Skip to main content

Design of Single-Phased Multicolor-Emission Phosphor for LED

  • Chapter
  • First Online:
Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

Phosphor-converted white light-emitting diodes (w-LEDs) are generally fabricated by combining a blue LED chip with a yellow phosphor or an ultraviolet (UV) LED chip with a tricolor-emitting phosphor. To obtain w-LEDs with excellent performance, many single-color emission phosphors have been used in these systems, which result in high cost and low luminous efficiency due to the complicated manufacture, reabsorption of emission colors, and different aging rates for each phosphor. Searching for a novel single-phased multicolor-emitting phosphor with excellent chemical and thermal stability for UV-pumped white LEDs is an important consideration, which arouses more attention from researchers. According to previous publications and our results, five methods were summarized to design the multicolor-emitting phosphor: (1) enhancing the red emission of YAG:Ce3+ yellow phosphor by introducing red-emitting dopants; (2) use of a single activator with several metastable multiplets offers the possibility of simultaneous emission in the blue, green, orange, red, and infrared wavelengths; (3) use of a multiple-ion codoped system based on energy transfer; (4) use of an up-conversion luminescence system, and (5) use of a semiconductor quantum dot and defects emission. Moreover, the challenges and future of multicolor-emitting phosphors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shinde KN, Dhoble SJ, Swart HC, Park K (2012) Phosphate phosphors for solid state lighting. Springer Ser Mater Sci 174:25

    Google Scholar 

  2. Holonyak N, Bevacqua SF (1962) Coherent (visible) light emission from Ga(As1-xPx) junctions. Appl Phys Lett 1:82

    Article  CAS  Google Scholar 

  3. Reisfeld R (1987) Spectroscopy of solid state laser materials. Plenum Press, New York, p 343

    Google Scholar 

  4. Osbourn GC (1983) InxGa1-xAs-InyGa1-yAs strained-layer superlattices: a proposal for useful, new electronic materials. Phys Rev B 27:5126

    Article  CAS  Google Scholar 

  5. Nakamura S, Mukai T, Senoh M (1994) Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting-diodes. Appl Phys Lett 64:1687

    Article  CAS  Google Scholar 

  6. Cooke M (2010) Going deep for UV sterilization LEDs. Semicond Today 5:82

    Google Scholar 

  7. Auzel F (2004) Upconversion and Anti-Stokes processes with f and d ions in solids. Chem Soc 104:139

    CAS  Google Scholar 

  8. Yen MW, Shionoya S, Yamamoto H (2006) Practical applications of phosphors. CRC press, Boca Raton

    Google Scholar 

  9. Shang MM, Li CX, Lin J (2014) How to produce white light in a single-phase host? Chem Soc Rev 43:1372

    Article  CAS  Google Scholar 

  10. You CH (2005) Visual equivalence of light-emitting diode white light. Opt Eng 44:111307

    Article  Google Scholar 

  11. Bergh A, Craford G, Duggal A, Haitz R (2001) The promise and challenge of solid state lighting. Phys Today 54:42

    Article  CAS  Google Scholar 

  12. (2009) Lifetime of white LEDs at the wayback machine. US Department of Energy

    Google Scholar 

  13. Wu XT, Wen J, Li S, Huang S, Cheng J, Chen YH, Duan CK, Yin M (2014) Red-shift of vanadate band-gap by cation substitution fro application in phosphor-converted white light-emitting diodes. App Phys Lett 104:181904

    Article  CAS  Google Scholar 

  14. Wold JH, Valberg A (2000) The derivation of XYZ tristimulus spaces: a comparison of two alternative methods. Color Res Appl 26:S222

    Article  Google Scholar 

  15. Tanabe S, Fujita S, Yoshihara S, Sakamoto A, Yamamoto S (2005) YAG glass-ceramic phosphor for white LED (II): luminescence characteristics. In: Proceedings SPIE fifth international conference on solid state lighting 5941:594112

