items should be noted. In the cask, thermal stresses occur due to the effects of differential thermal expansion. When evaluating stresses, these thermal stresses are conservatively treated as primary stresses and the combined stresses due to primary loads (like pressure) and differential expansion (such as heating from 70°F to hot thermal conditions) are evaluated as primary stresses. In addition, some individual load cases in Appendix B4.5C were performed for the corresponding unit load (1G) condition (like the end drop and side drop) and are factored for the normal and accident conditions.

The stress results for the individual load case tables reported in Appendix B4.5C are the maximum stresses for each individual load cases. Two or more individual load cases must be combined to determine the total stresses at the standard stress reporting locations for the various load combinations. This is accomplished using the ANSYS⁽²⁾ postprocessor which algebraicly adds the stress components at each of the standard locations. The membrane stress intensity is then found from the membrane stress components and the inner and outer surface membrane plus bending stress intensities are determined from the membrane <u>+</u> bending stress components.

Figure B4.3-1 shows the selected locations on the cask body where stress results for these analyses are reported. Detailed stresses are actually available at as many locations as there are nodes in the finite element model. However, for practical considerations, the reporting of stress results is limited to those locations shown on Figure B4.3-1. These locations were selected to be

representative of the stress distribution in the cask body with special attention given to areas subject to high stresses. The maximum stress may occur at a different location for each individual load.

The shielding analysis of the cask is performed using industry standard codes and conservative modeling assumptions. An evaluation of the shielding performance of the cask was performed assuming dry cask conditions. This evaluation is based on the maximum source term payload. The bounding source term used for the shielding evaluation is the Mark IV fuel elements, 0.95 U-235 irradiation to 16% Pu-240, thirteen years after discharge from the N reactor.

The gamma and neutron analyses are performed using the one dimensional SAS1 module of SCALE-4, with the 27n-18g coupled cross-section library. This uses the codes XSDRNPM and XSDOSE to calculate surface flux and translate the flux into dose rates away from the cask surface. ANSI standard flux-to-dose factors, within SCALE-4, are used for the dose calculation at the selected points. The method in which the cask and its contents are modeled for the shielding analysis and the shielding analysis results are described in the Section B3.0.

The thermal evaluation is described in Section B5.0. The ANSYS computer code is used to performed the analysis. The design input for decay heat load, ambient conditions and MCO geometry were obtained from the Hanford Specification.

B1.2 EVALUATION SUMMARY AND CONCLUSIONS

Appendix B4.5C provides the detailed description of the structural analyses of the cask body. That appendix describes the detailed ANSYS model used to analyze various applied loads. Tables B4.3-2 and B4.4-2 identify the individual loads (IL) analyzed which are applicable to normal and accident conditions of transport.

Detailed stresses and displacements in the ANSYS model of the cask body are obtained and stored (on magnetic tape) for every node location for each individual load case. These stored results are postprocessed to printout the stresses at the standard stress reporting locations.

Since the individual load cases are linearly elastic, their results can be scaled and superimposed as required in order to perform the normal and hypothetical accident condition load combinations.

Shielding for the cask is provided mainly by the thick-walled cask body. This provides adequate shielding for both normal and accident conditions. Figures B3.3-1 and B3.3-2 illustrate the one-dimensional SAS1 models used for the analysis and Table B3.3-1 lists the compositions of the shielding materials.

The temperature distribution from the thermal analyses is used to evaluated the thermal stresses in the cask. The structural integrity of the cask is maintained during normal and accident thermal environments.

Normal Condition of Transport

The maximum stresses due to the 1 foot free drop event are presented in Section B4.3.4.3.5. In nearly all of the load cases, the maximum stresses are less than the membrane allowable stress with large margin of safety.

The lid bolt stresses do not exceed 2/3 times the yield strength during the 1 ft drop normal conditions as shown in Section B4.3.4.3.8.

The cask body is a solid stainless steel cylinder, the thermal stresses due to differential thermal expansion are insignificant. Thermal stresses of the cask body due to the differential thermal expansion under the hot and cold environment conditions are evaluated in Section B4.3.4.2.

From the analyses presented in Section 4.3, it can be shown that the normal structural and thermal loads will not result in any structural damage of the cask and the containment function of the MCO will be maintained.

Accident Condition of Transport

The maximum stresses due to the 30 foot drop event are also presented in Section B4.4-4.3. In nearly all of the load cases, the maximum stresses are less than the membrane allowable stress with large margins of safety.

The lid bolt stresses do not exceed the ultimate strength during the hypothetical 30 ft drop accidents as shown in Section B4.4.4.3.4.

During the 40 inch drop onto a 6.0 inch diameter puncture bar, the cask body may deform locally at the contact point. It has been shown by analysis (Section B4.4.4.3.5) that the cask will not be punctured and that the MCO will be confined.

The thermal stresses in the stainless steel cask body due to differential thermal expansion are insignificant. Thermal stress of the cask body due to the differential thermal expansion under the thermal accident conditions (between lid and lid bolts) is evaluated in Section B4.4.4.2.

From the analyses presented in Section 4.4, it can be shown that the accident structural and thermal loads will not impact the structural integrity of the cask, and the cask maintains the confinement function of the MCO.

HNF-SD-SNF-FDR-003 Rev. 0

References For B1.0

- Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.
- 2. ANSYS Engineering Analysis System, User's Manual Volumes 1&2, Rev. 5.2.

B2.0 CONTAINMENT EVALUATION

This Section will be written by DESH

B2.1 INTRODUCTION

B2.2 CONTAINMENT SOURCE SPECIFICATION

B2.3 NORMAL TRANSFER CONDITIONS

- B2.3.1 Conditions to be Evaluated
- B2.3.2 Containment Acceptance Criteria
- B2.3.3 Containment Model
- B2.3.4 Containment Calculations

B2.4 ACCIDENT CONDITIONS

- B2.4.1 Conditions to be Evaluated
- B2.4.2 Containment Acceptance Criteria
- B2.4.3 Containment Model
- B2.4.4 Containment Calculations

B2.5 CONTAINMENT EVALUATION AND CONCLUSIONS

B2.6 APPENDIX

E-15166

B3.0 SHIELDING EVALUATION

B3.1 INTRODUCTION

An evaluation of the shielding performance of the TN-WHC cask was performed assuming dry cask conditions. This evaluation is based on the maximum source term payload.

The most significant shielding design features of the cask are the thick walled forged carbon steel cask body and lid. The cask body has a minimum wall thickness of 7.25 inches and a bottom thickness of 6.13 inches. A minimum cask lid thickness of 3.0 inches was used. Additional shielding is provided by the fuel assemblies, the baskets, and the MCO. The cask design does not included separate neutron shielding because of the relatively low neutron source term in the spent fuel. The method in which the cask and its contents are modeled for the shielding analysis are described in the Sections B3.3 and B3.4.

The shielding analysis of the cask is performed using industry standard codes and conservative modeling assumptions. The expected dose rates for the cask have been evaluated for the design basis fuel.

B3.2 DIRECT RADIATION SOURCE SPECIFICATION

The bounding source term used for the shielding evaluation is the Mark IV fuel elements, 0.95 U-235 irradiation to 16% Pu-240, thirteen years after discharge from the N reactor. The source term, gamma spectra, and neutron spectra are provided in Reference 1.

B3.2.1 Gamma Source

Table B3.2-1 shows the gamma source spectra. The spectra from 0.35 to 2.25 MeV was used since these energy levels are the primary contributors to the dose rate. The gamma source spectra provided in Reference 1 was generated from the ORIGEN2 code. However, this spectra was converted into the gamma energy groups of the SCALE $27n-18\gamma$ library⁽²⁾ by conserving energy. Appendix B3.7.1 details the conversion of the gamma source spectra for use in the SCALE code.

Average Energy Level (MeV)	Photon/sec/MCO	Fraction
2.25	8.88E+09	0.00000
1.83	6.828E+11	0.00024
1.495	1.009E+13	0.00348
1.165	2.415E+13	0.00833
0.9	3.727E+13	0.01286
0.7	9.045E+14	0.31211
0.5	1.868E+15	0.64458
0.35	5.300E+13	0.01829
Total	2.898E+15	0.99989

Table B3.2-1 Gamma Source Spectra

B3.2.2 Neutron Source

The Neutron Source for Mark IV Fuel 16% Pu 240 at 13 years decay was also provided in Reference 2. The spontaneous fission source is 7.317E+06 neutrons/sec/MCO with an (alpha,n) neutron source of 3.578E+06 neutrons/sec/MCO.

The neutron spectra for both sources were also provided in Reference 2. Similar to the gamma source spectra, this spectra must be converted into the proper neutron energy groups of the SCALE $28n-18\gamma$ library. This is accomplished by apportioning the provided spectra into the SCALE energy groups. This analysis and conversion is detailed in Appendix B3.7.2. The spectrum used for the analysis is provided in Table B3.2-2 below.

SCALE Group No	(alpha,n)	Spontaneous Fission	Combined
Group 1		0.02184	0.01463
Group 2	0.16137	0.22278	0.20251
Group 3	0.41486	0.22655	0.28869
Group 4	0.14594	0.12795	0.13389
Group 5	0.11620	0.15740	0.14380
Group 6	0.11214	0.15633	0.14175
Group 7	0.04767	0.08316	0.07145
Total:	0.99818	0.99601	0.99672

Table B3.2-2 Neutron Spectra

B3.3 SUMMARY OF SHIELDING PROPERTIES OF MATERIALS

One-dimensional SAS1 models (of the SCALE code⁽³⁾) were used for the gamma and neutron shielding calculations of the top, bottom, and side of the cask.

For the doses at the top and bottom of the cask, one-dimensional plane geometry XSDRNPM models are used. The fuel region is assumed to consist of uranium dioxide, zircaloy and steel basket. These are assumed to be homogenized throughout the fuel zone. The model assumes only the active fuel region. No consideration is given to the presence of a plenum or top fitting. The configurations of the top and bottom model are shown in Figure B3.3-1.

For the gamma and neutron doses on the side of the cask, a cylindrical one-dimensional model is used in XSDRMPM as shown in Figure B3.3-2. The central fuel region is considered to consist of uranium dioxide. The fuel cladding and steel basket are included in the homogenized fuel region. The fuel region is modeled as a cylinder with the actual cavity diameter. Subsequent regions are modeled as cylindrical shells corresponding to actual dimensions.

Materials and their densities used in the XSDRNPM models are provided in Table B3.3-1.

Figure B3.3-1 Axial Models

Axial, Cask Top - Shield Plug and Lid

7.62 cm	Lid - SS304
▲ 30.48 cm	Shield Plug - SS304
186.29 cm	Fuel + Clad + Basker

Axial, Cask Bottom

HNF-SD-SNF-FDR-003 Rev. 0

Location	Material	Density (g/cc)
Fuel + Clad + Basket (assuming basket is 100% steel)	Uranium	6.28
	Zircaloy	0.41
	Steel (SS304)	0.338
Cask Wall	Steel (SS304)	7.92
Cask Lid	Steel (SS304)	7.92
Shield Plug	Steel (SS304)	7.92

Table B3.3-1 Material Densities

B3.4 NORMAL TRANSFER CONDITIONS

B3.4.1 Conditions to be Evaluated

Under normal conditions the shielding of the cask is evaluated assuming an undamaged cask and the worst case fuel.

B3.4.2 Acceptance Criteria

The shielding acceptance criteria for normal conditions for the cask is the following:

-the maximum surface dose on the accessible surface of the cask shall be less than or equal to 100 mrem/hr⁽²⁾; and

-the dose rate 2 meters from the surface of the cask shall be less than or equal to 10 mrem/ $hr^{(2)}$.

B3.4.3 Shielding Model

The gamma and neutron analyses are performed using the one dimensional SAS1 module of SCALE-4, with the 27n-18g coupled cross-section library. This uses the codes XSDRNPM and XSDOSE to calculate surface flux and translate the flux into dose rates away from the cask surface. ANSI standard flux-to-dose factors, within SCALE-4, are used for the dose calculation at the selected points.

For the axial calculations, the DISK geometry is chosen and buckling corrections, using the cask diameter, are used to correct for a finite dimension rather than an infinite plane.

Because of the irregular bottom in the MCO, the 3-dimensional QAD-CGGP⁽³⁾ code was utilized to evaluate two models of the bottom; one with a cut-out and one without. Ratios of the

HNF-SD-SNF-FDR-003 Rev. 0

calculated dose rates (1.32 @ contact and 1.01 @ 2 meters) were used to correct the SAS1 dose calculation for the bottom of the cask.

An additional dose rate calculation was performed to evaluate the dose rate at the drain port at the lower end of the cask. The 3-dimensional, monte carlo SAS4 module of the Scale-4 code was utilized to perform the calculation. Shielding from the quick connect coupling was conservatively neglected as shown in Figure B3.3-3.

The inputs for the SAS1 and SAS4 modules are included in Appendix B3.7.3.

B3.4.4 Shielding Calculations

Dose points, shown in Tables B3.4-1 and B3.4-1, are taken axially on the centerline of the cask and radially on the midplane.

Table B3.4-1 Summary of Maximum Dose Rates - Cask Surface (mrem/hour)

	Sides	Top, Shield Plug	Top, Cask Lid & Shield Plug	Bottom*
Gamma	54.2	0.71	0.04	85.4
Neutron	5.10	2.39	1.31	7.26
Total	59.3	3.10	1.35	92.7

Table B3.4-2	Summary of Maximum Dose Rates - 2 meters from the Cask Surface
	(mrem/hour)

	Sides	Top, Shield Plug	Top, Cask Lid & Shield Plug	Bottom*
Gamma	8.54	0.09	0.005	7.88
Neutron	0.61	0.12	0.06	0.28
Total	9.15	0.21	0.065	8.16

* - on cask centerline, below MCO sump (B3.4.3)

The dose rates on the drain port cover were calculated by SAS4 to be 167 mrem/hr γ and 2.5 mrem/hr neutron. At one foot from the drain port cover, the calculated dose rates were 62.7 mrem/hr and 1.1 mrem/hr γ and neutron respectively.

B3-7

Figure B3.3-3 Drain Port Model

B3.5 ACCIDENT CONDITIONS

B3.5.1 Conditions To Be Evaluated

Briefly, the accidents to be evaluated are:

- Impact, the worst case credible impact for the packaging system may be simulated by a free drop of 30 ft. onto a concrete surface, the package shall impact in an orientation to cause maximum damage;
- Puncture, the worst case credible puncture is equivalent to a free drop of the packaging through a distance of 1 meter (40 in) in a position for which the maximum damage is expected; and
- Thermal, the exposure of the packaging system for not less than 30 minutes to a 800°C fire that has an emissivity coefficient of 0.9.

The impact, puncture and thermal scenarios will result in no loss of shielding. Therefore, the accident dose rates are the same as the normal conditions dose rates.

B3.5.2 Acceptance Criteria

The shielding acceptance criteria for accident conditions for the cask is the following:

- the dose rate 1 meter from the surface of the cask shall not exceed 1 rem/hr⁽²⁾.

B3.5.3 Shielding Model

See Section B3.4.3 shielding model for normal conditions.

B3.5.4 Shielding Calculations

See Section B3.4.4 shielding calculations for normal conditions.

B3.6 SHIELDING EVALUATION AND CONCLUSIONS

Shielding for the cask is provided mainly by the thick-walled cask body. This provides adequate shielding for both normal and accident conditions. Figures B3.3-1 and B3.3-2 illustrate the one-dimensional SAS1 models used for the analysis and Table B3.3-1 lists the compositions of the shielding materials.

The expected dose rates were calculated using the source term provided in Reference 1 and the results of the shielding analyses are provided in Tables B3.4-1 and B3.4-2.

HNF-SD-SNF-FDR-003 Rev. 0

References For Section B3.0

- 1. Engineering Change Notice, ECN-191402, SNF Project, WHC-S-0396, Rev 1
- Document Number WHC-SD-TP-SARP-017, Preliminary Safety Analysis Report for Packaging (On-Site) Multiple Canister Overpack Cask, Draft Rev. 0, April 12, 1996.
- Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.
- SCALE-4: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/NUREG/CR-0200, U.S. Nuclear Regulatory Commission, Revision 4, February 1990.
- QAD-CGGP A Combinatorial Geometry Version of QAD-P5A, a Point Kernel Code System for Neutron and Gamma-Ray Shielding Calculation Using the GP Buildup Factor, CCC-495.

B3.7 APPENDIX

SHIELDING ANALYSIS
HNF-SD-SNF-FDR-003 Rev. 0

TABLE OF CONTENTS

Section		Page
B3.7-1	Determination of the Gamma Source Spectra	B3.7-1
B3.7-2	Determination of the Neutron Source Spectra	B3.7-4
B3.7-3	SAS1 and SAS4 Input Files	B3.7-9

B3.7-1 DETERMINATION OF THE GAMMA SOURCE SPECTRA

The gamma source for the worst case fuel is provided in Reference 1. The gamma source spectra is shown below in Table B3.7-1.

Energy (MeV)	Photons/sec/MCO
0.015	1.67E15
0.025	3.54E14
0.038	3.99E14
0.058	3.35E14
0.085	1.85E14
0.125	1.38E14
0.225	1.57E14
0.375	7.42E13
0.662	2.33E15
0.850	5.92E13
1.250	3.41E13
1.750	1.05E12
2.250	8.88E9
2.750	6.34E8
3.500	8.31E7
5.000	3.94E5
7.000	4.50E4
11.000	5.14E3
TOTAL	6.09E15

Table D3.7-1 Filoton Source for Mark IV Fuel 10% Fu 240 at 13 years decay	Table B3.7-1	Photon Source	for Mark IV	Fuel 16%	9 Pu 240 at	13 years decay
---	--------------	---------------	-------------	----------	-------------	----------------

For the gamma source term, the energy levels from 0.375 to 2.25 MeV were used since these energy levels are the primary contributors to the gamma dose. The 0.662 MeV energy level was converted to the 0.575 MeV energy level:

0.662 MeV = 2.33E15 photon/sec/MCO (0.662/0.575) = 2.68E15 photon/second/MCO

The energy groups significant to the dose are from 0.375 MeV to 2.50 MeV. The table below summarizes these energy groups:

ORIGEN2 Energy Range	ORIGEN2 Average Energy (MeV)	γ/sec/MCO
0.3 - 0.45	0.375	7.42E+13
0.45 - 0.7	0.575	2.68E+15
0.7 - 1.0	0.850	5.92E+13
1.0-1.5	1.250	3.41E+13
1.5-2.0	1.750	1.05E+12
2.0 -2.5	2.250	8.88E+09
	Subtotal:	2.85E+15

	Table B3.7-2	Photon Source	for Mark	IV Fuel	16% P	u 240 at	13	vears decay
--	--------------	---------------	----------	---------	-------	----------	----	-------------

The energy groups from this ORIGEN2 output need to be translated into the appropriate energy groups for the SCALE 27n-18g library. This is done by conserving energy. The following calculations illustrate the conversion between the ORIGEN2 energy levels to the SCALE code energy levels.

Scale Group 35, 1.66-2.0:

$$= \frac{(2.0 - 1.66)}{(2.0 - 1.5)} * (\frac{1.75}{1.83}) * 1.05E + 12$$

= 6.828E + 11

Scale Group 36, 1.33 - 1.66 MeV:

 $= \frac{(1.66 - 1.5)}{(2.0 - 1.5)} * (\frac{1.75}{1.495}) * 1.05E + 12 + \frac{(1.5 - 1.33)}{(1.5 - 1.0)} * (\frac{1.25}{1.495}) * 3.41E + 13$ = 1.009E + 13

B3.7-2 DETERMINATION OF THE NEUTRON SOURCE SPECTRA

The neutron source in spent fuel is from either spontaneous fission of the actinides or from (α, n) reactions. For this fuel, the spontaneous fission source and (α, n) reactions are present. The

B3.7-2

HNF-SD-SNF-FDR-003 Rev. 0

spontaneous neutron source is due primarily to six nuclides: Cm-242, Cm-244, Cm-246, Pu-238, Pu-240, and Pu-242.

From Reference 2, the following fission source is tabulated below:

Table B3.7-3 (a,n) and Spontaneous Fission Source for Mark IV Fuel

Component of Source	Source Strength (neutrons/sec/MCO)	%
(α,n)	3.578E+06	. 33%
Spontaneous Fission	7.317E+06	67%
Total	1.090E+07	

Upper Energy (MeV)	Fraction
0.00	0.00000
0.10	0.01194
0.20	0.01972
0.30	0.02424
0.40	0.02726
0.50	0.02934
0.60	0.03076
0.70	0.03167
0.80	0.03218
0.90	0.03238
1.00	0.03232
1.20	0.06368
1.40	0.06140
1.60	0.05832
1.80	0.05475
2.00	0.05090
2.20	0.04695
2.40	0.04301
2.60	0.03917
2.80	0.03549
3.00	0.03202
3.20	0.02876
3.40	0.02574
3.60	0.02297
3.80	0.02043
4.00	0.01812
4.20	0.01603
4.40	0.01415
4.60	0.01246
4.80	0.01095
5.00	0.00960
5.50	0.01907
6.00	0.01354
6.50	0.00953
7.00	0.00665
7.50	0.00461
8.00	0.00318
9.00	0.00366
11.00	0.00169
12.00	0.00076
12.00	0.00034
13.00	0.00015
14.00	0.00007
Total	0.00003
Total	0.999999

Table B3.7-4 Spontaneous Fission Specrta

Table B3.7-5 (a,n) Fission Spectra

0.00	0.00000
0.10	0.01059
0.20	0.01184
0.30	0.01153
0.40	0.01371
0.50	0.01869
0.60	0.02103
0.70	0.02305
0.80	0.02523
0.90	0.02414
1.00	0.01994
1.00	0.02087
1.10	0.02259
1.20	0.02530
1.50	0.02741
1.40	0.02741
1.50	0.02804
1.60	0.02944
1.70	0.03193
1.80	0.03551
1.90	0.03692
2.00	0.03879
2.10	0.03894
2.20	0.04065
2.30	0.04128
2.40	0.03956
2.50	0.03785
2.60	0.03645
2.70	0.03474
2.80	0.03209
2.90	0.03115
3.00	0.02928
3.10	0.02586
3.20	0.02430
3.30	0.02087
3.40	0.01698
3.50	0.01433
3.60	0.01231
3.70	0.00997
3.80	0.00857
3.90	0.00748
4.00	0.00607
4.10	0.00545
4.20	0.00358
4.30	0.00280
4.40	0.00171
4.50	0.00109
	1.00000

FOR SPONTANEOUS FISSION SPECTRA

For Group 1, 6.434 - 20.0 MeV:

$$= \left(\frac{(6.434 - 6.0)}{(6.5 - 6.0)} * \left(\frac{6.25}{11.22}\right) * 0.00953\right) + 0.00665 + 0.00461 + 0.00318 + 0.00366 + 0.00169 + 0.00076 + 0.00034 + 0.00015 + 0.00007 + 0.00003 = 0.02184$$

For Group 2, 3.00-6.434:

$$= 0.02876 + 0.02574 + 0.02297 + 0.02043 + 0.01812 + 0.01063 + 0.01415 + 0.01246 + 0.01095 + 0.00960 + 0.01907 + (\frac{6.434 - 6.00}{6.50 - 6.00} * 0.00953 * \frac{6.25}{4.717}) + 0.1354$$

= 0.22278

FOR (α, n) SPECTRA

For Group 2, 3.0-6.434 Mev:

= 0.02586 + 0.02430 + 0.02087 + 0.01698 + 0.01433 + 0.01231 + 0.00997 + 0.00857 + 0.00748 + 0.00607 + 0.00545 + 0.00358 + 0.00280 + 0.00171 + 0.000109 = 0.16137

For Group 3, 1.85 - 3.0 MeV:

 $= 0.02928 + 0.03115 + 0.03209 + 0.03474 + 0.03645 + 0.03785 + 0.03956 + 0.04128 + 0.04065 + 0.03894 + 0.03879 + \frac{1.90 - 1.85}{1.90 - 1.80} * 0.03692 * \frac{1.85}{2.425}$ = 0.41486

B3.7-6

B3.7-3 SAS1 INPUT FILES

Axial Model, Top

=SAS1 K-BASIN FUEL 5/96 - NEUTRON WHC-ST-TP-SARP-017. GAMMA ECN 191402 27N-18COUPLE INFHOMMEDIUM ' FUEL MODELED, 6.34 MTU PER MCO - SS304 BASKET - ZIRC CLAD URANIUM 1 DEN=6.28 1.0 293 92235 1.0 92238 99.0 END ZIRCALLOY 1 DEN=0.441 END 1 DEN=0.338 END SS304 SS304 2 1.0 END END COMP END LAST TOP MODEL 12" SHIELD PLUG ONLY DISC REFLECTED 1 130.0 40 -1 0 0 10.8 2.87E9 1 186.29 40 -1 0 0 10.8 2.878E9 2 216.77 31 0 END ZONE 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z NDETEC=4 DY=103.06 DZ=103.06 READ XSDOSE 51 53 0.0 2.0 0.0 100. 0.0 200. 0.0 300. END =SAS1 K-BASIN FUEL 5/96 - NEUTRON WHC-ST-TP-SARP-017, GAMMA ECN 191402 27N-18COUPLE INFHOMMEDIUM ' FUEL MODELED, 6.34 MTU PER MCO - SS304 BASKET - ZIRC CLAD 1 DEN=6.28 1.0 293 92235 1.0 92238 99.0 END URANIUM ZIRCALLOY 1 DEN=0.441 END SS304 1 DEN=0.338 END SS304 2 1.0 END

```
E-15166
```

END COMP END LAST TOP MODEL 12in MCO SHIELD PLUG AND 3in TN-WHC LID DISC REFLECTED 1 130.0 40 -1 0 0 10.8 2.87E9 1 186.29 40 -1 0 0 10.8 2.878E9 2 216.77 31 0 2 224.39 8 0 END ZONE 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z NDETEC=4 DY=103.06 DZ=103.06 READ XSDOSE 51.53 0.0 2.0 0.0 100. 0.0 200. 0.0 300. END

Axial Model, Bottom

=SAS1 K-BASIN FUEL 5/96 - NEUTRON WHC-ST-TP-SARP-017, GAMMA ECN 191402 27N-18COUPLE INFHOMMEDIUM ' FUEL MODELED, 6.34 MTU PER MCO - SS304 BASKET - ZIRC CLAD URANIUM 1 DEN=6.28 1.0 293 92235 1.0 92238 99.0 END ZIRCALLOY 1 DEN=0.441 END SS304 1 DEN=0.338 END SS304 2 1.0 END END COMP END LAST BOTTOM MODEL TN-WHC 6.125in THICK AND MCO 1.76in THICK DISC REFLECTED 1 130.0 40 -1 0 0 10.8 2.87E9 1 186.29 40 -1 0 0 10.8 2.878E9 2 190.76 4 0

```
E-15166
```

2 206.32 17 0 END ZONE 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z NDETEC=4 DY=103.06 DZ=103.06 READ XSDOSE 51.53 0.0 2.0 0.0 100. 0.0 200. 0.0 300. END

Radial Model

=SAS1 K-BASIN FUEL 5/96 - NEUTRON WHC-ST-TP-SARP-017, GAMMA ECN 191402 27N-18COUPLE INFHOMMEDIUM ' FUEL MODELED, 6.34 MTU PER MCO - SS304 BASKET - ZIRC CLAD URANIUM 1 DEN=6.28 1.0 293 92235 1.0 92238 99.0 END ZIRCALLOY 1 DEN=0.441 END SS304 1 DEN=0.338 END SS304 2 1.0 END END COMP END LAST RADIAL MODEL TN-WHC 7.25in THICK AND MCO 0.5in THICK CYLINDRICAL 1 29.37 30 -1 0 0 10.8 2.87E9 2 30.64 2 0 0 32.00 1 0 2 50.42 20 0 END ZONE 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 26Z 0.00000 0.00024 0.00348 0.00833 0.01236 0.31211 0.64458 0.01829 4Z NDETEC=4 DY=103.06 DZ=103.06 READ XSDOSE 372.57 52.00 186.29 152.00 186.29 252.00 186.29 367.64 186.29

END

SAS4 INPUT FILES

Radial Gamma

=sas4 Westinghouse Hanford Cask 3-D Shielding Analysis 7/96 27N-18couple infhommedium ' Fuel modeled, 6.34 MTU per MCO - SS304 basket - Zr clad uranium 1 den=6.28 1.0 293 92235 1.0 92238 99.0 end zircalloy 1 den=0.441 end ss304 1 den=0.338 end ss304 2 1.0 end end comp idr=0 ity=2 izm=4 frd=29.37 end 29.37 30.64 32.00 50.42 end 1 2 0 2 end xend tim=20.0 nst=500 nod=3 sfa=2.898+15 fr2=0.7 fr3=0.7 fr4=0.7 igo=0 mfu=1 nit=800 end soe 34z 0.00024 0.00348 0.00833 0.01286 0.31211 0.64458 0.01829 4z end det 52.0 0. 194.16 81.0 0. 194.16 81.0 0. 206.0 end gend TN-WHC Cask Radial Gamma Dose Rate around drain port with cover(HOLE) fue 186.29 186.30 end fend cav 0 32.00 190.77 end ins 2 30.64 190.76 end inn 2 37.95 190.80 end rs1 2 48.51 190.20 end our 2 50.42 206.33 end as1 2 37.95 198.12 end cend end

Radial Neutron

=sas4

B3.7-11

```
E-15166
```

Westinghouse Hanford Cask 3-D Shielding Analysis 7/96 27N-18couple infhommedium ' Fuel modeled, 6.34 MTU per MCO - SS304 basket - Zr clad uranium 1 den=6.28 1.0 293 92235 1.0 92238 99.0 end zircallov 1 den=0.441 end ss304 1 den=0.338 end ss304 2 1.0 end end comp idr=0 ity=1 izm=4 frd=29.37 end 29.37 30.64 32.00 50.42 end 1 2 0 2 end xend tim=30.0 nst=100 nod=3 sfa=1.09+7 fr2=0.7 fr3=0.7 fr4=0.7 igo=0 mfu=1 nit=100 end soe 0.01463 0.20251 0.28869 0.13389 0.14380 0.14175 0.07145 20z end det 52.0 0. 194.16 81.0 0. 194.16 81.0 0. 206.0 end gend TN-WHC Cask Radial Neutron Dose Rate around drain port with cover(HOLE) fue 186.29 186.30 end fend cav 0 32.00 190.77 end ins 2 30.64 190.76 end inn 2 37.95 190.80 end rs1 2 48.51 190.20 end our 2 50.42 206.33 end as1 2 37.95 198.12 end cend end

B3.7-12

B4.0 STRUCTURAL EVALUATION

B4.1 INTRODUCTION

This Section, including its appendices, presents the structural evaluation of the cask. This evaluation demonstrates that the cask structural design satisfies the Hanford Specification⁽¹⁾.

B4.2 STRUCTURAL EVALUATION OF PACKAGE

B4.2.1 Structural Design and Features

The structural integrity of the cask under normal conditions of transport and hypothetical accident conditions specified in Hanford Specification is shown to meet the design criteria described in Sections B4.3 and B4.4. The cask is a transport packaging which consists of two major structural components: the shell or cask body assembly and the lid assembly. These components are described in Section A2.0 and are shown on drawings provided in Section A9.1, Appendix.

The shell or cask body cylinder assembly is an open ended (at the top) cylindrical unit with an integral closed bottom end. This assembly consists of a 7.31 inch thick ASME SA336 Type F304 stainless steel shell welded to a massive stainless steel bottom closure. The cask bottom is 6.13 in. thick.

The lid assembly is a 3.50 in. thick plate made of ASME SA336 Type F304 stainless steel. The lid is grooved to retain the closure seal. Two trunnions with brackets and gussets, welded to the lid, are used to lift the cask during handling. The lid, lid seal, vent and drain covers, their seals and bolts complete the packaging containment boundary. The lid assembly is bolted to the shell or body cylinder assembly with twelve (12) 1.5" high strength closure bolts.

The wall thickness of the outer shell, bottom plate and the lid enable the packaging to withstand the hypothetical puncture accident. The shell and lid are designed to be both strong and ductile in order to be capable of withstanding the punch loading.

