

EnterpriseOne JDE5
Interoperability
PeopleBook

May 2002

EnterpriseOne JDE5
Interoperability PeopleBook
SKU JDE5EIO0502

Copyright© 2003 PeopleSoft, Inc. All rights reserved.

All material contained in this documentation is proprietary and confidential to PeopleSoft, Inc.
("PeopleSoft"), protected by copyright laws and subject to the nondisclosure provisions of the applicable
PeopleSoft agreement. No part of this documentation may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, including, but not limited to, electronic, graphic, mechanical,
photocopying, recording, or otherwise without the prior written permission of PeopleSoft.

This documentation is subject to change without notice, and PeopleSoft does not warrant that the material
contained in this documentation is free of errors. Any errors found in this document should be reported to
PeopleSoft in writing.

The copyrighted software that accompanies this document is licensed for use only in strict accordance with
the applicable license agreement which should be read carefully as it governs the terms of use of the
software and this document, including the disclosure thereof.

PeopleSoft, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, PeopleTalk, and Vantive are registered
trademarks, and Pure Internet Architecture, Intelligent Context Manager, and The Real-Time Enterprise are
trademarks of PeopleSoft, Inc. All other company and product names may be trademarks of their respective
owners. The information contained herein is subject to change without notice.

Open Source Disclosure

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Copyright (c) 1999-2000 The Apache Software Foundation. All rights reserved. THIS SOFTWARE IS
PROVIDED “AS IS’’ AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PeopleSoft takes no responsibility for its use or distribution of any open source or shareware software or
documentation and disclaims any and all liability or damages resulting from use of said software or
documentation.

Table of Contents

Interoperability 1
Interoperability Overview...2

Benefits.. 2
OneWorld Interoperability Features... 3
Types of Interoperability .. 7
Interoperability Solution Overview... 9
API Models .. 12
XPI ... 13

Connectors 14
Connectors ..14

Choosing a Connector... 14
Generating Business Function Wrappers.. 15

COM..16
Understanding the Component Object Model (COM) ... 16
Using the COM Generator (GenCOM) .. 21
Setting Up a OneWorld Environment for GenCOM... 28
Installing a COM Server on a Non-OneWorld Machine... 30
Setting Up a OneWorld DCOM Server .. 31
Using the COM Wrapper Version Checker (CheckVer) .. 36
Using COM Tracing and Logging .. 37

Java...38
Understanding Java... 38
Using the JAVA Generator (GenJAVA)... 41
Handling Exceptions with GenJava Output ... 47
Setting Up a OneWorld Client Environment for GenJAVA...................................... 54
Installing JAVA Components on a Non-OneWorld Machine 54
Understanding JAVA and CORBA Versioning .. 55
Using the JAVA Wrapper Version Checker (CheckVer).. 56
Java Connector Outbound Events... 57

CORBA..61
Understanding CORBA ... 61
Understanding the CORBA Generator (GenCORBA) ... 66
Setting Up a OneWorld Client Environment for GenCORBA 72
Setting Up an Environment for CORBA... 73

iJDEScript..75
iJDEScript Commands .. 76

jdeinterop.ini ..82

XML 86
Understanding XML... 86
Working with XML CallObject .. 91
Creating an XML Template.. 100
XML List... 101
Setting the System Environment for XML.. 105
Setting the jde.ini File for XML... 106

APIs 108
OneWorld APIs Interoperability Models ..108

Implementing Synchronous Transactions Into OneWorld 109
Implementing Asynchronous Transactions Into OneWorld 111
Implementing Batch Transactions Into OneWorld... 113
Implementing Synchronous Transactions from OneWorld...................................... 114
Implementing Asynchronous Transactions from OneWorld.................................... 115
Implementing Batch Transactions From OneWorld .. 118

Detailed Tasks for OneWorld APIs..119
Connect to OneWorld .. 119
Disconnect From OneWorld .. 121
Add Records to Interface Tables ... 122
Retrieve Records from Interface Tables.. 125
Call OneWorld Business Functions ... 127
Call the OneWorld Completion Confirmation API.. 135
Place Entries in Subsystem Data Queues .. 137

Detailed Tasks for OneWorld Operations..139
Run an Input Batch Process.. 140
Run an Extraction Batch Process.. 142
Run a Subsystem Job from a OneWorld Menu... 144
Enable Outbound Transaction Processing.. 146
Subscribe to Outbound Transactions .. 147
Check for Errors... 149
Use a Revisions Application .. 151
Import from Flat Files... 153

Detailed Tasks for Custom Programming ...158
Process Outbound Transactions ... 158
Process Inbound Transaction Confirmation .. 160

Additional Information..160
Formatting Data ... 160
Using Scheduler .. 165

Events 167
Z Events... 167
Real-Time Events .. 172
XAPI Outbound Events.. 204
Reliable Event Delivery ... 221
Events Self-Diagnostic Utility Tool... 222

Appendices 232
Interoperability Features Created by J.D. Edwards...232

Creating Transactions Into and From OneWorld... 236
Creating Transactions into OneWorld ... 239
Creating Transactions from OneWorld.. 241
Task Summary for J.D. Edwards Interoperability Features..................................... 243

Interoperability Interface Table Information...244
Business Function Documentation..247

Business Function Documentation .. 247
Open Data Access (ODA) ...261

Adding an ODA Data Source... 262

Using Keywords in the Connection String ... 266
Working with ODA ... 268
ODA Error Messages... 271

XML Format Examples..275
XML Format Examples (All Parameters) ... 275
XML Format Examples (Default Values) ... 291
XML Format Examples (Z Events) .. 294

Glossary ..312

Interoperability

Acronyms

The following is a list of acronyms that are commonly used in OneWorld and might appear in
the Interoperability documentation.

API Application Programming Interface

APPL Application

BDA Business View Design Aid

BSFN Business Function

BSVW Business View

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRP Conference Room Pilot

DBMS Database Management System

DCOM Distributed Component Object Model

DD Data Dictionary

DLL Dynamic Link Library

DS or DSTR Data Structure

EDI Electronic Data Interchange

ER Event Rules

FDA Form Design Aid

IDL Interface Definition Language

NER Named Event Rules

ODBC Open Database Connectivity

OCM Object Configuration Manager

OL Object Librarian

QBE Query by Example

1

RDA Report Design Aid

SAR Software Action Request

Specs Specifications

SQL Structured Query Language

TAM Table Access Management

TBLE Table

TC Table Conversion

TDA Table Design Aid

TER Table Event Rules

UBE Universal Batch Engine

WF Workflow

XML Extensible Markup Language

Interoperability Overview

Interoperability is most often associated with software as a way to allow disparate software
applications to work together. For example, interoperability makes it possible for a company
to use applications from different vendors as if they were from a single vendor. Seamless
sharing of function and information becomes possible.

Interoperability reduces or eliminates the problems of islands of automation. It allows
business processes to flow from one application to another. Interoperability allows one
system to work with another, in a near real-time fashion, to share critical business
information. Interoperability options become the "glue" between systems and applications.

Benefits

Interoperability offers the following benefits:

• Businesses can bring together applications and systems across an enterprise,
irrespective of the vendors.

• Collaborations can occur between trading partners to lower the cost of doing
business or increase competitiveness.

• Multiple systems can be linked together to share information in a real-time manner,
delivering time-sensitive information to those who need it.

• Disparate solutions encountered because of mergers or acquisitions can be quickly
incorporated into the enterprise's information technology solution.

2

J.D. Edwards interoperability strategy includes wide-ranging APIs (both industry standard and
OneWorld based), object standards, and interoperability processware solutions.

OneWorld Interoperability Features

Full interoperability among systems makes the flow of data among the systems seamless to
the user. J.D. Edwards provides a framework to mask the complexity of interoperability with
external systems, and to simplify interfacing with third-party packages.

OneWorld's interoperability strategy includes wide ranging APIs (both industry standard and
OneWorld-based), object standards, interoperability engines, and other methods that meet
three important business objectives:

• Flexibility, Options, and Choice. J.D. Edwards gives you several possibilities in the
types of applications and information you want to work with OneWorld—legacy, best-
of-breed, customer management, reporting tools, and many more. The developer can
make the right choice for your particular environment and needs.

• Investment Preservation. If you have existing applications you want to continue
using, or if you have applications you are thinking about adopting, you can interface
them to OneWorld. You can use industry standard methods if the existing or new
technologies support them. Or, by using the same APIs that OneWorld uses
internally, you gain all the benefits of this enterprise-ready architecture for the other
applications you connect to OneWorld. Also, you will benefit from our ongoing
upgrades and improvements to that architecture.

• Manageability. OneWorld is designed to make the interoperability process easily
manageable.

APIs

OneWorld's component framework allows you to access environments and pass requests
and their associated parameters. This framework includes business function wrappers that
provide a single point of access to major and minor business functions. It also includes
Master Business Function (MBF) wrappers that provide discrete Interface Definition
Language (IDL) and parameter objects for each Master Business Function.

3

The following graphic illustrates how OneWorld and third-party applications can interact using
APIs and master business functions:

Middleware

In a client/server environment, applications must communicate across different platforms.
These platforms can have different communications protocols, database management
systems, and hardware operating systems. In order for clients to communicate with servers
and servers to communicate with other servers, there must be a mechanism that can bridge
multiprotocol and multivendor issues. This mechanism is a layer of software called
middleware, which resides between the operating system and the business applications. It is
important to have an application architecture that is based on a single, consistent middleware
strategy.

4

J.D. Edwards provides the following types of middleware:

JDENet
Communication
Middleware

Performs the connections from client to server and server to server, and sends
messages for distributed requests. It is a peer-to-peer, message-based,
socket-based, multiprocess communication middleware solution.

JDEBase Database
Middleware

Provides platform-independent application program interfaces (APIs) for
multidatabase access. These APIs are used in two ways:

• By ERP 8.0 applications that dynamically generate platform-specific
Structured Query Language (SQL), depending on the data source
request.

• As open APIs for writing advanced business functions in the C
programming language. ERP 8.0 uses these APIs to dynamically
generate platform-specific SQL statements.

JDEBase also provides client-to-server and server-to-server database access.
To accomplish this, ERP 8.0 is integrated with a variety of third-party database
drivers, such as the IBM Client Access/400 database software, and the
Microsoft Open Database Connectivity (ODBC) programming interface.

OneWorld Database APIs

To access OneWorld data, you can use JDEBase, OneWorld's database middleware API that
abstracts the underlying database APIs. JDEBase contains the same set of APIs that
OneWorld developers use to build OneWorld applications.

These APIs allow you to develop applications without having to know and interpret the
various versions of SQL used by different DBMSs. JDEBase translates requests for
OneWorld data into database-specific Structured Query Language (SQL) statements. By
using the JDEBase APIs, you can build a non-OneWorld program that can work with a
OneWorld database.

OneWorld Active Data Dictionary

OneWorld has a repository of data item definitions called the Active Data Dictionary (ADD). It
is a central repository of item definitions, and it contains such things as decimal placement
and default values for table fields. The ADD assigns column and row descriptions to the
various OneWorld tables and stores context-sensitive help definitions.

When a third-party application reads or writes information into the OneWorld tables, the ADD
must be accessed for attribute definition and verification. As such, J.D. Edwards provides
access to the ADD to third-party applications.

OneWorld Business Functions

OneWorld business functions perform specific tasks, such as Journal Entry Transactions,
Calculating Depreciation, and Sales Order Transactions. When performing synchronous calls
to OneWorld, business functions are called to accomplish the task.

Two types of business functions exist: regular business functions and master business
functions. Regular business functions perform simple tasks, such as tax calculation or

5

account number validation. Master business functions (MBF) perform tasks that are more
complex, and it can call several regular business functions to perform those tasks.

See the Development Tools documentation for more information about OneWorld business
functions.

Other Industry Standard Support

OneWorld supports industry standard interoperability functions such as the following:

• Object Linking and Embedding (OLE) for the exchange of different data types

• Dynamic Data Exchange (DDE) for static and dynamic links across applications

• SQL for storage and retrieval of data from and across relational databases

• Spec 1170 for portability across various operating systems

• Extended Messaging API (MAPI) for message exchange across differing mail and
groupware applications

• Binary Large Object (BLOB) for media object attachments within OneWorld
applications

• Transmission Control Protocol/Internet Protocol (TCP/IP) for data communication

• Java for Internet and intranet support

• Electronic Data Interchange for using the OneWorld Universal Batch Engine to fully
integrate transaction-oriented files in three primary formats: X.12, ANSI, and
EDIFACT

• XML

• Microsoft COM

• IBM MQ-Series

Proprietary Support

OneWorld also supports the following proprietary interoperability function:

• SAP IDOC

Additional OneWorld Interoperability Options

To offer additional interoperability options, OneWorld provides the following:

• Z Files

OneWorld includes support for importing and exporting Z data files (World or
OneWorld tables that are used for batch posting of transactions) from external
applications.

• Table Conversion

OneWorld has a table conversion utility you can use to gather, format, export, and
import enterprise data. You can use Table Conversion for table-to-table conversions.

6

Types of Interoperability

J.D. Edwards provides both batch and interactive interoperability.

Batch

The following batch interoperability features are available:

• Electronic Data Interchange (EDI)

• Interoperability Interface Tables

• Table Conversion

These processes involve the movement of bulk information.

Interactive

J.D. Edwards provides interactive support using the following technologies:

Native OneWorld APIs

APIs are routines that perform predefined tasks. OneWorld APIs make it
easier for third-party applications to interact with OneWorld. OneWorld
APIs are functions provided to manipulate OneWorld data types, provide
common functionality, and access the database.

The published OneWorld APIs for OneWorld's communication
middleware, allow third-party applications to access OneWorld
functionality just as OneWorld applications do. These APIs provide the
security and load balancing capabilities inherent in OneWorld.

Component Object Model
(COM) and Distributed
Component Object Model
(DCOM)

COM is well supported in the Win32 world. It is Microsoft's stated
direction for components and application interoperability. COM is used to
maximize client-side, or NT-server based interoperability.

COM plays an important role in providing logic and data sharing among
disparate applications.

DCOM enables software components to communicate directly over
multiple network transports, including Internet protocols such as HTTP.

JAVA
Java technology allows you to run the same application on a variety of
different machines. You can also use security features with Java.

CORBA
CORBA is a standard defined by the Object Management Group (OMG).
CORBA allows you to use objects independent of language or platform.

XML

XML is an extensible structured language that allows you to define how
data is handled. It separates content from the format of the content so
that information from one application can be used in a different
application.

7

MQ-Series (Message
queue services)

MQ-Series transports message-based application requests across more
than 25 different platforms. Similar to OneWorld's JDENET middleware,
MQ-Series handles message queuing, message delivery, and
transaction monitoring. MQ-Series is a perfect complement to JDENET
for sharing logic and information between OneWorld and third-party
applications.

SAP ALE/IDoc/BAPI
(Application Linking
Embedding and
Intermediate Document

Application Linking and Embedding and IDoc (Intermediate Document)
features give OneWorld the ability to share logic and data requests with
SAP R/3. This capability is provided through Active Software's
ActiveWorks, a solution that J.D. Edwards resells.

Together, these elements provide a comprehensive and cohesive interoperability solution
through OneWorld.

8

Interoperability Solution Overview

The following diagram illustrates the interoperability solutions you can use with OneWorld.

9

For detailed information about available interoperability features for a specific application, see
the guide for that specific application.

Flat Files

Flat files (also known as user-defined formats) do not have relationships defined for them like
relational database tables do. Data in a flat file is stored as one continuous string of
information. Flat files are usually text files stored on your workstation or server, and they
typically use the ASCII character set. They are used to import or export data from
applications that have no other means of interaction. For example, you might want to share
information between OneWorld and another application. If the non-OneWorld application
does not support the same databases that OneWorld supports, then flat files might be the
only way to transfer data between the two applications.

EDI

Electronic Data Interchange (EDI) is the paperless, computer-to-computer exchange of
business transactions, such as purchase orders and invoices, in a standard format with
standard content. As such, it is an important part of an electronic commerce strategy.

When computers exchange data using EDI, the data is transmitted in EDI Standard format so
it is recognizable by other systems using the same EDI Standard format. Companies who use
EDI must have translator software to convert the data from the EDI Standard format to their
computer system's format.

The J.D. Edwards Data Interface for Electronic Data Interchange system acts as an interface
between the J.D. Edwards system data and the translator software. In addition to exchanging
EDI data, this data interface also can be used for general interoperability and electronic
commerce needs where a file-based interface meets the business requirements.

Some benefits of using the Data Interface for Electronic Data Interchange system are:

• Shorter fulfillment cycle

• Increased information integrity through reduced manual data entry

• Reduced manual clerical work

EDI is particularly effective at sending information to multiple applications simultaneously. For
more information about the J.D. Edwards EDI solution, see the Data Interface for Electronic
Data Guide.

OneWorld APIs

APIs are routines that perform predefined tasks. OneWorld APIs make it easier for third-party
applications to interact with OneWorld. These APIs are functions provided to manipulate
OneWorld data types, provide common functionality, and provide database access. Several
categories of APIs exist, including the Common Library APIs and J.D. Edwards Database
(JDEBASE) APIs.

Programs using OneWorld APIs are flexible for the following reasons:

• No code modifications are required to upgrade

• When a J.D. Edwards data structure changes, source modifications are minimal to
nonexistent

10

• Common functionality provided through the APIs is less prone to error

When the code in an API changes, typically, business functions simply have to be recompiled
and relinked.

COM

COM allows OneWorld to work with third-party applications. This solution is fully compliant
with the Microsoft component object model. It is a component-based model used to share
logic and data. OneWorld also supports DCOM. For more information, see COM in this guide.

CORBA

CORBA allows OneWorld to work with third-party applications. This solution is fully compliant
with the Object Management Group's (OMG) component model. It is a component-based
model used to share logic and data. For more information, see CORBA in this guide.

JAVA

JAVA allows OneWorld to work with third-party applications. Java is a component-based
model used to share logic and data. OneWorld APIs can be exposed for reuse. For more
information, see JAVA in this guide.

XML

XML provides a flexible, standards-based protocol for moving data between systems. It
allows you to extend enterprise applications and collaborate with business partners and
customers. For more information, see XML in this guide.

Table Conversion

Table conversions are a type of batch process that allows you to do high-speed manipulation
of data in tables. The table conversion tool allows you to transfer and copy data. You can
also delete records from tables.

The table conversion tool can make use of any OneWorld tables, business views and text
files, or any tables that are not OneWorld tables but reside in a database supported by
OneWorld, such as Oracle, Access, AS/400, or SQL Server. These non-OneWorld tables are
commonly referred to as foreign tables.

For more information about table conversions, see the Table Conversion Guide.

Messaging Support

J.D. Edwards provides messaging support through business partners. OneWorld can use
these messaging systems to handle and pass requests for logic and data. MQ Series is one
of the messaging systems OneWorld supports. For more information, see the Asynchronous
Messaging Programmer's Guide.

11

SAP ALE/IDoc

J.D. Edwards supports several third-party and business-partner solutions. These solutions
allow information and functional requests to pass between OneWorld and third-party
applications.

Open Data Access (ODA)

ODA allows third-party applications direct, read-only access to the OneWorld data tables and
active data dictionary. For more information, see Open Data Access in this guide.

API Models

Several interoperability models are available for using OneWorld APIs. These models are
based on a combination of interoperability objectives and processing modes.

The two main objectives of interoperability are:

• Transferring information into OneWorld

• Retrieving information from OneWorld

You can use one of the following processing modes to transfer information into or out of
OneWorld:

Synchronous

Synchronous processing implies that you are making a real-time direct call to
OneWorld objects. You establish a connection to OneWorld and make direct calls to
OneWorld APIs or business functions. The OneWorld object does its work while your
calling program waits. Results are available immediately upon completion of the call.
Synchronous processing is typically used in interactive applications that require
immediate user feedback.

Asynchronous

Asynchronous processing allows an application to submit transactions or requests to
another application one at a time. However, during asynchronous processing, the
requests are queued and processed without directly connecting to the calling
program. An application can submit a request and immediately continue processing
without waiting for a result. Results are returned through a separate process when
the transaction is complete. Asynchronous processing is typically used when real-
time feedback is not required, but rapid turnaround on a per transaction basis is still
important.

Batch

Batch processing saves transactions over a period of time. A periodic process
processes the entire group at once. Batch processing is typically used for large
groups of transactions that must be transferred from one system to another daily or
monthly.

The available processing modes and the interoperability objectives combine to provide the
following interoperability models for OneWorld (inbound refers to transactions into OneWorld
and outbound refers to transactions from OneWorld):

• Inbound synchronous

This model uses a master business function that can be called interactively from a
third-party application to perform synchronous updates to the J.D. Edwards master or
transaction file. The calling program should process any error messages.

12

• Inbound asynchronous

This model uses an inbound processor batch process that can be activated
automatically through the J.D. Edwards subsystem for near real-time processing and
to update the J.D. Edwards master or transaction file. Both flat files (ASCII text files)
and database files (Z files) in the J.D. Edwards specified format can be supported.
The batch process calls the same master business function used by inbound
synchronous processing. Error messages are written to the Employee Work Center in
the form of action messages. A revision application can be used to correct incoming
entries as necessary.

• Inbound batch

This model is identical to inbound asynchronous, except that no subsystem
processing exists. You must also initiate the inbound processor batch process to
update the J.D. Edwards master or transaction file with the external data.

• Outbound synchronous

This model allows you to communicate directly with OneWorld objects in a bi-
directional real-time mode. You can use a OneWorld business function or API to
request information to be returned while you wait. Any return information or feedback
is available immediately upon completion of the call.

• Outbound asynchronous

This model uses a master business function that updates the J.D. Edwards master or
transaction file and writes a record to a database file (Z file), which can then be
processed by an outbound processor batch process that is activated automatically
through the J.D. Edwards subsystem in an asynchronous or near real-time mode.

• Outbound batch

This model uses an extraction batch process that reads the J.D. Edwards master or
transaction file and writes records to a database file (Z file). You use data selection
as the only means to specify what records to select for processing.

Fore more information about using APIs, see the API section in this guide.

XPI

XPI is the Extended Process Integration suite. It consists of two major products, Enterprise
XPI and Inter-Enterprise XPI.

• Enterprise XPI provides the infrastructure for internal collaboration within the
enterprise.

• Inter-Enterprise XPI provides the infrastructure for B2B collaboration beyond the
enterprise.

For more information about using XPI, see the Enterprise XPI and Inter-Enterprise XPI
documentation.

13

Connectors

Connectors

This section describes some features that J.D. Edwards makes available for using
connectors. J.D. Edwards supports COM, Java, and CORBA connectors. The J.D. Edwards
solution also provides session management, point of entry, connection pooling, and
transaction functionality.

Although you can use OneWorld APIs directly, using connectors provides additional benefits.
Connectors are scalable, multi-threaded, and allow concurrent users.

Choosing a Connector

The following diagram illustrates how different technologies work with OneWorld. The
following can help you choose which connector you should use, or whether you should use
another method, such as XML, instead of a connector. All of these methods allow you to
access OneWorld business logic from outside of OneWorld.

The connector you choose depends on which application server you are using.

• If you are using Site server you should use the COM connector.

14

• If you are using IBM WebSphere, WebLogic, or Bluestone you should use the Java
connector.

• If you are using a custom Corba application server, you should use the CORBA
connector.

If you can create XML documents on your interoperability server, you can use XML for your
interoperability solution. XML provides several benefits:

• XML can be used to aggregate business function calls into one object. This reduces
network traffic.

• Because XML uses ThinNet, it is scalable so that multiple connections can be
opened.

• XML exposes both APIs and Z files.

• If you create an XML document according to J.D. Edwards specifications, you can
transport the document by using ThinNet or an MQ adapter. OneWorld completes
information for the document to provide a response so that you can use messaging.

Generating Business Function Wrappers

After you decide which connector you want to use, you can generate the appropriate
business function wrappers. J.D. Edwards provides several generators that you can use to
expose OneWorld business logic through common middleware:

• GenCOM

• GenJava

• GenCORBA

These generators are very similar. They are command line tools that you use to wrap
OneWorld business functions. GenCOM is only available on NT. You must have a OneWorld
client installed on your workstation prior to running GenCOM.

You can use a scripting language, iJDEScript, with the generators.

The following diagram illustrates how the generators work.

15

The generator uses OneWorld business function specifications to generate the appropriate
files to provide middleware wrappers.

COM *.idl, *.h, *.cpp, *.rc, *.def, Makefile

CORBA *.idl, *.java

Java *.java and javadoc HTML files for the wrapper documentation

COM

This section describes some of the J.D. Edwards features available to help you implement a
COM solution. This section also includes setup and configuration.

Understanding the Component Object Model (COM)

The Component Object Model (COM) allows developers to build systems by assembling
reusable components from different vendors. COM provides logic and data sharing among
disparate applications. COM is a binary interoperability specification and communication
convention for software components. It is a single-vendor technology that is primarily

16

available on Microsoft platforms only. Since most independent software components are also
self-contained, they are frequently called objects or servers.

Being a binary specification, COM is inherently programming language independent. Unlike
software libraries or DLLs, which are compiled to specific language or linkage conventions,
COM based software components are created ready to work with any COM client. For
example, a Visual C++ application can use COM objects created in Visual Basic, or a
VBScript within an intranet web page to control a COM object written in MicroFocus COBOL.

DCOM enables COM objects in a distributed environment.

OneWorld and COM

Using COM, OneWorld exposes all master and major business functions through the
interface definition language (IDL) standard. With COM, OneWorld can pass logic and data
requests to other applications via COM wrappers. These wrappers provide common
interoperability methods across dissimilar systems. A wrapper is attached to each master and
major business function and provides stubs for third-party applications to access.

OneWorld COM Objects

A OneWorld business function is a logical collection of C functions and their associated data
structures grouped together to produce a unit of work. OneWorld COM objects are effectively
wrappers around these business functions and data structures.

The interface provided by the COM wrappers has a one-to-one correspondence with the
OneWorld business functions. For example, if within a OneWorld library there exists a
business function "B550001" and within this business function there exist two C functions
named "foo1" and "foo2" with data structures for each function, named "DS1" and "DS2", the
corresponding OneWorld COM Object would be:

17

OneWorld COM Interoperability Usage

The following steps illustrate how the OneWorld COM interoperability solution typically flows.

1. The administrator generates the COM wrappers.

2. The administrator deploys the COM objects to the COM server.

3. The COM server allows communication with the application server so that the
generated COM objects can be used in applications.

4. Once the COM objects are on the COM server, the COM objects are configured
to communicate with the application server.

5. The DLLs or IDLs from the generated COM objects are copied so that
developers can use them.

6. Application developers create the applications.

7. The applications communicate with the COM server.

The following diagram illustrates how the OneWorld COM interoperability solution flows.

OneWorld COM Server

The OneWorld COM server contains two parts:

• COM Connector

• Generated OneWorld COM components (wrappers)

18

The following diagram shows the two parts of the OneWorld COM server.

COM Connector

The OneWorld COM server provides an interface to OneWorld, executes business functions
within valid transactions, and provides error processing for interoperability clients. The main
component of the OneWorld COM server is the COM Connector. The COM Connector
provides COM components that interface with OneWorld and hosts the business component
DLL generated by the GenCOM tool. The COM Connector also provides the connector
component that allows an interoperability client to log in and log out from OneWorld. It
manages all user sessions connected to the COM server. The following binaries combine to
comprise the COM Connector:

JDECOMConnector2.exe

JDECOMMN.dll

Callobject.dll

Comlog.dll

Xmlinterop.dll

The JDECOMConnector2.idl defines the COM interfaces of the COM Connector. It is
available under the Include directory.

The COM Connector is available with the OneWorld enterprise server CD.

Generated COM Components

GenCOM is included in the OneWorld client installation. GenCOM uses an iJDEScript file as
input to generate a COM DLL that is hosted by the COM Connector. The iJDEScript file
specifies wrapper components for OneWorld business functions. Once the generated
wrapper components are registered to the COM environment they can be used to access
OneWorld business function functionality.

19

See Understanding iJDEScript for more information about iJDEScript.

COM Reliability

Graceful fail-over and fault tolerance mechanisms are important, especially for applications
that require high availability. The COM Connector provides basic support for fault tolerance at
the protocol level.

You should take additional precautions to provide further reliability. After you use the COM
connector to enter an order or execute a business function, your process should:

• Handle transaction failures. Transactions can fail because of communication line
failures. Sometimes transactions must be aborted because of errors in input or
deadlocks. These failures must be handled appropriately.

• Wait for the confirmation or success notification from the business function to
ascertain that the call was successfully committed.

• Query on the order entered to make sure that it has been committed to the database.
Due to high network traffic, a business function can properly execute, but the
confirmation message might not reach the user.

OneWorld GenCOM

GenCOM is a OneWorld client tool that generates OneWorld COM components. It is a
command line tool that reads a script file to determine which components to generate.
GenCOM uses a multi-pass process to generate COM components.

8. GenCOM reads the iJDEScript file.

9. GenCOM fetches the metadata for the business functions specified in the
iJDEScript file.

10. GenCOM resolves dependency on the data structure.

11. GenCOM creates an internal emitter tree for the library to be generated.

12. GenCOM reads each node of the internal emitter tree and generates the
appropriate COM code.

13. GenCOM generates a make file.

14. GenCOM compiles and builds the COM DLL from the generated code.

20

See Using the COM Generator (GenCOM) for more information about GenCOM.

OneWorld COM Server Deployment

The OneWorld COM server uses OneWorld socket-based middleware to access the
OneWorld application server. The jdeinterop.ini file must be configured to specify the
OneWorld enterprise server. The COM server reads the jdeinterop.ini file and opens the
socket connection to the specified OneWorld application server.

Using the COM Generator (GenCOM)

You can run GenCOM to expose objects through COM. In a development environment,
developers may run the COM Generation tool. In a production environment, a OneWorld
system administrator should run the COM Generation Tool

You use the J.D. Edwards scripting language, iJDEScript, to script code generation activities
when you use GenCOM.

Running GenCOM

You run GenCOM from the command line. There are several options available for generation.
The COM Generation Tool is located in <install>\system\bin32\GenCOM.exe.

Syntax

GenCOM [options] [libraries]

Example

GenCOM /Cat 1 /UserID Devuser1 /Password Devuser1 /Environment ADEVHP02 CAEC

21

Options

/C++ <option>
Provides GenCOM with the compiler options you wish to use in the generation of the
COM servers.

/Cat <category>

Tells GenCOM to generate wrappers based on the following categories:

• master business functions
• major business functions
• minor business functions
• uncategorized business functions

/CL <file> Tells GenCOM what compiler (.exe) to use for compilation.

/Cmd *
Processes code generation commands from the console. Refer to Understanding
iJDEScript for more information.

22

/Cmd <filename>
Processes code generation commands from <filename>. Refer to Understanding
iJDEScript for more information.

/Debug
Builds debug information (.pdb and .bsc files) into the libraries so that the Visual
Studio debugger can access source information.

/EnvironmentID
<env>

Provides GenCOM with the environment in which you wish to log into OneWorld.

/ErrFile <file>
Provides GenCOM with the filename to log errors produced by GenCOM during the
generation process, for example, "errors.log".

/MIDL
Provides GenCOM with the MIDL compiler options you wish to use in the generation
of the COM servers.

/MTL <file> Tells GenCOM which MIDL compiler (.exe) to use for compilation.

/ListLibraries Lists all the available libraries that you can run GenCOM against.

/MsgFile <file>
Provides GenCOM with the filename to log messages produced by GenCOM during
the generation process, for example, "messages.log"

/NoBSFN
Tells GenCOM not to create wrappers for business functions. This option is for
generating parameter sets only.

/NoCompile Tells GenCOM to only generate the source files without compiling.

/NoDebug Optimizes libraries for space using the /O1 Visual C++ compiler option.

/Out <path>
Provides GenCOM with the directory (path) in which to place the output files, for
example "C:\winnt\system32".

/OWRelease flag
for GenCOM

You can override the OWRelease information by activating this flag and typing a
string that specifies the version information. J.D. Edwards recommends that you
follow a naming convention that is consistent throughout the implementation or use
the default version information that is generated by GenCOM.

/Password
<password>

Provides GenCOM with the password with which you wish to log into OneWorld.

/STA
Generates STA components. (By default, all generated components are MTA and
are optimized for scalability and performance. /STA allows you to generate STA
components if you need them.)

/TempOut <path>
Provides GenCOM with the directory (path) in which to place temporary files needed
for the build process, for example, "C:\temp."

/UserID <userid> Provides GenCOM with the username with which you wish to log into OneWorld.

23

ProgID

Each time GenCOM generates a wrapper, it creates a ProgID for each COM component. The
ProgID identifies the COM component in the registry. The ProgID is OneWorld program-
independent, and is based on the library and the interface specifications in the script file. The
key OneWorld release contains the OneWorld release and environment information. For
example, if the library name is SalesOrderEntry and the interface name is
JDESalesOrderEntry, then the progID will be SalesOrderEntry.JDE SalesOrderEntry. If
GenCOM is run on B733.SP7_COM and the environment is CRPB733, then the
OneWorldRelease key will contain B733.SP7_COM.CRPB733. If there is a type mismatch,
you will receive a warning.

The CompatibleEnvironment key remembers the list of OneWorld environments that the
wrapper is compatible with. If an environment is not on the list or is listed as incompatible, the
COM client will get an error message when trying to create the object with the environment.

The following ProgID illustrates the standard ProgID naming conventions.

HKEY CLASSES ROOT\
CLSID\{5B5D5884-7B76-11D3-A722-00105A1C00F4}
\InprocServer32 D;\b7\system\dcom\sodll\SalesOrderEntry.dll
\ProgID SalesOrderEntry.JDESalesOrderEntry
\VersionIndependentProgID SalesOrderEntry.JDESalesOrderEntry
\OneWorldRelease B733.SPJ.ADEVHPO2
\CompatibleEnvironment PRODB733 1

24

Using GenCOM Output

The output for GenCOM produces fully functional COM servers based on the library to which
you generate wrappers. Because you are interacting with the OneWorld system, you must
also follow security and installation procedures to gain access to the OneWorld system.

You must have a fully licensed copy of OneWorld properly installed on the target machine.
You must also log on to the OneWorld environment. For the logon process, you use the
jdeCOMConnector interface.

Visual Basic

The following code example demonstrates how to use a generated COM business function
wrapper in Visual Basic. This example creates business objects. Refer to the AddressBook
sample included with the COM interoperability software for a complete working example of
this functionality.

Dim WithEvents OW As OneWorldInterface ’//OneWorldInterface
Dim conn As New Connector ’//COM Connector
Dim AB as JDEAddressBook ’//AddressBook
Dim phone as D0100032 ’//Data Source
Dim Mailing As D0100031 ’//Data Source
Dim AddressAs D0100033 ’//Data Source
Dim EffectiveDate As D0100019 ’//Data Source
DimParentAddress As D0100381 ’//Data Source
Dim sessionID As Long ’//server Session ID
Private Sub Form_Load()
sessionID=conn.Login(“Foo”, “Bar”, “CRPB733”)
Set OW = conn.CreateBusinessObject(“OneWorld.FunctionHelper.1”, sessionID)
Set AB = conn.CreateBusinessObject(“AddressBook.JDEAddressBook”, sessionID)
Set phone = AB.CreateGetPhoneParameterset
Set Mailing = AB.CreateGetMailingNameParameterset
SetAddress = AB.CreateGetEffectiveAddressParameterset
Set EffectiveDate = AB.CreateGetABEffectiveDateParameterset
Set ParentAddress = AB.CreateGetParentAddressParameterset
End Sub

25

Visual C++

The following Visual C++ code example demonstrates how to create the connector and how
to create a business function on the COM server. This example creates an AddressBook
business function and uses GenCOM objects from C++.

26

The following code creates the connector object and uses it to create a J.D. Edwards
business function and its associated ParameterSet. It then calls a method, "Foo1", on the
business object with the ParameterSet, the connector, and the access code returned by the
act of logging on to the connector.

27

Using BHVRCOM via COM

OneWorld clients use the BHVRCOM structure to control the execution of business functions.
A COM client can use the IBHVRCOM interface to set and get BHVRCOM values for
business functions. The interface definition is in the jdeconnector2.idl file.

The following Visual Basic code demonstrates how to query the IBHVRCOM interface and
pass values to business functions.

Installation Information

Because the GenCOM application produces interfaces based on the package currently
installed on the machine, installation plans must be made on a site-by-site basis. The DLLs
produced are business function release dependent and can only be installed on machines
with the identical packages available.

The GenCOM output is COM servers in the form of DLLs. You can use these to create an
interface with the OneWorld system. You should not assume that a client has installed these
servers as part of the standard OneWorld installation. You should provide a full installation of
any of the servers your applications require.

J.D. Edwards also provides a OneWorld COM generation tutorial. The tutorial is a step-by-
step study on how to build an application and goes through the install issues for a Visual
Basic application. If you are developing with a different software package, please consult the
documentation for that product.

Setting Up a OneWorld Environment for GenCOM

There are several steps you must take to set up an NT client environment. You should make
sure the following are set up appropriately:

• Include directories

• Lib directories

• MSDev directories

• Paths

28

Include Directories

< Directory where Microsoft program files are located>\VC98\atl\include

Example: C:\ Program Files\Microsoft Visual Studio\VC98\atl\include

< Directory where Microsoft program files are located>\VC98\mfc\include

Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\include

< Directory where Microsoft program files are located>\VC98\include

Example: C:\Program Files\Microsoft Visual Studio\VC98\include

< Directory where JDEdwards OneWorld is located and release either Master, Prod, or
Pristine>\include

Example 1: D:\B7\MSTB733\include

Example 2: D:\B7\PROD\include

< Directory where JDEdwards OneWorld is located and release either Master, Prod, or
Pristine>\includeV

Example: D:\B7\SYSTEM\includeV

< Directory where JDEdwards OneWorld is located and release either Master, Prod, or
Pristine>\include

Example: D:\B7\SYSTEM\include

Lib directories

< Directory where Microsoft program files are located >\VC98\mfc\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\lib

< Directory where Microsoft program files are located >\VC98\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\lib

< Directory where Microsoft program files are located >\Common\MSDev98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin

< Directory where JDEdwards OneWorld is located>\System\Lib32

Example: D:\B7\System\Lib32

MSDev Directories

< Directory where Microsoft program files are located >\Common\MSDev98

Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98

< Directory where Microsoft DevStudio is located>\SharedIDE

29

Example: C:\Program Files\DevStudio\SharedIDE

Paths

< Directory where Windows NT is located>\System32

Example: C:\Winnt\System32

< Directory where Microsoft program files are located >\Common\Tools\Winnt

Example: C:\Program Files\Microsoft Visual Studio\Common\Tools\Winnt

< Directory where Microsoft program files are located >\Common\Msdev98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Common\Msdev98\Bin

< Directory where Microsoft program files are located >\Common\Tools

Example: C:\Program Files\Microsoft Visual Studio\Common\Tools

< Directory where Microsoft program files are located >\Vc98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Vc98\Bin

< Directory where Microsoft program files are located >\Vc98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Vc98\Bin

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin\Ide

Example: C:\Program Files\DevStudio\SharedIDE\Bin\Ide

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin

Example: C:\Program Files\DevStudio\SharedIDE\Bin

< Directory where JDEdwards OneWorld is located>\System\Bin32

Example: D:\B7\System\Bin32

In an NT environment, binaries are not compatible between the client and server machine.
Do not copy .dll files or .exe files compiled on an NT workstation to an NT server. The struct
alignments required by the OneWorld server and the OneWorld client are different.

Installing a COM Server on a Non-OneWorld Machine

There are several steps you must follow to install a COM server on a non-OneWorld
machine.

1. Copy the following files from the enterprise server (system\bin32) to a directory on
the desired machine. For example, copy the files in c:\program files\JDEdwards on a
non-OneWorld machine.

• JDECOMConnector2.exe

• JDECOMMN.dll

• callobject.dll

30

• comlog.dll

• xmlinterop.dll

• jdel.dll

• jdethread.dll

• jdeinterop.ini to c:\(root directory)

• checkver.exe

• ICUUC.dll

• IXXML4C2_3.dll

• Icu\data*.*

2. Execute the following command on the target location to register the COM connector
components.

c:\program files\JDEdwards\JDECOMConnector2.exe /RegServer

3. Run GenCOM on a OneWorld client machine and copy the output DLL and the
wrapper components (for example, wrapper.dll) to this directory.

c:\program files\JDEdwards\wrapper.dll

4. Execute the following command to register the COM wrapper components:

c:\program files\JDEdwards\regsvr32 wrapper.dll

5. Create the JDEinterop.ini file.

Set the Enterprise server and port values to the OneWorld application server with
which you want the COM server to communicate. See Understanding JDEinterop.ini
Settings for more information about the JDEinterop.ini file.

Your DCOM server is now ready on this machine.

Setting Up a OneWorld DCOM Server

There are several steps you must take to set up a DCOM server on a OneWorld enterprise
server machine. To ensure that the interoperability client works properly with the OneWorld
DCOM server, you must perform several steps, including:

• Set up DCOM for a sever environment

• Set up DCOM for a client environment

► To set up DCOM for a server environment

1. Run GenCOM on a OneWorld client machine, with the following options: "gencom
/out <path> /tempout <path> /cmd App.cmd"

GenCOM is a OneWorld client side only tool. That is why you must perform this
step on a OneWorld client machine.

2. Copy the App.DLL file and the App.TLB file generated by GenCOM to the COM
server machine

3. On the COM server machine, from the command line:

• Run "jdecomconnector2.exe /RegServer"

31

• Run "regsvr32 App.dll"

• Set the correct security level for jdecomconnector2.exe and App.dll

► To set up security on the COM Server

1. From the Start menu, select Run.

2. Enter Dcomcnfg.exe in the Open box.

The following form appears.

3. Click the Default Security tab.

32

4. Click on the Edit Default Button in Default Access Permissions group.

The Registry Value Permissions form appears. Your computer might already have
some entries present.

5. On Registry Value Permissions, click Add.

6. Click Everyone and click Add.

Type of Access should be Allow Access.

7. Click OK.

Repeat Steps 4 through 7 for Default Launch permissions. No setup is required for
Default Configuration permissions.

33

► To set up the identity as interactive user

1. Run DCOMCnfg from the Open box in the Run window.

2. Click JDECOMConnector2 and click Properties.

3. Click the Identity tab and click the interactive user option.

4. Click Apply to apply the change.

34

Note

You must perform this step every time you register the Connector. If you copy the
JDECOMConnector2.exe using Explorer, Explorer will rerun the registration, and you must
repeat the above steps.

To use Callbacks (Connection Points) with the COM solution, repeat the same procedure on
the COM client machine. Most of the shipped examples use Callbacks and require that you
open the security on the client machine.

► To set up DCOM for a client environment

1. On the DCOM client machine run "jdecomconnector2.exe /RegServer."

2. From the menu bar, choose oleview.

3. Click View and choose Expert Mode.

4. In the oleview window under Object Classes, double click All Objects, and wait for all
objects to appear

5. Under All Objects, find Connector Class and click it.

6. Click the Implementation tab on the right side panel, and then click the local server
and remove anything that appears in the editing window.

35

7. On the Activation tab, turn on the Launch as Interactive User option.

8. In Remote Machine Name, enter the COM server machine name.

9. Repeat steps 5-8 for MathNumeric Class.

10. Start the DCOM client application.

Remember client-only OneWorld business functions are not reachable.

Using the COM Wrapper Version Checker (CheckVer)

You can run CheckVer to verify whether a previously generated COM object is compatible
with another environment. Typically a OneWorld system administrator performs this task.

The xml files generated by GenCOM are the signatures of the objects generated against
specific OneWorld environments. These xml files can be used with CheckVer to verify that
the wrappers on the COM server are compatible with these environments.

36

When you introduce a new OneWorld environment, you run GenCOM against the new
environment by using the /NoCompile option. You also use the iJDEScript that you used to
generate the wrappers on the COM server to generate XML signature files for the objects in
the new environment. Run CheckVer on the COM server with the XML files to verify that the
new environment is compatible with wrappers on the COM server that was previously
generated with a different environment. CheckVer updates the COM server according to the
result of the compatibility test. If the new environment is incompatible, the COM client is not
allowed to create business objects with the new environment.

Running CheckVer

You run CheckVer from the command line on the COM server. There are several options
available for generation.

Syntax

CheckVer [options] filename

Example

CheckVer -r addressbook.xml

Options

-r
CheckVer will only report whether the environment is compatible with the server but won't update
the COM server with the result.

Using COM Tracing and Logging

You can use COM tracing and logging to help you debug your COM applications. Tracing and
logging are configurable through the jdeinterop.ini file. The logging format is similar to the
OneWorld logging format. It includes the Time Thread ID [User ID] and the Description, for
example:

Thu Mar 02 14:48:01 2000 294 [AR618238] Failed to Login to Environment <ADEVHPO2>

See Understanding jdeinterop.ini Settings for more specific information about setting in the
jdeinterop.ini file.

Errors are written to the JobFile and trace messages are written to the DebugFile. When
trace is enabled, error messages go into both trace and error logs.

You can change the jdeinterop.ini settings while the connector is running by completing the
following the steps:

• Modify the jdeinterop.ini file.

• Right-click on the Connector System Tray Icon.

• Select the menu item ChangeIniSettings.

If an option in the jdeinterop.ini file does not have an entry, the default value is used.

37

Troubleshooting

Tracing impacts performance. You do not need tracing on unless you are debugging. If you
experience a high performance impact, ensure that you do not have your tracing level set to a
nonzero number.

If no logs are generated, complete the following steps:

• Ensure that you have specified the proper path in the ini file.

• Verify that disk space and the permissions on your file system are correct.

• Verify whether the default log files have been generated.

• Check the interop.log to see if any errors corresponding to logging have been
generated.

• Check the interop.log file to see if the ini settings that are being used are the same as
what you have specified elsewhere.

Java

This section describes some of the J.D. Edwards features available to help you implement a
Java solution. This section also includes setup and configuration.

Understanding Java

Pure Java interoperability allows you to write Java applications to interact with OneWorld.
You can also put CORBA, Java RMI on top of the Pure Java layer as illustrated by the
following diagram.

38

Java and OneWorld

A OneWorld business function is a logical collection of C functions and their associated data
structures grouped together to produce a unit of work. OneWorld Java objects are wrappers
implemented in Java around these business functions and data structures.

The method that a Java wrapper provides has a one-to-one correspondence with OneWorld
business functions. Because all methods must be defined in a Java class, a library must be
defined in the corresponding iJDEScript file. See Understanding iJDEScript for more
information about iJDEScript.

