JSC-09052

NASA CR. 140302

AVIONICS SYSTEMS ENGINEERING DIVISION. INTERNAL NOTE

PERFORMANCE MONITOR SYSTEM FUNCTIONAL SIMULATOR ENVIRONMENTAL DATA ORBITER 101(HFT)

(NASA-TM-X-72028)PERFORMANCE MONITORN75-10136SYSTEM FUNCTIONAL SIMULATOR, ENVIRONMENTALDATA, ORBITER 101(HFT) (NASA)255 pUnclasHC \$8.50CSCL 14BUnclasG3/1453454

DISTRIBUTION AND REFERENCING

LEC-3093

AVIONICS SYSTEMS ENGINEERING DIVISION INTERNAL NOTE

PERFORMANCE MONITOR SYSTEM FUNCTIONAL SIMULATOR ENVIRONMENTAL DATA

ORBITER 101(HFT)

PREPARED BY Parker, Staff Engineer F.W.

Lockheed Electronics Company, Inc.

APPROVED BY

Chief, Communications, Power, and Data Systems Branch

Chief, Avionics Systems Engineering Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

May 1974

LEC-3093

PREFACE

This document provides information concerning the Environment component of the Space Shuttle Performance Monitor System Simulator (PMSS). The Shuttle Performance Monitor System (PMS) environment consists of the various vehicle subsystems which are monitored in flight. This document addresses those subsystems which will be operational on the Shuttle Orbiter 101 used for Horizontal Flight Test (HFT). For each of these subsystems which are monitored by PMS, functional paths have been identified and measurements listed which are necessary to adequately monitor the health status of the subsystem.

The primary goal of the PMSS is to provide a facility for systematic development and testing of functional software for the onboard Shuttle PMS. Three evolutionary stages of PMSS development will parallel the three major Shuttle Program development and test phases. These are the Horizontal Flight Test (Phase 1 PMSS), Vertical Flight Test (Phase 2 PMSS), and the Operational Flight Phase (Phase 3 PMSS).

iii

ACKNOWLEDGEMENTS

This document was prepared by Lockheed Electronics Company, Inc., Aerospace Systems Division, Houston, Texas, for the Avionics Systems Engineering Division at the Johnson Space Center, under contract NAS 9-12200, Job Order 22-30. The following LEC personnel are acknowledged for their contributions to this document in the subsystems areas indicated.

Instrumentation	-	R.	G.	Williams
Data Processing	-	B.	Ε.	Carlton
ECLSS	-	L,	W.	Lew
APU/Hydraulics	-	J.	R.	Harris
Communications and Tracking	-	E.	E.	Dodd
Electrical Power	-	Ρ.	Α.	Smyth
Thermal Protection	-	H.	Ε.	Phillips
Displays and Controls	-	F.	W.	Parker

. .

CONTENTS

Section				Page
1.0	SUMMA	RY		1-1
2.0	INTRO	DUCTION.		2-1
3.0	SUBSYS	STEM DATA	4	3-1
	3.1		quisition, Distribution, and ing Equipment	3 - 5
		3.1.1	System Description	3-6
		3.1.2	Functional Path Analysis	3-6
		3.1.3	PMS Interfaces	3 - 8
	3.2	Environn Support	nental Control and Life	3-13
		3.2.1	Subsystem Description	3-13
		3.2.2	Functional Path Analysis	3-21
		3.2.3	Subsystems/PMS Interfaces	3-29
		3.2.4	PMS Requirements	3-29
	3.3	Hydrauli	ics	3-63
		3.3.1	Subsystem Description	3-63
		3.3.2	Functional Paths	3-68
		3.3.3	PMS Interfaces	3-71
		3.3.4	HFT-PMS System Requirements	3-71
	3.4	Communic	cations and Tracking	3-92
		3.4.1	Subsystem Description	3-92
		3.4.2	Functional Path Analysis	3-105
		3.4.3	Subsystem/PMS Interfaces	3-106

CONTENTS

Section					Page
		3.4.4	PMS Requirements		3-107
	3.5	Electri Control	cal Power, Distribution, and		3-119
		3.5.1	Subsystem Description		3-119
		3.5.2	Functional Path Analysis		3-123
		3.5.3	Subsystem/PMS Interfaces	•	3-126
		3.5.4	PMS Requirements	•	3-126
	3.6	Auxilia	ry Power Units		
		3.6.1	Subsystem Description	•	3-138
		3.6.2	Functional Paths		3-139
		3.6.3	PMS Interfaces		3-141
		3.6.4	PMS Requirements		
	3.7	Thermal	Protection System (TPS)		
		3.7.1	Subsystem Description		
		3.7.2	Functional Paths		
		3.7.3	PMS Interface		
		3.7.4	HFT-PMS System Requirements		
	3.8	Landing,	Deceleration System		
		3.8.1	Subsystem Description		
		3.8.2	Functional Paths		
		3.8.3	PMS Interfaces		
		3.8.4	HFT-PMS System Requirements		

.

CONTENTS

Section												Page
	3.9	Display	s an	d Cont	rols .			•		•	•	. 3-175
		3.9.1	Sub	system	Desci	ript	ion	•	•••	•	•	. 3-175
		3.9.2	Fun	ctiona	1 Patł	15.	• •	•		•	•	. 3-178
		3.9.3	PMS	Inter	faces.	•			• •	•	•	. 3-179
	3.10	Electri	cal 1	Power	Genera	itor	Sul	osy:	ste	m.		3- 182
		3.10.1	Sub	system	Descr	ript	ion	•	•	•	•	. 3-182
		3.10.2	Fund	ctiona	l Path	ı An	alys	sis		•	•	. 3-186
		3.10.3	EPG	Subsy	stem/F	MS	Inte	erfa	ice	s.	•	. 3-197
		3.10.4	PMS	Requi	rement	:s•	••	•	•	•	•	.3-197
4.0	SUBSYS	STEM CON	FIGU	RATION	DATA	FOR	FDA	ι.	•	•	•	• 4-1
5.0	REFER	ENCES .	••	· · ·		•	• •	•	•	•	•	• 5-1
APPENDIX	K											
A	PMS-NI	EW MEASU	REMEN	NT SUM	MARY .	•		• •	•			.A-1
В	MEASU	REMENT NI	JMBEI	R IDEN	FIFICA	TIO	N.		•	•	•	•B-1

FIGURES

Figure		Page
3.1-1	Operational instrumentation	3 - 7
3.2-1	ARS - Atmosphere Conditioning Subsystem	3-14
3.2-2	ARS — Water coolant loops	3-16
3.2-3	Active thermal control subsystem	3-17
3.2-4	ATCS — Ammonia evaporator subsystem	3-18
3.2-5	ECLSS — Fire detection and suppression subsystem	3-20
3.2-6	Humidity fault detection and isolation	3 - 5 2
3.2-7	Cabin air flowrate fault detection and isolation	3-53
3.2-8	Cabin Hx gas outlet temperature fault detection and isolation	3-54
3.2-9	Water coolant loop pump pressure fault detection and isolation	3 - 5 5
3.2-10	Water accululator fault detection and isolation	3-56
3.2-11	Water loop interchanger temperature fault detection and isolation	3 - 5 7
3.2-12	Water loop flowrate	3-58
3.2-13	Freon loop pump output pressure	3-59
3.2-14	Freon loop accumulator	3-60
3.2-15	Freon loop interchanger inlet temperature fault detection and isolation	
3.3-1	Hydraulic system functional paths	3-64
3.3-2	Main landing gear and wheel brakes	

•

FIGURES

Figure		Page
3.3-3	Nose landing gear	3-66
3.3-4	Hydraulic System - Flight Controls	3-69
3.3-5	Main wheel brake system	3-70
3.4-1	HFT C&T subsystem	3-93
3.4-2	Audio-UHF block diagram	3 - 95
3.4-3	S-Band equipment block diagram	3 - 97
3.4-4	MSBLS block diagram	3 - 99
3.4-5	Flight test navaid control heads	3 - 100
3.4-6	TACAN block diagram	3-101
3.4-7	Radar altimeter block diagram	3-104
3.5-1	Electrical power distribution and control subsystem	3-120
3.5-2	Main DC distribution block diagram	3-122
3.5-3	AC distribution block diagram	3-124
3.6-1	Auxiliary power unit (APU) functional paths .	3- 140
3.7-1	Thermal protection subsystem (TPS)	3- 157
3.8-1	Main landing gear system	3-163
3.8-2	Brake system	3-164
3.8-3	Nose landing gear	3-165
3.8-4	Nose gear steering	3-166
3.8-5	Landing gear and wheel brakes	3-168
3.9-1	Displays and controls	3-177
3.10-1	Orbiter fuel cell power plant No. 1 (typical)	

FIGURES

Figure		Page
3.10-2	High pressure gas storage system (Orbiter 101 MCR 0628/0664)	. 3-185
3.10-3	Fuel cell plant component functions	. 3-188
3.10-4	Oxygen PRSD component functions	. 3-191
3.10-5	Hydrogen PRSD component functions	3-194
3.10-6	EPG functional path summary	3-198

TABLES

Table		Page
1.0-1	HFT PMS MEASUREMENTS SUMMARY FOR FDA	1-2
2.0-1	PMS FUNCTIONAL REQUIREMENTS/IMPLEMENTATION REQUIREMENTS	2 - 3
3.1-1	PMS MEASUREMENT DATA - OPERATIONAL INSTRU- MENTATION/DATA PROCESSING	3-9
3.2-1	ECLSS FUNCTIONAL PATH IDENTIFICATION CODES	3 - 2 2
3.2-2	PMS MEASUREMENT DATA - ECLSS/ATMOSPHERE CONDITIONING	3-30
3.2-3	PMS MEASUREMENT DATA - ECLSS/PRESSURE CONTROL SUBSYSTEM	3-31
3.2-4	PMS MEASUREMENT DATA - ECLSS/WATER COOLANT LOOPS	3-32
3.2-5	PMS MEASUREMENT DATA - ECLSS/ACTIVE THERMAL CONTROL	3-35
3.2-6	PMS MEASUREMENT DATA - ECLSS/FIRE DETECTION AND SUPPRESSION	3-40
3.2-7	PMS MEASUREMENT REQUIREMENTS FOR FDA — ECLSS/ ATMOSPHERE CONDITIONING	3-42
3.2-8	PMS MEASUREMENT REQUIREMENTS FOR FDA - ECLSS/ PRESSURE CONTROL	3-43
3.2-9	PMS MEASUREMENT REQUIREMENTS FOR FDA - ECLSS/ WATER COOLANT LOOPS	3-44
3.2-10	PMS MEASUREMENT REQUIREMENTS FOR FDA - ECLSS/ ACTIVE THERMAL CONTROL	3-48
3.2-11	PMS MEASUREMENT REQUIREMENTS FOR FDA - ECLSS/ FIRE DETECTION AND SUPPRESSION	3-51
3.3-1	PMS MEASUREMENT DATA - HYDRAULICS	3 - 7 3
3.3-2	PMS MEASUREMENT REQUIRMENTS FOR FDA — HYDRAULICS SUBSYSTEM	3 - 82

TABLES

Table		Page
3.4-1	PMS MEASUREMENT DATA-COMMUNICATIONS AND TRACKING SUBSYSTEM	. 3-109
3.4-2	PMS MEASUREMENT REQUIREMENTS FOR FDA - COMMU- NICATIONS AND TRACKING SUBSYSTEM	. 3-115
3.5-1	PMS MEASUREMENT DATA - ELECTRICAL POWER DISTR BUTION AND CONTROL	I- . 3-128
3.5-2	PMS MEASUREMENT REQUIREMENTS FOR FDA - ELEC- TRICAL POWER DISTRIBUTION AND CONTROL	. 3-134
3.6-1	PMS MEASUREMENT DATA - AUXILIARY POWER UNIT.	3-142
3.6-2	PMS MEASUREMENT REQUIREMENTS FOR FDA — AUXI- LIARY POWER UNIT	, 3-146
3.7-1	PMS MEASUREMENT DATA — THERMAL PROTECTION SYSTEM	3-159
3.8-1	PMS MEASUREMENT DATA - LANDING/DECELERATION SUBSYSTEM	3-171
3.8-2	PMS MEASUREMENT REQUIREMENTS FOR FDA - LANDING/DECELERATION SUBSYSTEM	3-173
3.9-1	PMS MEASUREMENT DATA - DISPLAYS AND CONTROLS SUBSYSTEM	3-180
3.10-1	EPG FUNCTIONAL ANALYSIS CODES	
3.10-2	FUEL CELL COMPONENT FUNCTIONS	
3.10-3	FUEL CELL HARDWARE FUNCTIONS AND PMS FUN- TIONAL PATHS	
3.10-4	PRSD 02 COMPONENT FUNCTIONS	3-192
	PRSD O, HARDWARE FUNCTIONS AND PMS FUN- CTIONAL PATHS	
	PRSD H HARDWARE FUNCTIONS AND PMS FUNCTIONAL PATHS.	

.

TABLES

Table		Page
3.10-7	PRSD H ₂ HARDWARE FUNCTIONS AND PMS FUN- CTIONAL PATHS	3-196
3.10-8	PMS MEASUREMENT DATA — ELECTRICAL POWER GEN- ERATION SUBSYSTEM	3-199
3.10-9	PMS MEASUREMENT REQUIREMENTS FOR FDA — ELECTRI- CAL POWER GENERATION SUBSYSTEM.	3-202
4.0-1	SWITCH SCAN SUMMARY FOR FDA - ORBITER 101 (HFT)	4 - 2
4.0-2	HFT/ORBITER 101 SWITCH SCAN MEASUREMENTS FOR FDA	4 - 3

Note: After completion of this document, it was learned that the "Horizontal Flight Test" (HFT) program for Orbiter 101 has been redesignated "Atmospheric Flight Test" (AFT). All references to HFT in this document are equivalent to AFT.

ACRONYMS

- ABE Air Breathing Engine
- AC Alternating Current
- ADTA Air Data Transducer Assembly
- APU Auxiliary Power Unit
- ARS Atmospheric Revitalization System
- ATCS Active Thermal Control System
- BCU Bus Control Unit
- BIT Built-in Test
- BITE Build-in Test Equipment
- BTC Bus Tie Contactor
- CRT Cathode Ray Tube
- C&TS Communications and Tracking System
- C&W Caution and Warning
- DACBU Data Acquisition and Control Buffer Unit
- DC Direct Current
- D&C Display and Control
- DEU Display Electronic Unit
- DFI Development Flight Instrumentation
- DPS Data Processing System
- ECLSS Environmental Control and Life Support System
- EPC External Power Contactor
- EPD&C Electrical Power Distribution and Control
- FC Flight Control

xv

FDA Fault Detection	and Annunciation
---------------------	------------------

- FDM Frequency Division Multiplex
- FM Frequency Modulation
- G&C Guidance and Control
- GCU Generator Control Unit
- G&N Guidance and Navigation
- GSE Ground Support Equipment
- HFT Horizontal Flight Text
- Hyd Hydraulics
- Hx Heat Exchanger
- ID Identify
- IMU Inertial Measurement Unit
- IOB Input/Output Buffer
- LEC Lockheed Electronics Corporation
- MDM Multiplexer/Demultiplexer
- MML Master Measurement List
- MPS Main Propulsion System
- MSBLS Microwave Scan Beam Landing System
- OFI,OI Operational Flight Instrumentation
- OMS Orbital Maneuvering System
- PMS Performance Monitor System
- PMSS Performance Monitor Simulation System
- RCS Reaction Control System

xvi

- RI Rockwell International
- SCM Subsystem Configuration Management
- SGLS Space Ground Link System
- SMM Subsystem Measurement Management
- SRB Solid Rocket Booster
- SSME Space Shuttle Main Engine
- STDN Satellite Tracking Data Network
- TCS Thermal Control System
- TPS Thermal Protection System
- TVC Thrust Vector Control
- UHF Ultrahigh Frequency
- VHF Very High Frequency

1.0 SUMMARY

This document presents Shuttle Orbiter subsystems data which is required by the PMS for the function of Fault Detection and Annunciation (FDA) on the Orbiter Vehicle 101. This subsystem data was developed for the purpose of defining the PMS environment in support of the PMSS simulation effort at JSC.

The data is presented in section 3 of this document and consists of: (1) brief subsystem descriptions; (2) identification of subsystem functional paths which are selectable by the flight crew; (3) identification of operational instrumentation measurements which are necessary to enable the PMS to monitor the health status of subsystem functions paths; and (4) PMS process requirements relative to the measurements which are necessary for FDA. These requirements consist of measurement characteristics, tolerance limits, precondition tests, correlation measurements, etc., which are necessary to detect and annunciate a failed functional path.

The total number of PMS measurements required for FDA is summarized by subsystem in table 1.0-1. These measurements are found on the Master Measurements List (Reference 1), for the most part, but in some cases represent new measurement requirements recommended for health status monitoring of subsystems. These new measurements are summarized in appendix A. Subsystems not installed for HFT (such as Propulsion, RCS, OMS, etc.) have been omitted from this report, but will be included when the report is updated for the Orbiter 103 configuration.

TABLE	1.0-1.		HFT	PMS	MEASUREMENTS	SUMMARY	FOR	FDA
-------	--------	--	-----	-----	--------------	---------	-----	-----

	Number of	Total		
	Analog	Discrete*	Iotal	
Instr/DP	30	2 (0)	32	
ECLSS	30	27 (19)	57	
Hydraulics	41	39 (21)	80	
C&TS	8	46 (25)	54	
EPDC	15	39 (12)	54	
APU	40	32 (26)	72	
L&D	9	6 (1)	15	
TPS	14	-	14	
D&C		40 (11)	40	
EPG	29	3 (0)	32	
TOTAL	216	234 (115)	450	

*Numbers shown in parentheses are precondition switch scan measurements (i.e., ECLSS utilizes 27 discretes for FDA, 19 of which are switch scan measurements).