Appendix B4.5A provides the impact analysis of the cask. Appendix B4.5B describes the lid bolt analysis. Appendix B4.5C presents the structural analysis of the cask body. Appendix B4.5D presents the stress analysis of the cask lifting attachment.

B4.2.2 Mechanical Properties of Materials

B4-1

The mechanical properties of structural materials used in the cask is shown on Table B4.2-1 and

the effects of temperature on these properties are also shown on Table B4.2-1. The materials are identified and procured by reference to ASME and corresponding ASTM specifications. The yield and ultimate strengths of the structural steels shown on Table B4.2-1 are the minimum values specified in the material specifications. The ASME design stress intensity values (S_m) for Class 1 components are used to establish allowable stresses for the elastic analyses performed for the cask. Values of S_m are provided on Table B4.2-1. Stress intensity limits for the various stress categories are discussed in Sections B4.3 and B4.4.

Component	Material	Temp. °F	Ultimate S _u (ksi)	Yield S _y (ksi)	Allow. S _m (ksi)	E (E ⁶ psi)	α* (E ⁻⁶)
Cask Body	SA-336	70	70	30	20	28.3	8.55
and Lid	Туре F304	200	66.2	25	20	27.6	8.79
		300	61.5	22.5	20	27.0	9.0
		400	60.0	20.7	18.7	26.5	9.19
Lid Bolt	SA-479	70	135	105		28.3	8.87
	XM19 Hot Rolled	200				27.6	9.02
		300				27.0	9.10
		400				26.5	9.14

Table B4.2-1 Temperature Dependent Material Properties

* Mean Coefficient of Thermal Expansion (in/in-°F) From 70°F to the Indicated Temperature.

B4.2.3 Chemical and Galvanic Reaction

The materials of fabrication are summarized in section B4.2.2. All structural components are the same or similar alloys of stainless steel and therefore are not subject to chemical or galvanic interaction.

B4.2.4 Size of Package and Cavity

The basic structure of the cask is a right circular cylinder. The cask is 170.25 inches long and 39.81 inches in diameter except at the lid end where the diameter is 31.50 inches. The cask cavity has a length of 160.50 inches. The general arrangement of the cask is depicted in Figure B4.2-1. Component terminology used in this DAR is also identified on Figure B4.2-1. The closure lid end is referred to as the top with the packaging in the vertical orientation. Detailed design drawings for the cask are provided in Appendix A9.1. Table B4.2-2 summarizes the materials of construction used in the cask.

The basic components of the cask are the cask body, closure lid, and lid bolts. The cask body consists of the cylindrical shell assembly and bottom plate. The closure lid is attached to the cask body with twelve 1.5 inch diameter bolts. Two lifting trunnions with brackets and gussets are welded to the lid-and are a 180° apart. Two penetrations into the containment are provided to support cask operations. One is located in the lid and the other is located in the cask bottom. The maximum gross weight of the loaded cask is 57,910 pounds including a payload of 18,950 pounds. The cask is transported in the vertical orientation with the lid end facing the up-direction. During transport, the cask is supported on the trailer by a tiedown system.

Component	Material
Shell Assembly	SA-336, Type F304
Lid	SA-336, Type F304
Lid Bolt	SA-479 XM19 Hot Rolled
Trunnion	SA-182, GR. F304
Brackets and Gussets	Type 304 SS
Vent & Drain Covers	SA-240 Type 304
Bolts for Vent & Drain Covers	SA-193-B8

Table B4.2-2 Material of Construction

Figure B4.2-1 General Arrangement of TN-WHC CASK

B4-4

B4.2.5 Weights and Center of Gravity

The calculated gross weight of the cask in the transport configuration (including dry payload of 18,950 lbs) is 57,910 pounds. Approximate weights of major individual components or subassemblies are tabulated below:

Weight of Lid:	1,890 lbs
Weight of Shell:	34,300 lbs
Weight of Bottom:	2,270 lbs
Weight of Lifting Attachment:	500 lbs
Weight of Dry MCO:	18,950 lbs
Gross Package Weight (Dry):	57,910 lbs

The center of gravity of the unloaded cask is located on the cylindrical axis at 82.29 inches from the outer bottom surface.

The center of gravity for a loaded cask (dry) is located on the cylindrical axis at approximately 83.6 inches from the outer bottom surface.

B4.2.6 Tamper - Indicating Feature

The tamper indicating feature is not required.

B4.2.7 Positive Closure

Positive containment closure is accomplished entirely by the bolted design. Twelve bolts are used to close the cask closure lid. Four bolts are used to close the drain port cover and the vent port cover. This extensive bolting configuration prevents unintentional opening of the containment system.

B4.2.8 Cask Lifting Attachments and Tiedown System

The detailed stress calculations of the cask lifting attachment and tiedown system are presented in Appendix B4.5D and B7.3, respectively.

B4.2.9 Brittle Fracture

Brittle fracture of the cask body components is precluded by the choice of austenitic stainless

steel for fabrication of the cask.

B4.3 NORMAL TRANSPORT CONDITIONS

This section describes the response of the cask to the loading conditions specified by the Hanford Specification. The design criteria established for the cask for the normal conditions of transport are described in Section 4.3.2. These criteria are selected to ensure that the package performance standards specified by the Hanford Specification is satisfied. Under normal conditions of transport there will be no loss or dispersal of radioactive contents, no significant increase in external radiation levels, and no substantial reduction in the effectiveness of the packaging.

Detailed structural analyses of various cask components subjected to individual loads are provided in the Appendices to this section. The limiting results from these analyses are used in this Section to quantify cask performance in response to the normal condition of transport load combinations selected for typical transport cask design. Table B4.3-1 provides an overview of the performance evaluations reported in each load combination subsection. Each subsection provides the limiting structural analysis result for the affected cask component(s) in comparison to the established design criteria. This comparison permits the minimum margin of safety for a given component subjected to a given loading condition to be readily identified. In all cases, the acceptability of the cask design with respect to established criteria and consequently with respect to the Hanford Specification standards is demonstrated.

The impact analysis results for the cask structure can be taken directly from the analysis in Appendix B4.5A. The structural analysis of the cask body is presented in Appendix B4.5C and covers a wide range of individual loading conditions. The stress results from the various individual loads must be combined in order to represent the stress condition in the cask body under the specified condition evaluated in this section. An explanation of the results reporting format and stress combination technique used to apply the results from Appendix B4.5C is provided here.

Reporting Method for Cask Body Stresses

Appendix B4.5C provides the detailed description of the structural analyses of the cask body. That appendix describes the detailed ANSYS⁽³⁾ model used to analyze various applied loads. Table B4.3-2 identifies the individual loads (IL) analyzed which are applicable to normal conditions of transport. Some of these individual loads are axisymmetric (e.g. pressure) and others are asymmetric (e.g. free drop).

Figure B4.3-1 shows the selected locations on the cask body where stress results for these analyses are reported. Detailed stresses are actually available at as many locations as there are

nodes in the finite element model. However, for practical considerations, the reporting of stress results is limited to those locations shown on Figure B4.3-1. These locations were selected to be representative of the stress distribution in the cask body with special attention given to areas subject to high stresses. The maximum stress may occur at a different location for each individual load.

The stress results for the individual load case tables reported in Appendix B4.5C are the maximum stresses for each individual load case. Two or more individual load cases must be combined to determine the total stresses at the standard stress reporting locations for the various load combinations. This is accomplished using the ANSYS postprocessor which algebraicly adds the stress components at each of the standard locations.

Several other items should be noted. In the cask, thermal stresses occur due to the effects of differential thermal expansion. When evaluating stresses, these thermal stresses are conservatively treated as primary stresses and the combined stresses due to primary loads (like pressure) and differential expansion (such as heating from 70°F to hot thermal conditions) are evaluated as primary stresses. In addition, some individual load cases in Appendix B4.5C were performed for the corresponding unit load (1G) condition (like the end drop and side drop) and are factored for the normal condition.

For the axisymmetric cases, the stress is constant around the circumference of the cask at each stress reporting location. For asymmetric analyses with significant differences in stress magnitudes on the extreme opposite sides of the cask (usually top and bottom for a horizontal cask) the stresses at locations on both sides are reported in separate tables.

Table B4.3-3 provides a matrix of the individual loads and how they are combined to determine the cask body stresses for the specified normal conditions of transport. The thermal stresses due to the hot and cold conditions are actually secondary stresses that could be evaluated using higher allowables than for primary stresses. They are conservatively added to the primary stresses and the combined stresses are evaluated using primary stress allowables. An "x" in Table B4.3-3 indicates that the stress results for the individual load case are used directly. A quantitative number (F) indicates the load factor applied to the individual stresses.

For the increased external pressure load combination, it is conservatively assumed that the cask cavity is at 0 psia. Since the specified load combination condition is 20 psia, the net differential pressure acting on the cask body is 20 psi.

Table B4.3-1 Normal Conditions of Transport, TN-WHC Cask Performance Evaluation Overview

Loading Conditions	DAR Section	Scope of Evaluation
Thermal - Hot	B4.3.4.2	Cask Body Stresses due to Different Thermal Expansion - Hot
Thermal - Cold	B4.3.4.2	Cask Body Stresses due to Different Thermal Expansion - Cold
Maximum Pressure	B4.3.4.2	Cask Body Stresses due to Maximum Internal pressure
Increased External Pressure	B4.3.4.3.1	Cask Body Stresses (External Pressure = 20 psi)
Reduced External Pressure	B4.3.4.3.2	Cask Body Stresses (Internal Pressure = 161.2 psi)
Vibration	B4.3.4.3.3	Cask Body Stresses for Vibration Normally Incident to Transport
Water Spray	B4.3.4.3.4	Negligible
Free Drop	B4.3.4.3.5	Cask Body Stresses for Bottom End and Lid End Drops
	B4.3.4.3.5	Cask Body Stresses for Side Drop
	B4.3.4.3.5	Cask Body Stresses for C.G. Over Lid End Corner Drop
Penetration	B4.3.4.3.6	Negligible
Fatigue Analysis	B4.3.4.3.7	Fatigue Analysis Under Normal Transport Condition
Lid Bolt Analysis	B4.3.4.3.8	Lid Bolt Stresses - Lid End Corner Impact
Conclusions	B4.3.4.3.9	Summary of the Results

.

E-15166

Table B4.3-2 Normal Conditions of Transport, Individual Load Cases for Cask Body Analysis

Load Case	Individual load Description	Stress Results Table
IL-1	Bolt Preload	B4.5C-3
IL-2	Thermal Stress at Hot Environment	B4.5C-11
IL-3	Thermal Stress at Cold Environment	B4.5C-12
IL-4	Internal Pressure	B4.5C-4
IL-5	External Pressure	B4.5C-5
IL-6	1G Down Cask Supported by Tie-Down System	B4.5C-7
IL-7	Vibration Load Cask Supported by Tie-Down System	B4.5C-6
IL-8	One Foot End Drop on Bottom End (1G)	B4.5C-7
IL-9	One Foot End Drop on Lid End (1G)	B4.5C-8
IL-10	One Foot Side Drop (1G)	B4.5C-9
IL-11	One Foot C.G. Over Lid End Corner Drop (1G)	B4.5C-10

Table B4.3-3	Summary o	f Load	Combinations	for	Normal	Conditions	of	Transport
--------------	-----------	--------	--------------	-----	--------	------------	----	-----------

Load Combinations	Applicable Individual Load				Stress Result							
	IL- 1	IL- 2	1L- 3	IL- 4	IL- 5	IL- 6	IL- 7	IL- 8	IL- 9	IL- 10	IL- 11	Table No.
Hot Environment	x	x		x		x						B4.3-5
Cold Environment	x		x		x	x						B4.3-6
Transport	x	x		x			x					B4.3-7
Vibrations	x		x		x		x					B4.3-8
1 Foot Bottom End Drop (25G)	x	x		x				x F= 25				B4.3-9
	x		x		x			x F= 25				B4.3-10
1 Foot Lid End Drop (25G)	x	x		x					x F= 25			B4.3-11
	x		x		x				x F= 25			B4.3-12
1 Foot Side Drop (24G)	x	x		x						x F= 24		B4.3-13 B4.3 -14
	x		x		x					x F= 24		B4.3-15 B4.3-16
1 Foot Lid Corner Drop (18G)	x	x		x							x F= 18	B4.3-17 B4-3-18
	x		x		x						x F= 18	B4.3-19 B4.3 -20

B4.3.1 Conditions To Be Evaluated

The cask will be designed to withstand each of the normal transport conditions specified in Hanford Specification as listed below:

B4.3.1.1 Environmental Conditions

The design temperature limits for the individual components, parts, and materials of the package will be determined by analyses. The analyses will be based upon the conditions listed below. The operational temperatures will be shown to not exceed the design limits.

- a) Maximum heat generation rate of worst-case source (for normal conditions) plus maximum solar heat load plus maximum air temperature of 115 °F.
- b) Minimum air temperature of -27 °F and zero heat generation rate.

B4.3.1.2 Reduced External Pressure

An external pressure of 3.5 psi absolute.

B4.3.1.3 Increased External Pressure

An external pressure of 20 psi absolute.

B4.3.1.4 Internal Pressure

An internal working pressure of 161.2 psi will be used for stress calculations.

B4.3.1.5 Vibration

The casks will be evaluated to confirm containment integrity when exposed to normal vibration due to the transportation from the 100 K West and East basins to the CSB in the 200 East Area by the transport vehicle. The cask is heavy and rigid and attached directly to the trailer bed. Trailer bed shock and vibration levels are applied directly to the package. The shock and vibration design limits by truck/trailer are those stated in Hanford Specification.

B4.3.1.6 Water Spray

The cask will be evaluated to confirm containment integrity through a water spray that simulates exposure to rainfall of approximately 2 in. (5 cm) per hour for at least one hour.

B4.3.1.7 Free Drop

The package will be evaluated to demonstrate containment after to a 1-ft (0.3-m) free drop onto a horizontal, yielding surface. During the free drop, the MCO will not be exposed to greater than 100g's.

B4.3.1.8 Penetration

Impact of the hemispherical end of a vertical steel cylinder of 1.25 in. (3.2 cm) diameter and 13 lb (6.00 kg) mass, dropped from a height of 40.00 in (1.00 m) onto the exposed surface of the package which is expected to be most vulnerable to puncture. The long axis of the cylinder must be perpendicular to the package surface.

B4.3.2 Acceptance Criteria

The packaging consists of two major components:

- Cask Body Cylinder Assembly
- Lid Assembly

The structural design criteria for these components are described below.

Containment Boundary

The containment boundary consists of the cask body cylindrical shell, bottom plate and closure flange out to the seal seating surface and the lid. The lid bolts and seals are also part of the containment boundary as is the drain and vent cover plates, bolts and seals. The containment boundary is designed to the maximum practical extent as an ASME Class I component in accordance with the rules of the ASME⁽⁴⁾ Boiler and Pressure Vessel Code, Section III, Subsection NB (1992 Edition). The Subsection NB guidelines for materials, design, fabrication and examination are applied to the above components as required by the Specification.

The acceptability of the containment boundary under the applied loads is based on the following criteria:

- ASME Code Design Stress Intensities
- Fatigue Failure to be Precluded
- Brittle Fracture to be Precluded
- Buckling to be Prevented

The values for material properties, design stress intensities (S_m) and design fatigue curves for Class 1 components given in Part D of Section II of the ASME B&PV Code will be used for the containment boundary materials. Allowable stress levels for containment components are outlined in Table B4.3-4 of this Section.

The design properties of other materials will be based on industry-recognized specifications, or standards, or on appropriate test data.

Bolting

In the special case of bolting, the average bolt stress is limited to 2/3 $\rm S_y$ and the maximum combined stress is limited to 0.9 $\rm S_y$ for normal condition of transport.

Brittle Fracture

The containment vessel is entirely austenitic stainless steel (Type 304) which is ductile even at low temperature. Thus, brittle fracture is precluded.

Table B4.3-4 Containment Structure/Fastener Allowable Stre
--

STRESS CATEGORY	CONTAINMENT STRUCTURE ALLOWABLE STRESS				
	Normal Conditions	Accident Conditions			
Primary Membrane General P _m Local P _L	S _m 1.5 S _m	Lesser of : 2.4 S_m or 0.7 S_u (1) 3.6 S_m or S_u (1)			
Primary Membrane + Bending $(P_m \text{ or } P_L) + P_b$	1.5 S _m	Lesser of : 3.6 S _m or S _u (1)			
Range of Primary + Secondary $(P_m \text{ or } P_L) + P_b + Q$	3.0 S _m	$2 \times S_a$ for 10 Cycles (Code Sect. III, App. I)			
Bearing Stress	Sy	S_y for Seal Surface S_u Elsewhere			
Pure Shear Stress	0.6 S _m	0.42 S _u			
Fatigue	Cumulative Fatigue Usage Factor ≤ 1	Not Applicable			

STRESS CATEGORY	CONTAINMENT FASTENER ALLOWABLE STRESS	
	Normal Conditions	Accident Conditions
Average Tensile Stress	2/3 S _y	Lesser of: 0.7 S _u or S _y
Average Shear Stress	0.4 S _y	Lesser of: 0.42 S _u or 0.6 S _y
Maximum Combined Stress	0.9 S _y	S _u

(1) When evaluating the results from the nonlinear elastic plastic analysis for the accident conditions, the general primary membrane stress intensity, P_m, shall not exceed 0.7 S_u and the maximum primary stress intensity at any location (P_L or P_L + P_b) shall not exceed 0.9 S_u. These limits are in accordance with Appendix F of Section III of the Code.

B4.3.3 Structural Model

The cask body consists of the cylindrical shell, the bottom, the lid and the lid bolts. The elements used to model the bolts are ANSYS STIF3, beam elements. The cylindrical shell, the bottom end closure and the lid are modeled using either ANSYS STIF25 axisymmetric solid elements or ANSYS STIF42 axisymmetric solid elements. The loading applied to this type of elements may be either axisymmetric for some cases and asymmetric for other cases. The model geometry is based on Drawings H-1-81535, sheets 1 to 5. The contact surface at the lid and cylindrical shell is modeled using separate nodes in the interfacing components. These nodes are coupled or left uncoupled for specific constraint conditions as discussed below. All the analyses were performed using the model shown in Figures B4.5C-1 and B4.5C-2. The mechanical properties for the materials in this model are the linear values described in Section B4.2.2.

B4.3.4 Initial Conditions

B4.3.4.1 Environmental Heat Loading

Section B5.0 describes the thermal analyses performed for the cask subjected to hot environment conditions. These thermal analysis results are used to support various aspects of the structural evaluations as described in the following .

Maximum Temperature

Stress allowables for packaging components are a function of component temperature. Stress allowables are based on actual maximum calculated temperatures or conservatively selected higher temperatures. Section B5.0 summarizes significant temperatures calculated for the cask subjected to hot environment conditions. These temperatures are used to establish the allowables for every normal accident (except the thermal accident which has higher temperatures) load combination evaluated in this DAR.

Maximum Pressure

For purposes of the structural analysis of containment, a value of 150 psig is used for MNOP. The structural analysis performed assuming the same outward pressure different across the cask wall as during the reduced external pressure case, (150 + 14.7 - 3.5) 161.2 psi.

B4.3.4.2 Maximum Thermal and Pressure Stresses

Maximum Thermal Stress - Hot Environment

The thermal analysis of the cask is performed as described in Section B5.0. The temperature distribution from that analysis is used to perform an ANSYS structural analysis of the cask body thermal stresses.

Cask body stresses for the hot environment normal condition of transport are obtained by a combination of individual loads as summarized in Table B4.3-3. For this condition, it is assumed that the cask is in its normal transport configuration, mounted vertically on the trailer, and support by the tie-down system. Lid bolt preload effects and the dead weight loading are included.

Table B4.3-5 lists the total nodal stress intensity at each of the standard stress reporting locations. It may be noted that these stress intensities are the peak nodal stress intensities, the membrane and membrane plus bending stress intensities at the same locations are less than the peak nodal stress intensities. The maximum stress intensity calculated for this load combination is 1440 psi which occurs at node number 94. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi (at 150°F temperature).

Maximum Thermal Stress - Cold Environment

Containment vessel thermal stresses do occur in the cold environment due to the differential thermal expansion. The thermal stresses are determined in load case IL-3 with results tabulated in Table B4.5C-12. The cask cavity pressure at the cold environment condition is conservatively assumed to be 0 psia. This results in a net external pressure loading of 20 psi, load case IL-5 with results in Table B4.5C-5. Again, lid bolt preload and gravity load are included for cold environment load combinations.

Brittle fracture of the cask body components is precluded by the choice of austenitic stainless steel for fabrication of the cask.

Table B4.3-6 lists the total nodal stress intensity at each of the standard stress reporting locations. It may be noted that these stress intensities are the peak nodal stress intensities, the membrane and membrane plus bending stress intensities at the same locations are less than the peak nodal stress intensities. The maximum stress intensity calculated for this load combination is 369 psi which occurs at node number 34. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Maximum Pressure Stresses

For purposes of the structural analysis of containment, a value of 161.2 psi is used. This pressure loading is analyzed using the ANSYS model of the cask body as described in Appendix B4.5C and the results are reported in Table B4.5C-4 of that Appendix. This load case and corresponding results are designated as individual load IL-4. IL-4 is used to support various load combination evaluations as listed in Table B4.3-3.

B4.3.4.3 Structural Evaluations and Conclusions

B4.3.4.3.1 Increased external pressure

Cask body stresses for the increased external pressure, 20 psia, normal condition of transport are obtained by a combination of individual loads as summarized in Table B4.3-3 (same as cold environment). The conservatively assumed minimum cask cavity pressure of 0 psia results in a net external pressure loading of 20 psi.

This load case is combined with stresses due to bolt preload, gravity and cold thermal stresses. Table B4.3-6 lists the total nodal stress intensity at each of the standard stress reporting locations. It may be noted that these stress intensities are the peak nodal stress intensities, the membrane and membrane plus bending stress intensities at the same locations are less than the peak nodal stress intensities. The maximum stress intensity calculated for this load combination is 369 psi which occurs at node number 34. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

B4.3.4.3.2 Reduced External Pressure

Cask body stresses for the 3.5 psia ambient normal condition of transport are obtained by a combination of individual loads as summarized in Table B4.3-3 (same as hot environment). The conservatively assumed MNOP of 150 psig results in a net internal pressure loading of (150+14.7-3.5) 161.2 psi. The lid bolt preload and gravity load are included. The thermal stress for the hot thermal condition are included in the load combination.

Table B4.3-5 lists the total nodal stress intensity at each of the standard stress reporting locations. It may be noted that these stress intensities are the peak nodal stress intensities, the membrane and membrane plus bending stress intensities at the same locations are less than the peak nodal stress intensities. The maximum stress intensity calculated for this load combination is 1440 psi which occurs at node number 94. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

B4.3.4.3.3 Vibration

The input loading conditions used to evaluate the cask for transport vibration are obtained from truck bed accelerations in ANSI N14.23⁽⁵⁾. The peak inertia values used are 0.30 G, 0.30 G, and 0.60 G for the longitudinal, lateral and vertical directions, respectively. The stress due to the transport vibration load case are presented in Table B4.5C-6.

The combined stress results for this load case are provided in Tables B4.3-7 and B4.3-8. The highest nodal stress intensity is 1415 psi which occurs at node number 94. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

B4.3.4.3.4 Water Spray

All exterior surfaces of the cask are metal and therefore not subject to soaking or structural degradation from water absorption. The water spray condition is therefore of no consequence to the cask.

B4.3.4.3.5 Free Drop

Four drop orientations are considered credible for the normal condition of transport one-foot free drop. The structural response of the cask body is evaluated for a one-foot end drop on the bottom end, lid end, one-foot corner drop on lid end and a one-foot side drop. The nodal stress intensities calculated from the finite element model analysis (Appendix B4.5C) for the above loading conditions are reported in Tables B4.5C-7, 8, 9, and 10.

The load combinations performed to evaluate these drop events are indicated in Table B4.3-3. In all case, bolt preload effects are included. For the hot environment condition, the thermal stress load case for that temperature, the 161.2 psi pressure load case and the impact load case factored for the normal condition G level are combined. For the cold temperature evaluation, the cold thermal stress case, the 20 psi external pressure case, and the impact load case factored for the normal condition G level are combined.

Table B4.3-9 lists the total nodal stress intensity at each of the standard stress reporting locations for the bottom end drop under hot environment conditions. The maximum stress intensity calculated for this load combination is 2436 psi which occurs at node number 214. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-10 lists the total nodal stress intensity at each of the standard stress reporting locations for the bottom end drop under cold environment conditions. The maximum stress intensity calculated for this load combination is 1228 psi which occurs at node number 214. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-11 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end drop under hot environment conditions. The maximum stress intensity calculated for this load combination is 3361 psi which occurs at node number 45. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-12 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end drop under cold environment conditions. The maximum stress intensity calculated for this load combination is 3958 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-13 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under hot environment conditions (contact side). The maximum stress intensity calculated for this load combination is 3408 psi which occurs at node number 157. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-14 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 1691 psi which occurs at node number 94. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-15 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under cold environment conditions (contact side). The maximum stress intensity calculated for this load combination is 3025 psi which occurs at node number 427. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-16 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under cold environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 1551 psi which occurs at node number 157. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and

membrane plus bending stress intensity of 30,000 psi.

Table B4.3-17 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under hot environment conditions (contact side). The maximum stress intensity calculated for this load combination is 12,252 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-18 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 10,111 psi which occurs at node number 74. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-19 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under cold environment conditions (contact side). The maximum stress intensity calculated for this load combination is 13,796 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

Table B4.3-20 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 11,263 psi which occurs at node number 74. This stress intensity is well below the allowable membrane stress intensity of 20,000 psi, and membrane plus bending stress intensity of 30,000 psi.

B4.3.4.3.6 Penetration

Due to lack of sensitive external protuberances, the one meter (40 in.) drop of a 13 pound hemispherical-headed, 1-1/4 inch diameter, steel cylinder is of negligible consequence to the cask.

B4.3.4.3.7 Fatigue Analysis

The purpose of the fatigue analysis is to show quantitatively that the containment vessel stresses are within acceptable limits under normal transport conditions. The highest cyclical loading is the vibration loading. The highest nodal stress intensity under vibration loading in the containment boundary is ± 138 psi (Table B4.5C-6, node number 133).

If we apply a stress concentration factor of 4 for the structural discontinuities, the total peak stress intensity range is ± 552 . As shown in Figure I-9.2.2 of the ASME Code Section III, Appendix 1, austenitic steel can withstand an alternating stress of 23,700 psi for 10^{11} cycles.

Therefore the containment vessel alternating stress of 552 psi is well below the range where fatigue failure can occur.

A separate fatigue analysis of the lid bolts is presented in Appendix B4.5B.

B4.3.4.3.8 Lid Bolt Analysis

The lid bolts are analyzed for normal condition loadings in Appendix B4.5B. The analysis is based on NUREG/CR-6007⁽⁶⁾. The bolts are analyzed for the following normal conditions: operating preload, internal pressure, external pressure, temperature changes, impact loads and vibration loads.

The worst combined loading is due to a one foot end drop and 161.2 psi internal pressure. This results in a maximum stress intensity of 67,330 psi, which is below the allowable stress of 90,900 psi (0.9 S_y) at 150°F temperature. The fatigue analysis of the lid bolt is presented in Appendix B4.5B. The analysis shows that based on 400 round trip shipments of the cask, the total usage factor is less than one.

B4.3.4.3.9 Conclusion

From the analyses presented in Section B4.3, it can be shown that the normal loads will not result in any structural damage of the cask and the containment function of the MCO will be maintained.

Figure B4.3-1 Standard Stress Reporting Locations

Table B4.3-5 Cask Body Stresses Under Hot Environment (Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1G Gravity)

Location	Nodal Stress Intensity		
Cask Body Component	Node Number	(psi)	
Cask Bottom	133	676	
	131	840	
	214	1300	
	157	1077	
	142	489	
	220	849	
Cask Cylinder	460	445	
	427	422	
	395	550	
	369	904	
	283	715	
	316	712	
	348	813	
	256	1004	
Cask Flange	1111	212	
	1112	503	
	1115	309	
		724	
Lid	34	596	
	33	650	
	51	1296	
	47	401	
		975	
	76	722	
	48	911	
	45	449	
	94	1440	
	92	1288	
	61	1264	

* See Figure B4.3-1 for node locations.
Table B4.3-6 Cask Body Stresses Under Cold Environment (Bolt Preload, Cold Thermal, 20 psi External Pressure, 1G Gravity)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	30
	131	67
	214	49
	157	66
	142	87
	220	33
Cask Cylinder	460	70
	427	66
	395	67
	369	51
	283	51
	316	39
	348	28
	256	14
Cask Flange	1111	53
	1112	51
	1115	29
	1114	241
Lid	34	369
	33	328
	51	367
	47	162
		237
	76	220
	48	206
	45	148
	94	245
	92	228
	61	120

Table B4.3-7 Cask Body Stresses Under Hot Environment Vibrations (Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, Vibrations)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	678
	131	853
	214	1279
	157	1206
	142	483
	220	863
Cask Cylinder	460	433
	427	418
	395	550
	369	894
	283	713
	316	709
	348	826
	256	1008
Cask Flange	1111	211
	1112	503
	1115	304
	1114	722
Lid	34	590
	33	651
	51	1303
	47	399
	74	980
	76	726
	48	913
	45	451
	94	1415
	92	1292
	61	1265

Table B4.3-8 Cask Body Stresses Under Cold Environment Vibrations

(Bolt Preload, Cold Thermal, 20 psi External Pressure, Vibrations)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	165
	131	30
	214	8
	157	136
	142	104
	220	15
Cask Cylinder	460	68
	427	68
	395	58
	369	51
	283	47
	316	44
	348	15
	256	15
Cask Flange	1111	59
	1112	46
	1115	36
	1114	237
Lid	34	365
	33	328
	51	361
	47	160
		232
	76	216
	48	200
	45	145
	94	240
	92	224
	61	119

Table B4.3-9	Cask Body Stresses Under Hot Environment 1 Foot Bottom End Drop
	(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop 25G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1627
	131	1847
	214	2436
	157	202
	142	888
	220	1837
Cask Cylinder	460	1342
	427	1035
	395	887
	369	1059
	283	1038
	316	747
	348	813
	256	848
Cask Flange	1111	253
	1112	524
	1115	366
	1114	714
Lid	34	706
	33	599
	51	1060
	47	412
		765
	76	542
	48	836
	45	379
	94	1147
	92	1044
	61	1132

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	923
	131	1157
	214	1228
	157	1025
	142	1199
	220	1148
Cask Cylinder	460	968
	427	672
	395	364
	369	295
	283	949
	316	652
	348	365
	256	168
Cask Flange	1111	66
-	1112	133
	1115	97
	1114	366
Lid	34	474
	33	347
	51	616
	47	205
	74	447
	76	412
	48	362
	45	221
	94	507
	92	472
	61	252

Table B4.3-10 Cask Body Stresses Under Cold Environment 1 Foot Bottom End Drop (Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop 25G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	462
	131	749
	214	1238
	157	972
	142	366
	220	871
Cask Cylinder	460	723
	427	1010
	395	1432
	369	2070
	283	715
	316	722
	348	1009
	256	959
Cask Flange		2696
	1112	2016
	1115	2820
	1114	2380
Lid	34	2533
	33	2846
	51	2529
	47	3238
	74	165
	76	261
	48	2951
	45	3361
	94	2259
	92	2120
	61	2277

Table B4.3-11 Cask Body Stresses Under Hot Environment 1 Foot Lid End Drop (Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop 25G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	244
	131	122
	214	36
	157	173
	142	217
	220	23
Cask Cylinder	460	349
	427	647
	395	928
	369	1326
	283	331
	316	627
	348	920
	256	1136
Cask Flange	1111	2606
	1112	1834
	1115	2857
	1114	3256
Lid	34	2445
	33	3023
	51	3958
	47	3056
	74	1048
	76	1035
	48	2997
	45	2810
	94	606
	92	615
	61	2390

Table B4.3-12 Cask Body Stresses Under Cold Environment 1 Foot Lid End Drop (Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop 25G)

Table B4.3-13 Cask Body Stresses Under Hot Environment 1 Foot Side Drop (contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop 24G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	2357
	131	1810
	214	1318
	157	3408
	142	1999
	220	782
· Cask Cylinder	460	2882
	427	2977
	395	2780
	369	2116
	283	939
	316	1023
		898
	256	1129
Cask Flange	1111	1907
	1112	830
	1115	2217
	1114	729
Lid	34	1565
	33	872
	51	917
	47	176
	74	1312
	76	946
	48	702
	45	59
	94	2139
	92	1631
	61	1251

Table B4.3-14 Cask Body Stresses Under Hot Environment 1 Foot Side Drop (opp. contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop 24G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	[,] 1403
	131	538
	214	851
	157	1591
	142	560
	220	535
Cask Cylinder	460	1126
	427	1219
	395	1020
	369	842
	283	727
	316	1100
	348	931
	256	896
Cask Flange	1111	500
	1112	519
	1115	742
	1114	635
Lid	34	637
	33	522
	51	1116
	47	343
	74	961
	76	967
	48	666
	45	378
	94	1691
	92	1473
	61	1270

Table B4.3-15 Cask Body Stresses Under Cold Environment 1 Foot Side Drop (contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop 24G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	2345
	131	946
	214	701
· · ·	157	3050
	142	2303
	220	806
Cask Cylinder	460	2898
	427	3025
	395	3001
	369	2558
	283	1681
	316	1761
	348	1738
	256	1504
Cask Flange	1111	1948
	1112	814
	1115	1950
	1114	1163
Lid	34	1435
	33	955
	51	1632
	47	490
	74	339
		333
	48	1368
	45	615
		507
	92	229
	61	582

Table B4.3-16 Cask Body Stresses Under Cold Environment 1 Foot Side Drop (opp. contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop 24G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1151
	131	336
	214	425
	157	1551
	142	81
	220	315
Cask Cylinder	460	1142
	427	1265
	395	1240
	369	921
	283	831
	316	1221
	348	1001
	256	593
Cask Flange	1111	503
	1112	247
	1115	471
		570
Lid	34	396
	33	463
	51	566
	47	129
	74	618
	76	477
	48	503
	45	195
	94	1413
	92	655
	61	188

Table B4.3-17 Cask Body Stresses Under Hot Environment 1 Foot Corner Drop (contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop on lid side 18G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1218
	131	571
	214	1073
	157	1350
	142	659
	220	755
Cask Cylinder	460	498
	427	717
	395	1282
	369	2390
	283	764
	316	790
	348	952
	256	1302
Cask Flange	1111	3912
	1112	2796
	1115	4161
	1114	4203
Lid	34	4892
	33	4534
	51	12252
		2353
		10462
	76	8496
	48	8284
	45	986
	94	5307
	92	7955
	61	4721

Table B4.3-18 Cask Body Stresses Under Hot Environment 1 Foot Corner Drop (opp. contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 1 Foot Drop on lid side 18G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1065
	131	978
	214	1423
	157	1998
	142	408
	220	983
Cask Cylinder	460	765
	427	951
	395	1045
	369	1148
	283	709
	316	762
	348	789
	256	687
Cask Flange	1111	928
	1112	996
	1115	1249
		1065
Lid	34	1693
	33	1189
	51	1548
	47	961
	74	10111
	76	3770
	48	1659
	45	813
	94	7337
	92	3207
	61	1666

Table B4.3-19 Cask Body Stresses Under Cold Environment 1 Foot Corner Drop (contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop on lid side 18G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1062
	131	299
	214	200
	157	1283
	142	261
	220	99
Cask Cylinder	460	124
	427	354
	395	802
	369	1875
	283	22
	316	255
	348	830
	256	1490
Cask Flange	1111	3829
	1112	2645
	1115	4199
	1114	5087
Lid	34	4840
	33	4546
	51	13796
	47	2285
		10652
		4268
	48	9060
	45	1131
	94	6148
	92	9351
	61	6096

HNF-SD-SNF-FDR-003 Rev. 0

Table B4.3-20 Cask Body Stresses Under Cold Environment 1 Foot Corner Drop (opp. contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 1 Foot Drop on lid side 18G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1050
	131	166
	214	151
	157	1278
	142	466
	220	138
Cask Cylinder	460	391
	427	587
	395	542
	369	477
	283	486
	316	664
	348	486
	256	370
Cask Flange	Uu	860
	1112	757
	1115	1011
	1114	1126
Lid	34	1467
	33	1163
	51	2704
	47	953
	74	11263
	76	4363
	48	2496
	45	1003
	94	8841
	92	3884
	61	2462

B4.4 ACCIDENT CONDITIONS

This section describes the response of the cask to the accident loading conditions specified by the Hanford Specification. The design criteria established for the TN-WHC for the hypothetical accident conditions are described in Section B4.4.2. These criteria are selected to ensure that the package performance standards specified by the Hanford Specification⁽¹⁾ are satisfied.

