
Simulation Points for SPEC CPU 2006

Arun A. Nair, Lizy K. John
Dept. of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712 USA

{nair, ljohn}@ece.utexas.edu

Abstract— Increasing sizes of benchmarks make detailed
simulation an extremely time consuming process. Statistical
techniques such as the SimPoint methodology have been pro-
posed in order to address this problem during the initial
design phase. The SimPoint methodology attempts to identify
repetitive, long, large-grain phases in programs and predict
the performance of the architecture based on its aggregate
performance on the individual phases. This study attempts to
compare accuracy of the SimPoint methodology for the SPEC
CPU 2006 benchmark suite with that of SPEC CPU 2000 and
to study the large-grain phases in the two benchmark suites
using the SimPoint methodology. We find that there has not
been a significant increase in the number of simulation points
required to accurately predict the behavior of the programs in
SPEC CPU 2006, despite its significantly larger data footprint
and dynamic instruction count. We also find that the programs
in both benchmark suites have similar characteristics in terms
of the number of phases that contribute significantly towards
overall behavior, further emphasizing the similarity between the
two benchmark suites with respect to the number of simulation
points required for similar accuracies.

I. INTRODUCTION

The SPEC CPU 2006 suite, the latest SPEC CPU bench-
mark suite provided by the Standards Performance Eval-
uation Corportation [7], consists of 12 integer and 17
floating point programs. The programs have significantly
larger dynamic instruction counts and data footprint than
the earlier SPEC 2000 benchmark suite [2]. The increased
runtime of the programs due to the combined effect of the
increased data footprint and dynamic instruction count make
detailed simulation on a software-based micro-architectural
simulator impractical. The SimPoint technique was proposed
by Sherwood et al. [3] as a means of reducing effective
run time of programs without inducing significant errors.
The technique takes advantage of the fact that programs in
the SPEC suite exhibit long repetitive phases of execution.
Therefore, simulation of phases that are representative of
these repeating phases should suffice towards providing a
reasonably accurate prediction of performance of the ar-
chitecture. The methodology actually uses a proxy for the
unique phases, called simulation points, the details of which
shall be presented in Section II.

The accuracy of the SimPoint methodology depends on the
number of unique phases that are specified to be uncovered.
Too many simulation points could result in longer simulation
time and/or resources, and too few would result in large
errors. Since SPEC CPU 2006 has at least an order of

magnitude larger number of dynamic instructions than SPEC
CPU 2000, one might expect that it would have a larger
number of unique phases and hence require larger number
of simulation points. Unfortunately, it is hard to know
how many simulation points would suffice for low error in
prediction without doing a validation of the methodology.
This validation process would involve running the program
in its entirety and comparing the results thus obtained with
those obtained through the use of the SimPoint methodology.

Since the process of identifying SimPoints is ISA inde-
pendent, validation on an x86 machine would validate the
process across any other ISA. We compare the number of
simulation points required for producing accurate results with
SPEC CPU 2006 with those obtained using SPEC CPU 2000
and compare the results. The major contributions of this work
are:

1) Validation of SimPoint for SPEC CPU 2006. This will
provide justification for the use of the technique to
accelerate simulation using this benchmark suite.

2) Contrasting the number of unique phases required for
accurate simulation of programs in SPEC CPU 2006
with that of SPEC CPU 2000. It is impossible to know
how many simulation points are required for low error
without such a study. Also, we study the similarity in
the distribution of phases in terms of their contribution
towards overall execution.

We expect that our work will provide a reference for ar-
chitects to make an informed decision about the number of
simulation points that would be needed to have low error
while using the SimPoints methodology with SPEC CPU
2006.

II. BACKGROUND

We use the PinPoints tool provided by Intel Corporation
in order to identify the simulation points in the program.
PinPoints uses the PIN tool to extract program characteristics
from x86 binaries, which can then be used by the SimPoint
tool. Thus, it eliminates the need for a functional simulator
by allowing code to run directly on real hardware. The details
of the SimPoint methodology and the PinPoints tool are
presented below.