2.0 INTRODUCTION

The PMS provides a software test facility for the development and verification of the Space Shuttle PMS flight software (i.e., basic algorithm verification). This document provides the systems data necessary to define the environment segment of the PMSS for the HFT Vehicle, Orbiter 101.

The functional simulation task is initially intended to support the HFT program. Therefore, the PMS software requirements will evolve from three basic PMS functions:

- Fault Detection and Annunciation (FDA)
- Subsystem Measurement Management (SMM)
- Subsystem Configuration Management (SCM)

A first level definition of the implementation requirements for these functions is provided in table 2.0-1. The data presented in this document is primarily in support of the FDA function. Later revisions to this document will include requirements for SMM and SCM for HFT.

Section 3 of this document contains detailed information relative to the design and operation of Orbiter subsystems for HFT. For each of these subsystems, functional paths are identified to the lowest level at which the crew can control the system functions, and measurement requirements are presented which are necessary to adequately monitor the health status of the system.

Section 4 summarizes for the FDA function those subsystem switches which have been identified as necessary precondition checks (switch-scan) prior to processing the primary

and secondary FDA measurements. Later revisions to this document will include switch scan requirements necessary to provide the SCM function.

TABLE 2.0-1. — PMS FUNCTIONAL AND IMPLEMENTATION REQUIREMENTS

FUNCTIONAL REQUIREMENTS

IMPLEMENTATION REQUIREMENTS

1. FDA

Continuously monitor and assess status of system performance at the functional path level. Operate on key functional path parameters and compare profile with stored values.

Compare value with stored soft limits and compute parameter rate of change and time to hard limit if soft limit exceeded.

Continuously monitor and provide fault detection at the functional path level.

Operate on key functional path parameters. Compare value with stored hard limit. Compare parameter with C&W list.

Operate on secondary functional path data. Compare value with stored limits.

Operate on system configuration data. Evaluate operating . modes allowed.

Correlate result of above and conclude functional path status.

Perform multi-comparison/ correlation operations.

Assess number of functional paths remaining and compute criticality and abort criteria.

TABLE 2.0-1. - PMS FUNCTIONAL AND IMPLEMENTATION REQUIREMENTS (Continued)

FUNCTIONAL REQUIREMENTS	IMPLEMENTATION REQUIREMENTS
1. FDA (continued)	
Redundancy switching	Operate on key redundant path parameters. Compare values with stored limits. Compare with C&W list. Correlate to secondary measurements.
	Operate on system configura- tion. Evaluate operating modes allowed and current modes.
	Operate display system inter- face, C/W list and audible alarm, system configuration implemented (via auto) or recommended (via man).
	Compute capability of redund- ancy remaining.
	Assess capability and criti- cality of functional path in light of failure.
2. SMM	
Display specific groups of subsystem measurement data.	Process display request via keyboard.
uata.	Scale, convert and format data for display.
	Compare parameters to out of limits list and identify any out of limit data.

Operate on display system interface.

TABLE 2.0-1. — PMS FUNCTIONAL AND IMPLEMENTATION REQUIREMENTS (Concluded)

FUNCTIONAL REQUIREMENTS

3. SCM

Determine vehicle system configuration

IMPLEMENTATION REQUIREMENTS

Operate on configuration/ mode cues.

- Switch positions
- Component conditions
- Parametric values

Determine Operating mode.

Compare operating mode with input configuration check mode.

Identify delta between operating mode and check mode.

Determine change in configuration to meet check mode state.

3.0 SUBSYSTEM DATA

This section is designed to provide detailed information relative to the design, operation, and engineering characteristics of the Orbiter systems. The data given pertains to the HFT vehicle configuration. Subsections included are:

- Operational Instrumentation/Data Processing (3.1)
- Environmental Control and Life Support (3.2)
- Hydraulics (3.3)
- Communications and Tracking (3.4)
- Electrical Power Distribution and Control (3.5)
- Auxiliary Power Unit (3.6)
- Thermal Protection (3.7)
- Landing and Deceleration (3.8)
- Displays and Controls (3.9)
- Electrical Power Generation (3.10)

The system data is organized into four categories as follows:

1. <u>System Description</u> - A brief description of the system reflecting the HFT configuration and including operational and engineering data to the level necessary to define system functions and limitations.

2. <u>Functional Paths</u> - A description of each functional path identified for the subsystem. A functional path is defined as a sequential series of one or more functional elements which are controllable or selectable by either manual control or automatic control within the flight hardware.

3. <u>Subsystem/PMS Interfaces</u> - This section describes in tabular form the measurements required to evaluate the health status of each subsystem. Each measurement is correlated to a functional path in the subsystem. For the PMS FDA function, it is necessary that each subsystem functional path have a minimum of two measurements: a primary and a secondary or correlation measurement.

4. <u>PMS Requirements</u> - This section correlates the functional path measurements with specific tests which must be performed for FDA. Precondition tests are tests that are made during each PMS cycle prior to processing the primary measurement. Soft limit check (caution), hard limit check (warning) and backup C&W require definition of tolerance limits for each test, and are included where available. The correlation check identifies a secondary parameter that will be limit checked when a primary parameter fails. Primary measurements are identified in the tables by a (P) and secondary measurements by (S).

The measurement identification numbering system used throughout this document is defined in appendix B, Measurement Number Identification.

Identification of the subsystem functional paths consists of a letter-number scheme in accordance with the following convention:

Subsystem

Code

1. Operational Instrumentation:

MDM's Same as MDM ID Mass Memory MM1 through MMN

Subsystem

Display Electronic Unit	DE1	through DEN
DPS Computers	DP1	through DPN
Master Timers	MT1	through MTN
Voice Recorders	VR1	through VRN
Maintenance Recorders	MR1	through MRN
PCM Master (DACBU) Units	DA1	through DAN

2. ECLSS:

3.

	ACS	AM1	through	AMN
	CPS	CP1	through	CPN*
	WCL	WC1	through	CWN
	ATCS	AT1	through	ATN
	FMS	FM1	through	FMN*
	Waste Mgt.	WM1	through	WMN*
	Water Mgt.	WT1	through	WTN*
	FDSS	FD1	through	FDN
	ALSS .	AL1	through	ALN*
Hy	vdraulics	HY1	through	HYN

- 4. Communications & Tracking
- 5. Electrical Power Distribution and Control:
 - DC Power AC Power
- 6. Auxiliary Power UnitAP1 through APN7. Thermal Protection SystemTP1 through TPN
- 8. Landing and Deceleration
- 9. Displays and Control/Lighting

Code

CT1 through CTN

DC1 through DCN

AC1 through ACN

DL1 through DLN

DS1 through DSN

Subsystem		Code	
10. Electrical Power Generation	FC1	through	FCN
	P01	through	PON
	PH1	through	PHN
11. Propulsion:			
MPS	ME1	through	MEN*
RCS	RC1	through	RCN*
SRB	SR1	through	SRN*
OMS	OM1	through	OMN*
12. Guidance and Control:			
GĘN	GN1	through	GNN**
FCS	FC1	through	FCN**
13. Thermal Control System	TC1	through	TCN*

Those systems marked by an asterisk (*) above are not covered in this report, since these subsystems are not applicable to the HFT vehicle.

Those systems marked by a double asterisk (**) are not covered in this report, but may be added in later revisions of the document when partitioning of G&N and PMS monitoring functions is more firmly established.

Display requirements for the FDA function are the same for all Orbiter HFT subsystems presented in this report. Upon annunciation of a failure, a short description of the failed measurement and its functional path appears on a scratch pad section of the CRT. The crew may then call up subsystems measurement data which identifies the failed parameter and functional path. More detailed information relative to the failed subsystem will require the crew to implement the PMS subsystem measurement management (SSM) data display.

3.1 DATA ACQUISITION, DISTRIBUTION, AND PROCESSING EQUIPMENT

Measurement data required for statusing the health of the subsystem's functional paths are presented in sections 3.2 through 3.10 of this report. This data is generated by sensors and transducers to dedicated displays, recorders, and/ or the uplink/downlink command system and to the Subsystems Management Computer for FDA processing. Measurements not included in the subsequent sections are those that provide health status of the equipment associated with acquisition, throughput, distribution and the terminal function of the subsystems measurement data. These measurements are largely Built in Test Equipment (BITE) discretes that are indicative of the operational integrity (GO/NO-GO) of the equipment and are needed by PMS to satisfy one of two basic requirements, depending on the function of the equipment. Measurement data (GO/NO-GO) of equipment included in the processing or transmitting of the subsystems health status data are needed to satisfy the "top level" precondition test requirement. These measurements are interrogated and evaluated at the beginning of each PMS cycle and insure that the equipments that are providing subsystem health status data throughput are properly functioning prior to processing the subsystem data by the PMS software. These equipments are included in the OI Subsystem and the Data Processing Subsystem. Other equipment included in these two subsystems must also be statused for general health information but not as a precondition check for other subsystem FDA measurements.

The OI and Data Processing equipment and associated PMS requirements are presented in the following paragraphs.

3.1.1 System Description

The HFT configuration of the two subsystems of concern consists of the following equipment:

a.	General Purpose Computers 5
	OI Multiplexer-Demultiplexer 7
	G&C Multiplexer-Demultiplexer 8
	Data Acquisition and Control Buffer Unit 2
e.	Master Timing Unit 1
f.	Voice Recorder
	Maintenance Recorder
	Mass Memory
	Input/Output Boxes 5

Figure 3.1.1 functionally illustrates the interfaces of this equipment.

3.1.2 Functional Path Analysis

In general, each of the equipments having BITE is considered a functional path since fault detection and isolation of each is inherent within the PMS. Interfacing equipemnt affecting subsystems measurement data throughput, and which must have precondition checks, includes the computers, MDM's DACBU, Master Timing Unit, and the IOB's. BITE from the other equipment identified in section 3.1.1 are required for FDA processing and process requirements for these measurements are identical to other subsystem measurement data.

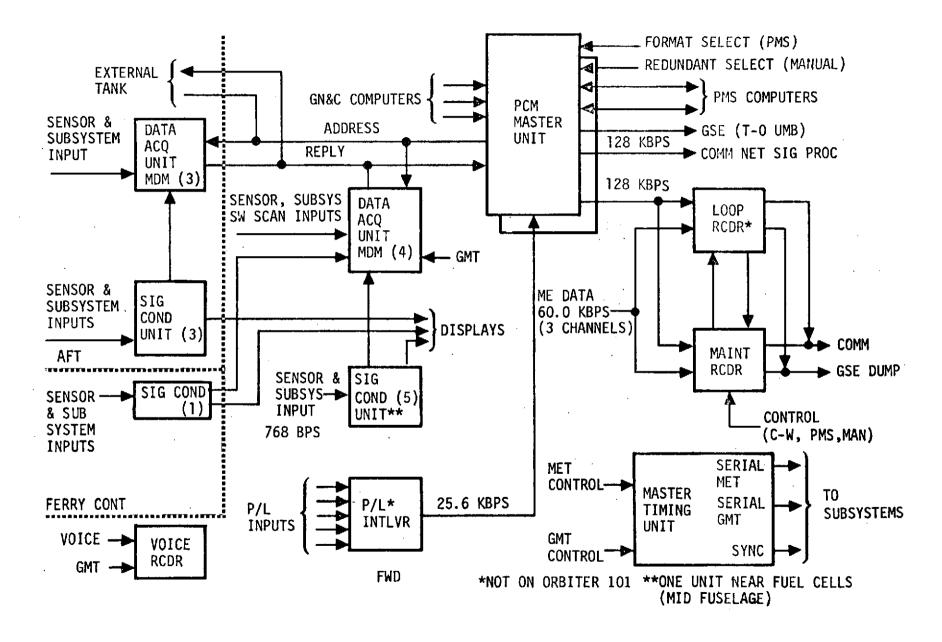


Figure 3.1-1: - Operational instrumentation.

As noted in table 3.1-1, functional path designators have been assigned to each of the equipments. These designators are largely the abbreviations assigned to the units by the Master Measurement List.

3.1.3 PMS Interfaces

Table 3.1-1 summarizes the measurements supplied by the equipment to the PMS and the Remarks column identifies those measurements needed for precondition checks. As noted, the majority of these measurements are BITE discretes that provide indications of the operational integrity of the equipment. It is recognized that these measurements alone are not sufficient to determine the validity of the subsystem measurement data. For example, statusing parity bit and validity bit information are potential PMS requirements. However, this function may be assigned to the GPC input/output buffer, which in turn would "hand-off" to PMS the results of IOB processing. Currently, there is not sufficient information on the IOP to completely scope the PMS requirements relative to the data This problem will be addressed when the IOP requirevalidity. ments capability are better defined.

PMS MEASUREMENT DATA

SUBSYSTEM: OPERATIONAL INSTRUMENTATION/DATA PROCESSING

3-9

(1 of 4)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V72M7290B — DPS MDM Status G&N FA1	Discrete	1/0	FA1	Precondition check for all FDA using this MDM.
V72M7300B — DPS MDM Status G&N MDM FA2	Discrete	1/0	FA2	Precondition check for all FDA using this MDM.
V72M7310B — DPS MDM Status G&N MDM FA3	Discrete	1/0	FA3	Precondition check for all FDA using this MDM.
V727320B — DPS MDM Status G&N MDM FA4	Discrete	1/0	FA4	Precondition check for all FDA using this MDM.
V72M7250B — DPS MDM Status G&N FF1	Discrete	1/0	FF1	Precondition check for all FDA using this MDM.
V72M7260B — DPS MDM Statu s G&N FF2	Discrete	1/0	FF2	Precondition check for all FDA using this MDM.
V72M7270B — DPS MDM Status G&N FF3	Discrete	1/0	FF3	Precondition check for all FDA using this MDM.
V72M7280B — DPS MDM Status G&N FF4	Discrete	1/0	FF4	Precondition check for all FDA using this MDM.
/72M7500B — MDM DI OA1	Discrete	1/0	0A1	Precondition check for all FDA using this MDM.

PMS MEASUREMENT DATA

SUBSYSTEM: OPERATIONAL INSTRUMENTATION/DATA PROCESSING

(2 of 4)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V72M7510B — MDM OI OA2	Discrete	1/0	0A2	Precondition check for all FDA using this MDM.
V72M7520B — MDM OI OA3	Discrete	1/0	0A3	Precondition check for all FDA using this MDM.
V72M7530B — MDM OI OF1	Discrete	1/0	OF1	Precondition check — necessary for PMS FDA to check prior to accept- ing data from this MDM.
V72M7540B — MDM OI OF2	Discrete	1/0	OF2	Precondition check for all FDA using this MDM.
V72M7550B — MDM OI OF3	Discrete	1/0	OF3	Precondition check for all FDA using this MDM.
V72X7430X — DPS DEV. 1 Status	Discrete	1/0	DE 1	Discrete BITE for FDA processing.
V72X7440X — DPS DEV. 2 Status	Discrete	1/0	DE 2	Discrete BITE for FDA processing.
V72X7450X — DPS DEV. 3 Status	Discrete	1/0	DE 3	Discrete BITE for FDA processing.
V72X7460X — DPS DEV. 4 Status	Discrete	1/0	DE4	Discrete BITE for FDA processing.
V72X7011X - DPS Computer No. 1 BITE	Discrete	1/0	DP1	Precondition check for all FDA.
V72X7012X — DPS Computer No. 2 BITE	Discrete	1/0	DP 2	Precondition check for all FDA.

PMS MEASUREMENT DATA

SUBSYSTEM: OPERATIONAL INSTRUMENTATION/DATA PROCESSING

(3 of 4)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V72X7013X - DPS Computer No. 3 BITE	Discrete	1/0	DP 3	Precondition check for all FDA.
V72X7014X — DPS Computer No. 4 BITE	Discrete	1/0	DP4	Precondition check for all FDA.
V72X7015X — DPS Computer No. 5 BITE	Discrete	1/0	DP 5	Precondition check for all FDA.
V72X7210X — Mass Memory No. 1 BITE	Discrete	1/0	MM1	Precondition check for all FDA.
V72X7220X — Mass Memory No. 2 BITE	Discrete	1/0	MM2	Precondition check for all FDA.
V75X2240E — MTU Primary OSC Failure	Discrete	1/0	MT1	Precondition check for all FDA.
V75X2244E - MTU Secondary OSC Failure	Discrete	1/0	MT 2	Precondition check for all FDA.
V75V2500A — Voice Recorder- BITE	Analog	0 to -12 dB	VR1	Discrete BITE for FDA processing.
V75X2518E — Voice Recorder- End-of-Tape	Discrete	1/0	VR2	Discrete event for FDA processing.

PMS MEASUREMENT DATA

SUBSYSTEM: OPERATIONAL INSTRUMENTATION/DATA PROCESSING

(4 of 4)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V75V2300A — Maintenance Recorder BITE	Analog	0 to -12 dB	MR1	Discrete BITE for FDA processing.
V75X2111D — PCM Master Unit BITE	Discrete	1/0	DA1	Precondition check for all FDA.

3.2 ENVIRONMENTAL CONTROL AND LIFE SUPPORT

3.2.1 Subsystem Description

The environmental control and life support system (ECLSS) consists of subsystems that are necessary in maintaining the life and comfort of the crew. Not all subsystems of the ECLSS will be operational on the HFT vehicle. Subsystems with components that are active for HFT are listed as follows:

- Atmospheric Revitalization Subsystem (ARS).
- Active Thermal Control Subsystem (ATCS).
- Fire Detection and Suppression Subsystem.