The presentation of the hypothetical accident condition analyses and results is accomplished in the same manner as that used for the normal condition of transport. The detailed analyses of the various packaging components under different loading conditions are presented in the Appendices to this Section. The limiting results for the specified hypothetical accident loading conditions are taken from the Appendices and summarized here with a comparison made to the established design criteria.

Table B4.4-1 provides an overview of the performance evaluations presented in this section. Stress analysis results for the cask body and lid bolts are taken directly from the corresponding analysis appendix.

Reporting Method for Cask body Vessel Stresses

The structural analysis of the cask body was performed using an ANSYS finite element model. Stress results are reported at selected representative locations as described in Section B4.3. Because of the asymmetric characteristic of most of the hypothetical accident loads, stress results are generally reported on two opposite sides of the cask body.

Appendix B4.5C provides the detailed description of the structural analyses of the cask body. That appendix describes the detailed ANSYS model used to analyze various applied loads. Table B4.4-2 identifies the individual loads (IL) analyzed using the ANSYS model which are applicable to the hypothetical accident conditions. Some of these individual loads are axisymmetric (e.g. pressure) and others are asymmetric (e.g. side impact).

Figure B4.3-1 shows the selected locations on the cask body where stress results for these analyses are reported. Detailed stresses are actually available at as many locations as there are nodes in the finite element model. However, for practical considerations, the reporting of stress results is limited to those locations shown on Figure B4.3-1. These locations were selected to be representative of the stress distribution in the cask body with special attention given to areas subject to high stresses. The maximum stress may occur at a different location for each individual load.

The stress results for the individual load case tables reported in Appendix B4.5C are limited to the maximum stress components. Two or more individual load cases must be combined to determine the total stresses at the standard stress reporting locations for the various load combinations. This is accomplished using the ANSYS postprocessor which algebraicly adds the stress components at each of the standard locations. The membrane stress intensity is then found from the membrane stress components and the inner and outer surface membrane plus bending

stress intensities are determined from the membrane ± bending stress components.

Several other items also described in Section B4.3 should be noted. For the axisymmetric cases such as the end drop on the lid and bottom, the stress is constant around the circumference of the cask at each stress reporting location. For asymmetric analyses with significant differences in stress magnitudes on the extreme opposite sides of the cask, the stress at locations on both sides of the cask are reported in separate tables.

Table B4.4-3 provides a matrix of the individual loads and how they are combined to determine the cask body stresses for the hypothetical accident conditions. The thermal stresses due to the hot and cold conditions are actually secondary stresses that could be evaluated using higher allowables than for primary stresses. They are conservatively added to the primary stresses and the combined stresses are evaluated using the primary stress allowables. An x in Table B4.4-3 indicates that the stress results for the individual load case are used directly. A quantitative number (F) indicates the load factor applied to the individual stresses.

For the minimum internal pressure load combination, it is conservatively assumed that the cask cavity is at 0 psia. The net differential pressure acting on the cask body is then 20 psi (external pressure).

Loading Conditions	DAR Section	Scope of Evaluation
Thermal Accident	B4.4.4.2	Cask Body Stresses due to Different Thermal Expansion
Maximum Pressure	B4.4.4.2	Cask Body Stresses due to Maximum Internal pressure
Impact	B4.4.4.3.1	Cask Body Stresses for Bottom End and Lid End Drops
	B4.4.4.3.2	Cask Body Stresses for Side Drop
	B4.4.4.3.3	Cask Body Stresses for C.G. Over Lid End Corner Drop
Lid Bolt Analysis	B4.4.4.3.4	Lid Bolt Stresses - Lid End Corner Drop
Puncture	B4.4.4.3.5	Cask Body Evaluation for 40 inch Drop onto the Puncture Bar
Conclusions	B4.4.4.3.6	Summary of the Results

Table B4.4-1 Accident Conditions of Transport, TN-WHC Performance Evaluation Overview

Load Case	Individual load Description	Stress Results Table [*]
IL-1	Bolt Preload	B4.5C-3
IL-2	Thermal Stress at Hot Environment	B4.5C-11
IL-3	Thermal Stress at Cold Environment	B4.5C-12
IL-4	Internal Pressure	B4.5C-4
IL-5	External Pressure	B4.5C-5
IL-8	End Drop on Bottom End (1G)	B4.5C-7
IL-9	End Drop on Lid End (1G)	B4.5C-8
IL-10	Side Drop (1G)	B4.5C-9
IL-11	C.G. Over Lid End Corner Drop (1G)	B4.5C-10

Table B4.4-2 Accident Conditions of Transport, Individual Load Cases for Cask Body Analysis

* These tables are presented in Appendix B4.5C

Load			App	licable	Indiv	idual L	oad			Stress
Combinations	IL- 1	IL- 2	IL- 3	IL- 4	IL- 5	IL- 8	IL- 9	IL- 10	IL- 11	Result Table No.
30 Foot Bottom End Drop (30G)	х	х		x		x F= 30				B4.4-4
	х		x		x	x F= 30				B4.4-5
30 Foot Lid End Drop (30G)	x	х		x			x F= 30			B4.4-6
	x		x		x		x F= 30			B4.4-7
30 Foot Side Drop (40G)	x	x		x				x F= 40		B4.4-8 B4.4-9
	x		x		x			x F= 40		B4.4-10 B4.4-11
30 Foot Lid Corner Drop (20G)	x	X		x					x F= 20	B4.4-12 B4.4 -13
	x		x		x				x F= 20	B4.4-14 B4.4 -15

Table B4.4-3 Summary of Load Combinations for Accident Conditions of Transport

B4.4.1 Conditions To Be Evaluated

The cask is designed to withstand each of the accident transport conditions specified in Hanford Specification⁽¹⁾ as listed below:

B4.4.1.1 Impact

The response of the cask is evaluated for a free drop from a height of 30 feet onto an yielding surface at various orientations. The inertial loading applied to the cask components is determined Appendix B4.5A. The 30 foot drop is measured from the impact surface to the bottom of the impact limiter; the C.G. of the cask is much higher than 30 feet.

Cask body stresses are reported for the standard drop orientations of lid end and bottom end drops, side drop, center-of-gravity over lid end corner drop.

B4.4.1.2 Puncture

The worst case credible puncture incident is equivalent to a free drop of the cask through a distance of 40 in (1 m) in a position for which the maximum damage is expected, onto the upper end of solid, vertical, cylindrical, mild steel bar mounted on an essentially unyielding, horizontal surface. The bar must be 6 in (15 cm) in diameter, with the top horizontal and its edge rounded to a radius of not more than 1/4 in (6 mm) and of a length as to cause maximum damage to the package, but not less than 8 in (20 cm) long.

B4.4.1.3 Thermal

An ANSYS transient thermal analysis for the 30 minute thermal accident is reported in Section B5.0. The initial condition is steady state at 115[°] F ambient with maximum decay heating. The initial steady state condition is followed by 0.5 hour severe thermal transient which is then followed by a cool-down period. The temperature through the cross section of the package at the time where individual temperatures peak (0.5 hours) are summarized below:

Cask inner surface temperature = 727^{0} F Cask outer surface temperature = 1068^{0} F Lid bolt temperature = 1068^{0} F

B4.4.2 Acceptance Criteria

Containment Boundary

The cask shall be designed so that during accident conditions the cask maintains confinement of

the MCO, as demonstrated by analysis. Elastic-plastic analysis may be performed to demonstrate maintenance of confinement after the accident conditions. ASME B&PV Code Section III, Service Level D allowables will be used for acceptance. After any accident condition, as a minimum, the containment function of the MCO shall be maintained. Allowable stress levels for containment components are outlined in Table B4.3-4 of Section 4.3.

Bolting

In the special case of bolting, the maximum combined stress is limited to S_u for accident condition of transport.

Brittle Fracture

The containment vessel is entirely austenitic stainless steel (Type 304) which is ductile even at low temperature. Thus, brittle fracture is precluded.

B4.4.3 Structural Model

The cask body consists of the cylindrical shell, the bottom, the lid and the lid bolts. The elements used to model the bolts are ANSYS STIF3, beam elements. The cylindrical shell, the bottom end closure and the lid are modeled using either ANSYS STIF25 axisymmetric solid elements or ANSYS STIF42 axisymmetric solid elements (Puncture Analysis). The loading applied to this type of elements may be either axisymmetric for some cases and asymmetric for other cases. The model geometry is based on Drawings H-1-81535, sheets 1,2,3, 4, and 5 provided in Section A9.1. The contact surface at the lid and cylindrical shell is modeled using separate nodes in the interfacing components. These nodes are coupled or left uncoupled for specific constraint conditions as discussed in Appendix B4.5C. All the analyses were performed using the model shown in Figures B4.5C-1 and B4.5C-2. The mechanical properties for the materials in this model are the linear values described in Section B4.2.2.

B4.4.4 Initial Conditions

B4.4.4.1 Environmental Heat Loading

Section B5.0 describes the thermal analyses performed for the cask subjected to thermal accident conditions. These thermal analysis results are used to support various aspects of the structural evaluations as described in the following .

Maximum Temperature

Stress allowables for packaging components are a function of component temperature. Stress

allowables are based on actual maximum calculated temperatures or conservatively selected higher temperatures. Section B5.0 summarizes significant temperatures calculated for the cask subjected to thermal conditions. These temperatures are used to calculate the cask body thermal stress.

Maximum Pressure

For purpose of the structural analysis of containment, a value of 150 psi is used for MNOP. The structural analysis is performed assuming the same outward pressure differences across the cask wall as during the reduced external pressure case, (150 + 14.7 - 3.5) 161.2 psi.

B4.4.4.2 Maximum Thermal and Pressure Stresses

Maximum Thermal Stress

For the accident load combinations, the normal thermal stresses as described in Section B4.3.4.2 are used for the accident load combinations. The thermal expansion bolt stresses due to the thermal accident condition (fire condition) are presented in Appendix B4.5B.

Maximum Pressure Stresses

For purposes of the structural analysis of containment, a value of 161.2 psi as described above is used. This pressure loading is analyzed using the ANSYS model of the cask body as described in Appendix B4.5C and the results are reported in Table B4.5C-4.

B4.4.4.3 Structural Evaluations and Conclusions

B4.4.4.3.1 Bottom End and Lid End Drops

The impact analysis of the cask shows that the maximum expected inertia loading from the 30-foot end drop is 25 G's for the 90° orientation.

The structural analysis of the cask body for this loading condition was performed using an inertial loading of 30 G (90° bottom end drop and lid end drop). As shown in Table B4.5C-7 of Appendix B4.5C, the maximum stresses due to the bottom end drop is 1,440 psi and 4,350 psi for the lid end drop.

The load combinations performed to evaluate these drop events are indicated in Table B4.4-3. In all case, bolt preload effects are included. For the hot environment condition, the thermal stress load case for that temperature, the 161.2 psi pressure load case and the impact load case factored for the accident condition G level are combined. For the cold temperature evaluation, the cold thermal stress case, the 20 psi external pressure case, and the impact load case factored for the accident condition G level are combined.

Table B4.4-4 lists the total nodal stress intensity at each of the standard stress reporting locations for the bottom end drop under hot environment conditions. The maximum stress intensity calculated for this load combination is 2,674 psi which occurs at node number 214. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150° F temperature).

Table B4.4-5 lists the total nodal stress intensity at each of the standard stress reporting locations for the bottom end drop under cold environment conditions. The maximum stress intensity calculated for this load combination is 1,434 psi which occurs at node number 214. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-6 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end drop under hot environment conditions. The maximum stress intensity calculated for this load combination is 3,950 psi which occurs at node number 45. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-7 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end drop under cold environment conditions. The maximum stress intensity calculated for this load combination is 4,681 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150° F temperature).

B4.4.4.3.2 Side Drop

The analysis of the 30-foot side drop provided a inertial loading of 37 G for side drop and 39 G for slap down (Appendix 4.5A). The structural analysis of the cask body for this loading condition was performed using an inertial loading of 40 G to envelop the worst side drop and slap down conditions. As shown in Table B4.5C-9 of Appendix B4.5C, the maximum stresses due to the side drop is 5,152 psi. This maximum stress value in the containment is much less than the allowables for general membrane stress intensity of 47,670 psi.

Table B4.4-8 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under hot environment conditions (contact side). The maximum stress intensity calculated for this load combination is 5,085 psi which occurs at node number 157. This stress intensity is well below the allowable membrane stress intensity of 47.670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-9 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 2,598 psi which occurs at node number 157. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and

membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-10 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under cold environment conditions (contact side). The maximum stress intensity calculated for this load combination is 5,086 psi which occurs at node number 427. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-11 lists the total nodal stress intensity at each of the standard stress reporting locations for the side drop under cold environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 2,586 psi which occurs at node number 157. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

B4.4.4.3.3 C.G. Over Corner Drop

The response of the cask to the 30-foot corner drop was analyzed for impact on the top or lid end corner which is the more critical cask orientation (than the bottom corner) because it is the closure end. The analysis was performed using the ANSYS model as described in Appendix B4.5C. The center-of-gravity over corner drop occurs at a drop angle of approximately 80°. That is, the longitudinal axis of the cask is at an angle of 80° from the impact surface. The analysis (Appendix B4.5A) of the 80° drop orientation resulted in maximum inertia loading of 19.7 G (axial) along the cask longitudinal axis and 3.5 g transverse to the longitudinal axis at the cask CG. The maximum stress result for the 30 foot lid end corner drop is 14,964 psi.

Table B4.4-12 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under hot environment conditions (contact side). The maximum stress intensity calculated for this load combination is 13,747 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-13 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 11,338 psi which occurs at node number 74. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-14 lists the total nodal stress intensity at each of the standard stress reporting locations for the lid end corner drop under cold environment conditions (contact side). The maximum stress intensity calculated for this load combination is 15,293 psi which occurs at node number 51. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

Table B4.4-15 lists the total nodal stress intensity at each of the standard stress reporting locations

for the lid end corner drop under hot environment conditions (opposite contact side). The maximum stress intensity calculated for this load combination is 12,490 psi which occurs at node number 74. This stress intensity is well below the allowable membrane stress intensity of 47,670 psi, and membrane plus bending stress intensity of 68,1000 psi (at 150°F temperature).

B4.4.4.3.4 Lid Bolts

The lid bolts were analyzed in accordance with NUREG/CR-6007, Stress Analysis of Closure Bolts for Shipping Casks⁽⁶⁾. This analysis is presented in Appendix B4.5B. The governing hypothetical accident load is the combination of maximum internal pressure and a near perpendicular, oblique 30-foot drop in which the lid end strikes the target first and the cask contents impact on the inner side of the lid. This drop orientation is the most severe because, based on the impact analysis (Appendix B4.5A), this drop orientation results in the highest axial inertia forces that result in the highest lid bolt tensile stresses. The results in Appendix B4.5B show that the maximum stress intensity due to tension plus shear plus bending is 72,900 psi which is less than the allowable maximum stress intensity of 133,000 psi (at 150°F).

The fire accident results in a maximum bolt and lid temperature of 1068°F (1091°F is conservatively used for calculation). The thermal stress at the bolt due to this differential thermal expansion is 20,154 psi. The maximum combined stress including stresses due to preload and shears 49,386 psi. This stress is less than the bolt yield stress of 82,500 psi. The MCO will therefore be secure inside the cask during the fire accident.

B4.4.4.3.5 Puncture

Puncture Force

The most severe damage to the cask resulting from the puncture drop will occur on the outer center of the lid. The analysis is based on the Nelms⁽⁷⁾ equation. The Nelms puncture relation is given as:

 $t = (W/S_{..})^{0.71}$

Where:

e: t = lid thickness = 3.5" W = package weight = 57,910 lbs S_u = ultimate tensile strength of the lid = 70,000 psi

The package weight that can result in puncture is:

 $W = S_u t^{1.41} = 70,000 (3.5)^{1.41} = 409,482 lbs$

The actual package weight is 57,910 lbs, Therefore, the factor of safety for puncture resistance on the energy basis is:

$$F.S. = 409,482/57,910 = 7.07$$

When the package contacts the puncture bar, the force applied to the package is:

 $F_1 = \text{impact force} = \sigma_s A_p$ $\sigma_s = \text{dynamic flow pressure of stainless steel} = 45,000 \text{ psi (reference 8)}$ $A_p = \text{area of the puncture bar} = \pi/4 (6)^2 = 28.27 \text{ in}^2$ $F_1 = 45,000 \times 28.27 = 1.272 \times 10^6 \text{ lbs}$

This force produces a cask deceleration:

 $G = cask deceleration = F_t/W = 1.272 \times 10^6/57,910 = 22$

This deceleration is smaller to that which will occur during impact on end after the 30 foot free drop (25G). Therefore, global stresses that result from the inertial force will be smaller. The bending stress at the center of the lid will be calculated using the above finite element model.

Lid Stresses

The lid stresses are computed using the 2-D model as described in Appendix B4.5C-4. The loading distribution and boundary conditions are shown on Figures B4.5C-21 and B4.5C-22. The 22 G inertia load due to 40" drop is applied as body acceleration. The content's inertia load is applied as equivalent pressure on the lid as follows:

Contents weight = 19,120 lbs P = 19,120 × 22 / π (12.595)² = 844.05 psi

Elastic Analysis:

ANSYS computer Code is used for the analysis. A stress run was made using the above noted loads and boundary conditions. STIF 42 (Axisymmetric) finite element was used in the analysis.

The stresses are linearized at critical sections. The maximum membrane and maximum membrane plus bending stress intensities are as follows:

Location (Node number) (Figure B4.5C-23)	P _m (psi)	$P_m + P_b$ (psi)
84	12,560	83,280
94	10,880	85,010
93	5,275	70,560
92	30,780	57,550
91	25,430	59,960

The maximum membrane stress intensity calculated for this load is 30,780 psi at node number 92. This stress is below the allowable membrane stress intensity of 47,670 psi. The maximum membrane plus bending stress intensity is 85,010 psi at node number 94. This stress exceeds the allowable membrane plus bending stress intensity of 68,100 psi. Therefore, an elastic - plastic analysis was performed to recalculate the stresses.

Plastic Analysis:

A plastic analysis was performed (using the same finite element model, boundary conditions, and loads). The stress - strain properties used for the stainless steel is given in Figure B4.5C-24. The total load (22 G inertia and 844.05 psi) was divided in eight load steps for proper converged solution.

The maximum membrane and maximum membrane plus bending stress intensities are as follows:

Location (Node number) (Figure B4.5C-23)	P _m (psi)	$P_m + P_b$ (psi)
84	2,934	45,030
94	3,326	46,620
93	6,889	42,140
92	25,470	36,060
91	26,350	40,780

The maximum membrane stress intensity calculated for this load is 26,350 psi at node number 91. This stress is below the allowable membrane stress intensity of 47,670 psi $(0.7S_u)$. The maximum membrane plus bending stress intensity is 46,620 psi at node number 94. This stress is below the allowable membrane plus bending stress intensity of 61,290 psi $(0.9S_u)$. The analysis shows the stresses are within the ASME Code allowables.

B4.4.4.3.6 Conclusions

From the analyses presented in Section B4.4 above, it can be shown that the accident load conditions will not result in any significant structural damage of the TN-WHC cask.

The maximum combined stresses due to the 30 foot drop event are also presented in Tables B4.4-4 to B4.4-15. In nearly all of the load cases, the maximum stresses are less than the membrane allowable stress with a large margin of safety.

The lid bolt stresses do not exceed the ultimate strength during the hypothetical 30 ft drop accidents as shown in Appendix B4.5B.

During the 40 inch drop onto a 6.0 inch diameter puncture bar, the packaging may deform locally above the punch. It has been shown by analysis that the package will not be punctured and that the MCO will be confined.

The cask body material is a stainless steel. The thermal stresses due to the differential thermal expansion are insignificant. Thermal stress of the lid bolt due to the differential thermal expansion under the thermal accident conditions is less than the yield stress.

From the analyses presented in Section 4.4, it can be shown that the accident loads will not result in any significant structural damage of the cask. The cask maintains the confinement function of the MCO.

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1826
	131	2067
	214	2674
	157	199
	142	1121
	220	2067
Cask Cylinder	460	1529
	427	1163
	395	957
	369	1091
	283	1225
	316	874
	348	813
	256	817
Cask Flange	1111	265
	1112	536
	1115	384
	1114	712
Lid	34	729
	33	588
	51	1012
	47	414
	74	722
	76	505
	48	821
	45	365
	94	1093
	92	993
	61	1105

Table B4.4-4 Cask Body Stresses Under Hot Environment 30 Foot Bottom End Drop (Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop 30G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1121
	131	1384
	214	1474
	157	1225
	142	1434
	220	1380
Cask Cylinder	460	1155
	427	800
	395	454
	369	237
	283	1137
	316	780
	348	435
	256	200
Cask Flange		
	1112	151
	1115	118
	1114	392
Lid	34	496
*	33	352
	51	669
	47	215
	74	491
	76	451
	48	396
	45	237
		562
		523
	61	280

Table B4.4-5 Cask Body Stresses Under Cold Environment 30 Foot Bottom End Drop (Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop 30G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	427
	131	733
	214	1233
	157	944
	142	333
	220	875
Cask Cylinder	460	786
	427	1133
	395	1161
	369	2305
	283	715
	316	844
	348	1189
	256	1178
Cask Flange	1111	3223
	1112	2369
	1115	3393
	1114	2981
Lid	34	2950
	33	3384
	51	3235
	47	3877
	74	33
	76	420
	48	3499
	45	3950
	94	2427
	92	2285
	61	2747

Table B4.4-6 Cask Body Stresses Under Hot Environment 30 Foot Lid End Drop

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop 30G)

Table B4.4-7 Cask Body Stresses Under Cold Environment 30 Foot Lid End Drop Condition

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop 30G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	279
	131	139
	214	41
	157	203
	142	251
	220	27
Cask Cylinder	460	412
	427	769
	395	1108
	369	1592
	283	395
	316	750
	348	1101
	256	1364
Cask Flange	1111	3135
	1112	2194
	1115	3430
	1114	3861
Lid	34	2861
	33	3579
	51	4681
	47	3699
	74	1212
	76	1200
	48	3569
	45	3400
	94	773
	92	778
	61	2855

Table B4.4-8 Cask Body Stresses Under Hot Environment 30 Foot Side Drop (contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop 40G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	3921
	131	2464
	214	1373
	157	5085
	142	3503
	220	1201
Cask Cylinder	460	4858
	427	5038
	395	4825
	369	3742
	283	2042
	316	2180
	348	2038
	256	1751
Cask Flange		3213
	1112	1339
	1115	3525
	1114	1198
Lid	34	2523
	33	1535
	51	1431
	47	367
	74	1553
	76	1092
	.48	1315
	45	367
	94	2628
	92	1854
	1361	136

Table B4.4-9 Cask Body Stresses Under Hot Environment 30 Foot Side Drop (opp. contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop 40G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	1922
	131	341
	214	577
	157	2598
	142	578
	220	326
Cask Cylinder	460	1932
	427	2108
	395	1891
	369	1209
	283	1260
	316	1905
	348	1538
	256	971
Cask Flange	1111	819
	1112	555
	1115	1056
		578
Lid	34	722
	33	548
	51	1001
	47	327
	74	973
	76	1127
	48	533
	45	335
	94	2372
	92	1592
	61	1269

Table B4.4-10 Cask Body Stresses Under Cold Environment 30 Foot Side Drop (contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop 40G)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	3909
	131	1600
	214	1169
	157	508
	142	3813
	220	1335
Cask Cylinder	460	4874
	427	5086
	395	5045
	369	4297
	283	2784
	316	2918
	348	2879
	256	2498
Cask Flange	1111	3261
	1112	1352
	1115	3261
	1114	1792
Lid	34	2389
	33	2389
	51	2521
	47	769
	74	553
	76	526
	48	2196
	45	940
	94	990
	92	405
	.61	927
Table B4.4-11 Cask Body Stresses Under Cold Environment 30 Foot Side Drop (opp. contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop 40G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	1917
	131	536
	214	702
	157	2586
	142	102
	220	523
Cask Cylinder	460	1948
	427	2156
	395	2112
	369	1569
	283	1376
	316	2026
	348	1659
	256	980
Cask Flange		851
	1112	406
	1115	796
	1114	797
Lid	34	561
	33	607
	51	735
	47	207
		891
	76	782
	48	758
	45	245
	94	2355
	92	1025
	61	270

Table B4.4-12 Cask Body Stresses Under Hot Environ. 30 Foot Corner Drop (contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop on lid side Corner 20G)

Location	Nodal Stress	
		Intensity (psi)
Cask Bottom		
Cask Cylinder		
Cask Flange		
Lid		
	· · · ·	

Table B4.4-13 Cask Body Stresses Under Hot Environ. 30 Foot Corner Drop (opp. contact side)

(Bolt Preload, Hot Thermal, 161.2 psi Internal Pressure, 30 Foot Drop on lid side corner 20G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	1181
	131	994
	214	1441
	157	2097
	142	419
	220	998
Cask Cylinder	460	805
	427	1012
	395	1102
	369	1175
	283	708
	316	835
	348	786
	256	673
Cask Flange	1111	1026
		1061
	1115	1363
	1114	1166
Lid	34	1817
	33	1299
	51	1806
	47	1051
	74	11338
		4228
	48	1897
	45	912
	94	8290
	92	3588
	61	1932

Table B4.4-14 Cask Body Stresses Under Cold Environ. 30 Foot Corner Drop (contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop on lid side corner 20G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	1180
	131	328
	214	222
	157	1426
	142	293
	220	110
Cask Cylinder	460	134
	427	390
	395	895
	369	2084
	283	27
	316	285
	348	924
	256	1657
Cask Flange	1111	4259
	1112	2935
	1115	4667
	1114	5626
Lid	34	5337
	33	5048
	51	15293
	47	2539
	74	11831
	76	10274
	48	10046
	45	1247
	94	6816
		10367
	61	6760

Table B4.4-15 Cask Body Stresses Under Cold Environ. 30 Foot Corner Drop (opp. contact side)

(Bolt Preload, Cold Thermal, 20 psi External Pressure, 30 Foot Drop on lid side corner 20G)

Location	Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	1167
	131	187
	214	168
	157	1420
	142	512
	220	154
Cask Cylinder	460	431
	427	649
	395	598
	369	531
	283	538
	316	736
	348	539
	256	411
Cask Flange	1111	961
	1112	838
	1115	1126
	1114	1237
Lid	34	1592
	33	1291
	51	2968
	47	1048
	74	12490
	76	4828
	48	2760
	45	1103
	94	9799
	92	4296
	61	7728

References For Section B4.0

- Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.
- 2. Design Criteria for the TN-WHC Cask System, E-14427, Rev. 0.
- 3. ANSYS Engineering Analysis System, User's Manual Volumes 1&2, Rev. 4.4A.
- ASME Boiler and Pressure Vessel Code, Section II, III, V & IV, American Society of Mechanical Engineers, NY, 1992.
- Design Basis for Resistance to Shock and Vibration of Radioactive Material Packages in Truck Transport, ANSI N14.23, American National Standards Institute, May 1980.
- 6. Stress Analysis of Closure Bolts for Shipping Casks, NUREG/CR-6007,
- 7 A Guide for Design, Fabrication, and Analyzing of Shipping Casks for Nuclear Application, Cask Designer Guide, p.18, Nelms Equation.
- Charles R. Adams, A Comparison of Analytical Techniques for Analyzing a Nuclear-Spent-Fuel Shipping Cask Subjected to An end-On Impact, NUREG/CR-1018.