A. SimPoint

The SimPoint methodology provides a means of iden-
tifying and isolating unique phase behavior that exist in



many programs. A phase may be thought of as a region
of execution when the program execution is stable - the
program exhibits a relatively constant CPI, cache misses etc.
The SimPoint methodology involves uncovering all phases
in the dynamic execution stream, grouping similar phases
together, and picking a representative phase from each group.

The first step in this process involves slicing the dynamic
execution trace into chunks of a fixed size. Large slices
may fail to capture certain short-lived phase behavior but
can generate reasonably accurate results without the need to
warm up the caches. Reduction in the size of slices makes
each simulation point susceptible to errors due to cold cache
misses, but will identify phases of shorter duration, and may
therefore lead to better simulation accuracy.

The next step is to identify characteristics that can be used
to measure similarity between slices. Towards this end, the
SimPoints procedure creates Basic Block Vectors (BBV) for
each slice. Each BBV contains the product of the number
of times the basic block was executed and the number
of instructions in that basic block. This is used to group
similar slices together. A representative slice is then chosen
from amongst them, which is called a simulation point or
SimPoint. Simulation of these slices followed by a weighted
addition of results obtained through this process may be used
to predict the behavior of the entire program on the architec-
ture. Clustering algorithms may be used to achieve this goal;
however, highly dimensional data causes these algorithms
to run very slowly. The basic block vectors are therefore
normalized and random linear projection is used to reduce
the dimensionality of the basic block vectors down to 15.
K-means clustering is now used to form clusters of similar
slices. K-means algorithm involves assigning a set of points
randomly as cluster centers in the multi-dimensional space,
assigning each slice to the closest center, and then iteratively
assigning cluster centers to the centroid of each such cluster.
The algorithm terminates once there is no change in cluster
center position or a maximum count is reached. Since K-
means algorithm requires the number of centers to be known
a priori, the algorithm is run multiple times with multiple
centers, and Bayesian Information Criterion (BIC) is used to
pick the smallest value of K that produces the best fit for the
clustering.

At the end of the process, a representative slice is picked
from each cluster, which is called a simulation point. Each
SimPoint is weighted based upon the size of the cluster it
represents. Now detailed simulation needs to be done starting
at the SimPoints, over the length of the slice. A weighted
addition of the parameter of interest (such as CPI) is used
to predict the parameter of a complete simulation. Since
the simulation points are independent of one another, they
can be run in parallel, resulting in a significant reduction of
simulation time.

Sherwood et al. use slices of 100 million instructions, with
up to 10 simulation points in order to validate the procedure
using the SimpleScalar simulator running SPEC CPU 2000
Alpha binaries, which resulted in an average IPC error of
3% [3]. The process was also verified for L1 and L2 cache

miss rate and branch prediction accuracy.

B. PinPoints

PIN [6], [9] is a dynamic instrumentation tool targeted at
Intel R©Xscale, x86 and IA64 platforms. It provides a rich set
of APIs that can be used to study various characteristics of
program behavior at the level of the ISA. Since the program
is instrumented dynamically and runs natively on hardware,
using PIN provides orders of magnitude of speedup over
a functional simulator. PinPoints [8] is a tool built on top
of PIN that applies the SimPoint technique to programs
compiled for the aforementioned ISAs. Since the programs
that constitute SPEC CPU 2006 has dynamic instruction
counts of over one trillion, a detailed microarchitectural
simulator would take several months, if not more than a
year to simulate a complete run of each program. In order to
check the applicability of SimPoints for SPEC CPU 2006,
we would require a detailed run of each program in the
benchmark suite, which is quite infeasible. We therefore use
the PinPoint technique to validate SimPoints as a technique
for evaluation of new architectural features through detailed
simulation.