    Google Scholar 

  16. Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, Berlin, p 216

    Google Scholar 

  17. George NC, Denault KA, Seshadri R (2013) Phosphors for solid-state white lighting. Annu Rev Mater Res 43:481

    Article  CAS  Google Scholar 

  18. Meyer J, Tappe F (2014) Photoluminescent materials for solid-state lighting: state of art and future challenges. Adv Opt Mater

    Google Scholar 

  19. Justel T, Nikol N, Ronda C (1998) New development in the fields of luminescent materials for lighting and Displays. Angew Chem Int Ed 37:3084

    Article  CAS  Google Scholar 

  20. Zhang SS, Zhuang WD, Zhao CL, Hu YS, He HQ, Huang XW (2004) Study on (Y, Gd)3(Al, Ga)5O12: Ce3+ phosphor. J Rare Earth 22:118

    Google Scholar 

  21. Kim JS, Park YH, Kim SM, Choi JC, Park HL (2005) Temperature-dependent emission spectra of M2SiO4: Eu2+ (M = Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun 133:445

    Article  CAS  Google Scholar 

  22. Jing H, Guo CF, Zhang GG, Su XY, Yang Z, Jeong JH (2012) Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln = Gd and Y). J Mater Chem 22:13612

    Article  CAS  Google Scholar 

  23. Baginskiy I, Liu RS (2009) Significant improved luminescence intensity of Eu2+-doped Ca3SiO4Cl2 green phosphor fro white LEDs synthesized through two-stage method. J Electrochem Soc 156:G29

    Article  CAS  Google Scholar 

  24. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, p 72

    Google Scholar 

  25. Tian YC (2014) Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs. J Solid State Lighting 1:11

    Article  Google Scholar 

  26. Jung MK, Park WJ, Yoon DH (2007) Photoluminescence characteristics of red phosphor Eu3+, Sm3+ co-doped Y2O3 for white light emitting diodes. Sensor Actuators B 126:328

    Article  CAS  Google Scholar 

  27. Pang ML, Liu XM, Lin J (2005) Luminescence properties of R2MoO6: Eu (R = Gd, Y, La) phosphors prepared by Pechini sol-gel process. J Mater Res 20:2676

    Article  CAS  Google Scholar 

  28. Rao RP (1996) Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel method. J Electrochem Soc 143:189

    Article  CAS  Google Scholar 

  29. Suo H, Guo CF, Li L (2015) Host Sensitized Spherical Up-conversion Phosphor Yb2O3: Er3+. Ceram Int 41:7017

    Article  CAS  Google Scholar 

  30. Koo HY, Hong SK, Han JM, Kang YC (2008) Eu-doped Ca8Mg(SiO4)4Cl2 phosphor particles prepared by spray pyrolysis from the colloidal spray solution containing ammonium chloride. J Alloy Compd 457:429

    Article  CAS  Google Scholar 

  31. Xu Y, Guo CF, Luan L, Ding X (2010) Synthesis and characterization of spherical core-shell particles SiO2 @ AgEu(MoO4)2. Appl Surf Sci 256:1798

    Article  CAS  Google Scholar 

  32. Guo CF, Xu Y, Ding X, Li M, Yu J, Ren ZY, Bai JT (2011) Blue-emitting phosphor M2B5O9Cl: Eu2+ (M = Sr, Ca) for white LEDs. J Alloy Compd 509:38

    Article  CAS  Google Scholar 

  33. Guo CF, Huang DX, Su Q (2006) Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED. Mater Sci Eng B 130:189

    Article  CAS  Google Scholar 

  34. Van Stun PHJ, Peeters MPJ, Bechtel HH, Heidemann M, Schoenmaekers JBM, Schmidt PJ (2014) Light source using remote phosphor and pink LED. US Patent Appl: 20140355242

    Google Scholar 

  35. Guo CF, Chu BL, Wu MM, Su Q (2003) Oxide coating for alkaline earth sulfide based phosphor. J Lumin 105:121

    Article  CAS  Google Scholar 

  36. Guo CF, Chu BL, Su Q (2004) Improving the Stability of alkaline earth sulfide based phosphors. Appl Surf Sci 225:198

    Article  CAS  Google Scholar 

  37. Meyer J, Tappe F (2015) Photoluminescent materials for solid state lighting: State of the art and future challenges. Adv Opt Mater 3:424