B4.5 APPENDICES

- APPENDIX B4.5A G LOAD CALCULATION
- APPENDIX B4.5B LID BOLT ANALYSIS
- APPENDIX B4.5C STRUCTURAL EVALUATION OF CASK BODY
- APPENDIX B4.5D CASK LIFTING ATTACHMENT

APPENDIX B4.5A

G LOAD CALCULATION

TABLE OF CONTENTS

Section

Page

B4.5A-1	INTRODUCTION	B4.5A-1
B4.5A-2	GENERAL APPROACH	B4.5A-1
B4.5A-3	CASK AND CONCRETE PAD/SOIL DESCRIPTION	B4.5A-2
B4.5A-4	END DROP	B4.5A-4
B4.5A-5	SIDE DROP	B4.5A-8
B4.5A-6	C.G. OVER DROP	B4.5A-13
B4.5A-7	SHALLOW ANGLE IMPACT-SLAP DOWN	B4.5A-21
B4.5A-8	REFERENCES	B4.5A-25

APPENDIX B4.5A

G LOAD CALCULATION

B4.5A-1 INTRODUCTION

This Appendix evaluates the effects of a hypothetical drop of the cask on the concrete storage pad. The following cases are evaluated:

- 30.0 ft. end drop onto the concrete slab.
- 30.0 ft. side drop onto the concrete slab.
- 30.0 ft. C.G. over corner drop onto the concrete slab.
- 30.0 ft. shallow angle impact (slap down) onto the concrete slab.

The impact analysis is based on methodology of EPRI NP-4830⁽¹⁾ and NP-7551⁽²⁾. This appendix considers the mass and geometry of the cask but assumes it to be rigid compared to the concrete storage pad. The storage pad properties and the cask geometry are used to determine the pad hardness parameter. The report provides graphs that show the force on the cask as a function of storage pad hardness. Scale model drop testing at Sandia National Laboratories and full scale cask drop testing in England have recently been performed in an attempt to "benchmark" the EPRI methodology. The preliminary results of the tests (end drops) show excellent correlation with the predicted results.

B4.5A-2 GENERAL APPROACH

The EPRI reports give Force (applied to the cask) vs. Deformation (of the target) curves for different magnitudes of target hardness. The target hardness is defined as a set of parameters times the area of the impact surface. This impact area usually depends of the deformation. The following procedure is used to determine the maximum deceleration of the cask and deformation of the target:

- 1. A small target deformation is taken.
- The geometry of the cask relative to the target is used to compute the impact area for the given deformation.
- 3. The target hardness is then computed for this target area.
- 4. The data in the EPRI report is used to determine the force associated with the deformation.

- 5. The energy absorbed in the increments in deformation is evaluated as the area under the force vs. deformation curve for the increment in deformation.
- 6. The deformation is increased and step 2-5 repeated.
- 7. This process is continued until the absorbed energy equals to weight times drop height. This is the final solution for the force and deformation.

B4.5A-3 CASK AND CONCRETE PAD/SOIL DESCRIPTION

The geometry of the cask is shown on drawing H-1-81535 sheet 1 of 5. The technical data used for cask and concrete slab/soil are :

$$\begin{split} W &= \text{Weight of cask} = 60,000 \text{ lbs} \\ E_c &= \text{Concrete elastic modules} = 3.6E6 \text{ psi} \\ \sigma_u &= \text{Ultimate concrete strength} = 4,000 \text{ psi} \\ \upsilon_s &= \text{Poisson's ratio of concrete} = 0.17 \\ h_c &= \text{Concrete pad thickness} = 8 \text{ inches} \\ S_y &= \text{Rebar yield strength} = 60,000 \text{ psi} \\ E_s &= \text{Sub-soil modulus} = 28,000 \text{ psi} \\ \upsilon_s &= \text{Poisson's ratio of soil} = 0.49 \end{split}$$

The concrete slab contains 7/8 inch diameter rebar (#7) on 12 inch spacing top and bottom, twoway, with 2" coverage. The design criteria of the rebar are listed in the Table B4.5A-1. The ultimate moment capacity of the slab is required for the analysis. This is evaluate using standard method (reference 3, pages 85-86) and is calculated in table B4.5A-2.

Rebar Size	#7 (7/8")
Spacing	12"
Rebar Dia.	0.875"
Area	0.6 in ²
Yield Strength - S _y	60,000 psi
Modulus of Elasticity - E	29 × 10 ⁶ psi

Table B4.5A-1Mechanical Properties of Rebar

 Table B4.5A-2

 M_u Calculation - 8" Concrete Slab With 7/8" Diameter Rebar

Size of Rebar = 7/8" $A_s = Cross$ Section Area of rebar = 0.6 in² $S_y = Rebar$ Yield Strength = 60,000 psi $f'_c = Ultimate$ Concrete Strength = 4,000 psi d = Average Depth of Steel = 8" - 2" -7/8" = 5.125"

By $\sum F = 0$ C = T

 $A_{s}S_{v} = 0.85 f'_{c} b a$

 $a = A_s S_v / 0.85 f'_c b = 0.6 \times 60,000/0.85 \times 4000 \times 12 = 0.8824"$

$$\sum M = 0$$

 $M_u = A_s S_v (d - a/2) = 0.6 \times 60,000 (5.125-0.8824/2) = 168,618$ lbs/in

B4.5A-4 END DROP

The results of the EPRI reports are presented in term of a target hardness number (S). In general this is given by:

$$S = \frac{M_u \sigma_u A}{W^2 \delta_a}$$

Where

$$\begin{split} M_u &= \text{Ultimate moment capacity 1 foot section of slab} = 168,624 \text{ #/in.} \\ \sigma_u &= \text{Ultimate concrete strength} = 4,000 \text{ psi} \\ A &= \text{Area of impact surface.} \\ W &= \text{Weight of cask} = 60,000 \text{ lbs.} \\ \delta_e &= \text{Deflection of cask under weight of cask (1G).} \end{split}$$

For the end drop, the area A= Area of the cask

A =
$$\pi$$
 R² = π (40.57/2)² = 1292.7 in²

The deflection (δ_e) is given as:

$$\delta_{e} = \frac{W}{2 Rk} \cos \beta R$$

Where

$$k = \frac{\pi E_s}{1 - v_s^2} = \frac{\pi (28,000)}{1 - 0.49^2} = 115,758 \text{ psi/in}$$

$$\delta_{e} = \frac{W}{2 \text{ Rk}} \cos \beta R = \frac{60000}{2 \times 20.285 \times 115758} (1 - e^{-.0816 \times 20.285} \cos 0.0816 \times 20.285)$$
$$= 0.013''$$

Then

$$S = \frac{M_u \sigma_u A}{W^2 \delta_a} = \frac{168618 \times 4000 \times 1292.7}{60000^2 \times 0.013} = 18,656$$

The force-deformation curve is obtained by interpolating the data shown on Figure 14 of EPRI report (reference 1) and is shown on figure B4.5A-1. The peak force is 25G (times weight) and the displacement at the end of elastic phase is 0.39".

We now use energy method to compute final deformation:

Let x = final deformation. Then energy absorbed by the target equals area under force vs. displacement curve to x

 $E_{ab} = W F (0.39/2 + (x - 0.39))$ W = 60,000 lbs F = 25

The potential energy of the drop is

 $E_{drop} = W (H + x)$ H = drop height

For 1 foot (12") drop

W (12 + x) = W (25) (0.39/2 + x - 0.39)

x = 0.7031"

The total energy is

 $E_{drop} = W (H + x) = 60000 (12 + 0.7031) = 762,186 \text{ in-lbs}$ $E_{ab} = W F (0.39/2 + x - 0.39) = 60000 (25) (0.39/2 + 0.7031 - 0.39) = 762,150 \text{ in-lbs}$ For 30 foot (360") drop

$$W (360 + x) = W (25) (0.39/2 + x - 0.39)$$

x = 15.203"

The total energy is

$$E_{drop} = W (H + x) = 60000 (360 + 15.203) = 22,512,180 in-lbs$$

 $E_{ab} = W F (0.39/2 + x - 0.39) = 60000 (25) (0.39/2 + 15.203 - 0.39) = 22,512,000 in-lbs$

The results of end drop:

- 1 foot Drop Peak Acceleration = 25 G Target Displacement = 0.7031"
- 30 foot Drop Peak Acceleration = 25 G Target Displacement = 15.2"

Figure B4.5A-1 Force vs. Displacement Curves

B4.5A-5 Side Drop

The side drop analysis is conducted in the same manner as for the end drop except that the expression for δ_e varies and the target impact area changes as the depth of the penetration increase. δ_e is given as:

$$\delta_{e} = \frac{W \beta}{2 k}$$

Where

$$B = \frac{E_{s}}{4} \frac{1}{E_{c}} I_{c}$$

$$I_{c} = 1/12 L h^{3} = 1/12 (168.5) (8)^{3} = 7189 in^{4}$$

$$B = \frac{28,000}{4 x 3.6 x 10^{6} x 7189} = 0.0228$$

$$k = E_s = 28,000 \text{ psi}$$

 $\delta_e = \frac{W \ \beta}{2 \ k} = 60000 \times 0.0228/(2 \times 28000) = 0.0244"$

Then $S = \frac{M_u \sigma_u A}{W^2 \ \beta} = \frac{(168618) (4,000) A}{(60,000)^2 (0.0244)}$

= 7.678 A

The impact area $A = L \times d$, where d depends on the deformation x and is shown on Table B4.5A-3.

Table B4.5A-3 Side Drop Area Calculation

 $SIN \ \Theta = (R-X)/R \qquad \Theta = SIN^{-1} (R-X)/R$

 $R^2 = (R-X)^2 + (d/2)^2$

 $d/2 = (2RX - X^2)^{1/2} \qquad \qquad d = 2(2RX - X^2)^{1/2}$

 $A = L \times d = 2L (2RX - X^2)^{1/2}$

S = 7.678 A = 7.678 (2) (L) (2RX - X^2)^{1/2} = 15.356 (L) (2RX - X^2)^{1/2}

From Table B4.5A-3, $S = 15.356 (L)(2Rx - x^2)^{1/2}$. Since the elastic portion of the force vs. deflection curves are shown to be unimportant, only the perfectly plastic part is used for the side drop analysis.

The following data is obtained from Figures 14 and 16 of the EPRI report (reference 1).

S - Hardness	F - Force	Remark
12,900	21G	Figure 14
25,800	29G	Figure 14
86,000	48.5G	Figure 16

These are plotted in the Figure B4.5A-2. A spread sheet solution is carried out to increment x, and calculate absorbed energy with solution selected at the point where absorbed energy equals W(H + x).

The following steps are carried out in calculation of absorbed energy:

- 1. Select deformation x
- 2. Calculate S, $S = 15.356 (L)(2Rx x^2)^{1/2}$.
- 3. Calculate F, F = [18 + S(48.7-18)/80000] W
- 4. Calculate energy increment ΔE , $\Delta E = (x_i x_{i-1})(F_i + F_{i-1})/2$
- 5. Add ΔE to the previous energy to obtain current total energy
- 6. Increment x until total energy equals W(H + x)

The spread sheet results are given on Table B4.5A-4.

For 1 foot (12") drop

Let x = 1"

Potential Energy = W (H + 1) = 60000 (12 +1) = 780,000 in-lbs

 $E_{absorbed by the target} = 1,037,026$ in-lbs (from Table A-4) \rangle 780,000 in-lbs

G = F/W = 1,454,766/60,000 = 24 G's

For 30 foot (360") drop

Let x = 12.5"

Potential Energy = W (H +12.5) = 60000 (360 + 12.5) = 22,320,000 in-lbs

 $E_{absorbed by the target} = 23,284,539$ in-lbs (from Table A-4) \rangle 22,320,000 in-lbs

G = F/W = 2,195,973/60,000 = 36.6 G's

Table B4.5A-4 Calculation of Absorbed Energy for Side Drop

x	d	S	Force	Energy Incr	Total Energy
(inches)	(inches)		(lbs)	(in-lbs)	(in-lbs)
		····			
0	0.00	0	0		0
0.5	8.95	11.582	1.346.669	336.667	336,667
1	12.58	16,277	1,454,766	700.359	1.037.026
1.5	15.31	19,808	1,536,084	747,713	1,784,739
2	17.57	22,726	1,603,260	784,836	2,569,575
2.5	19.51	25,243	1,661,218	816,119	3,385,694
3	21.23	27,470	1,712,498	843,429	4,229,123
3.5	22.78	29,473	1,758,614	867,778	5,096,901
4	24.19	31,295	1,800,560	889,794	5,986,695
4.5	25.48	32,965	1,839,027	909,897	6,896,591
5	26.67	34,507	1,874,520	928,387	7,824,978
5.5	27.78	35,936	. 1,907,422	945,485	8,770,463
6	28.80	37,265	1,938,031	961,363	9,731,826
6.5	29.76	38,505	1,966,585	976,154	10,707,980
7	30.66	39,665	1,993,277	989,965	11,697,946
7.5	31.50	40,750	2,018,265	1,002,885	12,700,831
8	32.28	41,767	2,041,682	1,014,987	13,715,818
8.5	33.02	42,721	2,063,641	1,026,331	14,742,148
9	33.71	43,615	2,084,237	1,036,969	15,779,118
9.5	34.36	44,454	2,103,552	1,046,947	16,826,065
10	34.97	45,240	2,121,659	1,056,303	17,882,368
10.5	35.54	45,977	2,138,617	1,065,069	18,947,437
11	36.07	46,666	2,154,483	1,073,275	20,020,712
11.5	36.57	47,310	2,169,304	1,080,947	21,101,659
12	37.03	47,910	2,183,122	1,088,106	22,189,765
12.5	37.46	48,468	2,195,973	1,094,774	23,284,539
13	37.86	48,986	2,207,892	1,100,966	24,385,505
13.5	38.23	49,464	2,218,908	1,106,700	25,492,206
14	38.57	49,904	2,229,046	1,111,989	26,604,194
14.5	38.89	50,307	2,238,330	1,116,844	27,721,038
15	39.17	50,674	2,246,779	1,121,277	28,842,315
15.5	39.43	51,006	2,254,412	1,125,298	29,967,613
16	39.65	51,303	2,261,246	1,128,915	31,096,528
16.5	39.86	51,565	2,267,292	1,132,134	32,228,662
17	40.03	51,794	2,272,565	1,134,964	33,363,626

B4.5A-6 C.G. Over Corner Drop

The C. G. over corner drop is performed in a similar manner as the side drop: Calculation of δ_e and evaluation of the impact area as a function of the deformation into the target. Some geometry relations used to evaluate of the impact area as a function of the deformation into the target are shown in Figure B4.5A-3. Table B4.5A-5 tabulates the results of the area vs. the deformation of the target. The next quantity that is needed is the deflection, δ_e . This deflection will occur as a result of the cask resting on a small portion of the cask with the area increasing as δ increases. This is similar to the side drop condition and we use that as the basis for the evaluation. Figure B4.5A-4 illustrates this relations. From page B4.5A-8:

$$\delta_{e} = \frac{W \beta}{2 k}$$

Where

$$\beta = \left(\frac{E_{s}}{4}\right)^{1/4} \beta = \left(\frac{1}{4}\right)^{1/4} \beta = \left(\frac{1}{4}\right)^{1/4} \beta = \left(\frac{1}{4}\right)^{1/4} \beta = \frac{1}{12} \left(\frac{1}{12}\right)^{1/4} \beta = \frac{1}{4} \left(\frac{1}{4}\right)^{1/4} \beta = \frac{1}{4} \left(\frac{1}{4}\right)^{1/4}$$

This equation is solved iteratively

L _{initial}	ß	δ _e	L _{final}
10	0.0462	0.0495	5.84
8	0.0489	0.0523	6.00
6.5	0.0515	0.055	6.16
6.2	0.0521	0.056	6.20(solution)

HNF-SD-SNF-FRD-003 Rev. 0

E-15166

From the above table, the solution of $\delta_e = 0.056$, then

 $S = M_u \sigma_u A/W^2 \delta_e = 168618 \times 40000 \times A/60000^2 \times 0.056 = 3.346A$

The solution is obtained on spread sheet by the following steps and is shown on Table B4.5A-5:

- 1. Calculate S, S = 3.346A (reference Table B4.5A-5 for value of A)
- 2. Calculate F, F= [[18 + S(48.7-18)/80000]] W
- 3. Calculate energy increment $\triangle E$, $\triangle E = (x_i x_{i-1})(F_i + F_{i-1})/2$
- 5. Add ΔE to the previous energy to obtain current total energy
- 6. Increment x until total energy equals W(H + x)

For 1 foot (12") drop

Let x = 1" (reference Table B4.5A-6)

Potential Energy = W (H + 1) = 60000 (12 + 1) = 780,000 in-lbs

 $E_{absorbed by the target} = 812,430 \text{ in-lbs} > 780,000 \text{ in-lbs}$

G = F/W = 1,085,654/60,000 = 18.09 G's

For 30 foot (360") drop

Let x = 20 " (reference Table B4.5A-6)

Potential Energy = W (H +20) = 60000 (360 + 20) = 22,800,000 in-lbs

 $E_{absorbed by the target} = 22,865,514 \text{ in-lbs} > 22,800,000 \text{ in-lbs}$

G = F/W = 1,180,536/60,000 = 19.7 G's

Figure B4.5A-3 Geometry of CG Over Corner Drop

$$\begin{split} &\text{SIN } \ominus = \text{R/ oc} \qquad \text{COS } \ominus = \text{bc / oc} \qquad \ominus = 76.46^{\circ} \\ &\text{bc} = \text{oc } \text{COS } \ominus = \text{R} (\ \text{COS } \ominus / \ \text{SIN } \ominus) \\ &\text{ac} = \text{ab} - \text{bc} = \text{a} / \ \text{SIN } \ominus - \text{R} (\ \text{COS } \ominus / \ \text{SIN } \ominus) \\ &\text{ad} = \text{ab/COS } \ominus = \text{a} / \ \text{SIN } \ominus \text{COS } \ominus \\ &\text{a}_{\underline{\alpha}} = \text{a} - \text{bcSIN } \ominus = \text{a} - \text{RCOS } \ominus \\ &\alpha_{\text{max}} = \text{oc} + \text{acCOS } \ominus = \text{R/SIN } \ominus + \text{acCOS } \ominus = \text{R/SIN } \ominus + \text{a}_{\underline{\alpha}} (\ \text{COS } \ominus / \ \text{SIN } \ominus) \\ &\alpha_{\text{min}} = \text{ad} - \alpha_{\text{max}} = \text{a} / \ \text{SIN } \ominus \text{COS } \ominus - \text{R/SIN } \ominus - \text{a}_{\underline{\alpha}} (\ \text{COS } \ominus / \ \text{SIN } \ominus) \end{split}$$

 $= \Delta_{\alpha} \quad (1/SIN \ominus COS \ominus - COS \ominus / SIN \ominus)$

Figure B4.5A-3 Geometry of CG Over Corner Drop-Continue

The area of the impact surface is obtained by first writing equation for intersection curves between cylinder and plane surface. We set up the following coordinate systems with origin at bottom center of cask.

By transforming coordinates:

 $\begin{aligned} \alpha &= XSIN\theta + ZCOS\theta & X &= \alpha SIN\theta - \beta COS\theta \\ \beta &= -XCOS\theta + ZSIN\theta & Z &= \alpha COS\theta + \beta SIN\theta \end{aligned}$

Equation of cylinder is $X^2 + Y^2 = R^2$ or by transforming coordinates:

 $\alpha^{2}SIN\theta^{2} - 2\alpha\beta SIN\theta COS\theta + \beta^{2}COS\theta^{2} + Y^{2} = R^{2}$

By setting the intersection of this surface with target surface, $\beta = \Delta_{\alpha}$

Then equation of intersection curve is:

 α^{2} SIN $\theta^{2} - 2\alpha \Delta_{\alpha}$ SIN θ COS $\theta + \Delta_{\alpha}^{2}$ COS $\theta^{2} + Y^{2} = R^{2}$

Figure B4.5A-3 Geometry of CG Over Corner Drop-Continue

The area as a function of the deformation is calculated by integrating the:

 $\alpha^{2}SIN\theta^{2} - 2\alpha\Delta_{g} SIN\theta COS\theta + \Delta_{g}^{2}COS\theta^{2} + Y^{2} = R^{2}$

Area
$$A = 2 \int_{\alpha_{min}}^{\alpha_{max}} Y d\alpha$$

Where Y is given as above equation

This is numerically integrated using 100 divisions and the trapezoidal rule. The results are tabulated in Table B4.5A-5.

Figure B4.5A-4 CG Over Corner Drop - L Dimension Calculation

 $(L/2)^2 = R^2 - (R - \delta_c/COS\theta)^2 \qquad L = 2 (2R\delta_c/COS\theta - \delta_c^2/COS^2\theta)^{1/2}$

Table B4.5A-5						
Area	Calculation	For	$\mathbf{C}\mathbf{G}$	Over	Corner	Drop

DELTA	DELTA CL	AMAX	AMIN	AREA
.500	-4.249	19.842	17.645	26.822
1.000	-3.749	19.962	15.569	74.604
1.500	-3.249	20.082	13.492	134.708
2.000	-2.749	20.203	11.416	203.698
2.500	-2.249	20.323	9.340	279.381
3.000	-1.749	20.444	7.263	360.141
3.500	-1.249	20.564	5.187	444.618
4.000	749	20.684	3.111	531.663
4.500	249	20.805	1.035	620.218
5.000	.251	20.925	-1.042	709.248
5.500	.751	21.046	-3.118	797.786
6.000	1.251	21.166	-5.194	884. 8 20
6.500	1.751	21.287	-7.271	969.272
7.000	2,251	21.407	-9.347	1049. 9 96
7.500	2.751	21.527	-11.423	1125 .63 7
8.000	3.251	21.648	-13.499	1194.561
8.500	3.751	21.768	-15.576	1254.594
9.000	4.251	21.889	-17.652	1302. 2 68
9.500	4.751	22.009	-19.728	1328.276
10.000	5.251	22.129	-21.805	1328. 7 15
10.500	5.751	22.250	-23.881	1329.000
11.000	6.251	22.370	-25.957	1329. 051
11.500	6.751	22.491	-28.033	1328. 45 4
12.000	7.251	22.611	-30.110	1329.087
12.500	7.751	22.731	-32.186	1329 .036
13.000	8.251	ZZ.852	-34.262	1329.041
13.500	8.751	22.972	-36.339	1328.458
14.000	9.251	Z3.093	-38.415	1328.827
14.500	9.751	23.213	-40.491	1327.639
15.000	10.251	23.333	-42.568	1328.146
15.500	10.751	23.454	-44.644	1328.158
16.000	11.251	23.574	-46.720	1327.657
16.500	11.751	23.695	-48.796	1326.475
17.000	12.251	23.815	-50.873	1328.746
17.500	12.751	23.935	-52.949	1327.546
18.000	13.251	24.056	-55.025	1328.635
18.500	13.751	24.176	-57.102	1326.881
19.000	14.251	24.297	-59.178	1328.259
19.500	14.751	24.417	-61.254	1328.477
20.000	15,251	24.538	-63.330	1326.558

.

Table B4.5A-6 Calculation of Absorbed Energy for CG Over Corner Drop

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x	Area	S	Furce	Energy Incr	Total Encrey
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(inches)	(sq in)		(lbs)	(in-lbs)	(in-lbs)
0.5 26.82 90 1,082,033 270,508 270,508 1 74.60 250 1,085,654 541,922 812,430 1.5 13.4.71 451 1,050,209 543,966 1,356,396 2 203.70 682 1,095,438 546,412 1,902,807 2.5 279,38 935 1,101,173 549,153 2,451,560 3 360.14 1,205 1,107,294 552,117 3,004,077 3.5 444.62 1,488 1,113,696 555,248 3,559,325 4 531.66 1,779 1,120,293 558,497 4,117,822 4.5 620,22 2,075 1,127,004 561,824 4,679,646 5 709,25 2,373 1,133,752 565,189 5,244,835 5.5 797,79 2,669 1,140,462 568,553 5,813,389 6 884.82 2,961 1,147,058 571,820 6,385,268 6.5 969,27 3,243 1,153,458 571,820 6,385,268 6.5 969,27 3,243 1,159,576 578,259 7,538,656 7.5 1,125,64 3,766 1,165,309 581,221 8,119,877 8 1,194,56 3,997 1,170,532 583,960 8,703,837 8,5 1,254,59 4,198 1,175,082 586,403 9,290,241 9 1,302,277 4,357 1,178,695 588,444 9,878,685 9,5 1,322,274 4,357 1,178,695 588,444 9,878,685 9,5 1,322,200 4,447 1,180,721 550,355 11,054,327 4,345 1,180,679 550,341 11,058,866 10.5 1,320,00 4,447 1,180,721 550,355 11,054,327 4,445 1,180,657 590,341 11,058,866 10.5 1,320,00 4,447 1,180,721 550,355 11,054,327 4,347 1,180,725 550,361 12,239,938 1,15 1,328,72 4,446 1,180,659 550,341 11,058,866 10.5 1,320,00 4,447 1,180,721 550,355 11,054,921 11 1,328,45 4,445 1,180,659 550,341 11,058,866 10.5 1,320,00 4,447 1,180,721 550,355 11,054,921 11 1,328,45 4,445 1,180,657 550,351 11,054,921 11 1,329,05 4,447 1,180,727 550,351 11,058,866 10.5 1,320,00 4,447 1,180,727 550,351 11,058,856 10.5 1,320,00 4,447 1,180,727 550,351 11,058,866 10.5 1,320,00 4,447 1,180,727 550,351 11,058,866 10.5 1,320,00 4,447 1,180,727 550,351 11,058,866 10.5 1,320,00 4,447 1,180,727 550,351 11,058,255 12,5 1,320,14 4,447 1,180,727 550,351 11,058,866 10.5 1,320,04 4,447 1,180,724 550,362 14,601,01 13,5 1,328,15 4,444 1,180,657 550,331 16,372,039 15 1,328,16 4,444 1,180,618 550,331 16,372,039 14,5 1,328,16 4,444 1,180,618 550,331 16,372,039 15 1,328,16 4,444 1,180,657 550,328 17,552,686 16 1,327,66 4,442 1,180,619 550,308 19,332,600 17,5 1,3328,46 4,446 1,180,679 500,328 19,313,258 18 1,328,64 4,446 1,180,67						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	26.82	90	1 082 033	270 508	270 508
1.513.4714511.080,209513,5661.356,3362203.706821,095,438546,4121,902,8072.5279,389351,101,173549,1532,451,96033360,141,2051,107,294552,1173,004,0773.5444.621,4881,113,696555,2483,559,3254531,6661,7791,120,293558,4974,117,8224.5620,222,0751,127,004561,51244,679,6465709,252,3731,133,752565,1895,244,8355.5797.792,6691,140,462568,5535,813,3896884,822,9611,147,058571,8206,385,2686.5569,273,2431,153,576578,2597,58,2567.51,125,643,766'1,165,309581,2218,119,87781,194,563,9971,170,532583,9608,703,8378.51,254,594,1981,175,682586,4039,20,24191,302,274,3571,178,695588,4449,878,6859.51,328,284,4471,180,721590,35111,648,225101,328,724,4461,180,679590,34111,058,86610.51,329,004,4471,180,724590,35112,649,23811.51,328,454,4451,180,724590,35111,649,221111,329,054,4471,180,724590,35115,	1	74.60	2.50	1.085.654	541 922	812 430
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	13-1.71	451	1.090.209	543.966	1.356.396
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	203.70	682	1.095.438	546.412	1.902.807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	279.38	935	1.101.173	549,153	2.451.960
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	360.14	1,205	1,107,294	552,117	3.004.077
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5	411.62	1,488	1,113,696	555.248	3.559.325
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	531.66	1,779	1,120,293	558,497	4,117,822
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5	620.22	2,075	1,127,004	561,824	4,679,646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	709.25	2,373	1.133.752	565,189	5.244.835
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5	797.79	2,669	1,140,462	568,553	5.813.389
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	884,82	2,961	1,147,058	571,880	6,385,268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5	969.27	3,243	1,153,458	575,129	6,960,397
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1,050.00	3,513	1,159,576	578,259	7,538,656
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.5	1,125.64	3,766	1,165,309	581,221	. 8,119,877
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1,194.56	3,997	1,170,532	583,960	8,703,837
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.5	1,254.59	4,198	1,175,082	586,403	9,290,241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1,302.27	4,357	1,178,695	588,444	9,878,685
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.5	1,328.28	4,414	1,180,666	589,840	10,468,525
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	1,328.72	4,446	1,180,699	590,341	11,058,866
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.5	1,329.00	4,447	1,180,721	590,355	11,649,221
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	1,329.05	4,447	1,180,725	590,361	12,239,583
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.5	1,328.45	4,445	1,180,679	590,351	12,829,934
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1,329.09	4,447	1,180,727	590,352	13,420,285
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.5	1,329.04	4,447	1,180,724	590,363	14,010,648
13.5 1,328.46 4,445 1,180,680 590,351 15,191,361 14 1,328.83 4,446 1,180,708 590,347 15,781,708 14.5 1,327,64 4,442 1,180,618 590,331 16,372,039 15 1,328,15 4,444 1,180,657 590,318 16,962,357 15.5 1,328,16 4,444 1,180,619 590,319 18,143,005 16 1,327,66 4,442 1,180,619 590,319 18,143,005 16.5 1,326,48 4,438 1,180,529 590,287 18,733,292 17 1,328,75 4,446 1,180,610 590,308 19,323,600 17.5 1,327,55 4,442 1,180,611 590,328 19,913,928 18 1,328,64 4,446 1,180,693 590,326 20,504,254	13	1,329.04	4,447	1,180,724	590,362	14,601,010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.5	1,328.46	4,445	1,180,680	590,351	15,191,361
	14	1,328.83	4,446	1,180,708	590,347	15,781,708
15 1,328.15 4,444 1,180,656 590,318 16,962,357 15.5 1,328.16 4,444 1,180,657 590,328 17,552,686 16 1,327.66 4,442 1,180,619 590,319 18,143,005 16.5 1,326.48 4,438 1,180,529 590,287 18,733,292 17 1,328.75 4,446 1,180,702 590,328 19,923,692 17.5 1,327.55 4,442 1,180,611 590,328 19,923,692 17.5 1,327.55 4,444 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,673 590,326 20,504,254	14.5	1,327.64	4,442	1,180,618	590,331	16,372,039
15.5 1,328.16 4,444 1,180,657 590,328 17,552,686 16 1,327.66 4,442 1,180,619 590,319 18,143,005 16.5 1,326.48 4,438 1,180,529 590,287 18,733,292 17 1,328.75 4,446 1,180,610 590,308 19,323,600 17.5 1,327.55 4,442 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,693 590,326 20,504,254	15	1,328.15	4,411	1,180,656	590,318	16,962,3 <i>5</i> 7
16 1,327.66 4,442 1,189,619 590,319 18,143,005 16.5 1,326.48 4,438 1,180,529 590,287 18,733,292 17 1,328.75 4,446 1,180,702 590,308 19,323,600 17.5 1,327.55 4,442 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,693 590,326 20,504,254	15.5	1,328.16	4,411	1,180,657	590,328	17,552,686
16.5 1,326.48 4,438 1,180,529 590,287 18,733,292 17 1,328.75 4,446 1,180,702 590,308 19,323,600 17,5 1,327.55 4,442 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,693 590,326 20,504,254	16	1,327.66	4,442	1,180,619	590,319	18,143,005
17 1,328.75 4,446 1,180,702 590,308 19,232,600 17.5 1,327.55 4,442 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,653 590,326 20,504,254	16.5	1,326.48	4,438	1,180,529	590,287	18,733,292
17.5 1,327.55 4,442 1,180,611 590,328 19,913,928 18 1,328.64 4,446 1,180,693 590,326 20,504,254	17	1,328.75	4,446	1,180,702	590,308	19,323,600
18 1,328.64 4,446 1,180,693 590,326 20,504,254	17.5	1,327.55	4,442	1,180,611	590,328	19,913,928
	18	1,328.64	4,446	1,180,693	590,326	20,504,254
18.5 1,326.88 4,440 1,180,560 590,313 21,094,567	18.5	1,326.88	4,440	1,180,560	590,313	21,094,567
19 1,328.26 4,444 1,180,665 590,306 21,684,873	19	1,328.26	4,444	1,180,665	590,306	21,684,873
19.5 1,328.48 4,445 1,180,681 590,336 22,275,210	19.5	1,328.48	4,445	1,180,681	590,336	22,275,210
20 1,326.56 4,439 1,180,536 590,304 22,865,514	20	1,326.56	4,439	1,180,536	590,304	22,865,514

B4.5A-7 SHALLOW ANGLE IMPACT - SLAP DOWN

The energy balances used for the end, side, and corner drop cases cannot be applied to the slapdown cases since the kinetic energy in the cask is now divided between vertical velocity and rotational velocity. For the first three cases, there is a simple energy transfer between the kinetic energy (due to only vertical velocity) and the energy absorbed in the target. For the slapdown case, the additional possibility of transferring energy to the cask rotational velocity requires that a time history analysis be performed. This is possible, but the numerical procedures required are complex and one questions whether the target model presented in the EPRI report contains adequate detail for such a use. Rather slapdown data for transport casks (rigid cask with limiters impacting on a rigid target) are used to develop reasonable upper bounds for the slapdown effect.