PinPoints provides tools to analyze the dynamic instruc-
tion trace of the program and produce a basic block vector,
which can be used to identify simulation points using the
SimPoint methodology. The identified simulation points can
then be used to simulate various microarchitectural features
such as cache hierarchies and branch predictors, using PIN.
These simulation points can also be used in a detailed x86
simulator to predict parameters such as CPI, cache miss
rates and branch predictor accuracies. Using a maximum
of 10 simulation points with each slice of size 250 million
instructions, they reported CPI errors of less than 10%, on
multiple processor configurations. The procedure was also
verified by comparing the results obtained by executing
identified simulation points on a detailed microarchitectural
simulator with a complete run on real hardware. In this case
too, the procedure compared favorably, with low errors on
most programs.

III. EVALUATION SETUP AND METHODOLOGY

The programs in the benchmark suite are first profiled
using the PinPoints tool in order to generate the BBVs,
which are then processed using the SimPoint methodology to
obtain the simulation points and their corresponding weights.
We compare the errors obtained from predicting CPI, L1
and L2 cache misses using the SimPoints methodology
for SPEC CPU 2006 and SPEC CPU 2000, for the same
maximum number of simulation points. In order to do this,
we would need data on CPI, L1 and L2 cache misses per kilo-
instruction (MPKI) for the complete run of each program in
the benchmark suites as compared to the weighted aggregate
of these respective metrics measured at each simulation
point, over the length of a SimPoint slice. We also need to
select a maximum possible number of simulation points for
the K-means clustering algorithm. The smaller the maximum,
the greater is the potential error due to the shortage of



representative simulation points. The program could have
had many repetitive phases, but by selecting a low maxK, we
may force it to compromise in its selection of representative
points. In order to minimize this effect, we fix the maximum
number of simulation points (maxK value) to 30. As can be
seen in Table I and Table II, most programs are well short
of the maximum number of simulation points.

We use a SimPoint slice of 100 million instructions, which
is the same size as that used by Sherwood et al.[3] while
evaluating the SimPoints methodology. The rationale behind
the use of large slices is that they minimize the effect of
cold misses in the cache for each simulation point and
therefore, warming up of the caches prior to execution of
each simulation point is unnecessary [12]. We use pfmon [10]
to measure both the overall metrics as well as the metrics at
each simulation point. Pfmon reads the performance monitor-
ing counters of the processor. We run each program one at a
time on an Intel R©Pentium R©4 machine with hyper-threading,
running at a clock frequency of 2.8 GHz. It is equipped with
a 16kB, 8-way set associative L1-D cache and 1MB, 8-way
set-associative L2 cache, both having 64 byte lines. We use
Linux kernel 2.6.23.1, patched and recompiled to support
pfmon. The SPEC benchmark binaries are compiled using
gcc 4.2 in base configuration. Since simulation of all 55
program-input combination of SPEC CPU 2006 programs
is impractical, we use the results of clustering techniques
applied to SPEC CPU 2006 by Phansalkar et al. [14] to
pick one representative input for the program. A complete
run of each benchmark program is first performed, and the
aggregate information of instructions retired and the number
of clock cycles consumed in the process is directly reported
using pfmon. Then a second run is performed in which the
corresponding counter is sampled using pfmon is sampled
every 100 million instructions. The difference between the
value at the start of the simulation point and the subsequent
sample is used to compute the number of clock cycles
elapsed during that simulation slice, taking counter overflows
into account. This process effectively provides a warmed-
up cache for each simulation point. However, since a large
simulation point is not significantly affected by the state of
the cache, we do not expect our results to be far from what
would have been obtained using a cold cache. A similar
approach was used by Patil et al. [8] in their work to validate
PinPoints. We run each of the above simulations three times
and pick the lowest value obtained, in order to minimize
errors due to interference from other processes that may have
been running at the time. The process is repeated to obtain
the L1 and L2 Misses Per Kilo Instructions (MPKI).

IV. RESULTS

We begin by analyzing the differences between the two
benchmark suites in terms of the number of simulation
points that were produced. This data is useful in order to
estimate the amount of additional simulation time, if any,
required to run a program from benchmark suite as compared
to the other. We then contrast the number of simulation
points that have significant weights associated with them,

and the number of such simulation points that contribute
90% of the total weights. This analysis will provide useful
information on the nature of phase behavior in programs
of both benchmark suites, and their differences, if any. We
finally compare the error for the two benchmark suites in
order to determine the need for additional simulation points
for SPEC CPU 2006, considering its vastly increased size
over SPEC CPU 2000.

