Skip to main content
Log in

On the Growth, Structure, and Optical Reflection of Magnesium Silicide Films Grown on Porous Silicon under High-Vacuum Conditions

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The growth of magnesium silicide on porous silicon under high vacuum conditions (10–5–10‒6 Torr) without the chemical removal of silicon oxide and in a limited temperature range of preliminary annealing (Ta = 450°C) is tested for the first time. It is found that the minimum substrate temperature at which deposited magnesium begins to destroy silicon oxide and interact with silicon by forming magnesium silicide (Mg2Si) is 290°C. In the solid phase reaction of magnesium with porous silicon, the optimum temperature at which, after the destruction of silicon oxide, the formation of a continuous Mg2Si film begins is 350°C. It is shown that, at an annealing temperature Ta = 420°C, only a Mg2Si island film of good crystalline quality is formed. The formation of magnesium silicide in all cases is confirmed by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, or Raman micromapping. It is established that the reflection spectrum of the Mg2Si/PS/Si system corresponds to the reflection from porous silicon with a partial increase at 500–900 nm due to the contribution to reflection from magnesium silicide, which increases with increasing film thickness. It is proved that after the heat treatment of porous silicon and the growth of magnesium silicide with a thickness of up to 90 nm, PS photoluminescence is retained, the radiation of which is recorded with partial attenuation in the Mg2Si film without changing the spectral composition, both immediately after growth and after long-term storage under atmospheric conditions (up to 8 months).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Lv, T. Zhang, Y. Zhao, and S. Li, Nanoscale Res. Lett. 13, 110 (2018). https://doi.org/10.1186/s11671-018-2523-4

    Article  ADS  Google Scholar 

  2. V. Kashyap, N. Chaudhary, N. Goyal, C. Kumar, and K. Saxena, Opt. Mater. 121, 111538 (2021). https://doi.org/10.1016/j.optmat.2021.111538

    Article  Google Scholar 

  3. M. Kadlechikova, L. Vanco, J. Breza, M. Mikolasek, K. Husekova, K. Frohlich, P. Procel, M. Zeman, and O. Isabella, Optik 257, 168869 (2022). https://doi.org/10.1016/j.ijleo.2022.168869

    Article  ADS  Google Scholar 

  4. C.-Y. Ting, H.-S. Sheu, W.-F. Wu, and B.-Z. Wan, J. Electrochem. Soc. 154, G1 (2007). https://doi.org/10.1149/1.2388852

    Article  Google Scholar 

  5. I. Haddadi, S. B. Amor, R. Bousbih, S. E. Whibi, A. Bardaoui, W. Dimassi, and H. Ezzaouia, J. Lumin. 173, 257 (2016). https://doi.org/10.1016/j.jlumin.2016.01.020

    Article  Google Scholar 

  6. D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors (Pergamon, Oxford, 1968). https://doi.org/10.1016/C2013-0-02109-3

  7. R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev. 109, 1909 (1958). https://doi.org/10.1103/PhysRev.109.1909

    Article  ADS  Google Scholar 

  8. W. K. Chu, S. S. Lau, J. W. Mayer, H. Müller, and K. N. Tu, Thin Solid Films 25, 393 (1975). https://doi.org/10.1016/0040-6090(75)90057-7

    Article  ADS  Google Scholar 

  9. N. G. Galkin, K. N. Galkin, M. V. Bozhenko, and D. T. Yan, Opt. Spectrosc. 125, 199 (2018). https://doi.org/10.1134/S0030400X18080064

    Article  ADS  Google Scholar 

  10. V. I. Sokolov and A. I. Shelykh, Tech. Phys. Lett. 34, 196 (2008). https://doi.org/10.1134/S1063785008030061

    Article  ADS  Google Scholar 

  11. J. E. Mahan, A. Vantomme, G. Loungouchi, and J. P. Becker, Phys. Rev. B 54, 16965 (1996). https://doi.org/10.1103/PhysRevB.54.16965

    Article  ADS  Google Scholar 

  12. P. L. Janega, J. McCaffrey, D. Landheer, M. Buchanan, M. Denhoff, and D. Mitchel, Appl. Phys. Lett. 53, 2056 (1988). https://doi.org/10.1063/1.100496

    Article  ADS  Google Scholar 

  13. M. Wittmer, W. Lüthy, and M. von Allmen, Phys. Lett. A 75, 127 (1979). https://doi.org/10.1016/0375-9601(79)90300-1

    Article  ADS  Google Scholar 

  14. J. Tejeda and M. Cardona, Phys. Rev. B 14, 2559 (1976). https://doi.org/10.1103/PhysRevB.14.2559

    Article  ADS  Google Scholar 

  15. V. A. Labunov, V. P. Bondarenko, V. E. Borisenko, and A. M. Dorofeev, Phys. Status Solidi A 102, 193 (1987). https://doi.org/10.1002/pssa.2211020119