Larger deceleration forces than found for the side drop can occur when a cask with impact limiters strikes a rigid target with the cask oriented at a small angle to the horizontal. This could occur for the problem of interest here and is discussed in this section. Some of the results found for the transport casks with limiters are discussed and results are then applied to the present problem.

When the first end of the cask impacts the target (designated end 1 for the purposes of this discussion with the other end designated end 2), the kinetic energy of the cask results from the vertical velocity of the cask. After this impact this energy is partitioned into three parts: the vertical cask velocity, the rotational velocity of the cask, and the energy absorbed by the impact limiter at this end of the cask. The vertical CG velocity of the cask decreases and the rotational velocity of the cask increases. Both of these effects reduce the vertical velocity of end 1. However, the vertical velocity of end 2 is reduced by the decrease in cask CG velocity but increased by the increase in rotational velocity of the cask. The vertical velocity of end 2 therefore could be larger than the initial velocity of the cask, and in this case the impact force for the end 2 limiter would be larger than the force which occurs for the side drop (where the end 2 limiter impacts the target at the initial cask velocity). The magnitude of this effect and the drop angle causing the maximum slapdown effect is a function of the mass and geometric characteristics of the cask, and the stiffness characteristics of the impact limiter. A generic study of this problem for transport casks is report in reference 4 and the results of that study are presented in the Table B4.5A-7. The following definitions are given for the parameters in the table

 $\begin{array}{l} R_L = Cask \ Radius \\ \sigma_{III} = Crush \ Strength \ of \ Limiter \\ B = Length \ of \ Limiter \ Along \ Cask \ axis \\ L = Cask \ Length \\ W = Cask \ Weight \\ A = Length \ of \ Limiter \ Protruding \ Beyond \ End \ Cask \\ H = Drop \ Height \end{array}$

 Table B4.5A-7

 Energy Absorbed By Second Limiter During Slapdown

R _L /L	σ R _L 2 / W	(8-A)/R _L	H/L	CRITICAL ANOLE (Degrees)	ENERGY RATIO (P)
0.25	25	0.25	1.75	, 7.8	0.704
	50			3.0	0.721
	75			2.0	0.725
	100			1.5	0.725
0.33	25	0.25	1.75	6.9	0.682
	50			4.1	0.695
	75			2.4	0.702
	100	0.05		1.3	0.719
0.50	25	0.25	1.75	9.0	0.598
	20			4.4	0.637
	100			. 2.5	0.650
0.25	100	0,5	1 75	2.0	0.650
0.23	20	0.3	1.75	5.5	0.093
	100			1.0	0.701
033	25	05	1 75'	0.0	0.705
0.35	20	. 0.5	1.75	, 4.1	0.660
	100	•		1.0	0.004
0.50	25	05	1 75	0.0	0.070
0.00	25	0.5	1.15	4.0	0.002
	100	• 1		1.5	0.003
0.25	25	0.75	175		0.670
0.1.0	50	0.10	1.10	10	0.678
	100			05	0.698
0.33	25	0.75	1.75	2.4	0.628
	75	••		1.4	0.634
	100			0.6	0.662
0.50	25	0.75	1.75	2.8	0.528
	75			0.9	0.549
	100			0.7	0.547
0.25	25	0.25	3.50	15.0	0.645
	75			7.4	0.686
	100			6.0	0.690
0.50	25	0.25	3.50	FIRST IM	PACT MORE SEVERE
	75			5.8	0.582
	100			3.7	0.598
0.25	25	0.75	3.50	4.6	0.638
	75			2.1	0.678
	100			1.0	0.656
0.50	25	0.75	3.50	FIRSTIN	1PACT MORE SEVERE
	75			FIRST IN	1PACT MORE SEVERE
	100			1.3	0.502

Table B4.5A-7 gives the critical angle for which maximum slapdown effects occur, and the energy ratio (ratio of energy absorbed by the second limiter for slapdown as compared with the side drop case). As may be seen the critical angle varies from close to 0 to 15 degree, and the maximum energy ratio equals to 0.725. Note that the second limiter absorbs 50% of the energy for the side drop so that this maximum case indicates that the second limiter absorbs 0.725/0.5 = 1.45 more energy than it would for the side drop case (a 45% increase). It was also found that the critical angle resulting in these maximum energy ratio led to the cask response where the end 1 lifted off the impact surface just before end 2 impacts the target. It can also be seen from the results in the table that the energy ratio increases as:

$$\begin{split} R_L/L &\Rightarrow decreases \\ \sigma_{111} \; R_L^{2}/W \; \Rightarrow increases \\ (B-A)/R_L &\Rightarrow decreases \\ H/L \; \Rightarrow decreases \end{split}$$

The problem of the cask impacts to the concrete is somewhat similar to the transport casks with the energy absorption characteristics of the limiter being replaced by the energy absorption characteristics of the slab/soil target. The following parameters needed for the use of the table may be calculated directly:

 $R_L/L = 20.285/168.5 = 0.12$ H/L = 360/168.5 = 2.14 A = 0

The length of the equivalent impact limiter (B) actually can be extend along the entire cask (as in the side drop). Since the slap down effect increases as this length decreases, the value of B is taken as equal to the width of the impact surface (d defined in Table B4.5A-3). This is taken equal to 37.5" (the side drop value of d at maximum values from the Table B4.5A-4). The same results are used to obtain an effective crush strength by dividing the total force of the side drop (2,195,973 lbs) by the total impact area ($2 \times 37.5 \times 37.5$). Therefore:

$$\begin{split} \sigma_{III} &= 2,195,973/~(2\times37.5\times37.5) = 781~\text{psi} \\ \sigma_{III} ~R_L^{-2}/W &= 781\times~20.285^2/60,000 = 5.4 \\ (B-A)/R_L &= (37.5-0)/20.285 = 1.85 \end{split}$$

The following conservative values (see above discussion of variation of energy ratio as a function of the parameters) are selected:

$$\sigma_{\rm III} R_{\rm L}^2/W = 25$$

 $(B-A)/R_{L} = 0.75$

H/L = 1.75

The results in the Table A-6 then indicate the following results:

R _L /L	Energy Ratio
0.25	0.67
0.33	0.628
0.5	0.528

These data points fit very well with a straight line:

Energy Ratio = $0.815 - 0.575 R_t/L$

Therefore the energy ratio for $R_L/L = 0.12$ is equal to 0.746. This indicates that the energy absorbed by the second end during impact could be 0.746/0.5 = 1.49 times the energy absorbed by the side drop. If this were all taken up by an increase in force (rather than partially by an increase in impact area) the peak deceleration would increase from the 36.6 G for the side drop to $1.49 \times 36.6 = 54.4$ G.It should be noted that this deceleration would not be constant across the length of the cask but would decrease from end 2 to end 1.

This estimate is quite conservative for the following reasons:

The parameters selected above were selected to maximize the effect. In particular the length of the impact surface (B) will increase as the cask rotate so that the most of the cask length will be engaged when the second end hits the target. The above analysis conservatively sets B = 37.5 and as shown in the following table, the energy ratio decreases as B increases.

(B-A)/R _L	Energy Ratio
0.25	0.704
0.50	0.693
0.75	0.670

The side drop analysis shows that target hardness (S) is 7.678 times impact area. The largest impact area could be the length times diameter of the cask $(168.5 \times 40.57) = 6836$ in². Therefore the maximum S = 52,487. The maximum possible deceleration is equal to:

$$G = [[18 + S(48.7-18)/80000]] = [[18 + 52487(48.7-18)/80000]] = 38.1 G$$

It is recommended that the maximum deceleration for the slapdown case be taken as 39 G based on the maximum impact area.

B4.5A-8 REFERENCES

- "The Effects of Target Hardness on the Structural Design of Concrete Storage Pads for Spent- Fuel Casks"EPRI NP-4830, October 1986.
- "Structural Design of Concrete Storage Pads for Spent-fuel Cask"EPRI NP-7551, August 1991.
- 3. "Design of Concrete Structures" By A. Nelson, Mcgraw-Hill, Inc. Eleventh Edition.
- "Impact Loading on Waste Fuel Shipping Casks"By C.A. Miller. Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, August 1987.

APPENDIX B4.5B LID BOLT ANALYSIS

TABLE OF CONTENTS

Section

Page

B4.5B-1	INTRODUCTION	B4.5B-1
B4.5B-2	NORMAL CONDITION ANALYSIS	B4.5B-1
B4.5B-3	FATIGUE ANALYSIS	B4.5B-10
B4.5B-4	ACCIDENT CONDITION ANALYSIS	B4.5B-15
B 4.5 B -5	FIRE CONDITION ANALYSIS	B4.5B-17
B4.5B-6	CLOSURE FLANGE SHOULDER ANALYSIS	B4.5B-18
B4.5B-7	CONCLUSIONS	B4.5 B- 19
B4.5B-8	REFERENCES	B4.5B-20
APPENDIX 84 58

LID BOLT ANALYSIS

B4.5B-1 INTRODUCTION

The TN-WHC lid closure arrangement is shown in Figure B4.5B-1. The 3.5 inch thick lid is bolted directly to the end of the containment vessel body by 12 high strength stainless steel 1.5 inch diameter bolts. Close fitting alignment pins ensure that the lid is centered in the vessel.

The lid bolt is shown in Figure B4.5B-2. Note that the material is ASME SA-479. Type XM-19 Hot Rolled, which has a minimum yield strength of 105,000 psi at room temperature. The lid closure flange and bolt arrangement is shown in Figure B4.5B-3. The bolts are designed to be preloaded at assembly to seat the seals against the 161.2 psi maximum design pressure and to withstand all normal and accident loadings without yielding. The lid bolt analysis performed below is in accordance with NUREG/CR-6007 stress analysis of Closure Bolts for Shipping Casks (Reference 1).

B4.5B-2 NORMAL CONDITION ANALYSIS

The loadings considered for normal conditions include operating preload, pressure loads. temperature, impact loads and the vibration loads.

The non-prying tensile bolt force due to the applied preload is given by the formula

$$F_a = Q/KD_b$$

where

0 is the applied torque for preload, 3,565 in. lbs. Κ is the nut factor for empirical relation between the applied torque and the achieved

preload, 0.1, this value is based on lubricating the bolts with Neolube having a coefficient of friction of 0.03.

D is the minimum diameter of the closure bolt, 1.22 inch.

 $F_{a} = 3565/(0.1)(1.22) = 29,225$ lbs

The torsional bolt moment per bolt is

 $M_{c} = 0.5 Q = 0.5 (3565) = 1783 in-lbs$

The maximum residual tensile bolt force after preload is

 $F_{ar} = F_{a} = 29,225$ lbs

FIGURE B4.5B-1 TN-WHC LID CLOSURE

E-15166

FIGURE B4.5B-2 TN-WHC LID BOLT

MATERIAL: SA-479, XM-19, HOT ROLLED

FIGURE B4.5B-3 TN-WHC FLANGE AND LID BOLT ARRANGEMENT

E-15166

The maximum residual torsional bolt moment is

$$M_{tr} = 0.5Q = 1783$$
 in-lbs.

The gasket seating load is negligible since o-rings are used.

The loads caused by the pressure difference between the interior and the exterior of the closure components are calculated below. The non-prying tensile bolt force is

$$F_a = \pi (D_{le})^2 (P_{li} - P_{lo}) / 4 (N_b)$$

where D_{ig}

 D_{ig} is the closure lid diameter at the inner seal, 31.57 in.

P_{li} is the pressure inside the closure lid and

P_{lo} is the pressure outside the closure lid.

N_b is the number of bolts, 12

The maximum differential pressure for both normal and accident conditions is 161.2 psi.

$$F_a = \pi (31.57)^2 (161.2)/4 (12) = 10,515$$
 lbs.

The increased external pressure combined with no internal pressure results is a force of $F_a = -1305$ lbs.

The shear bolt force due to 161.2 psi differential pressure is

$$F_s = \pi (E_l) (t_l) (P_{li} - P_{lo})(D_{lb})^2/2 (N_b)(E_c)(t_c)(1-N_{ul})$$

where

- E_1 is Young's Modulus of the closure lid material, 28.3 x 10⁶ psi
- t_i is the lid thickness, 3.5 inches

 P_{li} - P_{to} is the differential pressure on the cask wall, 161.2 psi

 D_{lb} is the closure lid diameter at the bolt circle, 25.2 inches

 E_c is the Young's Modulus of the cask wall material, 28.3x10⁶ psi

t_c is the thickness of the cask wall, 7.3 inches

N_{ul} is Poisson's ratio of the closure lid material, 0.3.

 $F_s = \pi (28.3 \times 10^6)(3.5)(36.44)^2(161.2)/2(12)(28.3 \times 10^6)(7.31)(1-0.3)$

= 19,167 lbs

The fixed edge closure lid force (\mathbf{F}_t) and Moment (\mathbf{M}_t) for the calculation of prying tensile bolt force and bending bolt moment are given by the formulas below.

$$F_{f} = D_{lb}(P_{li} - P_{lo})/4 = 36.44 \ (161.2)/4 = 1,469lbs$$
$$M_{f} = D_{lb}^{2}(P_{li} - P_{lo})/32 = 36.44^{2} \ (161.2)/32 = 6,689 \ in-lbs$$

The load caused by differential thermal expansion of the closure lid and bolt is calculated below.

$$F_{a} = 0.25 \pi (D_{b})^{2} (E_{b}) (\alpha_{l} T_{l} - \alpha_{b} T_{b})$$

- E_b is the Young's Modulus of the bolt material, 28.3 × 10⁶ psi
- α_1 is the thermal expansion coefficient of the lid material, 8.55 x 10⁻⁶ in/in°F
- T₁ is the temperature change of the lid. The lid can get as hot as 150°F at an ambient temperature of 115°F with maximum insolation. The lid can get as cold as -27°F in the cold environment. Assuming the lid is bolted to the cask inside at a room temperature of 70°F, Tl is 130°F for the hot environment and -97°F for the cold environment.
- α_b is the thermal expansion coefficient of the bolt material, 8.87 x 10⁻⁶ in/in°F
- T_b is the temperature change of the bolt material. This is the same as Tl.
- D_b is bolt diameter

 $F_a = 0.25\pi (1.22)^2 (28.3 \times 10^6)(8.55 \times 10^6 - 8.87 \times 10^6)130$

= -1377 lbs for the hot environment

 $F_a = -1028$ lbs for the cold environment

There is no load caused by the thermal expansion difference between the closure lid and cask wall since they are made of the same material, and the temperature of the lid and flange are equal.

The worst loading on the bolts due to a 1 foot drop is during an lid end corner drop. The lip on the cask protects the closure lid during the side drop. The non prying tensile bolt force due to a one foot lid end corner drop is

 $F_a = 1.34 (\sin xi)(D_{lf})(W_1 + W_c) (ai)/N_b$

where D_{if} is the dynamic load factor, 1.2

- W₁ is the weight of the lid, 1890 lbs.
- W_c is the maximum weight of the cargo, 19120 lbs.

ai is the maximum rigid body impact acceleration of the cask,

18 g's

xi angle of impact

 $F_a = 1.34 (\sin 76^\circ)(1.2)(21010)(18)/12 = 49,170 lbs$

The shear bolt force is not evaluated since bolts are protected in shear during impact by closure-flange shoulder.

The fixed edge closure lid force (F_i) and moment (M_i) is calculated below for the 1 ft lid end corner drop. F_t and M_t are 0 for the 1 ft side drop.

$$F_{\rm f} = \frac{1.34 \ D_{\rm lr} \ (\sin xi)ai \ (W_{\rm l}+W_{\rm c})}{\pi \ D_{\rm lb}}$$

$$F_{\rm f} = \frac{(1.34)(1.2)(\sin 76^{\circ})(18)(21010)}{\pi (36.44)}$$

$$= 5,155 \ lbs.$$

$$M_{\rm r} = \frac{1.34 \ D_{\rm lr} \ (\sin xi)ai \ (W_{\rm l}+W_{\rm c})}{8 \ \pi}$$

$$= \frac{(1.34)(1.2)(\sin 76^{\circ})(18)(21010)}{8\pi}$$

= 23,477 lbs.

Vibration loads are insignificant on the bolts.

The load combinations are calculated using the methodology outlined in Table 4.9 of NUREG/CR-6007.

The sum of the tensile bolt forces for operating preload and temperature is

 $F_{a-pt} = 29225 + 1028 = 30,253$ lbs.

The sum of the tensile forces for the remainder of the loads is

$$F_{aal} = 10515 + 49,170 = 59,685$$
 lbs.

This is based on the 1 foot impact and internal pressure. The combined non-prying tensile bolt force is the larger of the two forces calculated above, 59,685 lbs.

Combination of Prying Tensile Bolt Forces

The maximum combined prying fixed-edge force $F_{f,c}$ is 1469 + 5155 = 6624 lbs and the maximum combined prying moment $M_{f,c}$ is 6689 + 23477 = 30166 in-lbs.

The prying tensile bolt force for the combined load is zero because there is a gap between the flange and lid at the outer edge.

Combining the non-prying and prying tensile bolt force

$$F_{ac} = 59,685 + 0 = 59,685$$
 lbs.

The maximum average tensile stress in a lid bolt is

$$S_{ba} = F_{a-c}/A_t$$

Where A₁ is the tensile area of the bolt, 1.169 in^2

$$S_{h_{h}} = 59,685/1.169 = 51,060 \text{ psi}$$

The allowable tensile stress is 2/3 of the yield strength at the operating temperature of 150° F, or 2/3 (101,000) or 67,330 psi.

The shear bolt force is not evaluated since the bolts and closure lid are protected during an impact by the lip of the cask flange. The bolts are not relied upon to resist transverse shear load. The bending bolt moment is calculated below.

B4.5B-8

$$M_{bb} = [\pi D_{b}/N_{b}] [K_{b}/(K_{b}+K_{b})] M_{f}$$

Where

$$K_{b} = [N_{b}/L_{b}][E_{b}/D_{b}][D_{b}^{4}/64]$$

$$= [12/4.65][28.3x10^{6}/36.44][1.22^{4}/64]$$

$$= 0.0694 \text{ x } 10^{6}$$

$$K_{1} = E_{1}(t_{l})^{3}/3[(1-N_{u}^{2}) + (1-N_{u})^{2}(D_{b}/D_{b})^{2}](D_{b})$$

$$K_{1} = 8.405 \text{ x } 10^{6}$$

$$M_{f-c} = 30,166 \text{ in-lbs.}$$

$$M_{bb} = [\pi(36.44)/12][.0694x10^{6} / 8.405x10^{6} + .0694x10^{6}][30,166]$$

$$= 2,358 \text{ in-lbs.}$$

The maximum bending stress caused by the bending bolt moment is

$$S_{bb} = 10.186 M_{bb} / (D_{ba})^3$$

The minimum bolt diameter is equal to

$$D_{ba} = 1.22in.$$

$$S_{bb} = {(10.186)(2358) \over (1.22)^3} = 13,230 \text{ psi}$$

The maximum shear stress caused by the torsional bolt moment, M, is

$$S_{bi} = 5.093 M_t / (D_{ba})^3 = 5.093 (3565) / (1.22)^3 = 10,000 \text{ psi} \le 0.4 S_v = 40,400 \text{ psi}$$

The maximum stress intensity caused by tension plus shear plus bending plus torsion is

$$S_{bi} = [(S_{ba} + S_{bb})^2 + 4(S_{bt})^2]^{0.5} = [(51060 + 13230)^2 + 4(10000)^2]^{0.5} = 67,330 \text{ psi}$$

This is less than the allowable maximum stress intensity of $0.9S_v = 90,900$ psi.

B4.5B-3 BOLT FATIGUE ANALYSIS

The purpose of the fatigue analysis is to show quantitatively that the fatigue damage to the bolts during normal transport conditions is acceptable. This is done by determining the fatigue usage factor for each normal transport event. From Reference 2, the shipment is to be completed in two calendar years and there are 200 shipping days per year and one shipment per shipping day. This shipping schedule translates into 400 round trip shipments. The total cumulative damage or fatigue usage for all events was conservatively determined by adding the usage factors for the individual events. The sum of the individual usage factors was checked to make certain that, for the 400 round trip shipments of the cask, the total usage factor is less than one. The following sequence of events was assumed for the fatigue evaluation.

- 1. Operating Preload
- 2. Pressure Fluctuations
- 3. Road Vibration
- 4. Test Pressure
- 5. Impact (1 Ft) End Drop
- 6. Handling Load

Number of Load/Stress Cycles for Each Loading

A. <u>Test Pressure:</u>

Proof Test: 1.5 x MNOP = 241.8 psi. This occurs once during the TN-WHC cask lifetime. (See Table B4.5B-1 for stress calculations).

B. <u>Preload</u>

The number of preload cycles is two times the number of trips, or 800. (See Table B4.5B-1 for stress calculations).

C. <u>Road Vibrations</u>

The bolt stresses are negligible for the road vibrations.

D. <u>1 Foot Drop:</u>

Assume this occurs twice in two year operating life of the cask. The stress intensity of 52,370 psi (see Table B4.5B-1 for stress derivation) is a combination of the non prying and prying tensile stress due to the one foot end drop, with a zero preload.

E. <u>Pressure and Temperature Fluctuations:</u>

The full internal equilibrium temperature of 150° F is not reached during a typical trip. However, for conservatism we assume that the temperature increases from 70° F to -27° F during each trip (temperature increase from 70° F to 150° F does not develop tension in lid bolts). This results in a load due to differential thermal expansion coefficients, and also due to pressure change from 0 to 161.2 psig. The fatigue damage is based on 800 cycles and stress intensity range of 0 to 12,810 psi (See Table B4.5B-1 for stress calculations).

F. <u>Handling Load</u>

The number of handling load cycles is four times the number of trips, or 1600. The direct stress is calculated using 3G load (very conservative), 60000(3)/12(1.169)=12,840 psi. The bending stress is 4185 psi, and total combined stress is 17,025 psi.

Fatigue Evaluation - Usage Factor Calculations

Based on the stresses and cyclic histories described above, stress histograms are plotted in Figure B4.5B-4. In this histogram, a fatigue strength reduction factor (K) of 4.0 has been assumed in the evaluation. The stress range for each combination of events and the corresponding alternating stress are shown in Table B4.5B-2. The damage factors are computed using the fatigue curve shown in Table I-9.4 of ASME Section III Appendices. The cumulative fatigue damage factors in this case is 0.621 which is less than the limit of 1.0. Therefore, the TN-WHC cask lid bolts satisfy the fatigue requirements.

EVENT/ LOAD	F _a (LBS)	F _f (LBS)	M _r (IN-LB)	F _{ap} (LBS)	τ (PSI)	σ (PSI)
TEST PRESS.	15,773	2,204	10,034	0		18,062
PRE- LOAD	29,225		3,565	0	10,000	32,015
ONE FOOT DROP	49,170	5,155	23,477	0		52,370
PRESS. + TEMP.	11,543	1,469	6,689			12,810
HANDLING LOAD	15,000		9,540			17,025

TABLE B4.5B-1 FORCES, MOMENTS AND STRESSES CALCULATED FOR FATIGUE EVALUATION

$\frac{FIGURE B4.5B-4}{SCHEMATIC OF STRESS HISTOGRAM AT LID BOLTS (K = 4)}$

B4.5B-13

EVENT	STRESS RANGE (PSI)	S _a (PSI)	FATIGUE CURVE	CYCLES		DAMAGE
COMBINATIONS				n	N	FACTOR n/N
TEST PRESSURE	72250	36125	I-9.4	1	5000	0.0002
PRELOAD	128060	64030	I-9.4	800	2000	0.4000
ONE FOOT DROP	209480	104740	I-9.4	2	450	0.003
VIBRATION	328	164	I-9.4	7.2×10 ⁸	8	0
TEMPERATURE AND PRESSURE	51240	25620	I-9.4	800	20000	0.0400
HANDLING LOAD	68100	34050	I-9.4	1600	9000	0.178
TOTAL DAMAGE FACTOR					0.621	

TABLE B4.5B-2 BOLT FATIGUE DAMAGE FACTORS

B4.5B-4 ACCIDENT CONDITION ANALYSIS

The hypothetical accident conditions considered for the bolt analysis are: impact and puncture.

The worst loading due to the 30 foot impact occurs at lid end corner drop. This results in a G loading of 20.

The nonprying tensile bolt force due to impact is:

$$F_s = 1.34 (D_{if})(\sin xi)(W_1 + W_c) (ai)/N_b = 1.34(1.2)(\sin 76)(21010)(20)/12 = 54,633$$
 lbs.

There is no shear bolt force due to impact, since the load is taken by the lip of the cask flange. The fixed edge closure lid force (F_t) and moment (M_t) are

$$F_{f} = \frac{\frac{1.34(D_{tr})(\sin x) \operatorname{all}(w_{t} + w_{c})}{\pi D_{tb}}$$

$$= \frac{(1.34)(1.2)(\sin 76)(20)(21010)}{\pi (36.44)}$$

$$= 5,727 \text{ lbs.}$$

$$Mf = \frac{1.34(D_{tr})(\sin xi) \operatorname{al}(W_{t} + W_{c})}{8\pi}$$

$$\frac{(1.34)(1.2(\sin 76)(20)(21010))}{\pi (36.44)}$$

= 26.085 in-lbs.

 8π

B4.5B-15

The puncture accident results in an inward load on the bolts which relaxes the tensile force due to preload.

Therefore the worst accident condition for the bolts is the 30 foot lid end corner drop. This must be combined with preload, internal pressure and thermal expansion loads.

The sum of the tensile bolt forces for operating preload and temperature is 30,252 lbs. as in the normal load cases.

The sum of the non prying tensile forces from internal pressure and 30 foot drop accident is, $f_{a,c} = 10515 + 54{,}630 = 65{,}148$ lbs.

The combined non-prying tensile bolt force is the larger of the two forces calculated above, 65,148 lbs.

The maximum combined prying fixed edge force $F_{f_{e}}$ is 5727 + 1469 = 7,196 lbs. The combined prying moment $M_{f_{e}}$ is 26,085 + 6698 = 32,783 in. lbs.

The prying tensile bolt force for the combined load is zero.

Combining the non-prying and prying tensile bolt force

 $F_{a=c} = 65,148 + 0 = 65,148$ lbs.

The maximum average tensile stress in a lid bolt is

 $S_{ba} = 65,148/1.169 = 55,730 \text{ psi}$

This is less than the smaller of $0.7 S_u$ or $0.9S_v$ which is 90,900 psi.

The average shear stress is due to torsion from preloading the bolts. The maximum shear stress is 10,000 psi. This is much less than the allowable stress 0.42 S_{\circ} or 42,420 psi.

The stress ratio for average tensile stress is 55730/909000 = 0.613. The stress ratio for average shear stress is 10000/42420 or 0.24.

The combined tensile and shear ratios must meet the following criterion:

$$R_{s}^{2} + R_{s}^{2} \le 1$$

where R_t is the stress ratio for average tensile stress and R_s is the stress ratio for average shear stress ratio

 $(.613)^2 + (.24)^2 = .43 \le 1$

which is acceptable.

The maximum combined fixed edge moment due to pressure and 30 foot drop, $M_f = 6698 + 26085 = 32,783$ in-lbs.

Bolt bending moment, $M_{bb} = [2358/30166]x 32783 = 2562$ in-lbs.

Bolt bending stress, $S_{bb} = 1.186 \times 2562/(1.22)^3 = 14,372$ psi

The maximum stress intensity due to tension, bending and shear is

 $S_{b} = [(55730 + 14372)^{2} + 4(10000)^{2}]^{0.5} = 72,900 \text{ psi}$

This stress is less than the allowable S_u of 133,000 psi.

B4.5B-5 FIRE CONDITION

The fire accident results in a maximum bolt and lid temperature of $1068^{\circ}F$ ($1091^{\circ}F$ is conservatively used for calculation). The thermal stress caused by differential thermal expansion of the closure lid and bolt is

Thermal Stress = $E_{\rm b}$ (Δ T)($\alpha_{\rm f}$ - $\alpha_{\rm b}$) = 23.5 × 10⁶ (1091 - 70)(10.24-9.40) × 10⁻⁶ = 20,155 psi

The preload axial tensile and shear stresses are combined to obtain the maximum stress intensity. The pressure load is not considered as the seal material will not be effective at this temperature.

 $S_{b} = [(20155+25000)^{2} + 4(10000)^{2}]^{0.5} = 49,386 \text{ psi}$

This stress is below the bolt material tensile strength (S_u = 112,500 psi at 1100° F). The MCO will therefore be secure inside the cask during the fire accident.

Both the lid and lifting attachment welded to the lid are made in the same material (stainless steel), the thermal stresses due to the differential thermal expansion are insignificant.

B4.5B-6 CLOSURE FLANGE SHOULDER ANALYSIS

Transverse lid deceleration loads are resisted by the closure flange shoulder during all normal and accident conditions. The shoulder thickness at the base has a shear area equal to

Shear Area = $\pi [(29.76)^2 - (25.5)^2]/4 = 184.9 \text{ in}^2$

For conservatism, it is assumed that only a 120° arc of the shoulder is effective. Effective shear is:

Effective Shear = $\frac{120/360}{(184.9)} = 61.6$ in²

Normal Conditions Stresses

Maximum transverse deceleration loads during normal conditions occurs during the hypothetical one foot horizontal drop. Maximum deceleration is 24 g/s. (Ref Appendix B4.5A)

Total Force = $24.0 \times \text{wt}$ of lid = 24.0 (1890) = 45,360 lbs.

Average Shear Stress = 45360/61.6 = 737 psi

Allowable Average Shear = $0.4S_v = 0.4$ (30000) = 12,000 psi

Factor of Safety = 12,000/737 = 16.3

Hypothetical Accident Conditions Stresses

The maximum transverse deceleration load during accident conditions is 40 g for the horizontal 30 foot drop. The average shear stress across the shoulder is

Average shear stress = $(40/24) \times 737 = 1,228$ psi

Allowable average shear = $S_u/2 = 75,000/2 = 37,500$ psi

Factor of Safety = 37,500/1,228 = 30.5

B4.5B-7 CONCLUSIONS

The maximum average tensile stress in the lid bolts during normal conditions is 51,060 psi which is less than the allowable tensile stress of 2/3 yield, or 67,300 psi. The maximum stress intensity for the bolts during normal conditions is 67,330 psi which is much less than the allowable maximum stress intensity of 90,900 psi (0.9 S_v).

The fatigue analysis performed shows that for 400 round trip shipments, the bolts will not fail due to fatigue. The cumulative fatigue damage factor is 0.621 which is much less than the allowable limit of 1.0.

The maximum average tensile stress due to the accident conditions is 55,730 psi psi, which is less than the allowable stress of 90,900 psi. The maximum stress intensity for the bolts during accident conditions is 72,900 psi which is less than the allowable stress of 133,000 psi.

During fire accident condition, bolt and flange experiences a maximum temperature of 1068°F and the maximum bolt stress intensity is 49,386 psi which is below the bolt tensile strength of 112,500 psi. The lid bolts will keep the MCO secure in cask during a fire accident.

Lid shoulder stresses during both normal and accident conditions provide large margins of safety of resisting transverse lid deceleration loads.

B4.5B-8 REFERENCES

- 1. NUREG/CR-6007, Stress Analysis of Closure Bolts for Shipping Casks.
- 2. WHC-S-0396, Rev.1," Specification for TN-WHC cask and Transportation System".