A. Comparison of Simulation Points for SPEC CPU 2006
and SPEC CPU 2000

The number of simulation points and their weights, gener-
ated for each program in SPEC CPU 2006 and SPEC CPU
2000 can be used to compare their overall behavior. Table
I lists the total number of simulation points and the total
number of dynamic instructions for the SPEC CPU 2006.
Most of the programs had less than 21 simulation points,
with only four exceeding this value. The table also contains
the dynamic instruction count as obtained using pfmon. The
number of simulations points and number of instructions may
vary depending on which input file is used for the programs.

We analyze the weights of the simulation points to evaluate
the phase behavior of programs. A large weight on a simu-
lation point would imply that the program spends a longer
fraction of time in that phase of execution. Calculix has
a dominant simulation point that accounts for 42% of the
execution, and four simulation points together account for
almost 80% of the execution. This indicates that there is very
low diversity in the behavior of this program. CactusADM
has an even more dominant simulation point, accounting
for 73% of the total weight, and three simulation points
accounting for over 90% of the execution. For such pro-
grams, a smaller maxK value may yield acceptable results.
Programs such as soplex, namd, milc, zeusmp and leslie3d
have a fairly regular distribution of weights and hence need
more number of simulation points for better accuracy. Many
programs, such as perlbmk, lbm and cactusADM have a sub-
stantial number of simulation points with very low weights.
While the existence of these phases indicate diversity in
program behavior, they do not contribute significantly to
the overall CPI. Such programs can be simulated accurately
using a fewer number of simulation points. For instance,
cactusADM has 21 simulation points, but only 10 of them
individually account for more than 1% of the execution,
while the rest combined contribute approximately 0.5% to the
total. This analysis indicates that we can reduce the number
of simulation points used by the programs and in many
cases, achieve high accuracies. Only programs that have a
regular distribution of phases, so as to not have a dominant
phase would need additional phases. This information can be
used to adaptively fix the number of simulation points that
would yield acceptable results during simulation, saving on
resources and/or total simulation time.

While programs may have a large number of phases, many
have only a few dominant phases. These phases contribute
most significantly towards the overall behavior of the pro-
gram and hence are assigned the highest weights in the



SimPoint methodology. It may be possible that most SPEC
CPU 2000 programs have very few such dominant simulation
points, and hence there is no significant loss in accuracy even
if the more infrequent phases are ignored, whereas CPU 2006
may not. We would therefore need to address the question
whether a reduction in the number of simulation points
(maxK) would result in different behavior as far as errors
are concerned. A significant discrepency in the distribution of
weights in one benchmark suite over another would suggest
that one suite requires more simulation points than the other.

We therefore analyze the weights of programs in CPU
2000 suite, much in the same way as we did earlier for
SPEC CPU 2006. We find that the overall trends are very
similar in both. There is a similar mix of some programs
having few, dominant simulation points, and others having
simulation points with similar weights. For instance, apsi has
a very dominant simulation point which contributes 50% of
the total weight. Six simulation points in sixtrack contribute
over 98% of the execution. However, the other programs
have weights that are close to one another. Programs such as
bzip-graphic and equake have a number of simulation points
with relatively similar weights. Hence these programs would
have higher errors if the number of simulation points were
reduced.

In order to gauge the number of phases that contribute
significantly to the overall program behavior, we identify
the 10 most dominant simulation points of the benchmarks
in both suites, based on their weights. The higher the
cumulative weight for these simulation points, the greater
the influence of the 10 simulation points on program behav-
ior, and potentially, the better the accuracy when maxK is
reduced to 10. We find that 10 simulation points cover at least
70% of the total weight for 17 out of a total of 25 SPEC CPU
2000 programs evaluated. 8 of these programs have over
90% of their total weights covered by 10 simulation points.
A similar analysis for CPU 2006 reveals that 22 out of a
total of 28 programs cover at least 70% of the total weights,
and that 10 of these have over 90% of their total weight
represented by 10 simulation points. For both benchmark
suites, majority of the programs ranged between 75% and
85% of the maximum, for 10 simulation points. This suggests
that both programs have similar distribution of weights for
simulation points. This result is important because it suggests
that reducing the number of simulation points will not
decrease accuracy on one benchmark suite versus the other.
It also provides us with a first-order approximation of the
effect of reducing the number of simulation points without
actually having to simulate for multiple max-K values.