3.2.1.1 <u>Atmospheric Revitalization Subsystem (ARS)</u>. For HFT, the ARS consists of two subsystems which provide necessary life support to the crew. The subsystems are:

- Atmosphere conditioning subsystem.
- Water coolant loops.

Cabin pressure is maintained by a sealed hatch. Flight duration will be short enough to permit cabin volume to maintain acceptable O_2 and CO_2 partial pressure levels. The crew will have portable face masks and oxygen assemblies for auxiliary O_2 supply.

The atmosphere conditioning subsystem (fig. 3.2-1) controls the temperature of the cabin and the desired humidity by removing excess water from the cabin gases by a cabin condensing heat exchanger. Three fans are available

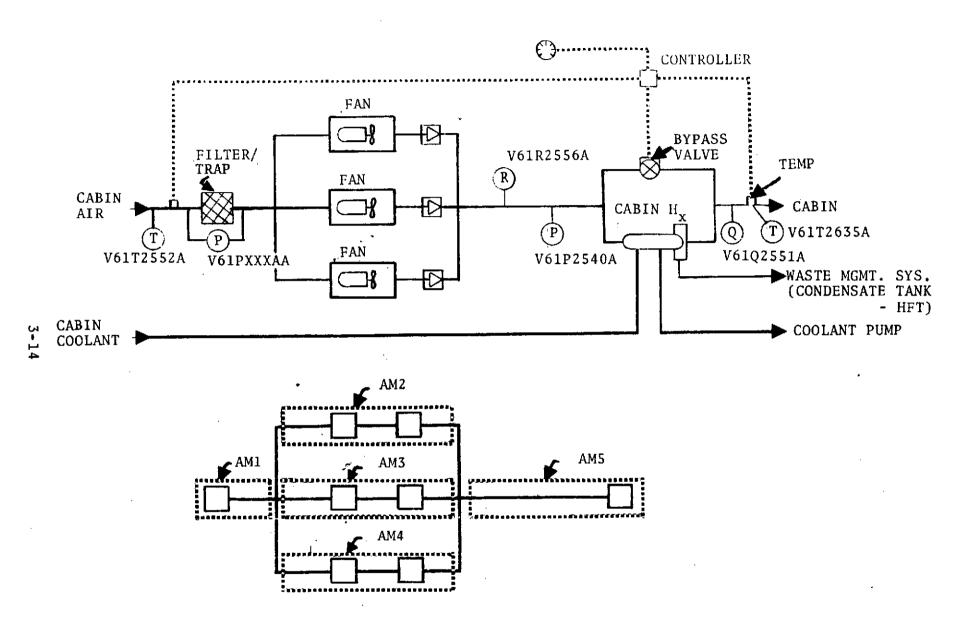


Figure 3.2.1. - ARS ~ atmosphere conditioning subsystem.

for circulating the air in the cabin, and a condensate tank is provided to collect the condensate.

Thermal control within the cabin and avionics bays is achieved by means of two redundant water coolant loops. The water coolant loops (fig. 3.2-2) remove excess heat generated by the crew and the spacecraft equipment, and transport it to the active thermal control subsystem (ATCS) interchanger. Thermal control of the avionics bays is accomplished by water coolant circulating through coldplates, and by forced air cooling in which the recirculated air is passed through heat exchangers located in the water coolant loops. Sublimators, liquid cooled garment (LCG) and water chiller heat exchangers are not installed for HFT.

3.2.1.2 <u>Active Thermal Control Subsystem (ATCS)</u>. The ATCS (fig. 3.2-3) consists of two freon 21 coolant loops which are operated simultaneously to perform three major functions:

- The transport of thermal energy.
- Active thermal control of selected Orbiter equipment.
- Rejection of vehicle thermal energy.

Each loop has redundant dual speed (low and high) pumps. Normal operation requires one pump operating in each coolant loop in low speed. Loss of one coolant loop requires both pumps in the remaining loop to operate in high speed. The ATCS cools the water coolant loops through an interchanger. Heat is rejected in flight by an ammonia evaporator subsystem (fig. 3.2-4), and during ground operations through a GSE heat exchanger. The space radiators, flash evaporator,

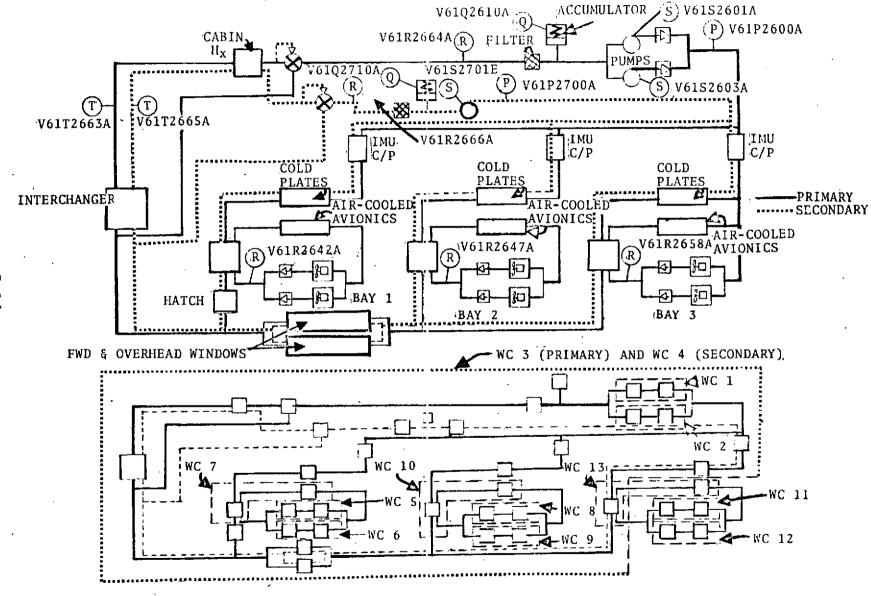
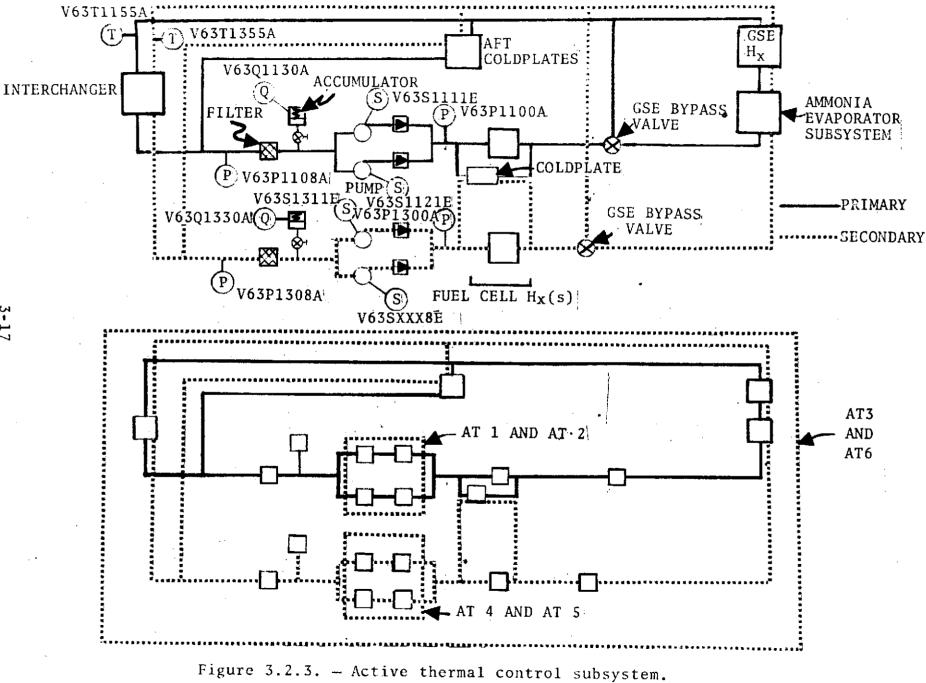



Figure 3.2-2 - ARS ~ water coolant loops.

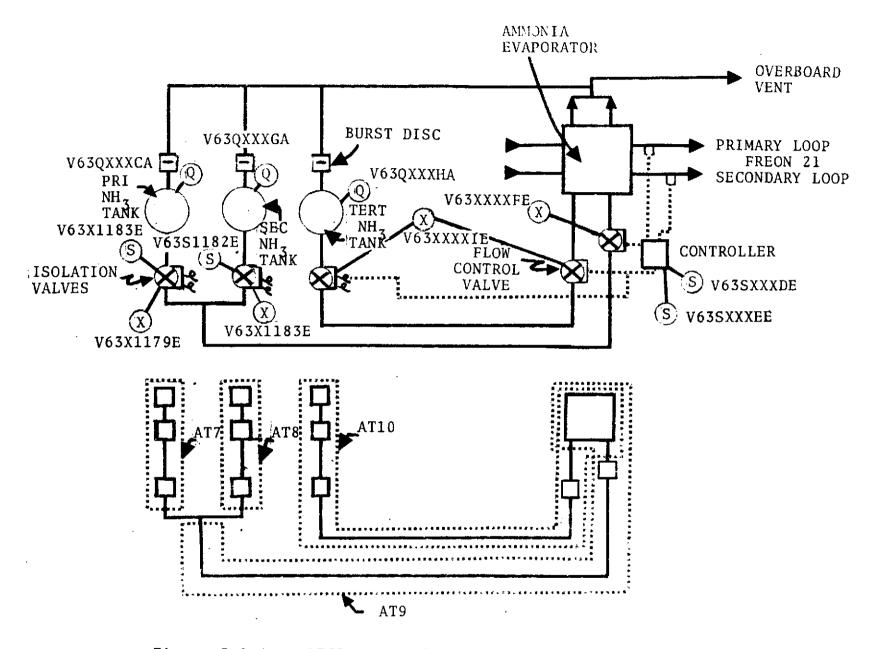


Figure 3.2.4. - ATCS ~ ammonia evaporator subsystem.

payload heat exchanger, and O_2 restrictors are not installed for HFT.

3.2.1.3 Fire Detection and Suppression Subsystem. The fire detection and suppression subsystem provides for early warning and means for suppressing the fire within the crew compartment and the avionics bays. Particle (smoke) and heat sensing element (fire) detectors are used to detect a fire. Particle type detectors operate by sensing any significant increase in the gaseous or particulate products of combustion within the cabin or avionics bays. The heat sensing element type detectors provide a warning of high heat overload or open flame condition when a temperature of 255 ± 15°F is reached. Particle type detectors only are used in the crew compartment; whereas, the avionics bays utilize both types of sensors. Subsystem and functional path analyses were not accomplished on smoke and fire detector components, since they are part of the emergency detection and annunciation system and exercise no active control on the suppression system.

Portable fire extinguishers are available for the Orbiter cabin compartment. The fire extinguishing agent is freon 1301. Since a visual indication is available on the freon container, no PMS measurement is required.

For each avionics bay, freon 1301 is used as the fire extinguishing agent. Each avionics bay is equipped with one freon 1301 container (fig. 3.2-5). The fire suppression subsystem is a high-rate-discharge type. The freon is explosively released from its container when manually initiated by the crew.

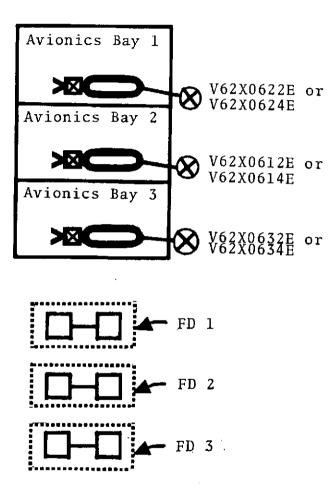


Figure 3.2-5. - ECLSS ~ fire detection and suppression subsystem.

.

.

.

3.2.2 Functional Path Analysis

Functional path analyses were conducted on the HFT active components of the atmospheric revitalization, active thermal control, and avionics bays fire suppression subsystems. For the ECLSS subsystems, functional paths identified are defined as a sequential series of one or more functional elements (selectable or nonselectable) that permits a function to be completed. The hardware functions are defined as functional paths required to accomplish the objectives of the subsystem. Table 3.2-1 presents the identification codes of each respective subsystem functional paths and hardware functions.

A description of the various functional paths and hardware functions are given in the subsequent paragraphs.

3.2.2.1 Atmospheric Revitalization Subsystem (ARS).

 <u>Atmosphere Conditioning Subsystem</u> - The functional paths and hardware functions identified are shown in the following equations (see fig. 3.2-1):

AM1	=	Filter/Trap	(1)
AM2	=	Fan 1 • Check Valve 1	(2)
AM3	=	Fan 2 • Check Valve 2	(3)
AM4	=	Fan 3 • Check Valve 3	(4)
AM5	=	Cabin Hx • Bypass Valve	(5)

From these equations, the hardware function is derived as follows:

$$AMH1 = AM1 \cdot (AM2 + AM3 + AM4) \cdot AM5$$
(6)

Subsystem	Functional Path	Hardware Function		
ARS				
Atmosphere Conditioning	AM1, AM2, AMN	AMH1, AMH2, AMHN		
Water Coolant Loops	WC1, WC2, WCN	WCH1, WCH2, WCHN		
ATCS	AT1, AT2, ATN	ATH1, ATH2, ATHN		
Fire Detection and Suppression	FD1, FD2, FDN	FDH1, FDH2, FDHN		

.

.

.

.

From equation 6, it can be seen that a failure in components relating to AM1 or AM5 will disable the entire hardware function.

• <u>Water Coolant Loops</u> - Functional paths and hardware functions were defined for both coolant loops, and for the avionics air cooling systems. The air cooling systems were included as part of this section due to its dependence and interface with the water coolant loops to achieve its operating functions. The functional paths and hardware functions are shown in the following equations:

<u>- Primary Water Coolant Loop (fig. 3.2.2)</u>

WC1	=	Pump 1 ·	•	Check	Valve	1	(7)
WC2	=	Pump 2	•	Check	Valve	2	(8)

Let,

.

- A = IMU Coldplates 1 Avionics Bay 1 Coldplates
 Hx Hatch Heating (9)
- B = IMU Coldplates 2 Avionics Bay 2 Coldplates
 Hx (10)
- C = IMU Coldplates 3 Avionics Bay 3 Coldplates • Hx (11)

D = Forward and Overhead Window Heating (12)
 E = Forward and Overhead Window Heating (13)
 Then,

 $WC3 = [A + \{(B + C) \cdot (D + E)\}] \cdot Interchanger$

• Cabin Hx • Bypass Valve • Filter

• Accumulator (14)

From these equations, the hardware function for the primary coolant loop is defined as follows:

 $WCH1 = (WC1 + WC2) \cdot WC3 \tag{15}$

- Secondary Water Coolant Loop (fig. 3.2.2)

Let,

- A₁ = IMU Coldplates 1 Avionics Bay 1 Coldplates
 Hx Hatch Heating (16)
- B₁ = IMU Coldplates 2 Avionics Bay 2 Coldplates

 Hx
 (17)
- C₁ = IMU Coldplates 3 Avionics Bay 3 Coldplates • Hx (18)

 D_1 = Forward and Overhead Window Heating (19) E_1 = Forward and Overhead Window Heating (20) Then,

WC4 = Pump
$$[A_1 + \{(B_1 + C_1) \cdot (D_1 + E_1)\}]$$

• Interchanger • Cabin Hx • Bypass Valve
• Filter • Accumulator (21)

Since the secondary water coolant loop consists of only one functional path, the hardware function is:

$$WCH2 = WC4$$
(22)

- <u>Air-Cooled Avionics</u> (fig. 3.2.2)

<u>Avionics Bay 1</u> — The following functional paths are identified:

WC5	=	Avionics	Bay	1	Fan	1	٠	Check	Valve	1	(23)
WC6	=	Avionics	Bay	1	Fan	2	•	Check	Valve	2	(24)
WC7	=	Avionics	Bay	1	Hx •	A	iı	c-Coole	ed Avid	onics	(25)

Combining these equations, the hardware function for avionics bay 1 is:

$$WCH3 = (WC5 + WC6) \cdot WC7$$
 (26)

<u>Avionics Bay 2</u> - The following functional paths are identified:

WC8	÷	Avionics	Bay	2	Fan	1	•	Check	Valve	1	(27)
-----	---	----------	-----	---	-----	---	---	-------	-------	---	------

WC9 = Avionics Bay 2 Fan 2 \cdot Check Valve 2 (28)

WC10 = Avionics Bay 2 Hx • Air-Cooled Avionics (29)

From these equations, the hardware function for avionics bay 2 is derived as follows:

 $WCH4 = (WC8 + WC9) \cdot WC10$ (30)

<u>Avionics Bay 3</u> — The following functional paths are identified:

WC11	=	Avionics	Bay	3	Fan	1	•	Check	Valve	1	(31))
------	---	----------	-----	---	-----	---	---	-------	-------	---	------	---

WC12 = Avi	onics Bay	3	Fan	2	٠	Check	Valve	2	(32))
------------	-----------	---	-----	---	---	-------	-------	---	------	---

.....