    Google Scholar 

  38. Guo CF, Gao F, Xu Y, Liang LF, Shi FG, Yan BH (2009) Efficient red phosphors Na5Ln(MoO4)4: Eu3+(Ln = La, Gd and Y) for white LED. J Phys D Appl Phys 42:095407

    Article  CAS  Google Scholar 

  39. Dutta PS, Khanna A (2013) Eu3+ Activated Molybdate and Tungstate Based Red Phosphors with Charge Transfer Band in Blue Region Luminescence and Display Materials, Devices, and Processing. ECS J Solid State Sci Technol 2:R3153

    Article  CAS  Google Scholar 

  40. Xu YK, Adachi S (2009) Properties of Na2SiF6: Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching. J Appl Phys 105:013525

    Article  CAS  Google Scholar 

  41. Kasa R, Adachi S (2012) Mn-activated K2ZrF6 and Na2ZrF6 phosphors: sharp red and oscillatory blue-green emissions. J Appl Phys 112:013506

    Article  CAS  Google Scholar 

  42. Brik MG, Srivastava AM (2013) On the optical properties of the Mn4+ ion in solids. J Lumin 133:69

    Article  CAS  Google Scholar 

  43. TaniyasuY KM, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325

    Article  CAS  Google Scholar 

  44. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932

    Article  CAS  Google Scholar 

  45. Radkov E, Bompiedi R, Srivastava AM, Setlur AA, Becker C (2004) White light with UV LEDs. Proc SPIE 5187:171

    Article  CAS  Google Scholar 

  46. Kim JS, Jeon PE, Choi JC, Park HL, Mho SI, Kim GC (2004) Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8: Eu2+, Mn2+ phosphor. Appl Phys Lett 84:2931

    Article  CAS  Google Scholar 

  47. Lee JW, Lee JH, Woo EJ, Ahn H, Kim JS, Lee CH (2008) Synthesis of nanosized Ce3+, Eu3+-codoped YAG phosphor in a continuous supercritical water system. Ind Eng Chem Res 47:5994

    Article  CAS  Google Scholar 

  48. Zhang L (2013) Luminescence and energy transfer of YAG: Ce3+, M (M = Er3+, Sm3+, Cr3+, Mn2+). Dissertation, Chongqing University of Posts and Telecommunications

    Google Scholar 

  49. Jang HS, Im WB, Lee DC, Jeon DY, Kim SS (2007) Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J Lumin 126:371

    Article  CAS  Google Scholar 

  50. Wang L (2013) Study on energy transfer modified YAG: Ce3+/R(R = Pr3+, Cr3+) phosphors for use in high color rendering white LEDs. Dissertation, Chinese Academy of science

    Google Scholar 

  51. Wang L, Zhang X, Hao ZD, Luo YS Wang XJ, Zhang JH (2010) Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs. Opt Express 18:25177

    Google Scholar 

  52. Guo WJ, Lin YF, Gong XH, Chen YJ, Luo ZD, Huang YD (2009) Polarized spectral properties of Pr3+ ions in NaGd(MoO4)2 crystal. Appl Phys B 94:155

    Article  CAS  Google Scholar 

  53. Lian JB, Sun XD, Gao T (2009) Preparation of Gd2O2S:Pr3+ scintillation ceramics by pressureless reaction sintering method. J Mater Sci Technol 25:254

    CAS  Google Scholar 

  54. Wang Q, Zhu G, Li YY, Wang YH (2015) Photoluminescent properties of Pr3+ activated Y2WO6 for light emitting diodes. Opt Mater 42:385

    Article  CAS  Google Scholar 

  55. Min X, Fang MB, Huang ZH, Liu YG, Tang C, Wu XW (2015) Synthesis and optical properties of Pr3+-doped LaMgAl11O19—a novel blue converting yellow phosphor for white light emitting diodes. Ceram Int 41:4238

    Article  CAS  Google Scholar 

  56. Blasse G (1988) Luminescence of inorganic solids: From isolated centres to concentrated systems. Prog Solid State Chem 18:79