We also try to identify the number of simulation points that
combined, constitute 90% of the overall program execution.
The program spends a significant amount of time in these
phases. A fewer number of simulation points required to
achieve this number would indicate fewer significant phases
of program execution. We find that the average number of
simulation points required to achieve 90% of the total weight
in CPU 2006 suite is 13.07, with a standard deviation of 4.3,
whereas that for CPU 2000 is 13.4, with a standard deviation

TABLE I
NUMBER OF SIMULATION POINTS, NUMBER OF SIMULATION

POINTS AMOUNTING TO 90% OF TOTAL EXECUTION AND

INSTRUCTION COUNT FOR SPEC CPU 2006

Benchmark Simulation 90 percentile Instructions
Points Points (billions)

400.perlbench-splitmail 21 12 756.9
401.bzip2-combined 17 13 371.92
403.gcc-scilab 17 9 68.57
429.mcf 14 9 464.98
445.gobmk-trevord.tst 18 13 359.52
456.hmmer-retro.hmm 17 15 2472.91
458.sjeng 16 12 2654.13
459.gemsFDTD 20 12 308.88
462.libquantum 22 15 4534.27
464.h264ref-sss encoder main 20 14 3289.98
471.omnetpp 9 6 787.08
473.astar-rivers.cfg 8 6 961.44
483.xalancbmk 18 13 1401.34
410.bwaves 22 10 2780.95
416.games-triazolium 15 11 3717.7
433.milc 23 18 1649.57
434.zeusmp 26 19 2273.56
435.gromacs 20 19 2267
436.cactusADM 21 3 3115.92
437.leslie3d 22 20 4745.74
444.namd 26 18 3293.89
447.dealII 21 14 2809.95
450.soplex-ref.mps 21 17 414.17
454.calculix 10 7 8499.78
453.povray 20 15 1287.36
465.tonto 20 15 3002.2
470.lbm 21 12 1567.55
482.sphinx 20 16 3135.75
Average 18.75 13.07 2249.75

TABLE II
NUMBER OF SIMULATION POINTS, NUMBER OF SIMULATION

POINTS AMOUNTING TO 90% OF TOTAL EXECUTION AND

INSTRUCTION COUNT FOR SPEC CPU 2000

Benchmark Simulation 90 percentile Instructions
Points Points (billions)

176.gcc-scilab 18 11 38.51
176.gcc-166 23 14 21.29
164.gzip-graphic 27 21 71.47
164.gzip-source 14 10 54.17
175.vpr-place 15 11 111.86
175.vpr-route 23 15 85.63
300.twolf 20 14 290.93
186.crafty 16 13 216.96
181.mcf 12 8 48.80
253.perlbmk 16 10 94.87
256.bzip-source 20 15 87.08
256.bzip-graphic 23 20 117.28
197.parser 13 10 281.77
254.gap 18 12 54.17
179.art-1 15 12 113.55
179.art-2 12 10 117.29
173.applu 25 18 528.82
188.ammp 24 13 386.60
200.sixtrack 9 5 936.54
183.equake 30 23 149.67
301.apsi 20 11 602.69
171.swim 22 20 249.89
172.mgrid 22 17 523.77
168.wupwise 23 9 490.19
177.mesa 18 13 317.34
Average 19.12 13.4 239.65



of 4.4. The values for each benchmark can be found in Table
I and II under the 90 percentile points column. Our analysis
suggests that not only are the number of simulation points
similar, but the weights of these phases are also similar in
distribution. Hence, a reduced number of simulation points
would result in inaccuracies not dissimilar to those observed
for CPU 2000.

