
CHAPTER 10

STRESSES IN SOIL MASS   

Omitted Section 10.2 , 10.3 , 10.15 , 10.16



TYPES OF STRESSES IN SOIL   



TYPES OF STRESSES IN SOIL   



 In the preceding chapter we have discussed the stresses

originated from weight of the soil itself. These stresses are

called BODY STRESSES or GEOSTATIC STRESSES, or

OVERBURDEN.

INTRODUCTION

 At a point within a soil mass, stress will be developed as a result

of:

The soil laying above the point (overburden)

by a any structural or other loading imposed on that soil

mass.



 Common examples of the external loads are as follows:

Uniform strip loads such as the load on along wall

footing of sufficient width.

Uniformly loaded square, rectangular or circular

footings such as column footings of buildings, pier

footings, footings for water tanks, mats, etc

Triangular and or trapezoidal strip loads such as the

loads of long earth embankments.

INTRODUCTION



 The focus of this chapter is on the discussion of the principles

of estimation of vertical stress increase in soil due to various

types of loading, based on the THEORY OF ELASTICITY.

 We actually know that the soil is not elastic, however we use

elasticity theory on the absence of better alternative. Estimation

of induced vertical stress based on the assumption of elasticity

yields fairly good results for practical work.

 Both body stresses and induced stresses must be taken into

consideration in solving certain problems.

INTRODUCTION



Stresses from Approximate Methods

2:1 Method

 In this method it is assumed that the STRESSED AREA is larger

than the corresponding dimension of the loaded area by an

amount equal to the depth of the subsurface area.

 Therefore, if a load is applied on a

rectangular with dimension B and L, the

stress on the soil at depth z is considered

to be uniformly distributed on an area with

dimension (B+z) and (L+z).

 This is called 2:1 method because the stressed area increases at

a slope of 1 horizontally for each 2 of depth as measured from

the depth of foundation.
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Stresses from Approximate Methods



 If the load at the surface is given to be distributed, it is first

converted to point load by multiplying by the area (B x L) as

demonstrated in the figure below.

Stresses from Approximate Methods



Stresses From Theory of Elasticity

 There are a number of solutions which are based on the theory

of elasticity. Most of them assume the following assumptions:

The soil is homogeneous

The soil is isotropic

The soil is perfectly elastic infinite or semi-finite medium

 Tens of solutions for different problems are now available in the

literature. It is enough to say that a whole book (Poulos and

Davis) is now available for the elastic solutions of various

problems.

 The derivations of the equations for various common loadings

are tedious.

 We will concentrate only on formula, tables and charts for some

of the loadings most commonly encountered in practice.



The book contains a comprehensive collection of graphs, tables and

explicit solutions of problems in elasticity relevant to soil and rock

mechanics.

Stresses From Theory of Elasticity



1. Types of the applied load

Point

Distributed

2. Shape of the loaded area

Rectangular

Square

Circular

etc.

3. Extension of the Medium

Half-space

Finite

layered

4. Type of soil

Cohesive

Cohesionless

5. Location of Load

At the surface

At a certain depth

6. Stiffness of Loaded Area

Flexible

Rigid

 The available solution depends on the following conditions:

 We can see that a lot of combinations can be made from the above

conditions. Next we will consider some of these solutions which

are well-known and has been accepted and extensively used.

Stresses From Theory of Elasticity



Stresses From Theory of Elasticity

Determination of vertical stress increase at a certain depth due to 

the application of load on the surface. The loading type includes:

 Point load

 Line load

 Uniformly distributed vertical strip load

 Linearly increasing vertical loading on a strip

 Embankment type of loading

 Uniformly loaded circular area

 Uniformly loaded rectangular area



Vertical Stresses Caused by a Point Load

 The most important original solution was given by BOUSSINESQ

(1885) for the distribution of stress within a linear elastic half

space resulting from a point load normal to the surface as

shown



Vertical Stresses Caused by a Point Load



EXAMPLE 10.3



EXAMPLE 10.4



Vertical Stresses Caused by a Vertical Line Load

The value of Dz is the additional stress on soil caused by the line load. 