For example, if within a OneWorld library A, there exists a business function "B550001" and
within this business function there exist two C functions named "foo1" and "foo2" with data
structures for each function named "DS1" and "DS2", the corresponding OneWorld Java
class would be:

For each business function X, there is a method CreateXParameterSet() in the class that
returns a class for the data structure used by the business function.

Each data structure in OneWorld has a corresponding Java class and each element in the
data structure has a "get" and a "set" method. For example, if DS1 has element A as a char,
the DS1 Java class is as follows:

39

The data structure can contain two kinds of compound objects, JDEDate and Mathnumeric in
addition to the primitive data types. The two Java classes JDEDate and JDEMathnumeric are
defined respectively. All public APIs can be also found in the Java document
ConnectorDoc.jar shipped with the product.

JDEDate

JDEDate() Construct a JDEDate

getDay() Get the day of the date

getMonth() Get the month of the date

getYear() Get the year of the date

setDay(short) Set the day of the date

setMonth(short) Set the month of the date

setYear (short) Set the year of the date

JDEMathNumeric

getValue() return the value as a String (for example "-12345.6789")

setValue(String strValue) set the value from a String (for example "-12345.6789")

getCurrencyDecimals() Get the Currency Decimal positions

setCurrencyDecimals(int aValue) Set the Currency Decimal positions

getCurrencyCode() Get the Currency Code

setCurrencyCode(String aValue) Set the Currency Code

getDecimalPosition() Get the Decimal Position

40

isNegative() Test if the value is negative

reset() Reset all the internal values

To set the value of a member in a MathNumeric type in a data structure, use the method
setValue(String) in JDEMathNumeric class. For example, if mnAddressBook is a member in
the data structure, then there should be a class for the data structure with the public method
getmnAddressBook that returns a JDEMathNumeric object. Then you use
DS.getmnAddressBook().setValue("1") to set the mnAddressBook value to 1 in the data
structure.

Understanding GenJava

J.D. Edwards provides a Java Generation tool, GenJava, that you can run to expose
OneWorld business functions through Java. The OneWorld system administrator usually runs
GenJava.

When you run GenJava, you specify a library of business functions, for example CAEC, to
wrap. GenJava creates Java class files for all the business functions and associated data
structures. GenJava also compiles the business functions, generates Java docs, and
packages them to two JAR files, one for Java classes and one for Java documents. For
example, if the library is JDEAddressBook, you see JDEAddressBookInterop.jar and
JDEAddressBookInteropDoc.jar in either the B7\system\classes directory or any directory
redirected by GenJava.

Pure Java Component Usage

You must deploy the pure Java framework components, business function wrappers,
configuration files, and jdeinterop.ini file to the location where you want to use them. The
framework components include two JAR files, Connector.jar and Kernel.jar. ConnectorDoc.jar
is a compressed file containing the Java documents for all the Connector classes. To
determine which public API can be used in the Connector package, unjar or unzip the jar file.

You must also have the appropriate settings in the jdeinterop.ini file. This file allows the pure
Java framework components to interact with the OneWorld enterprise server. See
Understanding jdeinterop.ini Settings for information about these settings.

Kernel.jar and Connector.jar must be added to the CLASSPATH. To run a Java application,
you need to set the system property config_file to point to the right location of jdeinterop.ini,
such as,

java -Dconfig_file=d:\system\classes\jdeinterop.ini abApplication

See Using the Java Generator (GenJava) on how to write a Java application.

Using the JAVA Generator (GenJAVA)

The OneWorld Java generation tool, GenJava, provides access to OneWorld business
functions by generating pure Java interfaces for OneWorld business functions. GenJava
includes the following components:

• GenJava.exe

• Emitter framework

41

• JDEIDAJavaEmitter.dll

You use the J.D. Edwards scripting language, iJDEScript, to script code generation activities
when you use GenJava.

Running GenJava

You run GenJava from the command line. There are several options available for generation.
GenJava is located in <install>\system\bin32.

Syntax

GenJava [options] [libraries]

Example

GenJava /Cat 1 /UserID Devuser1 /Password Devuser1 /Environment ADEVHP02 CAEC

This example generates Java wrappers for Category 1 business functions in the CAEC
library. You must use the correct information to log on to OneWorld, including the UserID,
Password, and environment.

42

Options

/? Lists the options available for generation.

/Cat <category>

Generates only <category> function wrappers. Supported categories are:

/'1/' - Master Business Functions

/'2/' - Major Business Functions

/'3/' - Minor Business Functions

/'-/' - Uncategorized Business Functions

/Cmd *
Processes code generation commands from the console. See Understanding
iJDEScript for more information.

/Cmd <filename>
Processes code generation commands from <filename>. See Understanding
iJDEScript for more information.

/Compiler <file> Uses <file> to compile Java files.

/D name value Defines a macro value

/EnvironmentID
<env>

Uses <env> to log into OneWorld

/ListLibraries Lists the available libraries that you can use for GenJava.

/MsgFile <file>
Provides GenJava with the filename to log messages produced by GenJava
during the generation process, for example, "messages.log"

/NoBSFN
Tells GenJava not to create wrappers for business functions. This option is for
generating parameter sets only.

/Out <path>
Provides GenJava with the directory (path) in which to place the output files, for
example "C:\winnt\system32".

/Password
<password>

Provides GenJava with the password with which you wish to log into OneWorld.

/TempOut <path>
Provides GenJava with the directory (path) in which to place temporary files
needed for the build process, for example, "C:\temp".

/UserID <userid> Provides GenJava with the username with which you wish to log into OneWorld.

/XMLOnly Generate only the XML file.

The following illustration shows some of the available libraries you can use.

43

You can also use GenJava by running it with a JDEScript file, such as:

GenJava /cmd AddressBook.cmd

This prompts a OneWorld sign-on window for you to enter the user ID, password, and
environment. The AddressBook.cmd is as follows:

define library JDEAddressBook

login

library JDEAddressBook

interface AddressBook

import B0100031

import B0100019

import B0100032

import B0100002

import B0100033

build

logout

44

GenJava generates the wrappers in Java for all business functions imported in the script file.

Using GenJava Output

The output for GenJava produces fully functional Java objects based on the library you use to
generate wrappers. GenJava packages these objects in a single JAR file such as
XXXXInterop.jar or XXXXInteropDoc.jar, where XXXX is the library name defined in the script
file or from the command line. For example, JDEAddressBookInterop.jar is created for the
above AddressBook.cmd. The default location for the jar file is under B7/System/classes at
the drive of the OneWorld client installed, but it can be somewhere else if you run GenJava
using a /Out value. This jar file must be deployed to the machine that uses those wrappers.
To import any wrapper object/class, the jar file must be added to the CLASSPATH. Because
you are interacting with the OneWorld system, three components, Connector.jar, Kernel.jar
and jdeinterop.ini file, must be deployed to the machine. A system property, config_file, must
be set to point to jdeinterop.ini.

XXXXInteropDoc.jar is the compressed format of all the Java documents (html files) for all the
classes generated by GenJava. Unjar. You can also unzip, the jar file to see the APIs that
can be called in these classes.

All Java client applications must do the following:

6. Initialize a com.jdedwards.system.connector.Connector.

7. Log in to OneWorld using a valid OneWorld user ID, password, and environment
name. The environment must be valid on the OneWorld enterprise server.

8. Get the OneWorldInterface object reference by calling
Connector.CreateBusinessObject() with an object name, such as
Connector::OneWorldInterface.

9. Get the object reference for the wrapper for the OneWorld business function
generated by GenJava, for example AddressBook. The object name passed into
Connector.CreateBusinessObject should be "Library (Java package) Name:Object
Name", such as "JDEAddressBook:AddressBook".

10. Call CreateXXXParameterSet() on the wrapper object for any data structure XXX.

11. Set the needed value in the data structure.

12. Call the business function with the data structure variable as a parameter. Check the
return value. The return value can be one of the following:

Successful = 0

Warning = 1

Error = 2

Process the data returned by the business function.

13. Log off OneWorld.

The following examples illustrate how to use a generated Java business function wrapper in a
Java application.

import com.jdedwards.system.connector.*;
import com.jdedwards.application.interop.jdeaddressbook.*;
public class abclient
{

45

 public static void main (String[] args) {
 Connector connectorProxy = null;
 OneWorldInterface ow;
 AddressBook ab;
 D0100033 ds;
 sessionID=0;
1. connectorProxy = new Connector();
 try {
2. sessionID = connectorProxy.Login(“FOO”, “BAR”,

“PDEVHPO2”);
 System.out.printIn(“Log in successfully”);
 } catch (reject r) {
 System.out.printIn(“got reject exception”);
 String s = r.reason;
 System.out.printIn(s);
 System.exit(1);
 } catch (Exception e) {
 System.out.printIn(“got other exception”);
 e.printStackTrace();
 System.exit(1);
 }
 try {
3. ow = (OneWorldInterface)connectorProxy.CreateBusiness Object

(“Connector:: OneWorldInterface”, sessionID)
 System.out.printIn(“got OneWorldInterface”);
 } catch (reject r){
 String s = r.reason;
 System.out.printIn(s);
 return;
 }
 //create AddressBook object
 try {
4. ab = (AddressBook)connectorProxy.CreateBusinessObject

(“JDEAddressBook:: AddressBook”, sessionID)
 System.out.printIn(“got AddressBook”);
 } catch (reject r) {
 String s = r.reason;
 System.out.printIn(s);
 return;
 }
 // get data structure D0100033
5. ds = ab.CreateGetEffectiveAddressParameterSet();
 // set addressbook number value in D0100033
6. ds.getmnAddressNumber().setValue(“1”)
 // get address information
 int i = 0;
 try {
7. i = ab.GetEffectiveAddress(ds, ow, connectorProxy;

sessionID);
 } catch (reject e) { System.out.printIn(e.reason); }
if (i!=2){
 String alphaname = ds.getszNamealpha();
 String address = ds.getszAddressLine1();
 String zipcode = ds.getszZipCodePostal();
 String city = ds.getszCity();

46

 String county = ds.getszCountyAddress();
 String state = ds.getszState();
 String country = ds.getszCountry();
 If (i==1){
 System.out.printIn(“warning count is”

+ow.GetWarningCount());
 for (int j = 0; j<ow.GetWarningCount(); j++) {
 String s = ow.GetWarningAt(j);
 System.out.printIn(“warning” + j +”;”+ s)
 }
 }
 } else {
 for (int j = 0; j<ow.GetErrorCount(); j++){
 String s = ow.GetErrorAt(j);
 System.out.printIn(“error” + j + “;” + s);
 }
 System.out.printIn(“BSFN error”);
 }
 //log off
8. connectorProxy.Logoff(1);

Handling Exceptions with GenJava Output

When you run the Java connector or the GenJava tool, the program might encounter a
condition that causes unexpected results or system failure. When the program does not
perform as expected, an error occurs; or, using Java terminology, an exception is thrown. In
Java, the system, classes, and programs can throw exceptions. You can write code to catch
exceptions. Catching an exception involves dealing with the exceptional conditions so that
your program will not crash.

All exceptions in the Connector and GenJava code inherit from the reject class. Your program
needs to catch only the reject exception conditions for the methods that throw exceptions.
J.D. Edwards created the FatalException class and the RecoverableException class so that
you can provide a recovery action in your program for some exceptions, thereby minimizing
manual intervention.

Each of the three main exception classes (FatalException, RecoverableException, and reject)
is described below.

Fatal Exception

FatalException class conditions are unlikely or impossible to resolve without manual
intervention. If you catch fatal exception conditions in your program, you can include a string
message that indicates the condition that occurred. You use the getMessage() method from
the java.lang.Throwable class to retrieve fatal exception messages from your program. The
system uses the INTEROP category to log fatal exception conditions to the jas.log file.

Recoverable Exception

You can provide the capability for the system to possibly resolve an exception condition by
catching RecoverableException (and children) class conditions in your program. The children
of recoverable exception conditions indicate through their class names the category of the
exception and include a sting message in the constructor to provide more exception details.
You use the getMessage() method from the java.lang.Throwable class to retrieve recoverable

47

exception messages from your program. The system uses the INTEROP category to log
recoverable exception conditions to the jasdebug.log file. You can turn off recoverable
exception messages through the DEBUG flag in the jdeinterop.ini file. The flag is either true
or false.

Reject

The method signature for each of the methods listed in the following table indicates that the
method only throws “reject”, even though the exceptions thrown in each method’s code are
children of the reject class. Even if you decide to catch all of the exceptions listed in the
following table, you will also need to catch “reject” as the last in the series of Connector-
related catch statements because of the method signatures’ stated throws clause.

Exception Details

The methods that throw exceptions in each of the main public classes of the Connector
(Connector, OneWorldInterface, EventSource, and GenJava code) are detailed in the
following table. The information in this table is also available in the Javadoc for the
Connector, which is in the ConnectorDoc.jar file.

Class Method Exception Condition Possible Action
Connector Login CallObjectRetryException The error code returned

by CallObject is
TIMEOUT or
RETRY_NEEDED

Retry Login method

 CallObjectIgnoreException The error code returned
by CallOjbect is
NOERROR,
ALREADY_EXECUTED,
or
BAD_ERRORPACKETS

Ignore this
exception

 FatalException The error code returned
by CallObject is any
other error code

*

 CreateBusinessObject NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 FatalException A Java reflection
exception is thrown or
the OneWorld
environment is not in
sync with the business
function wrapper

*

OneWorldInterface GetNextError NoMoreDataException Error index reaches the
end of the array

End the loop
searching for the
next error

 GetNextWarning NoMoreDataException Warning index reaches
the end of the array

End the loop
searching for the
next warning

48

Class Method Exception Condition Possible Action
 Commit InvalidMethodCallException This method is called

before
PrepareToCommit() is
called

Call the
PrepareToCommit()
method

 CallObjectRetryException The error code returned
by CallObject is
TIMEOUT or
RETRY_NEEDED

Retry Commit
method

 CallObjectIgnoreException The error code returned
by CallObject is
NOERROR,
ALREADY_EXECUTED,
or
BAD_ERRORPACKETS

Ignore this
exception

 FatalException The error code returned
by CallObject is any
other error code

*

 Rollback CallObjectRetryException The error code returned
by CallObject is
TIMEOUT or
RETRY_NEEDED

Retry Rollback
method

 CallObjectIgnoreException The error code returned
by CallObject is
NOERROR,
ALREADY_EXECUTED,
or
BAD_ERRORPACKETS

Ignore this
exception

 FatalException The error code returned
by CallObject is any
other error code

*

 PrepareToCommit CallObjectRetryException The error code returned
by CallObject is
TIMEOUT or
RETRY_NEEDED

Retry
PrepareToCommit
method

 CallObjectIgnore Exception The error code returned
by CallObject is
NOERROR,
ALREADY_EXECUTED,
or
BAD_ERRORPACKETS

Ignore this
exception

 FatalException The error code returned
by CallObject is any
other error code

*

 ExecuteBSFN NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

49

Class Method Exception Condition Possible Action
 CallObjectRetryException The error code returned

by CallObject is
TIMEOUT or
RETRY_NEEDED

Retry
ExecuteBSFN
method

 CallObjectIgnoreException The error code returned
by CallObject is
NOERROR,
ALREADY_EXECUTED,
or
BAD_ERRORPACKETS

Ignore this
exception

 FatalException The error code returned
by CallObject is any
other error code

*

EventSource EventSource
(Constructor)

FatalException The Connector cannot
listen on the given port

*

 addListener NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 FatalException The subscription fails *

 removeListener NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 FatalException The unsubscription fails *

 updateSession NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 getEventTemplate NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 FatalException A JdeNetException is
thrown

*

 getEventTypes NotLoggedInException The user is not currently
logged in to OneWorld

Login through
Connector class

 FatalException A JdeNetException is
thrown

*

GenJava-created
Data Structures

setString<parameter>
methods

StringTooLongException The value set for the
parameter is too long

Re-set the
parameter, using a
shorter length

For FatalException conditions, you can send the exception message, which can be retried by
using the getMessage() method, to your System Administrator. Alternatively, you can prompt
your System Administrator to look in the jas.log file for more details about the exception. It is
unlikely that your program can recover associated OneWorld or Connector errors during
runtime.

50

Example

The following code illustrates some of the features of the enhanced connector exception
handling. The bold-faced items indicate specific exception-handling code.

import com.jdedwards.system.connector.*;
import com.jdedwards.application.interop.jdeaddressbook.*;

public class AddressClient {
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Must supply a city to query for AddressBook");
 System.exit(-1);
 }

 Connector connectorProxy = null;
 OneWorldInterface ow = null;
 AddressBook ab = null;
 D0100033 ds = null;

 int accessNumber = 0;
 connectorProxy = new Connector();

 try {
 accessNumber = connectorProxy.Login("FOO", "BAR", "PDEVHP02");
 System.out.println("Logged in successfully");
 } catch (CallObjectIgnoreException e) {
 // do nothing
 } catch (CallObjectRetryException e) {
 // try one more time
 try {
 accessNumber = connectorProxy.Login("FOO", "BAR", "PDEVHP02");
 System.out.println("Logged in successfully");
 } catch (CallObjectIgnoreException ex) {
 // do nothing
 } catch (CallObjectRetryException ex) {
 System.out.println("EXCEPTION: " + ex.toString());
 System.out.println("Nested Exception: " +

ex.getChainedException().toString());
 System.out.println("Refer to the jasdebug.log file for more

details.");
 System.exit(-1);
 } catch (FatalException ex) {
 System.out.println("Fatal Exception during login: " +

ex.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }
 } catch (FatalException e) {
 System.out.println("Fatal Exception during login: " + e.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);

51

 } catch (reject r) {
 /* This should not happen, as the Java Connector code
 * now only throws one of the reject child objects.
 * The documentation indicates which methods throw which
 * reject child exception objects. All methods continue
 * to have a signature of "throws reject", however, for
 * backwards compatibility (to not break existing client code).
 */
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }

 try {
 ow =

(OneWorldInterface)connectorProxy.CreateBusinessObject("Connector::OneWorldI

nterface", accessNumber);
 System.out.println("Got OneWorldInterface");
 } catch (FatalException e) {
 System.out.println("Fatal Exception during OneWorldInterface

creation: " + e.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }

 try {
 ab =

(AddressBook)connectorProxy.CreateBusinessObject("JDEAddressBook::AddressBoo

k", accessNumber);
 System.out.println("Got AddressBook");
 } catch (FatalException e) {
 System.out.println("Fatal Exception during OneWorldInterface

creation: " + e.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }

 ds = ab.CreateGetEffectiveAddressParameterSet();

 ds.getmnAddressNumber().setValue("1");

 try {
 ds.setszCity(args[0]);
 } catch(StringTooLongException e) {
 System.out.println("Cannot set a city with length of " +

args[0].length());
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);

52

 System.exit(-1);
 }

 int i=0;

 try {
 i = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);
 } catch (CallObjectIgnoreException e) {
 // do nothing
 } catch (CallObjectRetryException e) {
 // try one more time
 try {
 i = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);
 } catch (CallObjectIgnoreException ex) {
 // do nothing
 } catch (CallObjectRetryException ex) {
 // don't try again after second try
 System.out.println("EXCEPTION: " + ex.toString());
 System.out.println("Nested Exception: " +

ex.getChainedException().toString());
 System.out.println("Refer to the jasdebug.log file for more

details.");
 System.exit(-1);
 } catch (FatalException ex) {
 System.out.println("Fatal Exception during AddressBook retrieval: "

+ ex.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }
 } catch (FatalException e) {
 System.out.println("Fatal Exception during AddressBook retrieval: " +

e.toString());
 System.out.println("Refer to the jas.log file for more details.");
 System.exit(-1);
 } catch (reject r) {
 System.out.println("Java Connector Exception: " + r.reason);
 System.exit(-1);
 }

 String alphaname = ds.getszNamealpha();
 String address = ds.getszAddressLine1();
 // get whatever other AddressBook parameters you desire...

 if (i == 1) { // business function warning
 System.out.println("Warning count is " + ow.GetWarningCount());
 for (int j=0; j<ow.GetWarningCount(); j++) {
 } System.out.println("Warning " + j + ": " + ow.GetWarningAt(j));
 } else if (i == 2) { // business function error
 for (int j=0; j<ow.GetErrorCount(); j++) {
 System.out.println("Error " + j + ": " + ow.GetErrorAt(j));
 }
 }

53

 connectorProxy.Logoff(accessNumber);
 }
}

Setting Up a OneWorld Client Environment for GenJAVA

There are several steps you must take to set up a OneWorld client environment for
GenJAVA. You should make sure the PATH environment variable and the CLASSPATH
environment variable are set up correctly.

PATH

<bin directory for JDK>

Example: c:\jdk1.2.2\bin

CLASSPATH

<Directory where JDEdwards OneWorld is located>\System\classes\Kernel.jar

<Directory where JDEdwards OneWorld is located>\System\classes\Connector.jar

Installing JAVA Components on a Non-OneWorld Machine

There are several steps you must follow to install JAVA components so that you can run a
JAVA application on a non-OneWorld machine.

14. Copy the following files from the enterprise server to a directory on the desired
machine. For example, copy the following files to c:\JDEdwards\Interop on a non-
OneWorld machine.

Kernel.jar

Connector.jar

Jdeinterop.ini

15. Create a separate repository directory for business object.jar files.

16. Run GenJAVA on the OneWorld client machine and copy the output jar file (for
example, JDEAddressBook.jar) to this directory.

17. Add Kernel.jar and Connector.jar to the CLASSPATH.

18. Depending on whether you want the library in static mode or dynamic mode, put the
business object.jar file in the CLASSPATH.

19. Edit jdeinterop.ini for proper settings.

20. Run the JAVA application with the system property config_file pointing to the location
of jdeinterop.ini. For example, java -Dconfig_file=c:\JDEdwards\Interop\jdeinterop.ini
AddressBookApplication.

54

Understanding JAVA and CORBA Versioning

Business object wrappers that are generated against one environment may not be
compatible with another environment. Versioning prevents you from creating Java and
CORBA business objects unless the environment used at login is the same as used the
environment used to generate the wrappers, or the environment is compatible with the
business objects. You can use the JAVA Wrapper Version Checker (CheckVer) to verify that
business object wrappers are compatible with new environments.

Migrating from Previous Releases

Previously generated business object wrappers are compatible with the new versioning code.
There is no need to regenerate them. However, in order to use them, CheckVer must be run,
even for the environment used to create the wrappers. The repository setting in the
[INTEROP] section of the ini file must point to the directory containing the JAR files of
generated business object wrappers. For example:

[INTEROP]

repository=c:\foo\bar\repository

The repository directory should contain only JAR files for generated business object libraries.

Static and Dynamic Modes

The CORBA interoperability server should always be run in dynamic mode.

A Java interoperability client can be configured statically or dynamically. Static mode is the
normal mode of operation and should be used by most client code. Dynamic mode is better
suited for developing tools based on Java interoperability. The two modes can be used
simultaneously in the same process. The granularity is at the business object library (JAR
file) level. No matter which mode is used, it is necessary for the JAR files to be placed in the
repository directory.

To use a business object library in static mode, ensure that the JAR file is in the classpath
and in the repository directory for the client process.

To use dynamic mode for a given business object library, ensure that the JAR file is in the
repository directory but not in the classpath. Dynamic mode is for Java interoperability clients
with client code that has no direct use of the business objects. In dynamic mode, business
objects may only be used via the classes in the java.lang.reflect package. However, dynamic
mode allows client code to refresh, add, or remove business object libraries on the fly. These
operations are accomplished using the methods in the OneWorldVersion class. For example,
generate a new business object library (or regenerate an existing library) using GenJava. Use
the CheckVer tool to establish the compatible environments for the business objects in the
library. Add the JAR file to the repository directory. Finally, the client code must instantiate a
OneWorldVersion object, and call the refreshLibrary() method. To remove a business object
library, remove it from the repository, and call the refreshLibrary() method.

After a library is refreshed, all newly created business objects use the new definition.
Business objects created before the refresh use the old definition. There is no limit to the
number of simultaneous business object library versions. The old library definitions remain in
the virtual machine until there are no more references to the old business objects. This can
significantly affect memory usage in the virtual machine.

55

Using the JAVA Wrapper Version Checker (CheckVer)

You can run CheckVer to verify whether a previously generated Java or CORBA business
object library is compatible with another environment. Typically, the OneWorld system
administrator performs this task. The xml files generated by GenJava and GenCORBA are
the signatures of the objects generated against specific OneWorld environments. These XML
files can be used with CheckVer to verify that the wrappers in a previously generated jar file
are compatible with these environments.

When you introduce a new OneWorld environment, you run GenJava or GenCORBA against
the new environment by using the /XMLOnly option. You also use the iJDEScript that you
used to generate the wrappers to generate XML signature files for the objects in the new
environment. Run CheckVer with the new XML files and previously generated JAR files to
verify that the new environment is compatible with the wrappers. CheckVer updates the JAR
file according to the result of the compatibility test. A Java client or CORBA server using the
JAR file can be dynamically updated to the new compatibility information, using the
OneWorldVersion interface. If the new environment is incompatible, the client is not allowed
to create business objects with the new environment.

Running CheckVer (GenJava)

CheckVer is a Java class, and should not be confused with the CheckVer.exe that is a part of
the COM Interoperability solution. CheckVer takes two arguments, the JAR file name and the
XML file name. CheckVer requires that the Connector.jar, Kernel.jar, xalan.jar and xerces.jar
files be in the CLASSPATH. This can be done either with the CLASSPATH environment
variable, or on the command line itself.

Syntax

Java com.jdedwards.system.connector.CheckVer [jarfile] [xmlfile]

Example

Java com.jdedwards.system.connector.CheckVer JDEAddressBookInterop.jar
JDEAddressBook.xml

Running CheckVer (GenCORBA)

CheckVer is a Java class, and should not be confused with the CheckVer.exe that is a part of
the COM Interoperability solution. CheckVer takes two arguments, the JAR file name and the
XML file name. CheckVer requires that Connector.jar, Kernel.jar,
JDECORBAConnectorOrbixWeb.jar, OrbixWeb.jar, xalan.jar, and xerces.jar be in the
classpath. This can be done either with the CLASSPATH environment variable, or on the
command line itself.

Syntax

Java

Dcom.jdedwards.system.corba.ORBWrapperClass=com.jdedwards.system.corba.OrbixORB
Wrapper -Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB -
Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.singletonORB]com.jdedw
ards.system.connector.CheckVer [jarfile] [xmlfile]

56

Example

Java

Dcom.jdedwards.system.corba.ORBWrapperClass=com.jdedwards.system.corba.OrbixORB
Wrapper -Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB -
Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.singletonORB]
com.jdedwards.system.connector.CheckVer JDEAddressBookInterop.jar
JDEAddressBook.xml

Java Connector Outbound Events

The Java connector outbound event source architecture enables Java clients to use the Java
connector to subscribe to various transaction types in OneWorld and receive notification upon
completion of those transactions. For example, a client can subscribe to the event,
JDESOOUT, and then receive notification when a sales order transaction is complete in
OneWorld.

The following diagram illustrates this process.

21. OneWorld clients create different types of EventListeners.

22. OneWorld clients subscribe to various event types with the Java connector.

23. When the Java connector receives a subscription for a given event, it subscribes to
the same event type with the event distribution kernel.

24. OneWorld events originate from the real-time events kernel (see Real-Time Events)
or from callback functions in Uses (see Z Events). When the event distribution kernel
receives an event to which the Java connector has subscribed, it sends the event to
the Java connector.

25. The Java connector sends the event to all subscribers for that event. The
EventListener callback function is executed to receive the subscribed event.

57

Developing the Java Client to Use the Java Connector Outbound Event
Source

You can subscribe to a OneWorld outbound event using the Java connector outbound event
source.

► To subscribe to a OneWorld outbound event using the Java connector outbound
event source

1. Create a Java class that implements one of the following three interfaces based on
the purpose for which you are using the Java class:

• If you want to know the subscription count and when subscription count is
reached, and the subscribed event is dropped, implement the following interface:

com.jdedwards.system.connector.events.CountedListener

• If you want the real-time event kernel to persist the subscription when the kernel
goes down and comes up and the connection to the Java Connector is re-
established, implement the following interface:

com.jdedwards.system.connector.events.PersistentListener

• For most other situations, implement the following interface

com.jdedwards.system.connector.events.EventListener

No matter which interface you implement, the implementation Java class must contain the
following five methods:

//set the event type to subscribe
void setEventType(String type);
String getEventType();

// stop/start the event coming in the Java Connector
void setPause(boolean pause);
boolean isPaused();

// the callback function when the event arrives
void onOneWorldEvent(EventObject event);

2. Create a Java Client Application to subscribe to a OneWorld event. This Java Client
Application must:

15. Create a new instance of the Connector class.

16. Use the Connector object to verify the client's user ID, password, and
environment, and then log the client onto OneWorld.

17. Create an EventSrc object by calling the CreateBusinessObject method of the
Connector class, passing in an "Events::EventSource" string identifier.

18. Create an EventListener object.

19. Specify the specific event type to which to subscribe.

20. Register the EventListener object with the EventSrc object.

58

21. (optional) Develop a callback function. When the subscribed to event arrives, the
EventListener calls this callback function.

Example: Using the Java Client to Subscribe to a OneWorld Event Using the Java
Connector Outbound Event Source

The following examples illustrate how to use write Java client to subscribe to a OneWorld
event using the Java connector outbound event source.

import java.io.*;
import javax.swing.*;
import com.jdedwards.system.connector.*;
import com.jdedwards.system.connector.events.EventListener;

/**
* The event source client application
*/
class EventClient
{
 private Connector m_connector = null;
 private int m_Access = 0;
 private EventSource m_theSource = null;
 private Listener m_listener = null;

 public static void main(String argv[]) {
 try
 {

 // 1.
 m_connector = new Connector();

 // 2.
 m_Access = m_connector.Login("user", "password",
"environment");

 // 3.
 // passing in an "Events::EventSource" string
identifier.
 m_theSource = (EventSource)m_connector.CreateBusiness
Object("Events:: EventSource", m_Access);

 // 4.
 m_listener = new ListenerImpl(this);

 // 5.
 m_listener.setType("JDESOOUT");

 // 6.
 m_theSource.addListener(m_listener, m_Access);
 }
 catch(Exception e)
 {
 System.out.println(e.toString())
 System.out.println(e.getMessage());
 e.printStackTrace();

59

 }
 }

 // 7.
 public synchronized void executeCallBack(EventObject event){
 System.out.println("Getting the event:"+event.getData());
 //execute the call back function;
 }

}

/**
* The EventListener interface is the means by which events are
* delivered to the client by the Java connector.
* The client have to implement an EventListener object
*/

public class ListenerImpl implements EventListener
{
 String m_eventType;
 boolean m_paused = false;
 EventClient m_client;

 /** Creates new Listener */
 public ListenerImpl()
 {
 }
 public ListenerImpl(EventClient client)
 { this.m_client=client;
 }

 public synchronized String getEventType()

 {
 return m_eventType;
 }

 public void setEventType(java.lang.String eventType)
 {
 this.m_eventType = eventType;
 }

 public synchronized boolean isPaused()
 {
 return m_paused;
 }
 public synchronized void setPause(boolean pause)
 {
 m_paused = pause;
 }

 public synchronized void onOneWorldEvent(EventObject p1)
 {
 System.out.println("Received event: " + p1.getType());
 // if the arrival event is the one that client subscribes,

60

 // the EventListner can trigger the call back function in the
client
 if (p1.getType().equalsIgnoreCase(m_eventType)) {
 m_client.executeCallBack(p1);
 }
 }
}

Compiling and Running the Java Client

To compile the Java client, use the following command:

set JAVA_HOME = <the path of JDK>
set OneWorld_HOME = <the path of OneWorld installation>
set CLASSPATH=%OneWorld_HOME%\system\classes\Kernel.jar
set
CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\Connector.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xalan.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xerces.jar
%JAVA_HOME%\bin\javac -classpath %CLASSPATH% EventClient.java
EventListenerImpl

To run the Java client, use the following command:

set JAVA_HOME = <the path of JDK>
set OneWorld_HOME = <the path of OneWorld installation>
set CLASSPATH=%OneWorld_HOME%\system\classes\Kernel.jar
set
CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\Connector.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xalan.jar
set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xerces.jar
%JAVA_HOME%\bin\java -classpath %cp% -Dconfig_file=.\jdeinterop.ini
EventClient

For detailed information on jdeinterop.ini, see jdeinterop.ini.

CORBA

This section describes some of the J.D. Edwards features available to help you implement a
CORBA solution. This section also includes setup and configuration.

Understanding CORBA

The Common Object Request Broker Architecture (CORBA) allows you to use objects
independent of language or platform. CORBA is a standard defined by the Object
Management Group (OMG), it is not a product. There are several vendors that use CORBA
standards to provide Object Request Brokers (ORBs) that implement these standards.

CORBA is programming language independent. Unlike software libraries or DLLs that are
compiled to specific language or linkage conventions, CORBA-based software components
are created ready to work with any CORBA client. For example, a Visual C++ or Java
application can use CORBA objects created in Visual Basic or Java.

61

CORBA provides the following benefits:

• Object-oriented approach for reuse

• Integration

• Standards

• Portability

• Manageability

CORBA uses an Interface Definition Language (IDL) to specify the interface for objects.
CORBA basically provides a bus to CORBA components.

The CORBA infrastructure consists of four main components:

Common Object
Services

Defines system level object frameworks.

Common Facilities Defines application frameworks used by business objects.

Application Objects
Defines the business objects and applications used. In OneWorld this is the
OneWorld business functions used.

62

Each ORB has an IDL compiler and an Interface Repository. The interface repository
contains metadata that contains the interface specifications for CORBA objects.

63

The structure of an IDL file includes:

Module Defines name identifiers.

Interface Defines a set of methods or operations that can be used with an object.

Operations
Defines services that can be used with objects, for example, parameters and attribute
values.

Data Types Defines accepts attributes, exceptions, and return values for objects.

The basic steps for using CORBA include the following:

• Use IDL to define object classes

• Run the IDL through a language precompiler to process the IDL files and produce
skeletons for implementation

• Add implementation code to the skeletons

• Compile the code

This creates information for the interface repository, client IDL stubs, server IDL stubs
and object implementations.

CORBA and OneWorld

A OneWorld business function is a logical collection of C functions and their associated data
structures grouped together to produce a unit of work. OneWorld CORBA objects are
effectively wrappers around these business functions and data structures. OneWorld CORBA
support is based on OneWorld JAVA support.

The interface provided by the CORBA wrappers has a one-to-one correspondence with the
OneWorld business functions. For example, if within a OneWorld library there exists a
business function "B550001" and within this business function there exist two C functions
named "foo1" and "foo2" with data structures for each function named "DS1" and "DS2", the
corresponding OneWorld CORBA Object would be:

64

Understanding GenCORBA

GenCORBA generates CORBA interfaces for OneWorld business functions. This includes an
IDL file and a Java jar file with the stub/skeleton classes generated by the IDL compiler and
those implementation classes generated by the built-in CORBAEmitter. The default IDL
compiler is OrbixWeb's idl.exe, but the user can always use a different IDL compiler as an
option. To compile the Java classes, Kernel.jar, Connector.jar, CorbaConnector.jar, and
JDECORBAConnectorOrbixWeb.jar must be deployed to the machine and added to the
classpath. These four jar files consist of a group of foundation classes for the CORBA server
to interface with the OneWorld Enterprise server. JdeCorbaConnector.idl must be on the
machine too.

When you run GenCORBA, you can specify a library, for example CAEC. GenCORBA
creates CAEC.idl and CAEC.jar.

The following diagram illustrates CORBA server deployment for the server environment.

65

Understanding the CORBA Generator (GenCORBA)

The OneWorld CORBA generation tool, GenCORBA, provides access to OneWorld business
functions by generating CORBA interfaces for OneWorld business functions. When you use
GenCORBA to generate these interfaces, you must specify an Object Request Broker (ORB)
vendor. Currently J.D. Edwards supports generation capabilities for Orbix and VisiBroker.
GenCORBA includes the following components:

• GenCORBA.exe

• Emitter framework

• CORBA emitter.dll

You use the J.D. Edwards scripting language, iJDEScript, to script code generation activities
when you use GenCORBA.

Running GenCORBA

You run GenCORBA from the command line. There are several options available for
generation. GenCORBA is located in <install>\system\bin32.

66

Syntax

GenCORBA [options] [libraries]

Example

GenCORBA /Cat 1 /UserID Devuser1 /Password Devuser1 /Environment ADEVHP02 CAEC

This example generates CORBA wrappers for Category 1 business functions in the CAEC
library. You must use the correct information to log on to OneWorld, including the user ID,
password, and environment.

Options

/? Lists the options available for generation.

/Cat <category>

Generates only <category> function wrappers. Supported categories are:

/'1/' - Master Business Functions

/'2/' - Major Business Functions

/'3/' - Minor Business Functions

/'-/' - Uncategorized Business Functions

/Cmd *
Processes code generation commands from the console. See
Understanding iJDEScript for more information.

67

/Cmd <filename>
Processes code generation commands from <filename>. See
Understanding iJDEScript for more information.

/Compiler <file> Uses <file> to compile java files.

/D name value Defines a macro value.

/EnvironmentID <env> Uses <env> to log into OneWorld.

/ErrFile <file> Uses <file> to record all error messages.

/IDL <file> Uses <file> as the IDL compiler.

/IDLINCLUDE <flag> Uses <flag> for IDL compiler include dir.

/IDLOUTPUT <flag> Uses <flag> for IDL compiler output dir.

/IDLEXTRA <flags> Passes extra flags to IDL compiler.

/IMPLCLASSFORMAT
<p>

Uses <p> as format for base class name of Impls, for example,
./IMPLCLASSFORMAT "_*ImplBase".

/ListLibraries Lists the available libraries that you can use for GenCORBA.

/MsgFile <file>
Provides GenCORBA with the filename to log messages produced by
GenCORBA during the generation process, for example, "messages.log".

/NoBSFN
Tells GenCORBA not to create wrappers for business functions. This option
is for generating parameter sets only.

/Out <path>
Provides GenCORBA with the directory (path) in which to place the output
files, for example "C:\winnt\system32".

/Password <password>
Provides GenCORBA with the password with which you wish to log into
OneWorld.

/TempOut <path>
Provides GenCORBA with the directory (path) in which to place temporary
files needed for the build process, for example, "C:\temp".

/UserID <userid>
Provides GenCORBA with the username with which you wish to log into
OneWorld.

/XMLOnly Generate only the XML file.

The following illustration shows some of the available libraries you can use.

68

Using GenCORBA Output

For Java applications, Connector.jar, CorbaConnector.jar,
JDECORBAConnectorOrbixWeb.jar, and the jar file generated by GenCORBA can be simply
deployed to a machine for developing CORBA client applications using OrbixWeb. These jar
files must be added to the classpath. These jar files consist of both client side classes and
server side classes. An "IDL to Java" IDL compiler can also be run using the
jdeCorbaConnector.idl and the IDL file generated by GenCORBA to generate only stub
classes for client applications. Any framework component class, such as Connector, or
OneWorldInterface is in com.jdedwards.system.corba. Any business function wrapper class
is in com.jdedwards.application.corba.LibraryName, for example D0100033 is in
com.jdedwards.application.corba.jdeaddressbook.

For a C++ application, or any other kind of application, a specific kind of IDL compiler must
be run to generate the stub code from the IDL files.

Any CORBA client application using OrbixWeb must do the following:

22. Initialize OrbixWeb for an application

23. Establish a CORBA connection with the CORBA server and return a proxy for the
server Connector object. The bind() call causes the OrbixWeb daemon to launch
the jdeCORBAServer server, and enables it to accept a remote request.
Alternatively, jdeCORBAServer can be configured to run persistently, and the
client can obtain the Connector proxy via its stringified object reference.

24. Log in to OneWorld using a valid OneWorld user ID, password, and environment
name. The environment must be valid on the OneWorld enterprise server.

69

25. Get the OneWorldInterface object reference by calling CreateBusinessObject()
with the object name CORBA::OneWorldInterface.

26. Get the object reference for the wrapper for the OneWorld business function
generated by GenCORBA, for example AddressBook. The object name passed
into CreateBusinessObject should be "Library (Java package) Name:Object
Name", such as "JDEAddressBook:AddressBook".

27. Call CreateXXXParameterSet() or the wrapper object for any data structure XXX.

28. Set the required value in the data structure.

29. Call the business function with the data structure variable as a parameter. Check
the return value. Process the data returned by the business function.

Successful = 0

Warning = 1

Error = 2

30. Free objects.

31. Log off OneWorld.

Following is an AddressBook example written in Java using OrbixWeb.

import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB;
import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
import OrbixWebDemoManager.*;
import com.jdedwards.system.corba.*;
import com.jdedwards.application.corba.jdeaddressbook.*;
public class abclient
{
public static void main (String[] args) {
Connector connectorProxy = null;
String hostname = null;
OneWorldInterface ow;
AddressBook ab;
1. ORB orb = ORB.init(args, null);
if (args.length >= 1) {
hostname = new String(args[0]);
} else hostname = _OrbixWeb.ORB(orb).myHost ();
try {
2. connectorProxy = ConnectorHelper.bind(":jdeCORBAServer",hostname);
 }
 catch (org.omg.CORBA.SystemException ex) {
 System.out.println("Exception during bind : " +
ex.toString());
 System.exit(1);
 }
 org.omg.CORBA.ObjectHolder obj1 = new
org.omg.CORBA.ObjectHolder();
 org.omg.CORBA.ObjectHolder obj2 = new
org.omg.CORBA.ObjectHolder();
 D0100033 ds;
 D0100033Holder params = new D0100033Holder();

70

 sessionID = 0;
 try {
3. sessionID = connectorProxy.Login("foo", "bar",
"ADEVHPO2W");
 } catch (reject r) {
 String s = r.reason;
 System.exit(1);
 }
 try {

4. connectorProxy.CreateBusinessObject("CORBA::
OneWorldInterface", sessionID, obj1);
 } catch (reject r) {
 String s = r.reason;
 System.exit(1);
 }
 try {
5. connectorProxy.CreateBusinessObject("JDEAddressBook::
AddressBook", sessionID, obj2);
 } catch (reject r) {
 String s = r.reason;
 System.exit(1);
 }
 ow = OneWorldInterfaceHelper.narrow(obj1.value);
 ab = AddressBookHelper.narrow(obj2.value);
6. ds = ab.CreateGetEffectiveAddressParameterSet();
 params.value = ds;
7. ds.getAddressNumber().setValue("4242");
 int i = 0;
 try {
8. i = ab.GetEffectiveAddress(params, ow,
connectorProxy, sessionID);
 } catch (reject e) { System.out.println(e.reason); }
 if (i != 2) {
 String alphaname = ds.getNameAlpha();
 System.out.println("Name:" + alphaname);
 if (i == 1) {
 for (int j = 0; j< ow.GetWarningCount(); j++) {
 System.out.println("warning" + j + ":" +
ow.GetWarningAt(j));
 }
 }
 } else {
 for (int j = 0; j< ow.GetErrorCount(); j++) {
 System.out.println("error" + j + ":" +
ow.GetErrorAt(j));
 }
 }
9 connectorProxy.FreeBusinessObject(ab);
 connectorProxy.FreeBusinessObject(ds);
 connectorProxy.FreeBusinessObject(ow);
10 connectorProxy.Logoff(l);
 }
}

71

Working with JDEDate and JDEMathNumeric CORBA Objects

Parameter sets may have JDEDate and JDEMathNumeric data members. The parameter set
itself is a CORBA Object, and it is important to realize that any JDEDate or JDEMathNumeric
members of the parameter set are themselves CORBA objects. The get() method for these
data members returns a reference to the CORBA Object.

The IDL for JDEDate and JDEMathNumeric is as follows:

interface JDEDate

 {

 short getYear();

 void setYear(in short year);

 short getMonth();

 void setMonth(in short month);

 short getDay();

 void setDay(in short day);

 };

 interface JDEMathNumeric

 {

 void reset();

 string getValue();

 void setValue(in string value) raises(reject);

string getCurrencyCode();

void setCurrencyCode(in string value) raises(reject);

 long getCurrencyDecimals();

 void setCurrencyDecimals(in long value) raises(reject);

 };

To get/set the members of a JDEDate or JDEMathNumeric, first get() the object from its
parameterset. Calling the set() methods of the object operates directly on the object in the
parameterset. Do not call FreeBusinessObject() using the JDEDate or JDEMathNumeric as
input. These objects are freed when FreeBusinessObject is called on their parameterset
object.

Setting Up a OneWorld Client Environment for GenCORBA

There are several steps you must take to set up a OneWorld client environment for
GenCORBA. You should make sure the following are set up appropriately:

• PATH environment variable

• CLASSPATH environment variable

PATH

<bin directory for OrbixWeb>

Example: c:\iona\bin

<bin directory for JDK>

Example: c:\jdk1.2.2\bin

72

CLASSPATH

<Directory where JDEdwards OneWorld is located>\System\classes\Kernel.jar

<Directory where JDEdwards OneWorld is located>\System\classes\Connector.jar

<Directory where JDEdwards OneWorld is located>\System\classes\CORBAConnector.jar

<Directory where JDEdwards OneWorld is
located>\System\classes\JDECORBAConnectorOrbixWeb.jar

Setting Up an Environment for CORBA

GenCORBA is designed to work with a variety of CORBA vendors and IDL compilers. While
the different IDL compilers all generate CORBA-compliant stubs and skeletons, they all
generate slightly different code in the stubs and skeletons. Furthermore, stubs and skeletons
generated by an IDL compiler of one vendor will not be compatible with the ORB of another.
The same is true for different versions of OrbixWeb. Stubs and skeletons generated with the
IDL compiler for version 3.1 are not compatible with the ORB for version 3.2. For this reason,
we do not ship any stubs or skeletons.

To set up GenCORBA, you must first compile JDECORBAConnector.idl with your particular
IDL compiler. You create a jar file named JDECORBAConnectorOrbixWeb.jar:

26. Create a temporary directory.

27. Copy JDECORBAConnector.idl from the system\include directory of your OneWorld
install to the temporary directory.

28. Change directories to the temporary directory.

29. Run the OrbixWeb idl compiler: idlj JDECORBAConnector.idl.

30. Change directories to java_output\com\jdedwards\system\corba.

31. Compile the .java files: javac -classpath c:\Iona\lib\OrbixWeb.jar *.java.

32. Change directories back to the temporary directory: cd ..\..\..\..\..

33. Create the jar file: jar cvf JDECORBAConnectorOrbixWeb.jar -C java_output com

34. Copy the file to the system\classes directory of your OneWorld install.

You must perform these steps initially, to set up GenCORBA, and also whenever you
upgrade to a later version of OrbixWeb.