APPENDIX B4.5C

STRUCTURAL EVALUATION OF CASK BODY

.

TABLE OF CONTENTS

Section

Page

B4.5C-1	INTRODUCTION	B4.5C-1
B4.5C-2	ANSYS ANALYSIS	B4.5C-2
B4.5C-3	LOADINGS	B4.5C-16
B4.5C-4	PUNCTURE ANALYSIS	B4.5C-32
B4.5C-5	STRESS RESULTS	B4.5C-39
B4.5C-6	REFERENCES	B4.5C-53

APPENDIX B4.5C

STRUCTURAL EVALUATION OF CASK BODY

B4.5C-1 INTRODUCTION

This appendix presents the structural analyses of the cask body including the cylindrical shell assembly and bottom assembly, and the lid. The specific methods, models and assumptions used to analyze the cask body for the various individual loading conditions specified in the Hanford Specification⁽¹⁾. Stress results are reported at selected locations for each load case. Maximum stresses from this appendix are evaluated in Sections B4.3 and B4.4 where the load combinations are performed and the results evaluated against the ASME Code and design criteria described in Sections B4.3 and B4.4.

The cask body structural analyses generally use static or quasistatic linear elastic methods so that combinations of loads can be examined by superimposing the results from individual loads. The stresses and deformations due to the applied loads are generally determined using the ANSYS⁽²⁾ computer program.

The two analysis methods, described in this appendix and used to evaluate the cask body for the individual loading conditions, are:

- ° ANSYS Analysis Axisymmetric and Asymmetric Loads
- Puncture Analysis

The method of combining stress results from individual load cases to evaluate the required load combinations is discussed in Section B4.3 for normal conditions of transport and Section B4.4 for hypothetical accident conditions.

B4.5C-2 ANSYS ANALYSIS

Model Description

The cask body consists of the cylindrical shell, the bottom, the lid and the lid bolts. The elements used to model the bolts are ANSYS STIF3, beam elements. The cylindrical shell, the bottom end closure and the lid are modeled using either ANSYS STIF25 axisymmetric harmonic solid elements or ANSYS STIF42 axisymmetric solid elements (Puncture Analysis). The loading applied to this type of elements may be either axisymmetric for some cases and asymmetric for other cases. The model geometry is based on Drawings H-1-81535, sheets 1.2.3,4,5 and are provided in Section A9.1. The contact surface at the lid and cylindrical shell is modeled using separate nodes in the interfacing components. These nodes are coupled or left uncoupled for specific constraint conditions as discussed below. The lifting attachment welded to the lid changes the usual cask drop analyses on the lid end drop and corner drop. A separate analysis was done to check this impact effects. Based on this calculation, the cask and lid closure structure remain intact but the welds at the trunnion brackets and gussets fail at lower G level. The bracket and gussets act like an impact limiter (reduced the G force at the cask body) during the drop events. It is conservative to neglect the brackets and gussets in the cask model for calculating the globe effect of the cask body. All the analyses were performed using the model shown in Figures B4.5C-1 and B4.5C-2. The mechanical properties for the materials in this model are the linear values described in Section B4.2.2.

Figure B4.5C-1 TN-WHC Cask Structural ANSYS Model (2D AXISYMMETRIC)

B4.5C-3

Finite Element Model Internal Constraints

The connections between various portions of the model were made using node coupling. The bolted connection between the lid and the cask body was modeled by coupling the interfacing nodes in the radial and axial directions.

Finite Element Model Boundary Conditions

For a static finite element structural analysis the structure must be restrained in such a way that there is no rigid body motion. For the drop analyses, the dynamic equilibrium problem is solved using D'Alembert's principle, i.e. the total inertia loading is balanced by the total reaction force. In an actual dynamic event, there are no physical locations in the structure that are stationary and, unless suitable boundary conditions are selected for analysis, rigid body motion may occur. To eliminate the rigid body motion problem, the cask model was carefully restrained in such a way that no appreciable forces were developed at the restraints. When only small reactions are developed at the restrained nodes the inertia loadings and reactions are well balanced. This is true for all loading conditions analyzed.

The boundary conditions used for the different loading conditions are shown on the following figures.

Figures B4.5C-3 and 4:	Boundary conditions for bolt preload, pressure and thermal
Figures B4.5C-5 and 6:	Boundary conditions for bottom end drop
Figures B4.5C-7 and 8:	Boundary conditions for lid end drop
Figures B4.5C-9 and 10:	Boundary conditions for side drop
Figures B4.5C-11 and 12:	Boundary conditions for corner drop

Figure B4.5C-3 Boundary Conditions For Bolt Preload, Pressure, and Thermal

NODES COUPLED IN X DIRECTION (4,1114)(1,1112)

NODES COUPLED IN Y DIRECTION (13,1115) (14,1116) (4,1114) (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

NODES COUPLED IN Z DIRECTION (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

B4.5C-7

Figure B4.5C-5 Boundary Conditions For Bottom End Drop

Figure B4.5C-6 Boundary Conditions For Bottom End Drop (Lid and Lid Bolt)

NODES COUPLED IN X DIRECTION (4,1114) (1,1112)

NODES COUPLED IN Y DIRECTION (13,1115) (14,1116) (4,1114) (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

HODES COUPLED IN I DIRECTION (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

B4.5C-9

Figure B4.5C-7 Boundary Conditions For Lid End Drop

NODES COUPLED IN X DIRECTION (4,1114) (1,1112)

NODES COUPLED IN Y DIRECTION (13,1115) (14,1116) (4,1114) (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

HODES COUPLED IN I DIRECTION (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

Figure B4.5C-9 Boundary Conditions For Side Drop

NODES COUPLED IN X DIRECTION (4,1114) (1,1112)

NODES COUPLED IN Y DIRECTION (13,1115) (14,1116) (4,1114) (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

NODES COUPLED IN I DIRECTION (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

B4.5C-13

E-15166

Figure B4.5C-11 Boundary Conditions For Corner Drop

NODES COUPLED IN X DIRECTION (4,1114) (1,1112)

NODES COUPLED IN Y DIRECTION (13,1115) (14,1116) (4,1114) (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

HODES COUPLED IN Z DIRECTION (1,1112) (2,1097) (6,1098) (5,1094) (10,1108) (9,1105)

B4.5C-15

B4.5C-3 LOADINGS

The loading conditions analyzed simulate or represent various effects due to the normal conditions of transport and hypothetical accident conditions specified in the Hanford Specification.

B4.5C-3.1 Axisymmetric Loadings

The following individual axisymmetric load cases analyzed using this ANSYS model are described in this section.

- (1) Bolt preload
- (2) Internal pressure loading
- (3) External pressure loading
- (4) 1 foot and 30 foot end drops on bottom
- (5) 1 foot and 30 foot end drops on lid
- (6) Thermal stresses for hot environment at 115°F ambient temperature
- (7) Thermal stresses for minimum air temperature of -27°F plus zero heat generation.
- (8) Thermal accident condition

Since the individual load cases are linearly elastic, their results can be scaled and superimposed as required in order to perform the normal and hypothetical accident condition load combinations. The magnitudes of the loads used in each individual load case analysis are computed as described in the following paragraphs:

1. Bolt Preload

A lid seating load corresponding to 25,000 psi axial stress in the bolt is simulated by applying a prestrain of 0.000958 in/in in the bolt elements. The inputs for the ANSYS's finite element analysis are as follow:

Number of Bolts:12Diameter of Bolt:1 1/2 in.Bolt Circle Dia:36.44 in.Bolt Prestrain:0.000958 in/in

2. Internal Pressure Loading

An internal pressure of 161.2 psi is applied to the cavity surface as shown in Figure B4.5C-13.

3. External Pressure Loading

An external pressure of 20 psi is applied to the outer surface of the cask body as shown in Figure B4.5C-14.

4. 1 Foot and 30 Foot End Drops on Bottom

The analysis described in Appendix B4.5A determined the inertial loads on the cask for 1 foot and 30 foot end drops onto an yielding surface. That analysis concluded that the maximum axial decelerations are 25 g and 30 g for 1 foot and 30 foot drops respectively. A quasistatic analysis of the cask body is performed with inertial forces balanced by the impact force for 1 G deceleration. Since the payload or cargo is not included in the model, its loading effect is simulated as distributed pressures applied on the cask at the appropriate locations. All nodes on the outside bottom surface of the cask are fixed in the axial directions. The system of forces on the cask body is presented on Figure B4.5C-15.

Following is the derivation of the inertia load (pressure) magnitudes for the ANSYS model run:

° Weight of Cask Body:	39,600 lb.(Actual wt.=38,960 lb)
° Weight of Cargo:	19,120 lb.(Actual wt.=18,950 lb.)
° Maximum Deceleration:	25 G for 1 foot drop and 30 G for 30 foot drop
° Pressure due to cargo inertia load	$P = 19,120/\pi (12.595)^2 = 38.366 \text{ psi}$ for 1 G

1 G was used for the analysis. The stresses for 25 G and 30 G are ratioed from the 1 G analysis results.

.

E-15166

B4.5C-18

B4.5C-19

Figure B4.5C-15 Load Distribution - Bottom End Drop

B4.5C-20

5. 1 Foot and 30 Foot End Drops on Lid

An analysis similar to that for the 30 foot free drop on the bottom is performed for the 1 foot and 30 foot drops on the lid. The same inertial forces are used for the lid or top impact case as for the bottom impact case. The system of forces on the cask body is presented on Figure B4.5C-16, and the derivation of the magnitudes follows:

° Weight of Cask Body:	39,600 lb.
° Weight of Cargo:	19,120 lb.
° Maximum Deceleration:	25 G for 1 foot drop and 30 G for 30 foot
° Pressure due to cargo inertia load	$P = 19,120/\pi (12.595)^2 = 38.366 \text{ psi}$ for 1 G

1 G was used for the analysis. The stresses for 25 G and 30 G are ratioed from the 1 G analysis results.

6. Thermal Stress for Hot Environment Condition at 115°F Ambient Temperature

The thermal analysis of the cask body is described in detail in Section B5.0 of this report. That analysis was performed to determine the temperature distribution in the cask body for the condition with maximum solar heating, maximum decay heat from MCO contents, and 115° F ambient air. The temperatures at the critical time-step (which resulted in the maximum temperature difference across the cask body thickness) are taken from that analysis and are used in this structural axisymmetric finite element model to calculate the cask body thermal stresses. It is assumed that there is a stress free state at 70° F for this case 7 below.

7. Thermal stresses for minimum air temperature of -27°F plus zero heat generation.

In this analysis, zero heat generation is assumed with -27° F ambient air temperature. Thus, the cask body will attain a uniform temperature of -27° F. For this temperature distribution, the cask body will mostly be stress free, except the flange region which will develop small stresses due to slightly unequal coefficients of expansion of cask lid and bolt materials.

8. Thermal Accident Condition

An ANSYS transient thermal analysis for the 30 minute thermal accident is reported in Section B5.0. The initial condition is steady state at 115° F ambient with maximum decay heating. The initial steady state condition is followed by a 0.5 hour severe thermal transient which is then followed by water quench. The temperatures through the cross section of the package at the time where individual temperatures peak (0.5 hrs.) are summarized below:

Cask, inner surface temperature = 727° F Cask, outer surface temperature = 1068° F Lid Bolt temperature = 1068° F

The thermal expansion bolt stresses are computed at the highest bolt and flange temperature (1068° F) in Appendix B4.5B of this report.

Figure B4.5C-16 Load Distribution - Lid End Drop

B4.5C-23

B4.5C-3.2 Asymmetric Loading

The asymmetric loadings of the axisymmetric cask body are applied to special ANSYS harmonic elements. Each load acting on the cask is expanded into a Fourier series and is input into ANSYS as a series of load steps. Each load step contains all of the terms from the applied loads having the same mode number. The number of terms in the Fourier series required to adequately represent a load varies with the type of load (whether it is a concentrated or a distributed load) and the degree of accuracy required. In the particular case where the applied loads are distributed over a large area (i.e., 180 degrees of the cask circumference), a few terms of the series are sufficient to represent the desired loading within a few percent.

The following individual asymmetric load cases analyzed (using the same two-dimensional ANSYS model previously discussed) are described in this section.

- (1) 1 foot and 30 foot side drops with the cask axis parallel to the target.
- (2) 1 foot and 30 foot C.G. over top corner (lid end) drops.

1. 1 Foot and 30 Foot Side Drops

Figure B4.5C-17 shows the free body diagram for the 1 foot and 30 foot free drops on the side of the packaging with all of the forces acting on the cask. These forces are assumed to vary sinusoidally around the circumference, and are:

a. The payload is assumed to be a cosine function over 90° to 270° range. The fourier coefficients for this function are computed in Figure B4.5C-18 using ANSYS PREP 6. It is seen from Figure B4.5C-18 that first 3 terms of Fourier series are sufficient to define the cosine function payload.

Total force (1 G) = 19,120 lbs

A cosine distribution is assumed with $90^{\circ} \le \theta \le 270^{\circ}$

$$F = 19,120 = \int \frac{3\pi/2}{P \cos \theta r \, d\theta \, L \, \cos \theta = P \, r \, L \, \pi/2}$$

$$\pi /2$$

 $P = 2F/rL\pi = 2(19,1200)/12.595(160.5)\pi = 6.0214 \text{ psi}$

This peak pressure (P times fourier coefficients) is applied to the inside surface nodes.

E-15166

b. The reaction pressures due to side drop impact are assumed to be a cosine function over 162⁰ to 198⁰ range. This range corresponds to normal condition side drop target deformation of 1". The first 15 terms are used to represent this function. The fourier coefficients are shown in Figure B4.5C-19. All loads are computed for 1 G deceleration.

F, total reaction force (1G) = cask mass + payload = 38,554 + 19,120 = 57,674 # say 58,000 #

$$F = \Pr L \int_{162^{\circ}}^{198^{\circ}} \cos^{2} \theta \ d\theta = \Pr L \left[\frac{1}{4} \sin 2\theta + \frac{\theta}{2} \right]$$

= $\Pr L (0.6084)$

 $P = 58,000/19.905 \times 163.25 \times 0.6084 = 29.34 \text{ psi}$

c. The cask inertia load is developed by applying 1 G global deceleration. Stresses for 24 G (1 foot drop) and 40 G (30 foot drop) are ratioed from 1 G analysis results.

E-15166

B4.5C-26

Figure B4.5C-18 Fourier Coefficients for the Function $90^{\circ} \le \Theta \le 270^{\circ}$

NUMBER OF FOURIER TERMS= 4

***** FOURIER COEFFICIENTS ***** TERM MODE*ISYM COEFFICIENT

1	0	-0.31780103E+00
2.	1.	0.49931477E+00
Э	5	-0.21206110E+00
4	з	-0.15267271E-12

Figure B4.5C-19 Fourier Coefficients for the Function $162^{\circ} \le \Theta \le 198^{\circ}$

2. 1 Foot and 30 Foot C.G. Over Top Corner (Lid End) Drops

The crush footprint of the concrete slab was projected to the cask surface. The impact force was determined from the inertia loading reported in Appendix B4.5A. The impact angle for the C.G. over corner drop is approximately 79.83°. Figure B4.5C-20 shows the free body diagram for the 1 foot and 30 foot free drops on the corner of the packaging showing all of the forces acting on the cask. These are:

(1) The crush footprint of the concrete slab was projected to the cask surface. The impact force was determined from the inertial loading reported in Appendix B4.5A. The crush force was converted into an equivalent element surface pressure (which varies sinusoidally in both the circumferential and axial directions) which was applied normal to the surfaces. All pressures are calculated for 1 G deceleration.

Normal Pressure

Crushing depth, L= 15.0"

 $P_{normal} = 2F/r L \pi$

The total length of 15.0"(L) is divided two lengths:

7.0"(L1) for 15.75" radius and 8.0" (L2) for 19.905" radius

 $P_{11} = 31.969 \text{ psi}$

 $P_{1,2} = 22.134$ psi

These pressures are assumed to be a cosine function over 90° to 270° range. The fourier coefficients for this function are computed in Figure B4.5C-18.

Axial Pressure

The axial load is distributed sinusoidally on the outer surface of the lid:

 $F_{axial} = 37,400 \times 0.984 + 19.120 \times 0.984 = 55,616$ lbs

The computer analysis is based on the pressure varying sinusoidally at half of the outer surface of the lid.

 $P_{axial} = 2 \times 55.616 / \pi \times 15.75^2 = 142.73 \text{ psi}$

- (2) The resultant body inertia force (1 G deceleration) is shown acting at the cask C.G. in Figure B4.5C-20
- (3) The cargo inertia loading was applied in two mutually perpendicular directions (one along the axis of the cask and the other perpendicular to it). The component along the axial direction was distributed uniformly over the inside surface of the lid. The other component was assumed to vary sinusoidally around the lower half of the inside surface of the inner shell. In this case, these pressures are not only varied sinusoidally around the circumference but also varied linearly with distance from the bottom inner surface (0) to top inner surface (max.).

For 1G acceleration at CG:

Axial G = $1.0 \times \sin 79.83^{\circ} = 0.984$ Normal G = $1.0 \times \cos 79.83^{\circ} = 0.177$

Axial Pressure

 $P_{\text{avial}} = 19,120 \ (0.984)/\pi \times 12.595^2 = 37.752 \ \text{psi}$

Normal Pressure

 $P_{\text{normal}} = 2F/r \ L \ \pi$

The normal acceleration component variation is assumed as triangular. This triangular G distribution is divided in four step conservative distribution as follow:

 $P_1 = 0.089 \text{ G} = 0.536 \text{ psi}$ $P_2 = 0.177 \text{ G} = 1.065 \text{ psi}$ $P_3 = 0.2745 \text{ G} = 1.652 \text{ psi}$ $P_4 + 0.372 \text{ G} = 2.238 \text{ psi}$

These pressures are assumed to be a cosine function over 90° to 270° range. The fourier coefficients for this function are computed in Figure B4.5C-18.

(4) Stresses for 18 G (1 foot drop) and 20 G (30 foot drop) are ratioed from 1 G analysis results.

Figure B4.5C-20 Load Distribution - Lid End Corner Drop

B4.5C-4 PUNCTURE ANALYSIS

Puncture Force

The most severe damage to the cask resulting from the puncture drop will occur on the outer center of the lid. The analysis is based on the Nelms⁽³⁾ equation. The Nelms puncture relation is given as:

 $t = (W/S_u)^{0.71}$

Where:

 $\begin{array}{l} t = lid \ thickness = 3.5" \\ W = package \ weight = 57,800 \ lbs \\ S_u = ultimate \ tensile \ strength \ of \ the \ lid = 70,000 \ psi \end{array}$

The package weight that can result in puncture is:

 $W = S_{u} t^{1.41} = 70,000 (3.5)^{1.41} = 409,482$ lbs

The actual package weight is 57.910 lbs, Therefore, the factor of safety for puncture resistance on the energy basis is:

F.S. = 409,482/57,910 = 7.07

When the package contacts the puncture bar, the force applied to the package is:

 $F_t = \text{impact force} = \sigma_s A_p$ $\sigma_s = \text{dynamic flow pressure of stainless steel} = 45,000 \text{ psi (reference 4)}$ $A_p = \text{area of the puncture bar} = \pi/4 (6)^2 = 28.27 \text{ in}^2$ $F_t = 45,000 \times 28.27 = 1.272 \times 10^6 \text{ lbs}$

This force produces a cask deceleration:

G = cask deceleration = $F_1/W = 1.272 \times 10^6/57,910 = 22$

This deceleration is smaller than that which will occur during impact on end after the 30 foot free drop (25G). Therefore, global stresses that result from the inertial force will be smaller. The bending stress at the center of the lid will be calculated using the above finite element model.

B4.5C-32

Lid Stresses

The lid stresses are computed using the 2-D model as described in Section B4.5C-2. The loading distribution and boundary conditions are shown on Figures B4.5C-21 and B4.5C-22. The 22 G inertia load due to 40" drop is applied as body acceleration. The contents inertia load is applied as equivalent pressure on the lid as follow:

Contents weight = 19,120 lbs

 $P = 19,120 \times 22 /\pi (12.595)^2 = 844.05 \text{ psi}$

Elastic Analysis:

ANSYS computer Code is used for the analysis. A stress run was made using the above noted loads and boundary conditions. STIF 42 (Axisymmetric) finite element was used in the analysis.

The stress are linearized at critical sections. The maximum membrane and maximum membrane plus bending stress intensities are as follow:

Section at Node number (Figure B4.5C-23)	P _m (psi)	$P_m + P_b (psi)$
84	12,560	83,280
94	10.880	85,010
93	5.275	70,560
92	30,780	57,550
91	25,430	59,960

The maximum membrane stress intensity calculated for this load is 30,780 psi at node number 92. This stress is below the allowable membrane stress intensity of 47,670 psi. The maximum membrane plus bending stress intensity is 85,010 psi at node number 94. This stress exceeds the allowable membrane plus bending stress intensity of 68,100 psi (at temperature 150°F). Therefore, a elastic-plastic analysis was performed to recalculate the stresses.

Plastic Analysis:

A plastic analysis was performed (using the same finite element model, boundary conditions, and loads). The stress-strain properties used for the stainless steel are given in Figure B4.5C-24. The total load (22 G inertia and 844.05 psi) was divided in eight load steps for a proper converged solution.

Section at Node number (Figure B4.5C-23)	P _m (psi)	$P_m + P_b$ (psi)
84	2,934	45,030
94	3,326	46,620
93	6,889	42,140
92	25,470	36,060
91	26,350	40,780

The maximum membrane and maximum membrane plus bending stress intensities are as follow:

The maximum membrane stress intensity calculated for this load is 26,350 psi at node number 91. This stress is below the allowable membrane stress intensity of 47,670 psi $(0.7S_u)$. The maximum membrane plus bending stress intensity is 46,620 psi at node number 94. This stress is below the allowable membrane plus bending stress intensity of 61,290 psi $(0.9S_u)$. The analysis shows the stresses are within the ASME Code allowables.

Figure B4.5C-21 Load Distribution - Puncture at Center of Lid

B4.5C-35

Figure B4.5C-22 Boundary Conditions - Puncture at Center of Lid

Figure B4.5C-23 Stress Reporting Locations - Puncture at Center of Lid

B4.5C-37

Figure B4.5C-24 Stress - Stain Curve for 304 Stainless Steel

B4.5C-5 STRESS RESULTS

Detailed stresses and displacements in the ANSYS model of the cask body are obtained and stored (on magnetic tape) for every node location for each individual load case. These stored results are postprocessed to printout the stresses at 29 standard locations on the cask body structure shown in Figure B4.5C-25. The locations selected as shown in Figure B4.5C-25 are key points that, when carefully studied, indicate the behavior of the entire structure. The maximum stress may occur at a different location for each individual load. Since the individual load cases are linearly elastic, their results can be scaled and superimposed as required in order to perform the normal and hypothetical accident condition load combinations.

The individual load cases analyzed are listed in Table B4.5C-2. Linear elastic analyses were performed for all load cases. The nodal stress intensities for each of the ten load cases are reported in Tables B4.5C-3 to B4.5C-12 as listed in Table B4.5C-2. The magnitude of loads used in each individual load case and summary of the maximum stresses are described in the Table B4.5C-1. There are no specific limits for individual load stresses for comparison with allowable stresses.

It should be noted that, for the axisymmetric analyses, the stress is constant around the cask at every location. For asymmetric analyses with significant differences in stress magnitudes on opposite sides of the cask, the stresses at locations on both sides of the cask (contacting side and side opposite contact during impact) are reported in stress tables.

Figure B4.5C-25 Standard Stress Reporting Locations

Table B4.5C-1 Cask Body Stresses - Summary of Individual Load Analyses

Load Case	Loading	Calculated Stress intensity (psi)	Reference Table No.
Bolt Preload	25,000 psi	313	B4.5C-3
Internal Pressure	161.2 psi	1,675	B4.5C-4
External Pressure	20 psi	208	B4.5C-5
Vibration	.6G v3G , .3G	138	B4.5C-6
1 Foot Bottom End Drop	25 G	1,200	B4.5C-7
30 Foot Bottom End Drop	30 G	1,440	B4.5C-7
1 Foot Lid End Drop	25 G	3,625	B4.5C-8
30 Foot Lid End Drop	30 G	4,350	B4.5C-8
1 Foot Side Drop (Envelop Slap Down)	24 G	3,091	B4.5C-9
30 Foot Side Drop (Envelop Slap Down)	40 G	5,152	B4.5C-9
1 Foot Lid End Corner Drop	18 G	13,468	B4.5C-10
30 Foot Lid End Corner Drop	20 G	14,964	B4.5C-10
Thermal Stress (Hot)	115° F Environment	1,197	B4.5C-11
Thermal Stress (Cold)	- 27° F Environment	23	B4.5C-12
Puncture	22 G	46,620	Section B4.5C-4

Table B4.5C-2 Individual Load Cases For TN-WHC Cask Body Analysis

Load Case Number	Individual Load Description	Stress Result Table
I	Bolt Preload (25,000 psi)	B4.5C-3
2	Internal Pressure (p = 161.2 psi)	B4.5C-4
3	External Pressure $(p = 20 \text{ psi})$	B4.5C-5
4	Vibration (.3G long., .3G hor., .6G vert.)	B4.5C-6
5	Drop on Bottom/ Gravity Load (1 G)	B4.5C-7
6	Drop on Lid End (1 G)	B4.5C-8
7	Drop on Side (1 G)	B4.5C-9
8	Drop over Corner, Lid End (1 G)	B4.5C-10
9	Thermal Stress (hot)	B4.5C-11
10	Thermal Stress (cold)	B4.5C-12

B4.5C-42

Table B4.5C-3 Cask Body Stresses For Bolt Preload (25,000 psi)

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	0
	131	0
	214	0
	157	0
	142	0
	220	0
Cask Cylinder	460	0
	427	0
	395	1
	369	26
	283	0
	316	0
	348	1
	256	13
Cask Flange	1111	69
	1112	64
	1115	50
	1114	180
Lid	34	313
	33	307
	51	236
	47	118
	74	93
	76	95
	48	128
	45	78
	94	24
	92	24
	61	

Table B4.5C-4 Cask Body Stresses For 161.2 psi Internal Pressure

Location		Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)	
Cask Bottom	133	563	
	131	290	
	214	67	
	157	210	
	142	448	
	220	106	
Cask Cylinder	460	540	
	427	535	
•	395	536	
	369	516	
	283	218	
	316	215	
	348	215	
	256	216	
Cask Flange	1111	410	
	1112	252	
	1115	401	
	1114	401	
Lid	34	421	
	33	293	
	51	1,569	
	47	449	
	74	1,055	
	76	932	
	48	889	
	45	108	
	94	1,675	
	92	1,551	
	61	853	

HNF-SD-SNF-FDR-003 Rev. 0

Table B4.5C-5 Cask Body Stresses For 20 psi External Pressure

Location		Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)	
Cask Bottom	133	70	
	131	36	
	214	9	
	157	27	
	142	56	
	220	13	
Cask Cylinder	460	67	
	427	66	
+	395	66	
	369	64	
	283	27	
	316	27	
	348	27	
	256	27	
Cask Flange		51	
	1112	31	
	1115	50	
	1114	49	
Lid	34	52	
	33	36	
	51	195	
	47	56	
	74	131	
		115	
	48	110	
	45	75	
	94	208	
	92	193	
	61	106	

Location		Nodal Stress	Intensity (ps
Cask Body Component	Node	0 Degree	90 Degree
Cask Bottom	133	138	43
	131	28	20
	214	16	33
	157	134	35
	142	52	42
	220	16	28
Cask Cylinder	460	26	27
	427	22	18
· · ·	395	24	28
	369	4	15
	283	34	25
	316	30	17
	348	13	11
	256	3	9
Cask Flange	1111	3	4
	1112	2	4
	1115	4	4
	1114	3	4
Lid	34	2	6
	33	2	7
	51	4	8
	47	2	5
	74	8	6
	76	4	5
	48	2	7
	45	2	4
	94	7	7
	92	6	7
	61	5	4

Table B4.5C-6 Cask Body Stresses For Vibration Loadings (.6g vert., .3g long., .3g lat.)

Table B4.5C-7 Cask Body Stresses For Bottom End Drops and Gravity Load 1 G results, to be ratioed for 1 foot (25 G) and 30 foot (30 G) drops

Location		Nodal Stress Intensity
Cask Body Component	Node Number	(psi)
Cask Bottom	133	40
	131	45
	214	48
	157	40
	142	47
	220	46
Cask Cylinder	460	37
	427	26
•	395	14
	369	7
	283	37
	316	26
	348	14
	256	
Cask Flange	1111	4
	1112	4
	1115	4
	1114	5
Lid	34	5
	33	44
	51	11
	47	2
	74	9
	76	8
	48	7
	45	3
	94	11
	92	10
	61	6

Table B4.5C-8 Cask Body Stresses For Lid End Drops 1 G results, to be ratioed for 1 foot (25 G) and 30 foot (30 G) drops

Location		Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)	
Cask Bottom	133	7	
	131	4	
	214	1	
	157	7	
	142	7	
	220	2	
Cask Cylinder	460	13	
	427	25	
N	395	36	
	369	53	
	283	13	
	316	25	
	348	36	
	256	46	
Cask Flange	1111	106	
	1112	72	
	1115	115	
	1114	121	
Lid	34	83	
	33		
	51	145	
	47	129	
	74	33	
	76	33	
	48	114	
	45	118	
	94	34	
	92	33	
	61	33	

Table B4.5C-9 Cask Body Stresses For Side Drops 1 G results, to be ratioed for 1 foot (24 G) and 30 foot (40 G) drops

Location		Nodal Stress Intensity (psi)	
Cask Body Component	Node Number*	Contact Side	Opp. Cont.
Cask Bottom	133		48
	131	41	12
	214	29	17
	157	127	65
	142	94	3
	220	33	13
Cask Cylinder	460	124	50
	427	129	56
	395	125	54
	369	109	40
	283	69	34
	316	72	50
	348	71	41
	256	62	24
Cask Flange	1111	82	22
_	1112	34	10
	1115	82	20
	1114	39	14
Lid	34	60	14
	33	45	11
	51	56	12
	47	18	7
	74	15	18
	76	13	19
	48	52	16
	45	20	4
	94	31	59
	92	14	26
	61	22	5

Table B4.5C-10 Cask Body Stresses For Corner Drops IG results, to be ratioed for 1 foot (18 G) and 30 foot (20 G) drops

Location		Nodal Stress Intensity (psi)	
Cask Body Component	Node Number	Contact Side	Opp. Cont.
Cask Bottom	133	59	58
	131	15	9
	214	11	9
	157	71	71
	142	16	23
	220	5	8
Cask Cylinder	460	6	20
	427	19	31
	395	46	28
	369	105	27
	283	3	26
	316	15	36
	348	47	26
	256	83	20
Cask Flange	1111	215	51
	1112	145	41
	1115	234	58
	1114	270	55
Lid	34	249	63
	33		65
	51	748	132
	47	127	48
	74	590	614
	76	503	232
	48	493	132
	45	59	50
	94	334	479
	92	508	207
	61	332	133
HNF-SD-SNF-FDR-003 Rev. 0 E-15166

Table B4.5C-11 Cask Body Stresses For Normal Hot Condition

Location	Nodal Stress Intensity	
Cask Body Component	Node Number	(psi)
Cask Bottom	133	73
	131	632
	214	1197
	157	918
	142	
	220	844
Cask Cylinder	460	674
	427	664
	395	823
	369	1,135
	283	505
	316	496
	348	599
	256	870
Cask Flange	1111	506
	1112	480
	1115	342
	1114	500
Lid	34	553
	33	396
	51	366
	47	255
	74	22
	76	273
	48	239
	45	148
		230
	92	236
	61	427

* See Figure B4.5C-25 for the node locations

HNF-SD-SNF-FDR-003 Rev. 0 E-15166

Table B4.5C-12 Cask Body Stresses For Normal Cold Condition

Location	Nodal Stress Intensity	
Cask Body Component	Node Number*	(psi)
Cask Bottom	133	.0
	131	0
	214	0
	157	0
	142	0
	220	0
Cask Cylinder	460	0
	427	0
	395	0
	369	1,
	283	0
	316	0
	348	0
	256	11
Cask Flange	1111	5
	1112	3
	1115	6
	1114	
Lid	34	15
	33	23
	51	11
	47	5
	74	4
	76	4
	48	6
	45	4
	94	2
	92	1
	61	1

* See Figure B4.5C-25 for the node locations

B4.5C-52

B4.5C-6 REFERENCES

- Performance Specification for TN-WHC Cask and Transportation System, WHC-S-0396, Rev1, 1995.
- 2. ANSYS Engineering Analysis system, User's Manual Volumes 1 to 4, Revision 5.2
- Cask Designers Guide " A Guide for the Design, Fabrication, and Operation of Shipping Casks for nuclear applications". ORNL-NSIC-68.
- Charles R. Adams " A Comparison of Analytical Techniques for Analyzing a Nuclear-Spent-Fuel Shipping Cask Subjected to An end-On Impact" NUREG/CR-1018.