The value of Dz does not include the overburden pressure of the soil

above point A.



EXAMPLE 10.5

Solve using Table 10.2 



Vertical Stresses Caused by a Horizontal Line Load



EXAMPLE 10.6

Solve by Equations 



Vertical Stress Caused by a Vertical Strip Load

(Finite width and infinite length)

Such conditions are found for structures extended very much in

one direction, such as strip and wall foundations, foundations of

retaining walls, embankments, dams and the like.



Vertical Stress Caused by a Vertical Strip Load

(Finite width and infinite length)



Vertical Stress Caused by a Vertical Strip Load

(Finite width and infinite length)



Vertical Stress Caused by a Vertical Strip Load

(Finite width and infinite length)



Vertical Stress Caused by a Vertical Strip Load

(Finite width and infinite length)



EXAMPLE 10.7



EXAMPLE 10.7



Vertical Stress Caused by a Horizontal Strip Load



EXAMPLE 10.8



EXAMPLE 10.9



EXAMPLE 10.9



Linearly Increasing Vertical Loading on an Infinite Strip



EXAMPLE 10.10



EXAMPLE 10.10



Vertical Stress Due to Embankment Loading



Vertical Stress Due to Embankment Loading

B1/z

B2/z

A simplified form



EXAMPLE 10.11



EXAMPLE 10.11



EXAMPLE 10.11



Vertical Stress Below the Center

of a Uniformly Loaded Circular Area

Using Boussinesq’s solution for vertical stress z

caused by a point load one also can develop an

expression for the vertical stress below the

center of a uniformly loaded flexible circular area.



Vertical Stress at Any Point below a Uniformly 

Loaded Circular Area



Vertical Stress at Any Point below a Uniformly 

Loaded Circular Area



Vertical Stress at Any Point below a Uniformly 

Loaded Circular Area



Vertical Stress at Any Point below a Uniformly 

Loaded Circular Area



Vertical Stress at Any Point below a Uniformly 

Loaded Circular Area



EXAMPLE 10.12



EXAMPLE

Circular tank, 25 m diameter with bearing pressure P = 122 kPa.

Find stress induced by the tank 10 m below the edge.

R = 12. 5 m

r = 12.5 m

z = 10 m

r/R  = 1

z/R = 0.8

A’ = 0.213

B’ = 0.153

Dz = (0.213+0.153) x 122 = 44.65 kPa 



Vertical Stress Caused by a Rectangularly

Loaded Area

 Boussinesq’s solution also can be used

to calculate the vertical stress increase

below a flexible rectangular loaded area

 Consider a small elemental area dx dy of

the rectangle

 The load on this elemental area can be

given by

 Recall Boussinesq’s solution for point load:

 we need to replace P with dq = q dx dy and r2 with x2+ y2. Thus,



Vertical Stress Caused by a Rectangularly

Loaded Area

 The increase in the stress, at point A caused by the entire loaded

area can now be determined by integrating the preceding equation.

We obtain

Eq. 10.32

Corner of the rectangular area



Vertical Stress Caused by a Rectangularly

Loaded Area



Vertical Stress Caused by a Rectangularly

Loaded Area

Value of m

Value of n

Corner of the rectangular area



The increase in the stress at any point below a rectangularly

loaded area

A/B

L

Vertical Stress Caused by a Rectangularly

Loaded Area



EXAMPLE 10.13



EXAMPLE 10.13



Determine the increase in stress at point A and A/ below the footing shown

below.

Solution

EXAMPLE



Vertical stress increase below the center of a rectangular area

Vertical Stress Caused by a Rectangularly

Loaded Area



Determine the increase in stress at point A and A/ below the footing shown

below.