WC13 = Avionics Bay 3 Hx • Air-Cooled Avionics (33)

The hardware function for avionics bay 3 is as follows:

 $WCH5 = (WC11 + WC12) \cdot WC13$ (34)

• <u>Active Thermal Control Subsystem</u> - Included in this section are functional paths and hardware functions on both freon coolant loops and the ammonia evaporator subsystem which is part of the active thermal control subsystem. The identified functional paths and hardware functions are shown as follows in equation forms: - Primary Freon Coolant Loop (fig. 3.2-3)

- AT3 = Fuel Cell Hx DC Power Coldplates GSE Bypass Valve
 Ammonia Evaporator GSE Hx AFT Coldplates
 - Interchanger Filter Accumulator (37)

- Secondary Freon Coolant Loop

- AT4 = [(Pump 1_{Low} Speed Check Valve 1) + (Pump 2_{Low} Speed • Check Valve 2)] (38)
- AT6 = Fuel Cell Hx DC Power Coldplates GSE Bypass Valve • Ammonia Evaporator • GSE Hx • AFT Coldplates • Interchanger • Filter • Accumulator (40)

Since both freon coolant loops have redundant dualspeed pumps and are operated simultaneously, the

hardware function for the freon coolant loops is defined as follows:

$$ATH1 = [(AT1 \cdot AT3) \cdot (AT4 \cdot AT6)] + [AT2 \cdot AT3) + (AT5 \cdot AT6)]$$
(41)

- <u>Ammonia Evaporator Subsystem</u> (fig. 3.2-4) -Functional paths identified for the ammonia evaporator subsystem is as follows:
- Burst Disc Pri NH3 Tank Isolation Valve 1 AT7 = (42) AT8 Burst Disc \cdot Sec NH₃ Tank \cdot Isolation Valve 2 = (43)AT9 Flow Control Valve 1 · Evaporator 1 = (44)AT10 = Burst Disc • Tert NH, Tank • Isolation Valve 3 Flow Control Valve 2 · Evaporator 2 (45)

From these equations, the hardware function for the ammonia evaporator subsystem is as follows:

$$ATH2 = [(AT7 + AT8) \cdot AT9] + AT10$$
 (46)

- Fire Detection and Suppression Subsystem (fig. 3.2-5) The functional paths identified for the fire suppression subsystems within each avionics bay are given in the following equations:
- FD1 = Avionics Bay 1 Freon Container Actuation Valve (47)

FD2 = Avionics Bay 2 Freon Container • Actuation Valve (48)
FD3 = Avionics Bay 3 Freon Container • Actuation Valve (49)

The hardware functions for each respective avionics bay are as follows:

FDH1 = FD1 (50)

$$FDH2 = FD2 \tag{51}$$

$$FDH3 = FD3$$
 (52)

3.2.3 Subsystems/PMS Interfaces

Since the purpose of the FDA is to evaluate the health status of the ECLSS, this section provides the primary and secondary measurements that are needed to determine and isolate a failure within each ECLSS subsystem. Each required measurement is correlated to a subsystem functional path, and each subsystem operating tolerance limit is provided. This information is given in tables 3.2-2 through 3.2-6.

3.2.4 PMS Requirements

To satisfy PMS FDA requirements, ECLSS must furnish individual measurement data and limits associated with those

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ATMOSPHERE CONDITIONING

3-30

(1 of 1)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V61PXXXAA — Filter/Debris Trap Differen- tial Press	Press	0.05-0.15 psid	AM1	New recommended measurement. This measurement provides the capabil- ity to isolate a fan or filter/ trap failure.
V61R2556A — Cabin Air Flowrate	Rate	1350-1450 1bs/hr	AM2, AM3, and AM4	Measurement will detect a poten- tial fan failure and provide information concerning the status and operating profile of the cabin fans.
V61Q2551A — Cabin Humidity	Humidity	30-70% RH	AM5	Measurement will allow detection and isolation of cabin/humidity Hx component failures.
V61T2635A — Cabin Hx Out Gas Temperature	Temp	45-55°F	АМ5	Measurement is presently classi- fied as a ground or LRU isolation type. This measurement needs to be available during flight to detect and isolate either a bypass valve, cabin Hx, or sensor failure within the atmosphere conditioning subsystem.
V61T2552A — Cabin Tempera- ture	Temp	65-80°F	AM5	Measurement serves as a secondary or correlation measurement to V61T2635A.
V61P2540A — CO ₂ Partial Pressure	Press	0-5mm Hg	N/A	This serves as a back-up to the Caution and Warning (C&W) CO ₂ par- tial pressure measurement.

.

2

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-PRESSURE CONTROL SUBSYSTEM

.

(1 of 1)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V61P2405A — Cabin Pressure	Press	14.5-14.9 psia	N/A	The unavailability of a pressur- ization control system for HFT requires that the cabin pressure be monitored closely. This meas- urement acts as a back-up to the C&W system.
V61P2511A or V61P2513A — O ₂ Partial Pressure	Press	2.95-3.45 psia	N/A	Since the pressurization control subsystem is not installed for HFT, it is necessary that the 0_2
				partial pressure does not fall below the minimum allowable level. This measurement serves as a back- up to the C&W system.
V61S2561E V61S2562E V61S2563E Cabin Fans 1, 2, & 3 - On	Event	0/1	AM 2 AM 3 AM 4	Precondition configuration status.
·				

TABLE 3.2-4. PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-WATER COOLANT LOOPS

(1 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V61P2600A — Pri H ₂ O Pump Outlet Pressure	Press	30-45 psig	WCl and WC2	Measurement is presently classi- fied as a ground servicing and LRU trend type. This measurement needs to be available during flight to isolate a pump, accumu- lator, or sensor failure.
V61S2601E - Pri H ₂ O Pump Control No. 1		Off-On	WC1 ·.	Measurement serves as a precondi- tioning test to determine primary water coolant loop status.
V61S2603E — Pri H ₂ O Pump Control No. 2	Event	Off-On	WC2	Same as above.
V61T2663A — Interchanger Pri Water Coolant Outlet Tempera- ture	Temp	40-50°F	WC3	Measurement will detect and iso- late a potential problem within the water coolant loop. This measurement can serve as a corre- lation measurement to V63T1155A or V63T1355A (freon coolant loops).
H ₂ O Coolant Flowrate	Rate	650-750 1bs/hr	WC3	Measurement serves as a secondary measurement to V61P2600A and V61Q2610A for detection of a pump failure and verification of an accumulator failure indication.
V61Q2610A — Pri H ₂ O Accumulator Quantity	Quantity	30-80%	WC3	Measurement will detect an accumu- lator failure or leak in the coolant loop.

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-WATER COOLANT LOOPS

3-33

(2 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V61P2700A — Sec H ₂ O Pump Outlet Pressure	Pressure	30-45 psig	WC4	Measurement is presently classi- fied as a ground servicing and LRU trend type. This measurement needs to be available during flight to isolate a pump, accumu- lator, or sensor failure. This measurement is recommended as a primary measurement over a flow- rate type because of better accu- racy and reliability considera- tions.
V61S2701E - Sec H ₂ O Pump Control		Off-On	WC4	Measurement serves as a precondi- tioning test to determine second- ary water coolant loop status.
V61T2665A — Interchanger Sec Water Coolant Outlet Tempera- ture	Temp	40-50°F	WC4	Measurement will detect an out-of- tolerance condition within the water coolant loop. This measure- ment can serve as a correlation measurement to V63T1155A or V63T1355A (freon coolant loops).
V61R2666A — Sec H ₂ O Coolant Flowrate	Rate	650-750 1bs/hr	WC4	Measurement serves as a secondary measurement to V61P2700A and V61Q2710A for detection of a pump failure and verification of an accumulator failure.
V61Q2710A — Sec H ₂ O Accumulator Quantity	Quantity	30-80%	WC4	Measurement will detect an accumu- lator failure or leak in the coolant loop. Measurement can be used during the stand-by mode to

٠

TABLE 3.2-4. PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-WATER COOLANT LOOPS

(3 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
				verify secondary water coolant loop is operational.
V61R2642A — Avionics Bay 1 Air Flow	Rate	2900-3100 1bs/hr	WC5 and WC6	Measurement will detect a fan failure in the avionics bay air coolant loop. No correlation measurement is presently available to isolate possible sensor failure. Criticality of system does not warrant additional measurements.
V61R2647A — Avionics Bay 2 Air Flow	Rate	2900-3100 1bs/h r	WC8 and WC9	Same as above.
V61R2658A — Avionics Bay 3 Air Flow	Rate	2900-3100 1bs/hr	WC11 and WC12	Same as above.
V61S2645E and V61S2646E Avionics Bay 1 Fans A and B-On	Event	0/1	WC 5, WC 6	Precondition configuration status
V61S2650E V61S2652E Avionics Bay 2 Fans A and B-On	Event	0/1	WC 8, WC 9	Precondition configuration status
V61S2661E V61S2662E Avionics Bay 3 Fans A and B-On	Event	0/1	WC 11, WC 12	Precondition configuration status

.

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ACTIVE THERMAL CONTROL

3-35

(1 of 5)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V63P1100A - Pri Coolant Loop Pump Outlet Pressure	Press	200-300 psig	AT1 and AT2	Measurement will allow detection of a pump failure and will verify an accumulator failure indication.
V63S1111E - Pri Freon Coolant Loop Pump No. 1- CMD	Event	Off-On	AT1 and AT2	Measurement serves as a precondi- tioning test to determine primary freon coolant loop pump 1 status.
V63S1121E — Pri Freon Coolant Loop Pump No.2- CMD	Event	Off-On	AT1 and AT2	Measurement serves as a precondi- tioning test to determine primary freon coolant loop pump 2 status.
V63T1155A — Pri Freon Coolant Interchanger Inlet Tempera- ture	Temp	40-45°F	AT3	Measurement will detect an out-of- tolerance condition within the freon coolant loop. This measure- ment can act as a correlation mea- surement to V61T2663A or V61T2665A (water coolant loops).
V63P1108A — Pri Freon Coolant Pump Inlet Pressure	Press	140-240 psig	AT3	Measurement is presently classi- fied as a ground servicing type. This addition is needed to act as a secondary or correlation meas- urement to V63P1100A.
V63Q1130A — Pri Freon Coolant Loop Accumulator Quantity	Quantity	25-90%	AT3	Measurement will detect an accumu- lator failure or leak in the coolant loop.

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ACTIVE THERMAL CONTROL

(2 of 5)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V63P1300A — Sec Freon Coolant Loop Pump Outlet Pressure	Press	200-300 psig	AT4 and AT5	Measurement will allow detection of a pump failure and verify an accumulator failure indication
V63S1311E — Sec Freon Coolant Loop Pump No. 1- CMD	Event	Off-On	AT4 and AT5	Measurement serves as a precondi- tioning test to determine second- ary freon coolant loop pump 1 status.
V63SXXXBE — Sec Freon Coolant Loop Pump No. 2- CMD	Event	Off-On	AT4 and AT5	New recommended measurement. This addition serves as a precondition- ing test to determine secondary freon coolant loop pump 2 status.
V63T1355A — Sec Freon Coolant Loop Interchang- er Inlet Temper- ature	Temp	40-45°F	AT 6	Measurement will detect an out-of- tolerance condition within the freon coolant loop. This measure- ment can serve as a correlation measurement to V61T2663A or V61T2665A (water coolant loops).
V63P1308A — Sec Freon Coolant Loop Pump Inlet Pressure	Press	140-240 psig	АТ 6	Measurement is presently classi- fied as a ground servicing type. This measurement is required to act as a secondary or correlation measurement to V63P1300A.
V63Q1330A — Sec Freon Coolant Loop Accumulator Quantity	Quantity	25-90%	AT6	Measurement will detect an accumu- lator failure or leak in the freon coolant loop.

•

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ACTIVE THERMAL CONTROL

3-37

(3 of 5)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V63QXXXCA — Pri ^{NH} 3 Tank Quantity	Quantity	30-90%	AT7	New recommended measurement. This measurement is needed to detect and isolate an ammonia tank fail- ure during active and stand-by modes.
V63S1178E — Pri NH ₃ Tank Isola- tion Valve — CMD		Off-On	AT7	Measurement serves as a precondi- tioning test to determine ammonia evaporator system 1 status.
V63X1179E — Pri NH ₃ Tank Isola- tion Valve Posi- tion	Event	Close-Open	AT7	Measurement serves as a secondary measurement to V63S1178E to detect an isolation valve failure.
V63SXXXDE - NH ₃ Evaporator Flow Control Valve Command	Event	Off-Auto- Manual	AT9 and AT10	New recommended measurement. This addition is required as a precon- ditioning test to determine ammonia evaporator status.
V63SXXXEE — NH ₃ Evaporator Sys- tem Select	Event	System 1 - System 2	AT9 and AT10	New recommended measurement. Sys- tem 2 position actuates flow con- trol valve 2 and tertiary NH ₃ tank isolation valve. This measurement is needed as a secondary measure- ment to isolate whether flow con- trol valve 1 or 2 (or tertiary NH ₃ tank isolation valve) has failed.

•

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ACTIVE THERMAL CONTROL

(4 of 5)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V63XXXXFE — NH ₃ Evaporator Flow Control Valve 1	Event	Close-Open	АТ9	New recommended measurement. This measurement will act as a second- ary measurement to determine whether the control valve has received signal.
V63QXXXGA — Sec NH ₃ Tank Quantity	Quantity	30-90%	AT 8	New recommended measurement. This measurement is needed to detect and isolate an ammonia tank fail- ure during active and stand-by modes.
V63S1182E - Sec NH ₃ Tank Isola- tion Valve - CMD	Event	Off-On	AT 8	Measurement serves as a precondi- tioning test to determine ammonia evaporator system 1 status.
V63X1183E - Sec NH ₃ Tank Isola- tion Valve Posi- tion	Event	Close-Open	AT8	Measurement serves as a secondary measurement to detect an isolation valve failure.
V63QXXXHA — Ter- tiary NH ₃ Tank Quantity	Quantity	30-90%	AT10	New recommended measurement. This measurement is needed to detect and isolate an ammonia tank fail- ure during active and stand-by modes.

PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-ACTIVE THERMAL CONTROL

(5 of 5)

;

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V63XXXXIE - Ter- tiary NH ₃ Tank Isolation Valve- Flow Control	Event	Close-Open	AT10	New recommended measurement. This addition will serve as a secondary measurement to provide information whether tertiary NH ₃ tank isola-
Valve 2 Position				tion valve and flow control valve 2 have received signal when ammonia evaporator system 2 is selected.
			•	
			-	
· · ·				

TABLE 3.2-6. PMS MEASUREMENT DATA

SUBSYSTEM: ECLSS-FIRE DETECTION AND SUPPRESSION

(1 of 1)

	MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
	V62X0622E/ V62X0624E — Freon Full/Empty Indication — Avionics Bay 1	Event	Empty-Full	FD1	Measurement is presently not moni- tored by the PMS. This measure- ment needs to be interrogated by the PMS to detect a defective or failed fire extinguisher system.
	V62X0612E/ V62X0614E — Freon Ful1/Empty Indication — Avionics Bay 2	Event	Empty-Full	FD2	Same as above.
3-40	V62X0632E/ V62X0634E — Freon Full/Empty Indication — Avionics Bay 3	Event	Empty-Full	FD3	Same as above.

.

measurements and must relate the measurements to a functional path from which PMS may then announce the impact of a failure in terms of the loss of a particular functional path.

It is also necessary for ECLSS to identify correlation measurements so that PMS can filter erroneous information (i.e., malfunctioning sensors) from reaching the crew.

This section provides the various tests and their limits that must be performed when an out-of-tolerance condition is detected. These tests basically discriminate between a failure cause, i.e., sensor malfunction, and a failure affect. Correlation or secondary measurements are identified for some primary parameters. The various measurements and their limit checks are provided in tables 3.2-7 through 3.2-11.

In addition, to justify the ECLSS subsystem measurements, simplified fault detection and isolation schematics (figs. 3.2-6 through 3.2-15) are provided. These schematics illustrate the following:

- Primary measurements to provide the most significant system status data.
- Secondary measurements to verify failure conditions and eliminate erroneous primary measurement indications.
- Isolation and identification of the source of failure.
- Corrective action to alleviate the failure condition.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Atmosphere Conditioning

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- COND TEST	ITION	SOFT LIMIT CHECK		T.REND C IECK	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	TOM		HIGH	LOW	HIGH	LOW	
 V61PXXXAA (P) Filter/Debris Trap Differential Press AM1 			0.16 psid	0.04 psid	x	0.20 psid	0.01 psid			R2556
 V61R2556A (P) Cabin Air Flowrate AM2, AM3, & AM4 			N/A	1340 1bs/hr	x	N/A	1300 lbs/hr			PXXXA T2635
 V61Q2551A (P) Cabin Humidity AM5 			71% RH	29% RH	х	80% RH	20% RH			T2635
 V61T2635A (P) Cabin Hx Out Gas Temp AM5 			56° F	44° F	x	60° F	40° F			Q2551 T2552
 V61P2540A (C&W) C0₂ Partial Press N/A 								7.6 mm Hg	N/A	
 V61T2552A (S) Cabin Temp AM5 			81° F	64° F	x .	85° F	60° F		•	T2635
 V61S2561E V61S2562E V61S2563E Cabin Fans 1, 2, 3-ON AM2, AM3, AM4 		X X X								

3-42

ł

TABLE 3,2-8

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

. ... ·

. .

SUBSYSTEM: ECLSS/Pressure Control

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	TEST	ITION	SOFT LIMIT CHECK		TREAD Chec:K	HARD LIMI CHEC	г	BACKUP CAUTION WARNING	å	CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW	manalalasi personala minara	нісн	LOW	HIGH	LOW	
 V61P2405A (C&W) Cabin Press N/A 						-		N/A	14.0 psia	
 V61P2511A or V61P2513A (C&W) O₂ Partial Press N7A 								N/A	2.8 psia	
-	-									
									· ·	

3-43

ء . .