Building and Deploying a CORBA Server

35. Run GenCORBA to generate the IDL file and the jar file.

36. Deploy the Jar file generated in step 1 to the server machine.

37. Install Kernel.jar, Connector.jar, CorbaConnector.jar,
JDECORBAConnectorOrbixWeb.jar, and jdeinterop.ini to the server machine.

38. Get the CORBA server ready.

See Setting Up the CORBA Server for the details.

73

Setting up a CORBA Server

The CORBA server can be on the same machine as the OneWorld enterprise server or on a
completely separate machine. However, OrbixWeb and JDK must be installed. Complete the
following steps to set up a CORBA Server.

39. Deploy the jar files (Connector.jar, Kernel.jar, CorbaConnector.jar,
JDECORBAConnectorOrbixWeb.jar) and jdeinterop.ini to the CORBA server.

40. Add the jar files to the class path.

41. The CORBA Server Administrator must run the OrbixWeb configuration tool to add all
jar files to the default class path. On NT, go to Start/Program/OrbixWeb/Configuration
Tool. The following illustration is from OrbixWeb3.1. The interface looks slightly
different for OrbixWeb3.2. On Unix, such as Solaris, run ConfigurationExplorer.sh
under iona/bin.

42. Create a repository directory for the generated business object libraries (JAR files).

43. Deploy any JAR files generated by GenCORBA to the repository directory on the
CORBA server.

44. Set an environment variable, such as JDECORBA_HOME, and point it to the place
where jdeinterop.ini was deployed.

45. Start OrbixWeb Daemon and execute the following command:
putit -j [-jdk2] jdeCORBAServer " -
Dconfig_file=%JDECORBA_HOME%\jdeinterop.ini -
Dcom.jdedwards.system.corba.ORBWrapperClass=com.jdedw
ards.system.corba.OrbixORB wrapper
com.jdedwards.system.corba.jdeCORBAServer"

Use the -jdk2 option if you are using OrbixWeb3.2 and JDK1.2 or higher.

74

You can also run the following command:

putit -persistent jdeCORBAServer

You can then start the server yourself using the following command:

java -Dconfig_file=%JDECORBA_HOME%\jdeinterop.ini -
Dcom.
jdedwards.system.corba.ORBWrapperClass=com.jdedwards.
system.corba.OrbixORBWrapper [-
Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB -
Dorg.
omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.si
ngletonORB]
com.jdedwards.system.corba.jdeCORBAServer

The -D...ORBClass and -D...ORBSingletonClass are only necessary if you are using
OrbixWeb3.2, and JDK1.2 or higher.

iJDEScript

GenCOM, GenCORBA, and GenJAVA use a scripting language called iJDEScript that allows
you to script code generation activities. Other than a few small differences, the scripting
language is the same for these generators. You can use iJDEScript to:

• Rename business function libraries or select different business functions to create a
custom interface, for example

library MyTestLibrary

interface MytestInterface

import B4200310 F4211FSEditLine

import B000042

This example selects the single business functions B4200310 F4211FSEditLine and
B000042 for exposure.

• Use OneWorld object aliases for more meaningful names.

• Select OneWorld business functions to expose, for example

library MyAnotherLibrary

importlib CAEC

importlib CRUNTIME 1

This example selects all of the business functions in the CAEC and CRUNTIME 1
libraries for exposure.

iJDEScript scripts have a simple syntax:

comments begin with # and proceed to the end of line

whitespace is ignored

75

login

importlib CAEC

build

iJDEScript Commands

iJDEScript supports a standard set of commands. These commands may vary slightly for
GenCOM, GenCORBA, and GenJAVA. These variations are indicated in the command
descriptions that follow.

Build Command

The build command tells the generator to generate code for all defined interfaces and build
the appropriate libraries.

When the build command is complete, the interface definitions are released. Using the build
command again only generates code for interfaces defined after the last build command.

Syntax
build

Call Command

The call command tells the generator to evaluate a subroutine with the given parameters.
Parameters appear within the subroutine in order as special macros named %1%, %2%,

Syntax
call sub [param [...]]

Example
login

call GenerateLib CAEC

call GenerateLib CALLBSFN

build

logout

Define Command

The define command tells the generator to optionally define a macro expansion. The value is
expanded first, and then stored as the expansion of macro name. If name already has an
expansion, the generator ignores this command.

Syntax
define name value

Example
define val1 This is a test

76

define val2 %val1%!

define val2 This is ignored

say %val2%

generates the output

This is a test

Define! Command

The define! command tells the generator to define a macro expansion. The value is
expanded first, and then stored as the expansion of macro name. If name already has an
expansion, the generator replaces the current expansion with the new expansion.

Syntax
define name value

Example
define val1 This is a test

define val2 %val1%!

define! val2 This is not ignored

say %val2%

generates the output

This is not ignored

Exit Command

The exit command tells the generator to exit the current subroutine or command file.

Syntax
exit

Help Command

The help command requests help information from the generator on all available commands.
Syntax information and a brief description are presented for each command. If command is
specified, only help for command is shown.

Syntax
help [command]

Import Command

The import command tells the generator to retrieve the specification of a function or group of
business functions from the OneWorld database and add them to the current interface
definition. If only the business-function name is specified, all functions from the specified
business-function are retrieved and added to the current interface definition. If a function
name is specified, only that function is retrieved and added to the current interface definition.

77

The alias option allows you to rename the function within the interface definition. The
implementation still uses the original name when invoking the business function; however,
the function is exposed as name through the interface.

Syntax
import business-function [function [alias name]]

Example
library General

interface ReleaseMgmt

Load GetReleaseAndVersion from B9800890; call it GetRV in

ReleaseMgmt

import B4200310 F4211FSEditLine alias GetRV

Load all functions from B000042

import B000042

Importlib Command

The importlib command tells the generator to import all business functions from the specified
OneWorld library, such as CAEC or CALLBSFN, into the current library definition. Each
business function group in OneWorld results in the definition of an interface with the same
name as the business function group and exposes as methods the functions within that
group.

The category parameters allow the user to restrict the import to one or more specific
categories (1, 2, 3 and -; see the /Cat command line option).

Syntax
importlib library [category [...]]

Example
library JDECOMInterfaceCAECCat1

Load all category 1 functions from CAEC

importlib CAEC 1

build

Interface Command

The interface command tells the generator to begin the definition of an interface. All business
functions retrieved using subsequent import commands become members of this interface.

Syntax for COM
interface interface [ProgID prog-id] [vi-prog-id]

78

COM Example
interface ReleaseMgmt ProgID SOA.ReleaseMgmt.5 SOA.ReleaseMgmt

import B4200310 F4211FSEditLine

Syntax for CORBA
interface interface

CORBA Example
interface ReleaseMgmt

import B4200310 F4211FSEditLine

Library Command

The library command tells the generator that subsequent interface and import commands will
generate definitions that belong in the library (DLL) named name. If the parameterset tag is
also supplied, the library is used solely for parameterset definitions.

Note

When the library command without the parameter set tag is evaluated, parametersets for
subsequent interface and import commands appear in that library until a library command
with the parameterset tag is evaluated.

Syntax
library name [parameterset]

Example:
library Lib1

library Lib1Params parameterset

Parametersets for CALLBSFN go in Lib1Params, but the

business function interfaces go in Lib1

importlib CALLBSFN 2 3

Login Command

The login command tells the generator to log into OneWorld. If user, password, and
environment are not specified, the user is prompted for the information.

Syntax
login [user password environment]

Example
login me mypassword demo

79

Logout Command

The logout command tells the generator to log out of OneWorld.

Syntax
logout

Opt Command

The opt command tells the generator to set the value of a generator command line
parameter. The option parameter should not begin with the usual "/". The value parameter
does not undergo macro expansion.

Syntax
opt option value

Example
Do not generate business function interfaces, only

parameterset interfaces

opt NoBSFN

Rename Command

The rename command tells the generator to rename an interface or a method within an
interface. If a method is renamed, the correct business function is still called to build the
implementation, but the method is exposed through the interface with a different name.

Syntax
rename interface new

rename interface method new

Example
library Lib1

importlib CALLBSFN

rename B000042 BatchControl

rename BatchControl FSOpenBatch Open

rename BatchControl FSCloseBatch Close

Say Command

The say command tells the generator to display message on the console.

Syntax
say message

Example
say This is a test (%OwRelease%)

80

generate the output

This is a test (B733)

Sub Command

The sub command creates a subroutine definition. The call command may be used to invoke
the subroutine. Parameters passed to the subroutine are as special macros named %1%,
%2%,

Syntax
sub name

commands

end

Example
sub GenerateLibrary

define source %1%

library JDECOMInterface%source%Cat1

importlib %source% 1

Create a library of all category 2 business functions in source

opt NoBSFN

library JDECOMInterface%source%Cat2

importlib %source% 2

Create a library of all category 3 business functions in source

library JDECOMInterface%source%Cat3

importlib %source% 3

system del /q c:\temp*.*

build

Move the libraries to a staging area

system mkdir d:\build

system mkdir d:\build\Cat1

system mkdir d:\build\Cat2

system mkdir d:\build\Cat3

system move JDECOMInterface%source%Cat1.* d:\build\Cat1

81

system move JDECOMInterface%source%Cat2.* d:\build\Cat2

system move JDECOMInterface%source%Cat3.* d:\build\Cat3

end

call GenerateLibrary CAEC

System Command

The system command tells the generator to evaluate command in the shell.

Syntax
system command

Example
say This is a test

generates the output

This is a test

jdeinterop.ini

The jdeinterop.ini file includes some settings the server may need. The default location for
the file is c:\. However, this location is configurable. This section details the settings found in
the jdeinterop.ini file. Information is organized by section, for example [JDENET]. Sections
are listed in the order they are found in the software.

[JDENET]

Setting Typical Value Purpose
EnterpriseServerTimeout= 90000 The timeout value for a request to the enterprise

server.

maxPoolSize= 30 The JDENET socket connection pool size.

[SERVER]

Setting Typical Value Purpose
glossaryTextServer= JDED:6010 The enterprise server and port that provide

glossary text information.

codePage= 1252 The encoding scheme.

1252 English and Western European

932 Japanese

950 Traditional Chinese

936 Simplified Chinese

82

949 Korean

[LOGS]

Setting Typical Value Purpose
log= c:\jas.log This is the file used by interoperability

components to log significant information.

debuglog= c:\jasdebug.log Location of debug log file.

Debug= FALSE Turn on/off debug tracing by the thinnet
component on the CORBA server and Pure
Java.

TRUE sets tracing on.

FALSE sets tracing off.

[DEBUG]

Setting Typical Value Purpose
JobFile= c:\Interop.log Location of error file

DebugFile= c:\InteropDebug.log Location of debug file.

log= c:\net.log Location of log file.

debugLevel= 0 - 12 This defines the level of tracing provided by
the COM Connector and the Callobject
component in the specified log file, in the
COM server only.

0 None. Logging is turned off and only
errors are written to the JobFile.

2 Errors (error messages).

4 System Errors (exception messages)

6 Warning Information

8 Min Trace (Key operations. For example,
Login, Logoff, Business Function calls.)

10 Trouble Shooting Information (Help)

12 Complete Debug Information (Logs
everything)

Note:

• The odd values are reserved for future
levels to be added.

• You typically do not need tracing on
by default. However, tracing is useful
for debugging.

NetTraceLevel= 0 This defines the level of tracing provided by
the thinnet component in the specified log

83

file, in the COM server only.

0 No trace.

1 Record process id, thread id, and the
available socket status when a new
connection is added and the socket pool is
searched.

2 Includes the information in trace level 1
and also traces every call made in the
connection manager class.

3 Includes all information in trace level 2,
and also traces getPort() calls and getHost()
calls.

Note: You typically do not need tracing on by
default. However, tracing is useful for
debugging.

[INTEROP]

Setting Typical Value Purpose
enterpriseServer= JDED The OneWorld Enterprise server.

port= 6010 The port number of the OneWorld Enterprise
server.

inactive_timeout= 1200000 The timeout value for a transaction in auto
commit mode. If the user is inactive for this
amount of time (in miilliseconds), the interop
server will log off the user.

manual_timout= 300000 The timeout value for a transaction in manual
commit mode.

Repository c:\JDEdwards\
Interop\repository

Points to the location of the repository directory
containing business object libraries (generated
JAR files).

84

[CORBA]

Setting Typical Value Purpose
Multithread= 1 Set to 1 for multithread support for CORBA

Objects= CORBA::
Connector;
CORBA::
OneWorld
Version

he objects for the CORBA server to create at
startup. Also replaces the -DIORFILENAME =
command line option, for example
CORBA::Connector=connector.ior

[EVENTS]

Setting Typical Value Purpose
port= 6002 The port that Java Listener is going to listen to

for OneWorld outbound events.

ListenerMaxConnection= 100 Maximum number of connections.

ListenerMaxQueueEntry= 100 Maximum number of queue entries.

85

XML

This section describes some of the J.D. Edwards features available to help you implement an
XML solution.

Understanding XML

Extensible Markup Language (XML) is similar to Hypertext Markup Language (HTML). It is an
extensible structured language that allows you to define how data is handled. This
information may include how data is stored, transmitted, or processed. XML separates
content from the format of the content. This supports using information from one application
so that it can be used in another application. For example, one company's application can
use customer information, such as name, address, phone, and subscription options for
producing bills for cable television services, while another company's application can use that
same information for determining which commercials to show in different geographical areas.

The J.D. Edwards XML solution supports well-formed XML documents. It also supports UTF8
and UTF16 Unicode standards for inbound information and UTF8 standards for outbound
information.

The document object model (DOM) stores the data structure of an XML document. It uses a
tree structure that has a root document and a tree of elements and attributes.

The following diagram illustrates the typical structure for an XML document.

XML and OneWorld

The following diagram illustrates the flow for an XML transaction.

86

First, an interoperability client sends an XML document to OneWorld. The document format is
defined by J.D. Edwards.

The client uses APIs defined by either C++ or Java ThinNet to send the XML document to
JDENET. C++ and Java ThinNet use a multi-threaded architecture to do load balancing and
to manage multiple XML documents simultaneously.

Once the documents reach JDENET, the next step in the process depends on what
document type is being sent. There are two XML document formats: CallObject and XML
Transaction APIs. CallObject is used for synchronous requests only. XML transactions are
usually used for asynchronous requests. All XML documents contain an element that
identifies the request as a Call Object or a Transaction. Based on the document type,
JDENET decides which kernel to send the document to.

You can also use MQ Series and input queues to send the message to OneWorld using the
OneWorld Adapter for MQSeries. The server must be running so that JDENET is running. For
more information, see the Asynchronous Messaging Adapter Programmer's Guide.

ThinNet

The following information describes the process flow for C++ ThinNet used in XML
CallObject.

Refer to the Online API documentation for information about specific APIs.

87

46. An interoperability client sends an XML document to C++ ThinNET to initiate an XML
request. ThinNET creates a socket connection to JDENET on a OneWorld server.
Each XML request has its own unique network connection to the server.

47. The XML document is packed into a data segment of a JDENET message.

48. ThinNET sends the message out to JDENET on the server.

49. ThinNET blocks in receiving a response message from the server. A timeout error
occurs if no response is received from the server within the user-specified timeout in
seconds.

50. The response JDENET message is unpacked and the response data is extracted.

51. Network connection is closed for this XML request.

52. Response data is passed out to the interoperability client.

The process flow for Java ThinNet is the same as the flow for C++ ThinNet. An API is used to
submit XML documents to the server.

Inbound and Outbound Synchronous XML CallObject

The following diagram depicts the synchronous process using XML CallObject.

88

Inbound Synchronous Process Flow

Typically, inbound or outbound XML processing using XML CallObject follows a flow similar
to the following:

• The client sends a message through JDE Net to the appropriate kernel.

• The XML document is passed into the jdeXMLCallObject API.

• The OneWorld server processes the message by parsing the XML document. The
Session Manager also validates user and password.

• Each requested business function is called separately or within requested transaction
boundaries until all calls are processed.

• Transactions are added to the OneWorld database.

• Output data and error messages are merged with the data from the input XML
document and a new response document is created.

89

Inbound Asynchronous XML Transactions

The inbound asynchronous XML transaction process uses XML Call Object methodology for
processing inbound transactions, such as a sales order. The Inbound Adapter Function is
used for transactions using an adapter, such as the OneWorld Adapter for MQSeries, only.

The following diagram depicts the inbound asynchronous process.

Outbound Asynchronous XML Transactions

The following diagram depicts the outbound process, which uses the Z-Table asynchronous
methodology for passing a variety of information to the attached system.

90

Outbound Asynchronous Process Flow

Typically, outbound processing for XML transactions follows a flow similar to the following:

• An outbound message is triggered by an event, for example entry of a sales order.

• Subsystem processing starts processing the transaction and calls the outbound
notification function.

• The client can retrieve the transaction information by sending an XML request with an
action attribute of 'TransactionInfo' and a type attribute of 'transaction type'.

Working with XML CallObject

The following information explains how CallObject works and details the steps involved with
using XML CallObject.

Establish Session

A session must be established. This step is addressed by the session attribute of the
standard jdeRequest element. If the session attribute is an empty string, this indicates that
the user wants a session started. On the server, the SessionManager singleton class creates
a new instance of a Session object given the user name, password and environment name.

91

Expire Session

Session expiration is addressed by the sessionidle attribute of the standard jdeRequest
element. This attribute, when given on a session creation request, specifies the amount of
time in seconds that this session is allowed to be idle. If the SessionManager determines that
a session has not had any requests processed in this amount of time, it terminates the
session and frees all associated resources. The session idle default is 30 minutes. You can
use a jde.ini file setting to change the default session idle time.

Call Object

Tags are used to call business functions on the server.

92

The callMethod element details which function to call and in what context it is being called.
The name attribute specifies which business function to call and the app attribute allows the
business function to know "who" is calling it.

The params and param elements define the data structure of the business function. Each
param element describes one data structure member. The caller is only required to give the
name attribute.

If no param element value is given for an input data structure member, then the value will be
treated as if it were NULL or zero.

Explicit Transaction

Explicit DB transactions are supported by another element, the startTransaction tag. This
element specifies whether transactions are going to be manual or automatically committed.
The startTransaction element is an empty element, meaning that all of its information is in the
attributes.

Implicit Transaction

A CallObject request is included in a transaction set when the name of a transaction set is
referenced in its trans attribute. Implicit start transactions can be included in the CallObject
request by specifying the name of a transaction set that has not previously been created. If it
is an implicit start, the transaction set will be a manual commit set.

Prepare/Commit/Rollback

Manual transaction sets can be committed or rolled back. As part of a two-phase commit,
they can be prepared to commit. These requests to the database are made using the
endTransaction element. The transaction set is identified by the trans attribute and the action
attribute indicates the action to take on the transaction set. The value can be `prepare',

93

`commit', or `rollback'. This element is always an empty element, as shown by the forward
slash.

Note

If startTransaction and endTransaction are in separate documents, one of the following
should occur:

• The session attribute is not sent in the second document. In this case the user, pwd
and environment are used to match the previous session.

• The session number from the response of the first document is sent in the session
attribute of the documents that are associated with the same transaction.

It is recommended to manage the session ID when doing manual commits, and terminate the
session after the transaction is complete.

Terminate Session

Session termination is done by submitting an XML document to explicitly terminate the
session. The caller must specify the session to be terminated in the jdeRequest element tag.

Call Object Error Handling

System errors on a call object are reported in the returnCode element. The numeric code is
returned in the code attribute and the corresponding text is returned as a child text node of
the returnCode element. The standard jdeCallObject return codes are used for the code
attribute.

94

BSFN Error Handling

Business function error handling includes using error text, errors during multiple requests,
and errors that occur during call method requests.

Error Text

Business function error messages are returned in the errors element. Within that element
there can be zero or more error elements, containing a code attribute for the error code and a
child text node containing the error text. The name attribute describes which param element
the error refers to.

Multiple Requests per Document

Multiple requests can be included in the XML document. By default, requests are not run if
there have been any errors on previous requests. If a request should be run even if errors
have occurred, then the default behavior can be overridden by using the runOnError attribute
on the request with a value of yes.

95

On Error Handling

If an error occurs on a callMethod request, you can add an onError element to the request to
take some action, such as calling another business function, to clean up resources. The
onError tag can specify an abort attribute that specifies if all subsequent requests should be
skipped. The allowed values are 'yes' or 'no'. A 'global' onError tag can be specified as a child
of the jdeRequest tag, that will be executed if there were errors encountered and no other
onError tag with abort='yes' was executed. The global onError tag should be the last request
in the document.

ID/IDREF Support

ID type attributes uniquely identify, by a string value, elements in a XML document. IDREF
attributes allow other elements to reference the specified element. An IDREF attribute must
not be used in a document before the ID it references is defined.

A param element can specify an id attribute so that its output value from the callMethod
request will be saved and referred to later in another param element by an idref attribute. If a
param element contains an idref attribute, the value of the given parameter is used as the
input value for the param element. For example, the output value from referenced parameter
is used instead of the value in the XML.

96

You can specify a special request tag called returnParams that can contain one or more
param elements. If the param elements contain idref attributes, then the referenced values
are copied into the response.

Return NULL Values

By default if a parameter was not specified in the request document, it will not be returned in
the response document unless its value is non-blank or non-zero. This behavior can be
modified by specifying the returnNullData attribute on the callMethod element with a value of
`yes'.

97

Enabling Outbound Z-Table Processes

The Z-table process is used for XML transaction document types. You use the
OutboundZTable function to send a message from an outbound Z-Table to an asynchronous
messaging queue. The function is invoked from the kernel dispatch function, which then
sends the net message data that contains the parameters from the Z-Table subsystem UBE.

Void OutboundZTableMessageAdapter(MsgData *pMsgData)

These parameters define the records and the transaction type that will be used to cross
reference the tables that contain the data to populate the message to be sent to the message
queue. The asynchronous messaging-specific Outbound Z-Table Adapter parses the net
message data and calls the jde XML Z-Table Inquiry API to fetch the records from the Z-
Table and format the results into an XML string.

You must setup OneWorld to initiate the outbound Z-Table process. The format of the
outbound Z-Table message retains an XML based format.

Outbound Notification

The business function sends an outbound notification message to JDENET. This function is
called by the standard generic Outbound Subsystem batch process UBE and provides
notification that records have been placed in the Z-Tables.

This function passes the key fields for a record in the OneWorld Outbound Transaction Z-
Tables. With these keys, you can process the information from the database record into a
message queue.

void MessageNotificationName(char *szUserID, char
*szBatchNumber,char *szTransactionNumber, double mnLineNumber,char
*szTransactionType, char *szDocumentType, double mnSequenceNumber)

Following is the required parameter list. All parameters are input:

User Id - 11 characters

Batch Number - 16 characters

Transaction Number - 23 characters

Line Number - double

Transaction Type - 9 characters

Document Type - 3 characters

Sequence Number - double

This information is sent on in a JDENET message with the following message packets:

Environment name - use JDE APIs to retrieve environment from the Subsystem
batch process.

User Id - key to Z-Table record

Batch Number - key to Z-Table record

98

Transaction Number - key to Z-Table record

Line Number - key to Z-Table record

Transaction Type - tie to which Z-Table

Document Type - (optional)

Sequence Number - (optional)

The key information in the Net message packets is used to retrieve the Z-file record from the
table. The transaction type allows the function to be generic and process other transactions in
the future. The transaction type maps to the Flat File Cross Reference Table (F47002) to
determine the Z-Tables.

XML Z-Table Inquiry API

The XML Z-Table Inquiry API (jdeRetrieveTransactionInfo) receives an XML string that
includes the table record key and returns an XML string for outbound.

This function is called from the Asynchronous Messaging Specific Outbound Z-Table. It
parses the XML string and, based on the transaction type, goes to the F47002 (Flat File
Cross Reference Table) to determine from which Z-Table to fetch records. F47002 has a
record for each table associated with the transaction type. Using JDB database APIs, XML Z-
Table Inquiry then uses the index found in the XML string to fetch records from the Z-Table
and returns the results in an XML string.

See the online Interoperability Interface Tables for more information about specific Z-Tables.

XML Transaction Information Request

The XML transaction information request is created by the outbound function and sent to the
XML transaction API.

Example: Outbound Order Status XML Request & Response Format

"This format will return all columns for the sales order header (F4201Z1)

and detail lines (F4211Z1). "

<?xml version='1.0' ?>

<jdeRequest type='trans' user='user' pwd='password'

environment='environment' session='

` sessionidle='300'>

<transaction action='transactionInfo' type='JDESOOUT'>

<key>

<column name='EdiUserId'>value</column>

<column name='EdiBatchNumber'>value</column>

<column name='EdiTransactNumber'>value</column>

</key>

</transaction>

99

</jdeRequest>

<?xml version='1.0' encoding='utf-8' ?>

<jdeResponse type='trans' user='user' session='session1' environment='env'>

 <transaction type='JDESOOUT' action='transactionInfo'>

 <returnCode code='0'>XML Request OK</returnCode>

 <key>

 <column name='EdiUserId'></column>

 <column name='EdiBatchNumber'></column>

 <column name='EdiTransactNumber'></column>

 </key>

 <table name='F4201Z1' type='header'>

 <column name='EdiUserId'></column>

 <column name='EdiBatchNumber'></column>

 </table>

 <table name='F4211Z1' type='detail'>

 <column name='EdiUserId'></column>

 <column name='EdiBatchNumber'></column>

 </table>

 <table name='F49211Z1' type='additionalHeader'>

 <WARNING>No record found</WARNING>

 </table>

 </transaction>

</jdeResponse>

Creating an XML Template

You can create your own custom XML documents. To create your own custom XML
documents:

• Use the business function documentation to help you find the specific business
functions you want to use. See Business Function Documentation in this guide for
more information about generating documentation and finding information about
specific business functions.

• Create an XML template.

100

XML CallObject Templates

You create an XML template to make CallObject calls. See Business Function
Documentation for documentation information about specific business functions.

The caller can request an XML Template for a given business function. This template is an
XML document that is a callMethod request with information about all the function
parameters, but with no data values filled in. The user, pwd and session attribute values are
blanked out so that the caller can cache the response for later use.

This request is an exception to the convention that a jdeRequest returns a jdeResponse to
the caller. Although this makes it easier to directly use the template as a callMethod request,
this is only true if the request is the only request in the document. Refer to the online APIs
documentation for information about the jdeXMLRequest API.

The following example illustrates a request.

The following example illustrates a response to a request. This response can then be filled in
with the appropriate information and sent back as a request.

XML List

XML list provides List/GetNext functionality and allows you to collect a list of records from
OneWorld. It is built on the OneWorld Table Conversion (TC) engine. It takes an XML
document as a request and returns an XML document with data in it. A list can represent data
in a table, a business view, or data from a table conversion. Using data from a table
conversion allows you to use multiple tables. By sending an XML document, you can retrieve
metadata for a list, create a list, retrieve a chunk of data from a list, or delete a list. You can

101

send the request through JDENET or third-party software to perform any of the following
operations:

• Create List

• Get Template

• Get Group

• Delete List

There are trivial and non-trivial List/GetNext APIs. A trivial List/GetNext API performs simple
gets such as selecting data from a single table. A non-trivial one uses additional functionality
such as event rules. Each non-trivial List/GetNext BPAPI must have a table conversion
designed for it. The data selection and data sequencing can be defined in an XML request at
runtime. See J.D. Edwards Table Conversion guide for more information about setting up and
running table conversions.

The following diagram illustrates the enterprise server side architecture for the XML List
kernel and the list information flow.

Retrieving Data from a List

You can retrieve data from a list generated by a previous CreateList request by using a
GetGroup request. The HANDLE, FROM VALUE, and TO VALUE can be defined in the
request.

102

The XML response lists records falling into the range specified. It returns the records in the
list from #10 to #50 in the following format. The default FROM value is the first record and the
default TO value is the last record in the list. For a GetGroup request for the whole list, no
FROM and TO value must be specified.

Deleting a List

A list can be deleted if all GetGroup requests are done.

The listresult defined in the HANDLE is deleted from the storage and a response with the
status is returned to the caller.

103

Getting Column Information for a List

You can send a GetTemplate request to get the column information for a list so that data
selection and sequencing can be added to the CreateList request. If OUTPUT is defined in
the TEMPLATE_TYPE, the response is only for those columns in the XML output generated
by a CreateList request based on the table conversion. For a trivial table conversion, both
templates should be the same. The default template type is INPUT if no tag is specified.

The response for the input template lists all of the columns with alias name, type and the
length of the data type, even though the length is only meaningful for the string type.

Establish Session

A session must be established for CreateList and GetTemplate requests. This step is
addressed by the session attribute of the standard jdeRequest element. If the session
attribute is an empty string, this indicates that the user wants a session started. On the
server, the SessionManager singleton class creates a new instance of a Session object given
the user name, password and the environment name. The session can be reused before it
expires to avoid the overhead of a session initialization. You can specify the session id in the
session attribute for an already established session in an early request.

Expire Session

Session expiration is addressed by the sessionidle attribute of the standard jdeRequest
element. This attribute, when given on a session creation request, specifies the amount of
time in seconds that the session is allowed to be idle. If the SessionManager determines that
a session has not had any request processed in this amount of time, it terminates the session
and frees all associated resources. The session idle default is 30 minutes.

104

List-Retrieval Engine Table Conversion Wrapper

List-Retrieval Engine is an optimized database engine that provides and manages access to
XML repository files. Each XML list repository file is a pair of index and data files with *.idb
and *.ddb extensions. The IDB file keeps an index generated on a data file, and the DDB file
keeps data generated by the table conversion engine. TCWrapper is a system module that
aggregates list-retrieval and list-processing APIs from TCEngine and List-Retrieval Engine
and provides a uniform access to it for XML List.

Setting the jde.ini File for the List-Retrieval Engine

The List-Retrieval Engine uses a predefined folder as its system directory to keep and
manage repository files. This system directory should be configured in jde.ini file as follows:

[LREngine]

System=C:\output

Repository_Size=20

Disk_Monitor=No

Note

The engine uses the IFS file system on AS400, so a corresponding System subsection must
be set up.

The Security section of the jde.ini file should also be configured. The DefaultEnvironment,
Password, and User items should be filled in for the engine to validate the default user and
initialize the default environment.

Setting the System Environment for XML

You must ensure that the ICU_DATA system environment variable is correctly defined on the
OneWorld Enterprise system. If the ICU_DATA variable is not correctly defined, OneWorld
produces the following error message:

The default Unicode converter could not be found within the jdenet_n.log on the
OneWorld Enterprise Server.

For UNIX systems, the ICU_DATA variable is located in the OneWorld file and must be
defined with a trailing slash, as follows:

Export ICU_DATA=$SSYSTEM/locale/xml/

For windows and NT systems, the ICU_DATA variable is defined in the system properties
applet and does not require the trailing slash. The following examples provide a sample path
and the definition for Windows and NT systems:

Z:\JDEdwardsOneWorld\ddp\B73333\system\Locale\xml

Export ICU_DATA=$SSYSTEM/locale/xml

105

Setting the jde.ini File for XML

The jde.ini settings for the XML call object kernel are as follows:

[JDENET_KERNEL_DEF6]

krnlName=CALL OBJECT KERNEL

dispatchDLLName=XMLCallObj.dll

dispatchDLLFunction=_XMLCallObjectDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

The jde.ini settings for the XML transactions kernel are as follows:

[JDENET_KERNEL_DEF15]

krnlName=XML TRANSACTION KERNEL

dispatchDLLName=XMLTransactions.dll

dispatchDLLFunction=_XMLTransactionDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

The jde.ini settings for the XML list kernel are as follows:

[JDENET_KERNEL_DEF16]

krnlName=XML List

dispatchDLLName=xmllist.dll

dispatchDLLFunction=_XMLListDispatch@28

maxNumberOfProcesses=3

beginningMsgTypeRange=5257

endingMsgTypeRange=5512

newProcessThresholdRequest=0

numberOfAutoStartProcesses=3

106

The @28 and the _ in the example above are for NT only.

Refer to the following table for different .dll extensions for other platforms.

 XML List dispatch
DLLName=

Call Object dispatch
DLLName=

XML Trans dispatch
DLLName=

AS400 XMLLIST XMLCALLOBJ XMLTRANS

HP9000B libxmllist.sl libxmlcallobj.sl libxmltransactions.sl

SUN or RS6000 libxmllist.so libxmlcallobj.so libxmltransactions.so

107

APIs

OneWorld APIs Interoperability Models

This section describes the available OneWorld APIs interoperability models. It includes a
conceptual discussion of each model followed by high-level steps for implementation. These
steps serve as a task checklist and include an explanation of how the tasks fit together.
Details for performing each step are included in the Detailed Tasks section. The detailed
tasks are grouped into the following categories:

• Detailed tasks for OneWorld native APIs

• Detailed tasks for OneWorld operations

• Detailed tasks for custom programming

You can also use a specific technology with the OneWorld interoperability models. There are
specific tasks you complete for each model and technology combination. There are
guidelines you can follow to help you determine which model and technology combination to
use.

Processing Modes

There are several available processing modes you can use for transactions into and from
OneWorld. The following information describes these modes to help you decide which one
best suits your needs.

Synchronous

Synchronous processing implies that you are making a real-time direct call to OneWorld
objects. You establish a connection to OneWorld and make calls directly to OneWorld APIs
or business functions. The OneWorld object performs its tasks while your calling program
waits. Results are immediately available upon completion of the call. You typically use this
method for interactive applications requiring immediate user feedback.

Asynchronous

Asynchronous processing allows an application to submit transactions or requests to another
application one at a time, but the requests are queued up and processed in the background
environment without being directly connected with the calling program. This allows an
application to submit a request and immediately continue processing without waiting for a
result. Results are returned through a separate process when the transaction is complete.
You typically use this method when real-time feedback is not required, although fast
transaction response time is still important.

Batch

Batch processing allows you to save transactions over a period of time and then run a
periodic process that processes the entire group of transactions at once. You typically use
this method for large groups of transactions that must be transferred from one system to
another on a periodic basis. Batch processes are often started from a menu.

108

Choosing a Processing Mode

The following illustration shows a decision flowchart to help you choose a processing mode
for transactions into and from OneWorld.

Implementing Synchronous Transactions Into OneWorld

Synchronous transactions into OneWorld allow you to communicate directly with OneWorld
objects in a bidirectional real-time mode. You can use an application to call a OneWorld
business function or API and the requested processing is done while you wait. Any return
information or feedback is immediately available upon completion of the call.

The following diagram illustrates this model.

109

Detailed Tasks Using Native APIs

The general steps necessary to implement this model follow. These steps should be
implemented in the order listed.

53. Connect to OneWorld.

Connecting to OneWorld establishes a communication link between your application
and the OneWorld environment. OneWorld APIs become available for your use and
all OneWorld security features are enforced.

54. Call OneWorld business functions.

Once the connection has been established, you may make as many direct calls to
OneWorld APIs as is needed to process your transactions. Refer to the Online APIs
and the Development Tools Guide for more information about OneWorld APIs.

55. Disconnect from OneWorld.

After you make the necessary calls to process your transactions, you must
disconnect from OneWorld. This frees resources and prevents further processing
with that particular connection.

Some OneWorld APIs may have more parameters than you need. You can create your own
simplified interface layer over these APIs.

110

Implementing Asynchronous Transactions Into OneWorld

Asynchronous transactions into OneWorld allow you to send transactions into OneWorld one
at a time without having to wait for completion before you continue processing. You place a
transaction in an input table and place a processing request in a queue. A OneWorld
background process handles the transaction as it comes up in the queue. When processing
is complete, OneWorld calls the function specified in the request to notify you of the status of
your process.

The following diagram illustrates this model.

Detailed Tasks Using Native APIs
56. Connect to OneWorld.

Connecting to OneWorld establishes a communication link between your application
and the OneWorld environment. OneWorld APIs become available for your use and
all OneWorld security features are enforced.

57. Add Records to Interface Tables.

Writing your transaction to the appropriate OneWorld interoperability interface table
makes it available to the OneWorld system for processing.

58. Place an entry in the subsystem data queue.

111

Place your request for processing in a queue with similar requests. The information
you include in the request tells OneWorld the type of transaction and the specific key
within the input table so that OneWorld can find it.

You can request confirmation of the inbound transaction by providing the name and
library of a custom function to process the confirmation. When processing of the
transaction is complete, OneWorld calls the custom function and sends it a flag
indicating success or failure.

59. Disconnect from OneWorld.

After you make the necessary calls to process your transactions, you must
disconnect from OneWorld. This frees resources and prevents further processing
with that particular connection.

60. Process the inbound transaction confirmation.

This step is optional. If you request confirmation, you must write a function that you
name, but write to an interface that J.D. Edwards specifies. OneWorld calls this
function when the transaction completes. The transaction key from the interface table
and a flag that indicates whether the transaction was successful are passed to the
function. You include logic in your function to take appropriate action based on the
success or failure of the transaction.

If you create a transaction confirmation function, you can also use the function to:

Update your original
transaction

By creating a cross-reference between the original transaction and the
transaction written to the interoperability table, you can access the original
transaction and update it as completed or in an error status.

Using the key returned to this function, you can access the transaction
written to the interoperability interface table and retrieve any calculated or
defaulted information to update your original transaction.

Run other non-J.D.
Edwards business
processes

If your transaction is complete, you may want to run a business process that
completes the transaction in the non-J.D. Edwards software.

Send messages to
users

You may want to inform your users of the status of their original
transactions.

Detailed Tasks for OneWorld Operations
61. Run the Subsystem Job from a OneWorld Menu.

In order for the system to respond to transactions one at a time as they come in, you
must run a batch process specific to that transaction in subsystem mode. When you
place an entry into the subsystem data queue, the batch process starts and
processes the transaction.

62. Check for Errors.

When errors occur during inbound processing, they are recorded on the Processor
Audit Trail Report and a message is sent to the Employee Work Center. When you
review the errors in the work center, you can link directly to the associated
transaction in the interface table to make corrections. You can resubmit individual
corrected transactions for immediate processing or you can correct all transaction
errors and then resubmit them all at once in batch process.

112

63. Use the Revisions Application.

The revisions application is used to add, delete, edit, and review transactions in the
interface tables. For example, if there was an error while processing inbound
transactions, you can use this application to correct the record in error.

Implementing Batch Transactions Into OneWorld

Batch transactions into OneWorld allow you to place a large number of transactions into an
interface table and process them all at once in batch mode. You initiate the process through
the OneWorld menu driver. Errors are placed on an audit report and are also sent to the
OneWorld message center. A revisions application allows you to make corrections to the
interface table.

The following diagram illustrates this model.

Detailed Tasks Using Native APIs
64. Connect to OneWorld.

Connecting to OneWorld establishes a communication link between your application
and the OneWorld environment. OneWorld APIs become available for your use and
all OneWorld security features are enforced.

65. Add Records to Interface Tables.

113

By writing your transaction to the appropriate OneWorld interoperability input table,
you make it available to the OneWorld system for processing.

See Additional Options.

66. Disconnect from OneWorld.

After you make the necessary calls to process your transactions, you must
disconnect from OneWorld. This frees resources and prevents further processing
with that particular connection.

Detailed Tasks Using OneWorld Operations
67. Run the batch input processor from a OneWorld menu.

You run the batch input processor to process the batches of transactions you have
placed in the interface tables and update the OneWorld transaction tables.

68. Check for Errors.

When errors occur during inbound processing, they are recorded on the Processor
Audit Trail Report and a message is sent to the Employee Work Center. When you
review the errors in the Work Center, you can link directly to the associated
transaction in the interface table to make corrections. You can resubmit individual
corrected transactions for immediate processing, or you can correct all transaction
errors and then resubmit them all at once in a batch process.

69. Use the Revisions Application.

The revisions application is used to add, delete, edit, and review transactions in the
interface tables. For example, if an error occurs while processing inbound
transactions, you can use the revision application to correct the record in error.

Additional Options

You can use a comma-delimited flat file for your transactions into OneWorld. To do so,
replace steps 1, 2, and 3 in Detailed Tasks Using Native APIs above with the following steps:

70. Create a flat file.

Create a flat file in appropriate file format and use a name that correctly matches the
transaction type you are using.

71. Run a table conversion.

Run a table conversion to convert your flat file into the format that OneWorld expects,
and then place it in the appropriate interface table.

For more information about using flat files see the detailed task, Importing from Flat Files, in
Detailed Tasks for OneWorld Operations.

Implementing Synchronous Transactions from OneWorld

Synchronous transactions from OneWorld allow you to communicate directly with OneWorld
objects in a bidirectional real-time mode. You can call a OneWorld business function or API
to request information to be returned while you wait. Any return information or feedback is
immediately available upon completion of the call.

The following diagram illustrates this model.

114

Detailed Tasks Using Native APIs
72. Connect to OneWorld.

Connecting to OneWorld establishes a communication link between your application
and the OneWorld environment. OneWorld APIs become available for your use and
all OneWorld security features are enforced.

73. Call OneWorld Business Functions.

After you are connected to OneWorld, you can make direct calls to OneWorld APIs to
retrieve your information. OneWorld retrieval APIs usually do some calculations or
interpretation of the database for you. Use the online OneWorld APIs to determine
which APIs to use and to obtain any API-specific instructions.

74. Disconnect from OneWorld.

After you make the necessary calls to process your transactions, you must
disconnect from OneWorld. This frees resources and prevents further processing
with that particular connection.

Implementing Asynchronous Transactions from OneWorld

Asynchronous transactions from OneWorld allow you to receive certain types of OneWorld
transactions as they occur. You designate which transactions you want and, when these
transactions occur, they are logged to an output table. You are notified individually for each
requested transaction when it is available for processing. Each transaction is kept in
persistent storage until you notify OneWorld that you are done with it.

115

The following diagram illustrates this model.

Detailed Tasks Using OneWorld Operations
75. Enable Outbound Transaction Processing.

The creation of outbound transactions is controlled through the processing options
associated with the master business functions that control updates to a given table.
You must set the appropriate processing option to enable the outbound process for a
given transaction type. This process tells the system that the particular transaction
type needs to go somewhere, but it does not designate where.

76. Subscribe to the Outbound Transaction.

If you require that a given transaction type is sent to one or more third-party
applications, you can associate a given transaction type with each of its individual
destinations. You make an entry into the data export control table for each
destination. The suggested technique is to specify the name of a third-party function
that is called for each transaction as it occurs. Enough information is provided to
notify you of the transaction, and give you the key values so you can retrieve it.

77. Run the Subsystem Job from a OneWorld Menu.

This subsystem job creates an entry in the Processing Log tables for each record in
the Data Export Control table that subscribes to the specific transaction. It then

116

launches the transaction processor function or batch process, which processes the
entry in the interface table. This subsystem job is generic because it does not directly
update the transaction specific interface tables.

78. Call OneWorld Completion Confirmation API.

You notify OneWorld when you have completed processing a transaction. OneWorld
then marks the processing log entry for that transaction as complete so that the
transaction can be purged. The transaction remains in persistent storage so that it
can be reprocessed as needed until you purge it. You should use the steps for the
Into OneWorld Synchronous methods to call this API.

79. Check for Errors.

When errors occur during processing, they are recorded on the Processor Audit Trail
Report and a message is sent to the Employee Work Center. When you review the
errors in the Work Center, you can link directly to the associated transaction in the
interface table to make corrections. You can resubmit individual corrected
transactions for immediate processing or you can correct all transaction errors and
then resubmit them all at once in a batch process.

80. Use the Revisions Application.

Revision applications are used to add, delete, edit, and review transactions in the
interface tables. For example, if an error occurs while processing inbound
transactions, you can use the revision application to correct the record in error.

Detailed Tasks Using Custom Programming
81. Process the outbound transaction.

This is the function you identified in step 2 of the Detailed Tasks Using OneWorld
Operations. You can write and deliver this function outside of OneWorld, but it must
conform to the interface J.D. Edwards defines. You write this function specifically to
handle a given transaction type. You can name it what you want, but it must reside
on the same server where the subsystem job is running. The input parameters
include the key for the transaction in the OneWorld interface table. Your function then
retrieves the transaction and does whatever is necessary with it. You should use the
steps for the From OneWorld Synchronous method to do the retrieval.

You can also use this function to:

• Update third-party tables with J.D. Edwards table information.

You use the key for the transaction in the OneWorld interface table to retrieve the
transaction and pass the information to a third-party API.

You can also call the OneWorld Completion Confirmation API when processing is
finished.

• Store the table information so you can use it for future processing.

You use the key for the transaction in the OneWorld interface table to retrieve the
transaction and update a temporary table with the information.

You can then process the data at a later time by using third-party APIs.

You can call the OneWorld Completion Confirmation API when processing is
finished.

117

Implementing Batch Transactions From OneWorld

Batch transactions from OneWorld allow you to place a large number of transactions into an
interface table and process them all at once in batch mode. You initiate the process through
the OneWorld menu driver. Errors are placed on an audit report and are also sent to the
OneWorld message center.

The following diagram illustrates this model.

Detailed Tasks Using OneWorld Operations

Run the Extraction Processor from a OneWorld Menu.

The batch extraction processor is used to load the interface tables with data from the
permanent OneWorld tables.

Detailed Tasks Using Native APIs
82. Connect to OneWorld.

Connecting to OneWorld establishes a communication link between your application
and the OneWorld environment. OneWorld APIs become available for your use and
all OneWorld security features are enforced.

118

83. Retrieve Records from Interface Tables.

The records in the interface table are available for the custom application or batch
process to process.

84. Disconnect from OneWorld.

After you make the necessary calls to process your transactions, you must
disconnect from OneWorld. This frees resources and prevents further processing
with that particular connection.

Additional Options

The model for implementing batch transactions from OneWorld assumes that some form of
data manipulation occurs during the batch extraction process. You can extract data directly
from permanent OneWorld tables using the same database APIs that you would use to
extract data from the interface tables. Instead of opening, retrieving, and closing an interface
table, you can perform the same operations on a permanent OneWorld table.

Detailed Tasks for OneWorld APIs

The interoperability tasks you need to perform are based on the method of access you
choose to use.

Connect to OneWorld

The first step in the interoperability process is for two computers to communicate with one
another.

Two OneWorld APIs must be called to initiate a OneWorld session:

• JDB_InitEnvOvr

• JDB_InitUser

Both of these APIs must be called before any other OneWorld APIs are called.

When you use these APIs, you might also need to use the following handles:

HENV
The environment handle contains information related to the current database connection
and valid connection handles. Every application connecting to the database must have
an environment handle. This handle is required to connect to a data source.

HUSER
The user handle contains information related to a specific connection. Each user handle
has an associated environment handle with it. A connection handle is required to
connect to a data source.

