Skip to main content
Log in

Electrochemical Behavior of Aluminum-Molybdenum Surface Composites Developed by Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum alloys find application in aerospace, automobile, and structural sectors. However, these alloys are susceptible to corrosion attack in chloride environments. Introducing a second species on the surface by surface composite fabrication can be a way to increase the corrosion resistance of the aluminum alloys. Here, we present corrosion studies on aluminum matrix surface composites fabricated using friction stir processing. The reinforcement of Mo particles is considered with varying percentage and distribution in the surface composite. The particle content and distribution are analyzed using SEM–EDS and optical image analysis. Based on the potentiodynamic polarization analysis, the surface composites exhibit improved corrosion resistance with higher corrosion potential and lower corrosion rate. Increase in corrosion resistance is observed for higher Mo content with homogenous distribution. While the base alloy exhibit mixed corrosion behavior, the surface composites show charge-transfer controlled corrosion behavior in the Electrochemical Impedance Spectroscopy. Reduced pitting in the Mo-rich areas is confirmed by microscopic analysis of the corroded material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A., 2008, 39, p 642–658.

    Article  Google Scholar 

  2. G. Šekularac, and I. Milošev, Corrosion of Aluminium Alloy AlSi7Mg0.3 in Artificial Sea Water with Added Sodium Sulphide, Corros. Sci., 2018, 144, p 54–73.

    Article  Google Scholar 

  3. M. Liang, R. Melchers and I. Chaves, Corrosion and Pitting of 6060 Series Aluminium After 2 years Exposure in Seawater Splash, Tidal and Immersion Zones, Corros. Sci., 2018, 140, p 286–296.

    Article  CAS  Google Scholar 

  4. L.A.B. Mabhali, S.L. Pityana and N. Sacks, Laser Surface Alloying of Aluminium AA1200, Mol. Cryst. Liq. Cryst., 2012, 555, p 138–148.

    Article  CAS  Google Scholar 

  5. R.M. Miranda, J. Gandra, and P. Vilaca, Surface Modification by Friction Based Processes, Mod. Surf. Eng. Treat., INTECH Open science, 2013, p 1–20.

  6. K. Yang, W. Li, Y. Xu and X. Yang, Using Friction Stir Processing to Augment Corrosion Resistance of Cold Sprayed AA2024/ Al2O3 Composite Coatings, J. Alloys Compd., 2018, 774, p 1223–1232.

    Article  Google Scholar 

  7. C.M. Abreu, M.J. Cristóbal, R. Figueroa and G. Pena, Influence of Molybdenum ion Implantation on the Localized Corrosion Resistance of a High Strength Aluminium Alloy, Corros. Sci., 2012, 54, p 143–152.

    Article  CAS  Google Scholar 

  8. N. Saunders, The AI-Mo System, J. Phase Equilibria., 1997, 18, p 370–378.

    Article  CAS  Google Scholar 

  9. A. Almeida, F. Carvalho, P.A. Carvalho and R. Vilar, Laser Developed Al-Mo Surface Alloys: Microstructure, Mechanical and Wear Behaviour, Surf. Coat. Technol., 2006, 200, p 4782–4790.

    Article  CAS  Google Scholar 

  10. M.A. McMahon, K.G. Watkins, W.M. Steen, R. Vilar, and M.G.S. Ferreira, Laser Surface Alloying of Aluminium 2014 Alloy with Mo for Enhanced Corrosion Resistance, in: J. Mazumder (Ed.), Laser Process. Surf. Treat. Film Depos., 1996, p 337–358.

  11. D. Chen, J. Cai, J. Fang and Z. Chen, Preparation of Al–Mo Intermetallic Powders by Solid–Liquid Reaction Ball Milling, J. Alloys Compd., 2009, 485, p 9–11.

    Article  Google Scholar 

  12. W.C. Rodrigues, F.R.M. Espinoza, L. Schaeffer and G. Knörnschild, A Study of Al-Mo Powder Processing as a Possible Way to Corrosion Resistant Aluminum-Alloys, Mater. Res., 2009, 12, p 211–218.

    Article  CAS  Google Scholar 

  13. Y.J. Kwon, I. Shigematsu and N. Saito, Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process, Scr. Mater., 2003, 49, p 785–789.

    Article  CAS  Google Scholar 

  14. A. Arora, A. Astarita, L. Boccarusso and V.P. Mahesh, Experimental Characterization of Metal Matrix Composite with Aluminium Matrix and Molybdenum Powders as Reinforcement, Procedia Eng., 2016, 167, p 245–251.

    Article  CAS  Google Scholar 

  15. V.P. Mahesh and A. Arora, Effect of Tool Shoulder Diameter on the Surface Hardness of Aluminum-Molybdenum Surface Composites Developed by Single and Double Groove Friction Stir Processing, Metall. Mater. Trans. A., 2019, 50, p 5373–5383.

    Article  CAS  Google Scholar 

  16. S. Selvakumar, I. Dinaharan, R. Palanivel, and B. Ganesh Babu, Characterization of Molybdenum Particles Reinforced Al6082 Aluminum Matrix Composites with Improved Ductility Produced Using Friction Stir processing, Mater. Charact., 2017, 125, p 13–22.