. ÷

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Water Coolant Loops

(1 of 4)

	.					· · ·				(1 of 4)
PMS ACTIVITY SYSTEM DATA:	TEST	ITION	SOFT LIMIT CHECK		TRI ND CHLCK	HARD LIMI CHEC	T	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
MEASUREMENT NO. MEASUREMENT ID	ARE S ·	CONFIGURATION CHECK					r		r	
• FUNCTIONAL PATH ID	HARDWARE STATUS	CONFT	HICH	LOW		HIGH	LOW	HIGH	LOW	
 V61P2600A (P) Pri H₂O Pump Outlet Press WC1 & WC2 			46 psig	25 psig	X	50 psig	20 psig			R2664
 V61S2601E (P) Pri H₂O Pump Control No. 1 WC1 		x					<u>-</u>			
 V61S2603E (P) Pri H₂O Pump Control No. 2 WC2 		x								· ·
 V61T2663A (P) Interchanger Pri Water Coolant Outlet Temp WC3 			51° F	39° F	x	55° F	35° F			V63T1155 V63T1355
 V61R2664A (S) Pri H₂O Coolant Flowrate WC3 			755 1bs/hr	645 1bs/hr	X	755 1bs/hr	600 1bs/hr			• P2600
 V61Q2610A (P) Pri H₂O Accum Quantity WC3 			81%	29%	X	85%	25%			P2600 R2664

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Water Coolant Loops (Continued)

(2 of 4)

	PMS ACTIVITY STEM DATA: MEASUREMENT NO.	PRE- COND TEST	ITION	SOFT LIMIT CHECK		IREND CHECK	HARD LIMI CHEC	T	BACKUP CAUTION WARNING	&	CORRELATION MEASUREMENT
	MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH .	LOW		HIGH .	LOW	HIGH	LOW	
•	V61P2700A (P) Sec H2O Pump Outlet Press WC4			46 psig	25 psig	X	50 psig	20 psig			R2666
•	V61S2701E (P) Sec H ₂ O Pump Control WC4		x								· · · · · · · · · · · · · · · · · · ·
•	V61T2665A (P) Interchanger Sec Water Coolant Outlet Temp WC4			51° F	39° F	X	55° F	35° F			V63T1155 V63T1355 T2635
•	V61R2666A (S) Sec H ₂ O Coolant Flowrate WC4			755 1bs/hr	645 1bs/hr	X	775 1bs/hr	600 lbs/hr			P2700
•	V61Q2710A (P) Sec H ₂ O Accum Quantity WC4			81%	29%	Χ.	85%	25%			P2700 R2666
	V61R2642A (P) Avionics Bay 1 Air Flow WC5 & WC6			N/A	2850 1bs/hr	X	N/A -	2700 1bs/hr			

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM:_ ECLSS/Water Coolant Loops

(3 of 4)

.

PMS ACTIVITY SYSTEM DATA:	PRE- CONDITION TEST		SOFT LIMIT CHECK		II (END CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH .	LOW		HIGH .	LOW	HICH	LOW	
 V61R2647A (P) Avionics Bay 2 Air Flow WC8 & WC9 			N/A	2850 1bs/hr	X	N/A	2700 1bs/hr			
 V61R2658A (P) Avionics Bay 3 Air Flow WC11 & WC12 			N/A	2850 1bs/hr	x	N/A	2700 1bs/hr			
 V61S2645E Avionics Bay 1 Fan A - ON WC5 & WC6 		x				_				
 V61S2646E Avionics Bay 1 Fan B - ON WC5 & WC6 	•	x								·
 V61S2650E Avionics Bay 2 Fan A - ON WC8 § WC9 		x								
 V6152652E Avionics Bay 2 Fan B - ON WC8 § WC9 		x								

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Water Coolant Loops

ŧ

(4 of 4)

4

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	TEST	ITION NOILI	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
• MEASUREMENT ID • FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH'	low		HIGH .	LOW	HIGH	LOW	
 V61S2661E Avionics Bay 3 Fan A - ON WC11 & WC12 		x								
 V61S2662E Avionics Bay 3 Fan B - ON WC11 & WC12 		X		•						۰ ۱
					-					
					• . •					
									•	
						÷	· ,			

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Active Thermal Control

(1 of 3)

1

FMS ACTIVITY SYSTEM DATA: MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID	PRE- CONDITION TEST		SOFT LIMIT CHECK		TEEND CLECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW		HIGH .	LOW	нісн	LOW	
 V63P1100A (P) Pri FCL Pump Outlet Press AT1 & AT2 			305 psig	195 psig	X .	325 psig	175 psig			P1108
• V63S1111E (P) • Pri FCL Pump No. 1 - CMD • AT1 & AT2		X								
 V63S1121E (P) Pri FCL Pump No. 2 - CMD AT1 § AT2 		Х								
 V63T1155A (P) Pri FCL Interchanger Inlet Temp. AT3 			47° F	38° F	Х	50° F	35° F			V61T2663 V61T2665
 V63P1108A (S) Pri FCL Pumps Inlet Press AT3 			245 psig	135 psig	X.	265 psig	115 psig			P1100
 V63Q1130A (P) Pri FCL Accum Quantity AT3 			91%	24%	Х	95%	20%			P1100 P1108
 V63P1300A (P) Sec FCL Pump Outlet Press AT4 & AT5 			305 psig	195 psig	x	325 psig	175 psig			P1308
 V63S1311E (P) Sec FCL Pump No. 1 - CMD AT4 & AT5 		X				-				

3-48

1

TABLE 3.2-10

PMS MEASUREMENT REQUIREMENT; FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Active Thermal Control

(2 of 3)

	PMS ACTIVITY <u>YSTEM DATA</u> : MEASUREMENT NO.	TEST	ITION	SOFT LIMIT CHECK		THEND . Check	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
•	MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
•	V63XXXXBE (P) Sec FCL Pump No. 2 - CMD AT4 & AT5		x								
:	V63T1355A (P) Sec FCL Interchanger Inlet Temp AT6			47° F	38° F	x · .	50°`F	35° F	• •.		V61T2663 V61T2665 •
•	V63P1308A (S) Sec FCL Pumps Inlet Press AT6		4 A.	245 psig	135 psig	x	265 psig	115 psig	·		P1300
•	V63Q1330A (P) Sec FCL Accum Quantity AT6			91%	24%	x	95¥_	20%			P1300 P1308
•	V63QXXXCA (P) Pri NH3 Tank Quantity AT7			91%	25\$	x	95%	20%			T1155 T1355
•	V63S1178E (P) Pri NH3 Tank Isolation Valve CMD AT7		x		·						
•	V63X1179E (S) Pri NH3 Tank Isolation Valve Pos AT7			N/A	N/A		Dis	crete			S1178 T1155 T1355
•	V63SXXXDE (P) NH3 Evaporator Flow Control Valve CMD AT9 & AT10		x				-				

3-49

TABLE 3.2-10

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: _____ECLSS/Active Thermal Control

(3 of 3)

PMS ACTIVITY SYSTEM DATA:	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TRE ND CHE CK	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
 V63SXXXEE (S) NH3 Evaporator System Select AT9 § AT10 	<u> </u>	X								
 V63XXXXFE (S) NH₃ Evaporator Flow Control Valve 1 Pos AT9 			N/A	N/A		Disc	rete		-	SXXXXE T1155 T1355
 V63QXXXGA (P) Sec NH3 Tank Quantity AT8 			91%	25%	x	95%	20%			T1155 T1355
 V63X1182E (P) Sec NH3 Tank Isolation Valve CMD AT8 		X								
 V63X1183E (S) Sec NH3 Tank Isolation Valve Pos AT8 	•		N/A	N/A		Dise	rete			S1182 T1155 T1355
 V63QXXXHA (P) Tertiary NH₃ Tank Quantity AT10 			91%	25%	x	95%	20%			T1155 T1355
 V63XXXXIE (S) Tertiary NH₃ Tank Isolation Valve - Flow Control Valve 2 Pos AT10 			N/A	N/A		Disc	crete			SXXXE T1155 T1355
						-				

3-50

. •

TABLE 3.2-11

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ECLSS/Fire Detection and Suppression

PMS ACTIVITY SYSTEM DATA:	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI' CHECI	г	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
MEASUREMENT NO. MEASUREMENT ID	ARE 5	CONFIGURATION CHECK	UNECK			CHEC.	к	WARNING		
• FUNCTIONAL PATH ID	HARDWARE STATUS CONFIGURA CHECK	HIGH	LOW	HIGH LOW	LOW	HIGH	LOW			
 V62X0622E or (P) V62X0624E Freon Full/Empty Ind-Avionics Bay 1 FD1 			N/A	N/A		Discı (Norma Full)	:11y			
 V62X0612E or (P) V62X0614E Freon Full/Empty Ind-Avionics Bay 2 FD2 			N/A	N/A		Disci (Norma Full)	ally			
 V62X0632E or (P) V62X0634E Freon Full/Empty Ind-Avionics Bay 3 FD3 			N/A	N/A		Disc (Norma Full)	ally			
-	•									
										• -
• •										
· · · · · · · · · · · · · · · · · · ·										•

- - ---

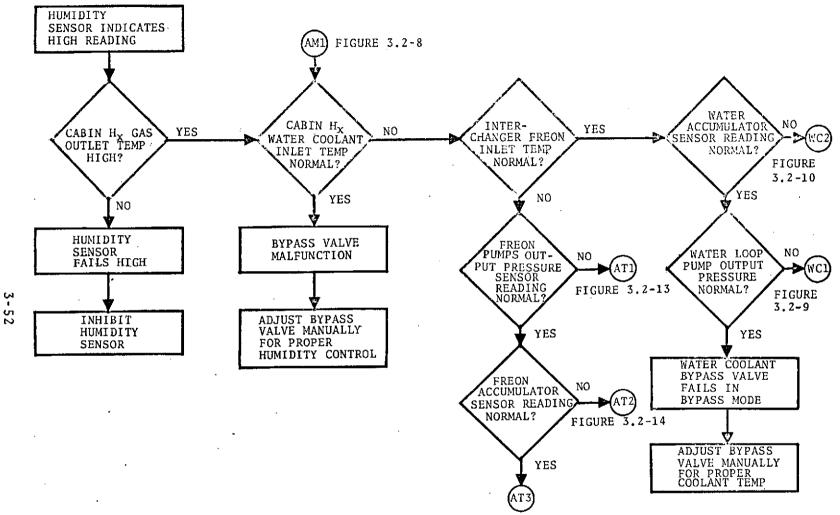


FIGURE 3.3-15

Figure 3.2-6. - Humidity fault detection and isolation.

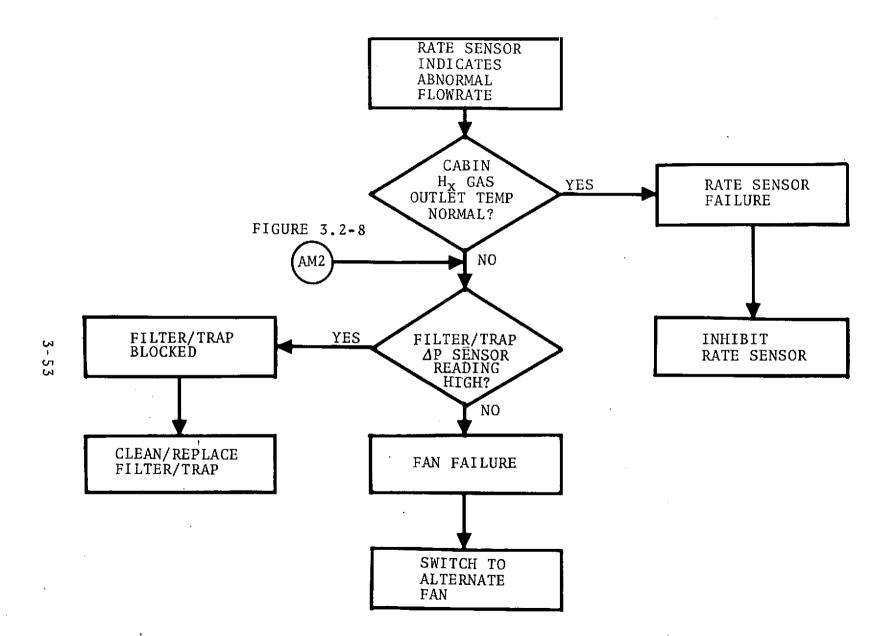
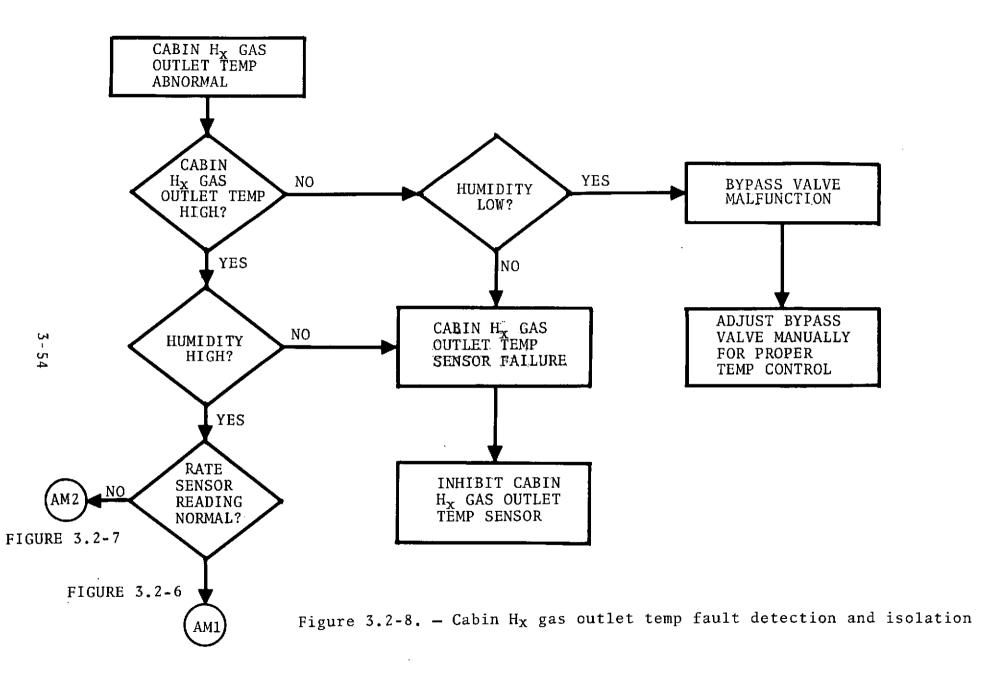



Figure 3.2-7. - Cabin air flowrate fault detection and isolation.

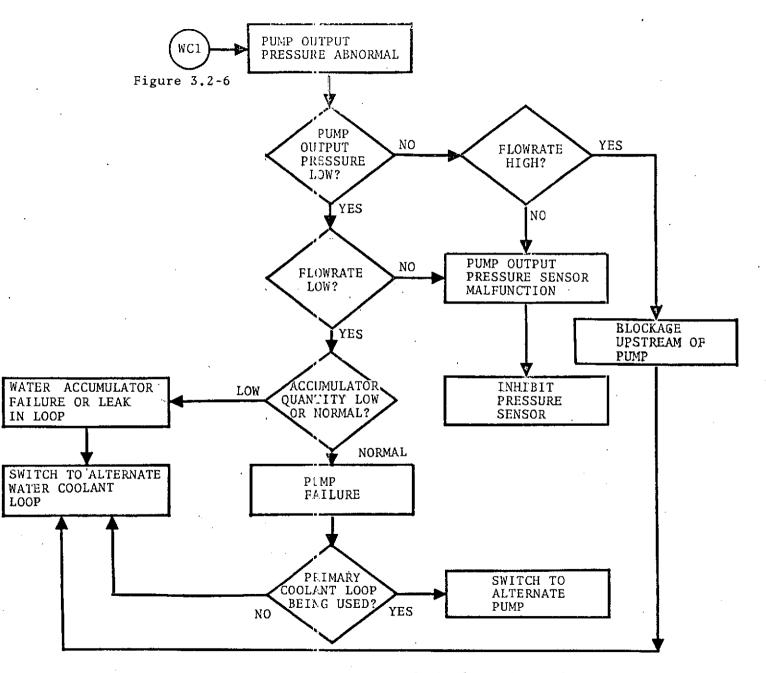


Figure 3.2-9. - Water coolant loop pupp pressure fault detection and isolation.

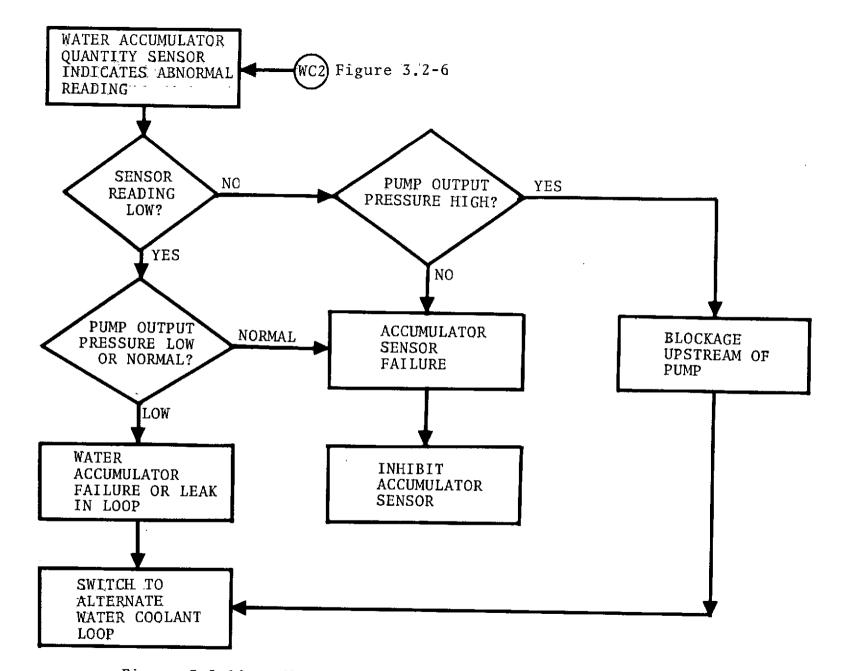


Figure 3.2-10. — Water accumulator fault detection and isolation.