    Article  CAS  Google Scholar 

  57. Liu XM, Li CX, Quan ZW, Cheng ZY Lin J (2007) Tunable luminescence properties of CaIn2O4: Eu3+ phosphors. J Phys Chem C 111:16601

    Google Scholar 

  58. Li CX, Zhang CM, Hou ZY, Wang LL, Quang ZW, Lian HZ Lin J (2009) β-NaYF4 and β-NaYF4: Eu3+ microstructures: Morphology control and tunable luminescence properties. J Phys Chem C 113: 2332

    Google Scholar 

  59. Shang MM, Li GG, Kang XJ, Yang DM, Geng DL, Peng C, Cheng ZY, Lian HZ, Lin J (2012) LaOF: Eu3+ nanocrystals: hydrothermal synthesis, white and color-tunging emission properties. Dalton Trans 41:5571

    Article  CAS  Google Scholar 

  60. Guo CF, Ding X, Xu Y (2010) Luminescent properties of Eu3+-doped BaLn2ZnO5 (Ln = La, Gd and Y) phosphors by sol-gel method. J Am Ceram Soc 93:1708

    Article  CAS  Google Scholar 

  61. Liang HC, Chang YC, Chang YS (2008) Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5: Eu3+ phosphors. Appl Phys Lett 93:211902

    Article  CAS  Google Scholar 

  62. Ronda C (2007) Luminescence from theory to applications. Wiley-VCH Verlag GmbH & Co, KGaA, p 19

    Google Scholar 

  63. Zheng JM, Guo CF, Ding X, Ren ZY, Bai JT (2012) Enhanced luminescence of Tb3+ by efficient energy transfer from Ce3+ in Sr2B5O9Cl host. Curr Appl Phys 12:643

    Article  Google Scholar 

  64. Fu L, Xia HP, Dong YM, Li SS, Gu XM, Jiang HC, Chen BJ (2014) White light emission from Tb3+/Sm3+ codoped LiYF4 single crystal excited by UV light. IEEE Photonics Technol Lett 26:1485

    Article  CAS  Google Scholar 

  65. Zheng YH, Lin JT, Wang QM (2012) Emissions and photocatalytic selectivity of SrWO4: Ln3+ (Eu3+, Tb3+, Sm3+ and Dy3+) prepared by a supersonic microwave co-assistance method. Photochem Photobiol Sci 11:1567

    Article  CAS  Google Scholar 

  66. Su Q, Pei ZW, Chi LS, Zhang HJ, Zhang ZY, Zou F (1993) The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission. J Alloys Compd 192:25

    Article  CAS  Google Scholar 

  67. Zhao J, Guo CF, Su XY, Noh HM, Jeong JH (2014) Electronic structure and luminescence properties of phosphor Li8Bi2(MoO4)7: Dy3+. J Am Ceram Soc 97:1878

    Article  CAS  Google Scholar 

  68. Klevtsova RF, Solodovnikov SF, Glinskaya LA, Alekseev VI, Khalbaeva KM, Khaikina EG (1997) Syntheses and crystal sructure of the binary molybadate Li8Bi2(MoO4)7. J Struct Chem 38:1

    Article  Google Scholar 

  69. Jia G, Song YH, Yang M, Huang YJ, Zhang LH, You HP (2011) Uniform YVO4: Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties. Opt Mater 31:1032

    Article  CAS  Google Scholar 

  70. Sun XY, Lin LW, Wang WF, Zhang JC (2011) White-light emission from Li2Sr1−3x/2DyxSiO4 phosphors. Appl Phys A 104:83

    Article  CAS  Google Scholar 

  71. Ronda C (2007) Luminescence from theory to applications. Wiley-VCH Verlag GmbH & Co, KGaA, p 27

    Google Scholar 

  72. Shriver DF, Atkins PW (2001) Inorganic Chemistry (4th ed.). Oxford University Press, p 227

    Google Scholar 

  73. Kim JS, Kang, JY Jeon PE, Choi JC, Park HL, Kim TW (2004) GaN-based white-light-emitting diodes fabricated with a mixture of Ba3MgSi2O8: Eu2+ and Sr2SiO4: Eu2+ phosphors. Jpn J Appl Phys 43:989