HREQUEST
The request handle contains information related to a specific request to a data source.
An application must have a request handle before executing a SQL statement. Each
request handle is associated with a user handle.

119

JDB_InitEnvOvr

The JDB_InitEnvOvr API is used to start an instance of OneWorld. This API should only be
called once in the executable. With this API, the JDB_FreeEnv API must also be called at
termination of the executable.

Syntax

JDEDB_RESULT JDB_InitEnvOvr(HENV *hEnv, char *szEnv, char *szUser, char *szPwd)

Parameters

hEnv Valid handle or NULL. Handle used for other APIs.

szEnv Name of the environment to initialize.

szUser OneWorld user name.

szPwd OneWorld user password.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_InitUser

The JDB_InitUser API initializes a user in OneWorld. JDB_InitUser is associated with an
application rather than a physical user. The user in this instance is an application and is a
method of grouping database requests together. Requests are identified with the application
that initiated them. Once a user has been registered for an environment handle, it cannot be
changed. A physical user in OneWorld can initiate multiple applications by calling
JDB_InitUser multiple times using a different application name each time.

Syntax

JDEDB_RESULT JDB_InitUser(HENV hEnv, HUSER *hUser, char *szApp, JDEDB_COMMIT
nCommitMode);

Parameters

hEnv Valid environment handle.

hUser NULL or valid user handle.

szApp Valid string pointer of active application

nCommitMode JDEDB_COMMIT_AUTO if transactions are to be committed automatically.
JDEDB_COMMIT_MANUAL if transactions are to be committed manually.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

120

Example

Disconnect From OneWorld

Once you finish your communications between two machines, you must disconnect them.

Two OneWorld APIs must be called to end a OneWorld session:

• JDB_FreeUser

• JDB_FreeEnv

JDB_FreeUser

You use the JDB_FreeUser API to free a user and all related requests. This API must be
called for every JDB_InitUser performed.

Syntax

JDEDB_RESULT JDB_FreeUser(HUSER hUser);

Parameters

hUser Valid user handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_FreeEnv

JDB_FreeEnv is used to free the environment. It frees the environment handle that was
initialized by JDB_InitEnv. This function must only be called by executables.

121

Syntax

JDEDB_RESULT JDB_FreeEnv (HENV hEnv);

Parameters

hEnv Valid handle obtained through JDB_InitEnv.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

Example

Add Records to Interface Tables

Three APIs must be called to insert a record into the transaction-specific interface table:

• JDB_OpenTable

• JDB_InsertTable

• JDB_CloseTable

JDB_OpenTable

JDB_OpenTable opens a table and readies it for input/output processing. This API must be
called prior to any other table operations. It initializes the request handle to be associated
with each table processing operation.

Syntax

JDEDB_RESULT JDB_OpenTable(HUSER hUser, ID idTable, ID idIndex, LPID lpColSelect,
unsigned short nNumCols, char * szOverrideDS, HREQUEST * hRequest);

122

Parameters

hUser Valid user handle.

idTable Valid table ID of table to be processed.

idIndex This is the ID of the index to prepare for processing. The index used can be
changed after a table has been requested. If zero, the primary index will be used.

lpColSelect

A pointer to an array of column IDs or NULL. These are the columns that will be
used. Performance is enhanced if only the required columns are asked for. If all
columns are required, then NULL can be passed. The columns must be in
sequential order starting from the first column.

nNumCols Number of columns required or zero. If all columns are required then pass zero.

szOverrideDS Datasource name. This value overrides the location of the table indicated by the
OCM Object Map.

hRequest NULL or request handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_InsertTable

JDB_InsertTable adds new rows to a specific table.

Syntax

JDEDB_RESULT JDB_InsertTable (HREQUEST hRequest, ID idTable, ID idInstance, void *
lpStruct);

Parameters

hRequest NULL or request handle.

idTable Valid table ID of table to be processed.

idInstance The instance ID of the table. Used if joins, otherwise pass zero.

lpStruct A pointer to structure or NULL. If no structure is to be used then pass NULL. This
structure contains the data to be inserted into the table.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_CloseTable

JDB_CloseTable releases or frees a request obtained through JDE_OpenTable. A request
cannot be used after it has been freed.

123

Syntax

JDEDB_RESULT JDB_CloseTable(HREQUEST hRequest);

Parameters

hRequest Valid request handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

Example

This following example contains hard-coded values for illustration purposes.

124

Retrieve Records from Interface Tables

There are several database APIs that can be used to retrieve records from the transaction-
specific interface tables:

• JDB_OpenTable

• JDB_SelectAll

• JDB_Fetch

• JDB_CloseTable

For information regarding the other database APIs, please see the online API documentation.

JDB_OpenTable

JDB_OpenTable opens a table and readies it for input/output processing. This API must be
called prior to any other table operations. It initializes the request handle associated with
each table processing operation.

Syntax

JDEDB_RESULT JDB_OpenTable(HUSER hUser, ID idTable, ID idIndex, LPID lpColSelect,
unsigned short nNumCols, char * szOverrideDS, HREQUEST * hRequest);

Parameters

hUser Valid user handle.

idTable Valid table ID of table to process.

idIndex The ID of the index to ready for processing. The index used can be changed after a
table has been requested. If zero, the primary index is used.

lpColSelect

A pointer to an array of column IDs or NULL. These are the columns that will be
used. Performance is enhanced if only the required columns are asked for. If all
columns are required, then NULL can be passed. The columns must be in
sequential order starting from the first column.

nNumCols Number of columns required or zero. If all columns are required then pass zero.

szOverrideDS Datasource name. This overrides the location of the table indicated by the Object
Map.

hRequest NULL or request handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_SelectAll

JDB_SelectAll performs a select on a table without a WHERE clause. This causes all records
to be selected.

125

Syntax

JDEDB_RESULT JDB_SelectAll(HREQUEST hRequest);

Parameters

hRequest Valid request handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_Fetch

The JDB_Fetch API fetches results of a select. Results are fetched in order.

Syntax

JDEDB_RESULT JDB_Fetch(HREQUEST hRequest, void * lpStruct, int nNotUsed);

Parameters

hRequest Valid request handle.

lpStruct A pointer to results structure or NULL. If no structure is to be used then pass NULL.

nNotUsed NULL. Currently not in use.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

JDB_CloseTable

JDB_CloseTable frees a request obtained through an JDE_OpenTable. A request cannot be
used after it has been freed.

Syntax

JDEDB_RESULT JDB_CloseTable(HREQUEST hRequest);

Parameters

hRequest Valid request handle.

Return Value

Returns JDEDB_PASSED if the API succeeds. Returns JDEDB_FAILED if the API fails.

Example

This example contains hard-coded values for illustration purposes.

126

Call OneWorld Business Functions

OneWorld business functions cannot be called directly from a third-party program. They must
be called using the jdeCallObject API. Several steps must be taken for jdeCallObject to
function correctly. This chapter describes how to:

• Initialize the necessary variables

• Call OneWorld business functions using jdeCallObject

• Receive errors generated by the business function

For more information regarding OneWorld business functions, see OneWorld Business
Functions in Additional Information in this guide and Business Functions in the Development
Tools guide.

The OneWorld error handling APIs were designed for internal use. They are discussed here
to provide you with a means to retrieve application errors while calling master business
functions. The structure and functionality of these APIs may change with newer releases of
OneWorld. Use these APIs with caution and retest your programs after upgrading to newer
releases of OneWorld. The error handling APIs are denoted with double asterisks (**).

Variable Initialization

The jdeCallObject API requires the lpBhvrCom and lpVoid data structures.

127

lpBhvrCom A pointer to a data structure used for communication with business functions.
Includes an environment handle.

lpVoid A pointer to a void data structure currently used for error processing. Will be used
for security in the future.

Members of these structures must be initialized using the OneWorld
jdeCreateBusinessFunctionParms API. The memory allocated by these members must be
de-allocated at the end of the program. The OneWorld API jdeFreeBusinessFunctionParms
API performs this task.

jdeCreateBusinessFunctionParms

jdeCreateBusinessFunctionParms initializes members of lpBhvrCom and lpVoid to be used in
external calls to business functions.

Syntax

BOOL jdeCreateBusinessFunctionParms(HUSER hUser, LPBHVRCOM * lpBhvrCom,
LPVOID * lpVoid)

Parameters

Parameter Notes Usage

hUser Valid user handle. Required

lpBhvrCom Standard lpBhvrCom. Required

lpVoid Standard lpVoid. Required

Return Value

Returns TRUE if the variables were successfully initialized, otherwise returns FALSE.

jdeFreeBusinessFunctionParms

JdeFreeBusinessFunctionParms de-allocates memory used by members of lpBhvrCom and
lpVoid that was allocated in the jdeCreateBusinessFunctionParms API.

Syntax

void jdeFreeBusinessFunctionParms(lpBhvrCom, lpVoid)

Parameters

Parameter Notes Usage

lpBhvrCom Standard lpBhvrCom. Required

lpVoid Standard lpVoid. Required

128

Return Value

Nothing.

jdeErrorInitializeEx**

jdeErrorInitializeEx allocates memory and initializes an error-related member of lpVoid.

To prepare for error handling, two more members of the lpVoid structure must be initialized.
The first member can be initialized using the jdeErrorInitializeEx API. The memory allocated
by this API must be de-allocated at the end of the program by the jdeTerminateEx API.

Syntax

LPJDEERROR_FORMHDR jdeErrorInitializeEx()

Parameters

None.

Return Value

Returns a LPJDEERROR_FORMHDR object, a member of lpVoid.

jdeErrorTerminateEx**

JdeErrorTerminateEx de-allocates memory previously allocated by jdeErrorInitializeEx.

Syntax

void jdeErrorTerminateEx (LPJDEERROR_FORMHDR lpHdr)

Parameters

Parameter Notes Usage

lpHdr lpHdr initialized in jdeErrorInitializeEx. Required

Return Value

Nothing.

jdeAlloc

Allocates a variable sized block of memory from a memory pool.

The other member of lpVoid needs to be initialized manually, using the jdeAlloc API. This
memory needs to be de-allocated using the jdeFree API.

Syntax

Void * jdeAlloc(void * pMemory, unsigned long ulSize, unsigned int nFlags);

Parameters

Parameter Notes Usage

129

Parameter Notes Usage

pMemory Memory pool to allocate from. In most cases will be
COMMON_POOL. Required

ulSize Specifies the number of bytes to be allocated. Required

nFlags Specifies the characteristics of the allocated
memory. Required

Return Value

If the function succeeds, the return value is a void pointer to the allocated memory. If the
function fails, jdeShutdown is called to close the application.

Additional Notes

The possible values for the parameter "nFlags" are as follows:

MEM_DEFAULT The allocated memory is not initialized.

MEM_ZEROINIT The allocated memory is initialized to NULL.

MEM_RESIZEABLE
Space is reserved above the allocated memory to expedite reallocation.
Use only when the need to reallocate the memory is anticipated. This can
affect performance.

jdeFree

The jdeFree API frees memory previously allocated from a memory pool.

Syntax

unsigned int jdeFree (void *pMemory);

Parameters

Parameter Notes Usage

pMemory
Points to the memory to be freed. (Previously
allocated by jdeAlloc or subsequently reallocated by
jdeReAlloc.)

Required

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is
zero.

jdeCallObject

You can use JdeCallObject to call master, major, and minor business functions without
having to manually build them into the project. Business functions have data structures
associated with them, and these must be passed to them through jdeCallObject. The data

130

structures are stored in header files, and must be included in your program. For example, the
Address Book MBF Name is N0100041. The header file for this MBF is N0100041.h.

Syntax

ID jdeCallObject (char* szFunctionName, LPFNBHVR lpFnBhvr, LPBHVRCOM lpBhvrCom,
void* lpVoidInfo, void* lpDS, CALLMAP* lpErrorMap, int nNumMap, char* szLibName, char*
szExeLocation, int nFlags);

Parameters

Parameter Notes Usage

szFunctionName The literal name of the function placed within double
quotes. Required

lpFnBhvr Obsolete parameter. Pass NULL

lpBhvrCom Standard lpBhvrCom. Required

lpVoidInfo Standard lpVoid. Required

lpDS Pointer to the data structure of the called business
function. Required

lpErrorMap Pointer to the call address of the CALLMAP array.
Optional - used for
second level
messaging.

nnumMap The #define variable describing the number of
indices used in the CALLMAP array.

Optional - used for
second level
messaging.

szLibName Future Use. Required

szExeLocation Future Use. Required

nflags Error/Warning suppress. Optional

Return Value

Returns 0 for success, 1 for warnings, and 2 for errors.

Application Error Retrieval

When application errors occur during a call to a business function, they are stored in a linked
list. OneWorld APIs provide a means for retrieving these errors.

jdeErrorGetCountEx**

Returns the total number of errors and warnings. The second and the third parameters are
pointers to the number of errors and warnings.

131

Syntax

int jdeErrorGetCountEx (LPBHVRCOM lpBhvrCom, LPINT lpiErrorCount, LPINT
lpiWarningCount, LPVOID lpVoid)

Parameters

Parameter Notes Usage

lpBhvrCom Standard lpBhvrCom. Required

lpiErrorCount Pointer to number of errors. Required

lpiWarningCount Pointer to number of warnings. Required

lpVoid Standard lpVoid. Required

Return Value

Returns the number of errors plus the number of warnings.

jdeErrorSetToFirstEx**

Initializes the error list pointer to the beginning of the list.

Syntax

void jdeErrorSetToFirstEx (LPBHVRCOM lpBhvrCom, LPVOID lpVoid)

Parameters

Parameter Notes Usage

lpBhvrCom Standard lpBhvrCom. Required

lpVoid Standard lpVoid. Required

Return Value

Nothing.

jdeErrorGetNextDDItemNameInfoEx**

Retrieves the next error in the error list.

Syntax

LPJDEERROR_RECORD jdeErrorGetNextDDItemNameInfoEx (LPBHVRCOM lpBhvrCom,
LPVOID lpVoid)

Parameters

Parameter Notes Usage

lpBhvrCom Standard lpBhvrCom. Required

132

Parameter Notes Usage

lpVoid Standard lpVoid. Required

Return Value

Returns a JDEERROR_RECORD data structure:

Parameter Notes Usage

hwndCtrl Handle to the current window. Not Applicable

iGridCol Grid column if error occurred on OneWorld form. Not Applicable

iGridRow Grid row if error occurred on OneWorld form. Not Applicable

zEventKey Not Applicable

iErrorLevel 1 - Error, 2 - Warning, 3 - Informational Message

lpszShortDesc Description of error.

szDict Data dictionary ID of the error message.

iNumExtParams Not Applicable

*lplpszParams Not Applicable

szBFDesc Not Applicable

lpszSubText

szFileName Source file of error message.

iLineNo Line number of error message in source file.

bSoundBeep True - Sound Beep, False - Do not Sound Beep

133

bAddToList True - Add Error to List, False - Do not Add to List

Example: Business Function Call

This example illustrates how to use jdeCallObject to call the Address Book master business
function. This example also illustrates the variable initialization and error handling routines.
Values for the master business function data structure have been hard-coded for illustration
purposes.

134

Call the OneWorld Completion Confirmation API

Vendor-specific batch processes and functions in the Asynchronous Model call the OneWorld
Completion Confirmation API each time they successfully process a record in the interface
table. If the vendor-specific batch process or function failed in some way, it does not call this
function. When this API is called, the associated record in the Processing Log Table is
updated with a `Y' in the Successfully Processed (EDSP) field.

When you call the OneWorld Completion Confirmation API from a batch process, call it in the
same way you would call a business function. The example at the end of this chapter
illustrates how to call this API from a third-party function.

InteropOutboundConfirmationFunc

InteropOutboundConfirmationFunc updates the corresponding record in the Processing Log
Table with a `Y' in the Successfully Processed (EDSP) field.

Syntax

ID InteropOutboundConfirmationFunc (LPBHVRCOM lpBhvrCom, LPVOID lpVoid,
LPDSD0000195B lpDS);

135

Parameters

lpBhvrCom Standard lpBhvrCom.

lpVoid Standard lpVoid.

lpDS Pointer to the data structure of this API.

Return Value

Returns ER_SUCCESS if the API succeeds. Returns ER_ERROR if the API fails.

Data Structure

The data structure for this API is as follows:

Data Item Description Required I/O

EDUS User ID - 11 Characters Y I

EDBT Batch Number - 16 Characters Y I

EDTN Transaction Number - 23 Characters Y I

EDLN Line Number - Double Y I

TYTN Transaction Type - 9 Characters Y I

DCTO Document Type - 3 Characters Y I

SEQ Sequence Number - Double N I

ERR1 Error Encountered - 1 Character N O

Example: Vendor Function

This example contains hard-coded values for illustration purposes.

136

Place Entries in Subsystem Data Queues

Subsystem jobs are continuous jobs that process records from a data queue and run until
you request an end to the job. Subsystem jobs read records one at a time for a subsystem
table, retrieve information from the particular record, and run a configurable processing
engine for each record. At the end of the records, instead of ending the job, subsystem jobs
wait for a specific period and then retrieve the information for each record once again. For
each subsystem job, there can be multiple records in the subsystem table.

You start a subsystem job as you would a regular batch job. Unlike batch jobs, subsystem
jobs can only run on a server.

Before processing, OneWorld makes sure that limits for the subsystem job on the particular
server have not been exceeded. If limits have been exceeded, the configurable processing
engine will not process the subsystem job.

To add a record to the subsystem table, you use the jdeCallObject API. For more information
regarding this API, see Calling OneWorld Business Functions in Detailed Tasks for OneWorld
APIs in this guide.

See Also
 The System Administration Guide for more information about subsystem jobs

Inbound Transaction Subsystem Data Structure

When you use jdeCallObject, you call the AddInboundTransToSubsystemQueue business
function. This business function is a generic function that writes a record to the subsystem
data queue to specify a batch process that must be activated in the subsystem. The data
structure to be used in jdeCallObject is included in the header file b0000176.h.

137

SzUBEName Subsystem UBE Name.

SzVersion Subsystem UBE Version.

SzUserId User ID.

SzBatchNumber Batch Number.

SzTransactionNumber Transaction Number.

MnLineNumber Line Number.

CSuppressErrorMessage Suppress Error Messages Flag.

SzFunctionName Confirmation Function Name (Optional).

SzFunctionLibrary Confirmation Function Library (Optional).

The batch number, transaction number, and line number are the values from the record that
were entered into the interface table.

Requesting Inbound Transaction Confirmation

You can request an inbound transaction confirmation when records are placed in the
subsystem data queue. This confirmation notifies the third party if the inbound transaction is
successful. A custom function must be provided to process the confirmation. To request the
inbound confirmation, populate the subsystem data structure members SzFunctionName and
SzFunctionLibrary with the name of the custom function and the full name of the library
containing the function, including the path. For more information about the Confirmation
Function, see Processing the Inbound Transaction Confirmation.

Example

This example contains hard-coded values for illustration purposes.

138

Detailed Tasks for OneWorld Operations

The interoperability tasks you need to perform are based on the method of access you
choose to use. The tasks discussed in this section are the standard OneWorld setup or
operational procedures that you can use.

139

Run an Input Batch Process

To update J.D. Edwards applications, run the Input Batch Process. The Input Batch Process
Access report contains information specific to each transaction type supported by J.D.
Edwards.

The Input Batch Process uses the data in the interface tables to update the appropriate J.D.
Edwards application tables. For example, when you receive a purchase order from a third-
party application, the Input Batch Process for customer orders updates the sales application
and creates a sales order based on the data from the purchase order.

When you choose Input Batch Process, the program displays a version list of report features.
You can use an existing report version, change an existing report version, or add a report
version. When using a report version, you can change the processing options and data
selection to fit your needs.

If the Input Batch Process encounters errors while moving the data from the interface tables
to the application programs, it sends error messages to the Employee Work Center on the
Workflow Management menu (G02).

When the Input Batch Process program finishes, it generates an audit report that lists the
transactions that were processed, totals for the number of processed transactions, and errors
that occurred during processing.

► To run the Input Batch Process

Start the Input Batch Process for the Import transaction type. See Interoperability
Interface Table Information for a list of input batch processes.

1. On Work With Batch Versions, review the processing options to determine how the
data is processed by the Inbound Edit/Update program.

140

2. Choose the version you want to run and click Select.

141

3. On Version Prompting, click any of the following to review the report feature options:

• Data Selection

• Data Sequencing

4. Click the Submit button.

Run an Extraction Batch Process

You must copy the records from your J.D. Edwards application tables to the J.D. Edwards
outbound interface tables. To copy the records, use the Extraction Batch Process that is
specifically set up for the type of document you are sending.

The Extraction Batch Process displays a version list of report features. You can run an
existing version, change an existing version, or add a version. You can also change the
processing options and data selection options for that version to fit your needs.

When you run the Extraction Batch Process, the program retrieves data from the J.D.
Edwards application tables for the transaction and copies the data into the interface tables.
The system also generates an audit report that lists which documents were processed.

► To run the Extraction Batch Process

Start the Extraction Batch Process for the transaction type you want to export. See
Interoperability Interface Table Information for a list of extraction batch processes.

142

1. On Work With Batch Versions, choose the version you want to run and click Select.

143

2. On Version Prompting, click any of the following to review the report feature options:

• Data Selection

• Data Sequencing

3. Click the Submit button.

The Extraction Batch Process retrieves data from the J.D. Edwards application tables and
copies the data into the outbound interface tables.

The Extraction Batch Process program also generates an audit report that lists which
documents completed successfully.

Run a Subsystem Job from a OneWorld Menu

Subsystem jobs are continuous jobs that process records from a data queue. This type of job
runs until you request an end to the job. Subsystem jobs read records one at a time for a
subsystem table, retrieve information from the particular record, and run a configurable
processing engine for each record. At the end of the records, instead of ending the job,
subsystem jobs wait for a specific period and then retrieve the information for each record
once again. For each subsystem job, there can be multiple records in the subsystem table.

You start a subsystem job as you would a regular batch job. There is no difference between
running a subsystem job and running a batch job.

Before processing, OneWorld makes sure that limits for the subsystem job on the particular
server have not been exceeded. If these limits are exceeded, the configurable processing
engine will not process the subsystem job.

► To run a subsystem job

Start either the Inbound Processor batch process for the transaction type you wish to
import or the Interoperability Generic Outbound Subsystem batch process (R00460). See
Appendix B for a list of input process batch processes.

Review the processing options to determine how the data will be processed by the
subsystem job.

144

1. On Work With Batch Versions - Available Versions, choose the subsystem version
you want to run and click Select.

2. On Version Prompting, click any of the following to review the report feature options:

145

• Data Selection

• Data Sequencing

3. Click the Submit button.

Enable Outbound Transaction Processing

All outbound master business functions used to create interoperability transactions have
processing options that control how the transaction is written. The first processing option is
the transaction type for the interoperability transaction. If this processing option is left blank,
outbound interoperability processing will not be performed. The second processing option
controls whether the before image is written for a change transaction. If set to 1, the before
and after images of the transaction are written to the interface table. If this is not set, then
only an after image is written.

► To enable outbound transaction processing

1. Right-click the application that contains the processing options for the transaction’s
master business function. See Interoperability Interface Table Information for a list of
these applications.

2. Choose Prompt for Values from the menu.

3. Click either the Outbound tab or the Interop tab.

4. Enter the transaction type and set the before image flag if you want before and after
images written to the interface table for change transactions, and then click OK.

146

Subscribe to Outbound Transactions

Subscribing to outbound transactions involves using the following:

• Data Export Control Table

• Processing Log Table

Using Data Export Controls

The flow of outbound data to third parties is controlled through the Data Export Controls
application. For each transaction type and order type, one or more records can be defined
with different batch process names and versions, or function names and libraries. This allows
for the subscription of multiple vendor-specific objects for an interoperability transaction.
Records in this table determine the vendor-specific objects to call from the Outbound
Subsystem batch process (R00460) or Outbound Scheduler batch process (R00461) for each
transaction processed by the batch process.

► To use Data Export Controls

1. On Work With Data Export Controls, click Add.

2. Complete the following fields:

• Transaction Type

• Order Type

3. For each detail row, enter the following:

• Either a batch process Name and Version, or a Function Name and Library.

Only one set can be entered.

147

• Enter 1 in the Execute for Add column if you want the vendor-specific object to
be launched for an add/insert.

Make the same decision for update, delete, and inquiry and enter 1 in the
appropriate column.

• Enter 1 in the Launch Immediately column to launch the object from the
Outbound Subsystem batch process.

This column does not affect the Outbound Scheduler batch process.

In B733, the Export Mode columns are not used.

The Sequence Number automatically increments for each line.

Processing Log Table

The Processing Log table contains the keys to the interoperability transaction; the transaction
type, order type, and sequence number from the Data Export Control table; the batch process
and version from the Data Export Control table if these columns were filled in; and a
successfully processed column. A vendor-specific record is sequentially created in this table
for every transaction processed by the Outbound Subsystem batch process. For example, if
three vendors have subscribed to a transaction using Data Export Controls, three records are
created in the Processing Log table for each transaction. If the vendor-specific object
successfully processed the transaction, the Processing Log record is updated with a `Y' in the
successfully processed column. You use the Processing Log application (P0046) to
determine whether a vendor-specific object processed the interoperability transaction
correctly.

Data in the Processing Log table cannot be changed from this application. There is no way to
change data in this table through OneWorld applications.

148

Check for Errors

You can check for errors that occur when running inbound, extraction, and flat file processing.

Inbound Flat File Processing

If the flat file was not successfully processed, check the Employee Work Center and Status
Inquiry programs to determine if any errors have occurred when running the Flat File
Conversion program (R47002C). See the Foundation Guide for the process on checking the
Employee Work Center for errors.

149

In the example above, an "Insert Unsuccessful" error message was generated due to a
record already exiting in the interface files with duplicate keys.

If the flat file was not successfully processed, correct the error condition and run the Flat File
Conversion program again.

Inbound and Extraction Batch Processing

To determine if an error occurred while running an inbound or extraction batch process,
review the Batch Processor Audit Report.

If a "Y" appears in the left-hand column of the report under the Line Contains Errors Y/N
heading, an error condition occurred during processing. Access the Employee Work Center
for detailed error messages.

150

In the example above, an error condition occurred while running the inbound processor due
to the fact that the customer number being processed did not exist in the address book.
Ensure that each Sold-To-and Ship-To address is properly set up in the address book and in
the Customer Master.

Some error messages might contain a shortcut, which appears as a OneWorld icon in the
middle column of the Employee Work Center. When you click this shortcut, the system
invokes the revisions application, where you can view the record in error and make any
necessary changes to that record. After correcting all of the records, you can resubmit the
batch processor to process the remaining records.

Use a Revisions Application

Revisions applications are used to add, delete, edit, and review transactions in the interface
tables. Use the revision application that is appropriate for the type of transaction you are
using. You can use a revisions application to correct the record in error, if there was an error
while processing inbound transactions. You then run the transaction process again,
continuing to make corrections and rerun the transaction process until the program completes
without errors. When deleting records, a revisions application calls the appropriate purge
named event rule to delete records. See Interoperability Interface Table Information for a list
of the revisions applications.

► To review and revise inbound transactions

From the Interoperability menu, choose the revisions application you wish to use.

151

1. On the revisions application you wish to use (for example, Work With Item Master
Revisions) to limit the search to specific transactions, complete the following fields:

2. Click Find.

3. Choose the transaction and click Select.

4. On Revisions, review and revise the transaction, and click OK.

5. If applicable, choose Detail Revisions from the Row menu to review or change
additional detail information, and then click OK when finished.

After you correct the errors identified by the Inbound Transaction Process, run the transaction
process again. If other errors are identified, correct them and run the transaction process
again.

152

Import from Flat Files

You use a flat file conversion program to import flat files into J.D. Edwards interface tables.
The user can create a separate version of the Inbound Flat File Conversion program
(R47002C) for each interface table. The Conversion program recognizes both the flat file it is
reading from and the record types (record type user defined code table) within the flat file.
Each flat file contains records of differing lengths based on the interface table record they
correspond to. The Conversion program uses the Flat File Cross Reference table (F47002) to
convert the flat file into the interface tables. The Flat File Cross Reference table indicates to
the Conversion program which flat file to read from based on the transaction type you are
receiving.

The Conversion program reads each record in the flat file and maps the record data into each
field of the interface tables based on the text qualifiers and field delimiters specified in the flat
file.

The Conversion program inserts the field data as one complete record in the interface table.
If the Conversion program encounters an error while converting data, it withholds the data in
error and continues conversion processing. If the data is successfully converted, the
Conversion program automatically runs the Inbound Processor batch process for that
interface table, if you set the processing options in the Conversion program to do so. For
more information about error checking, see Checking for Errors.

You can use the OneWorld Inbound Processor to process the data once it is in the interface
tables. If the Conversion program successfully converts all data into the interface tables, it
automatically deletes the flat file after the conversion.

Note

AS400 machines do not support inbound flat file conversion.

153

Setup Requirements for Flat File Conversion

If you use a flat file conversion, every field in the interface tables must be written to, even if
the field is blank. For EDI, the translator software does this. The translator software used for
EDI must be able to create a flat file, create fields, and put in delimiters. The default text
qualifier is a double quote (" ") and the default field delimiter is a comma (,). However, any
field delimiter and text qualifier may be used as long as they do not interfere with the
interpretation of the fields. Use the processing options on the Conversion program to define
what text qualifiers and field delimiters you will use.

If you are receiving documents with decimal numbers, you must use a place holder (such as
a period) to indicate the position of the decimal. You define the place holder in the User
Preference table. See the Foundation Guide for more information about user preferences.

The first field value in a flat file record indicates the record type. In other words, the first field
value indicates to the Conversion program which interface tables to insert the record. Record
type values are defined and stored by the record type user defined code table 00/RD.

The format of the record in the flat file must follow the format of the interface table. This
means that every column in the table must be in the flat file record and that the columns must
appear in the same order as in the table.

For example, a record in the header table looked like the following:

Record Type Name Address City Zip Code

1 Joe <Blank> Denver 80237

The record in the flat file would look like the following.

"1","Joe", " ", "Denver", "80237"

Notice that 1 corresponds to a header record type, and the blank space corresponds to the
<Blank> in the Address column.

► To import from flat files

Open the Flat-File Conversion (R47002C) batch process.

154

1. On Work With Batch Versions, choose the program version that you want to use.

2. From the Row menu, choose Processing Options.

155

3. Click the Transaction tab and enter the transaction type that you are importing, for
example, "JDEPOIN."

4. Click the Separators tab and enter the field delimiter character and the text qualifier
character your system uses to identify fields and text.

156

5. Click the Process tab and enter the name of the inbound program and the version of
the program to run after the Flat File Conversion program has successfully
completed.

6. Click OK.

7. On Work With Batch Versions, click Select.

157

8. On Version Prompting, click either of the following to review the report feature
options:

• Data Selection

• Data Sequencing

9. Click the Submit button.

Detailed Tasks for Custom Programming

The interoperability tasks you need to perform are based on the method of access you
choose to use.

Process Outbound Transactions

After outbound records are written to the interface tables, they must be processed by either a
third-party function or a OneWorld batch process. The function or batch process can be
written to your specifications, but it must accept the input parameters defined below. When
the function or batch process has finished processing and is successful, it calls the
Interoperability Outbound Confirmation Function API. This API marks the processing log
record as successfully processed. This API can either be called from the third-party function,
the outbound batch process, or it can be called from another object in the third-party's system
process. See Call OneWorld Completion Confirmation API for more details.

158

Vendor-Specific Outbound Batch Processes

The purpose of the vendor-specific outbound batch process is to process unedited
transaction table records in a batch mode, either in a batch-of-one or in true batch mode. The
batch process is called by the generic outbound subsystem batch process, and receives the
key to the record in the interface table.

Each vendor-specific batch process is specific to the transaction being processed. You must
decide what the batch process actually does with the database record information. The batch
processes are written to your specifications using the J.D. Edwards toolset. However, you
must use the J.D. Edwards defined data structure shown below.

Data Item Required I/O Description

EDUS Y I User ID

EDBT Y I Batch Number

EDTN Y I Transaction Number

FFEM N I Flat File Export Mode

EDEM N I External Database Export Mode

EAEM N I External API Export Mode

ERRC N O Error Code

EDLN N I Line Number

Vendor-Specific Outbound Functions

The purpose of the vendor-specific outbound function is to pass the key fields for a record in
the OneWorld outbound unedited transaction tables to a third party. With these keys, you can
process information from the database record into the third-party system. The function is
called by the generic Outbound Subsystem batch process.

Each vendor-specific function is specific to the transaction being processed. You must decide
what the function actually does with the database record information. Although the functions
are written to your specifications and most likely are written outside of OneWorld, these
functions must use the required J.D. Edwards defined data structure shown below.

Data Item Required I/O Description

szUserId Y I User ID - 11 characters

szBatchNumber Y I Batch Number - 16 characters

szTransactionNumber Y I Transaction Number - 23 characters

mnLineNumber Y I Line Number - double

szTransactionType Y I Transaction Type - 9 characters

159

Data Item Required I/O Description

szDocumentType Y I Document Type - 3 characters

mnSequenceNumber Y I Sequence Number - double

Process Inbound Transaction Confirmation

You can provide a confirmation function to alert a third party that a transaction has been
processed. The confirmation function also provides notification about whether the transaction
processed successfully. The confirmation function is specific to a process and must accept
the following parameters:

User ID 11 characters

Batch Number 16 characters

Transaction Number 23 characters

Line Number double

Successfully Processed 1 characters

The first four parameters are the key to the processed transaction. The last parameter is a
success/fail flag. The library containing the function must be locatred on the same server tht
processes the inbound records.

To request inbound transaction confirmation, the name of the function and the full path of the
library containing the function must be passed to the subsystem batch process that
processes the transaction. This information is passed through the Inbound Transaction
Subsystem data structure. See Placing Entries in the Subsystem Data Queue for more
details on this data structure.

After the subsystem batch process finishes processing the transaction, it calls the inbound
confirmation function, passing the key to the processed transaction and the notification about
whether the transaction was successfully processed. The third party must decide how the
confirmation function uses this information.

Additional Information

There is additional information that is useful for you to know in order to complete some tasks.

Formatting Data

When data is sent from external systems into OneWorld, either through the Interface Table or
by directly calling the master business functions, it must be formatted into OneWorld data
types. Two of the most commonly used OneWorld data types are:

• MATH_NUMERIC

• JDEDATE

160

It is possible that these data types may change. For that reason, it is critical that you use the
Common Library APIs provided by OneWorld to manipulate variables of these data types.

MATH_NUMERIC Data Type

There are no numeric values stored within the OneWorld database. Numeric values are
stored as a MATH_NUMERIC data type. A MATH_NUMERIC is a structure that contains all
the required information to execute mathematical operations on a stored value. This data
type allows the attributes of a number to be stored directly with the value, providing greater
flexibility when formatting the number for display.

MATH_NUMERIC Element Description

String The digits without separators.

Sign A minus sign indicates the number is negative, otherwise the
value is 0x00.

EditCode The data dictionary edit code used to format the number for
display.

nDecimalPosition The number of digits from the right to place the decimal.

nLength The number of digits in the String.

wFlags Processing flags.

szCurrency The currency code.

nCurrencyDecimals The number of currency decimals.

nPrecision The data dictionary size.

MATH_NUMERIC APIs from the Common Library

Following are commonly used OneWorld MATH_NUMERIC APIs:

161

DoubleToMathNumeric Copies the numeric value of a variable of type double to a variable
of type math numeric.

FormatMathNumeric Formats a JDE MATH_NUMERIC into a fully formatted string,
ready for output.

IncrementMathNumeric Increments or decrements a referenced MATH_NUMERIC by one.

IntToMathNumeric Converts an integer to a MATH_NUMERIC.

LongToMathNumeric Converts a long to a MATH_NUMERIC.

MathAdd Adds parameter two to parameter three and returns the sum in
parameter one. All parameters are MATH_NUMERIC data types.

MathCompare
Returns a "1" if parameter one is greater than parameter two;
returns a -1 if parameter two is greater than parameter one. Both
parameters are MATH_NUMERIC data types.

MathCompareAbsolute
Same as MathCompare, except that it will compare the absolute
value of the parameters, for example, -123 would be greater than
+100.

MathCopy Copies the value of a source MATH_NUMERIC value (parameter
two) to a destination MATH_NUMERIC value (parameter one).

MathDivide
Divides parameter three by parameter four and places the quotient
in parameter one. The remainder is placed in parameter two. All
parameters are MATH_NUMERIC data types.

MathMultiply
Multiplies parameter two by parameter three and places the result
into parameter one. All parameters are MATH_NUMERIC data
types.

MathNumericToDouble The function copies the numeric value of a MATH_NUMERIC
variable to a variable of type double.

MathNumericToInt Converts a MATH_NUMERIC into an integer (int). For example,
when you pass in 1.9, it is treated as one.

MathNumericToLong Converts a MATH_NUMERIC to a long (Checks that
MATH_NUMERIC does not have decimals).

MathRound
Rounds a MATH_NUMERIC passed in parameter two to the
specified number of digits passed in parameter three. The result is
returned in parameter one.

MathStringToLong Translates a number string into a long number. The value is
passed as a return code.

162

MathSubtract
Subtracts parameter three from parameter two and places the
result into parameter one. All parameters are MATH_NUMERIC
data types.

MathZeroTest Returns an int 0 if the string portion of the struct is equal to zero,
and the length is one.

ParseNumericString Formats a numeric string into the MATH_NUMERIC format.

ReverseMathNumeric Reverses the sign on a MATH_NUMERIC.

ZeroMathNumeric Sets a MATH_NUMERIC to zero.

JDEDATE Data Type

All dates in the OneWorld database are stored in a JDEDATE structure to allow the greatest
flexibility for formatting the dates.

JDEDATE Element Description

nYear The year (four digits).

nMonth The month.

nDay The day.

JDEDATE APIs from the Common Library

Following are some commonly used OneWorld APIs:

AdvanceDate
Takes in a date in JDEDATE form, a number of months, a
number of days and returns the advanced (decremented)
date in JDEDATE form.

AdvanceOneDay Increments the day, in Gregorian form, by one day.

AdvanceOneMonth Increments the month, in Gregorian form, by one month.

CalcN Takes in a Gregorian date and calculates a long integer to
represent that date as an offset from 01/01/0000.

163

DateDifference Returns a long integer value that is the difference between
two dates.

DayOfTheWeek Returns the day of the week based upon the N value of a
date.

DecrementOneDay Decrements the day, in Gregorian form, by one day.

DecrementOneMonth Decrements the month, in Gregorian form, by one month.

DeformatDate Changes a date string into the JDEDATE format.

DerefN
Takes in a long integer that represents a date as an offset
from 01/01/0000 and calculate its corresponding Gregorian
date.

FormatDate Formats an internal JDEDATE into a formatted string.

IsJDEDATENull Tests whether a JDEDATE is NULL.

IsLeapYear Determines if the year is a leap year, based upon a
Gregorian date.

JDEDATEToCentury Gets the century from a JDEDATE and returns it in a
Math_Numeric.

JDEDATEToCenturyAndYear Gets the year and century from a JDEDATE and returns
them in Math_Numeric.

JDEDATEToday Formats a JDEDATE with today's date.

JDEDATEToYear Gets the year from a JDEDATE and returns it in a
Math_Numeric.

NumberOfDays Finds the number of days in a month based upon a
Gregorian date.

Strings and Characters

Strings and characters in OneWorld do not require special data types or APIs for
manipulation. They may be initialized and set to a value using the standard functions
provided by programming languages. OneWorld string sizes allow for a null terminator. For
example, if the string size is 11, there is enough space for ten characters and a null
terminator.

Unused Structure Members

When you directly call master business functions or add records to interface tables, unused
members of the data structures may be left as NULL. The JDEBASE APIs will translate the
null values into zero for MATH_NUMERIC and JDEDATE fields and blanks for string and
character fields.

164

Special Circumstances

Certain OneWorld fields require special formatting prior to adding them to the interface tables
or master business function data structures. Two commonly used fields are MCU and KCOO.
MCU is a right-justified string, padded with leading blanks. KCOO is a right-justified string
padded with leading zeros. Use the OneWorld Data Dictionary to check for other fields that
may require special formatting.

Using Scheduler

You might want to run subsystem jobs that take up a great deal of machine resources or that
require users to be signed off of the software after normal working hours. You might also
want the flexibility of running jobs at scheduled intervals during the day.

OneWorld Scheduler allows you to schedule subsystem jobs to run after hours or throughout
the day, if necessary. The ability to run jobs at specific times allows you the flexibility of
running jobs without impacting the next day's schedule. You can schedule jobs based on day,
day of year, time, job completion, day of period, and day of week. You can also set up
Scheduler to restart a job in the event of a job failure.

You can even specify on which server you want the job to run and in which time zone,
whether it is in your city or in some other country. Scheduler uses a modified version of
Universal Time Coordinate (UTC) time, which counts the number of minutes, not seconds.

After the job is scheduled, Scheduler writes records to the Job Schedule table (F91320),
indicating each time that the job will be launched. As the job runs, the Job Monitor monitors
the job's progress.

When the job ends, the Job Monitor sets an end status to the job and updates the job's
record in the Job Schedule table (F91320) to indicate that the job either ended successfully
or in error.

The following graphic illustrates the scheduling process. When you define a scheduled job,
the parameters of that job are stored in the Job Master table (F91300).

165

See Also
 Scheduler Application in the System Administration Guide for more information about

scheduling jobs.

166

Events

OneWorld notifications are called events. Events must be defined in either database tables or
in the jde.ini file. The OneWorld event system implements a publisher/subscriber model.
OneWorld events are delivered to subscribers in XML documents. The XML document
contains detailed information about the event.

The OneWorld event system consists of the following modules: an event distributor, event
generators, and transport drivers.

Event generators are processes or libraries capable of generating OneWorld events. Three
default event generators are provided with XPI: Z event generator, real-time event generator,
and XAPI event generator. Events generated by the Z event generator are called Z events.
Events generated by the real-time event generator are called real-time events. Events
generated by the XAPI generator are called XAPI events. Z events, real-time events, and
XAPI events have slightly different XML documents.

The event distributor is a OneWorld kernel process called the event notification (EVN) kernel.
The EVN kernel manages the subscribers and notifies them when a OneWorld event occurs.
The EVN kernel is shared by Z events, real-time events, and XAPI events.

Transport drivers are drivers that the event distributor uses to send out OneWorld events.
OneWorld provides a default transport driver using JDENET.

Z Events

J.D. Edwards Z event functionality provides an infrastructure that can capture OneWorld
transactions in various ways and provide real-time notification to third party software, end
users, and other J.D. Edwards systems, such as XPI, CRM and APS. For example, when a
sales order is entered into the system, the sales order information can be automatically sent
to a CRM or supply chain management application to be further processed.

Note

When you generate events, you might receive the following message:

RDEL0000045 – Could not open the tables for reliable event delivery (F90703
and F90704). Reliable event delivery will be disabled.

This is only a warning message and should be ignored unless you are using the Reliable
Event Delivery feature.

Before You Begin
 OneWorld security must be enabled for the OneWorld Enterprise Server (OWES).

 The default user under the [SECURITY] section of the OWES jde.ini file must have a
security record (a valid OneWorld user).

167

Setting Up Z Events

The Z event generator uses existing OneWorld unedited transaction tables (Z tables). You
can build custom Z tables as long as they are created using J.D. Edwards standards (see
Interoperability Features Created by J.D. Edwards). When a OneWorld transaction occurs,
the master business function writes the transaction information in a Z table and sends an
update record to the Subsystem Job Master (F986113) table. A batch process subsystem
monitors the Subsystem Job Master table. When the batch process finds a W status in the
Subsystem Job Master table, it notifies the Z event generator. The Z event generator
retrieves the transaction information from the Z table, converts it into an XML document using
a J.D. Edwards DTD and, then sends the XML document to the event distribution kernel. The
event distribution kernel then sends the XML document to all subscribers.

Complete the following steps to set up Z events:

• Enable Z event processing.

• Set up the data export control to use the Z event generator and define flat file cross
reference.

• Start the data export subsystem.

Enabling Z Event Processing

You can enable or disable master business functions to write transaction information into Z
files and the Subsystem Job Master table when a transaction occurs.

All outbound master business functions used to create interoperability transactions have
processing options that control how the transaction is written. The first processing option is
the transaction type for the interoperability transaction. If this processing option is left blank,
outbound interoperability processing will not be performed. The second processing option
controls whether the before image is written for a change transaction. If this processing
option is set to 1, the before and after images of the transaction are written to the interface
table. If this is not set, then only an after image is written.

► To enable Z event processing

1. Right-click the application that contains the processing options for the transaction's
master business function. See Interoperability Interface Table Information for a list of
these applications.

2. Choose Prompt for Values from the menu.

168

3. Click either the Outbound tab or the Interop tab.

4. Enter the transaction type and set the before image flag if you want before and after
images written to the interface table for change transactions, and then click OK.

Setting up the Data Export Control to Use the Z Event Generator

The generation of outbound data is controlled through the Data Export Controls application.
For each transaction type and order type, you must designate the Z event generator to
process the outbound data.

► To set up Data Export Controls

1. On Work With Data Export Controls, click Add.

2. Complete the following fields:

• Transaction Type

• Order Type

3. For each detail row, enter the following:

• Function name

• Windows NT: _CallOnUpdate@36

• UNIX: CallOnUpdate

• AS400: CallOnUpdate

• Function Library

169

• Windows NT: OneWorld Bin32 Path\zevg.dll

• UNIX(HP): OneWorld Bin32 Path\libzevg.sl

• UNIX(AIX, SUN): OneWorld Bin32 Path\libzevg.so

• AS400: OneWorld Bin32 Path\ZEVG

• Enter 1 in the Execute for Add column to generate a OneWorld event for an
add/insert. Complete the same process as appropriate for update, delete, and
inquiry.

• Enter 1 in the Launch Immediately column to launch the object from the Outbound
Subsystem batch process.

This column does not affect the Outbound Scheduler batch process.

In B733, the Export Mode columns are not used.

170

Starting the Data Export Subsystem

Start outbound subsystem R00460 or outbound scheduler subsystem R00461. Multiple
outbound subsystems can run concurrently.

The Subsystem Master table is a system table that resides in the base data source defined in
jde.ini, [DB SYSTEM SETTINGS] section. Its data source cannot be overridden through
OCM. To ensure that a batch record is processed by only one batch process, the base data
source defined in the jde.ini must have the "support for update" check box checked. You can
use the Database Data Sources application to check this. Open the Database Data Sources
application and find the base data source record. If there is no such record, you must add the
base data source record. Once the record is fetched, choose the record to see its details.
Verify the "Support for Update" checkbox is checked.