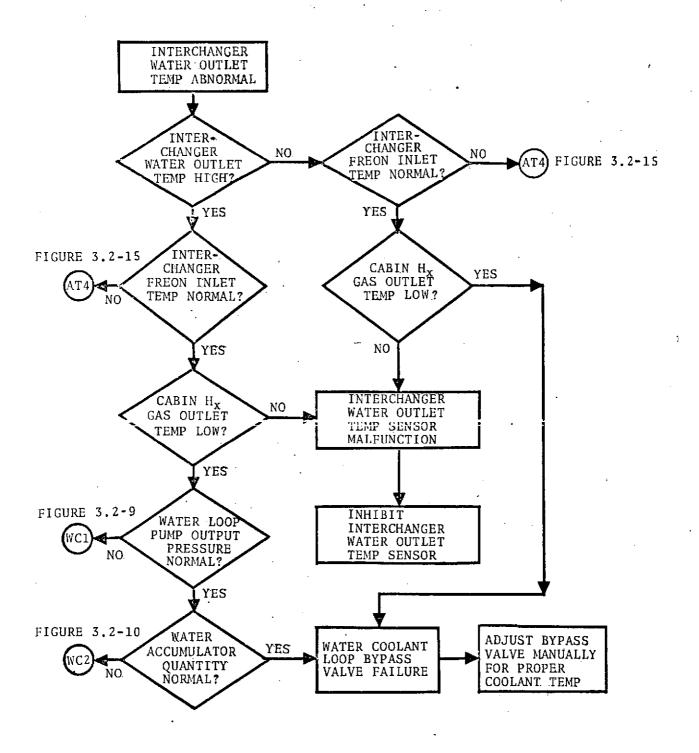


Figure 3.2-11. - Water loop interchanger temp fault detection and isolation.

1

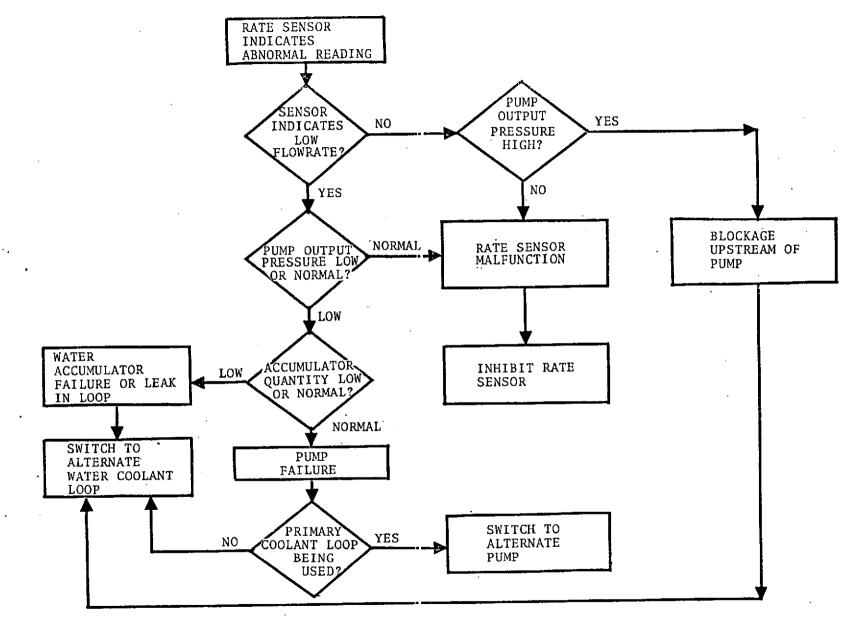
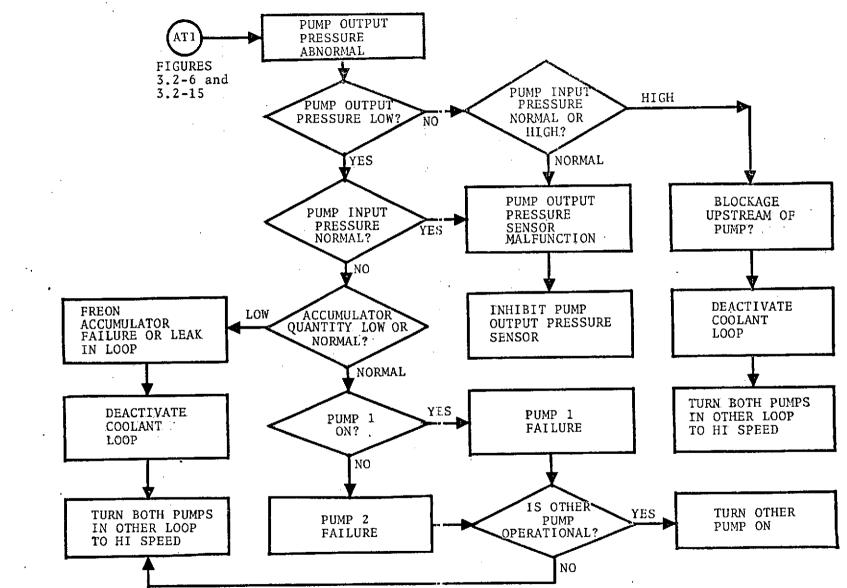
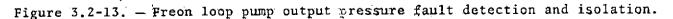




Figure 3.2-12. - Water loop flowrate fault detection and isolation.

•

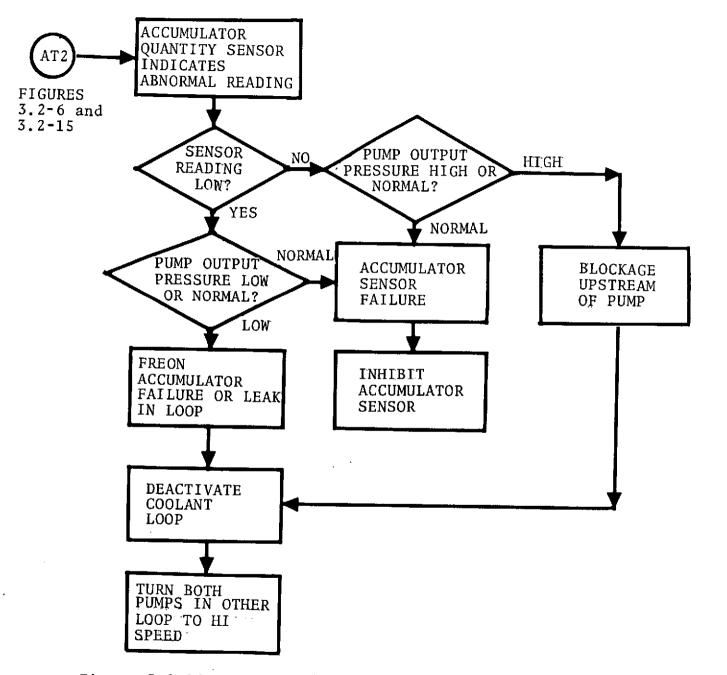


Figure 3.2-14. - Freon loop accumulator fault detection and isolation.

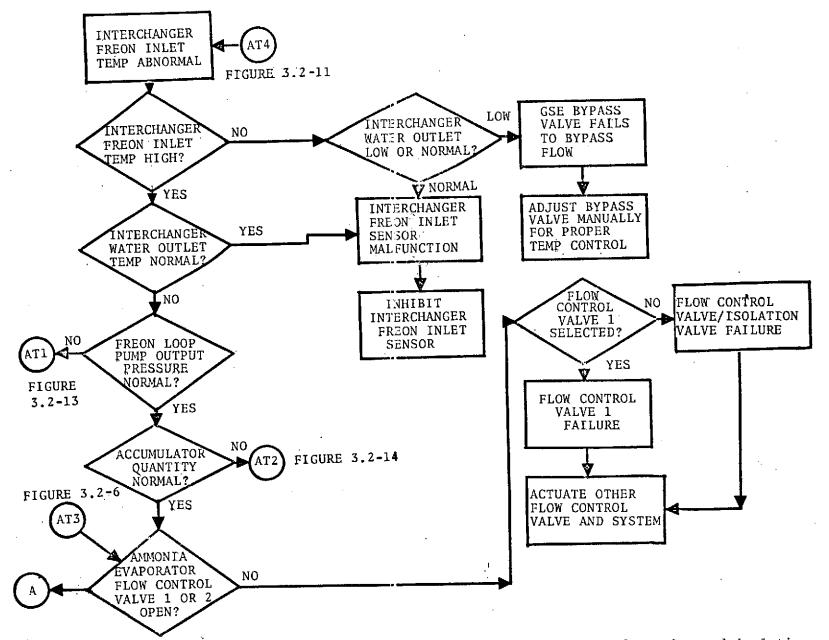


Figure 3.2-15. - Freon loop interchanger inlet temperature fault detection and isolation.

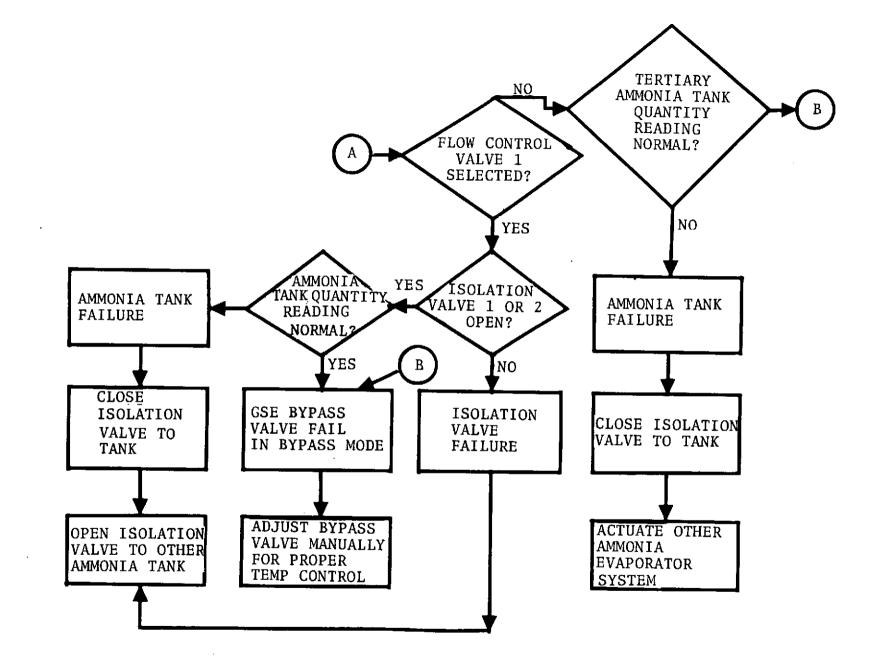


Figure 3.2-15. - Freon loop interchanger inlet temp fault detection and isolation (concluded)

3.3 HYDRAULICS

3.3.1 Subsystem Description

The hydraulic system consists of the components required for generation, control, distribution and monitoring of hydraulic power. Hydraulic power is utilized to operate the aerosurface controls (elevons, rudder, and speedbrake); retract, extend and lock up the landing gear; operate main wheel brakes; and provide nose wheel steering. The hydraulic system supplies power for the above functions during horizontal flight test (HFT). Figures 3.3-1, 3.3-2, and 3.3-3 illustrate schematically the hydraulic system and its major loads.

Hydraulic power is generated by nominal 3000 psi variable delivery pumps. The pumps are driven by Auxiliary Power Units (APU's) for HFT, VFT, and Orbital missions. The hydraulic system is comprised of three independent hydraulic subsystems each having separate pump, reservoir, oil cooler, heat exchanger, controls, displays and distribution equipment. The three subsystems are connected to the various actuators in a manner to provide the required degree of redundancy to insure flight safety in event of a malfunction of up to two systems. Hydraulic power demands will vary over a wide spectrum dependent upon varying aerodynamic loads encountered and/or simultaneous operation of various functions.

The hydraulic subsystem consists of three completely independent power generation, control, and distribution subsystems designated as Subsystems 1, 2, and 3. The power available from the three subsystems is distributed to actuators and hydraulic motors through control and servo-valves. The

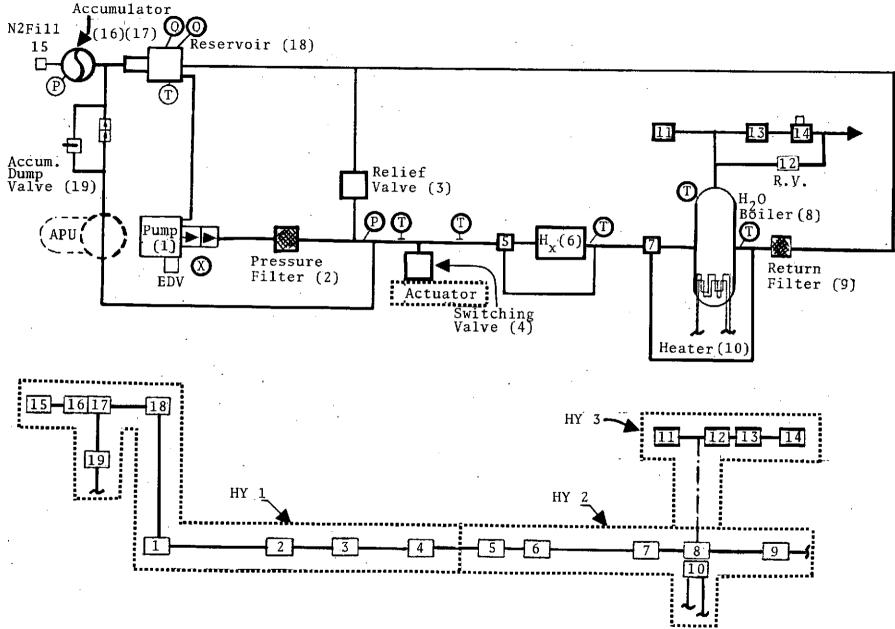


Figure 3.3-1. - Hydraulic system functional paths.

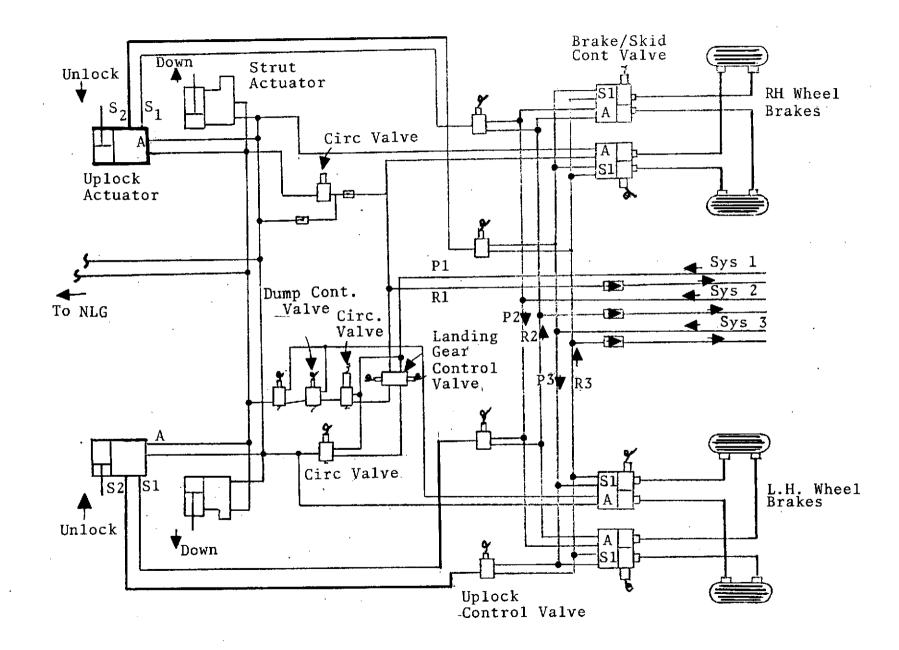


Figure 3.3-2. - Main landing gear and wheel brakes.

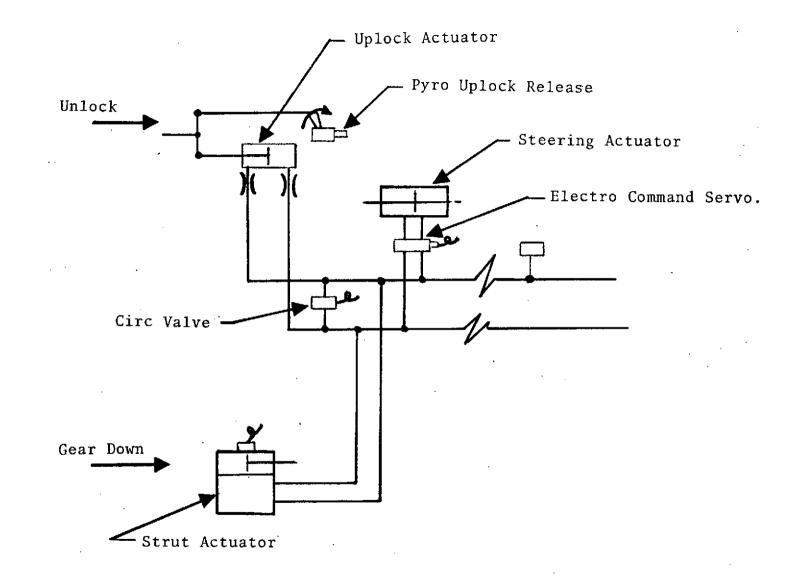


Figure 3.3-3. - Nose landing gear.

hydraulic subsystems have provisions for connection to ground hydraulic power sources for checkout of the subsystems when the APU's are not being operated. The ground power sources are also used to circulate the fluid to fill, flush, and bleed the subsystems.