    Google Scholar 

  74. Guo CF, Ding X, Seo HJ, Ren JY, Bai JT (2011) Luminescent properties of UV excitable blue emitting phosphors MSr4(BO3)3: Ce3+ (M = Li and Na). J Alloys Compd 509:4871

    Article  CAS  Google Scholar 

  75. Liu JQ, Wang XJ, Xuan TT, Wang CB, Li HL, Sun Z (2015) Lu3(Al, Si)5(O, N)12: Ce3+ phosphors with broad emission band and high thermal stability for white LEDs. J Lumin 158:322

    Article  CAS  Google Scholar 

  76. Xin SY, Wang YH, Zhu G, Zhang F, Gong Y, Wen Y, Liu BT (2013) Tunable white light emitting from mono Ce3+ doped Sr5(PO4)2SiO4 phosphors for light emitting diodes. Mater Res Bull 48:1627

    Article  CAS  Google Scholar 

  77. Lin HH, Liang HB, Han B, Zhong JP, Su Q, Dorenbos P, Birowosuto MD, Zhang GB, Fu YB, Wu WQ (2007) Luminescence and site occupancy of Ce3+ in Ba2Ca(BO3)2. Phys Rev B 76:035117

    Article  CAS  Google Scholar 

  78. Wu ZC, Liu J, Hou WG, Xu J, Gong ML (2010) A new single-host white-light-emitting BaSrMg(PO4)2: Eu2+ phosphor for white-light-emitting diodes. J Alloys Compd 498:139

    Article  CAS  Google Scholar 

  79. Yu H, Deng DG, Li YQ, Xu SQ, Li YY, Yu CP, Ding YY, Lu HW, Yin HY, Nie QL (2013) Electronic structure and photoluminescence properties of yellow-emitting Ca10Na(PO4)7: Eu2+ phosphor for white light-emitting diodes. J Lumin 143:132

    Article  CAS  Google Scholar 

  80. Zhang J, Hua ZH, Wen SZ (2015) Luminescence of emission-tunable Ca10Li(PO4)7: Eu2+, Sr2+, Mn2+ phosphors with various Eu2+ centers for LED applications. J Alloys Compd 637:70

    Article  CAS  Google Scholar 

  81. Pei ZW, Su Q, Zhang JY (1993) The valence change from RE3+ to RE2+ (RE = Eu, Sm, Yb) in SrB4O7: RE prepared in air and the spectral properties of RE2+. J Alloys Compd 198:51

    Article  CAS  Google Scholar 

  82. Pei ZW, Zeng Q, Su Q (1999) A study on the mechanism of the abnormal reduction of Eu3+ → Eu2+ in Sr2B5O9Cl prepared in air at high temperature. J Solid State Chem 145:212

    Article  CAS  Google Scholar 

  83. Mao ZY, Wang DJ, Lu QF, Yu WH, Yuan ZH (2009) Tunable single-doped single-host full-color-emitting LaAlO3: Eu phosphor via valence state-controlled means. Chem Commun 3:346

    Article  Google Scholar 

  84. Guo CF, Luan L, Ding X, Zhang FJ, Shi FG, Gao F, Liang LF (2009) Luminescent properties of Sr5(PO4)3Cl: Eu2+, Mn2+ as a potential phosphor for UV-LED based white LEDs. Appl Phys B 95:779

    Article  CAS  Google Scholar 

  85. Guo CF, Luan L, Ding X, Huang DX (2008) Luminescent properties of SrMg2(PO4)2: Eu2+, Mn2+ as a potential phosphor for ultraviolet light-emitting diodes. Appl Phys A 91:327

    Article  CAS  Google Scholar 

  86. Guo CF, Yu J, Ding X, Li M, Ren ZY, Bai JT (2011) A dual-emission phosphor LiCaBO3: Ce3+, Mn2+ with energy transfer for near-UV LEDs. J Electrochem Soc 158:J42

