Skip to main content

Advertisement

Log in

Molecular Mechanisms of Bismuth-containing Drugs Against Helicobacter pylori: a Further Update

  • Nanodrugs (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Helicobacter pylori (H. pylori) infections cause various gastric diseases in humans, such as gastritis, peptic ulcerations, and even gastric cancer. Bismuth-based triple or quadruple therapies have been commonly recommended for the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from fully clear.

Recent Findings

The present concise review intends to cover the most recent reports and discoveries, especially in the past 10 years ever since our previous review on the inhibitory mechanism of bismuth-containing drugs against H. pylori. The proteome work and in vitro studies all supported that enzyme inhibition, attenuated ROS defense, disruption of the intracellular iron metabolism, and reduced bacterium-host cell adhesion are the principal mechanisms underlying the actions of bismuth against H. pylori.

Summary

The review presented here will help us to understand further the molecular mechanisms underlying the actions of metal-based drugs and stimulate further development of effective anti-bacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blaser MJ. Gastric Campylobacter-like organisms, gastritis, and peptic ulcer disease. Gastroenterology. 1987;93(2):371–83.

    Article  CAS  Google Scholar 

  2. Franceschi F, Tortora A, Gasbarrini G, Gasbarrini A. Helicobacter pylori and extragastric diseases. Helicobacter. 2014;19(Suppl 1):52–8.

    Article  CAS  Google Scholar 

  3. Shan W, Kung HF, Ge R. Comparison of iron-binding ability between Thr70-NapA and Ser70-NapA of Helicobacter pylori. Helicobacter. 2016;21(3):192–200.

    Article  CAS  Google Scholar 

  4. Yokota S, Toita N, Yamamoto S, Fujii N, Konno M. Positive relationship between a polymorphism in Helicobacter pylori neutrophil-activating protein a gene and iron-deficiency anemia. Helicobacter. 2013;18(2):112–6.

    Article  CAS  Google Scholar 

  5. Barak R, Eisenbach M. Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes. J Bacteriol. 1992;174(2):643–5.

    Article  CAS  Google Scholar 

  6. Lim SG, Park RW, Shin SJ, Yoon D, Kang JK, Hwang JC, et al. The relationship between the failure to eradicate Helicobacter pylori and previous antibiotic use. Dig Liver Dis. 2016;48:385–90.

    Article  CAS  Google Scholar 

  7. Megraud F. The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therap Adv Gastroenterol. 2012;5(2):103–9.

    Article  CAS  Google Scholar 

  8. Graham DY, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut. 2010;59(8):1143–53.

    Article  CAS  Google Scholar 

  9. Midolo PD, Lambert JR, Kerr TG, Tee W. In vitro synergy between ranitidine bismuth citrate and tetracycline or clarithromycin against resistant strains of Helicobacter pylori. Eur J Clin Microbiol Infect Dis. 1999;18(11):832–4.

    Article  CAS  Google Scholar 

  10. Pellicano R, Zagari RM, Zhang S, Saracco GM, Moss SF. Pharmacological considerations and step-by-step proposal for the treatment of Helicobacter pylori infection in the year 2018. Minerva Gastroenterol Dietol. 2018;64(3):310–21.

    Article  Google Scholar 

  11. Saleem A, Qasim A, O’Connor HJ, O’Morain CA. Pylera for the eradication of Helicobacter pylori infection. Expert Rev Anti Infect Ther. 2009;7(7):793–9.

    Article  CAS  Google Scholar 

  12. Delchier JC, Malfertheiner P, Thieroff-Ekerdt R. Use of a combination formulation of bismuth, metronidazole and tetracycline with omeprazole as a rescue therapy for eradication of Helicobacter pylori. Aliment Pharmacol Ther. 2014;40(2):171–7.

    Article  CAS  Google Scholar 

  13. Malfertheiner P, Bazzoli F, Delchier JC, Celiñski K, Giguère M, Rivière M, et al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial. Lancet. 2011;377(9769):905–13.

    Article  CAS  Google Scholar 

  14. Lambert JR, Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection. Aliment Pharmacol Ther. 1997;11(Suppl 1):27–33.

    Article  Google Scholar 

  15. Li H, Sun H. Recent advances in bioinorganic chemistry of bismuth. Curr Opin Chem Biol. 2012;16(1–2):74–83.

    Article  CAS  Google Scholar 

  16. Ge R, Chen Z, Zhou Q. The actions of bismuth in the treatment of Helicobacter pylori infections: an update. Metallomics. 2012;4(3):239–43.