    Article  ADS  Google Scholar 

  16. Y. H. Ogata, N. Yoshimi, R. Yasuda, T. Tsuboi, T. Sakka, and A. Otsuki, J. Appl. Phys. 90, 6486 (2001). https://doi.org/10.1063/1.1416862

    Article  ADS  Google Scholar 

  17. N. G. Galkin, D. T. Yan, K. N. Galkin, and A. V. Ne- pomnyashchiy, Khim. Fiz. Mezosk. 23, 420 (2021). https://doi.org/10.15350/17270529.2021.4.38

    Article  Google Scholar 

  18. Database ICDD PDF-2 2023. https://www.icdd.com/pdf-2/. Accessed January 10, 2023.

  19. Big Encyclopedia of Oil and Gas. https://www.ngpedia.ru/id423007p1.html. Accessed January 10, 2023.

  20. K. N. Galkin, M. Kumar, Govind, S. M. Shivaprasad, V. V. Korobtsov, and N. G. Galkin, Thin Solid Films 515, 8192 (2007). https://doi.org/10.1016/j.tsf.2007.02.041

    Article  ADS  Google Scholar 

  21. J. L. Langford and A. J. C. Wilson, J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  ADS  Google Scholar 

  22. A. Atanassov, G. Zlateva, M. Baleva, E. Goranova, B. Amov, C. Angelov, and V. Mikli, Plasma Proces. Polym. 3, 219 (2006). https://doi.org/10.1002/ppap.200500088

    Article  Google Scholar 

  23. S. Onari, M. Cardona, E. Schonherr, and W. Stetter, Phys. Status Solidi B 79, 269 (1977). https://doi.org/10.1002/pssb.2220790127

    Article  ADS  Google Scholar 

  24. Handbook of Porous Silicon, Ed. by L. Canham (Springer Int., Switzerland, 2014). https://doi.org/10.1007/978-3-319-05744-6

  25. E. V. Astrova, V. B. Voronkov, A. D. Remenyuk, V. A. Tolmachev, and V. B. Shuman, Semiconductors 33, 1149 (1999). https://doi.org/10.1134/1.1187885

    Article  ADS  Google Scholar 

  26. N. G. Galkin, S. V. Vavanova, A. M. Maslov, K. N. Galkin, A. V. Gerasimenko, and T. A. Kaidalova, Thin Solid Films 515, 8230 (2007). https://doi.org/10.1016/j.tsf.2007.02.049

    Article  ADS  Google Scholar 

  27. W. J. Scouler, Phys. Rev. 178, 1353 (1969). https://doi.org/10.1103/PhysRev.178.1353

    Article  ADS  Google Scholar 

  28. ZEISS, Education in Microscopy and Digital Imaging. https://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html. Accessed December 12, 2022.

  29. P. M. Fauchet, L. Tsybeskov, S. P. Duttagupta, and K. D. Hirschman, Thin Solid Films 297, 254 (1997). https://doi.org/10.1016/S0040-6090(96)09438-2

    Article  ADS  Google Scholar 

  30. T. Koga, R. Tamaki, X. Meng, Y. Numazawa, Y. Shimura, N. Ahsan, Y. Okada, A. Ishida, and H. Tatsuoka, Jpn. J. Appl. Phys. 60, SBBK07 (2021). https://doi.org/10.35848/1347-4065/abdf23

  31. V. Chamard, G. Dolino, and F. Muller, J. Appl. Phys. 84, 6659 (1998). https://doi.org/10.1063/1.369041

    Article  ADS  Google Scholar 

  32. Y. Fukuda, W. Zhou, K. Furuya, and H. Suzuki, J. Electrochem. Soc. 146, 2697 (1999). https://doi.org/10.1149/1.1391994

    Article  ADS  Google Scholar 

  33. N. Errien, L. Vellutini, G. Louarn, and G. Froyer, Appl. Surf. Sci. 253, 7265 (2007). https://doi.org/10.1016/j.apsusc.2007.03.017

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Ph.D. A.A. Kuchmizhak for conducting SEM  film morphology surveys and Ph.D. A.V.  Gera-simenko (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) for recording the X-ray spectra of the samples. We are grateful to the administration of the Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, for providing the opportunity to conduct X-ray phase studies on the experimental equipment of the center for collective usage.

Funding

The work was carried out with financial support from the state budget on the subject of Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences in 2021 (no. 0202-2021-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay G. Galkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, N.G., Shevlyagin, A.V., Il’yashchenko, V.M. et al. On the Growth, Structure, and Optical Reflection of Magnesium Silicide Films Grown on Porous Silicon under High-Vacuum Conditions. Semiconductors (2023). https://doi.org/10.1134/S106378262370001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S106378262370001X

Keywords:

Navigation