    Article  CAS  Google Scholar 

  87. Ye S, Zhang JH, Zhang X, Lu SZ, Ren XG, Wang XJ (2007) Mn2+ concentration manipulated red emission in BaMg2Si2O7: Eu2+, Mn2+. J Appl Phys 101:033513

    Article  CAS  Google Scholar 

  88. Guo CF, Ding X, Luan L, Xu Y (2010) Two-color emitting of Eu2+ and Mn2+ co-doped Sr2Mg3P4O15 for UV LEDs. Sensors Actuat B Chem 43:712

    Article  CAS  Google Scholar 

  89. Dorenbos P (2003) Relation between Eu2+ and Ce3+ f-d-transition energies in inorganic compounds. J Phys Condens Matter 15:4797

    Article  CAS  Google Scholar 

  90. Guo CF, Luan L, Shi FG, Ding X (2009) White-emitting phosphor Ca2BO3Cl: Ce3+, Eu2+ for UV light-emitting diodes. J Electrochem Soc 156:J125

    Article  CAS  Google Scholar 

  91. Guo CF, Ding X, Seo HJ, Ren ZY, Bai JT (2011) Double emitting phosphor NaSr4(BO3)3: Ce3+, Tb3+ for near-UV light emitting diodes. Opt Laser Technol 43:1351

    Article  CAS  Google Scholar 

  92. Zhang MF, Liang YJ, Tang R, Yu DY, Tong MH, Wang Q, Zhu YL, Wu XY, Li GG (2014) Highly efficient Sr3Y2(Si3O9)2: Ce3+, Tb3+/Mn2+/Eu2+ phosphors for white LEDs: structure refinement, color tuning and energy transfer. RSC Adv 4:40626

    Article  CAS  Google Scholar 

  93. Unithrattil S, Lee KH, Chung WJ, Im WB (2014) Full-color-emitting CaYAl3O7: Pr3+, Ce3+ phosphor for near-UV LED-based white light. J Lumin 152:176

    Article  CAS  Google Scholar 

  94. Das S, Yang CY, Lin HC, Lu CH (2014) Structural and luminescence properties of tunable white-emitting Sr0.5Ca0.5Al2O4: Eu2+, Dy3+ for UV-excited white-LEDs. RSC Adv 4:64956

    Google Scholar 

  95. Jia YC, Lu W, Guo N, Lu WZ, Zhao Q, You HP (2013) Utilizing Tb3+ as an energy transfer bridge to connect Eu2+ → Sm3+ luminescent centers: realization of efficient Sm3+ red emission under near-UV excitation. Chem Commun 49:2664

    Article  CAS  Google Scholar 

  96. Jiao MM, Guo N, Lü W, Jia YC, Lv WZ, Zhao Q, Shao BQ, You HP (2013) Tunable blue-green-emitting Ba3LaNa(PO4)3F: Eu2+, Tb3+ phosphor with energy transfer for near-UV white LEDs. Inorg Chem 52:10340

    Article  CAS  Google Scholar 

  97. Dutta PS, Khanna A (2013) Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region. ECS J Solid State Sci 2:R3153

    Article  CAS  Google Scholar 

  98. Takahashi Y, Kitamura K, Iyi N, Inoue S (2006) Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7. App Phys Lett 88:151903

    Article  CAS  Google Scholar 

  99. Nakajima T, Isobe M, Tsuchiya T, Ueda Y, Kumagai T (2009) A revisit of photoluminescence property for vanadate oxides AVO3 (A: K, Rb and Cs) and M3V2O8 (M: Mg and Zn). J Lumin 129:1568

    Article  CAS  Google Scholar 

  100. Gupta SK, Ghosh PS, Pathak N, Aryab A, Natarajana V (2014) Understanding the local environment of Sm3+ in doped SrZrO3 and energy transfer mechanism using time-resolved luminescence: a combined theoretical and experimental approach. RSC Adv 4:29202

    Article  CAS  Google Scholar 

  101. Zhu HL, Jin DL, Zhu LM, Yang H, Yao KH, Xi ZQ (2008) A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln = Y, La–Yb). J Alloys Compd 464:508