    Article  CAS  Google Scholar 

  17. Mendis AHW, Marshall BJ. Helicobacter pylori and bismuth. In: Sun H, editor. Biological chemistry of arsenic, antimony and bismuth. Hoboken, NJ: John Wiley & Sons; 2011. p. 241–62.

    Google Scholar 

  18. Ge R, Sun H. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc Chem Res. 2007;40(4):267–74.

    Article  CAS  Google Scholar 

  19. Slomiany BL, Kasinathan C, Slomiany A. Lipolytic activity of Campylobacter pylori: effect of colloidal bismuth subcitrate (De-Nol). Am J Gastroenterol. 1989;84(10):1273–7.

    CAS  Google Scholar 

  20. Chen Z, Zhou Q, Ge R. Inhibition of fumarase by bismuth(III): implications for the tricarboxylic acid cycle as a potential target of bismuth drugs in Helicobacter pylori. Biometals. 2012;25(1):95–102.

    Article  CAS  Google Scholar 

  21. Goodwin CS, Armstrong JA, Cooper M. Colloidal bismuth subcitrate inhibits the adherence of H. pylori to epithelial cells. Ital J Gastroenterol. 1991;23 (Suppl. 2):40.

  22. Sox TE, Olson CA. Binding and killing of bacteria by bismuth subsalicylate. Antimicrob Agents Chemother. 1989;33(12):2075–82.

    Article  CAS  Google Scholar 

  23. Armstrong JA, Wee SH, Goodwin CS, Wilson DH. Response of Campylobacter pyloridis to antibiotics, bismuth and an acid-reducing agent in vitro−an ultrastructural study. J Med Microbiol. 1987;24(4):343–50.

    Article  CAS  Google Scholar 

  24. Ge R, Sun X, Gu Q, Watt RM, Tanner JA, Wong BC, et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem. 2007;12(6):831–42.

    Article  CAS  Google Scholar 

  25. Han B, Zhang Z, Xie Y, Hu X, Wang H, Xia W, et al. Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem Sci. 2018;9(38):7488–97.

    Article  CAS  Google Scholar 

  26. Wang Y, Tsang CN, Xu F, Kong PW, Hu L, Wang J, et al. Bio-coordination of bismuth in Helicobacter pylori revealed by immobilized metal affinity chromatography. Chem Commun (Camb). 2015;51(92):16479–82.

    Article  CAS  Google Scholar 

  27. Hu L, Cheng T, He B, Li L, Wang Y, Lai YT, et al. Identification of metal-associated proteins in cells by using continuous-flow gel electrophoresis and inductively coupled plasma mass spectrometry. Angew Chem Int Ed Engl. 2013;52(18):4916–20.

    Article  CAS  Google Scholar 

  28. Handa N, Terada T, Doi-Katayama Y, Hirota H, Tame JR, Park SY, et al. Crystal structure of a novel polyisoprenoid-binding protein from Thermus thermophilus HB8. Protein Sci. 2005;14(4):1004–10.

    Article  CAS  Google Scholar 

  29. Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10(3):218–27.

    Article  CAS  Google Scholar 

  30. Pathak SK, Basu S, Bhattacharyya A, Pathak S, Banerjee A, Basu J, et al. TLR4-dependent NF-kappaB activation and mitogen- and stress-activated protein kinase 1-triggered phosphorylation events are central to Helicobacter pylori peptidyl prolyl cis-, trans-isomerase (HP0175)-mediated induction of IL-6 release from macrophages. J Immunol. 2006;177(11):7950–8.

    Article  CAS  Google Scholar 

  31. Wang Y, Hu L, Xu F, Quan Q, Lai YT, Xia W, et al. Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori. Chem Sci. 2017;8(6):4626–33.

    Article  CAS  Google Scholar 

  32. Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol. 2001;183(6):1961–73.

    Article  CAS  Google Scholar 

  33. Bryk R, Griffin P, Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature. 2000;407(6801):211–5.

    Article  CAS  Google Scholar 

  34. Yoshida N, Granger DN, Evans DJ Jr, Evans DG, Graham DY, Anderson DC, et al. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology. 1993;105(5):1431–40.

    Article  CAS  Google Scholar 

  35. Cooksley C, Jenks PJ, Green A, Cockayne A, Logan RP, Hardie KR. NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol. 2003;52(Pt 6):461–9.

    Article  CAS  Google Scholar 

  36. Tsang CN, Bianga J, Sun H, Szpunar J, Lobinski R. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry. Metallomics. 2012;4(3):277–83.

    Article  CAS  Google Scholar 

  37. Bland MV, Ismail S, Heinemann JA, Keenan JI. The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother. 2004;48(6):1983–8.