.

APPENDIX B4.5D

CASK LIFTING ATTACHMENT

TABLE OF CONTENTS

Section

<u>Page</u>

INTRODUCTION	. B4.5D-1
LOADING	. B4.5D-1
TRUNNION ANALYSIS	. B4.5D-1
BRACKET AND GUSSET ANALYSIS	. B4.5D-3
CONCLUSION	. B4.5D-3
REFERENCES	. B4.5D-4
	INTRODUCTION

APPENDIX B4.5D

CASK LIFTING ATTACHMENT

B4.5D-1 INTRODUCTION

This appendix presents the structural analysis of cask lifting attachment. The lifting attachment consists of two trunnions which are attached to the cask lid by a set of brackets and gussets. The geometry and dimensions of lifting attachment are based on Reference 1. The details of the lifting attachment components are shown in Figure B4.5D-1. All components are made of 304 stainless steel.

Two analysis methods are used in the structural evaluation of the cask lifting attachment;

- Hand-calculations to analyze the trunnion
- ANSYS⁽²⁾ finite element method to analyze the bracket, gusset and lid

B4.5D-2 LOADING

Hanford Specification⁽³⁾ requires that the lifting attachments are to be designed per ANSI N14.6 with a factor of safety of three to yield or five to ultimate strength, whichever is most restrictive Since 304 stainless steel has 30 ksi yield and 75 ksi ultimate strength, the factor 3 to yield is more severe. Accordingly, a factor of 3 is used on the load and the resulting stresses are compared to the yield strength.

B4.5D-3 TRUNNION ANALYSIS

Maximum Cask Weight = 60,000 lbs. (Reference 4)

Load/Trunnion = $60,000 \times 3/2 = 90,000$ lbs.

(a) Stresses at Section B-B (See Figure B4.5D-2a)

Shear Stress, $S_s = 90000/ [\pi (2)^2] = 7,162$ psi

Shear stress is less than the allowable 0.42 S₂=31,500 psi , ... O.K

Moment of Inertia

 $I = \pi (2)^4 / 4 = 12.57 \text{ in}^4$

Bending Stress

 $S_{b} = M C / I = 90,000 x 1.505 x 2 / 12.57 = 21,552 psi$

B4.5D-1

Combined Stress Intensity

SI =
$$[S_b^2 + 4(S_s)^2]^{0.5} = [21552^2 + 4(7162)^2]^{0.5} = 25,878$$
 psi

This stress is less than the allowable $S_v = 30,000 \text{ psi}, \dots, O.K$.

(b) Stresses at Section A-A (Weld) (See Figure B4.5D-2b)

Weld Thickness = 1 in.

Moment of Inertia

 $I = \pi / 64 [d_{0}^{4} - d_{1}^{4}] = \pi / 64 [7^{4} - 5^{4}] = 87.18 in^{4}$

Bending Stress

 $S_{h} = M C / I = 90,000 x 5.505 x 3.5 / 87.18 = 19,890 psi$

Shear Stress

 $S_s = 90,000/(\pi /4 [7^2 - 5^2] = 4,775 \text{ psi}$

Combined Stress Intensity

 $SI = [19890^2 + 4 (4775)^2]^{0.5} = 22,065 \text{ psi}$

This stress is less than the allowable $S_v = 30,000$ psi, ..., O.K.

(c) Bearing Stresses at Crane Hook Location (See Figure B4.5D-2c)

Bearing area is based on 40 degrees (on each side of center line) contact between the hook and trunnion .

Hook Depth = 2.25 in Bearing Area = $2[2.0 \sin 40^{\circ}] \times 2.25 = 5.785 \text{ in}^2$ Bearing Stress = 90,000/5.785 = 15,560 psi

This stress is less than the allowable $S_v = 30,000$ psi O.K.

(d) Stresses at Weld Between brackets, gussets and Lid

The weld section properties, $I = 317.58 \text{ in}^4$, e = 4.85 in.

The maximum bending moment = 90,000 (5.505 + 4.85) = 931,950 in-lb

The maximum stress at bracket weld is:

B4.5D-2

 $F/A + MC/I = 90000/9.279 + 931950(4.85)/317.58 = 23,932 \text{ psi} \le 30,000 \text{ psi} \dots O.K.$

The maximum stress at gusset weld is: $F/A + MC/I = 90000/9.279 - 931950(9.4)/317.58 = -17,886 \text{ psi} \le 30,000 \text{ psi} \dots O.K.$

B4.5D-4 BRACKET, GUSSET AND LID ANALYSIS

An ANSYS three-dimensional finite element model of bracket, gusset and lid is constructed using SOLID45 element (see Figure B4.5D-3). Since the loading and structure are symmetric, only one quarter of structure is modeled. All nodes at the lid bottom are fixed. Symmetry boundary conditions are applied at all the cut surfaces. The force of 45000 lbs. (in Z-direction) is applied as a concentrated load at the trunnion. The resulting stress intensity distribution in the model is shown in Figure B4.5D-4. The figure shows that the maximum stress intensity in bracket, gusset and lid is in the range of 10,000 to 15,000 psi. All the stresses are less than the allowable stress of 30,000 psi.

B4.5D-5 CONCLUSION

Based on the results of analyses, it is concluded that the design of the cask lifting attachment is structurally adequate to withstand the maximum lifting loads.

Figure B4.5D-1 Cask Lifting Attachment Components

Figure B4.5D-2 Trunnion Analysis

Figure B4.5D-3 ANSYS Finite Element Model For Cask Lifting Attachment

17

B4.5D-6 REFERENCES

- 1. TN-DRAWING NO. 3035-3, Rev. 4, Sheet 4.
- 2. ANSYS Engineering Analysis System User's Manual, Volumes 1 to 4, Revision 5.2.
- 3. Specification for TN-WHC Cask and Transportation System, WHC-S-0396, Rev. 1,1995
- 4. TN Calculation No. 3035-4, Rev.1,"TN-WHC Weight and C.G. Calculations.

B5.0 THERMAL EVALUATION

B5.1 INTRODUCTION

The cask is designed to passively reject payload decay heat under normal conditions of transport and hypothetical accident conditions while maintaining appropriate package temperatures and pressures within specified limits. An evaluation of the cask thermal performance is presented in this chapter. Objectives of the thermal analyses performed for this evaluation are:

- Determination of package temperatures with respect to containment system material limits;
- Determination of package component temperature gradients to support calculation of thermal stresses;
- Determination of the cask cavity temperature to support containment pressurization calculations;
- · Determination of the maximum MCO temperature.

The package components considered in the thermal evaluation are the cask body, the lid and the MCO. The cask body consists of a cylindrical stainless steel shell which surrounds the MCO. The lid and the bottom are fabricated from stainless steel plate material as described in Part A, Section 1.0. Temperatures calculated for the components in the package support thermal stress calculations and permit selection of appropriate temperature dependent mechanical properties used in the structural analyses. Temperatures are also calculated to demonstrate that specified limits for seal materials are not exceeded.

B5.2 THERMAL SOURCE SPECIFICATION

The thermal source term for the payload within the MCO is defined as a surface heat flux at the inside boundaries of the MCO.

B5.2.1 Normal Conditions of Transport

The range of anticipated heat flux at the inside surfaces of the MCO under normal conditions of transport is defined in the table below. The defined sidewall surface heat flux occurs over the lower 11.5 ft of the MCO.

Payload	Surface Heat Flux At MCO Sidewalls	Surface Heat Flux At MCO Top	Surface Heat Flux at MCO Bottom	Total Power
Maximum	12.7 Watts/ft ²	6.0 W/ft ²	0	950 W
Minimum	0	0	0	0

B5.2.2 Hypothetical Accident Conditions

Due to possible chemical reaction of the spent fuel at elevated temperatures, the maximum surface heat flux will vary during the hypothetical accident conditions from that defined for the normal conditions of transport. This variation in surface heat flux at the inside boundaries of the MCO is defined in the table below. The surface heat fluxes for normal conditions are to be used in establishing the steady-state conditions preceding the hypothetical accident condition.

Payload	Heat Flux at Center 28 in Section of Sidewall	Surface Heat Flux at Remainder of Sidewall	Surface Heat Flux at MCO Top	Surface Heat Flux at MCO Bottom	Total Power
Maximum	30 W/ft ²	12.7 W/ft ²	6.0 W/ft ²	0	1200 W
Minimum	0	0	0	0	0

B5.3 SUMMARY OF THERMAL PROPERTIES OF MATERIALS

The thermal properties of materials used in the thermal analyses are listed below. The values are listed as given in the corresponding references. The analysis uses interpolated values for intermediate temperatures where the temperature dependency of a specific parameter is deemed significant. The interpolation assumes a linear relationship between the reported values.

Thermal radiation at the external surface of the package is considered. The external surfaces of the cask are assumed to have an emissivity of 0.85, a typical value for weathered stainless steel surfaces⁽¹⁾. For solar absorptivity, a value of 0.5 is used.

a. Helium (1)

Temperature	Conductivity	Density	Heat Capacity
(deg F)	(Btu/hr-ft-F)	(lb/cu. in)	(Btu/lb-F)
0	0.078	6.94 E-6	1.24
200	0.097	4.83 E-6	1.24
400	0.115	3.70 E-6	1.24
600	0.129	3.01 E-6	1.24
800	0.138	2.52 E-6	1.24

Used for: Gaps between cask and MCO

b. Air (1)

Used for: Convection coefficients on cask surface

Temperature	Conductivity	$g\beta\rho^2/\mu^2$	Prandlt No.
(deg F)	(Btu/hr-ft-F)	(1/F-cu. ft)	
100	0.0154	1.76 E6	0.72
200	0.0174	0.85 E6	0.72
800	0.0286	49.8 E3	0.697
900	0.0303	36.0 E3	0.705
1000	0.0319	26.5 E3	0.713
1500	0.0400	7.45 E3	0.739

Note that the analyses used air properties in the range of 100°F - 200°F, and 800°F - 1500°F only.

Temperature	Conductivity (3)	Density ⁽¹⁾	Heat Capacity ⁽¹⁾
(deg F)	(Btu/hr-ft-F)	(lb/cu. in)	(Btu/lb-F)
70	8.6	0.282	0.110
100	8.7	0.282	0.110
200	9.3	0.282	0.110
300	9.8	0.282	0.110
400	10.4	0.282	0.110
500	10.9	0.282	0.110
600	11.3	0.282	0.110
800	12.2	0.282	0.110
1000	13.2	0.282	0.110
1200	14.0	0.282	0.110

c. Stainless Steel (18Cr - 8Ni) Used for: MCO shell and cask body

B5.4 THERMAL EVALUATION FOR NORMAL TRANSFER CONDITIONS

B5.4.1 Conditions Evaluated

For conditions normally incident to transport, the thermal analyses evaluated the package design for its ability to maintain component temperatures below the design limits. The operational temperatures will occur in conditions that have been bounded by the environmental conditions provided below:

The ambient temperatures at the Hanford Site for the peak summer month are tabulated in Table B5.4-1.

- Maximum heat generation rate of worst-case source from Section B5.2 plus maximum solar heat load (see Table B5.4-2) plus ambient air temperatures from Table B5.4-1.
- Minimum air temperature of -27 °F plus maximum heat generation rate from worst-case source in Section B5.2.
- Minimum air temperature of -27 °F and zero heat generation rate.

Time	Temperature (°F)	Time	Temperature (°F)
12 a.m.	82	2 p.m.	111
2 a.m.	78	4 p.m.	115
4 a.m.	75	6 p.m.	113
6 a.m.	74	8 p.m.	100
8 a.m.	85	10 p.m.	89
10 a.m.	97	12 p.m.	82
12 p.m.	103		

Table B5.4-1 Hanford Air Temperature

Table B5.4-2 Maximum Solar Radiation Received (Btu/hr-ft²)

Time	Vertical surfaces facing						Horizontal surface facing		
	Ň	NE	E	SE	s	sw	w	NW	up
4 a.m.	0	0	0	0	0	0	0	0	0
6 a.m.	57	192	211	105	17	17	17	17	64
8 a.m.	35	173	268	208	42	32	32	32	127
10 a.m.	42	56	177	213	126	45	42	42	281
12 noon	45	45	49	120	167	120	49	45	314
2 p.m.	42	42	42	45	126	213	177	56	281
4 p.m.	35	32	32	32	42	208	268	173	127
6 p.m.	57	17	17	17	17	105	211	192	64
8 p.m.	0	0	0	0	0	0	0	0	0

B5.4.2 Acceptance Criteria

Several thermal design criteria have been established for the cask.

- Containment of radioactive material is a major design requirement for the cask. Therefore, seal temperatures must be maintained within specified limits to satisfy the required containment criteria under normal conditions. The operating temperature range recommended by the potential manufacturer (Parker⁽⁴⁾) of the butyl seals is -75°F to 250°F. This range applies to all containment boundary seals used in the cask closure lid and containment penetrations.
- Maximum normal operating outside surface temperature of the cask shall be less than 180°F in maximum air temperature and in the shade.
- Maximum temperatures of containment structural components must not adversely affect the containment function.
- · Maximum temperatures of the package must not adversely affect the shielding function.
- The maximum MCO shell temperature allowed under normal conditions of transport shall be 167°F.

In general, all the thermal criteria are associated with maximum temperatures. The ability of the containment system structural materials to function properly under the lowest service temperature conditions is discussed in Section 4.3.

B5.4.3 Thermal Model

A two-dimensional axisymmetric finite element computer model of the TN-WHC cask and payload (MCO) was used to model the thermal performance of the cask. The ANSYS computer program⁽⁵⁾ was utilized for the analyses. This program is a large scale, general purpose finite element code which can perform steady-state and transient thermal analyses using linear and non-linear material properties.

The thermal model represents the TN-WHC cask standing vertically. The model includes the cask and the MCO shell. The interior region of the MCO is not modeled, as per reference 2. The areas between the MCO and the cask were modeled with helium, which is the assumed fill gas. Heat transfer between the MCO and the cask was conservatively assumed to be via gaseous conduction only. The MCO is assumed to be centered in the cask. Figure B5.4.3-1 shows the thermal model.

The bottom of the cask does not receive any heat from the sun and it is in good thermal contact with the transporter when it is being transported. From the perspective of heat transfer, the transporter will behave like a fin, which will allow the cask to conduct heat through its bottom

and into the environment. The magnitude of this effect is difficult to quantify, as it depends on the emissivity and absorptivity of the transporter coatings, the materials, and the geometry of the transporter. Therefore, the analysis conservatively assumed that the bottom of the cask was an adiabatic surface.

The ANSYS axisymmetric thermal solid element, PLANE55, was used to model the MCO, the cask, and the helium between the two. At the surface of the cask, two dimensional surface effect elements, SURF19, were overlaid on the mesh. The solar radiation data given in Table B5.4-2 was applied to these elements, after accounting for the solar absorptivity of the cask surface. The data for the vertical surfaces was averaged circumferentially so that it could be applied to the axisymmetric model.

The decay heat of the MCO contents was simulated by applying an elemental heat flux on the inside of the sidewalls and top of the MCO of 12.7 W/ft^2 and 6.0 W/ft^2 , respectively, as per section B5.2.1.

The cask rejects heat passively through its outer surfaces. This was simulated by applying a convection load directly on the outer face of the PLANE55 elements on the surface of the cask. A effective heat transfer coefficient for the convection load was determined for each of the twelve time ranges given in Table B5.4-1. The effective heat transfer coefficient, h_{eff} , depends on natural convection and radiation at the cask surface, and varies with the ambient temperature, T_{amb} , the surface temperature, T_s , and the properties of air, which are evaluated at the average temperature, $(T_s + T_{amb})/2$. An environmental view factor of 1.0 and an environmental emissivity of 1.0 are assumed. The relationship is given below:

$$\begin{split} h_{eff} &= h_{conv} + h_{rad} \\ h_{conv} &= C_1 \quad k \; [\; Pr \; (T_s - T_{amb}) \; (g\beta\rho^2/\mu^2)]^{1/3} \\ h_{rad} &= \sigma_b \; e \; [\; T_s^4 - \; T_{amb}^4 \;] \; / \; (T_s - T_{amb}) \quad (with \; T \; in \; {}^{\circ}R) \\ where, \qquad C_1 &= \; 0.130 \; for \; vertical \; cylindrical \; surfaces^{(1)}, \; and \\ 0.156 \; for \; horizontal \; surfaces \; facing \; up^{(1)} \\ e &= \; 0.85 \; for \; weathered \; stainless \; steel^{(1)} \end{split}$$

B5.4.4 Thermal Analysis

A transient analysis was performed to account for the time varying nature of the solar heat load. The model was solved in steady-state mode with 8 AM ambient temperature and insolation data to generate the initial conditions for the transient analysis. The 8 AM conditions were chosen as a good approximation of the average ambient temperature and insolation that the cask experiences. The transient run began with midnight ambient temperature and insolation data and stepped changed the ambient temperature and insolation data every two hours for two full cycles (48 hours).

Figure B5.4.4-1 shows the temperature history across the cask (radially) at the hottest MCO node and the outer surface of the cask at this axial location. This location is approximately centered between the cask lid and bottom. Comparison of the temperatures of the model at N hours and N+24 hours shows very little change, which demonstrates that the initial conditions for the transient analysis were appropriately chosen. Note that there is a phase lag between the two curves, which is due to the thermal inertia of the system.

Figure B5.4.4-2 shows the temperature distribution of the MCO and cask at the time that the maximum temperature of the MCO is reached. This occurs at 9:17 PM. Referring to Figure B5.4.4-1, the maximum cask temperature at the same axial location occurs at 8 PM. This is consistent with the behavior expected based on an examination of the ambient temperature and insolation data of Tables B5.4-1 and B5.4-2. The difference in time between the peak MCO temperature and the peak adjacent cask surface temperature is due to the thermal inertia of the system, as noted above.

Figure B5.4.4-3 shows the temperature distribution of the cask at the time that the maximum temperature of the cask is reached. This occurs at 2:00 PM, when solar insolation on the top of the cask has been at its maximum value for two hours (from noon to 2 PM).

B5.4.4.1 Internal Temperatures

The maximum MCO temperature under normal conditions of transport is 155° F. This is less than the design limit of 167° F. The minimum temperature is -27° F.

The maximum cask temperature under normal conditions of transport is 140°F. This is less than the seal temperature limit of 250°F. The minimum temperature is -27°F, which above the minimum seal temperature of -75°F. The containment and shielding functions of the stainless steel cask and the seals are not compromised at the temperature range calculated.

B5.4.4.2 Maximum Surface Temperatures

The normal conditions of transport maximum surface temperature is 140° F. This is less than the temperature limit of 180° F.

B5.5 THERMAL EVALUATION FOR ACCIDENT CONDITIONS

B5.5.1 Conditions Evaluated

The hypothetical fire accident condition is defined as the exposure of the cask for 30 minutes to a 1475°F fire that has an emissivity coefficient of 0.9. The surface absorptivity of the package is the greater of the anticipated absorptivity or 0.8. The surface convective heat transfer for the package is assumed to be natural convection. The decay heat of the MCO during the thermal accident is defined in section B5.2.2. The package is actively cooled following the 30 minutes fire. The active cooling consists of quenching the outer package surfaces using a water spray

from a fire hose. The quenching water flows at 125 gallons per minute for 45 minutes, followed by a flow rate of 50 gpm for an additional 100 minutes. The temperature of the quenching water is 85°F. Thereafter normal conditions are assumed to prevail.

B5.5.2 Acceptance Criteria

The following acceptance criteria have been established:

- The MCO shell temperature may exceed the temperature limit for the normal conditions of transport for a time period not to exceed 180 minutes following the fire.
- The maximum MCO shell temperature should not be significantly above 252°F to minimize gas generation.
- There is no requirement that the cask maintain containment of the MCO during the thermal accident. This means that the cask seals may exceed their operational temperature limits during the thermal accident. However, the cask must maintain confinement of the MCO within the cask at all times.

B5.5.3 Thermal Model

The thermal model that was developed for the normal conditions of transport was reused with a single modification; the SURF 19 elements on the outer surface of the cask were removed because there are no solar insolation loads during the thermal accident. The analysis assumed that the bottom of the cask was adiabatic during the establishment of the initial conditions, the fire, and the quench.

During the establishment of the initial conditions, the decay heat of the MCO contents is represented as the normal conditions of transport decay heat flux. During and after the 30 minute fire, the decay heat of the MCO contents was simulated by applying an elemental heat flux of 30 W/ft^2 on the center 28" section of the MCO sidewall, 12.7 W/ft^2 on the remainder of the sidewall, and 6.0 W/ft^2 on the top of the MCO.

During establishment of the initial conditions, the cask rejects heat passively through its outer surfaces. This was simulated by applying a convection load directly on the outer face of the PLANE55 elements on the surface of the cask. A effective heat transfer coefficient for the convection load was determined for an ambient temperature of 115°F. The effective heat transfer coefficient, h_{eff}, depends on natural convection and radiation at the cask surface, and varies with the surface temperature, T_s , and the properties of air, which are evaluated at the average temperature, $(T_s + T_{amb})/2$. An environmental view factor of 1.0 and an environmental emissivity of 1.0 are assumed. The relationships are as given in B5.4.3, with $T_{amb} = 115^{\circ}F = 575^{\circ}R$.

During the 30 minute fire, heat transfer between the cask and the environment is a combination of natural convection and radiation. The absorptivity of the cask for radiation from a 1475°F fire is taken to be 0.8. The natural convection relationship is the same as that given in B5.4.3. The

radiative heat transfer coefficient is given below:

$$h_{rad} = \sigma_b e_c [T_s^4 - e_f (1475^\circ R)^4] / (T_s - 1475^\circ R)$$
(with T_s in °R)
where,
$$e_c = 0.8 e_f = 0.9$$

The post-fire active cooling, or quench, was modeled as a convection load on the surface of the cask. The analysis assumed an effective heat transfer coefficient of 50 Btu/hr-ft²- $^{\circ}$ F at 85 $^{\circ}$ F, increasing linearly with temperature to 2000 Btu/hr-ft²- $^{\circ}$ F at 212 $^{\circ}$ F, and constant at 2000 Btu/hr-ft²- $^{\circ}$ F for temperatures greater than 212 $^{\circ}$ F⁽¹⁾.

B5.5.4 Thermal Analysis

A transient analysis was performed to account for the time varying nature of the loading. The package was assumed to be initially at steady state using the maximum ambient temperature of 115°F, the normal conditions of transport decay heat rates as defined in Section B5.2.2, and no solar insolation. The solution to the model with these loading conditions formed the initial conditions for the accident condition analysis.

The accident conditions MCO decay heat loading together with the 1475°F fire's effective heat transfer coefficient was imposed on the model for 30 minutes. This was followed by the accident conditions MCO decay heat loading combined with the active cooling heat transfer coefficient for 145 minutes.

Figure B5.5.4-1 shows thermal model, depicting the cross-sectional locations that appear in the following two figures. Figure B5.5.4-2 shows the temperature history of a cross-section of the model at the location that the MCO reaches its maximum temperature. Figure B5.5.4-3 shows the temperature history of the top corner cross-section. The maximum cask temperature lies along this cross-section.

Figure B5.5.4-4 shows the temperature distribution of the MCO and cask at time zero. This is the starting point for the transient analysis.

Figure B5.5.4-5 shows the temperature distribution of the MCO and cask at the end of the fire. The helium has been removed from the plot for clarity. The maximum cask temperature occurs at this time.

Figure B5.5.4-6 shows the temperature distribution of the MCO and cask at the time that the maximum temperature of the MCO is reached. Again, the helium has been removed for clarity. This occurs approximately 54 minutes after the end of the fire.

B5.5.5.1 Internal Temperatures

The maximum MCO temperature during the accident conditions is 256°F and is within the

temperature range of 250°F to 260°F.

During accident conditions (start of fire to end of water quench), the maximum MCO shell temperature exceeds the 167°F normal temperature limit for less than 180 minutes, and meets the acceptance criteria.

B5.5.5.2 Maximum Surface Temperatures

The maximum cask surface temperature occurs at the end of the fire. The cask reaches a temperature of 1068°F in the upper corner - see Figure B5.5.4-5. The cask maintains confinement of the MCO at these temperatures, thereby meeting the design requirements with regards to confinement.

B5.6 THERMAL EVALUATION AND CONCLUSIONS

The thermal evaluation for normal conditions of transport concludes that the TN-WHC design meets all the applicable requirements. The maximum temperatures calculated using conservative assumptions are relatively low (140°F). The minimum temperature is -27°F. This temperature range has no adverse effect on the performance of the cask components (including seals). During accident conditions, the temperatures calculated in the cask components will not compromise the structural integrity of the cask. The cask will continue to maintain its confinement function. The MCO temperatures remain below 260°F during fire accident conditions.

Figure B5.4.3-1 Normal Conditions Thermal Model

HNF-SD-SNF-FDR-003 Rev. 0

E-15166

Figure B5.4.4-2 Normal Conditions MCC and Cask Temp. Distribution - Maximum MCO Temperature

Figure B5.4.4-3 Normal Conditions Cask Temperature Distribution - Maximum Cask Temperature

Figure B5.5.4-1 Accident Conditions Thermal Model

Figure B5.5.4-4 Accident Conditions MCO and Cask Temp. Distribution - Initial Conditions

Figure 85.5.4-5 Accident Conditions MCO and Cask Temp. Distribution - End of Fire

Figure B5.5.4-6 Accident Conditions MCO and Cask Temp. Distribution - Hottest MCO

E-15166

References For Section B5.0

- 1. Kreith, et. al., Principles of Heat Transfer, 3rd Edition, Harper and Row Publishers, 1973.
- Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995, and WHC ECN 191402 dated May 22, 1996.
- 3. ASME Boiler and Pressure Vessel Code, Section III, Appendices, 1992 Ed.
- 4. Parker O-Ring Handbook, ORD 5700, Parker Seal Group, KY, 1992.
- Ansys Engineering Analysis System, User's Manuals for ANSYS Rev. 5.2, Ansys, Inc., Houston, PA, 1995.

and a second second

B6.0 PRESSURE AND GAS GENERATION EVALUATION

B6.1 GAS GENERATION

To be provided by DESH.

B6.2 PACKAGE PRESSURE

The maximum internal working pressure for the cask is 150 psig (1033 kPa) as required by the WHC Specification. The stress due to this pressure is evaluated in Section B4.0.

B6.3 APPENDIX
B7.0 PACKAGE TIEDOWN SYSTEM EVALUATION

B7.1 SYSTEM DESIGN

The basic components of the system are:

- Frames and Beams
- Cask Tiedown Device
- Cask Hold Down Device
- Cask Support Device

The eight frames, two cross beams and two support braces (including the weld attachments of the vertical support frames to the support pads of the trailer) are the major components of the tiedown system. The loads from the cask are transmitted by the frames to the trailer. The cask tiedown device consists of two rotating flanges, six tiedown bolts, and two hold down pins. The cask support device consists of one cylindrical cup, bottom plate, and fourteen (14) attachment bolts. A detailed design drawing for the cask tiedown system is provided in Section A9.1.

The cask is supported by the support device (cylindrical cup) at the bottom and secured by the tiedown device (two rotating flanges) at the top. The two rotating flanges can be opened and closed (by removing the six tiedown bolts and rotated from the hold down pins) for loading and unloading the cask. Figure B7.1-1 shows the opened and closed positions of the rotating flanges of the cask tiedown device. The cask is transported in the vertical orientation with the lid end facing up.

B7.2 ATTACHMENTS AND RATINGS

B7.2.1 Design Load Factors

The tiedown system is used to secure the cask to the trailer during transportation, and is designed to meet the requirements of Hanford Specification⁽¹⁾. The tiedown systems is capable of resisting the forces for road, as described below:

Mode	Longitudinal	Lateral	Vertical
Road	+2G	±1G	3G down, 2G up

Table B7.2-1 Load Factors for Tiedown Systems

* A lateral load factor 1.5G is used for stress calculation of the tiedown system, reference to Appendix B7.3 for detailed loading information.

B7-1

E-15166

B7.2.2 Design Weight

The loading condition used for designing the tiedown system includes the total weight of the loaded cask, 60000 lbs, and weight of tiedown system, 5000 lbs, for a total design weight of 65000 lbs.

B7.2.3 Design Loadings

In the transport configuration (Figure B7.2-1), the tiedown loads from the cask are transmitted through the cask hold down devices and the cask surfaces in contact with the tiedown system, to the tiedown system. As described above, the total loading used for designing the tiedown system is 65,000 lbs. The 2G vertical load is shared by the four cask hold down devices and transmitted to the cask tiedown device as shown on Figure B7.2-2. The 3G vertical down load is supported by the cask support device which is directly welded to the trailer main beams. Figure B7.2-3 shows this loading condition. The 1.5G load component which is transverse to the direction of travel is shared between the cask tiedown device and cask support device as shown on Figure B7.2-4. The 2G load component applied in the direction of travel is also shared between the cask tiedown device as shown on Figure B7.2-5 and B7.2-6. Figure B7.2-7 shows IG static load with deflection.

B7.2.4 Summary and Conclusions

Detailed stress analysis of the tiedown system is presented in Appendix B7.3. A summary of critical stresses is presented in Table B7.2-2 and stresses are compared with the allowables. All the allowables are based on ASME Code, Section III, Subsection NF (NF-3322). All the stresses are within the allowables. The interaction between compression and bending are evaluated using Equations 20 and 21 of NF-3322, and interaction between tension and bending are using Equation 21 ef NF-3322. Table B7.2-3 shows the results of this calculation. Based on the results of the analysis, it is concluded that the tiedown system is structurally safe for the specified loads.

Component	Max. Calculated Stress (psi) +	Allowable Stress (psi)
Frame- Legs	Max. Direct = 5,073 (Compression) Max. Bending =14,477	26,400 29,040
Cross Beam	Max. Direct = 828 (Tension) Max. Bending = 15,852	26,400 29,040
Welds at Bottom Leg	Max. Tension = 19,224 Max. Shear = 5,707	26,400 17,600
Tiedown device- Clamp	Max. Direct = 2,446 (Tension) Max. Bending = 20,513	23,400 25,740
Bolt	Max. Shear = 23,460 Max. Tension = 36,700	40,400 60,600
Cask Hold Down Device -Arm	Max. Tension = 11.430 Max. Bending = 43,200 Max. Shear = 11,933	43,960 64,480 39,080
-Pin-1.5"Dia.	Max. Bending = 18,420 Max. Shear = 8,490	66,660 40,400
-Bracket	Bearing = 16,000 Tensile = 6000 Shear = 4,570	39,000 17,550 15,600
Cask Support Device -Plate	Max. Bending=18,429	19,400
- Bolt	Max. Shear = 34,560	40,400

Table B7.2-2 Summary of Tiedown System Stress Evaluation

Table	B7.2-3
Interaction Equ	ation Evaluations

Component	Max. Axial Compression and Bending (NF-3322.1, Equation 20 & 21)	Max. Axial Tension and Bending (NF-3322.1, Equation 21)
Frame Leg	0.522	0.65
Tiedown Clamp		0.902
Hold Down Arm		0.807

•

Figure B7.1-1 TN-WHC Cask Tiedown System - Opened and Closed Positions

Figure B7.2-1 TN-WHC Cask Transport Configuration

B7-6

and the second spectrum of the second s

References For Section B7.0

 Performance Specification For TN-WHC Cask And Transportation System, WHC-S-0396, Rev. 1, September 1995.