    Article  CAS  Google Scholar 

  102. Bharathy M, Rassolov VA, zur Loye HC (2008) Crystal growth of Sr3NaNbO6 and Sr3NaTaO6: new photoluminescent oxides. Chem Mater 20:2268

    Google Scholar 

  103. Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD (1998) A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science 279:837

    Article  CAS  Google Scholar 

  104. Monika DL, Nagabhushana H, Hari Krishna R, Nagabhushana BM, Sharmac SC, Thomas T (2014) Synthesis and photoluminescence properties of a novel Sr2CeO4: Dy3+ nanophosphor with enhanced brightness by Li+ co-doping. RSC Adv 4:38655

    Article  CAS  Google Scholar 

  105. Ronde H, Blasse G (1976) The nature of the luminescence transition of the vanadate group. J Solid State Chem 17:339

    Article  CAS  Google Scholar 

  106. Bayer G (1965) Vanadate A3B2V3012 with garnet structure. J Am Ceram Soc 48:600

    Article  CAS  Google Scholar 

  107. Chen X, Xia ZG, Yi M, Wu XC, Xin H (2013) Rare-earth free self-activated and rare-earth activated Ca2NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties. J Phys Chem Solids 74:1439

    Article  CAS  Google Scholar 

  108. Song D, Guo CF, Li T (2015) Luminescence of the self-activated vanadate phosphors Na2LnMg2V3O12 (Ln = Y, Gd). Ceram Int 41:6518

    Article  CAS  Google Scholar 

  109. Chen X, Xia ZG, Yi M, Wu XC, Xin H (2013) Rare-earth free self-activated and rare-earth activated Ca2NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties. J Phys Chem Solids 74:1439

    Article  CAS  Google Scholar 

  110. Zhang Y, Geng DL, Li XJ, Fan J, Li K, Lian HZ, Shang MM, Lin J (2014) Wide-band excited YTiTaO6: Eu3+/Er3+ phosphors: structure refinement, luminescence properties, and energy transfer mechanisms. J Phys Chem C 118:17983

    Article  CAS  Google Scholar 

  111. Li HF, Zhao R, Jia YL, Sun WZ, Fu JP, Jiang LH, Zhang S, Pang Ran, Li CY (2014) Sr1.7Zn0.3CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties. ACS Appl Mater Interfaces 6:3163

    Google Scholar 

  112. Monika DL, Nagabhushana H, Krishna RH, NagabhushanaBM SS, Thomasd T (2014) Synthesis and photoluminescence properties of a novel Sr2CeO4: Dy3+ nanophosphor with enhanced brightness by Li+ co-doping. RSC Adv 4:38655

    Article  CAS  Google Scholar 

  113. Jeon YI, Bharat LK, Yu JS (2015) Synthesis and luminescence properties of Eu3+/Dy3+ ions co-doped Ca2La8(GeO4)6O2 phosphors for white-light applications. J Alloy Compd 620:263

    Article  CAS  Google Scholar 

  114. Liu Y, Liu GX, Wang JX, Dong XT, Yu WS (2014) Single-component and warm-white-emitting phosphor NaGd(WO4)2: Tm3+, Dy3+, Eu3+: synthesis, luminescence, energy transfer, and tunable color. Inorg Chem 53:11457

    Article  CAS  Google Scholar 

  115. Reddy GVL, Moorthy LR, Chengaiah T, Jamalaiah BC (2014) Multi-color emission tunability and energy transfer studies of YAl3(BO3)4: Eu3+/Tb3+ phosphors. Ceram Int 40:3399

    Article  CAS  Google Scholar 

  116. Park JY, Jung HC, Raju GSR, Moon BK, Jeong JH, Kim JH (2010) Tunable luminescence and energy transfer process between Tb3+ and Eu3+ in GYAG: Bi3+, Tb3+, Eu3+ phosphors. Solid State Sci 12:719

    Article  CAS  Google Scholar 

  117. Pavitra E, Raju GSR, Ko YH, Yu YS (2012) A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4: Tb3+ phosphors. Phys Chem Chem Phys 14:11296