B. Comparison of Errors in CPI and Cache Misses

Figures 1(a) and 1(b) plot the CPI obtained from a
complete run as compared to the results obtained from
the weighted addition of the CPI of each simulation point.
The highest error for SPEC CPU 2006 is obtained for
GemsFDTD, at 10.24%, and the average error is 2.45%. The
highest error for SPEC CPU 2000 is 10.7%, obtained for gcc-
166. The average error obtained is 2.15%. This validates
the efficacy of the SimPoints procedure for SPEC CPU
2006. We may conclude that the errors for both benchmark
suites are very similar, for the same maximum number of
simulation points. Despite the large increase in the dynamic
instruction count of SPEC CPU 2006 programs, an increase
in the number of simulation points over SPEC CPU 2000 is
unnecessary.

Figure 1(c) plots the error in misses per kilo-instructions
(MPKI) for L1 cache, using the SimPoints methodology, for
CPU 2006. The average error obtained for L1 MPKI on
SPEC CPU 2006 is 3.55%. This compares favorably with
the average error of 6.51% for CPU 2000, as shown in
Figure 1(d). The large average error is predominantly due
to a relatively higher error of 31.57% on gzip-graphic. In
absolute terms, this is a result of an error of 9 misses per
kilo-instructions. The graphic input set is also responsible
for the third-highest error value of 18% in bzip2. The error
in MPKI here is 2.95. Barring these exceptions, the overall
L1 MPKI results are very similar.

In the average error between the predicted and actual
MPKI for SPEC CPU 2006 is 12.62%, as shown in Figure
1(e). The highest error in L2 cache MPKI is for gobmk
(115%). When compared to SPEC CPU 2000 (Figure 1(f)),
we obtain an average error of 23.77% and a maximum error
of 271% for wupwise. The percentage values appear to be
high, but this is largely due to the fact that L2 MPKI for
all programs tends to be a very small value, and in many
cases, zero. Hence, depending on the actual MPKI, a small
deviation may show up as a large percentage, or vice versa.
This is indeed true for both gobmk and wupwise. In absolute
terms, the highest error is for xalancbmk (0.41) and art-2
(2.9) for SPEC CPU 2006 and SPEC CPU 2000 respectively.
Since misses do not necessarily cause stalls in superscalar
processors, simulation points with higher inaccuracy in pre-
dicting L2 misses may not necessarily also have higher error
in CPI prediction . Clearly, the reverse of this is also true
– not all programs with high cache accuracy will provide
high accuracy with CPI. Since the simulation point cannot
possibly be identical to all other phases it is designated
to represent, differences in instruction mix and data access
contribute to errors.

These results are interesting, as they indicate that even
though there has been orders of magnitude increase in the
dynamic instruction counts and data footprints of programs
in SPEC CPU 2006 over CPU 2000, for the same number of
maximum simulation points, the error rates are very similar.
It suggests that the number of phases in the programs that
constitute the benchmark suite have not changed, in spite
of an increase in the data footprint and dynamic instruction
count. Even for programs with dynamic count exceeding
3000 billion instructions, the total number of simulation
points required for generating accurate results remains small.
Calculix represents a good example for the repetitive phase
behavior for which the SimPoints technique was devised: it
has the highest dynamic instruction count of approximately
8500 billion instructions, and yet can be represented with
just 10 simulation points with an error of only 3% for CPI.
The fact that the number of simulation points required for
accurate simulation remains practically unchanged is impor-
tant for performance evaluation studies using the SimPoint
methodology. Researchers may use these results to make an
educated choice on the number of simulation points required
for the SPEC CPU 2006 program that is of interest.

It is also interesting to note that overall, the CPI in both
benchmark suites is similar. This is, in part, due to the fact
that the L2 miss rates in both benchmark suites are very
similar as well. A detailed analysis of this is beyond the
scope of this paper. This observation seems to agree with the
findings of Gove [1], who performed a comparative study of
the working set sizes of SPEC CPU 2006 and CPU 2000.
Gove notes that the increase in memory footprint for integer
programs had not resulted in a proportionate increase in the
working set size (WSS) of all programs in the SPEC CPU
2006.