APPENDIX B7.3

CASK TIEDOWN SYSTEM

TABLE OF CONTENTS

Section

Page

B7.3-2MECHANICAL PROPERTIES OF MATERIALSB7.3.1B7.3-3WEIGHT AND CENTER-OF-GRAVITYB7.3-1B7.3-4LOADINGSB7.3-1B7.3-5ANALYSESB7.3-6B7.3-6DESIGN CRITERIA FOR TIEDOWN SYSTEMB7.3-2B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-1	INTRODUCTION	B7.3-1
B7.3-3WEIGHT AND CENTER-OF-GRAVITYB7.3-1B7.3-4LOADINGSB7.3-1B7.3-5ANALYSESB7.3-6B7.3-6DESIGN CRITERIA FOR TIEDOWN SYSTEMB7.3-2B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-2	MECHANICAL PROPERTIES OF MATERIALS	B73.1
B7.3-4LOADINGSB7.3-1B7.3-5ANALYSESB7.3-6B7.3-6DESIGN CRITERIA FOR TIEDOWN SYSTEMB7.3-2B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-3	WEIGHT AND CENTER-OF-GRAVITY	B7.3-1
B7.3-5ANALYSESB7.3-6B7.3-6DESIGN CRITERIA FOR TIEDOWN SYSTEMB7.3-2B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-4	LOADINGS	B7.3-1
B7.3-6DESIGN CRITERIA FOR TIEDOWN SYSTEMB7.3-2B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-5	ANALYSES	B7.3-6
B7.3-6SUMMARY AND CONCLUSIONSB7.3-2B7.3-7REFERENCESB7.3-2	B7.3-6	DESIGN CRITERIA FOR TIEDOWN SYSTEM	B7.3-23
B7.3-7 REFERENCES B7.3-2	B7.3-6	SUMMARY AND CONCLUSIONS	B7.3-25
	B7.3-7	REFERENCES	B7.3-28

APPENDIX B7.3

CASK TIEDOWN SYSTEM

B7.3-1 INTRODUCTION

The purpose of the tiedown system is to restrain the cask during transportation by road. The tiedown attachments have to resist the forces from the road transportation as described in Hanford Specification⁽¹⁾. The detailed tiedown system design is given in Drawing No. H-1-81539, Sheets 1 to 3 and its operation is described in Section B7.0 of this report. This appendix presents the structural analysis of the tiedown system design for the prescribed loadings. The analysis of the tiedown system components is conducted using a combination of computer finite element techniques and hand-calculations. The terminology of the components, as used in this analysis, is shown in Figure B7.3-1.

B7.3-2 MECHANICAL PROPERTIES OF MATERIALS

The mechanical properties of structural materials used in the tiedown system components are shown on Table B7.3-1. The effect of an elevated temperature of 150° F on yield strength is also shown on Table B7.3-1. The yield and ultimate strengths of the structural steels shown on Table B7.3-1 are the minimum values specified in the material specifications. A modulus of 29 x 10° psi for steel and $10 \times 10^{\circ}$ psi for aluminum is used in the analyses.

B7.3-3 WEIGHT AND CENTER-OF-GRAVITY

The approximate weight of each tiedown system major component is given on Table B7.3-2. The estimated weight of entire tiedown system is about 5000 lbs. The center of gravity of the loaded cask on the trailer is approximately 104.27" above the ground.

B7.3-4 LOADING

The tiedown system is used to secure the cask to the trailer against the transportation loads. These loads are summarized in Table B7.3-3. The stress analysis of tiedown system components is conducted based on these loadings.

It may be also pointed out that each structural component of the tiedown system is not substantially effected by each load in Table B7.3-3. Stress analyses are conducted only for the loadings from this table which are applicable to that component.

Figure B7.3-1 Tiedown System Components

.

Component	Material	Properties @ 70°F (ksi)	Properties @ 150°F (ksi)
Frames	A500 Gr.B	$S_{y} = 46$ $S_{u} = 58$	$S_y = 44$
Cross Beam	A500 Gr.B	$S_{y} = 46$ $S_{u} = 58$	$S_y = 44$
Tie Down Device - Clamp (0.31" plate)	B209-6061T6 Aluminum	$S_{y} = 40$ $S_{u} = 45$	S _y = 39
Hold Down Device (0.75"plate)	A-514 Gr.B (T1, Type A)	$S_{y} = 100$ $S_{u} = 110$	S _y =97.7
Support Device (0.75" plate)	6063-T6 Aluminum	$S_{y} = 31$ $S_{u} = 35$	S _y =29.4
Bolts for Support Device	A-193-B7	$S_{y} = 105$ $S_{u} = 125$	S _y =101
Pins	A-479 XM19 Hot Rolled Stainless Steel	$S_y = 105$ $S_u = 135$	S _y = 101
Bolts for Tiedown device	A-479 XM19 Hot Rolled Stainless Steel	$S_y = 105$ $S_u = 135$	$S_y = 101$

Table B7.3-1 Material Properties of The Tiedown System

Table B7.3-2 Estimated Weight of The Tiedown System Components

Component	Estimated Weight - Ibs.
Frames (8) TS 7"x 7"x 0.5"	2,986
Stiffening Braces (4) TS 4"x 4"x 0.5"	351
Cross Beams (2) -TS 8"x 8"x 0.625" -Plates 61"x 8"x 0.625"	789
Tie Down Device - Clamps (2) - Brackets (8)	175
Hold Down Device - Arms (4)	174
Support t Device (1)	388
Bolts, Pins	120
Total Estimated Weight	4983 (≈5000)

	Table	B7.3-3	
Load	Factor for	Tiedown	System

Case	Load Condition	Longitudinal	Lateral	Vertical
А	Tiedown System	2 G	1 G	3 G down 2 G up
в	Trailer	2 G fore 1.5 G aft	1.5 G	2.5 G down 2.0 G up
С	Design Load Factors for Tiedown System	2 G fore 2 G aft	1.5 G	3 G down 2 G up

B7.3-5 ANALYSIS

The tiedown system has been analyzed by using a combination of computer finite element and hand-calculation methods. For the purpose of structural analyses, the tiedown system is divided in the following main components (see Figure B7.3-1):

Frame and Cross Beams Cask Tie down Device Cask Hold down Device Cask Support Device

The method of analysis, critical loads, boundary condition and results of analysis of each component are described below:

a) Frame and Cross Beams

This component was analyzed by using ANSYS Finite Element Computer Code ⁽²⁾. The finite element model of frames, cross beams and stiffening braces is presented in Figures B7.3-2 (finite element nodes) and B7.3-3 (finite element elements). 3-dimensional beam finite element (BEAM4) was used in the construction of the model. The beam real constants are shown in Figure B7.3-4. It may be pointed out that the cask tiedown device clamp in this frame model was simulated by the beam elements. The beam real constants are given in Table B7.3-4. The analyses were conducted for the load case C of Table B7.3-3. The G loads in this table were converted to forces at C.G. by multiplying the load factor with cask weight of 60,000 lbs. These forces at C.G. were transferred to the appropriate model nodes. The inertia forces due to the frame weight were accounted for by applying the appropriate accelerations. The typical applied boundary condition and forces in each load case are presented in Figures B7.3-5 to B7.3-8. The detailed resulting forces, stresses and displacements in the model are available in computer output files. A summary of maximum stresses in frame legs and cross beams for each loading is shown in Tables B7.3-5 to B7.3-8.

Figures B7.3-2 ANSYS Finite Element Model - Frame (nodes)

Figures B7.3-3 ANSYS Finite Element Model - Frame (elements)

Figures B7.3-4 ANSYS Finite Element Model - Frame (real constants)

Figure B7.3-5 Frame Model - Loading & Boundary Conditions for Longitudinal 2G (fore) Load Analysis

HNF-SD-SNF-FRD-003 Rev. 0

Figure B7.3-6 Frame Model - Loading & Boundary Conditions for Longitudinal 2G (aft) Load Analysis

Figure B7.3-7 Frame Model - Loading & Boundary Conditions for Lateral 1.5G Load Analysis

Figure B7.3-8 Frame Model - Loading & Boundary Conditions for Up 2.0G Load Analysis

HNF-SD-SNF-FRD-003 Rev. 0

E-15166

Real Constant Number	Section	Aree (in) ²	Moment of Inertia (in) ⁴	Depth (in)
1	TS - 7" x 7" x 0.5"	12.4	84.6	7.0
2	TS- 8" x 8" x 0.625" with reinforcement plate 8" wide and 0.625" thick	17.4	179.7	8.0
3	TS- 4" x 4" x 0.5"	6.36	12.3	-+.0

Table B7.3-4 Frame Finite Element Mode! - Beam Real Constants

B7.3-14

Table B7.3-5 Frame Members Stresses - Loading Longitudinal 2G (fore) (Fx at nodes 101 and 102)

Leg (Element)	Location (Node)	Direct Stress	Bending Stress- y - axis	Bending Stress- z - axis	Max. Combined Stress	Min. Combined Stress
		(psi)	(78:)	(bst)	(psi)	(psi)
1 (9)	1	-4562	7605	542	12709	-3586
2 (16)	2	-4562	7605	542	12709	-3586
3 (20)	10	-3451	6566	6604	9718	-16620
4 (24)	14	-3451	6566	6604	9718	-16620
5 (28)	18	-4664	4999	4344	4680	-14007
6 (32)	20	-4664	4999	4344	4680	-14007
7 (36)	17	3641	6831	7317	17788	10506
8 (40)	21	3641	6831	7317	17788	10506
Beam (41)	19	81	7711	7553	15344	-15183

Table B7.3-6 Frame Members Stresses - Loading Longitudinal 2G (aft) (Fx at nodes 103 and 104)

Leg (Element)	Location (Node)	Direct Stress	Bending Stress- y - axis	Bending Stress- z - axis	Max. Combined Stress	Min. Combined Stress
		(psi)	(psi)	(psi)	(psi)	(psi)
1 (12)	11	-5073	5605	5079	5610	-15757
2 (16)	13	-5073	5605	5079	5610	-15757
3 (20)	10	4001	6516	7961	18479	-10477
4 (24)	14	4001	6516	7961	18479	-10477
5 (28)	16	4059	4615	5050	13724	-5606
6 (32)	20	4059	4615	5050	13724	-5606
7 (36)	17	-3075	6741	5932	9598	-15748
8 (40)	21	-3075	6741	5932	9598	-15748
Beam (45)	12	64	8280	7031	15375	-15247

HNF-SD-SNF-FRD-003 Rev. 0

E-15166

Table B7.3-7 Frame Members Stresses - Loading Lateral 1.5G (Fz at nodes 105 and 106)

Leg (Element)	Location (Node)	Direct Stress	Bending Stress- y - axis	Bending Stress- z - axis	Max. Combined Stress	Min. Combined Stress
		(psi)	(psi)	(psi)	(psi)	(psi)
1 (9)	1	-3969	103	9143	5276	-13216
2 (16)	13	3837	185	9633	13654	-5982
3 (19)	3	265	163	7740	8168	-7639
4 (21)	4	-505	230	7862	7588	-8598
5 (25)	5	-3615	322	8748	5453	-12685
6 (32)	20	3490	30	9245	12765	-5786
7 (33)	7	100	234	8384	8719	-8518
8 (37)	8	-348	98	8508	8258	-8954
Beam (44)	11	828	10436	5416	16679	-15025

HNF-SD-SNF-FRD-003 Rev. 0

E-15166

Table B7.3-8 Frame Members Stresses - Loading Up 2.0G (Fy at nodes 101,102,103 and 104)

Leg (Element)	Location (Node)	Direct Stress	Bending Stress- y - axis	Bending Stress- z - axis	Max. Combined Stress	Min. Combined Stress
		(psi)	(psi)	(psi)	(psi)	(psi)
1 (12)	11	1694	89	1787	3570	-182
2 (16)	13	1694	89	1787	3570	-182
3 (20)	10	855	58	2284	3197	-1486
4 (24)	14	855	58	2284	3197	-1486
5 (28)	18	1765	52	1633	3449	80
6 (32)	20	1765	52	1633	3449	80
7 (36)	17	797	100	2164	3061	-1467
8 (40)	21	797	100	2164	3061	-1467
Beam (46)	12	328	3103	1386	4828	-4172

b) Cask Tie down Device

The cask tie down device consists of clamps, hinge pins, bolts and pad for hold down brackets. The clamp was analyzed by using ANSYS Finite Element Computer Code. The 3-dimensional beam finite element (BEAM4) was used in the construction of the model. The loading and boundary conditions for the 2G longitudinal, 1.5G lateral and 2G up are presented in Figures B7.3-9, B7.3-10 and B7.3-11, respectively. The critical stresses are presented in Table B7.3-10. The stresses in hinge pin, bolts and pad were hand-calculated. These stresses are also summarized in Table B7.3-10.

Figure B7.3-9 Clamp Model - Loading & Boundary Conditions for Longitudinal 2G Load Analysis

Figure B7.3-10 Clamp Model - Loading & Boundary Conditions for Lateral 1.5G Load Analysis

Figure B7.3-11 Clamp Model - Lozding & Boundary Conditions for Up 2.0G Load Analysis

B7.3-22

c) Cask Hold down Device

The cask hold down device consists of hold down arms, brackets and bolts. The analysis was conducted using hand calculations. The only load that is applicable for these components is 2G upward. The resulting stresses are summarized in Table B7.3-10.

d) Cask Support Device

The cask support device consists of support plate, cup and bolts. The analysis was conducted using ANSYS Finite Element Computer Code. The two end of plate are bolted to the bottom plate which is welded to the support beams, the support beams are welded to the trailer main beams. The plates was modeled using 3-dimensional shell elements. The supporting beams were modeled with 3-dimensional beam elements. The cup was not modeled. The 3G downward load was applied to the cup area as a distributed pressure. The maximum stress intensity in the plate is 18,429 psi . The bolt stresses were hand calculated for a combined loading due to 2G longitudinal and 1.5G lateral accelerations. The maximum shear stress in the bolts is 34,560 psi. All the plate and bolt stresses are within the allowables, as shown in Table B7.3-10.

B7.3-6 DESIGN CRITERIA FOR TIEDOWN SYSTEM

The stress criteria are taken from Section III, Subsection NF (NF-3322) of the ASME Code⁽³⁾. There are several types of structural criteria discussed in Subsection NF-3322. These criteria, are to ensure stability under compressive loading, to ensure stability under bending and to prevent failure under combined loading. Table B7.3-9 lists the stress limits of the materials based on this criteria.

Material	S _y (ksi)	Tension	Bending	Shear	Compression	Interaction Equation
		0.6 S _y *	0.66 S _y	0.4 S _y	NF-3322.1 EQ. 4 or 5	NF-3322.1 EQ. 20 or 21
A500 Gr. B	44	26.4	29.04	17.6		
A514 Gr. B	97.7	58.62	64.48	39.08		
6061-T6	39	23.4	25.74	15.6		
6063-T6	29.4	17.64	19.4	11.76		
A193-B7	101	60.6	66.66	40.4		
A479-XM19 Hot Rolled	101	60.6	66.66	40.4		

Table B7.3-9Stress Criteria for the Tiedown System

* For pin-connected members, using 0.45 S_v

B7.3-7 SUMMARY AND CONCLUSIONS

A summary of critical stresses is presented in Table B7.3-10 and stresses are compared with the allowables. All stresses are within the allowables. The interaction between compression and bending are evaluated using Equations 20 and 21 of NF-3322, and interaction between tension and bending are using Equation 21 of NF-3322. Table B7.3-11 shows the results of the calculations. Based on the results of the analyses, it is concluded that tiedown system is structurally safe for the specified loads.

E-15166

Table B7.3-10 Summary - Stress Evaluation

Component	Max. Calculated Stress (psi)	Allowable Stress (psi)			
Frame- Legs	Max. Direct = 5,073 (Compression) Max. Bending =14,477	26,400 29,040			
Cross Beam	Max. Direct = 828 (Tension) Max. Bending = 15,852	26,400 29,040			
Welds at Bottom Leg	Max. Tension = 19,224 Max. Shear = 5,707	26,400 17,600			
Tiedown device- Clamp	Max. Direct = 2.446 (Tension) Max. Bending = 20,513	23,400 25,740			
Bolt	Max. Shear = 23,460 Max. Tension = 36,700	40,400 60,600			
Cask Hold Down Device -Arm	Max. Tension = 11,430 Max. Bending = 43,200 Max. Shear = 11,933	43,960 64,480 39,080			
-Pin-1.5"Dia.	Max. Bending = 18,420 Max. Shear = 8,490	66,660 40,400			
-Bracket	Bearing = 16,000 Tensile = 6000 Shear = 4,570	39,000 17,550 15,600			
Cask Support Device -Plate	Max. Bending=18,429	19,400			
- Bolt	Max. Shear = 34,560	40,400			

B7.3-26

HNF-SD-SNF-FRD-003 Rev. 0 E-15166

Table B7.3-11 Interaction Equation Evaluations

Component	Max. Axial Compression and Bending (NF-3322.1, Equation 20 & 21)	Max. Axial Tension and Bending (NF-3322.1, Equation 21)
Frame Leg	0.522	0.65
Tiedown Clamp		0.902
Hold Down Arm		0.807

B7.3-27

and the particular and the second second

B7.3-7 REFERENCES

- WHC-S-0396. Revision 1, "Specification For TN-WHC Cask and Transportation System" 1995.
- 2. ANSYS User's Manual, Revision 5.2, Volumes 1 to 4.
- 3. ASME Boiler and Pressure Vessel Code 1992, Section III, Subsection NF.

, C-1

SHEET 2 OF 5

PPPPPPPPP

Glenn Guerra

12/3/96

Δ.

C-6

Suena

. С-9

1

-12

			, i e i e i e				HNF-SD-SNF					-FDR-003 Rev. 0					
-	8	7		6		5	t	4				3		2	1	1	
- [No.		APPROVED BY
															O INITIA	ISSUE -	
							0										+
																J	
-						CGISTE	2										
۲I						Q Q 157	N IK S										
- 1						highliz			T-T-T-	, , , , ,	 -	E6					
							NAL 19		┼┿┼	╡╆╌┼	4	64 PIVOT PIN	CARBON STEEL	ASDA A36		DOLUND OUR	
							A & /				1	63 STATIONARY PLANK	CANDON SILLE	ASIM ASO	457-105-04	ROUND BAR	
						A SX GAN	ンミロ				16	62 RETAINER BOLT	CARBON STEEL	COM'L		1/4-20 X 5/8 10	HEY HD ROL
						YAN W	ME				8	61 PLANK RETAINER	6061-T6 AL	ASTM B209		1/4 X 3/4 FLAT	BAR
									+	+++	2	60 STATIONARY PLANK			457-105-95		
									┝╶┟─┟┈	┿╊╇	- 2	59 REMOVEABLE BARRIER			457-105-96		
- 1											- i	57 LEFT PLATFORM			457-105-97		
												56 WNCH		COMIL		MCMASTER_CARR	1106114
												55 BASE	CARBON STEEL	ASTM A36		1/2 PLATE	10130144
_1								$\left - \frac{2}{4} \right ^2$	+ + + - + - + - + - + - + - + - + - +	┥┫┦		54 GUSSET	CARBON STEEL	ASTM A36		1/2 PLATE	
E								H-1-1-	┝╌┦╶╂┈	+ $+$		53 BACKING PLATE	CARBON STEEL	ASTM A36		3/8 PLATE	
								2			++	51 VERTICAL SUPPORT	CARBON STEEL	COMIL	-+	1 1/2 SCH. 40 PIF	E
									2			50 TOE-BOARD	2024-1531 AL	ASTM B211		4 X 1/4 FLAT PAR	<u>-</u>
												49 HOOK EYE	6061-16 AL	ASTM 8209	-+	1/4 PLATE	
								+++		+	+	48 GUSSET	6061-T6 AL	ASTM B209		1/4 PLATE	
								⊢ +++-		+++	+	47 CHANNEL	6061-16 AL	ASTM B308		4 X .180 ALUM. CH	IANNEL
-								+++-	2	+ + +	++	45 CHANNE	5061-16 AL	ASTM B209		1/2 PLATE	
									2	+ +-+-	++	44 LOCK PLATE	6061-16 AL	ASTM 8308		4 X .180 ALUN. CH	ANNEL
									2			43 CHANNEL	6061-T6 AL	ASTM 8308		A X 180 ALLINE CH	ANNEL
								H =	4			42 SPACER PLATE	6061-T6 AL	ASTM B209		1/2 PLATE	-waive L
		1 2 1 10510		n. Icovit		WEMASTER-CARP #00005100	_			+++	$+$ $\overline{+}$	41 TREAD PLATE	6061-T6 AL	ASTM B632		3/8 DIAMOND TREA	D PLATE
		1 104 5	SAFETY SIGN		457-	-111-38		+ -	3	┥┥┥	┥┽	40 CHANNEL	6061-T6 AL	ASTM 8308	_	4 X .180 ALUM. CH	IANNEL
D		103 4	ACTUATION PIN STEE	L COM'L		1/2 DIA X 3.5 LG	-	┟╼┥╷╶╆╼╴		+++	4	38 PIN	CAPRON STEEL	ASIM B308		4 X .180 ALUM. CH	ANNEL
	1	102 5	BOSS CARE	BON STEEL AISI 1020		1 1/2 SQ BAR				┼╋╌┠╸		37 SHAFT	CARBON STEEL	ASTM A36		1/8 X 1 COTTER PI	N
- L		101 0	GUSSET CARE	BON STEEL ASTM A3	ā	1/2 PLATE		2				36 SPACER	CARBON STEEL	COM'L		1/2 TYPE A WIDE F	TAT WACHED
	┟╍╋╼╋╼╋╼╋╼╋	100 0	GUSSET CARE	BON STEEL ASTM AS	6	1/2 PLATE	_				-	35 SHEAVE	POWDERED METAL	COM'L		ROSSBY #916147	CAT WASHER
		99 0	ACTUATION PIN STEE	UN SIELL ASIM AS	· · · · ·	1/2 PLATE		$\frac{1}{1}$	┝╼┼╶╁━	┼╶╁╴┟╸	+ $+$	34 SIDE PLATE	CARBON STEEL	ASTM A36		RECT. BAR/PLATE	
		97 6	BRACE CARE	BON STEEL ASTM AS	<u> </u>	1/2 PLATE	-	┠━╉╵╋╼╍		╡╶╂╾┼╼	+ +	33 BASE PLATE	CARBON STEEL	ASTM A36		RECT. BAR/PLATE	
	1	96 F	ROD CARE	BON STEEL CON'L		1 1/2 SCH. 40 PIPE		┠╼╁╴┾╼	2 2		1 1	31 TOE-BOARD	2024-T5 31 AL	ASTM 8209		1/2 PLATE	
	2	95 L	LOCK PIN CARE	BON STEEL AISI 1020		1/2 DIA BAR			1 1			30 TOE-BOARD	2024-1531 AL	ASTM 8211		X 1/4 FLAT BAR	
		94 F	PIVOT PLATE CARE	BON STEEL ASTM A3	<u>6</u>	1/2 PLATE			1 1			29 TOE-BOARD	2024-1531 AL	ASTM B211		X 1/4 FLAT HAR	
	╡╴┟╺╬╸╎╶╪╺┽╴╽╸		CROSS CARE	BON STEEL ASTM AJ	<u> </u>	1/2 PLATE		┝╼┾╴┾╼╸	1 1			28 TREAD PLATE	5061-T6 AL	ASTM B632		B DIAMOND TREA	D PLATE
1	╞╼╋╼╬╶╅╴╋╌╋╼╋	92 0	MAIN SUPPORT CARE	BON STEEL ASTM AS	s	1/2 PLAIE		┝┼┼╌		┼╌┼┝┈	1 1	27 CHANNEL	5061-16 AL	ASTM B308		X .180 ALUM. CH	ANNEL
- 1		2 90 1	NYLOK NUT STEE	L COM'L		1/2-13UNC	-	┝━┼╶╁╾╵	6 4 4	┼╌╉╴┟╼	+ +	25 FND CAR	5061-16 AL	ASTM 8209		/2 PLATE	
c		4 89 +	HEX NUT STEE	L COM'L		1/2-13UNC			2 2			24 CHANNEL F	061-T6 AL	ASTM 8209		74 PLATE	
Ĭ		4 88 +	HEX HD BOLT STEE	L COM'L		1/2-13UNC-24 X 4.0 LG				2 4 2	1 2	23 PLUG	ALLEABLE IRON	COM'L		A TOU ALUM. CH	ANNEL
1	┶┼┿╇╌┼┿┽┤		HEX HD BOLT STEE	L COM'L		3/8-16UNC-2A X 1.5 LG	_			4 4		22 90 ELBOW	ALLEABLE IRON	COM'L	-1	CMASTER-CARR	49361139
	┠━╋╌╂┉╋╾╆┈╂╌╋╼╋		ACTUATION CAN	BUN STEEL ASIM AS	457-	105- 87	-	┝╶╁═┵╌┥		2 3	1	21 TWO SOCKET CROSS	ALLEABLE IRON	COMIL		CMASTER-CARR	4936139
	┟┯┽┈┼╺┼╾┼╶┽╼╇		PIN ROD WELDMENT		457-	105-88					1 - 1	20 HORIZONTAL SUPPORT C	CARBON STEEL	COM'L	1	1/2 SCH. 40 PIPE	
		2 83 5	SUPPORT WELDMENT		457-	105-89	-1	┝╌┼─┤╶┥	╾┼╾┽╌	2 5 5	 	19 HORIZONTAL SUPPORT C	ARBON STEEL	COMIL		1/2 SCH. 40 PIPE	
		2 82 +	HORIZONTAL SUPPORT MALL	EABLE IRON COM'L		1 1/2 SCH. 40 PIPE				4 22 26	1 - 1	7 JOINING TEE	ALLEABLE IRON	COM'L	-+	1/2 SCH. 40 PIPE	1010710
	┝┥╴╪╼╪╼╪╌┼╼╡╴	2 81 9	90' SIDE OUTLET TEE MALL	LEABLE IRON COM'L		McMASTER-CARR #4936T33				4 4	1	6 SIDE OUTLET ELBOW N	ALLEABLE IRON	COM'L	-+	CMASTER-CARR	4936136
	┼┾╪┽┼┼┿╍┼┤	8 8 80 4	AJUSTABLE TEE MALL	RON STEEL ASTA	13 TYPE 5	McMASTER-CARR #4936156			++-	8 8	1	5 NUT C	ARBON STEEL	COM'L		/16-18 HEX NUT	
	· · · · · · · · · · · · · · · · · · ·	79 7	FLANGE BASE PLATE CARE	BON STEEL ASTM AS	S S S	3/8 PLATE	-		-+-+	8 8	+ 1	4 WASHER C	ARBON STEEL	COMIL		/16 FLAT WASHER	
		1 1 1 177					-		-+	R R	++	2 SPACER	ARBON STEEL	CONTL	-	/16-18 X 2 1/4 H	EX HD BOLT
		2 76 +	HORIZONTAL SUPPORT CARE	BON STEEL COM'L		1 1/2 SCH. 40 PIPE				8 8	1	1 FEMALE SOCKET	ALLEABLE IRON /			OUND BAR	0.10.74
		1 75 F	PULLEY ASSEMBLY		457-	105-91				8 8	1	0 MALE SOCKET	ALLEABLE INON	COM'L		CMASTER-CARP #4	9367117
"	┟┼╼┽╌┼╌┾╾┽╶┧		WINCH MOUNT	EARLE IRON CONT	457-	105-92				4 4	9	STRUT	ARBON STEEL	OM'L	Î	1/2 SCH. 40 PIPE	
	┠┿┽┼┿┽┼┼		STAIRWAY SPACER LEGAL	TEASLE INUN ICOM L	09/8211	PLATE /RAP	-1			2 2	1 8	STRUT C	ARBON STEEL	COM'L	1	1/2 SCH. 40 PIPE	
		1 1 71 5	STAIRWAY ALUM	M. COM'I		MCMASTER-CARR #7946185	-	┝┼╾┤╶┥		2 2	1 - 1-	SIRUT C	ARBON STEEL C	CDM'L	1	1/2 SCH. 40 PIPE	
		2 70 0	DROP-DOWN PLANK		457-	105-94	-1			6 B	- 6		ARRON STEEL	OM L		MASTER-CARR #4	936T13
	8	69 F	PLANK PIVOT PLATE 6061	- T6 AL ASTM B2	09	3/8 PLATE				4 4	1 4	HORIZONTAL SUPPORT C	ARBON STEFL		- <u> </u>	1/2 SCH. 40 PIPE	
		4 68 0	QUICK DISCONNECT SNAP CARE	BON STEEL COM'L		MCMASTER-CARR #7935T4					1 3	VERTICAL SUPPORT C	ARBON STEEL	OM'L	- 	1/2 SCH 40 PIPE	
	┟╌┼╌┾╾┼╴┼╌┼╴┥	- 4 67 0	CHAIN BARRIER CARE	BON STEEL COM'L		McMASTER-CARR #98335A069	_			4 8	2	VERTICAL SUPPORT C	ARBON STEEL C	OM'L		1/2 SCH. 40 PIPE	
	87 08 89 90 91 92 91	1 95 96 97 an oa mut	NAME	MATERIA	PEC POAR					8 8	1	FLOOR FLANGE			457-105-90		
	ASSY ASSY ASSY ASSY ASSY ASSY ASSY	SY ASSY ASSY ASSY ASSY			1 344			al al a2	93 94 95	96 97 98	**	NAME	WATERIAL	SPEC	DRAWING No.	DESCRIPTION	
	AST 435 435 435 435 435 435 4	1						YZZA YZZA YZCA	ASSY ASSY ASSY	ASSY ASSY ASSY	ASSY			1	O NA	C	
										QUANTI	× .				INT	ERNATIONA	L
												UNLESS OTHERWISE SPECIFIED	ORDUS MAL	A WAL	PASIN TO	NEDODT T	
A	i en	DJECT INFORMATION			/	\wedge				- Trunke		J PLACE DEC. TOL. 2 PLACE DEC T	a and A	An laber	DASIN IRA	ANSPORT I	RAILER
		C SPECIFICATION NO WHC-	-5-0396		L	2 DIMENSION/SIZE AS REQUIRED	TO POSITION STA	RWAY TO		SURVE	- MESS	J-12 ±.005 8-18 2		1 1000	WORK	PLATFORM	
	176	M 7	3 0.350		/	CURRECT ELEVATION.				2 4400	RITY	OVER 12 1.010 OVER 18 1	· unime N/		TN WHC TF	ANSPORT	CASK
	W	C P.O. NO.: MJK-SPX-4527	727		L	1 MOUNT STAIRWAY, ITEM 39, CE	NTERED ABOUT P	LATFORM.		PERPEN	OCULARITY	FRESH [4]-44-US HORD A ANGLES ± 5"	maters VAV	1 12 2.94	WHC DWG	H-1-815	48
	TR	ANDNUCLEAR, INC. PROJECT	NO.: 3035			PLUG. ITEM 37. IN CUT FNDS	3, AS REQUIRED	J. INSERT		// PARAL	ш ж	HEAS-UPD 0.34-28	KO.	12 12290	ter		
						NOTES:				O CONCEN	TRIDITY	RADIUS CORNERS DIS-030		1 14-40	457	DRAWING	105 0
L		T								⊕ mu£ P	OS TION	DRAMING ENGINEERING	HENT ASSEND, T	SCAL	E NA EST.WT.	1207# SH 1 of	7 3.12%
	8	1 7		6		5		4				3		2	C 10	1	ليتنتعهم
												1		_	1 113	, ,	

DISTRIBUTION SHEET							
То	From				Pa	age 1 of 1	
Distribution	SNF Storage Projects			Date 2/5/97			
Project Title/Work Order					E	OT No. 620	085
Spent Nuclear Fuel Project/Cask and Transporation System					ECN No. NA		
Name		MSIN	Text With All Attach.	Text Onl	y	Attach./ Appendix Only	EDT/ECN Only
K. E. Ard G. D. Bazinet S. A. Brisbin D. M. Chenault W. S. Edwards L. H. Goldmann C. R. Hoover J. J. Irwin A. T. Kee T. D. Merkling C. B. Loftis R. W. Rasmussen C. A. Thompson Central Files	1	X3-85 B4-55 R3-86 R3-86 G1-11 R3-86 G1-50 H0-34 R3-86 X3-79 S7-41 R3-86 R3-85 A3-88	X				X X X X X X X X X X X X X X
project Zeles		R3-11	×				