Radiation Hardness Study on Fused Silica

Matthias Hoek University of Glasgow

on behalf of the PANDA Cherenkov Group

6th International Workshop on Ring Imaging Cherenkov Counters (RICH2007)

Trieste

UNIVERSITY of GLASGOW

The PANDA Detector

Endcap DIRC

Barrel DIRC

Details on PANDA DIRC detectors

K. Föhl, 'The DIRC projects of the PANDA experiment at FAIR'
P. Schönmeier, 'The Endcap DIRC of the PANDA experiment'
C. Schwarz, 'The Barrel DIRC of the PANDA experiment'

M. Hoek -Radiation Hardness Study on Fused Silica

Irradiation at KVI

Support by R. Ostendorf, KVI

M. Hoek -Radiation Hardness Study on Fused Silica

Proton beam (150MeV)

- Average stopping power in SiO₂ (SRIM)
 4.7MeV/(g/cm²)
- Beam size determination
 - LANEX scintillating screen + CCD
 - FWHM ~4mm
 - Ionisation chamber
 - Beam current between
 0.5 and 100nA
 - Max dose of 10Mrad in app 6 min

Samples

- 3 fused silica samples
 - Corning 7980

•

- Schott Lithosil Q0
- Heraeus Suprasil 1

- Estimated dose ~ 100krad
 - Planned dose 10krad, 100krad, 1Mrad and 10Mrad
 - Delivered dose sys 20% higher

M. Hoek -Radiation Hardness Study on Fused Silica

Transmission Measurement

Measurements performed by E. Bennet & E. Cowie

- Cary 300 double beam Spectrophotometer
 - Wavelength between 200 and 800nm
 - Beam spot 2x8mm²
 - Precision better than 10⁻³
 - Wavelength accuracy better than 0.2nm
- Each sample measured before irradiation at 4 spots

M. Hoek -Radiation Hardness Study on Fused Silica

Finding Radiation Spots

M. Hoek -Radiation Hardness Study on Fused Silica

- Measurements 4 weeks after irradiation
 - Samples stored in lighttight box
- Two scans across sample
 - 2mm steps (determined by beam spot size)
- 10 krad spot not visible due to beam halo
- Remaining spots clearly visible
- Use to adapt sample positioning in spectrophotometer RICH 2007, Trieste

Sensitivity

• Normalised difference

$$\Delta I \!\!=\!\! \frac{I_{ref} - I_{sample}}{I_{ref}}$$

- Compensate for Fresnel loss
- Error sources and contributions
 - Sample positioning
 ~ 0.1%
 - Sample inhomogeneity < 0.3%
- Sensitivity better than 1%

M. Hoek -Radiation Hardness Study on Fused Silica

Example Analysis of LiF

LiF - 100 & 10 krad spots

LiF

Only 1 and 10Mrad spot visible

 Transmission measurement reveals two lower dose spots

M. Hoek -Radiation Hardness Study on Fused Silica

Fused Silica – Corning 7980

 Sample size 80x80x20mm³

- Irradiation spots
 separated by 40mm
- First and last measurement in a scan influenced by edge effects
- No irradiation spots detected

M. Hoek -Radiation Hardness Study on Fused Silica

Fused Silica – Schott Lithosil

 Sample size 50x50x15mm³

> Irradiation spots separated by 25mm

 This sample exhibits most homogeneous result of all fused silica samples

 Small deviations around 200nm probably due to cleaning

M. Hoek -Radiation Hardness Study on Fused Silica

Fused Silica – Heraeus Suprasil 1

 BaBar reported significant transmission loss between 200–300nm for Suprasil Standard (NIM A515(2003) 680)
 Different cample

 Different sample geometry

- BaBar: 20cm
- This work: 2cm
- Expect 5% deviation at 200nm

 No significant damage observed for Suprasil 1

M. Hoek -Radiation Hardness Study on Fused Silica

Surface Study

Zygo GPI XP/D interferometer He-Ne laser at 632.8nm $-\lambda/300$ (2 σ) resolution Check for surface dilatation observed for silicate crown glasses under proton irradiation (> 1Mrad) (Applied Optics **41**(2002) 678)

 No significant surface change observed

Corning 7980 sample shown
 M. Hoek -Radiation Hardness Study on Fused Silica

Conclusions

- 3 fused silica types irradiated with 150MeV proton beam
 - 3 established dose levels: 100krad, 1Mrad and 10Mrad
 - Irradiation spots clearly visible in crown glass and LiF

 Transmission behaviour between 200 and 800nm monitored

- No significant radiation damage observed in any fused silica sample
- Sensitivity better than 1.0%
- No surface dilatation observed
- Further activities
 - Neutron damage

M. Hoek -Radiation Hardness Study on Fused Silica