    Article  CAS  Google Scholar 

  38. Ge R, Sun X. Iron trafficking system in Helicobacter pylori. Biometals. 2012;25(2):247–58.

    Article  CAS  Google Scholar 

  39. Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27(2–3):215–37.

    Article  CAS  Google Scholar 

  40. Stadtman ER, Berlett BS. Fenton chemistry. Amino acid oxidation J Biol Chem. 1991;266(26):17201–11.

    CAS  Google Scholar 

  41. Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, et al. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol. 2011;79(5):1260–75.

    Article  CAS  Google Scholar 

  42. He X, Liao X, Li H, Xia W, Sun H. Bismuth-induced inactivation of ferric uptake regulator from Helicobacter pylori. Inorg Chem. 2017;56(24):15041–8.

    Article  CAS  Google Scholar 

  43. Yang X, Li H, Lai TP, Sun H. UreE-UreG complex facilitates nickel transfer and preactivates GTPase of UreG in Helicobacter pylori. J Biol Chem. 2015;290(20):12474–85.

    Article  CAS  Google Scholar 

  44. Ge R, Watt RM, Sun X, Tanner JA, He QY, Huang JD, et al. Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J. 2006;393(1):285–93.

    Article  CAS  Google Scholar 

  45. Ge R, Zhang Y, Sun X, Watt RM, He QY, Huang JD, et al. Thermodynamic and kinetic aspects of metal binding to the histidine-rich protein. Hpn J Am Chem Soc. 2006;128(35):11330–1.

    Article  CAS  Google Scholar 

  46. Chang YY, Lai YT, Cheng T, Wang H, Yang Y, Sun H. Selective interaction of Hpn-like protein with nickel, zinc and bismuth in vitro and in cells by FRET. J Inorg Biochem. 2015;142:8–14.

    Article  CAS  Google Scholar 

  47. Zeng YB, Zhang DM, Li H, Sun H. Binding of Ni2+ to a histidine- and glutamine-rich protein. Hpn-like J Biol Inorg Chem. 2008;13(7):1121–31.

    Article  CAS  Google Scholar 

  48. Suerbaum S, Thiberge JM, Kansau I, Ferrero RL, Labigne A. Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol. 1994;14(5):959–74.

    Article  CAS  Google Scholar 

  49. Benoit SL, Miller EF, Maier RJ. Helicobacter pylori stores nickel to aid its host colonization. Infect Immun. 2013;81(2):580–4.

    Article  CAS  Google Scholar 

  50. Dosanjh NS, Michel SL. Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol. 2006;10(2):123–30.

    Article  CAS  Google Scholar 

  51. Ge RG, Wang DX, Hao MC, Sun XS. Nickel trafficking system responsible for urease maturation in Helicobacter pylori. World J Gastroenterol. 2013;19(45):8211–8.

    Article  CAS  Google Scholar 

  52. Hong Y, Lai YT, Chan GC, Sun H. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells. Proc Natl Acad Sci U S A. 2015;112(11):3211–6.

    Article  CAS  Google Scholar 

  53. Sadler PJ, Sun H, Li H. Bismuth(III) complexes of the tripeptide glutathione (r-L-Glu-L-Cys-Gly). Chemistry (Weinheim an der Bergstrasse, Germany). 1996;2(6):701–8.

    CAS  Google Scholar 

  54. Lan J, Szeto KY, Li Z, Du W, Sun H. Inhibition of alcohol dehydrogenase by bismuth. J Inorg Biochem. 2004;98(8):1331–7.

    Article  Google Scholar 

  55. Zhang L, Mulrooney SB, Leung AF, Zeng Y, Ko BB, Hausinger RP, et al. Inhibition of urease by bismuth(III): implications for the mechanism of action of bismuth drugs. Biometals. 2006;19(5):503–11.

    Article  CAS  Google Scholar 

  56. Ge R, Sun X, Gu Q, Watt RM, Tanner JA, Wong B, et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem. 2007;12(6):831–42.

    Article  CAS  Google Scholar 

  57. Ottlecz A, Romero JJ, Hazell SL, Graham DY, Lichtenberger LM. Phospholipase activity of Helicobacter pylori and its inhibition by bismuth salts Biochemical and biophysical studies. Digest Dis Sci. 1993;38(11):2071.

