

28th Texas Symposium on Relative Astrophysics



# Very fast TeV y-ray variability from the non-aligned AGN IC 310: Insight into Black Hole Lightning

P. Colin\*, D. Glawion, J. Sitarek, K. Mannheim for the MAGIC coll., M. Kadler, R. Schulz, E. Ros, U. Bach, F. Krauss, J. Wilms \*Max-Planck-Institut für Physik

## The MAGIC Telescopes

#### System of 2 Cherenkov telescopes 17m in diameter

#### MAGIC cameras:

- Field of view: 3.5°
- 1039 pixels / camera

#### Stereo Trigger:

- Rate: ~300 Hz
- Energy threshold: ~50 GeV

#### • Performance:

- Sensitivity (50h): 0.7% Crab
- Angular resolution: <0.1°
- Energy resolution: ~15%



Particularly efficient tool to study AGN at Very High Energy: MAGIC discovered 24 of the 65 known AGNs

## VHE γ-ray emission of AGN



#### **Detection by IACT:**

- 60 blazars ( $\theta$ <5°)
- 5 radio galaxies

#### **Classical interpretation:**

- Ultra-relativistic particles accelerated in shocks in jet
- Emission dominated by HE electrons (synchrotron & IC)
- Doppler boosted toward high energies:  $\delta = 1 / \Gamma_{bulk} (1-\beta \cos(\theta))$
- Shortest variability time-scale: Event horizon light crossing

 $\Delta t_{BH} = GM/c^3 = 1.4 \cdot (M/10^9 M_{\odot}) \text{ hours}$ 



## Rapid variability of Blazars



Variability time-scale down to a few minutes (≤ Δt<sub>BH</sub>) seen in every class of TeV Blazars

## The Doppler boost explanation

#### Main issue of shock-in-Jet paradigm:

Internal VHE gamma-ray absorption by the co-produced synchrotron radiation.

## Solution: A very large Doppler factor For Mrk501 & PKS 2155-304 minute variability:

- Lorentz factor Γ ≥ 50
- View angle θ ≤ 1°

#### Additional issues:

- If typical blazar Γ>10, we should see much more mis-aligned Blazar than observed
- The origin of the perturbations at the jet injection is not time boosted:

Origin of variability  $< \Delta t_{BH}$  not explained



## Variability of TeV radio galaxies

#### Radio galaxies

- Jet not pointing toward us
- Limited Doppler boost δ
- Weaker signal
- Only a few detected at VHE

#### **Best studied case: M87**

- Viewing angle θ ≈ 20° (δ≤3)
- $M_{\rm BH} = 3-6\cdot10^9 \, \rm M_{\odot}$
- $\Delta t_{BH} = 0.2-0.4 \text{ day}$

Observed VHE variability: ~Δt<sub>BH</sub>





#### The Perseus Cluster seen by MAGIC



#### **Detection of two new AGNs:**

- NGC 1275: The Central dominant radio galaxy
- IC 310: a peculiar radio galaxy

## The peculiar radio galaxy IC 310



Nearby galaxy: z=0.0019

Intermediate object between BL Lac and FRI radio galaxy

- No counter-jet detected.
   Limit from VLBI (5GHz):
   € ≤ 20°
- 300 kpc long jet observed.
   Limit from the de-projected jet length: θ ≥ 10°
- No hint of bending between the kpc and pc scale jet

• 
$$M_{BH} = 1-7\cdot10^8 M_{\odot}$$
  
 $\Delta t_{BH} = 8 min - 1 hour$ 

## The exceptional flare of Nov. 2012



- 4 hours of observation during the night 12/13 of Nov. 2012
- Detections of several flares with very fast variability

## Variability time-scale of the 2012 flare



- Exponential fit: Increase doubling-time < 4.8 min (95% c.l.)</li>
- Fast flickering with Δt ~1min

## VHE spectrum of IC 310



- Very Hard spectrum: Power-law with index < 2 (no break)</li>
- Spectrum similar to previous flares

## Tension with the shock-in-jet model

- Variability < Δt<sub>BH</sub>
- Hard spectrum up to 10 TeV
   Opacity problem solved only with δ >10
- Jet view angle: δ ≤ 6



Emission region  $\leq \delta \cdot 0.2 \, r_g \leq \sim r_g$ 

#### **Alternative models**

- Jets in jet (Magnetic reconnections)
  - Solve the limited δ issue
  - Problem with the total jet energy
- Star or cloud entering in the jet
  - γ rays from P-P hadronic interaction
  - (no absorption by synchrotron radiation)
  - Issue with the Proton cooling time
- Magnetospheric model
  - Particle acceleration in the electric field of vacuum gaps in the BH magnetosphere
  - Similar to "aligned magnetic rotator model" of pulsars
  - Match well the IC 310 minute-scale flares

## Magnetospheric models



## Summary

- MAGIC detected fast variability
   from a non-aligned AGN (θ = ~10-20°)
- Shock-in-Jet model cannot use the huge Doppler boost trick to explain this observation
- The origin of the fast VHE flare could be different. Alternative model:
  - Black-Hole lighting!?