𝑚1 =
𝐿

𝐵
=
3

3
= 1 𝑏 =

𝐵

2
=
3

2
= 1.5

Point A

𝑛1 =
𝑧

𝑏
=

3

1.5
= 2

For m1 = 1 and n1= 2 I4 = 0.336 (Table 10.11)

Dz=0.336 x 100 = 33.6  kPa

Point A/

𝑛1 =
𝑧

𝑏
=

5

1.5
= 3.33

For m1 = 1 and n1= 3.33 I4 = 0.155 (Table 10.11)

Dz=0.155 x 100 = 15.5  kPa Interpolate from the table

EXAMPLE

Solution by below the center of a rectangular area



For the flexible footing shown below, determine the increase in the vertical

stress at depth of z = 5 below point C for the uniformly distributed surface

load q.
Solution

EXAMPLE



Some Possible Cases

Loaded area: ABCD

I3=4I3(1)

I3(1)



A B

CD

Case I Case II

I3=I3(1)+I3(2)+I3(3)+I3(4)

I3(1)


I3(2)

I3(3)

I3(4)

A B

CD



Some Possible Cases

Loaded area: ABCD

Case III

I3=I3(AEFD)- I3(BEFC)

A

D

B

C

E

F

I3=I3(HAEF) - I3(GBEF) –I3(HDKF)+I3(GCKF)

A

D

B

C

E

FGH


K

Case IV



 Newmark (1942) constructed an influence chart based on the

Boussinesq’s solution.

 This chart can be used to determine the vertical stress at any point

below uniformly loaded flexible area of any shape.
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 Using the value of (R/z) obtained from Eq. (*) for various pressure ratios

(i.e Dz/q), Newmark (1942) presented an influence chart that can be

used to determine the vertical pressure at any point below a uniformly

loaded flexible area of any shape.

Newmark’s Influence Chart



 The radii of the circles are equal to

(R/z) values corresponding to

 The unit length for plotting the circle is

 The circles are divided by equally

spaced radial lines

1,......2.0,1.0,0D qz

Note:

For Dz/q = 0, R/z = 0, and for z/q = 1, R/z =,

so nine circles are shown

Newmark’s Influence Chart

AB



 The influence value of the chart is given by 1/N, where N is

equal to the number of elements in the chart.

 In the shown chart, there are 200

elements; hence the influence

value is 0.005.

 The area of each segment

represents an equal proportion of

the applied surface stress at a

depth z below the surface.

Newmark’s Influence Chart



Procedures for Using the Chart



EXAMPLE 10.14
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3 m  25 mm

Side View

Top View

EXAMPLE 10.13



A rectangular footing is 3 m X 5 m and transmits a uniform load of 100

kPa into the soil mass. Compute the incremental vertical pressures at:

 Point A which is directly below the center

of the footing

 Point B Below the corner of the footing

 Point C which is along the longest

axis of the footing offset by 1.5 m

from the nearest edge.

All points are 2.5 m deep relative to the footing base.

EXAMPLE



EXAMPLE



EXAMPLE

A raft foundation of the size given below carries a uniformly distributed load

of 300 kN/m3. Estimate the vertical pressure at a depth 9 m below point O

marked in the figure.



EXAMPLE

Approach 1: Superposition



EXAMPLE



EXAMPLE

A
B

C

D

E

FGH

K
L M

N

I3nmArea

0.19711.33KABO

0.1450.661BCEO

0.1750.831.33FHKO

0.0750.330.67MDEO

0.0850.330.83FGNO

0.0450.330.33NLMO

I =0.197 + .145 + .175 - .075 - .085 - .046 = 0.312

2kN/m 6.93300312.0 D

Loaded area is ACDLGH



EXAMPLE

Approach 2: Using Newmark’s chart

• The Depth at which         required is 9 m

• From the Fig. across, the scale of the 

foundation plan is AB = 3 cm = 9 m or 

1 cm = 3 m.

• Plot the loaded area at this scale.

• Superimpose the plan on the chart with 

point O coinciding with the center of the 

chart.

• Number of loaded blocks occupied by the 

plan, M = 62

• The vertical stress is given by:

D

O

2kN/m 9330062005.0 D

qMIV D )(



EXAMPLE



EXAMPLE



EXAMPLE

z= 2 m



EXAMPLE

z= 5 m



THE END


