Skip to main content
Log in

Influence of Morphology and Structure on Electrochemical Performances of Li-Ion Battery Sn Anodes

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sn films with different particle sizes were prepared via electrodeposition, and their microstructure as well as morphology was characterized by scanning electron microscopy and X-ray diffraction. As the anode materials for Li-ion batteries, the electrochemical performances of the Sn films are significantly influenced by their morphology and structure. During electrodeposition, the grain size of Sn increases with duration of deposition, leading to anode compaction and cell capacity deterioration. The Sn-300 anode electrodeposited for 300 seconds shows the highest charge/discharge capacity of 592.1 mAh/g, while the value decreases to 437.7 mAh/g in the Sn-600 anode (electrodeposited for 600 seconds). Both Sn-300 and Sn-600 anodes show similar irreversible capacity and Coulomb efficiency. The Sn-3600 anode fabricated via electrodeposition for 3600 seconds shows the least capacity and the worst cyclic performance. The current study demonstrates that the increase in the particle size of active Sn materials worsens the capacity and cyclic performances of Sn-anode materials for Li-ion batteries. This finding improves our understanding on relationship between morphology/microstructure and performances of Li-ion battery Sn anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L.H. Liu, F. Xie, J. Lyu, T.K. Zhao, T.H. Li, and B.G. Choi: J. Power Sources, 2016, vol. 321, pp. 11-35.

    Article  CAS  Google Scholar 

  2. J. S. Chen and X. W. Lou: Small, 2013, vol. 9, pp. 1877-1893.

    Article  CAS  Google Scholar 

  3. H. Wang, H. Huang, C. Niu, and A.L. Rogach: Small, 2015, vol. 11, pp. 1364-1383.

    Article  CAS  Google Scholar 

  4. W.M. Zhang, J.S. Hu, Y.G. Guo, Sh.F. Zheng, L.S. Zhong, W.G. Song, and L.J. Wan: Adv. Mater., 2008, vol. 20, pp. 1160-1165.

    Article  CAS  Google Scholar 

  5. M. Winter and J.O. Besenhard: Electrochim. Acta, 1999, vol. 45, pp. 31.

    Article  CAS  Google Scholar 

  6. G.X. Wang, B. Wang, X.L. Wang, J. Park, S.X. Dou, H. Ahn, and K. Kim: J. Mater. Chem., 2009, vol. 19, pp. 8378-8384.

    Article  CAS  Google Scholar 

  7. J. Qin, X. Zhang, N. Zhao, C. Shi, E.-Z. Liu, J. Li, and C. He: J. Mater. Chem. A, 2015, vol. 3, pp. 23170-23179.

    Article  CAS  Google Scholar 

  8. L. Sun, X. Wang, R.T.A. Susantyoko, and Q. Zhang: Carbon, 2015, vol. 82, pp. 282-287.

    Article  CAS  Google Scholar 

  9. J. Wang, W.L. Song, Z. Wang, L.-Z. Fan, and Y. Zhang: Electrochim. Acta, 2015, vol. 153, pp. 468-475.

    Article  CAS  Google Scholar 

  10. F. Xin, X. Wang, J. Bai, W. Wen, H. Tian, C. Wang, and W. Han: J. Mater. Chem. A, 2015, vol. 3, pp. 7170-7178.

    Article  CAS  Google Scholar 

  11. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka: Electrochem. Solid State Lett., 2003, vol. 6, pp. A218-A220.

    Article  CAS  Google Scholar 

  12. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, and M.V. Kovalenko: J. Am. Chem. Soc., 2013, vol. 135, pp. 4199-4202.

    Article  CAS  Google Scholar 

  13. M. G. Kim, S. Sim, and J. Cho: Adv. Mater., 2010, vol. 22, pp. 5154-5158.

    Article  CAS  Google Scholar 

  14. S. Guido, O. Nikolas, K. Martin, K.-O. Joanna, P. Thorsten, M. Hinrich-Wilhelm, P. Tobias, P. Jürgen, and W. Martin: Nanotechnology, 2014, vol. 25, pp. 355401-355411.