The hydraulic subsystem incorporates functional redundancy provisions to insure that operation of hydraulic driven components can continue after specified failures. Redundancy is obtained by switching valves which provide the capability for any one of the subsystems connected to the switching valve to supply the function in event of failure of the other connected subsystems.

Provisions are included in each of the three hydraulic subsystems to prevent the hydraulic fluid temperature from exceeding $-65^{\circ}F$ to $275^{\circ}F$ limits. In all portions of the HFT mission, cooling of the hydraulic fluid is provided by the water boiler.

Hardware Elements. - The major components of the HFT Hydraulic System are:

- Main Pump
- Elevon Servoactuators
- Accumulator
- Reservoir
- Rudder/Speed Brake Hydraulic Servomotors
- Water Boiler
- Hydraulic Fluid Heat Exchanger

- Nose Landing Gear Strut Actuator
- Nose Landing Gear Uplock Actuator
- Main Landing Gear Strut Actuator
- Main Landing Gear Uplock Actuator
- Main Landing Wheel Brakes
- Nosewheel Steering

3.3.2 Functional Paths

Functionally, the hydraulic system of the HFT vehicle consists of three power generation and conditioning sources, and four loads. These loads are: Landing Gear, Elevon, Rudder and Speed Brake. The landing gear includes: Gear Activation up and down, Nose Gear Steering, Gear up Lock Actuators and Main Gear Brakes.

Figures 3.3-1, 3.3-4, and 3.3-5 illustrate schematically the hydraulic system. Also shown below the schematic, in these figures, are the functional paths. Each component in the schematic diagram is numbered to aid in identification in the accompanying functional path diagram. Identification of the functional paths is as follows:

- HY1 Hydraulic Pump and Supply
- HY2 Return Circuit and Heat Exchangers
- HY3 Water Boiler
- HY4 Left Outboard Elevon Actuator
- HY5 Left Inboard Elevon Actuator

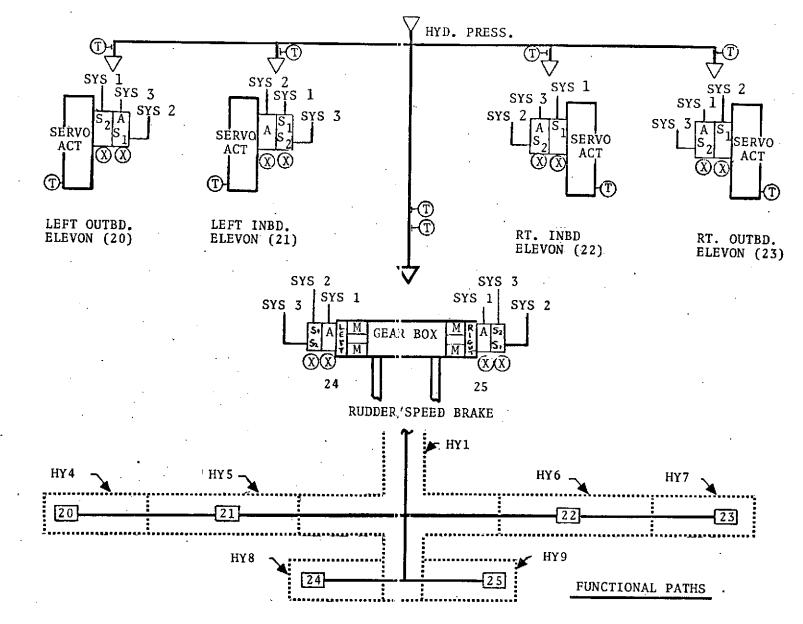


Figure 3.3-.4. - Hydraulic system - flight controls.

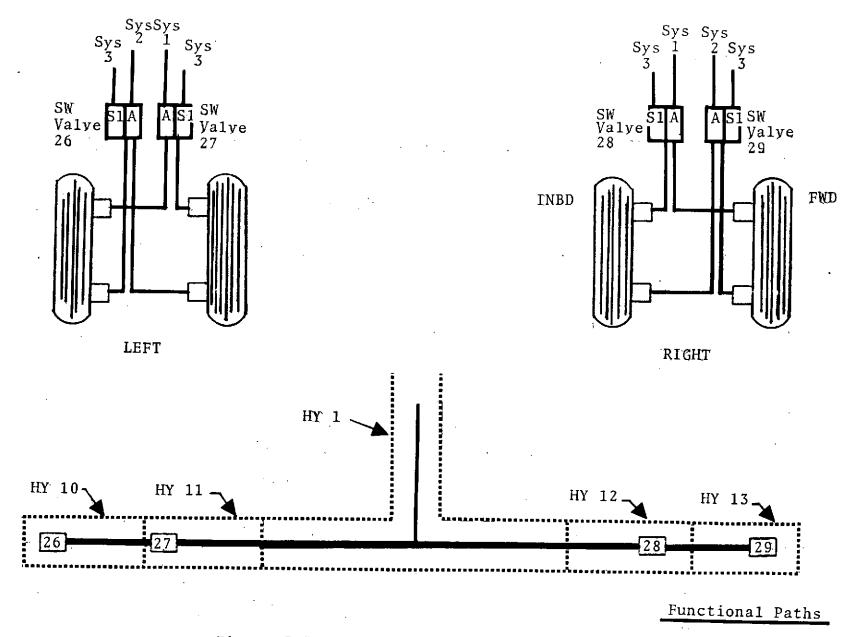


Figure 3.3-5. - Main wheel brake system.

- HY6 Right Inboard Elevon Actuator
- HY7 Right Outboard Elevon Actuator
- HY8 Left Rudder/Speed Brake
- HY9 Right Rudder/Speed Brake
- HY10 Left Rear Main Wheel Brake Servo-valve
- HY11 Left Forward Main Wheel Brake Servo-valve
- HY12 Right Forward Main Wheel Brake Servo-valve
- HY13 Right Rear Main Wheel Brake Servo-valve

3.3.3 PMS Interfaces

Figure 3.3-1 shows the schematic for one hydraulic system and the instrumentation which interfaces with the PMS.

The instrumentation is identical for all three hydraulic systems as also are the functional paths HY1 through HY8.

Figures 3.3-4 and 3.3-5 show instrumentation locations for the hydraulic system loads as follows: elevon, rudder, speedbrake and landing gear systems.

Table 3.3-1 lists the measurements which are necessary to monitor the health status of the hydraulic system and its loads.

3.3.4 HFT - PMS System Requirements

The failure detection and annunciation (FDA) for the hydraulic system revolves about the use of two key parameters in the power source. These are the APU-driven hydraulic pump outlet pressure and the hydraulic reservoir quantity.

Temperatures are also monitored although the thermal environment encountered during HFT will be less critical than that encountered during an Orbital mission.

Load data is confined to the primary function of fault detection and temperature monitoring. The position of the switching valves is checked by the PMS to determine switching valve malfunction or hydraulic system failure. The temperature conditions encountered during HFT will not be critical; however, by checking this instrumentation, the PMS will assist in system qualification.

Table 3.3-2 summarizes the FDA measurements for the hydraulic system and indicates measurement limits where applicable.

PMS MEASUREMENT DATA

SUBSYSTEM: <u>HYDRAULICS</u>

(1 of 9)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58T0101A — Hydraulic Power System 1 Reser- voir Fluid Temp- ature	Temp	-40 to +260°F	HY1	Provides temperature of fluid in reservoir for comparison with other fluid temperatures and moni- toring of water boiler operation.
V58Q0102A — Sys- tem 1 Reservoir Fluid Volume	Quantity	50%	HY1	Gives indication of loss of Hy- draulic System Fluid (low limit check only).
V58X0103E — Sys- tem 1 Reservoir Fluid Level Low	Event		HY 1	Gives indication of low fluid level.
V58P0114A — Sys- tem 1 Supply Pressure A	Press	2000-4050 psia	HY1	Supply pressure gives direct indi- cation of system status.
V58P0115A — Sys- tem 1 Supply Pressure B	Press	TBD	НУ1	Supply pressure and gives indication of system status (back- up measurement).
V58T0119A — Sys- tem 1 Fwd Dist P Line Temperature		-40 to +260°F	HY1	Measures temperature of fluid leaving pump circuit.
V58P0130A — Sys- tem 1 GN ₂ Accum- ulator Pressure	Press	2000-4050 psia	HY1	Provides system/accumulator status and backup to system pressure (not accessed to PMS).
V58S0146E — Sys- tem 1 ME Supply Valve Close	Event		НҮ1	Should be closed for all HFT.

C X

TABLE 3.3-1. PMS MEASUREMENT DATA

SUBSYSTEM: <u>HYDRAULICS</u>

(2 of 9)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58X0155E - Sys- tem 1 Ready For APU Start-On	Event		НҮ1	Provides same information as EDV pump sol. open.
V58T0122A — Sys- tem 1 Aft Com- partment Return Line Temperature	Temp	-40 to +260°F	НҮ2	Fluid temperature returning MPS area.
V58T0161A — Sys- tem 1 Boiler Water Tempera- ture	Temp	40-230°F	НҮ2, НҮЗ	Monitors operation of H ₂ O boiler heater.
				All of the foregoing measurements are repeated for systems 2 and 3 (see Table 3.3-2 for a complete listing).
V58X0800E — Left Hand Inboard Elevon Actuator Switch V Active Posi t ion	Event		НҮ1, НҮ5	Confirm designated Hydraulic Sys- tem is providing power for actuator.
V58X0801E — Left Hand Inboard Elevon Actuator Switch V PS2 Position	Event		НҮ1, НҮ5	Indicates system malfunction (i.e., that the designated active system is not supplying power).
	V58X0155E - Sys- tem 1 Ready For APU Start-On V58T0122A - Sys- tem 1 Aft Com- partment Return Line Temperature V58T0161A - Sys- tem 1 Boiler Water Tempera- ture V58X0800E - Left Hand Inboard Elevon Actuator Switch V Active Position V58X0801E - Left Hand Inboard Elevon Actuator Switch V PS2	V58X0155E - Sys- tem 1 Ready For APU Start-On V58T0122A - Sys- tem 1 Aft Com- partment Return Line Temperature V58T0161A - Sys- tem 1 Boiler Water Tempera- ture V58X0800E - Left Hand Inboard Elevon Actuator Switch V Active Position V58X0801E - Left Hand Inboard Elevon Actuator Switch V PS2	V58X0155E - Sys- tem 1 Ready For APU Start-On V58T0122A - Sys- tem 1 Aft Com- partment Return Line Temperature V58T0161A - Sys- tem 1 Boiler Water Tempera- ture V58X0800E - Left Hand Inboard Elevon Actuator Switch V Active Position V58X0801E - Left Hand Inboard Elevon Actuator Switch V PS2	V58X0155E - Sys- tem 1 Ready For APU Start-OnEventHY1V58T0122A - Sys- tem 1 Aft Com- partment Return Line TemperatureTemp-40 to +260°FHY2V58T0161A - Sys- tem 1 Boiler Water Tempera- tureTemp40-230°FHY2, HY3V58X0800E - Left Hand Inboard Elevon Actuator Switch V Active PositionEventHY1, HY5V58X0801E - Left Hand Inboard Elevon Actuator Switch V PS2EventHY1, HY5

PMS MEASUREMENT DATA

SUBSYSTEM: <u>HYDRAULICS</u>

(3 of 9)

....

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58T0830A — Left Hand Inboard Elevon Actuator Temperature	Тетр	-65 to +250°F	НҮ1, НҮ5	To monitor heat profile for actuator.
V58T0833A — Left Hand Inboard Elevon Switch V Line Temperature	-	-45 to	НҮ1, НҮ5	Provides hydraulic fluid line temperature to the actuator.
V58T0841A — Left Hand Outboard Brake Switch V Line Tempera- ture	Temp	-45 to +260°F	HY1, HY10	Provides information on landing gear temperatures.
V58T0842A — Left Hand Inboard Brake Switch V Line Temperature	Temp	-45 to +260°F	HY1, HY11	Provides monitoring of landing gear temperatures.
V58R0845A — Right Hand Out- board Brake Switch V Line Temperature	Temp	-45 to +260°F	ҢҮ1, НҮ13	Provides monitoring of landing gear temperatures.
V58T0846A — Right Hand In- board Brake Switch V Line Temperature	Temp	-45 to +260°F	HY1, HY12	Provides monitoring of landing gear temperatures.

TABLE 3.3-1. PMS MEASUREMENT DATA

SUBSYSTEM: HYDRAULICS

(4 of 9)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V58X0850E — Left Hand Outboard Elevon Active Switch V Acti- vate Position	Event		HY1, HY4	Provides confirmation that the designated active hydraulic system is providing power for the actuator
V58X0851E — Left Hand Outboard Elevon Actuator Switch V PS2 Position	Event		НҮ1, НҮ4	Provides indication of system or switching valve malfunction.
V58T0880A — Left Hand Outboard Elevon Actuator Temperature	Тетр	-65 to +250°F	HY1, HY4	Provides monitoring of hydraulic system temperatures.
V58T0883A — Left Hand Outboard Elevon Switch V Line Temperature	Temp	-45 to +260°F	НҮ1, НҮ4	Provides monitoring of hydraulic system temperatures.
V58X0900E — Right Hand In- board Elevon Actuator Switch V Active Position	Event		НҮ1, НҮ6	Provides confirmation that active hydraulic system is supplying power to the actuator.

.

TABLE 3.3-1. PMS MEASUREMENT DATA

SUBSYSTEM: HYDRAULICS

(5 of 9)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58X0901E - Right Hand In- board Elevon Actuator Switch V PS2 Position	Event		НҮ1, НҮ6	Gives indication of active hydraulic system or switching valve failure.
V58T0930A — Right Hand In- board Elevon Actuator Temper- ature	Temp	-65 to +250°F	НҮ1, НҮ6	Monitors heat profile of actuator.
V58T0933A — Right Hand In- board Elevon Switch V Line Temperature	Temp	-45 to +260°F	НҮ1, НҮ6	Provides monitoring of fluid tem- perature.
V58X0950E - Right Hand Out- board Elevon Actuator Switch V Active Position	Event		HY1, HY7	Provides verification that the designated active system is pro- viding hydraulic power to the actuator.
V58X0951E - Right Hand Out- board Elevon Actuator Switch V PS2 Position	Event		HY1, HY7	Gives indication of hydraulic sys- tem or switching valve failure.

TABLE 3.3-1. PMS MEASUREMENT DATA

SUBSYSTEM: <u>HYDRAULICS</u>

3-78

(6 of 9)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58T0983A - Right Hand Out- board Elevon Actuator Temper- ature	Temp	-65 to +250°F	НҮ1, НҮ7	Monitors actuator temperature for determination of temperature pro- file.
V58T0983A — Right Hand Out- board Elevon Switch V Line Temperature	Temp	-45 to +260°F	НҮІ, НҮ7	Monitors hydraulic fluid tempera- ture.
V58X1000E - Left Hand Rudder Switch V Acti- vate Position	Event		HY1, HY8	Provides verification that the designated active hydraulic system is supplying power to the motor.
V58X1001E — Left Hand Rudder Switch V Pos2 Position	Event		HY1, HY8	Gives indication of hydraulic sys- tem or switching valve failure.
V58T1006A — Rudder Switch V Line Temperature A	Тетр	-45 to +265°F	НҮ1 .	Monitors hydraulic fluid tempera- ture.
V58T1007A — Rudder Switch V Line Temperature B	Temp	-45 to +265°F	НҮІ	Monitors hydraulic fluid tempera- ture.

PMS MEASUREMENT DATA

SUBSYSTEM: HYDRAULICS

(7 of 9)

ſ	MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
ł	V58X1008E — Right Hand Rudder Switch V Active Position	Event		НҮ1, НҮ9	Provides verification that the designated active hydraulic sys- tem is supplying power to the motor.
	V58X1009E — Right Hand Rudder Switch V PS2 Position	Event		НҮ1, НҮ9	Gives indication of hydraulic sys- tem or switching valve failure.
	V58T1120A — Main Engine 2 Inter- face Pressure Line Temperature	-	-45 to +260°F	HY1	Needed to monitor hydraulic system fluid temperature.
	V58T1140A — Main Engine 3 Inter- face Pressure Line Temperature	-	-45 to +260°F	HY1	Needed to monitor hydraulic system fluid temperature.
	V58T1144A — Mid Fuselage Pressure Line Temperature	Temp	-45 to +260°F	HY1	Needed to monitor hydraulic system fluid temperature.
	• •				

PMS MEASUREMENT DATA

SUBSYSTEM: HYDRAULICS

(8 of 9)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V58S0086E Hyd Sys Auto Thermal - On	Event	0/1	HY 1, 2, 4, 5, 6, & 7	Precondition configuration status.
V58S0087E L Otbd. Act. Htr. Auto	Event	0/1	HY 4	Precondition configuration status.
V58S0088E L Otbd Act. Htr. On	Event	0/1	НҮ 4	Precondition configuration status.
V58S0089E L Inbd Act. Htr. On	Event	0/1	НҮ 5	Precondition configuration status.
V58S0090E L Inbd. Act Htr. Auto	Event	0/1	НҮ 5	Precondition configuration status.
V58S0097E R Otbd Act Htr. Auto	Event	0/1	НҮ 7	Precondition configuration status.
V58S0098E R Otbd Act. Htr. On	Event	0/1	HY 7	Precondition configuration status.
V58S0099E - R Inbd Act Htr-On	Event	0/1	НҮ б	Precondition configuration status.