We may therefore conclude that SPEC CPU 2006 produces
similar accuracies with similar number of simulation points,
as compared to SPEC CPU 2000. Despite the significantly
larger run-time for programs in SPEC CPU 2006 suite,
our study indicates that there is no significant increase in
simulation time, if the SimPoint methodology is adopted.

V. RELATED WORK

Sherwood et al [3], [11] presented the SimPoints technique
and validated it for SimpleScalar using Alpha binaries. Patil
et al [8] use Pin on IA64 to generate BBVs that may
be used to identify simulation points using the SimPoint
methodology. Both these have been covered in detail in
Section II. Therefore, for the sake of brevity, we shall not
repeat it here. Some comparative studies between the two
benchmark suites have been done. Henning presented studies
on the memory footprint of SPEC CPU 2000 [13] and SPEC
CPU 2006 [2], in which it was noted that SPEC CPU 2000
was designed to target systems with 256MB of memory,
whereas SPEC CPU 2006 targets a memory footprint of
900MB. Gove [1] analyzes the working set size (WSS)
of SPEC 2006 programs and concludes that overall, the
WSS of SPEC CPU 2000 benchmarks is not significantly
different from that of SPEC CPU 2006. He notes that with



0 

2 

4 

6 

8 

10 

12 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Er
ro

r(
%

) 

C
PI

 

Predicted CPI Actual CPI %Error 

(a) CPI measurements for SPEC CPU 2006.

0 

2 

4 

6 

8 

10 

12 

0 

2 

4 

6 

8 

10 

12 

14 

Er
ro

r(
%

) 

C
PI

 

Predicted CPI Actual CPI %Error 

(b) CPI measurements for SPEC CPU 2000.

0 

2 

4 

6 

8 

10 

12 

14 

16 

0 

20 

40 

60 

80 

100 

120 

Er
ro

r(
%

) 

M
PK

I 

Predicted L1 MPKI Actual L1 MPKI %Error 

(c) L1 MPKI measurements for SPEC CPU 2006

0 

5 

10 

15 

20 

25 

30 

35 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

Er
ro

r(
%

) 

M
PK

I 

Predicted MPKI Actual MPKI %Error 

(d) L1 MPKI measurements for SPEC CPU 2000

0 

20 

40 

60 

80 

100 

120 

140 

0 

5 

10 

15 

20 

25 

Er
ro

r(
%

) 

M
PK

I 

Predicted L2 MPKI Actual L2 MPKI Error (%) 

(e) L2 MPKI measurements for SPEC CPU 2006

0 

50 

100 

150 

200 

250 

300 

0 

10 

20 

30 

40 

50 

60 

70 

Er
ro

r (
%

) 

M
PK

I 

Predicted MPKI Actual MPKI Error (%) 

(f) L2 MPKI measurements for SPEC CPU 2000

Fig. 1. Comparison of CPI, L1 MPKI, L2 MPKI and their measurement error, obtained from the weighted aggregate of simulation
point measurements (Predicted) and the measurements of a complete run (Actual).



the exception of mcf in CPU 2006, all integer programs in
both suites have a WSS of less than 256MB. However, for
floating point programs, there is significant increase in the
WSS, with around 25% exceeding 256MB. He also notes
that some floating point programs have very low working
set sizes. We are unaware of any other comparative studies
involving SPEC CPU 2000 and 2006.