See Also
 For more information about the Data Export Controls application, see Subscribe to

Outbound Transactions.

 For information about terminating a subsystem job, see Terminating OneWorld
Subsystems in the System Administration documentation.

Setting Up the jde.ini for Z Events

Z events require additional jde.ini settings. Following are the jde.ini settings for the event
distribution kernel and the event generators:

WinNT:

[JDENET_KERNEL_DEF19]

krnlName=EVN KERNEL

171

dispatchDLLName=jdeie.dll

dispatchDLLFunction= _JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

 [JDEITDRV]

DrvCount=3

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Note

The above settings are for Windows 2000 and NT. If you use a different platform, use the
following settings:

 EVN
dispatchDLLName

EVN
dispatchDLLFunction

Drv1 Drv2 Drv3

AS400 JDEIE JDEK_DispatchITMessage RTDRV ZDRV JDETRDRV

HP9000B libjdeie.sl JDEK_DispatchITMessage librtdrv.sl libzdrv.sl libjdetrdrv.sl

Sun or
RS6000

libjdeie.so JDEK_DispatchITMessage librtdrv.so libzdrv.so libjdetrdrv.so

Z File Events XML Document Format

Z event XML documents use the J.D. Edwards XML Response format. An example of the Z
event XML document can be found in XML Format Examples (Z Events). Different events can
have different table names and column names.

Real-Time Events

A real-time event is a business transaction. Real-time events can be generated on the
enterprise server using any OneWorld interface, such as HTML, WIN32, and terminal
servers. Real-time events are useful for getting outbound notification in real-time. They can
be used for both synchronous and asynchronous processing.

For example, an auction site using OneWorld as a backend can use real-time events to
update the database immediately. A user enters a new item for auction, which triggers a
transaction into the OneWorld system. The transaction is immediately captured. A notification
is sent to an interoperability server, such as a Java connector, that then communicates the

172

information to a web engine to update html pages so that all of the auction users can see the
new item. This example illustrates a synchronous process.

Real-time event generation can also be used for asynchronous processing. For example, an
online store sends orders to different vendors (B2B), captures the transactions, and the
orders are entered into the vendors’ systems. A user buys a book. They want to enter a
purchase order to the book publisher and a notification to the shipping company to pick up
the book and deliver it. The book order itself can be completed as a purchase order
transaction with OneWorld, but the shipping request requires that the data is packaged into a
commonly agreed upon format for the shipping company to process.

Real-time events use system calls that receive data from business functions using OneWorld
data structures. Events can be one of the following:

Single Event Contains one partial event. Is useful if the receiver requires that events be
generated per system call. Can also be with different event types.

Aggregate Event Contains multiple partial events. Is useful if the receiver requires a document
containing multiple events. For example, a supply chain solution might want
the complete sales order provided as one event that contain multiple partial
events.

Composite Event Contains only single events. Is useful if the customer has multiple receivers,
some requiring single events and some requiring a complete event similar to
an aggregate event.

Real-time event generation from a client consists of client business functions that call APIs,
and then interfaces with the server Interoperability Event Observer (a kernel). Real-time
event generation on the server side includes an event observer interface (a set of system
APIs) that triggers real-time events, and an interoperability event observer (a kernel). Then
the event observer kernel generates XML documents of the triggered real-time events and
sends them to an event distribution component. The event distribution component is the
same one used to send XML document notification to subscribers. The following diagram
illustrates the flow of a real-time event. The dotted line indicates the flow.

173

85. When a real-time event is generated from a client, the client business function calls
the appropriate API. This API does OCM lookup to determine where the IEO kernel is
located. When a real-time event is generated from an Enterprise server, the
OneWorld business function calls the Interoperability Event Interface within the
CallObject kernel. The API validates, filters, and formats the data. The data is sent as
a partial event to the IEO kernel.

86. The IEO kernel creates the real-time event and produces an XML document when
the real-time event is finalized.

87. The IEO kernel packages the XML document and passes the document to the EVN
kernel.

88. JDENT distributes the information through the Java connector.

Event Unique ID

Each real-time event has a unique ID that includes the OneWorld session ID.

Journaling

Real-time events are journaled using the trace feature for the JDEDEBUG log files.
Journaling can be turned on or off in the jde.ini file. Journaling occurs at two points:

• A system call logs the parameter received and the APIs called.

• During the interoperability event observer process, the kernel logs additional
debugging information. The logging is controlled with the LEVEL key in the
[Interoperability] section. Following are some possible values for the LEVEL key.

174

[INTEROPERABILITY]

LEVEL= Writes specified interoperability event data to the debug log file. You can
specify one or more of the allowable logging settings. Separate multiple
values with a comma. For example: LEVEL=EVENTS,DATA
Note: As with any logging operation, enabling any of these settings can
impact performance and cause extensive amounts of data to be written.

EVENTS

Use this value to log the flow of events in the IEO kernel. Receiving event
data and sending events are logged, but the values of the event data are
not logged. This is the default level. If the LEVEL key is not present, it is
identical to LEVEL= EVENTS.

 DATA Log values of the event data and flow of the events in the IEO kernel.
This level also includes all data logged with the EVENTS switch.

 PERF Log statistics about the number of events received and the time period in
which they are processed.

DOC

Outbound XML documents are written in the temporary file on disk. If the
debug log is enabled, the document location is written in the debug log.
The location of the document is one of the following:

• If the value of the key TempFileDir in the Interoperability section is
set, the file is written to that location. For example:

[INTEROPERABILITY]

TempFileDir=C:\XML_DOCUMENTS

• If the key TempFileDir is not set, files are written in the same
directory where JDE logs and debug logs are written.

TRACE

This switch will trace execution of the IEO kernel and write data in the
debug log. Because of the large amount of data logged, this level should
be used only for debugging purposes.

You can also journal EVN documents by setting the SaveEVNDoc key in the
[INTEROPERABILITY] section of the jde.ini file. Save EVNDoc is similar to LEVEL=DOC but
applies to the EVN kernel instead of the IEO kernel. The default value for Save EVNDoc is 0,
which means that EVN documents are not saved. To save EVN documents, change the
value to 1. EVN documents are saved to the directory where JDE logs and debug logs are
written unless you specify a different directory. You can use TempFileDir to specify a
directory, as shown in the following example:

[INTEROPERABILITY]

SaveEVNDoc=1

TempFileDir=C:\XML_Documents

Real-Time Event APIs

The system APIs are able to determine whether a system call is from a server or client. The
following APIs are available for you to generate real-time events:

• jdeIEO_EventInit()

175

• jdeIEO_EventAdd()

• jdeIEO_EventFinalize()

• jdeIEO_CreateSingleEvent()

• jdeIEO_IsEventTypeEnabled()

For specific information about these events, see the Online API documentation.

Example: Interoperability Event Interface Calls

The following example illustrates how to create a single event.

89. Design the OneWorld data structure to decide what values to provide to the real-time
event.

90. Define the data structure object in the business function header file.

91. Modify the business function source to call jdeIEO_CreateSingleEvent.

176

The following example illustrates how to create an aggregate event.

177

The following diagram illustrates how to create a composite event.

178

Errors returned by the system calls might not be critical enough to stop the business process.
Non-critical errors are flagged as warnings and are logged in the log file. If the business
function is on the server, the warning is logged in the callobject kernel log. If the business
function is on a client, the warning is logged in the client log file.

The following example illustrates an XML file that shows a composite real-time event
consisting of a call to the business function F4211FSEditLine, on 12/31/200 arriving about
noon, with the real-time event generated at 12:00:01.000.

179

Generating Real-Time Events

J.D. Edwards currently supports three ways to generate real-time events. You configure your
system to use one of the following methods:

• From a client or server-to-server, which requires registering events in multiple jde.ini
files.

• From a OneWorld server, which requires registering events in the server jde.ini file
and mapping events.

• From OneWorld database tables, which requires defining events in a OneWorld
database table.

Note

When you generate events, you might receive the following message:

RDEL0000045 – Could not open the tables for reliable event delivery (F90703
and F90704). Reliable event delivery will be disabled.

180

This is only a warning message and should be ignored unless you are using the Reliable
Event Delivery feature.

In the future, only OneWorld database tables will be supported. Registering events in jde.ini
files will be phased out and will not have ongoing support.

See Also
 Generating Real-Time Events from a Client or Server-to-Server

 Generating Real-Time Events from a OneWorld Server

 Generating Real-Time Events Using Database Tables

Before You Begin
 OneWorld security must be enabled for the OneWorld Enterprise Server (OWES).

 The default user under the [SECURITY] section of the OWES jde.ini file must have a
security record (a valid OneWorld user).

Generating Real-Time Events from a Client or Server-to-Server

When you generate real-time events from a client or from server-to-server, you configure the
Object Configuration Manager (OCM) so that the system call can find the IEO kernel from the
client. To support client generation of real-time events, you also configure the client and
server jde.ini files. To support server-to-server generation of real-time events, you configure
jde.ini files on both servers. The jde.ini file settings that are configured on both the client and
server are exactly alike. Some additional jde.ini file settings are required for the server.

Note

Registering real-time events in jde.ini files will be phased out in the future in favor of defining
events in OneWorld database tables.

See Also
 Generating Real-Time Events Using Database Tables

Setting Up the OCM for a Client or Server-to-Server

You must configure the OCM to trigger real-time events when running a BSFN on a client or
for server-to-server support. When you configure the OCM, include a specific environment
and ensure that no two duplicate mappings are in active status at the same time. The
following illustration shows the environment and the status.

181

To configure the OCM, access the Object Mapping Revisions form and enter RTE in the
Object Type field, as shown below.

182

Configuring the OCM with the RTE entry enables the system call to find the IEO kernel. If the
OCM is not properly configured, an error is returned to the client by the system call. All client
and server errors are logged to the jde.log file.

If the OCM mapping is not correctly configured on the client, the following message is written
in the jde.log, and the event will not be generated:

RT0000011 jdeIEO_EventInit: Unable to find the server

If the OCM mapping is not correctly configured on the server, no error message is generated.
The system call defaults to the local server for the location of the IEO kernel.

If the IEO kernel is not found on the machine that is configured in the OCM, the following
error might occur:

RT0000004 jdeIEO_EventInit: ReceiveMsg failed. Error = <error test>

See Also
 Working with the Object Configuration Manager in the Configurable Network

Computing Implementation documentation

 Mapping Objects in the Configurable Network Computing Implementation
documentation

Setting Up the jde.ini for a Client or Server-to-Server

To generate real-time events from a client, you must configure the jde.ini file on both the
client and server. If you generate real-time events using server-to-server, you must configure
jde.ini files on both servers. Configure the registered events and filtered events settings in the
Interoperability section of both the client and server jde.ini files as follows:

[INTEROPERABILITY]

Setting Default
Value Purpose

Registered
Events

Defines and registers the EventTypes. The EventType field is a Named
ID and cannot be more than 10 characters in length. The EventType
must be registered in the JDE.INI file under the [INTEROPERABILITY]
section in RegisteredEvents key. The key contains comma-separated
values, for example:

[INTEROPERABILITY]

RegisteredEvents=RTSOOUT,RTPOOUT,RTSODTL

FilteredEvents *NONE

Following are the valid values for this section.

*NONE - Disables event capturing. No events are communicated to the
IEO kernel from the Interoperability Event Interface

*ALL - Enables event capturing. All events are communicated to the
IEO kernel from the Interoperability Event Interface.

You also provide a list of specific real-time events to be captured and
communicated to the IEO kernel. The events are stored as comma-
separated values, for example:

[INTEROPERABILITY]

FilteredEvents=RTSOOUT,RTPOOUT,RTSODTL

183

You must configure the [DATA_STRUCTURE] setting in the server jde.ini file. The
[DATA_STRUCTURE] setting is used for introspection by the connectors or the application
server.

[INTEROPERABILITY]

Setting Default Value Purpose
[DATA_STRUCTURE]

DS1=

DS2=

DS3=

datastructure_name

datastructure_name

datastructure_name

A site-dependent variable for each event type.
Specifically defines the various event types and their
associated data structures. You can define one or
more structure for each event type.

Generating Real-Time Events from a OneWorld Server

If you generate real-time events from the OneWorld server, you must map business
functions, and you must configure the jde.ini file on the server. If you are generating events
from a client, the following information is not applicable.

Note

Registering real-time events in jde.ini files will be phased out in the future in favor of defining
events in OneWorld database tables.

See Also
 Generating Real-Time Events Using Database Tables

Mapping Business Functions

To map business functions, run the Create OCM Records for Business Functions (R986140)
report and the Object Configuration Manager (P986110) program.

When you run the R986140 report, enter the following for your data selection:

Operator Left Operand Comparison Right Operand
Where BC FUNO (Object Type) (F9860) Is equal to “BSFN”

And BC BFLOCN (Location – Business Function
Location (F9860)

Is equal to “1”

Set the following processing options as indicated:

• Set processing option 2 to the data source named LOCAL.

• Set processing option 3 to be the environment that your real time events use.

• Set processing option 4 to be the system data source that your client machines use.

184

After the Create OCM Records for Business Functions report completes, run the Object
Configuration Manager program. Choose your system data source and set a default record
for business functions that maps the business functions to be run on the Enterprise server.
To set the default record, on the Object Mapping Revisions form, type BSFN in the Object
Type field.

See Also
 Running the Create OCM Records for Business Functions Report in the Configurable

Network Computing Implementation documentation

 Mapping Objects in the Configurable Network Computing Implementation
documentation

 To map objects in the Configurable Network Computing Implementation
documentation

Setting Up the jde.ini for a OneWorld Server

Real-time events generated from an enterprise server require additional jde.ini settings. You
use a text editor to manually edit and verify specific settings in the server jde.ini file.

Note

If your enterprise contains more than one OneWorld enterprise server, you must ensure that
each server has the same settings for all logic, batch, and interoperability sections.

Following are additional jde.ini file settings that you might need to set:

WinNT:

[JDENET_KERNEL_DEF19]

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll

dispatchDLLFunction= _JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF20]

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll

dispatchDLLFunction=_JDEK_DispatchIEOMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDEITDRV]

185

DrvCount=3

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Note

The above settings are for Windows 2000 and NT. If you use a different platform, use the
following settings:

 AS400 HP9000B Sun or RS6000
EVN
dispatchDLLName

JDEIE libjdeie.sl libjdeie.so

EVN
dispatchDLLFunction

JDEK_DispatchITMessage JDEK_DispatchITMessage JDEK_DispatchITMessage

IEO
dispatchDLLName

JDEIEO libjdeieo.sl libjdeieo.so

IEO
dispatchDLLFunction

JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage

Drv1 RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

DRV3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so

 [JDENET]

Setting Default Value Purpose
MaxKernelRanges= 20 Specifies the maximum number of JDENET kernels. You

must set this value to encompass the total number of
kernels that are defined by the
[JDENET_KERNEL_DEFxx] settings. The default value
is 20.

Verify that this section is properly set to support he
maximum kernel ranges defined for your system. The
defined kernels must include the Real-Time Event and
IEO kernels. In most cases, the standard jde.ini is set
correctly to a value of 20, where the XML List kernel is
defined as kernel 16, the Real-Time Event is defined as
kernel 19, and the IEO kernel is defined as 20.

[INTEROPERABILITY]

Setting Default Value Purpose
Registered Events Defines and registers the event types. The EventType

field is a Named ID and cannot be more than 10

186

characters in length. The event type must be registered
in the JDE.INI file on the server under the
[INTEROPERABILITY] section in RegisteredEvents key.
The key contains comma-separated values, for example:

[INTEROPERABILITY]

RegisteredEvents=RTSOOUT,RTPOOUT, RTSODTL

FilteredEvents *NONE Following are the valid values for this section.

*NONE - Disables event capturing. No events are
communicated to the IEO kernel from the interoperability
event interface

*ALL - Enables event capturing. All events are
communicated to the IEO kernel from the interoperability
event interface.

You can also provide a list of specific real-time events to
be captured and communicated to the IEO kernel. The
events are stored as comma-separated values, for
example:

[INTEROPERABILITY]

FilteredEvents=RTSOOUT,RTPOOUT,RTSODTL

[DATA_
STRUCTURE]

DS1=

DS2=

DS3=

datastructure_
name
datastructure_
name
datastructure_
name

A site-dependent variable per event type. Specifically
defines the various event types and their associated data
structures. You can define one or more structure for
each event type.

Generating Real-Time Events Using Database Tables

The following describes how to configure OneWorld database tables so that you can
generate events from a client or server. You define your events in the Single and Container
Event Definition (F90701) table. In addition to setting up the database table, you configure
the OCM and the server jde.ini file.

Note

Registering real-time events in jde.ini files will be phased out in the future in favor of defining
events in OneWorld database tables.

See Also
 Generating Real-Time Events from a Client or Server-to-Server

 Generating Real-Time Events from a OneWorld Server

187

Setting Up the OCM for Database Tables

You configure OCM with the RTE entry so that the system call can find the IEO kernel. If the
OCM is not properly configured, an error is returned to the client by the system call. If the
business function is on the client, the error is logged in the client log file. If the business
function is on the server, the error is logged in the Callobject kernel log.

See Also
 Setting Up the OCM for a Client or Server-to-Server

Setting Up the jde.ini for Database Tables

The enterprise server jde.ini file must be properly configured to support real-time event
generation. You use a text editor to manually edit and verify specific settings in the enterprise
server jde.ini file.

Note

If your enterprise contains more than one OneWorld enterprise server, you must ensure that
each server has the same settings for all logic, batch, and interoperability sections.

Following are additional jde.ini file settings that you might need to set:

WinNT:

[JDENET_KERNEL_DEF19]

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll

dispatchDLLFunction= _JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF20]

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll

dispatchDLLFunction=_JDEK_DispatchIEOMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDEITDRV]

DrvCount=3

188

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Note

The above settings are for Windows 2000 and NT. If you use a different platform, use the
following settings:

 AS400 HP9000B Sun or RS6000
EVN
dispatchDLLName

JDEIE libjdeie.sl libjdeie.so

EVN
dispatchDLLFunction

JDEK_DispatchITMessage JDEK_DispatchITMessage JDEK_DispatchITMessage

IEO
dispatchDLLName

JDEIEO libjdeieo.sl libjdeieo.so

IEO
dispatchDLLFunction

JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage

Drv1 RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

DRV3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so

 [JDENET]

Setting Default
Value Purpose

MaxKernelRanges= 20 Specifies the maximum number of JDENET kernels. You must set
this value to encompass the total number of kernels that are
defined by the [JDENET_KERNEL_DEFxx] settings. The default
value is 20.

Verify that this section is properly set to support the maximum
kernel ranges defined for your system. The defined kernels must
include the Real-Time Event and IEO kernels. In most cases, the
standard jde.ini is set correctly to a value of 20, where the XML List
kernel is defined as kernel 16, the Real-Time Event is defined as
kernel 19, and the IEO kernel is defined as 20.

Setting Up Database Tables

Two database tables, the Single and Container Event Definition (F90701) table and the
Persisted Event Subscription Information (F90702) table support real-time event generation.
Before you can generate an event, you must define the event in table F90701. If the event
isn’t defined in F90701, the system call returns an error message. The system updates table
F90702 with subscription information when a Z or real-time event is generated.

189

When an event is generated from the client, the IEO kernel reads table F90701 for that
event. If the specified event category is different from the event category configured in the
database, the system writes an error to the log file, as follows:

• If the database definition of the event is not found, the following error messages are
written to the EVN log:

Error in getNextNumberF0002: failed to open F0002 table.

Warning: table F90702 doesn’t exit. Some features will be turned off

• If the database tables are missing, the following message might be written to the
EVN log:

checkTableExists failed: invalid hEnv or hUser.

And the following message is written to the IEO log.

Warning: table %s doesn’t exist. Some features will be turned off

Defining Events

You use the Interoperability Event Definition (P90701) program to add new single and
container events and to review your existing events. You add single events by event name.
When you add a single event, you must include a data structure. A container event contains
either single events or aggregate events or both. When you add a container event, you define
events, single events to be used individually, or data structures, single events to be
aggregated. You can change the information for single and container events. You can delete
single and container events. You can change the status of an event to active or non-active. If
your system has multiple environments, the event status is the same in all environments. You
can also access and view Z file events by clicking the Z File Events icon on the From the
Event Definition Workbench form. You can use menu options to access the subscriber
information.

► To add a single event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

190

1. On Event Definition Workbench, click Add.

191

2. On Event Entry, complete the following fields:

• Event Name

• Event Description

• Event Type

• Event Category

• Product Code

• Reliable Delivery

• Data Structure

• Timeout Threshold

Note

If you are using the Reliable Event Delivery feature, you must set the Reliable Delivery field
to reliable (1 or Y) and the Timeout Threshold field must be set. The Timeout Threshold field
is in seconds and applies only to the reliable events for which an initial delivery attempt fails.
This field determines the maximum amount of time that has to pass from the event creation to
the time when the event will be discarded if not delivered successfully. Events with a
threshold of zero never expire.

3. Click OK to save your updates.

Note

If you are adding XAPI events, the system automatically completes the Event Category field
with Container, and after you click OK, the Event Definition Detail form appears. Complete
the Data Structure and Data Description fields, and then click OK.

4. Click Cancel to return to Event Definition Workbench.

5. On Event Definition Workbench, click Find to view your events.

6. Click Close to return to the main menu.

► To add a container event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, click Add.

2. On Event Entry, complete the following fields:

• Event Name

• Event Description

192

• Event Type

• Event Category

• Product Code

• Reliable Delivery

• Timeout Threshold

Note
If you are using the Reliable Event Delivery feature, you must set the Reliable
Delivery field to reliable (1 or Y) and the Timeout Threshold field must be set.
The Timeout Threshold field is in seconds and applies only to the reliable events
for which an initial delivery attempt fails. This field determines the maximum
amount of time that has to pass from the event creation to the time when the
event will be discarded if not delivered successfully. Events with a threshold of
zero never expire.

3. Click Ok to access Event Definition Detail.

4. On Event Definition Detail, click one of the following options:

• Event Data

• Data Structure Data

Note
Choose Event Data to define single individual (composite) events for the container
event. Choose Data Structure Data to define aggregate events for the container
event.

5. Do one of the following:

• If you chose Event Data:

• Click the visual assist in the first empty line under the Single Event field in the
detail area.

• On Event Search & Select, choose an event, and then click Select.

• If you chose Data Structure Data:

• Click the visual assist in the first empty line under the Data Structure field in
the detail area.

• On Individual Object Search and Select, choose a data structure, and then
click Select.

Repeat this step as many times as necessary to link the appropriate single
events to the container event.

6. To save your changes and return to Event Entry, click OK.

7. On Event Entry, click Cancel to return to Event Definition Workbench.

8. On Event Definition Workbench, click Find to view your events.

193

9. Click Close to return to the main menu.

► To view or change the definition of a single event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

• Product Code

2. Click one of the following options, and then click Find to display existing events.

• Active Statuses

• Non Active Statuses

• All Statuses

3. Choose a single event, and then click Select.

4. On Event Entry, view or change the following fields:

• Event Description

• Event Type

• Product Code

• Reliable Delivery

• Data Structure

5. Click OK to save your changes and return to Event Definition Workbench.

6. On Event Definition Workbench, click Close to return to the main menu.

► To change a single event to a container event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

194

• Product Code

2. Click one of the following options, and then click Find to display existing events.

• Active Statuses

• Non Active Statuses

• All Statuses

3. Choose the single event that you want to change to a container event, and then click
Select.

4. On Event Entry, change the following field:

• Event Category

5. Click OK to access Event Definition Detail.

6. On Event Definition Detail, click the visual assist in the first empty line under the
Single Event field in the detail area.

7. On Event Search & Select, choose an event, and then click Select.

Repeat steps 6 and 7 as many times as necessary to link the appropriate single
events to the container event.

8. Click OK to save your changes and return to Event Definition Workbench.

9. On Event Definition Workbench, click Find to view your events.

10. Click Close to return to the main menu.

► To view or change the definition for a container event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

• Product Code

2. Click one of the following options, and then click Find to display existing events.

• Active Statuses

• Non Active Statuses

• All Statuses

195

3. Choose the detail line that contains the event to be viewed or changed, and then
click Select.

4. On Event Entry, view or change the following fields:

• Event Description

• Event Type

• Product Code

• Reliable Delivery

5. Click OK to save any changes and access Event Definition Detail.

6. On Event Definition Detail, do one of the following:

• View the single events associated with the container event.

• Add a single event to the container event.

• In the detail area, click the visual assist in the empty row under the Single Event field.

• When you click the visual assist, the Event Search & Select form appears. Choose
an event type and then click Select. Repeat this process for each single event type
that you want to link with the container event.

• Change an existing single event that is associated with the container event.

• In the detail area, choose the detail line that contains the event to be changed, and
then click the visual assist that appears in the Single Event field.

• When you click the visual assist, the Event Search & Select form appears. Choose
an event type, and then click Select to return to the Event Definition Detail form. The
row you chose will be updated.

• Delete a single event from the container event.

• In the detail area, choose the detail line that contains the event to be deleted, and
then click delete.

• Confirm the deletion.

7. Click OK to save changes and return to Event Definition Workbench.

8. On Event Definition Workbench, click Cancel to return to the main menu.

► To change a container event to a single event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

196

• Product Code

2. Click one of the following options, and then click Find to display existing events.

• Active Statuses

• Non Active Statuses

• All Statuses

3. Choose the detail line that contains the container event that you want to change to a
Single event, and then click Select.

4. On Event Entry, change the following field:

• Event Category

5. Click OK.

A warning message indicating the change will result in loss of detail appears.

6. On the warning message, click OK.

7. To complete the Data Structure field, click the visual assist.

8. On Individual Object Search and Select, choose a data structure, and then click
Select.

9. On Event Definition Detail, click OK to save your changes and return to Event
Definition Workbench.

10. On Event Definition Workbench, click Cancel to return to the main menu.

► To change the status of an event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

• Product Code

2. Click the following option, and then click Find to display existing events.

• All Statuses

3. In the detail area, choose the event for which you want to change the status.

4. From the Row menu, choose Change Status.

5. To view the status change, click Find.

197

6. Click Close to return to the main menu.

Note

The status of the event is the same for all environments. If the event is active, that event is
active for all environments. If the event is non-active, that event is non-active for all
environments.

► To copy an event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

• Event Name

• Description

• Event Type

• Product Code

2. Click one of the following options, and then click Find.

• Active Statuses

• Non Active Statuses

• All Statuses

3. Choose the detail line that contains the event to be copied, and then click Copy.

4. On the Event Entry form, complete the following field:

• Event Name

5. Do one of the following:

• If you copied a single event and need to modify the definition for the new event,
see Steps 4 through 6 of the task, To view or change the definition for a single
event.

• If you copied a container event and need to modify the definition for the new
event, see Steps 4 through 8 of the task, To view or change the definition for a
container event.

► To delete an event

From the Interoperability menu (GH9070), choose Interoperability Event Definition.
Alternatively, enter P90701 on the fast path command line to access the Event Definition
Workbench form.

1. On Event Definition Workbench, complete the following fields:

198

• Event Name

• Description

• Event Type

• Product Code

2. Click the following option, and then click Find.

• Active Statuses

3. Choose the detail line that contains the event to be deleted, and then click Delete.

If you are deleting a container event, you must confirm the deletion.

4. To verify the event is deleted, click Find.

5. Click Close to return to the main menu.

Setting up Subscriber Information

For XAPI events, you must update the Persisted Event Subscription Information (F90702)
table so that you can receive a response to your XAPI event. Each XAPI event must have a
logical subscriber, which you might have to set up. For Z and real-time events, the system
dynamically updates this table when the event is created. You can use this table to view the
persistent subscriptions for your Z and real-time events. You use the Interoperability Event
Subscription (P90702) program to add new subscription information and to review and
change existing subscription information. You can also add a new subscription by copying
and then modifying an existing subscription, and you can delete subscriptions.

The Persisted Event Subscription Information (F90702) table contains subscriber information,
such as the machine name and port number, and is read by EVN. If subscriber information is
missing for the XAPI event, the event is generated but can’t be delivered. You set up a logical
subscriber by choosing Logical Subscriber from the Form menu.

You can access and view your real-time and XAPI event definitions by choosing Event
Definition from the Form menu. You can also access and view Z events by clicking the Z File
Events icon on the Subscriber Workbench form or by choosing the Z File Events option on
the Form menu.

► To add a logical subscriber

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, choose Logical Subscriber from the Form menu.

2. On Work with Logical Subscriber Names, click Add.

3. On Logical Subscriber Entry, complete the following fields:

• Logical Subscriber Name

Do not use spaces in the Logical Subscriber Name

• Event Transport Driver

199

• Host Name

• Port Number

4. Enter CommonGroup in the following field:

• Subscriber Group

5. Click OK to save your updates.

6. Click Cancel to return to Work With Logical Subscriber Names

7. Click Close to return to Subscriber Workbench.

► To add a subscription

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, click Add.

200

2. On Subscriber Entry, complete the following fields:

• Event Subscriber

• Event Environment

• Purpose

• Logical Subscriber Name

• Event Type

• Event Name

3. Enter Filter0 for the following field:

• Event Filter Name

4. Click OK to save your updates.

5. Click Cancel to return to Subscriber Workbench.

6. On Subscriber Workbench, click Find to view your subscription.

7. Click Close to return to the main menu.

201

► To view or change a subscription

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, complete the following fields:

• Subscriber Name

• Purpose

2. Click one of the following options, and then click Find to display existing
subscriptions.

• Active Status

• Non-Active Status

• All Statuses

3. Choose the subscription you want to view or change, and then click Select.

4. On Subscriber Entry, view or change the following field:

• Purpose

5. Click OK to save your updates and return to Subscriber Workbench.

6. On Subscriber Workbench, click Find to view the subscriptions.

7. Click Close to return to the main menu.

► To change the status of a subscription

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, complete the following fields:

• Subscriber Name

• Purpose

2. Click the following option, and then click Find to display existing subscriptions.

• All Statuses

3. In the detail area, choose the event for which you want to change the status.

4. From the Row menu, choose Change Status.

5. To view the status change, click Find.

6. Click Close to return to the main menu.

202

► To copy a subscription

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, complete the following fields:

• Subscriber Name

• Purpose

2. Click one of the following options, and then click Find to display existing
subscriptions.

• Active Status

• Non-Active Status

• All Statuses

3. Choose the detail line that contains the event to be copied, and then click Copy.

4. On Subscriber Entry, update the following fields:

• Event Subscriber

• Event Environment

• Purpose

• Logical Subscriber Name

• Event Type

• Event Name

5. Click OK to return to Subscriber Workbench.

6. On Subscriber Workbench, click Find to view your subscriptions.

7. Click Close to return to the main menu.

► To delete a subscription

From the Interoperability menu (GH9070), choose Interoperability Subscriber Enrollment.
Alternatively, enter P90702 on the fast path command line to access the Subscriber
Workbench form.

1. On Subscriber Workbench, complete the following fields:

• Subscriber Name

• Purpose

2. Click the following option, and then click Find.

203

• All Statuses

3. Choose the detail line that contains the subscription to be deleted, and then click
Delete.

4. To verify the event is deleted, click Find.

5. Click Close to return to the main menu.

XAPI Outbound Events

A XAPI event can be generated wherever master business functions run, such as HTML,
WIN32, and enterprise servers. XAPI events are similar to real-time events, the difference
being XAPI events allow for an inbound reply.

The XAPI event contains a set of structured data that includes a unique XAPI event name
and a BSFN to be invoked upon return. The XAPI outbound event can be generated from a
client or server. You can either set up database tables or configure jde.ini files to support
XAPI event generation. The process flow for a XAPI outbound event is exactly like the
process flow for a real-time event. The Real-Time Events chapter provides a graphical
representation of the process flow for both a real-time event and a XAPI event.

See Also
 Real-Time Events

XAPI Event APIs

The following APIs are available for you to generate a XAPI call:

• jdeXAPI_Init

• jdeXAPI_Add

• jdeXAPI_Finalize

• jdeXAPI_Free

• jdeXAPI_SimpleSend

• jdeXAPI_ISCallTypeEnabled

• jdeXAPI_CALLS_ENABLED

For specific information about these events, see the Online API documentation.

Example: XAPI Event Creation API Usage

 #ifdef jdeXAPI_CALLS_ENABLED
 XAPI_CALL_ID ulXAPICallID = 0;

 XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

 #endif

204

 DSD4205010A dsD4205010A = {0}; /*Query Header*/

 DSD4205010B dsD4205010B = {0}; /*Query Detail*/

 #ifdef jdeXAPI_CALLS_ENABLED

 if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

 jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

 {

 bXAPIInUse = TRUE;

 }
 #endif

 /*---*/
 /* Call XAPIInit */

 #ifdef jdeXAPI_CALLS_ENABLED
 if(bXAPIInUse == TRUE)
 {
 ulXAPICallID = jdeXAPI_Init(lpBhvrCom,

 "SendOrderPromiseRequest",
 "XAPIOPOUT",
 NULL,
 &eXAPICallReturn);
 if (eXAPICallReturn != eEventCallSuccess)
 {
 bExit = TRUE;
 }
 }
 #endif

 /*---*/
 /* Adding Header Information */

 #ifdef jdeXAPI_CALLS_ENABLED
 if(bXAPIInUse == TRUE)
 {
 eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,
 ulXAPICallID,
 "SendOrderPromiseRequest",
 "D4205010A",
 &dsD4205010A,
 sizeof(DSD4205010A));
 if (eXAPICallReturn != eEventCallSuccess)
 {
 bExit = TRUE;
 }
 }
 #endif

 /*---*/
 /* Loading Detail Information */

 #ifdef jdeXAPI_CALLS_ENABLED
 if(bXAPIInUse == TRUE)

205

 {

 eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,
 ulXAPICallID,
 "SendOrderPromiseRequest",
 "D4205010B",
 &dsD4205010B,
 sizeof(DSD4205010B));
 if (eXAPICallReturn != eEventCallSuccess)
 {
 bExit = TRUE;
 }
 }
 #endif

 #ifdef jdeXAPI_CALLS_ENABLED
 if(bXAPIInUse == TRUE)
 /*---*/
 /* Finalize */
 {
 eXAPICallReturn = jdeXAPI_Finalize(lpBhvrCom,
 ulXAPICallID,
 "SendOrderPromiseRequest",
 "OrderPromiseCallback");
 if (eXAPICallReturn != eEventCallSuccess)
 {
 bExit = TRUE;
 }
 }
 #endif

 #ifdef jdeXAPI_CALLS_ENABLED
 if (eXAPICallReturn != eEventCallSuccess)
 {
 /*---*/
 /* CleanUp */

 if(bXAPIInUse == TRUE)
 {
 jdeXAPI_Free(lpBhvrCom,
 ulXAPICallID,
 "SendOrderPromiseRequest");
 }
 }
 #endif

Example: XML File for XAPI Outbound Event

<?xml version="1.0" encoding="utf-8" ?>
- <jdeResponse type="realTimeEvent" user="KL5449350"

session="22558100.1004460662" subtype="XAPICall" environment="DV7333">

- <event>

- <header>

206

 <eventVersion>1.0</eventVersion>

 <type>XAPIOPOUT</type>

 <user>KL5449350</user>

 <application>APIDRV</application>

 <version />

 <sessionID>22558100.1004460662</sessionID>

 <environment>DV7333</environment>

 <host>DEN-PP6954083</host>

 <sequenceID>DEN-PP6954083_1540_10302001095648_KL5449350_1</sequenceID>

 <date>10302001</date>

 <time>095649</time>

 <scope />

 <codepage>utf-8</codepage>

 </header>
- <body elementCount="3">

- <detail date="10302001" name="APIDRVFunction" time="9:56:48" type=""

DSTMPL="D4205010A" executionOrder="1" parameterCount="23">

 <szRequestId type="String">1234567</szRequestId>

 <szUserId type="String">TestUser</szUserId>

 <szQueryMode type="String">Test</szQueryMode>

 <szCustomerName type="String">John Doe</szCustomerName>

 <mnCustomerId type="Double">12345</mnCustomerId>

 <szCustomerGroup type="String">Group 1</szCustomerGroup>

 <szAddress1 type="String">Line 1</szAddress1>

 <szAddress2 type="String">Suite 1</szAddress2>

 <szAddress3 type="String">123 E. Main</szAddress3>

 <szPostalCode type="String">50001</szPostalCode>

 <szCity type="String">Centennial</szCity>

 <szCounty type="String">Arap</szCounty>

 <szStateProvince type="String">CO</szStateProvince>

 <szCountry type="String">US</szCountry>

 <szBusinessObjective type="String" />

 <mnTraceDepth type="Double">0</mnTraceDepth>

 <mnPenaltyCostAdjustment type="Double">0</mnPenaltyCostAdjustment>

 <szOrderNumber type="String">1000</szOrderNumber>

 <nAllowBackorders type="Int">49</nAllowBackorders>

 <nAllowSubstitution type="Int">48</nAllowSubstitution>

 <nAllowPartialLineShip type="Int">49</nAllowPartialLineShip>

 <nAllowPartialOrderShip type="Int">49</nAllowPartialOrderShip>

 <nAllowMultisource type="Int">49</nAllowMultisource>

 </detail>
- <detail date="10302001" name="APIDRVFunction" time="9:56:49" type=""

DSTMPL="D4205010B" executionOrder="2" parameterCount="17">

 <mnLineNumber type="Double">1</mnLineNumber>

 <mnCacheLineNumber type="Double">1</mnCacheLineNumber>

 <mnItemNumber type="Double">2222</mnItemNumber>

 <sz2ndItemNumber type="String">1234567</sz2ndItemNumber>

 <sz3rdItemNumber type="String">2234567</sz3rdItemNumber>

 <szOrderUnit type="String">123</szOrderUnit>

 <mnOrderQuantity type="Double">12</mnOrderQuantity>

 <szPlanningUnit type="String">ECL</szPlanningUnit>

 <mnPlanningQuantity type="Double">12</mnPlanningQuantity>

 <mnPlanningMultiple type="Double">1</mnPlanningMultiple>

 <mnPlanningUnitPrice type="Double">1234</mnPlanningUnitPrice>

 <jdRequestDate type="Date">10302001</jdRequestDate>

207

 <szShippingGroup type="String">Ship Group</szShippingGroup>

 <szMultiSource type="String">MS</szMultiSource>

 <nAllowPartialLineShip type="Int">49</nAllowPartialLineShip>

 <nAllowBackorders type="Int">49</nAllowBackorders>

 <nAllowSubstitution type="Int">48</nAllowSubstitution>

 </detail>
- <detail date="10302001" name="XAPICall" time="09:56:49" type=""

DSTMPL="DXAPIROUTE" executionOrder="3" parameterCount="4">

 <ClientPort type="Int">6009</ClientPort>

 <ClientIP type="Int">167810863</ClientIP>

 <ClientMagicNumber type="Int">32781408</ClientMagicNumber>

 <XAPIMethodID type="String">GetComputerID</XAPIMethodID>

 </detail>

</body>

 </event>

 </jdeResponse>

Routing Information

All XAPI events must include DXAPIROUTE in the XML file, as noted in the shaded area in
the example XML file above. DXAPIROUTE contains the routing information that is to be
returned to the originating client. The jdeXAPI_Finalize API appends DXAPIROUTE data
execution.

Generating XAPI Events

J.D. Edwards currently supports three ways to generate XAPI events. You configure your
system to use one of the following methods:

• From a client or server-to-server, which requires registering events in multiple jde.ini
files.

• From a OneWorld server, which requires registering events in the server jde.ini file
and mapping events.

• From OneWorld database tables, which requires defining events in a OneWorld
database table.

Note

When you generate events, you might receive the following message:

RDEL0000045 – Could not open the tables for reliable event delivery (F90703
and F90704). Reliable event delivery will be disabled.

This is only a warning message and should be ignored unless you are using the Reliable
Event Delivery feature.

In the future, only OneWorld database tables will be supported. Registering events in jde.ini
files will be phased out and will not have ongoing support.

208

See Also
 Generating XAPI Events from a Client or Server-to-Server

 Generating XAPI Events from a OneWorld Server

 Generating XAPI Events Using Database Tables

Before You Begin
 OneWorld security must be enabled for the OneWorld Enterprise Server (OWES).

 The default user under the [SECURITY] section of the OWES jde.ini file must have a
security record (a valid OneWorld user).

Generating XAPI Events from a Client or Server-to-Server

When you generate XAPI events from a client or from server-to-server, you configure the
Object Configuration Manager (OCM) so that the system call can find the IEO kernel from the
client. To support client generation of XAPI events, you also configure the client and server
jde.ini files. To support server-to-server generation of XAPI events, you configure jde.ini files
on both servers. The jde.ini file settings that are configured on both the client and server are
exactly alike. Some additional jde.ini file settings are required for the server.

Note

Registering XAPI events in jde.ini files will be phased out in the future in favor of defining
events in OneWorld database tables.

See Also
 Generating XAPI Events Using Database Tables

Setting Up the OCM for XAPI Client or Server-to-Server

You must configure the OCM to trigger XAPI events when running a BSFN on a client or for
server-to-server support. When you configure the OCM, include a specific environment and
ensure that no two duplicate mappings are in active status at the same time. The OCM setup
for XAPI is the same as the setup for real-time events.

To configure the OCM, access the Object Mapping Revisions form and enter XAPI in the
Object Type field. Configuring the OCM with the XAPI entry enables the system call to find
the IEO kernel. If the OCM is not properly configured, the system generates an error
message. OCM error messages for XAPI are the same as the OCM error messages for real-
time events.

See Also
 Working with the Object Configuration Manager in the Configurable Network

Computing Implementation documentation

 Mapping Objects in the Configurable Network Computing Implementation
documentation

209

 Setting Up the OCM for a Client or Server-to-Server

Setting Up the jde.ini for Client or Server-to-Server

To generate XAPI events from a client, you must configure the jde.ini file on both the client
and server. If you generate XAPI events using server-to-server, you must set up jde.ini files
on both servers.

Configure the registered events and filtered events settings in the XAPI section of both the
client and server jde.ini files as follows:

[XAPI]

Setting Default
Value Purpose

Registered
Events

 Defines and registers the EventTypes. The XAPICallType must be
registered in the jde.ini file on the server under the [XAPI] section in the
RegisteredEvents key. The EventType field is a Named ID and cannot
be more than 10 characters in length. Registered events include:

XAPIOPOUT

XAPIOPIN

XAPIOPLINE

XAPITEST

XAPIOPRSP

XAPIGBTEST

FilteredEvents *NONE Following are the valid values for filtered events.

*NONE - Disables event capturing. No events are communicated to the
IEO kernel from the Interoperability Event Interface

*ALL - Enables event capturing. All events are communicated to the
IEO kernel from the Interoperability Event Interface.

By default, the XAPICall filtering is set to *None in the jde.ini file. To
enable all of the XAPICAlls, set filtering as follows:

[XAPI]

FilteredEvents=*All

You must configure the event definition setting on the server, as follows. This setting is for
introspection by the connectors or the application server.

[XAPI]

Setting Default
Value Purpose

Event
Definition

The data structures used by the particular XAPICall must be registered
as keys in the jde.ini file on the server under the [XAPICallType]
section. All the XAPI event definition should define a DXAPIROUTE
data structure. For example, if XAPIOPLINE uses three data structures,

210

Setting Default
Value Purpose

the definition in the jde.ini file would be:

[XAPIOPLINE]

DS1=DXAPIROUTE

DS2=D4302150B

DS3=D4302150C

DS4=D34A1050E

Executor=NETEXEC

The Executor setting must be configured on the server, within the XAPI section, as follows.
This setting is not applicable for the client side.

[XAPI]

Setting Default
Value Purpose

Executor

The XAPI event subscriber from XPI must be included in the jde.ini file
on the server under the [XAPIExecutors] section, as follows:

[XAPIExecutors]

NETEXEC= den-pp6954083:6098

NETEXEC_TD=JDENET

If the jde.ini file is not properly configured, the following error message is written to the jde.log
file.

XAPI Event [Event Name] cannot be subscribed. Must have XAPI Definition in
the INI file.

Make sure the XAPI event and XAPI Executor information is defined in the jde.ini file.

You can ignore the following error message because XAPI subscription is persisted and
cannot be unsubscribed:

Can not unsubscribe XAPI event.

Generating XAPI Events from a OneWorld Server

If you generate XAPI events from the OneWorld server, additional jde.ini settings are
required. Use a text editor to manually edit and verify specific settings in the server jde.ini file.
The XAPI environment is defined in the DefaultEnvironment setting in the [SECURITY]
section of the jde.ini file.

211

Note

Registering XAPI events in jde.ini files will be phased out in the future in favor of defining
events in OneWorld database tables.

Following are additional jde.ini file settings that you might need to set.

WinNT:

[JDENET_KERNEL_DEF19]

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll

dispatchDLLFunction= _JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF20]

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll

dispatchDLLFunction=_JDEK_DispatchIEOMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDEITDRV]

DrvCount=3

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Note

The above settings are for Windows 2000 and NT. If you use a different platform, use the
following settings:

 AS400 HP9000B Sun or RS6000
EVN
dispatchDLLName

JDEIE libjdeie.sl libjdeie.so

EVN
dispatchDLLFunctio
n

JDEK_DispatchITMessage JDEK_DispatchITMessage JDEK_DispatchITMessage

212

IEO
dispatchDLLName

JDEIEO libjdeieo.sl libjdeieo.so

IEO
dispatchDLLFunctio
n

JDEK_DispatchIEOMessag
e

JDEK_DispatchIEOMessag
e

JDEK_DispatchIEOMessag
e

Drv1 RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

DRV3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so

 [XAPI]

Setting Default
Value Purpose

Registered
Events

 Defines and registers the EventTypes. The XAPICallType must be
registered in the jde.ini file on the server under the [XAPI] section in
the RegisteredEvents key. The EventType field is a Named ID and
cannot be more than 10 characters in length. Registered events
include:

XAPIOPOUT

XAPIOPIN

XAPIOPLINE

XAPITEST

XAPIOPRSP

XAPIGBTEST

FilteredEvents *NONE Following are the valid values for filtered events.

*NONE - Disables event capturing. No events are communicated to the
IEO kernel from the Interoperability Event Interface

*ALL - Enables event capturing. All events are communicated to the
IEO kernel from the Interoperability Event Interface.