    Article  CAS  Google Scholar 

  118. Baur F, Glocker F, Jüstel T (2015) Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J Mater Chem C 3:2054

    Article  CAS  Google Scholar 

  119. Zhou J, Xia ZG (2014) Multi-color emission evolution and energy transfer behavior of La3GaGe5O16: Tb3+, Eu3+ phosphors. J Mater Chem C 2:6978

    Article  CAS  Google Scholar 

  120. Hou L, Cui SB, Fu ZL, Wu ZJ, Fu XH, Jeong JH (2014) Facile template free synthesis of Kla(MoO4)2: Eu3+, Tb3+ microspheres and their multicolor tunable luminescence. Dalton Trans 43:5382

    Article  CAS  Google Scholar 

  121. Auzel F (2004) Up-conversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139

    Article  CAS  Google Scholar 

  122. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273:1185

    Article  CAS  Google Scholar 

  123. Giri NK, Rai DK, Rai SB (2008) White light upconversion emissions from Tm3+ + Ho3+ + Yb3+ codoped tellurite and germanate glasses on excitation with 798 nm radiation. J Appl Phys 104:113107

    Article  CAS  Google Scholar 

  124. Etchart I, Berard M, Laroche M, Huignard A, Hernandez I, Gillin WP, Curryd RJ, Cheetham AK (2011) Efficient white light emission by upconversion in Yb3+- Er3+- and Tm3+ -doped Y2BaZnO5. Chem Commun 47:6263

    Article  CAS  Google Scholar 

  125. Chen DQ, Wang YS, Yu YL, Huang P, Weng FY (2008) Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission. J Solid State Chem 181:2763

    Article  CAS  Google Scholar 

  126. Mahalingam V, Mangiarini F, Vetrone F, Venkatramu V, Bettinelli M, Speghini A, Capobianco JA (2008) Bright White Upconversion Emission from Tm3+/Yb3+/Er3+-Doped Lu3Ga5O12 Nanocrystals. J Phys Chem C 112:17745

    Article  CAS  Google Scholar 

  127. Leonidova II, Zubkova VG, Tyutyunnika AP, Tarakinaa NV, Surata LL, Koryakovab OV, Vovkotrubc EG (2011) Upconversion luminescence in Er3+/Yb3+ codoped Y2CaGe4O12. J Alloy Compd 509:1339

    Article  CAS  Google Scholar 

  128. Li T, Guo CF, Li L (2013) Up-conversion luminescence of Er3+-Yb3+ co-doped CaIn2O4. Opt Express 21:18281

    Article  CAS  Google Scholar 

  129. Page RH, Schaffes KI, Waide PA, Tassano JB, Payne SA, Krupke WF, Bischel WK (1998) Up-conversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. J Opt Soc Am B 15:996

    Article  CAS  Google Scholar 

  130. Sangeetha NM, van Veggel FCJM (2009) Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: matrix-dependent red and green upconversion emissions. J Phys Chem C 113:14702

    Article  CAS  Google Scholar 

  131. Li T, Guo CF, Li L, Jeong JH (2013) Tailorable multicolor upconversion emissions in Tm3+/Ho3+/Yb3+ Co-Doped LiLa(MoO4)2. J Am Ceram Soc 96:1193

    Article  CAS  Google Scholar 

  132. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30:545

    CAS  Google Scholar 

  133. Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921

    Article  CAS  Google Scholar 

  134. Zhang CM, Lin J (2012) Defect-related luminescent materials: synthesis, emission properties and applications. Chem Soc Rev 41:7938

    Article  CAS  Google Scholar 

  135. Zhang XM, Quan ZW, Yang J, Yang PP, Lian HZ, Lin J (2008) Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties. Nanotechnology 19:075603

    Article  CAS  Google Scholar 

  136. Yang Z (2015) Rare earth doped alkaline earth fluoride micro/nano luminescent materials by hydrothermal controllable synthesis. Dissertation, Northwest University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongfeng Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, C., Suo, H. (2017). Design of Single-Phased Multicolor-Emission Phosphor for LED. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52771-9_15

Download citation

Publish with us

Policies and ethics