VI. SUMMARY

In this work, we apply the SimPoints procedure to SPEC
CPU 2006, using PinPoints. Our results indicate that, for
a maxK of 30, with slice size of 100 million instructions,
we observe a low average CPI error of 2.45% and a max-
imum error of 10.24%. For most programs, the CPI error
is well below 3%, indicating that SimPoints can be used
to accelerate simulation of single threaded benchmarks on
detailed simulators. For a maxK of 30, no program produced
more than 26 simulation points, and all but one produced less
than 23 simulation points. This fact, along with the the low
CPI error indicates that CPU 2006 exhibits long repetitive
phases, much like its predecessor, the SPEC CPU 2000
benchmark suite. We compare the results of the SimPoints
methodology applied to SPEC CPU 2000 with the results
obtained from SPEC CPU 2006, and find that the CPI
error percentage is similar, for the same maxK and slice
size. Furthermore, we note that the number of simulation
points produced are also similar. This indicates that there
is no significant increase in the number of unique phases
in the new benchmark suite and hence additional simulation
points are not required to adequately capture phase program
behavior. From a simulation standpoint, this means that
the overall time taken to predict performance using either
benchmark remains the same, since we have to execute a
similar number of fixed-size slices.

We may therefore conlude that while there are some
differences in the working set size and memory footprint
for many programs in the two benchmark suites, the funda-
mental behavior of the programs insofar as repetitive phase
behavior is concerned, remains largely unchanged. This work
provides the scientific community with sufficient information
to decide on the number of simulation points that would be
necessary for accurate simulation of a program in the SPEC
CPU 2006 suite.

VII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
comments and feedback. We would also like to thank the
members of the Laboratory of Computer Architecture for
their feedback for improving this manuscript. This work was
supported in part through the NSF award number 0702694.

REFERENCES

[1] Gove, D. 2007. CPU2006 working set size. SIGARCH Comput.
Archit. News 35, 1 (Mar. 2007), 90-96.

[2] Henning, J. L. 2007. SPEC CPU2006 memory footprint.
SIGARCH Comput. Archit. News 35, 1 (Mar. 2007), 84-89

[3] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B. 2002.
Automatically characterizing large scale program behavior. In
Proceedings of the 10th international Conference on Archi-
tectural Support For Programming Languages and Operating
Systems (San Jose, California, October 05 - 09, 2002). ASPLOS-
X. ACM, New York, NY, 45-57.

[4] Burger, D.C. and Austin, T.M.. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[5] Open Source Development Labs, Database Test 2,
http://www.osdl.org/lab_activities/kernel_
testing/osdl_database_test_suite/osdl_dbt-2,
2007.

[6] PIN home page: http://rogue.colorado.edu/Pin/
[7] Standard Performance Evaluation Corporation (SPEC) website,
http://www.spec.org/

[8] Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., and
Karunanidhi, A. 2004. Pinpointing Representative Portions of
Large Intel R©Itanium R©Programs with Dynamic Instrumentation.
In Proceedings of the 37th Annual IEEE/ACM international
Symposium on Microarchitecture (Portland, Oregon, December
04 - 08, 2004). International Symposium on Microarchitecture.
IEEE Computer Society, Washington, DC, 81-92.

[9] Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V. J., and Hazelwood, K. 2005. Pin: building
customized program analysis tools with dynamic instrumenta-
tion. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (Chicago,
IL, USA, June 12 - 15, 2005). PLDI ’05. ACM, New York, NY,
190-200.

[10] Perfmon2 home page http://perfmon2.
sourceforge.net/

[11] Sherwood, T., Perelman, E., and Calder, B. 2001. Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation
Points in Applications. In Proceedings of the 2001 interna-
tional Conference on Parallel Architectures and Compilation
Techniques (September 08 - 12, 2001). PACT. IEEE Computer
Society, Washington, DC, 3-14.

[12] Conte, T. M., Hirsch, M. A., and Menezes, K. N. 1996.
Reducing State Loss For Effective Trace Sampling of Superscalar
Processors. In Proceedings of the 1996 international Conference
on Computer Design, VLSI in Computers and Processors (Octo-
ber 07 - 09, 1996). ICCD. IEEE Computer Society, Washington,
DC, 468-477.

[13] Henning, J.L., SPEC CPU2000 Memory Footprint, http:
//www.spec.org/cpu2000/analysis/memory

[14] Phansalkar, A., Joshi, A., and John, L. K. 2007. Analysis
of redundancy and application balance in the SPEC CPU2006
benchmark suite. In Proceedings of the 34th Annual international
Symposium on Computer Architecture (San Diego, California,
USA, June 09 - 13, 2007). ISCA ’07