By default, the XAPICall filtering is set to *None in the jde.ini file. To
enable all of the XAPICAlls, set filtering as follows:

[XAPI]

FilteredEvents=*All

Event Definition

The data structures used by the particular XAPICall must be registered
as keys in the jde.ini file on the server under the [XAPICallType]
section. The XAPI event definition should define a DXAPIROUTE
datastructure. For example, if XAPIOPLINE uses three data structures,
the definition in the jde.ini file would be:

[XAPIOPLINE]

DS1=DXAPIROUTE

213

Setting Default
Value Purpose

DS2=D4302150B

DS3=D4302150C

DS4=D34A1050E

Executor=NETEXEC

Executor

The XAPI event subscriber from XPI must be included in the jde.ini file
on the server under the [XAPIExecutors] section, for example:

[XAPIExecutors]

NETEXEC= den-pp6954083:6098

NETEXEC_TD=JDENET

See Also
 Generating XAPI Events Using Database Tables

Generating XAPI Events Using Database Tables

The following describes how to configure OneWorld database tables so that you can
generate XAPI events from a client or server. You define your XAPI events in the Single and
Container Event Definition (F90701) table. You update the Persisted Event Subscription
Information (F90702) table with subscription information about your XAPI events. In addition
to setting up the database tables, you configure the OCM and the server jde.ini file.

Configure the server jde.ini file as follows:

WinNT:

[JDENET_KERNEL_DEF19]

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll

dispatchDLLFunction= _JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF20]

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll

dispatchDLLFunction=_JDEK_DispatchIEOMessage@28

maxNumberOfProcesses=1

214

numberOfAutoStartProcesses=0

[JDEITDRV]

DrvCount=3

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Note

The above settings are for Windows 2000 and NT. If you use a different platform, use the
following settings:

 AS400 HP9000B Sun or RS6000
EVN
dispatchDLLName

JDEIE libjdeie.sl libjdeie.so

EVN
dispatchDLLFunction

JDEK_DispatchITMessage JDEK_DispatchITMessage JDEK_DispatchITMessage

IEO
dispatchDLLName

JDEIEO libjdeieo.sl libjdeieo.so

IEO
dispatchDLLFunction

JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage JDEK_DispatchIEOMessage

Drv1 RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

DRV3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so

The Executor setting must be configured on the server, within the XAPI section, as follows:

[XAPI]

Setting Default
Value Purpose

Executor

The XAPI event subscriber from XPI must be included in
the jde.ini file on the server under the [XAPIExecutors]
section, as follows:

[XAPIExecutors]

NETEXEC= den-pp6954083:6098
NETEXEC_TD=JDENET

If the jde.ini file is not properly configured, the following error message is written to the jde.log
file.

215

XAPI Event [Event Name] cannot be subscribed. Must have XAPI Definition in
the INI file.

Make sure the XAPI event is defined in the Single and Container Event Definition (F90701)
table and that XAPI Executor information is defined in the jde.ini file.

You can ignore the following error message because XAPI subscription is persisted and
cannot be unsubscribed:

Can not unsubscribe XAPI event.

See Also
 Generating XAPI Events from a Client or Server-to-Server

 Generating XAPI Events from a OneWorld Server

 Setting Up the OCM for a Client or Server-to-Server

XAPI Inbound Response

This chapter discusses the XAPI Response portion of the XAPI structure. A XAPI inbound
response happens after a XAPI event is generated.

When the return XML document is received, it is routed to the XML service kernel. The XML
service kernel saves the XML document to disk, creates a unique handle, and then calls the
BSFN that is named in the XML document. The following diagram illustrates the flow of a
XAPI response. The dotted line indicates the flow.

The inbound portion of the XAPI functions as follows:

92. An inbound XML document is passed to the XML service kernel.

216

93. The XML service kernel creates a unique XML handle and stores the document on
disk.

94. The XML service kernel reads the XAPICallMethod attribute from the XML document
and passes the XML handle as the parameter to the specified BSFN.

95. The BSFN (XAPICallMethod) uses XML service APIs to read and parse the XML
data into OneWorld data.

96. The BSFN (XAPICallMethod) uses XML CallObject to send the reply to the OneWorld
client.

See Also
 XAPI Outbound Events

XAPI Response APIs

The following APIs are available for you to generate an inbound XAPI response:

• jdeXML_GetDSCount

• jdeXML_GetDSName

• jdeXML_ParseDS

• jdeXML_DeleteXML

For specific information about the XML service kernel, see the Online API documentation.

Example: Creating an Inbound XAPI Response

<?xml version="1.0" encoding="utf-8" ?>
- <jdeRequest pwd="JDE" type="xapicallmethod" user="JDE" session=""
environment="DV7333" sessionidle="">

- <header>
 <eventVesrion>1.0</eventVesrion>
 <type>XAPIOPIN</type>
 <user>JDE</user>
 <application>XPI</application>
 <version />
 <sessionID />
 <environment>DEVXPINT</environment>
 <host>denxpi7</host>
 <sequenceID />
 <date>09122001</date>
 <time>094951</time>
 <scope />
 <codepage>utf-8</codepage>
 </header>
- <body elementCount="3">
- <params type="D4205030A" executionOrder="1" parameterCount="24">
 <param name="type" />
 <param name="dateStamp" />
 <param name="timeStamp" />
 <param name="szRequestId">1|ZJDE0001</param>

217

 <param name="szBusinessObjective">Maximize_Service</param>
 <param name="mnResultNumber">0.0</param>
 <param name="mnTotalCost">0.0</param>
 <param name="mnTotalDeliveryCost">0.0</param>
 <param name="mnTotalPrice">0.0</param>
 <param name="mnTotalProfit">0.0</param>
 <param name="mnTotalMargin">0.0</param>
 <param name="mnTotalValue">0.0</param>
 <param name="mnLatestLineDate">0.0</param>
 <param name="mnNumberOfBackorders">0.0</param>
 <param name="mnNumberOfSubstitutions">0.0</param>
 <param name="mnOrderFillRate">0.0</param>
 <param name="szErrorCode" />
 <param name="szErrorDescription" />
 <param name="szOrderNumber">3115|SO|00200</param>
 <param name="nAllowPartialOrderShip">0</param>
 <param name="nAllowMultisource">0</param>
 <param name="nAllowBackorders">0</param>
 <param name="nAllowSubstitution">0</param>
 <param name="nAllowPartialLineShip">0</param>

 </params>
- <params type="D4205030B" executionOrder="2" parameterCount="28">
 <param name="type" />
 <param name="dateStamp" />
 <param name="timeStamp" />
 <param name="mnLineNumber">1.0</param>
 <param name="mnOriginalLineNumber">1.0</param>
 <param name="mnCacheLineNumber">1.0</param>
 <param name="mnRequestedItem">60011.0</param>
 <param name="mnAvailableItem">60011.0</param>
 <param name="mnAvailableAmount">25.0</param>
 <param name="jdAvaiableDate">09/12/2001 00:00:00</param>
 <param name="jdRequestedDate">09/10/2001 00:00:00</param>
 <param name="jdPickDate">09/11/2001 00:00:00</param>
 <param name="jdShipDate">09/11/2001 00:00:00</param>
 <param name="szShipLocation" />
 <param name="mnCost">0.0</param>
 <param name="mnDeliveryCost">0.0</param>
 <param name="mnPrice">0.0</param>
 <param name="mnProfit">0.0</param>
 <param name="mnMargin">0.0</param>
 <param name="mnValue">0.0</param>
 <param name="mnSubstitutionRatio">0.0</param>
 <param name="szShippingGroup" />
 <param name="szMultiSource" />
 <param name="szErrorCode" />
 <param name="szSuspectedCause" />
 <param name="nAllowPartialOrderShip">0</param>
 <param name="nAllowBackorders">0</param>
 <param name="nAllowSubstitution">0</param>

 </params>
- <params type="DXAPIROUTE" executionOrder="3" parameterCount="7">
 <param name="type" />
 <param name="dateStamp">09/05/2001 00:00:00</param> <param
name="timeStamp">13:54:04</param>

218

 <param name="ClientPort">6009</param>
 <param name="ClientIP">168045665</param>
 <param name="ClientMagicNumber">3</param>
 <param name="XAPIMethodID">OrderPromiseCallback</param>

 </params>
 </body>
 </jdeRequest>

Example: XAPI Response Parsing API Usage

The following example illustrates how the BSF uses the XML service APIs to read and parse
the XML data.

int iCurrentRecord;
 int iHeaderCount;

 DSD4205030A dsD4205030A = {0};
 DSD4205030B dsD4205030B = {0};

 #ifdef jdeXAPI_CALLS_ENABLED

 if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&
 jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))
 {
 iRecordCount = jdeXML_GetDSCount(lpDS->szXMLHandle);

 if (iRecordCount > 0)
 {
 for (iCurrentRecord = 0; iCurrentRecord < iRecordCount; iCurrentRecord++)
 {
 jdeXML_GetDSName(lpDS->szXMLHandle,
 iCurrentRecord,
 nidDSName);
 if (jdestrcmp(nidDSName,(const char*)"D4205030A") == 0)
 {
 jdeXML_ParseDS(lpDS->szXMLHandle,
 iCurrentRecord,
 &dsD4205030A,
 sizeof(DSD4205030A));
 }
 else
 {
 jdeXML_ParseDS(lpDS->szXMLHandle,
 iCurrentRecord,
 &dsD4205030B,
 sizeof(DSD4205030B));
 }

 }

 }
 if (iCurrentRecord == iRecordCount)
 {

219

 jdeXML_DeleteXML(lpDS->szXMLHandle);
 }
 }
 #endif

Setting the jde.ini File for the Inbound XML Store Location

WinNT:

[JDENET_KERNEL_DEF24]

krnlName=XML SERVICE KERNEL

dispatchDLLName=xmlservice.dll

dispatchDLLFunction=_XMLServiceDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

[JDEITDRV]

DrvCount=3

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

 XML Service
dispatchDLLName

XML Service
dispatchDLLFunction

Drv1 Drv2 Drv3

AS400 XMLSERVICE XMLServiceDispatch RTDRV ZDRV JDETRDRV

HP9000B libxmlservice.sl XMLServiceDispatch librtdrv.sl libzdrv.sl libjdetrdrv.sl

Sun or
RS6000

libxmlservice.so XMLServiceDispatch librtdrv.so libzdrv.so libjdetrdrv.so

[XAPI]

Setting Default
Value Purpose

XML
Directory

The XML document directory must be registered in the jde.ini file on the
server under the [XAPI] section in the XMLDirectory key. The key contains
the directory on the server where XML documents are to be stored, for
example:

[XAPI]

XMLDirectory=c:\builds\bdev\log\

220

Reliable Event Delivery

Reliable Event Delivery supports Z events, real-time events, and XAPI events. To use the
Reliable Event Delivery feature, you must define your events in database tables. You cannot
define your events in the jde.ini file.

The JDENET transport delivers Z events, real-time events, and XAPI events. Reliable event
delivery ensures recovery and delivery of an event when transport problems arise, including
some network problems. The following scenarios identify circumstances where events might
be lost but can be recovered and delivered.

• JDENET process is down.

• JDENET fails to deliver because the network link between sender and receiver is
permanently down.

• JDENET fails to deliver because the IPC buffer of the receiving kernel is full (sender
and receiver are on different boxes).

CAUTION

Reliable delivery covers failures related to the transport of the events only. Reliable delivery
does not provide “once and only once” type guarantee. Events might be lost and not
recovered (or duplicates redelivered) in the presence of process failures (client and server).

Real-time event delivery is reliable for transportation failures between the real-time API and
the Java connector, which includes IEO and EVN kernels. XAPI outbound event delivery is
reliable for transportation failures between the XAPI API and the Java connector, including
the IEO and EVN kernels. Z event delivery is reliable for transportation failures between the Z
event generator and the Java connector.

The level of reliability is configurable based on whether the event is reliable or volatile.
Volatile events are events that might be lost if the network or process fails and delivery is not
reliable. Reliable events could be lost in the case of process failures only. You can configure
the level of reliability for every event type. The level of reliability depends on whether the
event is a business critical event. For example, you might configure an inquiry as volatile,
because an inquiry is not a critical business event and you don’t want the system to
continually look for the event should the event fail. You might configure a purchase order as
reliable, because this is a critical business event and you do want the system to continually
look for the event and make the transaction update. Volatile events offer better performance
than reliable events, but delivery is not reliable if the event is lost during transportation.

Real-time and XAPI events can be single, aggregate, or composite events. (See Real-Time
Events for a definition for each of these types of events). A composite event consists of single
events. The composite event and the single events that make up the composite event can
have different levels of reliability. For example, you register composite events as RTSOOUT
with a level of reliability as reliable, and you register single events as RTSOLINE with a level
of reliability as volatile. The level of reliability configured for RTSOOUT will not override the
level of reliability configured for RTSOLINE. The rationale for this is that the reliability of
events is based on the event type. If you decide that single event types are not important
enough to configure as reliable delivery, then the single events that are created during
composite event creation should have the same level of reliability as other single events.

The APIs you use to create real-time and XAPI events are not affected by the level of
reliability.

221

Setting Up Your System for Reliable Event Delivery

To use the reliable event delivery feature, you must define your events in the Single and
Container Event Definition (F90701) table. Use the Interoperability Event Definition (P90701)
program to accomplish this task. On the Event Entry form, the Reliable Delivery field must be
set to reliable (either Y or 1), and the Threshold Timeout field must be set. The Timeout
Threshold field is in seconds and applies only to the reliable events for which an initial
delivery attempt fails. This field determines the maximum amount of time that has to pass
from the event creation to the time when the event is going to be discarded if not delivered
successfully. Events with a threshold of zero never expire.

Two database tables, Event Protocol (F90704) table and Event Link (F90703) table, enable
communication between the sender and receiver. Event Protocol stores information that is
related to the protocol that delivers an event. Event Link stores information that is related to
the reliable event for which initial delivery failed. These tables are updated by the system
when an event is created.

Caution

Both the sender and receiver must access the same instances (the data sources are the
same) of the interoperability database tables.

Note

If the reliable event is not found, the following message might be generated in the client,
Callobject, IEO, and EVN logs:

RDEL0000045 – Could not open tables for reliable event delivery (F90703 and
F90704). Reliable event delivery will be disabled.

If you receive this error message, verify your events are defined in the Single and Container
Event Definition (F90701) table, that the Reliable Delivery and Threshold Time fields are set
as discussed above, and that the Event Protocol and Event Link tables exist.

See Also
 To add a single event in the Interoperability Guide for step-by-step procedures on

how to define a single event in the Single and Container Event Definition (F907034)
table.

 To add a container event in the Interoperability Guide for step-by-step procedures on
how to define a single event in the Single and Container Event Definition (F907034)
table.

The Events Self-Diagnostic Utility Tool supports Z events and real-time events. Normally your
System Administrator runs the Self-Diagnostic Utility Tool to verify that your events
infrastructure features are functional. The Self-Diagnostic Utility tool can be used on the
following platforms:

• Windows 2000 and NT

Events Self-Diagnostic Utility Tool

222

• AS400

• HP9000B

• Sun or RS6000

The Events Self-Diagnostic Utility Tool analyzes the infrastructure of an event and reports
configuration, kernel, and network problems that are detected as the event is processed
through your system. You can use the tool to perform a comprehensive analysis, or you can
configure the tool to perform an analysis that is specific for your needs. The Events Self-
Diagnostic Tool uses XML comparator to compare XML documents to detect the presence of
any data corruption in event information. The tool also suggests actions that you can take to
resolve problems. You can run this tool on either a server or a client or both.

Events Self-Diagnostic Utility Tool Process Overview

• The jde.ini file has a configuration error.

• The ZEVG library is unavailable or the IEO or EVN kernel process is down.

• AIX

After an event is generated at the call object API on the server or the application API on the
client, problems that cause the event to fail can occur. Problems that might occur include the
following:

• Subscribers and supported events have not loaded successfully.

• One or more of the kernels involved in the event delivery is corrupting the event
information.

• The network link between any or all of the components involved in this infrastructure
is permanently down.

When the Events Self-Diagnostic Tool detects a problem, the tool sends messages to you
explaining the problem and suggesting resolutions and also logs the error in the appropriate
log files. The message that is sent to you indicates the log files you should review. The
Events Self-Diagnostic Tool detects problems in the following ways:

• Performs an in-depth interoperability-oriented analysis of the jde.ini file.

• Reads the Single and Container Event Definition (F90701) table to determine
whether the event is defined.

• Reads the Persisted Event Subscription Information (F90702) table to determine
whether the persistent subscription/un-subscription request, which is sent to the EVN
kernel by the tool, is successful.

• Reads the Object Configuration Manager to find the location of the IEO kernel. In this
process, the tool ensures there is only one active entry for the RTE object.

• Checks interconnectivity within events infrastructure by sending self-diagnostic
connectivity message calls.

• Generates self-diagnostic events to test different services offered by the
infrastructure and to verify event information against possible data corruption.

The above list is general and not all inclusive. For example, if you configure your system to
use the jde.ini file to register events, the tool uses the jde.ini file instead of the F90701
database table to determine whether events are defined.

Note

223

Events Self-Diagnostic Utility Tool Components

The Events Self-Diagnostic Utility Tool consists of three components:

• Event generator

• Event receiver

• XML comparator

Event Generator

The Events Self-Diagnostic Utility Tool starts with an event generator process. During startup,
the event generator performs basic background analysis of the events infrastructure, which
includes the following:

• Verification of interoperability specific sections of the jde.ini file

• Verification of real-time events definition

• Intercomponent connectivity check within the events infrastructure

If startup is successful, the event generator tests different features offered by the events
infrastructure. These features include generating and testing different types of events, listing
the valid events, checking the event template, and testing subscription information. You can
run one or more of these tests by using one of the following methods:

• Running the test against an existing configuration file that you previously setup

• Running the test against a new configuration file, which you will setup

• Choosing options and executing the test from the tool’s command line menu.

After successful generation of a self-diagnostic event, the event is passed through the event
infrastructure system. To test the accuracy of the event information that is being conveyed
through the system, the event generator attaches an additional packet, in the form of XML
stream, to the event. The diagnostic XML packet contains information about the event. At
each stage of communication, each kernel (or component) verifies the event information by
comparing standard message packets with the self-diagnostic XML packet. The kernel (or
component) logs the result of this comparison at each point of comparison in respective log
files. The accuracy of the information in template requests is tested the same way.

Event Receiver

The event receiver acts as a NULL transport driver that subscribes itself for self-diagnostic
events during EVN kernel startup. The event receiver compares and verifies the XML
documents contained in the received self-diagnostic events. The event receiver logs the
result of this comparison in the EVN kernel log file.

XML Comparator

The event generator uses the XML comparator tool to test the accuracy of event information
or an event template request being passed through the system. The XML comparator

224

compares any two given XML documents for either equivalency or similarity or both. To
perform the comparison, the XML comparator requires three XML documents. Two of the
documents are the actual XML documents to be compared. The third document is an
exclusion XML document that contains nodes that are to be ignored during the comparison of
the two given XML documents.

Setting Up Database Tables for Self-Diagnostic Events Generation

If you use database tables to generate events, the Interoperability Event Definition (F90701)
table must contain the self-diagnostic events. You use the Interoperability Event Definition
(P90701) program to add both container and single events. See Defining Events for more
information about adding new single and container events to the Interoperability Event
Definition table.

Setting Up the jde.ini for Self-Diagnostic Event Generation from a Server

If you configure the jde.ini file to generate events from the server, you must register the
following self-diagnostic events in the Registered Events key in the [INTEROPERABILITY]
section of the jde.ini file:

• SDSINGLE – Self-diagnostic single event

• SDCOMP – Self-diagnostic composite event

• SDAGGREG – Self-diagnostic aggregate event

You must include a data structure section that corresponds to each of the self-diagnostic
events. The data structure for all of the self-diagnostic events is D9070001, which includes all
of the possible data types that any event can have. The jde.ini settings are shown below:

 [INTEROPERABILITY]

Setting Default
Value Purpose

Registered Events Defines and registers the EventTypes. The EventType field is
a Named ID and cannot be more than 10 characters in
length. The EventType must be registered in the jde.ini file
on the server under the [INTEROPERABILITY] section in
RegisteredEvents key. The key contains comma-separated
values, for example:

[INTEROPERABILITY]

RegisteredEvents=SDSINGLE,SDCOMP,SDAGGEREG

[DATA_STRUCTURES]

DS1=

DS2=

DS3=

DS4=

D9070001

D9070001

D9070001

D9070001

Defines data structure for self-diagnostic events. All of the
self-diagnostic events use the same data structure,
D9070001).

225

For more information about configuring the jde.ini files, see Generating Real-Time Events
from a Client or Server-to-Server or Generating Real-Time Events from a OneWorld Server.

Executing the Event Self-Diagnostic Tool

To use the Event Self-Diagnostic Tool, you must have a valid OneWorld user ID, password,
and environment. If you are using the tool from a OneWorld server and you do not supply the
information as parameters, the username, password, and environment information is read
from the security section of the server jde.ini file. If you are using a client, you must enter a
valid OneWorld username, password and environment. If you do not enter this information,
the tool will stop. If you are generating events from a client, you must also have a valid OCM
mapping for RTE or Z events to a valid server.

Before You Begin
 Ensure PORTTEST runs successfully on your system.

 Ensure one instance of the IEO and eVN kernel are running.

Start the Tool

To start the Events Self-Diagnostic Tool on the Enterprise Server, double-click on the
executable file at the following location:

$system\bin32\sdtool.exe

Or you can pass parameters as follows:

$system\bin32\sdtool.exe username password environment

To start the tool from the client side, you must include parameters as follows:

$system\bin32\sdtool.exe username password environment

Note

$system refers to the path where the application is installed on your system.

Upon startup, the Events Self-Diagnostic Tool analyzes the jde.ini file, verifies real-time event
definition, and checks the inter-component connectivity within the events infrastructure. As
the tool analyzes each of these areas, it provides feedback to you, informing you what is
being analyzed and whether the analysis was successful. The following sample shows the
message for successful diagnosis of the startup areas.

226

If the tool detects a problem in any one of the startup areas, the tool terminates the diagnosis
and sends you a message that explains the problem encountered and suggestions for
resolving the problem. The following sample shows the message when the tool detects a
problem in one of the startup areas.

When startup finishes, the tool becomes self-instructional in that it provides you with a choice
of actions, prompts you to enter one or more actions, and then gives you immediate
feedback. After successful startup, the tool gives you a choice of using a customized
configuration file or using the tool’s command line to run the diagnosis, as illustrated in the
following sample:

227

To create a new configuration file or to use a configuration file that you previously created,
type 1 at the prompt. The tool asks you to enter the name of the configuration file. If you want
to use an existing configuration file, type the filename (with an xml extension) at the prompt
and press Enter (or Return). The diagnosis against your previously built configuration file
starts.

If you want to create a new configuration file, type the new filename using xml as the filename
extension, and then press Enter (or Return). If you want to use the command line, type 2 at
the prompt. Whether you are creating a configuration file or using the command line, the first
set of actions are:

97. Generate/Test Real Time Event(s).

98. Generate/Test Z Event.

99. Test all types of events.

100. Get Event List (List of events supported).

101. Get Event Template.

102. Subscription Services.

103. Comprehensive System Analysis.

104. Go back to previous page.

You choose one or more of these actions by typing the action number at the prompt. For
multiple actions, separate the action number with a comma (,). Actions 1 and 6 offer a set of
actions from which you choose additional actions. Actions 2, 3, 4, 5, and 7 start the
associated test. Action 1 (Generate/Test Real Time Event(s)) offers the following choices:

1. Single.

2. Aggregate.

3. Composite.

4. All.

5. Go back to previous menu.

Action 6 (Subscription Services) offers the following choices:

228

1. Persistent Subscribe.

2. Persistent Unsubscribe.

3. Non-Persistent Subscribe.

4. Non-Persistent Unsubscribe.

5. All.

6. Go back to previous Menu.

For each set of actions, the tool offers single actions, the ability to run all of the actions for
that action set, or the ability to return to the previous set of actions. If you want to run one or
more actions, but not all actions, at the prompt, type the appropriate action numbers
separated by a comma. To run all of the actions for that menu set, type the appropriate action
number (all or comprehensive action) at the prompt. After you select one or more actions for
a component and press Enter or Return, you can go back to the previous set of actions and
make a different choice. The action that you previously chose cannot be deselected, that is, it
can’t be cancelled or deleted and will run in addition to your new choice.

Whether you are creating a new file or using the command line, when a problem is detected,
the tool sends you immediate feedback identifying the problem and indicating the log file that
you should view. When the tool completes the diagnosis for a set of actions, the tool provides
feedback that the system diagnosis successfully completed. This does not mean there are no
errors, it means that the tool was able to successfully complete that specific test. The
following sample illustrates a successful test for generating a composite event:

The following sample illustrates an error condition:

229

When the tool has tested all of the actions that you chose, a congratulations or failure
message is sent to you. This final message is in addition to the success and error message
for each specific action.

The following sample shows completion of the diagnosis with a congratulations message.

The following sample shows the failure message.

230

231

Appendices

Interoperability Features Created by J.D. Edwards

J.D. Edwards has used some of the technologies and models described in this guide to
create interoperability features. The information in this appendix describes one method you
can use. This method uses flat files, database files, and master business functions.

These predefined features make it easier for third parties to interface with OneWorld. You
can use similar procedures to create your own interoperability features. You can use the
following interoperability features and standards to shorten design time, provide consistency,
and provide easier maintenance.

Transactions Into OneWorld

There are three different supported entry points into the J.D. Edwards system using this
method:

• flat file (ASCII text file)

• database table

• Master Business Function (MBF) interactive call

The format of all data being imported from external systems must be presented in the J.D.
Edwards defined format for the chosen mode of interface.

Inbound Through a Flat File

An external source creates a flat file in the J.D. Edwards specified format for the transaction
or master file. The flat file format uses standard delimiters for different data elements.

Unedited inbound data in the flat file is converted into records in J.D. Edwards database
tables (unedited transaction tables). Conversion of the flat file data into J.D. Edwards
database table records may be performed using existing flat file to database conversion
utilities or by running an inbound conversion batch process. A generic business function
within the batch process maps the flat file into the database tables.

The unedited transactions tables are processed by an Inbound Processor batch process to
call the appropriate Master Business Function to update the J.D. Edwards live data.

If required, a preprocessor business function can be run from the Inbound Processor batch
process to establish key information matching the unedited transaction record to the original
application record, for example, a key to a cash receipt or purchase receipt.

If the master business function returns errors for the transaction, the appropriate record is
flagged on the audit report and errors are sent to the message center in the form of action
messages. These action messages, when invoked, call a revision application that allows
modification of the unedited transaction data directly.

Transactions that have been successfully updated to the live files are flagged as successfully
processed in the unedited transaction tables.

232

Inbound Transactions to Unedited Transaction Tables

Inbound transactions may be written directly to the unedited transaction tables that are
already in a database format. The unedited transaction tables are processed by an Inbound
Processor batch process to call the appropriate Master Business Function to update the J.D.
Edwards live data.

Optionally, the Inbound Processor batch process may be run in a subsystem. The key
information written to the unedited transaction table is added to the subsystem data queue.
This triggers the Inbound Processor batch process that processes that specific key.

A user supplied confirmation function can be executed after the processor batch process
completes. The purpose of the confirmation function is to alert the third party that a
transaction that they sent into the J.D. Edwards system has been processed. They are also
notified whether the transaction was processed successfully. These confirmation functions
are specific to a process and thus are only given the keys to the transactions (EDUS, EDBT,
EDTN, EDLN) and the successfully processed flag. The third party must decide what the
confirmation function actually does with this information. These vendor-specific
interoperability inbound confirmation functions are called from the Inbound Processor batch
program's through the Call Vendor-Specific Function - Inbound business function. The
confirmation functions are written by third parties to their own specifications are most likely
written outside of OneWorld. However, they use a J.D. Edwards defined data structure.

If required, a preprocessor will run from the Inbound Processor batch process to establish
key information matching the unedited transaction record to the original application record
and so on, for example, the key to a cash receipt or purchase receipt.

If the master business function returns errors for the transaction, the appropriate record is
flagged on the audit report and errors are sent to the message center in the form of action
messages. These action messages, when invoked, call a revision application that allows
modification of the unedited transaction data directly.

Transactions that have been successfully updated to the live files are flagged as successfully
processed in the unedited transaction tables.

Inbound Transactions Passed Directly to Master Business Functions

Inbound transactions may be passed directly to the J.D. Edwards master business functions
for processing. No data is stored in the unedited transactions tables.

The master business function is called directly through support from JDENET. Certain J.D.
Edwards internal APIs must be used to call the master business function directly. The master
business function updates the live data if no errors are found.

Messages are added to the messages linked list in the event of errors. It is the responsibility
of the calling program to handle these exceptions

Transactions From OneWorld

Transactions that need to be exported to external systems are processed in a manner similar
to the inbound transactions, except in reverse. The logic to determine whether a transaction
needs to be interfaced to another system is set up in a separate table, the Data Export
Control table. In that event, the master business function will handle logging all adds,
changes, and deletes to the J.D. Edwards live data to the unedited transaction tables.

233

Data is formatted to the specifications of the connecting system, be that through the use of a
flat file, a third-party database, or an external API call. This export will be done by vendor-
specific batch processes.

Common Pieces of the Outbound Process

An application or batch process enters data and calls a master business function to update
the J.D. Edwards database.

Master business function (EditLine) determines whether an interface to an external system is
applicable by checking the value of a processing option that contains a transaction type. If the
processing option is not blank, the master business function will be interfacing to an external
system.

During the EndDoc processing when the transaction is being written to the J.D. Edwards
database, records are also written to the unedited transaction tables. For inquiries, additions,
and deletions of a J.D. Edwards database record, one record is written to an unedited
transaction table. For changes to a J.D. Edwards database record, two records can be written
to an unedited transaction table. These records contain an image of the database record
before the change and an image of the database record after the change. A processing
option determines whether the before image record is written.

After a transaction has been written, a key is sent from the master business function process
to the subsystem data queue to trigger processing of a newly added record in the unedited
transaction table. The subsystem data queue will launch an outbound subsystem batch
process. A generic outbound subsystem batch process handles all outbound transactions.

The outbound subsystem batch process reads records from the Data Export Control table to
determine the vendor-specific business function or batch process to run. The vendor-specific
business function must be written to J.D. Edwards specifications relative to the data structure
and the vendor defines its name and location within the Data Export Table. A vendor-specific
batch process can also be defined in the Data Export table. The outbound subsystem batch
process recognizes whether a function or batch process has been requested. A processing
log record is written for tracking purposes. If the function method is requested, the specified
function is called real-time within the subsystem batch process. If the batch process method
is requested, it calls the batch process only if the delayed option is not specified. To complete
the processing for the delayed option, the user must set up the appropriate batch process in
OneWorld Scheduler to process the correct records in the processing log table as often as
required.

Knowledge of pending outbound transactions is retained in persistent storage until the third
party overtly indicates to J.D. Edwards that they have successfully processed the transaction.
J.D. Edwards provides an outbound confirmation function that the third party must use to
confirm success. This applies to both the batch process and function methods. The third
party can process real-time or defer to any downstream process. When the third party
completes their process, they need to call this outbound confirmation function to let J.D.
Edwards know that we can update the transaction as successful and make it eligible for
purging.

The outbound subsystem batch process tracks the transactions processed, the vendor-
specific functions and batch processes that are run, and whether the functions and batch
processes were successful. This information is stored in the Processing Log table. If all
vendor-specific batch processes were successful, the records in the unedited transaction
tables for the transaction are updated as successfully processed.

The Processing Log table contains a foreign key back to the data Export Control table. This
enhances the recovery capabilities in that a program can look at a process control record and

234

by looking back at the associated data export control record, can know what would be
required to reprocess it.

WorldSoftware Coexistence

When a client is running OneWorld in coexistence mode, transactions may be entered either
through a OneWorld application or a WorldSoftware program. For data export to external
systems to work in this configuration, WorldSoftware programs need to write to the unedited
transaction tables.

Database triggers, written for the AS/400 database in RPG-ILE, test to determine whether
data needs to be exported. When it does, they write to the unedited transaction tables.

Net Change Considerations

Changing a set of data elements of a transaction to new values (including the value of blank)
is referred to as "Net Change Processing".

Net change is handled by the deliberate use of NULL. A NULL value in a field indicates to the
master business function that this inbound field is not to be changed from its current value.
Any other value in the inbound field is validated and subsequently updated to the database.

To handle net change in this manner there are some considerations:

• When a record is inserted to a database, any fields that are NULL are initialized to
one blank. For the unedited transaction tables, an additional characteristic is required
whereby the database middleware does not initialize a NULL value to blank. This
allows a table column to have a value of NULL, which can be assigned to a Master
Business Function data structure parameter.

• Currently the OneWorld Development Tools initialize data structures to blanks when
a form is initialized. A system function is needed whereby a data structure can be
initialized to NULL. This would allow net change logic to be used in event rules and
named event rules by permitting them to initialize a data structure to NULL.

• You can initialize controls and variables to assign a value of NULL. This allows event
rules and named event rules to assign NULL to controls and variables before passing
the values to a master business function data structure.

Information Structure

Information used in the Interoperability module can be divided into master file maintenance
and transaction processing. The file layouts of these files can be found in the online
documentation. The following information is available.

• Master files

• Data export control

This table contains records that specify the vendor-specific functions, batch
processes, and batch versions to run for a transaction and document type
combination. It also contains information on which types of records (adds,
updates, etc.) are added to the unedited transaction tables.

• Flat File Cross-Reference Table

This table contains cross-reference information about a transaction. This
information will be flat file name, direction of transaction, application tables used
by the transaction, and the record types of the application tables.

235

• Transaction files

• Processing log

This table contains information on whether vendor-specific functions and batch
processes processed a transaction successfully.

Creating Transactions Into and From OneWorld

This chapter defines the standards that are common to creating both inbound and outbound
transactions.

Transaction Name

The transaction name must be defined in user defined code 00/TT in the Pristine
environment. The name starts with "JDE" and can be up to eight characters in length. The
following examples illustrate a proper transaction name:

• JDERR for Receipt Routing Transaction

• JDEWO for Work Order Header Transaction

Unedited Transaction Tables

Each transaction has its own set of tables, except when an existing set of tables meets the
needs of the transaction. "Meeting the needs of the transaction" means that the existing set
of tables contains all of the required fields for the new transaction. These existing tables must
follow interoperability standards. They should be Z1 tables for interoperability, not EDI tables.

One set of tables is used by both the inbound and the outbound directions of an internal
transaction within a system. For example, in the Sales Order system, for a sales order, the
inbound Customer Order (850) and the outbound Order Acknowledgment (855) share a set of
tables under this standard.

Use the following guidelines to determine the based-on table:

• Inbound is based on the application table that is updated with data from the unedited
transaction table

• Outbound is based on the application table that has data extracted from it into the
unedited transaction table

If the unedited transaction table is used for both inbound and outbound transactions, the
based-on table should be the same application table. In the above Sales Order example with
an inbound Customer Order and an outbound Order Acknowledgment, the detail unedited
transaction table would be based on the F4211 table.

The unedited transaction table is named after the based-on table with "Z1" as the suffix. For
example, if the application table is F4211, the unedited transaction table would be F4211Z1.
Subsequent transaction tables based on the same application table will have Z2, Z3, and so
on as the suffix.

If the unedited transaction table exceeds 250 columns or has a record length greater than
1968, an additional transaction table is needed for the remaining columns. Columns in the
additional transaction table should contain infrequently used data. The additional transaction
table is named after the primary transaction table with a letter, starting with A, after the Z1

236

suffix. For example, if the primary unedited transaction table is F4211Z1, the additional table
would be F4211Z1A.

The beginning of the table has the following columns, which act as control fields:

• User ID (EDUS) - key field

• Batch Number (EDBT) - key field

• Transaction Number (EDTN) - key field

• Line Number (EDLN) - key field

• Document Type (EDCT)

• Transaction Type (TYTN)

• Translation Format (EDFT)

• Transmission Date (EDDT)

• Direction Indicator (DRIN)

• Number of Detail Lines (EDDL)

• Processed (EDSP)

• Trading Partner ID (PNID)

• Action Code (TNAC)

You must use the key structure above.

The following tables show an example of the use of Line Number for net change processing,
where UB stands for the image of the record before the update and UA stands for the image
of the record after the update. This example ignores table layout standards.

Header Table

User

ID

Batch

Number

Transaction

Number

Line

Number

Action Order

Number
TI 77 100 1 UB 2000

TI 77 100 2 UA 2000

Detail Table

User ID Batch
Number

Transaction
Number

Line
Number

Action Order
Number

Order Line

TI 77 100 1 UB 2000 1

TI 77 100 2 UA 2000 1

TI 77 100 3 UB 2000 2

TI 77 100 4 UA 2000 2

The end of the table has columns that are reserved for user and audit fields.

• User Reserved Code (URCD)

• User Reserved Date (URDT)

237

• User Reserved Amount (URAT)

• User Reserved Number (URAB)

• User Reserved Reference (URRF)

• Transaction Originator (TORG)

• User ID (USER)

• Program ID (PID)

• Work Station ID (JOBN)

• Date Updated (UPMJ)

• Time of Day (TDAY)

The middle of the table has all of the columns from the based-on application table, excluding
user reserved and audit field columns. An exception to this is when the transaction table is
near the 250-column limit or the 1968-record length limit. In this case, columns from the
application table that most likely will not be needed should be excluded.

Prefixes for the table columns are SY for the header and SZ for the detail.

Change/match transaction tables, such as a cash receipt or purchase receipt, might require
additional columns that correspond to user input capable controls on an interactive form.

A header table is not required for every transaction.

Revision Application

This application is used to correct data and to add new transaction records. The application
will call the purge NER to do deletions of records. The name is based on the detail unedited
transaction table.

For example, if the tables for Sales Order Entry were F4201Z1 and F4211Z1, the application
would be called P4211Z1.

Purge Batch Process and Named Event Rules

The purge batch process should have one or two sections. The number of sections depends
on the unedited transaction tables. The purge batch process calls the purge NER. The name
of the purge batch process is based on the revisions application with a P suffix. For example,
if the revisions application is P4211Z1, the purge batch process is R4211Z1P.

Purge named event rules has two modes:

• Header mode, which deletes the header record and all associated records
independent tables.

• Detail mode, which deletes the detail record and all associated records in dependent
tables.

The purge NER is named after the purge batch process. Only eight characters are allowed
for the NER name. If the name has nine characters using these standards, remove the P
suffix. For example, if the purge batch process is R4211Z1P, the purge NER will be
N4211Z1P.

When a "before image" for net change is deleted, the corresponding "after image" is also
deleted. When an "after image" is deleted, the corresponding "before image" is also deleted.

238

Subsystem Business Function

There are two generic subsystem business functions Add Inbound Transaction To
Subsystem Queue (B0000176) for inbound and Add Transaction To Subsystem Queue
(B0000176) for outbound transactions. These functions write a record to the subsystem data
queue to specify a batch process that needs to be awakened in the subsystem.

The business function starts processing of a Batch of One (single transaction). The business
function also passes keys to the subsystem data queue.

The data structure for the inbound transaction is the batch process name (OBNM), version
(VERS), user ID (EDUS), batch number (EDBT), transaction number (EDTN), line number
(EDLN), suppress error message (EV01), confirmation function name (FCNN), and
confirmation function library (FCNL).

The data structure for the outbound transaction will be line number (EDLN), transaction type
(TYTN), document type (DCTO, and action code (TNAC).

Creating Transactions into OneWorld

This chapter contains information specific to creating inbound transactions. It refers to
common standards for creating inbound and outbound transactions.

Refer to Transactions Into and From OneWorld for more information about these standards.

Creating an Inbound Transaction

To create an inbound transaction complete the following steps:

105. Name your transaction.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

106. Create the inbound unedited transaction tables.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

107. Create a revision application.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

108. Create an inbound processor batch program.

This batch process calls a master business function to edit data and update
application tables. It might need modifications for Source of Data and Change Logic.

Errors are sent to the Message Center. An audit report listing transactions in error
and a single line stating the total number of transactions that were successfully
processed.

The batch process can have a processing option for an automatic purge. The batch
process may need preprocessors to match transaction records to application records.

239

The data structure of the batch process, which gets populated by the subsystem, will
be user ID (EDUS), batch number (EDBT), transaction number (EDTN), line number
(EDLN), function name (FCNN), and function library (FCNL).

If a function name and a function library were passed into the data structure through
the subsystem, call the Inbound Vendor-Specific Confirmation Function (B0000192).

The batch process should have a version that is called form the menu and a version
that is called through the subsystem. The name of the batch process is based on the
detail unedited transaction table with the letter I (for Inbound) as a suffix. For
example, if the tables for Sales Order Entry were F4201Z1 and F4211Z1 the batch
process would be called R4211Z1I.

109. Create a purge batch process and named event rule over the inbound unedited
transaction tables. Refer to Transactions Into and From OneWorld.

110. Create a new version of the inbound conversion batch process (R47002C) for
your transaction.

There is one batch process, R47002C. Each transaction needs its own version of the
batch process. New transactions must be added to UDC 00/TT.

111. Add transaction to Flat File Cross Reference Table.

Add your transaction and its unedited transaction tables to the Flat File Cross
Reference Table *(F47002) in the pristine environment. You can use P47002 to do
this. When you create the flat file, leave it blank so that it can be overwritten with
data.

Inbound Flat File

The first field in a flat file record is the record type, which has a value determined by the
record type UDC table 00/RD. The hard-coded values are:

1 - Header

2 - Detail

3 - Additional Header

4 - Additional Detail

5 - SDQ

6 - Address

7 - Header Text

8 - Detail Text

The format of the record in the flat file must follow the format of the table. This means that
every column in the table must be in the flat file record and the columns must appear in the
same order as in the table.

For example, suppose a record in the header table looked like the following (This example
ignores table layout standards.):

Name Address City Zip

240

Joe <Blank> Denver 80237

The "record" in the flat file would look like the following. Notice the "1" that corresponds to a
header record type and the blank space that corresponds to the <Blank> in the Address
column.

"1","Joe"," ","Denver"," 80237”

Any field delimiter and separator may be used as long as they do not interfere with the
interpretation of the fields.

Dates must be in the format MM/DD/YY. Numeric fields must have a decimal as the place
keeper. A comma should not be used.

If you are using a PC, you must be able to map a drive on the PC to the location of the flat
file.

Creating Transactions from OneWorld

This chapter contains information about creating outbound transactions. It refers to common
standards for creating transactions from OneWorld. It includes information about the following
topics:

• Master business function (EndDoc)

• Outbound purge batch process

• Flat file cross reference

► To create a transaction from OneWorld, complete the following tasks:

1. Name your transaction.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

2. Create the outbound unedited transaction tables.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

3. Create a revision application.

Refer to Creating Transactions Into and From OneWorld for more information about
these standards.

4. Modify your Master Business Function EndDoc module.

EndDoc updates application tables.

EndDoc writes records to the unedited transaction tables based on the Transaction
Type processing option.

The unedited transaction table has the key structure User ID (EDUS), Batch Number
(EDBT), Transaction Number (EDTN), and Line Number (EDLN), which is populated
by the master business function.

EDUS is the user ID for the user calling the MBF.

241

EDBT is the batch number populated by EDI Batch Number, Get Next Number
(N4700060).

EDTN is the transaction number normally populated by Get Next Transaction
Number (B0000175) unless the transaction needs another type of unique identifier in
this key.

EDLN is the line number sequentially assigned by the MBF.

You must add two processing options to the template that your master business
function uses. The tab for the Transaction Type processing option is called "Interop".

• The first processing option controls the launching of the generic outbound
subsystem batch process and to determine the transaction type written to the
unedited transaction table. The processing option reads: 1. Enter the transaction
type for the interoperability transaction. If left blank, the outbound interoperability
processing will not be performed.

• The second processing option is to control the writing of the before image record.
The processing option reads: 2. Enter a '1' to write the before image for a change
transaction. If left blank, only the after image will be written.

Before and after images of application records are written to the unedited transaction
tables by EndDoc. Writing the before image is a performance hit, use processing
option 2 to control whether the before image will be written. The after image will
always be written for a change to the application table record.

EndDoc calls the subsystem business function Add Transaction to Subsystem Queue
(B0000176) to write keys to the subsystem data queue. This triggers the processing
of the transaction that was added to the unedited transaction tables. This will only
happen if the interoperability processing option 1 is set to 1 to immediately launch the
outbound batch process and write the keys of the outbound table.

5. Create a purge batch process and named event rule.

Each outbound purge batch process will purge a specific set of outbound
interoperability tables. This batch process is run to keep the database tables to a
manageable size. The batch process will be run from a menu selection and will have
data processing to only select the records that have been successfully processed.
The batch process will have two modes determined by the number of tables for the
transaction (one table or two tables):

• Detail-only purge

In a detail-only purge over one transaction table; the detail record is selected only
if it is marked as processed, which is data selection for Successfully Processed
equal to "Y". If it is, the processing log table (F0046) is checked through the
business function F0046, Check Interoperability Processing Log Record Status
(N0000181) to see if all F0046 records corresponding to the detail record have
been marked as processed or have been bypassed. If this is true, the batch
process deletes the detail record through its corresponding purge NER then calls
F0046 Purge Interoperability Processing Log (N0000181) to delete the
processing log records.

• Hierarchical purge

The hierarchical purge selects header records marked as processed. Next the
processing log is checked through the business function, F0046 Check
Interoperability Processing Log Record Status (N0000181), to make sure the

242

corresponding records are all marked as processed or bypassed. If this is true,
the F0046 purge interoperability processing log (N0000181) business function is
called to delete the processing log records corresponding to the header record.
Then another section retrieves the detail records and the F0046 Purge
Interoperability Processing Log (N0000181) business function is called to delete
the processing log records corresponding to each detail record. Then the
corresponding purge NER is called to delete the header record and
corresponding detail records.

6. Add transaction to flat file cross reference table

Add your transaction and its unedited transaction table to the flat file cross-reference
table (F47002) in the pristine environment. You can use P47002 to do this.

Task Summary for J.D. Edwards Interoperability Features

If you use the methods described in this section, the following table illustrates the steps you
use for each of the interoperability models.

Task IS IA IB FS FA FB
Create a master business function. X X X X

Determine a name for your transaction. X X X X

X X X X

Create a revision application over the interface table. X X

Create an inbound processor UBE over the interface table. X X

Create a new version of the inbound conversion UBE (R47002C)
for your transaction. (This is used for flat file conversions.)

 X X

Add your transaction and interface tables to the Flat File Cross
Reference Table (F47002) in the pristine environment.

 X X X

Include logic in your MBF to log changes. X

Create a retrieval API or business function. X

Create a Purge UBE and NER over the interface table. X X X X

Document the interface table format. X X X X

Create interface tables.