    Article  Google Scholar 

  15. Y.Z. Jiang, Y. Li, P. Zhou, Z.Y. Lan, Y.H. Lu, Chen Wu, and Mi Yan: Adv. Mater., 2017, vol. 29, pp. 1606499-16065006.

    Article  Google Scholar 

  16. J. B. Cook, E. Detsi, Y. Liu, Y. Liang, H.-S. Kim, X. Petrissans, B. Dunn, and S. H. Tolbert: ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 293-303.

    Article  CAS  Google Scholar 

  17. L. Liu, F. Xie, L. J. Zhao, T. Li, and B. G. Choi: J. Power Sources, 2016, vol. 321, pp. 11-35.

    Article  CAS  Google Scholar 

  18. A.Salman, H. Sommer, T. Brezesinski, and J. Janek: Electrochimica Acta, 2017, vol. 246, pp.1016-1022.

    Article  Google Scholar 

  19. Y. Li, J. Shi, and Y. Liang: Int. J. Electrochem. Sci., 2018, vol. 13, pp.2366 - 2378.

    Article  CAS  Google Scholar 

  20. S.L. Wang, W.Z. Zhao, Y. Wang, X. Liu, and L. Li: Electrochim. Acta, 2013, vol. 109, pp. 46-51.

    Article  CAS  Google Scholar 

  21. A. L. Patterson: Phys. Rev., 1939, vol. 56, pp. 978-982.

    Article  CAS  Google Scholar 

  22. T. Xia, W. Zhang, Z. Wang, Y. Zhang, X. Song, J. Murowchick, V. Battaglia, G. Liu, and X. Chen: Nano Energy, 2014, vol. 6, pp. 109-118.

    Article  CAS  Google Scholar 

  23. W.J. Zhang: J. power source, 2011, vol. 196, pp. 13-24.

    Article  CAS  Google Scholar 

  24. I.A. Courtney and J.R. Dahn: J. Electrochem. Soc., 1997, vol. 144, pp. 2045-2052.

    Article  CAS  Google Scholar 

  25. R.A. Dunlap, D.A. Small, D.D. MacNeil, M.N. Obrovac, and J.R. Dahn: J. Alloys Compd., 1999, vol. 289, pp. 135-142.

    Article  CAS  Google Scholar 

  26. N. Papageorgiou, W.F. Maier, and M. Gratzel: J. Electrochem. Soc., 1997, vol. 144, pp. 876-884.

    Article  CAS  Google Scholar 

  27. L.Y. Beaulieu, S. Beattie, T. Hatchard, and J.R. Dahn: J. Electrochem. Soc., 2003, vol. 150, pp. A419-A424.

    Article  CAS  Google Scholar 

  28. R.Z. Hu, Y. Zhang, and M. Zhu: Electrochim. Acta, 2008, vol. 53, pp. 3377-3385.

    Article  CAS  Google Scholar 

  29. Z.H. Wen, S.M. Cui, H. Kim, S. Mao, K.H. Yu, G.H. Lu, H.H. Pu, O. Mao, and J.H.Chen: J. Mater. Chem., 2012, vol. 22, pp. 3300-3306.

    Article  CAS  Google Scholar 

  30. B. Wang, D.W. Su, J. Park, H. Ahn, and G.X. Wang: Nanoscale Res. Lett., 2012, vol. 7, pp. 215-231.

    Article  Google Scholar 

  31. Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen, and J. Maier: Adv. Mater., 2011, vol. 23, pp. 2443-2447.

    Article  CAS  Google Scholar 

  32. S. Yang, X. Feng, and K. Mullen: Adv. Mater., 2011, vol. 23, pp. 3575-3599.

    Article  CAS  Google Scholar 

Download references

This study is supported by the National Natural Science Foundation of China (51574062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Xuan Liu.

Additional information

Manuscript submitted March 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Liu, L., Wang, S. et al. Influence of Morphology and Structure on Electrochemical Performances of Li-Ion Battery Sn Anodes. Metall Mater Trans A 49, 5930–5935 (2018). https://doi.org/10.1007/s11661-018-4936-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4936-1

Navigation