    Article  CAS  Google Scholar 

  17. A.P.I. Popoola, S.L. Pityana and O.M. Popoola, Laser Deposition of (Cu+Mo) Alloying Reinforcements on AA1200 Substrate for Corrosion Improvement, Int. J. Electrochem. Sci., 2011, 6, p 5038–5051.

    CAS  Google Scholar 

  18. C.D. Amato, J.C. Betts and J. Buhagiar, Laser Surface Alloying of an A356 Aluminium Alloy Using Nickel and Ni-Ti-C: A Corrosion Study, Surf. Coat. Technol., 2014, 244, p 194–202.

    Article  Google Scholar 

  19. M. Rahsepar and H. Jarahimoghadam, The Influence of Multipass Friction Stir Processing on the Corrosion Behavior and Mechanical Properties of Zircon-Reinforced Al Metal Matrix Composites, Mater. Sci. Eng. A., 2016, 671, p 214–220.

    Article  CAS  Google Scholar 

  20. M. Alishavandi, M.A. Razmjoo Khollari, M. Ebadi, S. Alishavandi, and A.H. Kokabi, Corrosion-Wear Behavior of AA1050/Mischmetal Oxides Surface Nanocomposite Fabricated by Friction Stir Processing, J. Alloys Compd., 2020, 832, p 153964–153975.

    Article  CAS  Google Scholar 

  21. V.R. Capelossi, M. Poelman, I. Recloux, R.P.B. Hernandez, H.G. De Melo and M.G. Olivier, Corrosion Protection of Clad 2024 Aluminum Alloy Anodized in Tartaric-Sulfuric Acid Bath and Protected with Hybrid Sol–Gel Coating, Electrochim. Acta., 2014, 124, p 69–79.

    Article  CAS  Google Scholar 

  22. M.A. Amin, K.F. Khaled and S.A. Fadl-Allah, Testing Validity of the Tafel Extrapolation Method for Monitoring Corrosion of Cold Rolled Steel in HCl Solutions—Experimental and Theoretical Studies, Corros. Sci., 2010, 52, p 140–151.

    Article  CAS  Google Scholar 

  23. V.P. Mahesh, A. Gumaste, N. Meena, J. Alphonsa and A. Arora, Corrosion Behavior of Aluminum Surface Composites with Metallic, Ceramic, and Hybrid Reinforcements Using Friction Stir Processing, Metall. Mater. Trans. B, 2020, 51, p 2131–2146.

    Article  CAS  Google Scholar 

  24. K. Surekha, B.S. Murty, and K. Prasad Rao, Comparison of Corrosion Behavior of Friction Stir Processed and Laser Melted AA 2219 Aluminium Alloy, Mater. Des., 2011, 32, p 4502–4508.

    Article  CAS  Google Scholar 

  25. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang and J. Fan, Corrosion Behavior of Equal-Channel-Angular-Pressed Pure Magnesium in NaCl Aqueous Solution, Corros. Sci., 2010, 52, p 481–490.

    Article  CAS  Google Scholar 

  26. A.J. Trowsdale, B. Noble, S.J. Harris, I.S.R. Gibbins, G.E. Thompson and G.C. Wood, The Influence of Silicon Carbide Reinforcement on the Pitting Behaviour of Aluminium, Corros. Sci., 1996, 38, p 177–191.

    Article  CAS  Google Scholar 

  27. M. Yu, M.Y. Ding, H. Ma and H.L. Liao, Microstructure and Corrosion Behavior of Cold-Sprayed Aluminum Alloy/Inconel Composite Coatings, J. Therm. Spray Technol., 2019, 28, p 460–471.

    Article  CAS  Google Scholar 

  28. E.M.A. Martini and I.L. Muller, Characterization of the Film Formed on Iron in Borate Solution by Electrochemical Impedance Spectroscopy, Corros. Sci., 2000, 42, p 443–454.

    Article  CAS  Google Scholar 

  29. S. Dhillon and R. Kant, Theory for Electrochemical Impedance Spectroscopy of Heterogeneous Electrode with Distributed Capacitance and Charge Transfer Resistance, J. Chem. Sci., 2017, 129, p 1277–1292.

    Article  CAS  Google Scholar 

  30. C. op’t Hoog, N. Birbilis, and Y. Estrin, Corrosion of Pure Mg as a Function of Grain Size and Processing Route, Adv. Eng. Mater., 2008, 10, p 579–582.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of Central Instrumentation Facility at Indian Institute of Technology Gandhinagar, and Institute of Plasma Research, Gandhinagar. Two of the authors would like to acknowledge the Board of Research in Nuclear Sciences (BRNS) (Grant: 57/14/05/2019-BRNS) and Science and Engineering Research Board (SERB) (File No: CRG/2018/004944) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Arora.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, V.P., Alphonsa, J. & Arora, A. Electrochemical Behavior of Aluminum-Molybdenum Surface Composites Developed by Friction Stir Processing. J. of Materi Eng and Perform 30, 8663–8676 (2021). https://doi.org/10.1007/s11665-021-06050-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06050-2

Keywords

Navigation