IS Into OneWorld Synchronous

IA Into OneWorld Asynchronous

IB Into OneWorld Batch

FS From OneWorld Synchronous

FA From OneWorld Asynchronous

FB From OneWorld Batch

243

Interoperability Interface Table Information

 Z-Table(s)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Application

Purge
Batch
Process

Application
with
Processing
Options

Financials

Address Book F0101Z2 R01010Z -
ZJDE0002

R01010Z -
ZJDE0001 P0101Z1 R0101Z1P P0100041

Customer
Master F03012Z1 R03010Z -

ZJDE0002
R03010Z -
ZJDE0001 P0301Z1 R0101Z1P P0100042

Supplier
Master F0401Z1 R04010Z -

ZJDE0002
R04010Z -
ZJDE0001 P0401Z1 R0101Z1P P0100043

A/R Invoice
F03B11Z1,
F0911Z1,
F0911Z1T

R03B11Z1I R03B11Z1I
- ZJDE0001 N/A P03B11Z1 R03B11Z1P N/A

A/P Invoice F0411Z1,
F0911Z1

R04110Z -
ZJDE0002

R04110Z -
ZJDE0001 N/A P0411Z1 R0411Z1P N/A

Payment Order
with
Remittance

F0413Z1,
F0414Z1 N/A N/A P0413Z1 R0413Z1 P0413M

Journal Entry F0911Z1,
F0911Z1T

R09110Z -
ZJDE0005

R09110Z -
ZJDE0002 P0911Z1 R0911Z1P N/A

Fixed Asset
Master

F1201Z1,
F1217Z1

R1201Z1I -
XJDE0002

R1201Z1I -
XJDE0001 R1201Z1X P1201Z1 R1201Z1P P1201

Account
Balance F0902Z1 N/A N/A P0902Z1 R0902ZP N/A

F03B13Z1 N/A R03B13Z1I
- ZJDE0001 N/A N/A

HRM

Payroll Time
Entry F06116Z1 R05116Z1I R05116Z1I -

ZJDE0001 N/A P05116Z1 R05116Z1P N/A

Distribution

Batch Cash
Receipts

244

 Z-Table(s)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Application

Purge
Batch
Process

Application
with
Processing
Options

Purchase
Order

F4301Z1,
F4311Z1

R4311Z1I -
XJDE0002

R4311Z1I -
XJDE0001 P4311Z1 R4301Z1P P4310

Outbound
Purchase
Receipts

F43121Z1 N/A N/A P43121Z1 R43121Z1P P4312

Receipt
Routing F43092Z1 R43092Z1I -

XJDE0002
R43092Z1I -
ZJDE0001 P43092Z1 R43092Z1P P43250

Outbound
Sales Order

F4201Z1,
F4211Z1,
F49211Z1

N/A N/A P4211Z1 R4211Z1P P4210

Outbound
Shipment
Confirmation

F4201Z1,
F4211Z1,
F49211Z1

N/A N/A P4211Z1 R4211Z1P P4205

Logistics

Cycle Counts F4141Z1 R4141Z1I R4141Z1I -
ZJDE0001 N/A P4141Z1 R4141Z1P N/A

Item Master F4101Z1,
F4101Z1A R4101Z1I R4101Z1I -

ZJDE0001 P4101Z1 P4101

Item Cost F4105Z1 N/A R4105Z1I -
XJDE0001 P4105Z1 R4105Z1P P4105

Warehouse
Confirmations
(Suggestions)

F4611Z1 R4611Z1I R4611Z1I -
ZJDE0001 P4611Z1 R4611Z1P N/A

Manufacturing

Work Order
Header F4801Z1

Use Work
Order
Completions

Use Work
Order
Completions

R4101Z1O P4801Z1 R4801Z1P P48013

Work Order
Parts List F3111Z1

Use
Planning
Messages

Use
Planning
Messages

 P4801Z1 R3111Z1P P3111

Work Order
R ti

F3112Z1 Use
Planning

Use
Planning

R4801Z2X P4801Z1 R3112Z1P P3112

245

 Z-Table(s)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Application

Purge
Batch
Process

Application
with
Processing
Options

Routing Messages Messages

Work Order
Employee
Time Entry

F31122Z1 R31122Z1I -
XJDE0002

R31122Z1I -
XJDE0001 P31122Z1 R31122Z1 P311221

Work Order
Inventory
Issues

F3111Z1 R31113Z1I -
ZJDE0002

R31113Z1I -
ZJDE0001 P3111Z1 R3111Z1P N/A

Work Order
Completions F4801Z1 R31114Z1I -

XJDE0002
R31114Z1I -
XJDE0001 P4801Z1 R4801Z1P N/A

Super
Backflush F3112Z1 R31123Z1I R31123Z1I -

ZJDE0001 P3112Z1 R3112Z1P N/A

Bill of Material F3002Z1 R3002Z1I -
ZJDE0002 P3002Z1 R3002Z1I -

ZJDE0001 R3002Z1P P3002

Routing Master F3003Z1 R3003Z1I -
ZJDE0002

R3003Z1I -
ZJDE0001 P3003Z1 R3003Z1P P3003

Work Center
Master F30006Z1 R30006Z1I -

ZJDE0002
R30006Z1I -
ZJDE0001 P30006Z1 R30006Z1P P3006

Work Day
Calendar F0007Z1 R0007Z1I -

XJDE0002
R0007Z1I -
XJDE0001 P0007Z1 R0007Z1P P00071

Planning
Messages F3411Z1 R3411Z1I -

ZJDE0002
R3411Z1I -
ZJDE0001 P3411Z1 R3411Z1P N/A

Detail Forecast F3460Z1 R3460Z1I -
XJDE0002

R3460Z1I -
XJDE0001 P3460Z1 R3460Z1P

P3460,
R3465,
R34650
(Each done
individually)

Kanban
Transactions F30161Z1 R30161Z1I -

XJDE0002
R30161Z1I -
XJDE0001 N/A P30161Z1 R30161Z1P N/A

246

Business Function Documentation

Business function documentation explains what individual business functions do and how
they should be used. This section includes information to help you generate documentation
for business functions. You can generate information for all business functions, groups of
business function, or individual business functions.

Business Function Documentation

Business function documentation explains what individual business functions do and how
they should be used. The documentation for a business function should include information
such as:

• Purpose

• Parameters (the data structure used)

• Explanation of each individual parameter that indicates: input/output required and
explanation of return values

• Related tables (the table accessed)

• Related business functions (business functions called from within the functions itself)

• Special handling instructions

You use Business Function Design and Data Structure Design to document your business
functions.

Creating Business Function Documentation

 You can create business function documentation at several levels, including:

• Business Function Notes

• Data Structure Notes

• Parameter Notes

Business function notes show you the documentation for the specific business function that
you are using.

► To create business function documentation

1. On Object Management Workbench, choose the business function you wish to
document and click the Design button.

The Object Librarian Business Function Design form appears.

2. Click the Attachments tab.

3. On Media Objects, right click in the icon panel and choose Templates.

Work with Media Object Templates displays the available templates you can use.

247

4. Select the template you wish to use.

J.D. Edwards uses the Business Function template as a standard.

5. Type in the appropriate information under each template heading.

248

Business Function Documentation Template

The business function documentation template contains the following sections:

Purpose This section contains a brief summary of what the function does.

Setup Notes and
Prerequisites

The section includes any special notes to assist in using the function,
including prerequisite functions, special values that need to be initialized,
events recommended to run the function, or if memory must be cleared
separately after the function is used.

Special Logic This section contains additional details about the business function logic. It is
usually only used for complex functions that require more explanation than the
purpose summary.

This section contains the technical specification of the function written in
scripted English. This may be a direct copy from an existing word processing
document.

Technical
Specification

Creating Data Structure Documentation

Data structure notes displays notes on the data structure for the business function.

► To create data structure documentation

1. On Object Librarian, choose the data structure you wish to document.

2. Check the data structure out to your workstation.

249

3. On Parameter Design, choose Design from the Form menu.

4. On Data Structure Design, click the left binder clip for Data Structure Attachments.

250

5. On Media Objects, right click in the icon panel and choose templates.

Work with Media Object Templates displays the available templates you can use.

6. Select the template you wish to use.

J.D. Edwards uses the Data Structure Detail template.

251

7. Type in the appropriate information under each template heading.

Data Structure Documentation Template

 The data structure documentation template contains the following sections:

Special Input
Expected

This section should be deleted if it does not apply.

Special Output
Returned

This section should be deleted if it does not apply.

Significant Data
Values

This section should be deleted if it does not apply. Otherwise it is in the format:
x - xxxxxxxxxxxxx.

Creating Parameter Documentation

Parameter Notes displays notes on the actual parameters in the data structure.

The steps for creating parameter documentation are the same as those for data structure
documentation, except that after selecting the data item in the structure you wish to enter
notes for, you click the Data Structure Item Attachments binder clip instead of the Data
Structure Attachments binder clip. There is no special template for parameter documentation.

You can enter specific notes about a data structure item to further clarify the information that
should be passed in or passed out of the item, for example a mode parameter. The notes
should indicate the valid values the function will except when you hook it up and how to use
them. For example, 1 = Add mode, or 2 = Delete.

252

Generating Business Function Documentation

Generating business function documentation provides you with an online list of business
function documentation that allows you to view documentation through the Business Function
Documentation Viewer (P98ABSFN). Typically the system administrator performs this task,
because generating the business function documentation for all business functions takes a
long time. If you create new business function documentation you may need to regenerate
the business function documentation just for that business function.

► To generate business function documentation

From the Cross Application Development Tools menu (GH902), select Generate BSFN
Documentation.

1. On Work with Batch Versions, choose version XJDE0001.

253

2. If you do not want to generate all business function documentation, on Version
Prompting, choose the following option:

• Data Selection

3. Click Submit.

4. On Data Selection, build your criteria for data selection and click OK.

Select only those functions for which you are generating documentation.

254

5. Depending on the criteria you choose, you might also need to designate processing
options.

255

6. If you are running your report locally, on Report Output Destination, choose one of
the following output destinations:

• On Screen

• To Printer

Data Selection Tips

A hypertext markup language (HTML) link is created for each business function for which you
generated documentation. An Index HTML file is also created. These HTML files are placed
in your output queue directory. Output is in the following format:

Function Name

Function Description from O/L

Parent DLL:

Location:

Language:

Purpose

Special Handling

Data Structure

Parameter Name data item data type req/opt i/o/both

You can use data selection to choose the business functions for which you wish to generate
documentation. R98ABSFN uses your data selection criteria to filter the business function
documentation. It takes longer to run when you generate documentation you do not need. If
you generate documentation for all business functions, the process can take quite a while.
You can use data selection to generate documentation for one business function, all business
functions, or any combination.

For example, if you want to generate documentation for a single business function you can
use the data item BC Object Name (F9860).

256

If you want to generate documentation for all of the business functions for a specific product
code, such as Payroll, you use the data item BC Product Code (F9860).

You can also use the right operand on the Data Selection form to choose ranges or lists of
values to further refine your filter.

You can filter using any value that is associated with a business function. For example, you
can use BC Date - Updated (F9860) if you have already produced the documentation for a
previous release of OneWorld and you want only new or modified business function
documentation after an upgrade or update of OneWorld.

You use BC Function Type (F9860) to choose Master business function documentation.

You use BC Location Business Function (F9860) to produce documentation for client run
business functions.

You use BC Object Type (F9860) to generate documentation for NERs only.

You can use many other informational fields to choose the business functions for which you
wish to generate documentation.

257

Viewing Business Function Documentation

You can view your business function Notes from several different locations, including:

• Business Function Search

• Business Function - Values to Pass

• Business Function Documentation Viewer

Viewing Documentation from Business Function Search

When you make a connection to a business function in event rules, the Business Function
Search form appears. You can then select the function you want to call. From the row menu,
choose Data Structure Notes or Attachments to view the documentation for the business
function.

Viewing Documentation from Business Function - Values to Pass

You can click one of the following buttons on Business Function - Values to Pass to view
documentation for a single business function (see Business Function Event Rules for more
information about accessing this form).

• Business Function Notes

• Structure Notes

• Parameter Notes

258

BSFN Notes Displays the notes for the business function.

Structure Notes Displays the notes for the whole data structure.

Parameter Notes Displays the notes for a particular parameter.

Viewing Documentation from Business Function Documentation Viewer

You can use Business Function Documentation Viewer to view documentation for all
business functions or selected business functions. Once you have generated your report, use
menu GH902 to access the Business Function Documentation Viewer (P98ABSFN) to
display your information. J.D. Edwards suggests that you use this method to view business
function documentation.

259

The Business Function Documentation form contains the HTML index you generated. You
can view either the entire index or select just the functions for a specific letter in the alphabet
by clicking on that letter in the index. Double-click a business function to view documentation
specific to that function.

260

The media object loads the HTML index of the business functions based on a media object
queue. In the media object queue table a queue named Business Function Doc must be set
up. This queue must point to the directory where the business function HTMLs are located.
The system administrator usually generates the documentation for all business functions.
Because the generation process places the documentation files in the local directory, the
administrator must then copy the files to a central directory on the deployment server. The
files must be copied to the media object queue for media object business function notes. If
you are running standalone, this path will usually be the output directory from the Network
Queue Settings section of our jde.ini file. If this entry is not in your jde.ini file, it is the print
queue directory in your OneWorld directory.

Open Data Access (ODA)

The J.D. Edwards OneWorld Open Data Access ODBC driver (ODA) is a version 2.5 or
higher compliant, read-only driver. ODA can be used by front-end Windows Query and
Reporting tools to access the J.D. Edwards OneWorld database. The front-end tools that are
supported include the following:

• Microsoft Query

• Microsoft Access

• Microsoft Excel

• ODBCTEST

• Crystal Report

• Microsoft Analysis Service (not certified)

ODA sits between the front-end Query/Reporting tools and the OneWorld-configured ODBC
drivers.

The J.D. Edwards OneWorld database contains object and column names, specific data
types and security rules that must be converted or applied so that the data is presented
correctly. The specific data types and rules include Decimal Shifting, Julian Date, Currency,
Media Object, Security, and user defined codes. In some instances, ODA modifies the SQL
SELECT statement, as well as the data, so that it appears correctly within the selected tool.

Hardware and Software Requirements

To use the J.D. Edwards OneWorld Open Data Access Driver you must meet several
hardware and software requirements.

Hardware Requirements

To use the J.D. Edwards OneWorld Open Data Access Driver, you must have:

• An IBM-compatible personal computer

• A hard disk with 6 MB of free disk space.

• At least 16 MB of random access memory (RAM).

261

Software Requirements

To access data with the J.D. Edwards OneWorld Open Data Access driver, your system must
meet the minimum technical requirements (MTR) for OneWorld Xe. MTRs are updated for
each release and are available online. You must also have the following:

• J.D. Edwards OneWorld version B732 or later.

• The J.D. Edwards OneWorld Open Data Access driver (JDEOWODA.dll).

Driver

• The 32-bit ODBC Driver Manager, version 3.0 or later (ODBC32.dll). Note that this
file is included with the ODBC Database Drivers.

• Microsoft Windows 95 or later, or Windows NT 4.0 or later.

The use of this ODBC driver by 16-bit applications on Windows 95 is not supported.

ODBC Component Files

The J.D. Edwards OneWorld installation installs the components required by ODBC
Database Drivers. You might also find the following additional files.

File Name

ODA Driver JDEOWODA.DLL

ODA Driver Help JDEOWODA.HLP

Release Notes README.TXT

Open Data Access Driver Architecture

The J.D. Edwards Open Data Access ODBC driver architecture has five components:

• Application - Front-end Query/Reporting tool that calls the ODA driver to access data
from the JDE database.

• Manager - Load and unloads drivers on behalf of an application. Processes ODBC
calls or passes them to the ODA driver.

• J.D. Edwards OneWorld Open Data Access Driver - Passes some of the ODBC
requests directly to the vendor's ODBC driver. If J.D. Edwards OneWorld specific
data types are used, then the SQL SELECT statement is modified before sending it
to the vendor's ODBC driver. After the data is returned from the vendor's ODBC
driver, the J.D. Edwards Open Data Access ODBC driver might need to manipulate
the data so that it is displayed correctly in the application.

• Vendor Driver - Processes ODBC function calls and submits SQL requests to the
specific data source. If necessary, the driver modifies an application's request so that
the request conforms to the syntax supported by the associated DBMS.

• Data Source - Consists of the data that the user wants to access as well as the
operating system, DBMS, and network platform for the data.

Adding an ODA Data Source

Although the ODA driver is automatically registered as part of the OneWorld installation
process, you might need to add a data source. You can also add a file data source or a
system data source, modify a data source, or delete a data source if needed. You might also

262

need to check the currency value check box when you configure the OneWorld ODA driver
so that you can view currency data in the correct format.

If you use Oracle, you must create another ODBC DSN, named OneWorld ODA Ora, so that
you can access Oracle Data source through ODA. Specific information for doing this is
included in the online Release Notes.

► To add a data source

1. Double-click the Control Panel icon. On Control Panel, double-click the ODBC icon.

2. On User Data Sources dialog box, click Add.

3. On Add Data Source, choose the J.D. Edwards OneWorld Open Data Access driver
from the Installed ODBC Drivers list and click Finish.

4. On Configure Data Source, enter the following information to set up the data source
and click OK.

• Data Source Name - specify the name that you want to call the J.D. Edwards
OneWorld Open Data Access driver.

• Description - specify the description of the driver that you are adding. (Note the
Description entry cannot exceed 79 characters.)

5. On the Connect form, enable one or more of the following options:

• Convert User Defined Codes - Use this option to return the associated
description of the user defined field instead of the user defined code. The
associated description is more descriptive, because it is a text description instead
of a code that is used for the user defined code. The default is to display the
associated description instead of the user defined code.

• Convert Currency Values - Use this option to convert currency fields to the
correct values.

• Use Long Table/Business View Names - Use this option to view long table/view
names.

• Use Long Column Names - Use this option to view long column names.

6. On the Connect form, enable one or more of the following Table/Business View
Display Options:

• Tables Only - Use this option to view only J.D. Edwards OneWorld tables.

• Business Views Only - Use this option to view only J.D. Edwards OneWorld
business views.

• Tables and Business Views - Use this option to view both J.D. Edwards
OneWorld tables and J.D. Edwards OneWorld business views.

7. To customize the list of functions that are enabled in ODA, click Advanced.

Advanced configuration is optional. If you choose not to customize the list of
functions enabled in ODA, a default list of settings is used.

Adding a File Data Source

You can also add a file data source.

263

► To add a file data source

1. Double-click the Control Panel icon. On Control Panel, double-click the ODBC icon.

2. On User Data Sources click the DSN tab.

3. On File Data Sources, click Add.

4. On Add Data Source, choose the J.D. Edwards OneWorld Open Data Access driver
from the Installed ODBC Drivers list and click Finish.

5. On Configure Data Source, enter the following information to set up the data source
and click OK.

• Data Source Name - specify the name that you want to call the J.D. Edwards
OneWorld Open Data Access driver.

• Description - specify the description of the driver that you are adding. (Note the
Description entry cannot exceed 79 characters.)

6. On the Connect form, enable one or more of the following options:

• Convert User Defined Codes - Use this option to return the associated
description of the user defined field instead of the user defined code. The
associated description is more descriptive, because it is a text description instead
of a code that is used for the user defined code. The default is to display the
associated description instead of the user defined code.

• Convert Currency Values - Use this option to convert currency fields to the
correct values.

• Use Long Table/Business View Names - Use this option to view long table/view
names.

• Use Long Column Names - Use this option to view long column names.

7. On the Connect form, enable one or more of the following Table/Business View
Display Options:

• Tables Only - Use this option to view only J.D. Edwards OneWorld tables.

• Business Views Only - Use this option to view only J.D. Edwards OneWorld
business views.

• Tables and Business Views - Use this option to view both J.D. Edwards
OneWorld tables and J.D. Edwards OneWorld business views.

8. To customize the list of functions that are enabled in ODA, click Advanced.

Advanced configuration is optional. If you choose not to customize the list of
functions enabled in ODA, a default list of settings is used.

Adding a System Data Source

A data source can be set up with a system data source name (DSN) that can be used by
more than one user on the same machine. The system DSN can also be used by a system-
wide service, which can then gain access to the data source even if no user is logged onto
the machine.

► To add a system data source

1. Double-click the Control Panel icon. On Control Panel, double-click the ODBC icon.

2. On Data Sources, click the System DSN tab, and then click Add.

264

3. On System Data Sources, click Add.

4. On Add Data Source, choose the J.D. Edwards OneWorld Open Data Access driver
from the Installed ODBC Drivers list and click Finish.

5. On Configure Data Source, enter the following information to set up the data source
and click OK.

• Data Source Name - specify the name that you want to call the J.D. Edwards
OneWorld Open Data Access driver.

• Description - specify the description of the driver that you are adding. (Note the
Description entry cannot exceed 79 characters.)

6. On the Connect form, enable one or more of the following options:

• Convert User Defined Codes - Use this option to return the associated
description of the user defined field instead of the user defined code. The
associated description is more descriptive, because it is a text description instead
of a code that is used for the user defined code. The default is to display the
associated description instead of the user defined code.

• Convert Currency Values - Use this option to convert currency fields to the
correct values.

• Use Long Table/Business View Names - Use this option to view long table/view
names.

• Use Long Column Names - Use this option to view long column names.

7. On the Connect form, enable one or more of the following Table/Business View
Display Options

• Tables Only - Use this option to view only J.D. Edwards OneWorld tables.

• Business Views Only - Use this option to view only J.D. Edwards OneWorld
business views.

• Tables and Business Views - Use this option to view both J.D. Edwards
OneWorld tables and J.D. Edwards OneWorld business views.

8. To customize the list of functions that are enabled in ODA, click Advanced.

Advanced configuration is optional. If you choose not to customize the list of
functions enabled in ODA, a default list of settings is used.

Modifying a Data Source

You can also modify a data source.

► To modify a data source

1. Double-click the Control Panel icon. On Control Panel, double-click the ODBC icon.

2. On User Data Sources, File Data Sources, or System Data Sources, choose a data
source from the available list.

3. Click Configure.

4. On Configure Data Source, enter the following information to set up the data source
and click OK.

• Data Source Name - specify the name that you want to call the J.D. Edwards
OneWorld Open Data Access driver.

265

• Description - specify the description of the driver that you are adding. (Note the
Description entry cannot exceed 79 characters.)

5. On the Connect form, enable one or more of the following options:

• Convert User Defined Codes - Use this option to return the associated
description of the user defined field instead of the user defined code. The
associated description is more descriptive, because it is a text description instead
of a code that is used for the user defined code. The default is to display the
associated description instead of the user defined code.

• Convert Currency Values - Use this option to convert currency fields to the
correct values.

• Use Long Table/Business View Names - Use this option to view long table/view
names.

• Use Long Column Names - Use this option to view long column names.

6. On the Connect form, enable one or more of the following Table/Business View
Display Options:

• Tables Only - Use this option to view only J.D. Edwards OneWorld tables.

• Business Views Only - Use this option to view only J.D. Edwards OneWorld
business views.

• Tables and Business Views - Use this option to view both J.D. Edwards
OneWorld tables and J.D. Edwards OneWorld business views.

7. To customize the list of functions that are enabled in ODA, click Advanced.

The Advanced configuration is optional. If you choose not to customize the list of
functions enabled in ODA, a default list of settings is used.

Deleting a Data Source

You can delete a data source.

► To delete a data source

1. Double-click the Control Panel icon. On Control Panel, double-click the ODBC icon.

2. On User Data Sources, File Data Sources, or System Data Sources, choose the data
source you want to delete from the Data Sources list.

3. Click Remove, and then click Yes to confirm the deletion.

Using Keywords in the Connection String

You can use C programming language to write database applications that directly invokes
SQL APIs supported by ODA, such as SQLDriverConnect and SQLBrowseConnect. The
following table lists keywords that you use in the connection string when you write your own
database applications.

If you use the Microsoft Analysis Service tool, you can use connection string keywords to
create a new data source. The following shows how to use a connection string keyword in the
Microsoft Analysis Service tool:

266

The following table lists the keywords that you can use in the ODA connection string for APIs.

Key Value Description Input

Connection
String

Output
Connection String

CONVERTUDC YIN
(default
to N)

Convert UDC
or not

CONVERTCURRENCY YIN
(default
to N)

Convert
currency or
not

SHIFTDECIMALS YIN
(default
to Y)

Use decimal
shift or not

CONVERTJULIANDATES YIN
(default
to Y)

Convert
Julian dates
or not

DISPLAYOPTIONS 0|1|2 (no
default)

Display
TBLE, BSFN
or both

Optional. If not
in the
connection
string, load from
INI/registry
settings
(OneWorld
ODA DSN
settings)

From the input
string or INI/registry
settings

267

LONGTABLENAMES YIN
(default
to Y)

Use long
names for
tables or not

LONGCOLUMNNAMES YIN
(default
to Y)

Use long
names for
columns or
not

UID <string> User ID

PWD <string> Password

ENVIRONMENT <string> Environment

Required by
JDEDriverConn
ect
(SQL_DRIVER
_NOPROMPT)

The same as the
input if not
overwritten by OW
login

DBQ <string> The same as
the
ENVIRONME
NT

Work as
ENVIRONMEN
T, if
ENVIRONMEN
T not specified

Removed if
ENVIRONMENT
exist

DSN <string> Data source

Optional.
Default to
“DEFAULT” if
invalid

Overwritten by
login

Working with ODA

Once the ODA driver is properly installed and an ODBC data source is established, you can
use the ODA driver's functionality. When a SQL connection is established, the environment of
the current connection is stored in the system as the database name. This value can later be
accessed by SQLGetInfo or it can be used for future connections.

There are several features you can use with J.D. Edwards ODA that are specific to J.D.
Edwards.

Long Table and Business View Names

Long table and business view names allow you to see a descriptive name when you view an
object list. You can use either the descriptive names or the original J.D. Edwards OneWorld
object name in the SELECT statement.

Note

This option may not be available for all third-party products, for example, ShowCase
STRATEGY products prior to the 2.0 release or Crystal Reports, because the long names
contain special characters that are not handled correctly by these tools.

Long Column Names

Long column names allow you to see a descriptive name when viewing any columns list. You
can still use either the descriptive names or the original J.D. Edwards OneWorld column

268

name. For example, you can use either of the following statements to retrieve information
from the Address Book Master table (F0101):

• SELECT ABAN8 from the Address Book Master table (F0101)

• SELECT AddressNumber from the Address Book Master table (F0101)

Julian Date

Julian Date modifies all references to Julian date columns to convert the date to an SQL-92
standard date. The J.D. Edwards Julian date is converted to a standard date value that can
be used in date calculations. This allows you to use a duration or other date calculations in
both the select (result data), where and having clauses, and order by.

The SQL SELECT statement is modified to before a data calculation to convert the J.D.
Edwards Julian date column to a standard date. The modification to the SQL SELECT
statement is based upon the data source that is being accessed because of driver differences
in handling date calculations. If the original column value is zero, the date conversion will
result in a date value of "1899-12-31". To remove these values, the following condition should
be added to the WHERE clause in the SELECT statement where DATECOL is the J.D.
Edwards Julian date column:

"DATECOL <> {d `1899-12-31'}"

Decimal Shifting

All references to decimal shifted columns are modified to shift the decimal point to cause the
result data to be correct. This allows SQL statements containing complex expressions,
aggregates, and filtering to run and return accurate results.

The SQL SELECT statement is modified to divide the column by the appropriate number of
decimal places so that the data is returned correctly and to make compare operators work for
filtering.

Currency

Currency columns are limited to single column references in the selected columns list.
Returned data is converted using the standard J.D. Edwards currency conversion routines.
All other references to the currency column in the SQL statement are passed through to the
native driver. You must understand how the currency column is used to make effective use of
filtering, for example, a Where clause.

Before selected columns are returned, the J.D. Edwards OneWorld Open Data Access driver
converts any currency columns to the correct value. Currency columns used in the WHERE
or HAVING clause are processed based on the nonconverted currency value. Currency
columns in the GROUP BY or ORDER BY clause are grouped and sorted by the
nonconverted currency value.

Media Object

The Media object column, TXVC, in the Media Objects (F00165) storage, is limited to single
column references in the selected columns list. ODA returns media data in plain text or rich
text format (RTF) and truncates other binary data, such as an image. The size limitation of
the text or RTF is 30,000 characters, and text will be truncated when it reaches this limitation.

Column Security

When column security is active, any references to restricted columns causes an error to be
returned when the SELECT statement is examined. This includes the use of * (asterisk -

269

selecting all columns) in the select clause, as defined by the SQL-92 standards. This means
that you will receive an error if you are not authorized to all the columns in the table.

Row Security

When row security is active, the statement is modified to include the appropriate where
clause for filtering out secured rows. This means that you will only see rows that you are
authorized to access along with getting accurate results using aggregate functions, for
example, SUM or AVG.

User Defined Codes

When user defined codes (UDCs) are enabled, you see the associated description instead of
the internal code when the column data is returned. This processing affects only the returned
data and has no effect on the other parts of the Select statement, for example Where, Order
By. This is an optional setting that can be configured when you set up the driver.

Before the UDC is returned to you, the J.D. Edwards OneWorld Open Data Access driver
converts the code to the associated description. The UDC columns used in the WHERE or
HAVING clause are selected based on the nonconverted code and the UDC columns
referenced in the GROUP BY and ORDER BY clause are grouped and sorted by the
nonconverted code.

Running a Query Using Microsoft Excel

The following illustrates how you can use Microsoft Excel 97 to create and run a query.

► To run a query using Microsoft Excel:

1. Choose "Get External Data" from the Data menu.

2. Choose "Create New Query"

3. On the Databases tab, choose the appropriate data source (for example, OneWorld
Local or OneWorld ODA).

Because Excel uses file data sources, the ODA data source you set up in the 32-bit
ODBC Administrator will not appear on the list of databases. You should create a
File-type Data Source by selecting <New Data Source> and following the procedures
for setting up a data source.

When you choose the ODA data source you may need to log on to OneWorld to use
the ODA driver. Once you log on, you will not see OneWorld Explorer because it is
only activated so that the ODA driver can check security and environment mappings.

The Excel Query Wizard then displays a list of available tables in the OneWorld data
source. Expanding any one table name shows the available columns or fields in each
table. If you are using the ODA driver, you will see long descriptions of each field, for
example "DateUpdated." If not, you will see the alpha codes for the fields (for
example `ABUPMJ').

270

4. To translate field/column names from the J.D. Edwards alpha codes to something
understandable you can use table F9202. Select all rows and sort (on FRDTAI) to
create a cross reference. The first two letters of all J.D. Edwards column names are
the application code and the remaining letters are in this table as a suffix.

5. Finish building your query with Query Wizard and save the query.

You can then run your query and review it in Excel or MS Query.

After you run a query from Excel, if you ask to see the results in MS Query, you get
the results back quickly because it selects a page at a time. If you are working with a
large result set, you should close OneWorld and any applications that take up a lot of
memory so that you can navigate through the records faster. If you ask for the query
to be returned directly to a spreadsheet instead of into MS Query, it may be a long
time before you see any rows because Excel does not show a page at a time.

To verify the outcome of each query, you should run each one first using the non-ODA
OneWorld data source and then use the ODA data source and compare the results.

ODA Error Messages

Following is a list of the errors that you can receive from the J.D. Edwards Open Data Access
driver. The messages are placed in the ODBC error message queue where the application
can retrieve them using the standard ODBC error mechanism. The J.D. Edwards messages
look like the following:

[J.D. Edwards][OneWorldODA Driver]MESSAGE TEXT

Configuration Request Error

This error may occur when you add a new data source if you do not provide enough
information for the driver and it cannot show a configuration dialog.

You must either pass enough information to the driver or allow the driver to prompt for more
information.

Option Value Changed

This is an informational message that occurs when you attempt to set a connection or
statement option to a value that the driver does not accept. The driver then changes the

271

value to an acceptable default and uses this message to let you know that the value has
changed.

The J.D. Edwards Open Data Access driver changes values in the following areas.

• Setting the rowset size to a value other than one. The driver currently only
supports single row rowsets.

• Setting the login time out to a value other than zero. The driver currently only
supports zero in this option, which means, “time out disabled.”

Data Source Name Is Not Valid

The data source you entered is not a valid ODBC data source name. This error occurs when
you are adding a new data source or configuring an existing data source. You must enter a
name that follows the ODBC data source naming convention.

Data Source Does Not Exist

This error occurs when you attempt to use a data source that does not exist. You must enter
the name of an existing data source. If you get this error when you attempt to connect to a
data source, you may need to create a default data source.

Unable to Allocate Memory

The J.D. Edwards OneWorld Open Data Access driver was not able to allocate enough
memory to continue. You must close down some open applications and try the operation
again. Make sure that you meet the minimum system requirements.

Invalid Type of Request

You attempted to use a configuration option that is unknown to the driver. The driver supports
the following options when configuring data sources.

• Adding a data source

• Configuring a data source

• Removing a data source

Data Truncated

The conversion of column data resulted in a truncation of the value. You should allocate more
room for the column data to avoid this informational message.

Syntax Error or Access Violation

The statement contained a syntax error and no further information is available.

Unable to Display Connection Dialog

The driver encountered an error when attempting to display the connection dialog.

Cross System Joins Not Supported

This error occurs in one of two situations.

• You referenced tables that are contained on multiple systems in the OneWorld
environment. The J.D. Edwards Open Data Access driver currently supports tables
referenced on a single system.

272

• You referenced a business view that contains multiple tables that reside on multiple
systems.

You must make sure that you are referencing tables on a single system or a business view
that contains tables on a single system.

Unable to Connect to the OneWorld Environment

The driver could not establish a connection to the J.D. Edwards OneWorld environment. This
connection is required before a successful connection can be made to this driver.

Internal Data Conversion Error

The driver encountered an unknown error during data conversion.

Internal Execution Error

The driver experienced an unexpected error during a statement execution.

User Defined Code Columns Can Only Be in Simple Column References

A user attempted to use a User Defined Code column in a complex expression. The J.D.
Edwards OneWorld Open Data Access driver only allows such columns to be simple
references.

Currency Columns Can Only Be in Simple Column References

A user attempted to use a Currency column in a complex expression. The J.D. Edwards
OneWorld Open Data Access driver only allows such columns to be simple references.

Media Object Columns Can Only Be in Simple Column References

A user attempted to use a Media Object column in a complex expression. The J.D. Edwards
OneWorld Open Data Access driver only allows such columns to be simple references.

Column Security Violation

You attempted to use a column you are not authorized to use. You must remove references
to those columns that are secured.

Invalid Cursor State

You attempted an operation that was not valid for the state that the driver is in, for example:

• You attempted to bind a column prior to preparing or executing a statement.

• You attempted to execute a statement while there are pending results.

• You attempted to get data from the driver prior to preparing or executing a statement.

• You attempted to prepare a statement while there are pending results.

Invalid Column Number

You attempted to access a column that was not part of the statements results.

Driver Does Not Support the Requested Conversion

An attempt was made to convert a column to a data type that is not supported by the
J.D. Edwards OneWorld Open Data Access driver.

273

Invalid Date/Time String

An attempt to convert a character column to a date, time, or timestamp value failed because
the character column did not contain a valid format.

Invalid Numeric String

The J.D. Edwards OneWorld Open Data Access driver is read only and allows only SELECT
statements.

An attempt to convert a character column to a numeric value failed because the character
column did not contain a valid numeric value.

Numeric Value Out of Range

An attempt to convert a column to a numeric value failed because the output data type could
not accommodate the value in the column. You should use the default data type or choose a
data type that can accommodate the column value.

Data Returned for One or More Columns was Truncated

An attempt to convert a column to a numeric value caused a truncation of decimal digits. The
output data type could not accommodate the value in the column. You should use the default
data type or choose a data type that can accommodate the column value.

The Data Cannot be Converted

An attempt to convert a column value failed because the input type could not be converted to
output type. You should use the default data type.

Statement Must Be a SELECT

Attempt to Fetch Before the First Row

An attempt was made to fetch before the beginning of results. The attempt resulted in the first
rowset being fetched.

Option Value Changed

An attempt was made to set a connection, statement or scroll options to a value that was not
allowed. The J.D. Edwards OneWorld Open Data Access driver substituted a similar value.

Fractional Truncation

An attempt to convert a column to a numeric value succeeded with a loss of fractional digits
because the output data type could not accommodate the value in the column. You should
use the default data type or choose a data type that can accommodate the column value.

Driver Not Capable

An attempt was made to set a connection, statement, or scroll option that the driver does not
allow.

Multiple Business Views Referenced

An attempt was made to reference more than one business view in a single SELECT
statement. The J.D. Edwards OneWorld Open Data Access driver restricts the SELECT
statement to contain only one business view.

274

Unable to Open Table or Business View

The J.D. Edwards OneWorld Open Data Access driver was unable to locate the table or
business view in the OneWorld database or could not get information pertaining to the table
or business view.

Server Connection Failed

The J. D. Edwards OneWorld Open Data Access driver was unable to establish a connection
to the server referenced by the tables or business view in the SELECT statement.

Business View Contains Invalid Join

The Business View definition contains a join condition that could not be processed by the J.
D. Edwards OneWorld Open Data Access driver.

Business View Contains Unsupported UNION Operator

The Business View definition contains the UNION operator that could not be processed by
the J. D. Edwards OneWorld Open Data Access driver.

XML Format Examples

This appendix contains examples of XML formats.

XML Format Examples (All Parameters)

The following examples are used for specific formats.

Inbound Sales Order XML Format (All Parameters)

This example illustrates an inbound XML format with all of the parameters.

275

276

277

278

279

280

281

282

283

284

285

286

Outbound Customer Create XML Format (all fields)

The following example illustrates an outbound XML format with all of the parameters.

Outbound Customer Create XML Request and Response Format

287

288

289

290

XML Format Examples (Default Values)

The following examples are used for specific formats.

Inbound Sales Order XML Format

This example uses the OneWorld default values. It omits the parameters that an external
entity chooses not to fill.

291

292

293

XML Format Examples (Z Events)

The Z file event XML document uses the J.D. Edwards Response XML format.

Z Events XML Format

The following example illustrates a Z file event XML document.

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Glossary

AAI. See automatic accounting instruction.
action message. With OneWorld, users can receive messages (system-generated or user-generated) that
have shortcuts to OneWorld forms, applications, and appropriate data. For example, if the general ledger
post sends an action error message to a user, that user can access the journal entry (or entries) in error
directly from the message. This is a central feature of the OneWorld workflow strategy. Action messages
can originate either from OneWorld or from a third-party e-mail system.
activator. In the Solution Explorer, a parent task with sequentially-arranged child tasks that are automated
with a director.
ActiveX. A computing technology, based on object linking and embedding, that enables Java applet-style
functionality for Web browsers as well as other applications. (Java is limited to Web browsers at this time.)
The ActiveX equivalent of a Java applet is an ActiveX control. These controls bring computational,
communications, and data manipulation power to programs that can "contain" them. For example, certain
Web browsers, Microsoft Office programs, and anything developed with Visual Basic or Visual C++.
advance. A change in the status of a project in the Object Management Workbench. When you advance a
project, the status change might trigger other actions and conditions such as moving objects from one server
to another or preventing check-out of project objects.
alphanumeric character. A combination of letters, numbers, and symbols used to represent data. Contrast
with numeric character and special character.
API. See application programming interface.
APPL. See application.
applet. A small application, such as a utility program or a limited-function spreadsheet. It is generally
associated with the programming language Java, and in this context refers to Internet-enabled applications
that can be passed from a Web browser residing on a workstation.
application. In the computer industry, the same as an executable file. In OneWorld, an interactive or batch
application is a DLL that contains programming for a set of related forms that can be run from a menu to
perform a business task such as Accounts Payable and Sales Order Processing. Also known as system.
application developer. A programmer who develops OneWorld applications using the OneWorld toolset.
application programming interface (API). A software function call that can be made from a program to
access functionality provided by another program.
application workspace. The area on a workstation display in which all related forms within an application
appear.
audit trail. The detailed, verifiable history of a processed transaction. The history consists of the original
documents, transaction entries, and posting of records, and usually concludes with a report.
automatic accounting instruction (AAI). A code that refers to an account in the chart of accounts. AAIs define
rules for programs that automatically generate journal entries, including interfaces between Accounts
Payable, Accounts Receivable, Financial Reporting, General Accounting systems. Each system that
interfaces with the General Accounting system has AAIs. For example, AAIs can direct the General Ledger
Post program to post a debit to a specific expense account and a credit to a specific accounts payable
account.
batch header. The information that identifies and controls a batch of transactions or records.
batch job. A task or group of tasks you submit for processing that the system treats as a single unit during
processing, for example, printing reports and purging files. The computer system performs a batch job with
little or no user interaction.
batch processing. A method by which the system selects jobs from the job queue, processes them, and
sends output to the outqueue. Contrast with interactive processing.
batch server. A server on which OneWorld batch processing requests (also called UBEs) are run instead of
on a client, an application server, or an enterprise server. A batch server typically does not contain a
database nor does it run interactive applications.
batch type. A code assigned to a batch job that designates to which J.D. Edwards system the associated
transactions pertain, thus controlling which records are selected for processing. For example, the Post
General Journal program selects for posting only unposted transaction batches with a batch type of O.
batch-of-one immediate. A transaction method that allows a client application to perform work on a client
workstation, then submit the work all at once to a server applicationfor further processing. As a batch
process is running on the server, the client application can continue performing other tasks. See also direct
connect, store and forward.
BDA. See Business View Design Aid.
binary string (BSTR). A length prefixed string used by OLE automation data manipulation functions. Binary
Strings are wide, double-byte (Unicode) strings on 32-bit Windows platforms.

312

Boolean Logic Operand. In J.D. Edwards reporting programs, the parameter of the Relationship field. The
Boolean logic operand instructs the system to compare certain records or parameters. Available options are:

EQ Equal To.
LT Less Than.
LE Less Than or Equal To.
GT Greater Than.
GE Greater Than or Equal To.
NE Not Equal To.
NL Not Less Than.
NG Not Greater Than.

browser. A client application that translates information sent by the World Wide Web. A client must use a
browser to receive, manipulate, and display World Wide Web information on the desktop. Also known as a
Web browser.
BSFN. See business function.
BSTR. See binary string.
BSVW. See business view.
business function. An encapsulated set of business rules and logic that can normally be reused by multiple
applications. Business functions can execute a transaction or a subset of a transaction (check inventory,
issue work orders, and so on). Business functions also contain the APIs that allow them to be called from a
form, a database trigger, or a non-OneWorld application. Business functions can be combined with other
business functions, forms, event rules, and other components to make up an application. Business functions
can be created through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.
business function event rule. See named event rule.
business view. Used by OneWorld applications to access data from database tables. A business view is a
means for selecting specific columns from one or more tables whose data will be used in an application or
report. It does not select specific rows and does not contain any physical data. It is strictly a view through
which data can be handled.
Business View Design Aid (BDA). A OneWorld GUI ool for creating, modifying, copying, and printing
business views. The tool uses a graphical user interface.
category code. In user defined codes, a temporary title for an undefined category. For example, if you are
adding a code that designates different sales regions, you could change category code 4 to Sales Region,
and define E (East), W (West), N (North), and S (South) as the valid codes. Sometimes referred to as
reporting codes.
central objects. Objects that reside in a central location and consist of two parts: the central objects data
source and central C components. The central objects data source contains OneWorld specifications, which
are stored in a relational database. Central C components contain business function source, header, object,
library, and DLL files and are usually stored in directories on the deployment server. Together they make up
central objects.
check-in location. The directory structure location for the package and its set of replicated objects. This is
usually \\deploymentserver\release\path_code\package\ packagename. The sub-directories under this path
are where the central C components (source, include, object, library, and DLL file) for business functions are
stored.
child. See parent/child form.
client/server. A relationship between processes running on separate machines. The server process is a
provider of software services. The client is a consumer of those services. In essence, client/server provides
a clean separation of function based on the idea of service. A server can service many clients at the same
time and regulate their access to shared resources. There is a many-to-one relationship between clients and
a server, respectively. Clients always initiate the dialog by requesting a service. Servers passively wait for
requests from clients.
CNC. See configurable network computing.
component. In the ActivEra Portal, an encapsulated object that appears inside a workspace. Portal
components
configurable client engine. Allows user flexibility at the interface level. Users can easily move columns, set
tabs for different data views, and size grids according to their needs. The configurable client engine also
enables the incorporation of Web browsers in addition to the Windows 95- and Windows NT-based
interfaces.
configurable network computing. An application architecture that allows interactive and batch applications,
composed of a single code base, to run across a TCP/IP network of multiple server platforms and SQL
databases. The applications consist of reusable business functions and associated data that can be
configured across the network dynamically. The overall objective for businesses is to provide a future-proof
environment that enables them to change organizational structures, business processes, and technologies
independently of each other.