    Article  CAS  Google Scholar 

  58. Keogan DM, Griffith DM. Current and potential applications of bismuth-based drugs. Molecules. 2014;19(9):15258–97.

    Article  Google Scholar 

  59. Olson JW, Maier RJ. Molecular hydrogen as an energy source for Helicobacter pylori. Science. 2002;298(5599):1788–90.

    Article  CAS  Google Scholar 

  60. Xia W, Li H, Sun H. Functional disruption of HypB, a GTPase of Helicobacter pylori, by bismuth. Chem Commun (Camb). 2014;50(13):1611–4.

    Article  CAS  Google Scholar 

  61. Kaman WE, Hays JP, Endtz HP, Bikker FJ. Bacterial proteases: targets for diagnostics and therapy. Eur J Clin Microbiol Infect Dis. 2014;33(7):1081–7.

    Article  CAS  Google Scholar 

  62. Sun H, Zhang L, Szeto K. Bismuth in medicine. Met Ions Biol Syst. 2004;41(7):333.

    CAS  Google Scholar 

  63. Slomiany BL, Kasinathan C, Slomiany A. Lipolytic activity of Campylobacter pylori: effect of colloidal bismuth subcitrate (De-Nol). Am J Gastroenterol. 1989;84(10):1273–7.

    CAS  Google Scholar 

  64. Slomiany BL, Bilski J, Sarosiek J, Murty V, Dworkin B, Vanhorn K, et al. Campylobacter pyloridis degrades mucin and undermines gastric mucosal integrity. Biochem Biophys Res Commun. 1987;144(1):307–14.

    Article  CAS  Google Scholar 

  65. Ottlecz A, Romero JJ, Lichtenberger LM. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis. Aliment Pharmacol Ther. 1999;13(7):875–81.

    Article  CAS  Google Scholar 

  66. Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev. 2021;50(21):12037–69.

    Article  CAS  Google Scholar 

  67. Yang X, Koohi-Moghadam M, Wang R, Chang Y, Woo P, W J, et al. Metallochaperone UreG serves as a new target for design of urease inhibitor: a novel strategy for development of antimicrobials. Plos Biology. 2008;16(1):e2003887.

    Article  Google Scholar 

  68. Yuen MH, Fong YH, Nim YS, Lau PH, Wong KB. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation. Proc Natl Acad Sci U S A. 2017;114(51):E10890–8.

    Article  CAS  Google Scholar 

  69. Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB, et al. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS Biol. 2013;11(10):e1001678.

    Article  CAS  Google Scholar 

  70. Joshua CJ. Metabolomics: a microbial physiology and metabolism perspective. Methods Mol Biol. 2019;1859:71–94.

    Article  CAS  Google Scholar 

  71. Yao X, Xiao S, Zhou L. Integrative proteomic and metabolomic analyses reveal the mechanism by which bismuth enables Helicobacter pylori eradication. Helicobacter. 2021;26(6):e12846.

    Article  CAS  Google Scholar 

  72. Mendz GL, Hazell SL, Burns BP. Glucose utilization and lactate production by Helicobacter pylori. J Gen Microbiol. 1993;139(12):3023–8.

    Article  CAS  Google Scholar 

  73. Chalk PA, Roberts AD, Blows WM. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology. 1994;140(Pt 8):2085–92.

    Article  CAS  Google Scholar 

  74. Pitson SM, Mendz GL, Srinivasan S, Hazell SL. The tricarboxylic acid cycle of Helicobacter pylori. Eur J Biochem. 2010;260(1):258–67.

    Article  Google Scholar 

  75. Ge Z, Feng Y, Dangler CA, Xu S, Taylor NS, Fox JG. Fumarate reductase is essential for Helicobacter pylori colonization of the mouse stomach. Microb Pathog. 2000;29(5):279–87.

    Article  CAS  Google Scholar 

  76. Ge R, Chu IK, Sun H. Nuclear-based metallomics in metal-based drugs. In: Chen C, Chai Z, Gao Y, editors. Nuclear analytical techniques for metallomics and metalloproteomics. London: Royal Soc Chem. 2011. p. 265–98.

    Google Scholar 

  77. Ge R, Sun X, He QY. Overview of the metallometabolomic methodology for metal-based drug metabolism. Curr Drug Metab. 2011;12(3):287–99.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21771199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiguang Ge.

Ethics declarations

Conflict of Interest

The authors received no financial support in the writing of this manuscript. All the authors are either students or faculty of Sun Yat-Sen University. The opinions expressed in this publication are those of the authors and do not necessarily reflect those of the university who employs them.

Huamn and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, X., Zhu, Y. et al. Molecular Mechanisms of Bismuth-containing Drugs Against Helicobacter pylori: a Further Update. Curr Pharmacol Rep 9, 59–65 (2023). https://doi.org/10.1007/s40495-022-00305-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00305-9

Keywords

Navigation