313

constants. Parameters or codes that you set and the system uses to standardize information processing by
associated programs. Some examples of constants are: validating bills of material online and including fixed
labor overhead in costing.
control. Any data entry point allowing the user to interact with an application. For example, check boxes,
pull-down lists, hyper-buttons, entry fields, and similar features are controls.
core. The central and foundation systems of J.D. Edwards software, including General Accounting, Accounts
Payable, Accounts Receivable, Address Book, Financial Reporting, Financial Modeling and Allocations, and
Back Office.
CRP. Conference Room Pilot.
custom gridlines. A grid row that does not come from the database, for example, totals. To display a total in
a grid, sum the values and insert a custom gridline to display the total. Use the system function Insert Grid
Row Buffer to accomplish this.
data dictionary. The OneWorld method for storing and managing data item definitions and specifications.
J.D. Edwards has an active data dictionary, which means it is accessed at runtime.
data mart. Department-level decision support databases. They usually draw their data from an enterprise
data warehouse that serves as a source of consolidated and reconciled data from around the organization.
Data marts can be either relational or multidimensional databases.
data replication. In a replicated environment, multiple copies of data are maintained on multiple machines.
There must be a single source that "owns" the data. This ensures that the latest copy of data can be applied
to a primary place and then replicated as appropriate. This is in contrast to a simple copying of data, where
the copy is not maintained from a central location, but exists independently of the source.
data source. A specific instance of a database management system running on a computer. Data source
management is accomplished through Object Configuration Manager (OCM) and Object Map (OM).
data structure. A group of data items that can be used for passing information between objects, for example,
between two forms, between forms and business functions, or between reports and business functions.
data warehouse. A database used for reconciling and consolidating data from multiple databases before it is
distributed to data marts for department-level decision support queries and reports. The data warehouse is
generally a large relational database residing on a dedicated server between operational databases and the
data marts.
data warehousing. Essentially, data warehousing involves off-loading operational data sources to target
databases that will be used exclusively for decision support (reports and queries). There are a range of
decision support environments, including duplicated database, enhanced analysis databases, and enterprise
data warehouses.
database. A continuously updated collection of all information a system uses and stores. Databases make it
possible to create, store, index, and cross-reference information online.
database driver. Software that connects an application to a specific database management system.
database server. A server that stores data. A database server does not have OneWorld logic.
DCE. See distributed computing environment.
DD. See data dictionary.
default. A code, number, or parameter value that is assumed when none is specified.
detail. The specific pieces of information and data that make up a record or transaction. Contrast with
summary.
detail area. A control that is found in OneWorld applications and functions similarly to a spreadsheet grid for
viewing, adding, or updating many rows of data at one time.
direct connect. A transaction method in which a client application communicates interactively and directly
with a server application. See also batch-of-one immediate, store and forward.
director. An interactive utility that guides a user through the steps of a process to complete a task.
distributed computing environment (DCE). A set of integrated software services that allows software running
on multiple computers to perform in a manner that is seamless and transparent to the end-users. DCE
provides security, directory, time, remote procedure calls, and files across computers running on a network.
DLL. See dynamic link library.
DS. See data structure.
DSTR. See data structure.
duplicated database. A decision support database that contains a straightforward copy of operational data.
The advantages involve improved performance for both operational and reporting environments. See also
enhanced analysis database, enterprise data warehouse.
dynamic link library (DLL). A set of program modules that are designed to be invoked from executable files
when the executable files are run, without having to be linked to the executable files. They typically contain
commonly used functions.
dynamic partitioning. The ability to dynamically distribute logic or data to multiple tiers in a client/server
architecture.
embedded event rule. An event rule that is specific to a particular table or application. Examples include
form-to-form calls, hiding a field based on a processing option value, and calling a business function.
Contrast with business function event rule. See also event rule.

314

employee work center. This is a central location for sending and receiving all OneWorld messages (system
and user generated) regardless of the originating application or user. Each user has a mailbox that contains
workflow and other messages, including Active Messages. With respect to workflow, the Message Center is
MAPI compliant and supports drag and drop work reassignment, escalation, forward and reply, and workflow
monitoring. All messages from the message center can be viewed through OneWorld messages or Microsoft
Exchange.
encapsulation. The ability to confine access to and manipulation of data within an object to the procedures
that contribute to the definition of that object.
enhanced analysis database. A database containing a subset of operational data. The data on the enhanced
analysis database performs calculations and provides summary data to speed generation of reports and
query response times. This solution is appropriate when external data must be added to source data, or
when historical data is necessary for trend analysis or regulatory reporting. See also duplicated database,
enterprise data warehouse.
enterprise data warehouse. A complex solution that involves data from many areas of the enterprise. This
environment requires a large relational database (the data warehouse) that is a central repository of
enterprise data, which is clean, reconciled, and consolidated. From this repository, data marts retrieve data
to provide department-level decisions. See also duplicated database, enhanced analysis database.
enterprise server. A database server and logic server. See database server. Also referred to as host.
ER. See event rule.
ERP. See enterprise resource planning.
event. An action that occurs when an interactive or batch application is running. Example events are tabbing
out of an edit control, clicking a push button, initializing a form, or performing a page break on a report. The
GUI operating system uses miniprograms to manage user activities within a form. Additional logic can be
attached to these miniprograms and used to give greater functionality to any event within a OneWorld
application or report using event rules.
event rule. Used to create complex business logic without the difficult syntax that comes with many
programming languages. These logic statements can be attached to applications or database events and
are executed when the defined event occurs, such as entering a form, selecting a menu bar option, page
breaking on a report, or selecting a record. An event rule can validate data, send a message to a user, call a
business function, as well as many other actions. There are two types of event rules:

1 Embedded event rules.
2 Named event rules.

executable file. A computer program that can be run from the computer's operating system. Equivalent terms
are "application" and "program.".
exit. 1) To interrupt or leave a computer program by pressing a specific key or a sequence of keys. 2) An
option or function key displayed on a form that allows you to access another form.
facility. 1) A separate entity within a business for which you want to track costs. For example, a facility might
be a warehouse location, job, project, work center, or branch/plant. Sometimes referred to as a business
unit. 2) In Home Builder and ECS, a facility is a collection of computer language statements or programs that
provide a specialized function throughout a system or throughout all integrated systems. For example,
DREAM Writer and FASTR are facilities.
FDA. See Form Design Aid.
find/browse. A type of form used to:

1 Search, view, and select multiple records in a detail area.
2 Delete records.
3 Exit to another form.
4 Serve as an entry point for most applications.

firewall. A set of technologies that allows an enterprise to test, filter, and route all incoming messages.
Firewalls are used to keep an enterprise secure.
fix/inspect. A type of form used to view, add, or modify existing records. A fix/inspect form has no detail area.
form. An element of OneWorld's graphical user interface that contains controls by which a user can interact
with an application. Forms allow the user to input, select, and view information. A OneWorld application
might contain multiple forms. In Microsoft Windows terminology, a form is known as a dialog box.
Form Design Aid (FDA). The OneWorld GUI development tool for building interactive applications and forms.
form interconnection. Allows one form to access and pass data to another form. Form interconnections can
be attached to any event; however, they are normally used when a button is clicked.
form type. The following form types are available in OneWorld:

1 Find/browse.
2 Fix/inspect.
3 Header detail.
4 Headerless detail.
5 Message.
6 Parent/child.
7 Search/select.

315

fourth generation language (4GL). A programming language that focuses on what you need to do and then
determines how to do it. Structured Query Language is an example of a 4GL.
graphical user interface (GUI). A computer interface that is graphically based as opposed to being character-
based. An example of a character-based interface is that of the AS/400. An example of a GUI is Microsoft
Windows. Graphically based interfaces allow pictures and other graphic images to be used in order to give
people clues on how to operate the computer.
grid. See detail area.
GUI. See graphical user interface.
header. Information at the beginning of a table or form. This information is used to identify or provide control
information for the group of records that follows.
header/detail. A type of form used to add, modify, or delete records from two different tables. The tables
usually have a parent/child relationship.
headerless detail. A type of form used to work with multiple records in a detail area. The detail area is
capable of of receiving input.
hidden selections. Menu selections you cannot see until you enter HS in a menu's Selection field. Although
you cannot see these selections, they are available from any menu. They include such items as Display
Submitted Jobs (33), Display User Job Queue (42), and Display User Print Queue (43). The Hidden
Selections window displays three categories of selections: user tools, operator tools, and programmer tools.
host. In the centralized computer model, a large timesharing computer system that terminals communicate
with and rely on for processing. In contrasts with client/server in that those users work at computers that
perform much of their own processing and access servers that provide services such as file management,
security, and printer management.
HTML. See hypertext markup language.
hypertext markup language. A markup language used to specify the logical structure of a document rather
than the physical layout. Specifying logical structure makes any HTML document platform independent. You
can view an HTML document on any desktop capable of supporting a browser. HTML can include active
links to other HTML documents anywhere on the Internet or on intranet sites.
index. Represents both an ordering of values and a uniqueness of values that provide efficient access to
data in rows of a table. An index is made up of one or more columns in the table.
inheritance. The ability of a class to recieve all or parts of the data and procedure definitions from a parent
class. Inheritance enhances developement through the reuse of classes and their related code.
install system code. See system code.
integrated toolset. Unique to OneWorld is an industrial-strength toolset embedded in the already
comprehensive business applications. This toolset is the same toolset used by J.D. Edwards to build
OneWorld interactive and batch applications. Much more than a development environment, however, the
OneWorld integrated toolset handles reporting and other batch processes, change management, and basic
data warehousing facilities.
interactive processing. Processing actions that occur in response to commands you enter directly into the
system. During interactive processing, you are in direct communication with the system, and it might prompt
you for additional information while processing your request. See also online. Contrast with batch
processing.
interface. A link between two or more computer systems that allows these systems to send information to
and receive information from one another.
Internet. The worldwide constellation of servers, applications, and information available to a desktop client
through a phone line or other type of remote access.
interoperability. The ability of different computer systems, networks, operating systems, and applications to
work together and share information.
intranet. A small version of the Internet usually confined to one company or organization. An intranet uses
the functionality of the Internet and places it at the disposal of a single enterprise.
IP. A connection-less communication protocol that by itself provides a datagram service. Datagrams are
self-contained packets of information that are forwarded by routers based on their address and the routing
table information contained in the routers. Every node on a TCP/IP network requires an address that
identifies both a network and a local host or node on the network. In most cases the network administrator
sets up these addresses when installing new workstations. In some cases, however, it is possible for a
workstation, when booting up, to query a server for a dynamically assigned address.
IServer Service. Developed by J.D. Edwards, this internet server service resides on the web server, and is
used to speed up delivery of the Java class files from the database to the client.
ISO 9000. A series of standards established by the International Organization for Standardization, designed
as a measure of product and service quality.
J.D. Edwards Database. See JDEBASE Database Middleware.
Java. An Internet executable language that, like C, is designed to be highly portable across platforms. This
programming language was developed by Sun Microsystems. Applets, or Java applications, can be
accessed from a web browser and executed at the client, provided that the operating system or browser is
Java-enabled. (Java is often described as a scaled-down C++). Java applications are platform independent.

316

Java Database Connectivity (JDBC). The standard way to access Java databases, set by Sun
Microsystems. This standard allows you to use any JDBC driver database.
JavaScript. A scripting language related to Java. Unlike Java, however, JavaScript is not an object-oriented
language and it is not compiled.
jde.ini. J.D. Edwards file (or member for AS/400) that provides the runtime settings required for OneWorld
initialization. Specific versions of the file/member must reside on every machine running OneWorld. This
includes workstations and servers.
JDEBASE Database Middleware. J.D. Edwards proprietary database middleware package that provides two
primary benefits:

1. Platform-independent APIs for multidatabase access. These APIs are used in two ways:
a. By the interactive and batch engines to dynamically generate platform-specific SQL,

depending on the datasource request.
b. As open APIs for advanced C business function writing. These APIs are then used by the

engines to dynamically generate platform-specific SQL.
2. Client-to-server and server-to-server database access. To accomplish this OneWorld is

integrated with a variety of third-party database drivers, such as Client Access 400 and open
database connectivity (ODBC).

JDECallObject. An application programming interface used by business functions to invoke other business
functions.
JDENET. J.D. Edwards proprietary middleware software. JDENET is a messaging software package.
JDENET communications middleware. J.D. Edwards proprietary communications middleware package for
OneWorld. It is a peer-to-peer, message-based, socket based, multiprocess communications middleware
solution. It handles client-to-server and server-to-server communications for all OneWorld supported
platforms.
job queue. A group of jobs waiting to be batch processed. See also batch processing.
just in time installation (JITI). OneWorld's method of dynamically replicating objects from the central object
location to a workstation.
just in time replication (JITR). OneWorld's method of replicating data to individual workstations. OneWorld
replicates new records (inserts) only at the time the user needs the data. Changes, deletes, and updates
must be replicated using Pull Replication.
KEY. A column or combination of columns that identify one or more records in a database table.
leading zeros. A series of zeros that certain facilities in J.D. Edwards systems place in front of a value you
enter. This normally occurs when you enter a value that is smaller than the specified length of the field. For
example, if you enter 4567 in a field that accommodates eight numbers, the facility places four zeros in front
of the four numbers you enter. The result appears as: 00004567.
level of detail. 1) The degree of difficulty of a menu in J.D. Edwards software. The levels of detail for menus
are as follows:

A Major Product Directories.
B Product Groups.
1 Basic Operations.
2 Intermediate Operations.
3 Advanced Operations.
4 Computer Operations.
5 Programmers.
6 Advanced Programmers Also known as menu levels.

2) The degree to which account information in the General Accounting system is summarized. The highest
level of detail is 1 (least detailed) and the lowest level of detail is 9 (most detailed).
MAPI. See Messaging Application Programming Interface.
master table. A database table used to store data and information that is permanent and necessary to the
system's operation. Master tables might contain data such as paid tax amounts, supplier names, addresses,
employee information, and job information.
menu. A menu that displays numbered selections. Each of these selections represents a program or another
menu. To access a selection from a menu, type the selection number and then press Enter.
menu levels. See level of detail.
menu masking. A security feature of J.D. Edwards systems that lets you prevent individual users from
accessing specified menus or menu selections. The system does not display the menus or menu selections
to unauthorized users.
Messaging Application Programming Interface (MAPI). An architecture that defines the components of a
messaging system and how they behave. It also defines the interface between the messaging system and
the components.
middleware. A general term that covers all the distributed software needed to support interactions between
clients and servers. Think of it as the software that's in the middle of the client/server system or the "glue"
that lets the client obtain a service from a server.

317

modal. A restrictive or limiting interaction created by a given condition of operation. Modal often describes a
secondary window that restricts a user's interaction with other windows. A secondary window can be modal
with respect to it's primary window or to the entire system. A modal dialog box must be closed by the user
before the application continues.
mode. In reference to forms in OneWorld, mode has two meanings:

• An operational qualifier that governs how the form interacts with tables and business views.
OneWorld form modes are: add, copy, and update.

• An arbitrary setting that aids in organizing form generation for different environments. For example,
you might set forms generated for a Windows environment to mode 1 and forms generated for a
Web environment to mode 2.

modeless. Not restricting or limiting interaction. Modeless often describes a secondary window that does not
restrict a user's interaction with other windows. A modeless dialog box stays on the screen and is available
for use at any time but also permits other user activities.
multitier architecture. A client/server architecture that allows multiple levels of processing. A tier defines the
number of computers that can be used to complete some defined task.
named event rule. Encapsulated, reusable business logic created using through event rules rather than C
programming. Contrast with embedded event rule. See also event rule.
NER. See named event rule.

OMW. Object Management Workbench.

network computer. As opposed to the personal computer, the network computer offers (in theory) lower cost
of purchase and ownership and less complexity. Basically, it is a scaled-down PC (very little memory or disk
space) that can be used to access network-based applications (Java applets, ActiveX controls) via a
network browser.
network computing. Often referred to as the next phase of computing after client/server. While its exact
definition remains obscure, it generally encompasses issues such as transparent access to computing
resources, browser-style front-ends, platform independence, and other similar concepts.
next numbers. A feature you use to control the automatic numbering of such items as new G/L accounts,
vouchers, and addresses. It lets you specify a numbering system and provides a method to increment
numbers to reduce transposition and typing errors.
non-object librarian object. An object that is not managed by the object librarian.
numeric character. Digits 0 through 9 that are used to represent data. Contrast with alphanumeric
characters.
object. A self-sufficient entity that contains data as well as the structures and functions used to manipulate
the data. For OneWorld purposes, an object is a reusable entity that is based on software specifications
created by the OneWorld toolset. See also object librarian.
object configuration manager (OCM). OneWorld's Object Request Broker and the control center for the
runtime environment. It keeps track of the runtime locations for business functions, data, and batch
applications. When one of these objects is called, the Object Configuration Manager directs access to it
using defaults and overrides for a given environment and user.
object embedding. When an object is embedded in another document, an association is maintained between
the object and the application that created it; however, any changes made to the object are also only kept in
the compound document. See also object linking.
object librarian. A repository of all versions, applications, and business functions reusable in building
applications. You access these objects with the Object Management Workbench.
object librarian object. An object managed by the object librarian.
object linking. When an object is linked to another document, a reference is created with the file the object is
stored in, as well as with the application that created it. When the object is modified, either from the
compound document or directly through the file it is saved in, the change is reflected in that application as
well as anywhere it has been linked. See also object embedding.
object linking and embedding (OLE). A way to integrate objects from diverse applications, such as graphics,
charts, spreadsheets, text, or an audio clip from a sound program. See also object embedding, object
linking.
object management workbench (OMW). An application that provides check-out and check-in capabilities for
developers, and aids in the creation, modification, and use of OneWorld Objects. The OMW supports
multiple environments (such as production and development).
object-based technology (OBT). A technology that supports some of the main principles of object-oriented
technology: classes, polymorphism, inheritance, or encapsulation.
object-oriented technology (OOT). Brings software development past procedural programming into a world
of reusable programming that simplifies development of applications. Object orientation is based on the
following principles: classes, polymorphism, inheritance, and encapsulation.
OCM. See object configuration manager.
ODBC. See open database connectivity.
OLE. See object linking and embedding.

318

OneWorld. A combined suite of comprehensive, mission-critical business applications and an embedded
toolset for configuring those applications to unique business and technology requirements. OneWorld is built
on the Configurable Network Computing technology- J.D. Edwards' own application architecture, which
extends client/server functionality to new levels of configurability, adaptability, and stability.
OneWorld application. Interactive or batch processes that execute the business functionality of OneWorld.
They consist of reusable business functions and associated data that are platform independent and can be
dynamically configured across a TCP/IP network.
OneWorld object. A reusable piece of code that is used to build applications. Object types include tables,
forms, business functions, data dictionary items, batch processes, business views, event rules, versions,
data structures, and media objects. See also object.
OneWorld process. Allows OneWorld clients and servers to handle processing requests and execute
transactions. A client runs one process, and servers can have multiple instances. OneWorld processes can
also be dedicated to specific tasks (for example, workflow messages and data replication) to ensure that
critical processes don't have to wait if the server is particularly busy.
OneWorld Web development computer. A standard OneWorld Windows developer computer with the
additional components installed:

• JFC (0.5.1).
• Generator Package with Generator.Java and JDECOM.dll.
• R2 with interpretive and apllication controls/form.

online. Computer functions over which the system has continuous control. Users are online with the system
when working with J.D. Edwards system provided forms.
open database connectivity (ODBC). Defines a standard interface for different technologies to process data
between applications and different data sources. The ODBC interface is made up of a set of function calls,
methods of connectivity, and representation of data types that define access to data sources.
open systems interconnection (OSI). The OSI model was developed by the International Standards
Organization (ISO) in the early 1980s. It defines protocols and standards for the interconnection of
computers and network equipment.
operand. See Boolean Logic Operand.
output. Information that the computer transfers from internal storage to an external device, such as a printer
or a computer form.
output queue. See print queue.
package. OneWorld objects are installed to workstations in packages from the deployment server. A
package can be compared to a bill of material or kit that indicates the necessary objects for that workstation
and where on the deployment server the install program can find them. It is a point-in-time "snap shot" of the
central objects on the deployment server.
package location. The directory structure location for the package and it's set of replicated objects. This is
usually \\deployment server\release\path_code\package\ package name. The sub-directories under this path
are where the replicated objects for the package will be placed. This is also referred to as where the
package is built or stored.
parameter. A number, code, or character string you specify in association with a command or program. The
computer uses parameters as additional input or to control the actions of the command or program.
parent/child form. A type of form that presents parent/child relationships in an application on one form. The
left portion of the form presents a tree view that displays a visual representation of a parent/child
relationship. The right portion of the form displays a detail area in browse mode. The detail area displays the
records for the child item in the tree. The parent/child form supports drag and drop functionality.
partitioning. A technique for distributing data to local and remote sites to place data closer to the users who
access. Portions of data can be copied to different database management systems.
path code. A pointer to a specific set of objects. A path code is used to locate:

1. Central Objects.
2. Replicated Objects.

platform independence. A benefit of open systems and Configurable Network Computing. Applications that
are composed of a single code base can be run across a TCP/IP network consisting of various server
platforms and SQL databases.
polymorphism. A principle of object-oriented technology in which a single mnemonic name can be used to
perform similar operations on software objects of different types.
portability. Allows the same application to run on different operating systems and hardware platforms.
portal. A configurable Web object that provides information and links to the Web. Portals can be used as
home pages and are typically used in conjunction with a Web browser.
primary key. A column or combination of columns that uniquely identifies each row in a table.
print queue. A list of tables, such as reports, that you have submitted to be written to an output device, such
as a printer. The computer spools the tables until it writes them. After the computer writes the table, the
system removes the table identifier from the list.

319

processing option. A feature of the J.D. Edwards reporting system that allows you to supply parameters to
direct the functions of a program. For example, processing options allow you to specify defaults for certain
form displays, control the format in which information prints on reports, change how a form displays
information, and enter beginning dates.
program temporary fix (PTF). A representation of changes to J.D. Edwards software that your organization
receives on magnetic tapes or diskettes.
project. An Object Management Workbench object used to organize objects in development.
published table. Also called a "Master" table, this is the central copy to be replicated to other machines.
Resides on the "Publisher" machine. the Data Replication Publisher Table (F98DRPUB) identifies all of the
Published Tables and their associated Publishers in the enterprise.
publisher. The server that is responsible for the Published Table. The Data Replication Publisher Table
(F98DRPUB) identifies all of the Published Tables and their associated Publishers in the enterprise.
pull replication. One of the OneWorld methods for replicating data to individual workstations. Such machines
are set up as Pull Subscribers using OneWorld's data replication tools. The only time Pull Subscribers are
notified of changes, updates, and deletions is when they request such information. The request is in the form
of a message that is sent, usually at startup, from the Pull Subscriber to the server machine that stores the
Data Replication Pending Change Notification table (F98DRPCN).
purge. The process of removing records or data from a system table.
QBE. See query by example.
query by example (QBE). Located at the top of a detail area, it is used to search for data to be displayed in
the detail area.
redundancy. Storing exact copies of data in multiple databases.
regenerable. Source code for OneWorld business functions can be regenerated from specifications
(business function names). Regeneration occurs whenever an application is recompiled, eitherfor a new
platform or when new functionality is added.
relationship. Links tables together and facilitates joining business views for use in an application or report.
Relationships are created based on indexes.
release/release update. A "release" contains major new functionality, and a "release update" contains an
accumulation of fixes and performance enhancements, but no new functionality.
replicated object. A copy or replicated set of the central objects must reside on each client and server that
run OneWorld. The path code indicates the directory the directory where these objects are located.
run. To cause the computer system to perform a routine, process a batch of transactions, or carry out
computer program instructions.
SAR. See software action request.
scalability. Allows software, architecture, network, or hardware growth that will support software as it grows
in size or resource requirements. The ability to reach higher levels of performance by adding
microprocessors.
search/select. A type of form used to search for a value and return it to the calling field.
selection. Found on J.D. Edwards menus, selections represent functions that you can access from a menu.
To make a selection, type the associated number in the Selection field and press Enter.
server. Provides the essential functions for furnishings services to network users (or clients) and provides
management functions for network administrators. Some of these functions are storage of user programs
and data and management functions for the file systems. It may not be possible for one server to support all
users with the required services. Some examples of dedicated servers that handle specific tasks are backup
and archive servers, application and database servers.
servlet. Servlets provide a Java-based solution used to address the problems currently associated with
doing server-side programming, including inextensible scripting solutions. Servlets are objects that conform
to a specific interface that can be plugged into a Java-based server. Servlets are to the server-side what
applets are to the client-side.
software. The operating system and application programs that tell the computer how and what tasks to
perform.
software action request (SAR). An entry in the AS/400 database used for requesting modifications to J.D.
Edwards software.
special character. A symbol used to represent data. Some examples are *, &, #, and /. Contrast with
alphanumeric character and numeric character.

spooled table. A holding file for output data waiting to be printed or input data waiting to be processed.

specifications. A complete description of a OneWorld object. Each object has its own specification, or name,
which is used to build applications.
Specs. See specifications.
spool. The function by which the system stores generated output to await printing and processing.

SQL. See structured query language.
static text. Short, descriptive text that appears next to a control variable or field. When the variable or field is
enabled, the static text is black; when the variable or field is disabled, the static text is gray.

320

store and forward. A transaction method that allows a client application to perform work and, at a later time,
complete that work by connecting to a server application. This often involves uploading data residing on a
client to a server.
structured query language (SQL). A fourth generation language used as an industry standard for relational
database access. It can be used to create databases and to retrieve, add, modify, or deleta data from
databases. SQL is not a complete programming language because it does not contain control flow logic.
subfile. See detail.
submit. See run.
subscriber. The server that is responsible for the replicated copy of a Published Table. Such servers are
identified in the Subscriber Table.
subscriber table. The Subscriber Table (F98DRSUB), which is stored on the Publisher Server with the Data
Replication Publisher Table (F98DRPUB) identifies all of the Subscriber machines for each Published Table.
subsystem job. Within OneWorld, subsystem jobs are batch processes that continually run independently of,
but asynchronously with, OneWorld applications.
summary. The presentation of data or information in a cumulative or totaled manner in which most of the
details have been removed. Many of the J.D. Edwards systems offer forms and reports that are summaries
of the information stored in certain tables. Contrast with detail.
system. See application.
System Code. System codes are a numerical representation of J.D. Edwards and customer systems. For
example, 01 is the system code for Address Book. System codes 55 through 59 are reserved for customer
development by customers. Use system codes to categorize within OneWorld. For example, when
establishing user defined codes (UDCs), you must include the system code the best categorizes it. When
naming objects such as applications, tables, and menus, the second and third characters in the object's
name is the system code for that object. For example, G04 is the main menu for Acounts Payable, and 04 is
its system code.
system function. A program module, provided by OneWorld, available to applications and reports for further
processing.
table. A two-dimensional entity made up of rows and columns. All physical data in a database are stored in
tables. A row in a table contains a record of related information. An example would be a record in an
Employee table containing the Name, Address, Phone Number, Age, and Salary of an employee. Name is
an example of a column in the employee table.
table design aid (TDA). A OneWorld GUI tool for creating, modifying, copying, and printing database tables.
table event rules. Use table event rules to attach database triggers (or programs) that automatically run
whenever an action occurs against the table. An action against a table is referred to as an event. When you
create a OneWorld database trigger, you must first determine which event will activate the trigger. Then, use
Event Rules Design to create the trigger. Although OneWorld allows event rules to be attached to
application events, this functionality is application specific. Table event rules provide embedded logic at the
table level.
TAM. Table Access Management.

token. A referent to an object used to determine ownership of that object and to prevent non-owners from
checking the object out in Object Management Workbench. An object holds its own token until the object is
checked out, at which time the object passes its token to the project in which the object is placed.

TBLE. See table.
TC. Table conversion.
TCP/IP. Transmission Control Protocol/Internet Protocol. The original TCP protocol was developed as a way
to interconnect networks using many different types of transmission methods. TCP provides a way to
establish a connection between end systems for the reliable delivery of messages and data.
TCP/IP services port. Used by a particular server application to provide whatever service the server is
designed to provide. The port number must be readily known so that an application programmer can request
it by name.
TDA. See table design aid.
TER. See table event rules.
Terminal Identification. The workstation ID number.Terminal number of a specific terminal or IBM user ID of
a particular person for whom this is a valid profile.Header Field: Use the Skip to Terminal/User ID field in the
upper portion of the form as an inquiry field in which you can enter the number of a terminal or the IBM user
ID of a specific person whose profile you want the system to display at the top of the list. When you first
access this form, the system automatically enters the user ID of the person signed on to the system.Detail
Field: The Terminal/User ID field in the lower portion of the form contains the user ID of the person whose
profile appears on the same line.A code identifying the user or terminal for which you accessed this window.
third generation language (3GL). A programming language that requires detailed information about how to
complete a task. Examples of 3GLs are COBOL, C, Pascal and FORTRAN.

trigger. Allow you to attach default processing to a data item in the data dictionary. When that data item is
used on an application or report, the trigger is invoked by an event associated with the data item. OneWorld
also has three visual assist triggers: calculator, calendar and search form.

321

322

web client. Any workstation that contains an internet browser. The web client communicates with the web
server for OneWorld data.

UBE. Universal batch engine.
UDC Edit Control. Use a User-Defined Code (UDC) Edit Control for a field that accepts only specific values
defined in a UDC table. Associate a UDC edit control with a database item or dictionary item. The visual
assist Flashlight automatically appears adjacent to the UDC edit control field. When you click on the visual
assist Flashlight, the attached search and select form displays valid values for the field. To create a UDC
Edit Control, you must:

• Associate the data item with a specific UDC table in the Data Dictionary.
• Create a search and select form for displaying valid values from the UDC table.

uniform resource identifier (URI). A character string that references an internet object by name or location. A
URL is a type of URI.
uniform resource locator (URL). Names the address (location) of a document on the Internet or an intranet.
A URL includes the document's protocol and server name. The path to the document might be included as
well. The following is an example of a URL: http://www.jdedwards.com. This is J.D. Edwards Internet
address.
URI. See uniform resource identifier.
URL. See uniform resource locator.
user defined code (type). The identifier for a table of codes with a meaning you define for the system, such
as ST for the Search Type codes table in Address Book. J.D. Edwards systems provide a number of these
tables and allow you to create and define tables of your own. User defined codes were formerly known as
descriptive titles.
user defined codes (UDC). Codes within software that users can define, relate to code descriptions, and
assign valid values. Sometimes user defined codes are referred to as a generic code table. Examples of
such codes are unit-of-measure codes, state names, and employee type codes.
UTB. Universal Table Browser.
valid codes. The allowed codes, amounts, or types of data that you can enter in a field. The system verifies
the information you enter against the list of valid codes.
visual assist. Forms that can be invoked from a control to assist the user in determining what data belongs in
the control.
vocabulary overrides. A feature you can use to override field, row, or column title text on forms and reports.
wchar_t. Internal type of a wide character. Used for writing portable programs for international markets.

web server. Any workstation that contains the IServer service, SQL server, Java menus and applications,
and Internet middleware. The web server receives data from the web client, and passes the request to the
enterprise server. When the enterprise server processes the information, it sends it back to the web server,
and the web server sends it back to the web client.
WF. See workflow.
window. See form.
workflow. According to the Workflow Management Coalition, worlflow means "the automation of a business
process, in whole or part, during which documents, information, or tasks are passed from one participant to
another for action, according to a set of procedural rules.".
workgroup server. A remote database server usually containing subsets of data replicated from a master
database server. This server does not performance an application or batch processing. It may or may not
have OneWorld running (in order to replicate data).
workspace. In the ActivEra Portal, the main section of the Portal. A user might have access to several
workspaces, each one configured differently and containing its own components.
worldwide web. A part of the Internet that can transmit text, graphics, audio, and video. The World Wide
Web allows clients to launch local or remote applications.
z file. For store and forward (network disconnected) user, OneWorld store and forward applications perform
edits on static data and other critical information that must be valid to process an order. After the initial edits
are complete, OneWorld stores the transactions in work tables on the workstation. These work table are
called Z files. When a network connection is established, Z files are uploaded to the enterprise server and
the transactions are edited again by a master business function. The master business function will then
update the records in your transaction files.

	Interoperability
	Acronyms
	Interoperability Overview
	Benefits
	OneWorld Interoperability Features
	APIs
	Middleware
	OneWorld Database APIs
	OneWorld Active Data Dictionary
	OneWorld Business Functions
	Other Industry Standard Support
	Proprietary Support
	Additional OneWorld Interoperability Options

	Types of Interoperability
	Batch
	Interactive

	Interoperability Solution Overview
	Flat Files
	EDI
	OneWorld APIs
	COM
	CORBA
	JAVA
	XML
	Table Conversion
	Messaging Support
	SAP ALE/IDoc
	Open Data Access (ODA)

	API Models
	XPI

	Connectors
	Connectors
	Choosing a Connector
	Generating Business Function Wrappers

	COM
	Understanding the Component Object Model (COM)
	OneWorld and COM
	OneWorld COM Objects
	OneWorld COM Interoperability Usage

	OneWorld COM Server
	COM Connector
	Generated COM Components

	COM Reliability
	OneWorld GenCOM
	OneWorld COM Server Deployment

	Using the COM Generator (GenCOM)
	Running GenCOM
	Syntax

	Example
	
	
	
	Options

	ProgID
	Using GenCOM Output
	Visual Basic
	Visual C++

	Using BHVRCOM via COM
	Installation Information

	Setting Up a OneWorld Environment for GenCOM
	Include Directories
	Lib directories
	MSDev Directories
	Paths

	Installing a COM Server on a Non-OneWorld Machine
	Setting Up a OneWorld DCOM Server
	Using the COM Wrapper Version Checker (CheckVer)
	Running CheckVer
	Syntax

	Example
	
	
	
	Options

	Using COM Tracing and Logging
	Troubleshooting

	Java
	Understanding Java
	Java and OneWorld
	JDEDate
	JDEMathNumeric

	Understanding GenJava
	Pure Java Component Usage

	Using the JAVA Generator (GenJAVA)
	Running GenJava
	Syntax

	Example
	
	
	
	Options

	Using GenJava Output

	Handling Exceptions with GenJava Output
	Fatal Exception
	Recoverable Exception
	Reject
	Exception Details
	Example

	Setting Up a OneWorld Client Environment for GenJAVA
	PATH
	CLASSPATH

	Installing JAVA Components on a Non-OneWorld Machine
	Understanding JAVA and CORBA Versioning
	Migrating from Previous Releases
	Static and Dynamic Modes

	Using the JAVA Wrapper Version Checker (CheckVer)
	Running CheckVer (GenJava)
	Syntax
	Example

	Running CheckVer (GenCORBA)
	Syntax
	Example

	Java Connector Outbound Events
	Developing the Java Client to Use the Java Connector Outbound Event Source
	Example: Using the Java Client to Subscribe to a OneWorld Event Using the Java Connector Outbound Event Source

	Compiling and Running the Java Client

	CORBA
	Understanding CORBA
	CORBA and OneWorld
	Understanding GenCORBA

	Understanding the CORBA Generator (GenCORBA)
	Running GenCORBA
	Syntax

	Example
	
	
	
	Options

	Using GenCORBA Output

	Working with JDEDate and JDEMathNumeric CORBA Objects
	
	Setting Up a OneWorld Client Environment for GenCORBA
	PATH
	CLASSPATH

	Setting Up an Environment for CORBA
	Building and Deploying a CORBA Server
	Setting up a CORBA Server

	iJDEScript
	iJDEScript Commands

	Build Command
	Syntax
	Call Command
	Syntax
	Example
	Define Command
	Syntax
	Example
	Define! Command
	Syntax
	Example
	Exit Command
	Syntax
	Help Command
	Syntax
	Import Command
	Syntax
	Example
	Importlib Command
	Syntax
	Example
	Interface Command
	Syntax for COM
	COM Example
	Syntax for CORBA
	CORBA Example
	Library Command
	Syntax
	Example:
	Login Command
	Syntax
	Example
	Logout Command
	Syntax
	Opt Command
	Syntax
	Example
	Rename Command
	Syntax
	Example
	Say Command
	Syntax
	Example
	Sub Command
	Syntax
	Example
	System Command
	Syntax
	Example
	jdeinterop.ini
	
	[JDENET]
	[SERVER]
	[LOGS]
	[DEBUG]
	[INTEROP]
	[CORBA]
	[EVENTS]

	XML
	
	Understanding XML
	XML and OneWorld
	ThinNet

	Inbound and Outbound Synchronous XML CallObject
	Inbound Synchronous Process Flow

	Inbound Asynchronous XML Transactions
	Outbound Asynchronous XML Transactions
	Outbound Asynchronous Process Flow

	Working with XML CallObject
	
	Establish Session
	Expire Session
	Call Object
	Explicit Transaction
	Implicit Transaction
	Prepare/Commit/Rollback
	Terminate Session
	Call Object Error Handling
	BSFN Error Handling
	Error Text
	Multiple Requests per Document
	On Error Handling

	ID/IDREF Support
	Return NULL Values

	Enabling Outbound Z-Table Processes
	Outbound Notification
	XML Z-Table Inquiry API
	XML Transaction Information Request
	Example: Outbound Order Status XML Request & Response Format

	Creating an XML Template
	XML CallObject Templates

	XML List
	Retrieving Data from a List
	Deleting a List
	Getting Column Information for a List
	Establish Session
	Expire Session
	List-Retrieval Engine Table Conversion Wrapper
	Setting the jde.ini File for the List-Retrieval Engine

	Setting the System Environment for XML
	Setting the jde.ini File for XML

	APIs
	OneWorld APIs Interoperability Models
	
	Processing Modes

	Synchronous
	Asynchronous
	Batch
	Choosing a Processing Mode
	
	Implementing Synchronous Transactions Into OneWorld

	Detailed Tasks Using Native APIs
	
	Implementing Asynchronous Transactions Into OneWorld

	Detailed Tasks Using Native APIs
	Detailed Tasks for OneWorld Operations
	
	Implementing Batch Transactions Into OneWorld

	Detailed Tasks Using Native APIs
	Detailed Tasks Using OneWorld Operations
	Additional Options
	
	Implementing Synchronous Transactions from OneWorld

	Detailed Tasks Using Native APIs
	
	Implementing Asynchronous Transactions from OneWorld

	Detailed Tasks Using OneWorld Operations
	Detailed Tasks Using Custom Programming
	
	Implementing Batch Transactions From OneWorld

	Detailed Tasks Using OneWorld Operations
	Detailed Tasks Using Native APIs
	Additional Options
	Detailed Tasks for OneWorld APIs
	Connect to OneWorld
	JDB_InitEnvOvr

	Syntax
	Parameters
	Return Value
	
	
	JDB_InitUser

	Syntax
	Parameters
	Return Value
	
	
	Example

	Disconnect From OneWorld
	JDB_FreeUser

	Syntax
	Parameters
	Return Value
	
	
	JDB_FreeEnv

	Syntax
	Parameters
	Return Value
	Example
	
	Add Records to Interface Tables
	JDB_OpenTable

	Syntax
	Parameters
	Return Value
	
	
	JDB_InsertTable

	Syntax
	Parameters
	Return Value
	
	
	JDB_CloseTable

	Syntax
	Parameters
	Return Value
	Example
	
	Retrieve Records from Interface Tables
	JDB_OpenTable

	Syntax
	Parameters
	Return Value
	
	
	JDB_SelectAll

	Syntax
	Parameters
	Return Value
	
	
	JDB_Fetch

	Syntax
	Parameters
	Return Value
	
	
	JDB_CloseTable

	Syntax
	Parameters
	Return Value
	Example
	
	Call OneWorld Business Functions
	Variable Initialization
	jdeCreateBusinessFunctionParms

	Syntax
	Parameters
	Return Value
	
	
	jdeFreeBusinessFunctionParms

	Syntax
	Parameters
	Return Value
	
	
	jdeErrorInitializeEx**

	Syntax
	Parameters
	Return Value
	
	
	jdeErrorTerminateEx**

	Syntax
	Parameters
	Return Value
	
	
	jdeAlloc

	Syntax
	Parameters
	Return Value
	Additional Notes
	
	
	jdeFree

	Syntax
	Parameters
	Return Value
	
	
	jdeCallObject

	Syntax
	Parameters
	Return Value
	
	
	Application Error Retrieval
	jdeErrorGetCountEx**

	Syntax
	Parameters
	Return Value
	
	
	jdeErrorSetToFirstEx**

	Syntax
	Parameters
	Return Value
	
	
	jdeErrorGetNextDDItemNameInfoEx**

	Syntax
	Parameters
	Return Value
	Example: Business Function Call
	
	Call the OneWorld Completion Confirmation API
	InteropOutboundConfirmationFunc

	Syntax
	Parameters
	Return Value
	Data Structure
	Example: Vendor Function
	
	Place Entries in Subsystem Data Queues

	See Also
	
	
	Inbound Transaction Subsystem Data Structure
	Requesting Inbound Transaction Confirmation

	Example
	Detailed Tasks for OneWorld Operations
	Run an Input Batch Process
	Run an Extraction Batch Process
	Run a Subsystem Job from a OneWorld Menu
	Enable Outbound Transaction Processing
	Subscribe to Outbound Transactions
	Using Data Export Controls
	Processing Log Table

	Check for Errors

	Inbound Flat File Processing
	Inbound and Extraction Batch Processing
	
	Use a Revisions Application
	Import from Flat Files
	Setup Requirements for Flat File Conversion

	Detailed Tasks for Custom Programming
	Process Outbound Transactions
	Vendor-Specific Outbound Batch Processes
	Vendor-Specific Outbound Functions

	Process Inbound Transaction Confirmation

	Additional Information
	Formatting Data
	MATH_NUMERIC Data Type

	MATH_NUMERIC APIs from the Common Library
	
	
	JDEDATE Data Type

	JDEDATE APIs from the Common Library
	Strings and Characters
	Unused Structure Members
	Special Circumstances
	
	Using Scheduler

	See Also
	Events
	
	Z Events

	Before You Begin
	
	
	Setting Up Z Events
	Enabling Z Event Processing
	Setting up the Data Export Control to Use the Z Event Generator
	Starting the Data Export Subsystem

	See Also
	
	
	
	Setting Up the jde.ini for Z Events
	Z File Events XML Document Format

	Real-Time Events
	Event Unique ID
	Journaling

	[INTEROPERABILITY]
	
	
	Real-Time Event APIs
	Example: Interoperability Event Interface Calls

	Generating Real-Time Events

	See Also
	Before You Begin
	
	
	Generating Real-Time Events from a Client or Server-to-Server

	See Also
	
	
	
	Setting Up the OCM for a Client or Server-to-Server

	See Also
	
	
	
	Setting Up the jde.ini for a Client or Server-to-Server

	[INTEROPERABILITY]
	[INTEROPERABILITY]
	
	
	Generating Real-Time Events from a OneWorld Server

	See Also
	
	
	
	Mapping Business Functions

	See Also
	
	
	
	Setting Up the jde.ini for a OneWorld Server

	[JDENET]
	[INTEROPERABILITY]
	
	
	Generating Real-Time Events Using Database Tables

	See Also
	
	
	
	Setting Up the OCM for Database Tables

	See Also
	
	
	
	Setting Up the jde.ini for Database Tables

	[JDENET]
	
	
	
	Setting Up Database Tables
	Defining Events
	Setting up Subscriber Information

	XAPI Outbound Events

	See Also
	
	
	XAPI Event APIs
	Example: XAPI Event Creation API Usage
	Example: XML File for XAPI Outbound Event

	Routing Information
	Generating XAPI Events

	See Also
	Before You Begin
	
	
	Generating XAPI Events from a Client or Server-to-Server

	See Also
	Setting Up the OCM for XAPI Client or Server-to-Server
	See Also
	
	
	
	Setting Up the jde.ini for Client or Server-to-Server

	[XAPI]
	
	
	Generating XAPI Events from a OneWorld Server

	[XAPI]
	See Also
	
	
	Generating XAPI Events Using Database Tables

	[XAPI]
	See Also
	
	
	XAPI Inbound Response

	See Also
	
	
	XAPI Response APIs
	Example: Creating an Inbound XAPI Response
	Example: XAPI Response Parsing API Usage

	Setting the jde.ini File for the Inbound XML Store Location

	[XAPI]
	
	Reliable Event Delivery
	Setting Up Your System for Reliable Event Delivery

	See Also
	
	Events Self-Diagnostic Utility Tool
	Events Self-Diagnostic Utility Tool Process Overview
	Events Self-Diagnostic Utility Tool Components
	Event Generator
	Event Receiver
	XML Comparator

	Setting Up Database Tables for Self-Diagnostic Events Generation
	Setting Up the jde.ini for Self-Diagnostic Event Generation from a Server

	[INTEROPERABILITY]
	
	
	Executing the Event Self-Diagnostic Tool

	Before You Begin
	
	
	
	Start the Tool

	Appendices
	Interoperability Features Created by J.D. Edwards
	
	Transactions Into OneWorld
	Inbound Through a Flat File
	Inbound Transactions to Unedited Transaction Tables
	Inbound Transactions Passed Directly to Master Business Functions

	Transactions From OneWorld
	Common Pieces of the Outbound Process
	WorldSoftware Coexistence
	Net Change Considerations
	Information Structure

	Creating Transactions Into and From OneWorld
	Transaction Name
	Unedited Transaction Tables

	Header Table
	Detail Table
	
	
	Revision Application
	Purge Batch Process and Named Event Rules
	Subsystem Business Function

	Creating Transactions into OneWorld
	Creating an Inbound Transaction
	Inbound Flat File

	Creating Transactions from OneWorld
	Task Summary for J.D. Edwards Interoperability Features

	Interoperability Interface Table Information
	Business Function Documentation
	Business Function Documentation
	Creating Business Function Documentation

	Business Function Documentation Template
	Creating Data Structure Documentation
	Data Structure Documentation Template
	Creating Parameter Documentation
	
	
	Generating Business Function Documentation

	Data Selection Tips
	
	
	Viewing Business Function Documentation

	Viewing Documentation from Business Function Search
	Viewing Documentation from Business Function - Values to Pass
	Viewing Documentation from Business Function Documentation Viewer
	Open Data Access (ODA)
	
	Hardware and Software Requirements

	Hardware Requirements
	Software Requirements
	
	
	ODBC Component Files
	Open Data Access Driver Architecture

	Adding an ODA Data Source
	Adding a File Data Source
	Adding a System Data Source
	Modifying a Data Source
	Deleting a Data Source

	Using Keywords in the Connection String
	Working with ODA

	Long Table and Business View Names
	Long Column Names
	Julian Date
	Decimal Shifting
	Currency
	Media Object
	Column Security
	Row Security
	User Defined Codes
	
	
	Running a Query Using Microsoft Excel

	ODA Error Messages

	Configuration Request Error
	Option Value Changed
	Data Source Name Is Not Valid
	Data Source Does Not Exist
	Unable to Allocate Memory
	Invalid Type of Request
	Data Truncated
	Syntax Error or Access Violation
	Unable to Display Connection Dialog
	Cross System Joins Not Supported
	Unable to Connect to the OneWorld Environment
	Internal Data Conversion Error
	Internal Execution Error
	User Defined Code Columns Can Only Be in Simple Column References
	Currency Columns Can Only Be in Simple Column References
	Media Object Columns Can Only Be in Simple Column References
	Column Security Violation
	Invalid Cursor State
	Invalid Column Number
	Driver Does Not Support the Requested Conversion
	Invalid Date/Time String
	Invalid Numeric String
	Numeric Value Out of Range
	Data Returned for One or More Columns was Truncated
	The Data Cannot be Converted
	Statement Must Be a SELECT
	Attempt to Fetch Before the First Row
	Option Value Changed
	Fractional Truncation
	Driver Not Capable
	Multiple Business Views Referenced
	Unable to Open Table or Business View
	Server Connection Failed
	Business View Contains Invalid Join
	Business View Contains Unsupported UNION Operator
	XML Format Examples
	XML Format Examples (All Parameters)
	Inbound Sales Order XML Format (All Parameters)
	Outbound Customer Create XML Format (all fields)
	Outbound Customer Create XML Request and Response Format

	XML Format Examples (Default Values)
	Inbound Sales Order XML Format

	XML Format Examples (Z Events)
	Z Events XML Format

	Glossary