PMS MEASUREMENT DATA

SUBSYSTEM: HYDRAULICS

(9 of 9)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V58S0108E R Inbd Act Htr Auto	Event	0/1	НҮ б	Precondition configuration status.
V58S0104E Sys 1 Mn Pmp DPRS-On	Event	0/1	HY 1	Precondition configuration status.
V58S0204E Sys 2 Mn Pmp DPRS-On	Event	0/1		Precondition configuration status.
V58S0304E Sys 3 Mn Pmp DPRS-On	Event			Precondition configuration status.
V58S0167E Sys 1 H ₂ O Blr Htr - On	Event	0/1	НҮ 3	Precondition configuration status.
V58S0168E Sys 1 H ₂ O B1r. Htr Auto	Event	0/1	HY 3	Precondition configuration status.
V58S0267E Sys 2 H ₂ O B1r.Htr-On	Event	0/1	HY 3	Precondition configuration status.
V58S0268E Sys 2 H ₂ O B1r Htr-Auto	Event	0/1	HY 3	Precondition configuration status.
V58S0367E Sys 3 H ₂ O Blr Htr-Auto	Event	0/.1		Precondition configuration status.
V58S0368E Sys 3 H ₂ O Blr Htr-Auto	Event	0/1	НҮ 3	Precondition configuration status.

•

,

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM:______Hydraulics

(1 of 10)

.

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	нісн	LOW	
 V58T0101A (S) Sys 1 Reservoir Fluid Temp HY1 			240° F	+10° F		+260°F	0°F			V58T0122A
 V58Q0102A (P) Sys 1 Reservoir Fluid Vol. HY1 				85%	X		50%			V58X0103E
 V58P0114A (P) Sys 1 Supply Press A HY1 			3200 psia	2500 psia		4050 psia	2000 psia			V58P0115A V58P0130A
 V58P0115A (P) Sys 1 Supply Press B HY1 			TBD	ŤBD		TBD	TBD			V58P0130A
 V58T0119A (S) Sys 1 Fwd Distr. P Line Temp HY1 			240° F	+10° F	-	260° F	0° F			None
 V58T0122A (5) Sys 1 Aft Compt Rtn Line Temp HY2 			240° F	+10° F		260° F	0° F	<u></u>		None
 V58P0130A (S) Sys 1 GN2 Accum Press HY1 			320 0 psia	2500 psia		3900 psia	2000 psia			V58P0114A V58P0115A
 V58S0146E (S) Sys 1 ME Supply Valve Close HY1 		x				- -				None

3-82

TABLE :	- 3	- 2
---------	-----	-----

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Continued)

(2 of 10)

. .

PMS ACTIVITY SYSTEM DATA:	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS CONFTCIBATIC	CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	-
 V58X0155E (P) Sys 1 Ready for Apu Start-On HY1 		x								
 V58T0161A (S) Sys 1 Boiler Water Temp HY3 			220° F	45° F		230° F	40° F			
 V58X0103E (S) Sys 1 Reserve Fluid Lv1 Low SW HY1 					x					V58Q0102A
 V58T0201A (S) Sys 2 Resvr Fluid Temp HY1 			240° F	+10° F		+260° F	0° F			V58T0222A
 V5800202A (P) Sys 2 Resvr Fluid Vol HY1 				85%	х		50%			V58X02D3E
 V58P0214A (P) Sys 2 Supply Press A HY1 			3200 psia	2500 psia		4050 psia	2000 psia			V580215A V58P0230A
 V58P0215A (P) Sys 2 Supply Press B HY1 			TBD	TBD		TBD	TBD			V58P0230A
 V58T0219A (S) Sys 2 Fwd Distr P Line Temp 			240° F	+10° F		260° F	0° F			
· · · · ·						-				· · ·

3-83

.

PMS MEASUREMENT REQUIREMENT'S FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Continued)

(3 of 10)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		нісн	LOW	HIGH	LOW	
V58T0222A (S) Sys 2 Aft Compt Rtn Line Temp HY2			240° F	+10° F		260° F	0° F			
V58P0230A (S) Sys 2 GN2 Accum Press HY1			3200 psia	2500 psia		3900 psia	2000 psia			V58P0214A V58P0215A
V58S0246E (S) Sys 2 ME Supply Vlv Close HY1		х								
V58X0255E (P) Syst 2 Ready for APU Start-On HY1		x								
V58T0261A (S) Sys 2 Boiler Water Temp HY3			220° F	45° F	X	230° F	40° F			
V58X0203E (S) Sys 2 Resvr Fluid Lvl Low SW HYl					x					V58Q0202A
V58T0300E (S) Sys 3 Resvr Fluid Temp HY1			240° F	+10° F		200° F	0° F			V58T0322A
V5800302A (P) Sys 3 Resvr Fluid Vol HY1	-			85%	x	-	50%			V58X0303E

3-84

TABL1 3.3-2

.

(4 of 10)

ł.

	PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO. • MEASUREMENT ID	PRE- CONDITION TEST	LIMIT		THEND CHECK	HARD LIMI CHECI	Г	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
	• FUNCTIONAL PATH ID	HARDWARE STATUS CONFIGURATION CHECK	HIGH	row		HIGH	LOW	нісн	LOW	
	 VS8P0314A (P) Sys 3 Supply Press A HY1 		3200 psia	2500° psia		4050 psia	2000 psia			V58P0315A V58P0330A
	 V58P0315A (P) Sys 3 Supply Press B HY1 		TĖD	TBD		TBD	TBD			-V58P0314A V58P0330A
3 - 2	 V58T0319A (S) Sys 3 Fwd Distr P. Line Temp HY1 		240° F	+10° F		260° F	0° F			
85	 VS8T0322A (S) Sys 3 Aft Compt Rtn Line Temp HY2 		240° F	+10° F		260° F	0° F			
	 V58P0330A (S) Sys 3 GN2 Accum Press HY1 		3200 psia	2500 psia		3900 psia	2000 psia			V58P0314A V58P0315A
	 VS&SO346E (S) Sys 3 ME Supply Viv Close HY1)				·				
	 V58X0355E (P) Sys 3 Ready for APU Start-On HY1 									
	 V58T0361A (S) Sys 3 Boiler Water Temp HY3 		220° F	45° F		230° F	40° F			
	· · · ·					-				

1

TABLE 3.3-2

PMS MEASUREMENT REQUIREMENT'S FOR FAULT DETECTION AND ANNUNCIATION

3-86

.

SUBSYSTEM:_ Hydraulics (Continued)

(5 of 10)

PMS ACTIVITY SYSTEM DATA:	PRE- COND TEST	ITION	SOFT LIMIT CHECK		1REND CHECK	HARD LIMI CHEC	T	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW		HIGH	LOW	HIGH	LOW	
 V58X0303E (S) Sys 3 Resvr Fluid Lv1 Low SW HY1 					x					V58Q0302A
 V58X0800E (P) LH Inbd Elvn Actr SW Vlv Actv Posn HY1 & HY5 	:	X								V58X0801E
 V58X0801E (S) LH Inbd Elvn Actr Swv P52 Posn HY1 & HY5 		x							······································	V58X0800E
 V58T0830A (S) LH inbd Elvn Actr Temp HY1 & HY5 			240° F	0° F	x	250° F	-10° F			V58T0880A
 V58T0833A (S) LH Inbd Elvn SW V Line Temp HY1 & HY5 			245° F	+10° F	X	260 <u>°</u> F	0° F			·····
 V58T0841A (S) LH Outbd Brake SW V Line Temp HY1 & HY10 			245° F	+10° F	x	260° F	0° F			
 V58T0842A (S) LH Inbd Brake SW V Line Temp HY1 & HY11 			245° F	+10° F	x	260° F	0°F			
 VS8T0845A (S) RH Outbd Brake SW V Line Temp HY1 & HY13 			245° F	+10° F	x	260° F	0° F			

.

TABLE 3.3-2

PMS MEASUREMENT REQUIREMENTS FOL FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: <u>Hydraulics</u> (Continued)

(6 of 10)

.

I –	PMS ACTIVITY ISTEM DATA:	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHECI	T	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
•		HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	НÌGH	LOW	
•	V58T0846A (A) RH Inbd Brake SW V Line Temp HYl & HY2			245° F	+10° F		260° F	·0° F			
•	V58X0850E (P) LH Outbd Elvn Actr SW V Actv Posn HYl & HY4		x								V58X0851E
•	V58X0851E (S) LH Outbd Elvn Actr SW V PS2 Posn HY1 ξ HY4		x								V58X0850E
•	V58T0880A (S) LH Outbd Elvn Actr Temp HYl & HY4			240° F	+10° F		250° F	0° F			V5870830A
ŀ	V58T0883A (S) LH Outbd Elvn SW V Line Temp HYl ६ HY4			240° F	+10° F		260° F	.0° F			
•	V58X0900E (P) RH Inbd Elvn Actr SW V Actv Posn HYI & HY6		x								
1	V58X0901E (S) RH Inbd Elvn Actr SW V PS2 Posn HY1 & HY6		x								
•	V58T0930A (S) RH Inbd Elvn Actr Temp HY1 & HY6		· · · · · · · ·	240° F	+10° F		250° F	0° F			V58T0980A

TABLE 3.3-2 PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Continued)

(7 of 10)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHECI		BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION	HIGH	LOW		HIGH	rom	HIGH	LOW	
 V58T0933A (S) RH Inbd Elvn SW V Line Temp HY1 & HY6 			245° F	+10°F		260° F	0° F		·	
 V58X0950E (P) RH Outbd Elvn Actr SW V Actv Posn HY1 & HY7 		x								V58X0951E
 v58x0951E (S) RH Outbd Elvn Actr SW V PS2 Posn HY1 & HY7 		x								V58X0950E
 V58T0980A (S) RH Outbd Elvn Actr Temp HY1 & HY7 			240° F	0° F		250° F	-10° F			
 V58T0983A (S) RH Outbd Elvn SW V Line Temp HY1 & HY7 			240° F	0° F	~	260° F	-10° F			
 V58X1000E (P) LH Rudder SW V Actv Posn HY1 & HY8 		x								V58X1001E
 V58X1001E (S) LH Rudder SW V. PS2 Posn HY1 & HY8 		x								V58X1000E
 V58T1006A (S) Rudder SW V Line Temp A HY1 			245° F	+10° P	-	260° F	0° F			

3 - 88

1

TABLE 3.3-2

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Continued)

(8 of 10)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHEC	т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
• MEASUREMENT ID • FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW		HIGH	LOW	HICH	LOW	
 V58T1007A (S) Rudder SW V Line Temp B HY1 			245° F	+10° F		240° F	0° F			
 V58X1008E (P) RH Rudder SW V Actv Posn HY1 & HY9 		x								V58X1009E
 V58X1009E (S) RH Rudder SW V PS2 Posn HY1 & HY9 		x								V58X1008E
 V58T1120A (S) ME2 Intfc P Line Temp HY1 			245° F	+10° F		260° F	0° F			
 V58T1140A (S) ME3 Intfc P Line Temp HY1 	-		245° F	+10° F	<u> </u>	260° F	0° F			
 V58T1144A (S) MID Fuslg P Line Temp HY1 			245° F	+10° F		260° F	0° F			
• V5850086E • HYD Sys Auto Thermal- On • HY 1, 2,4,5,6 § 7		x								
• V58S0087E • L OTBD ACT HTR-Auto • HY 4		x			 *•					
· · · ·						-				

3-89

÷

. -

TABLE 3.3-2

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Continued)

.

(9 of 10)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI' CHECI	r	BACKUP CAUTION WARNING	&	CORRELATION MEASUREMENT
• MEASUREMENT ID • FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW	-	HICH	LOW	HIGH	LOW	
 V58S0088E L OTBD ACT Htr - On HY 4 		х								·
 V58S0089E L INBD ACT Htr - On HY 5 		x			· .				-	
 V58S0090E L INBD ACT Htr-Auto HY 5 		x								
 V58S0097E R OTBD ACT Htr - Auto HY 7 		x								
 V58S0098E R OTBD ACT Htr - On HY 7 		x								
 V5850099E R INBD ACT Htr - On HY 6 		х						 		
 V58S0104E Sys 1 Mn Pmp DPRS - HY 1 	0n	x								
 V58S0104E Sys 1 Mn Pmp DPRS - 0 HY 1 	 n 	x								
 V58S0204E Sys 2 MN Pmp DPRS - HY 1 	On	x				·			 	
 V58S0304E Sys 3 MN Pmp DPRS - HY 1 	On	x						<u> </u>		

3-90

۰.

.

TA5LE 3.3-2

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: Hydraulics (Concluded)

.

÷.

(Page	10	of	10]	Ł

	PMS ACTIVITY SYSTEM DATA: MEASUREMENT NO.	PRE- CONDITION TEST	SOFT LIMIT CHECK		TRI ND Chi Ck	HARD LIMIT CHECK		BACKUP CAUTION WARNING	&	CORRELATION MEASUREMENT
	• MEASUREMENT ID • FUNCTIONAL PATH ID	HARDWARE STATUS CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	нісн	rom	
	• V58S0167E • Sys 1 H ₂ O BLR Htr-On • HY 3	X			•					
	• V58S0168E • Sys 1 H ₂ O BLR Htr-Auto • HY 3	X						·		
	• V58S0267E • Sys 2 H ₂ O BLR Htr-On	X							•	
3-91	• V58S0268E • Sys 2 H ₂ O BLR Htr-Auto • HY 3	X								-
•	V58S0367E Sys 3 H ₂ O BLR Htr-On HY 3	X				a a tere				
	• V58S0368E • Sys 2 H ₂ O BLR Htr-Auto • HY 3	X								
	•									
										Р — <u>л</u>

3.4 COMMUNICATIONS AND TRACKING

The communications and tracking (C&T) subsystem for HFT is restricted by cost and scheduling considerations to the basic HFT support requirements. The HFT C&T subsystem is an abbreviated version of the operational subsystem, and some of the HFT components are interim off-the-shelf items rather than the final operational flight items. Since the HFT C&T subsystem is not yet under configuration control, the following considerations are based on the current subsystem concept.

3.4.1 Subsystem Description

Figure 3.4-1 is a block diagram of the HFT C&T subsystem. The subsystem elements depicted as background layers are redundant functional duplicates of the corresponding foreground elements. The functions of these elements are described in the following subsections.

In addition to the elements shown in figure 3.4-1, the HFT C&T subsystem also includes an L-band ATC transponder and interference blanker in the ferry kit, a strap-on C-band beacon, and an interim aircraft-type audio system. The transponder is used for ferry only and reports vehicle altitude and location to any querying ATC facility within a 200-n.mi. range. The beacon is used for flight test only and returns ground radar interrogation pulses for vehicle range and azimuth determination. The audio system provides audio intercommunications between the commander, pilot, UHF transceivers, voice recorder, TACAN units, C&W system, and ground hardline.

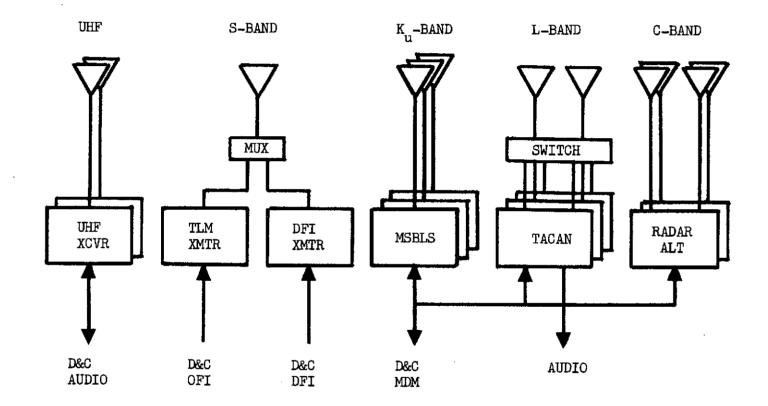


Figure 3.4-1. - HFT C&T subsystem.

.

The transponder, beacon, and audio system are not monitored by the HFT PMS and are not further discussed.

3.4.1.1 <u>UHF transceiver</u>. Figure 3.4-2 is a block diagram of the UHF transceivers and the audio system.

Each transceiver is directly connected to a dedicated antenna. One antenna is mounted on the fuselage bottom and the other is mounted on top of the fuselage in the vertical stabilizer. (This HFT configuration differs from the operational configuration, which includes only the bottom antenna and adds a UHF switch to connect the antenna to one or the other transceiver.)

The guard receiver is an auxiliary section of the transceiver which is fix-tuned to the emergency channel (243 MHz).

Control of each transceiver via the D&C subsystem consists of power OFF-ON, volume control, squelch OFF-ON, RF channel selection, and guard receiver OFF-ON.

Both transceivers are connected to the same interface lines from the audio system. The push-to-talk (PTT) keyline switches both transceivers to either the transmit or the receive function at the same time, and the transmit and receive voice signals share the same voice line (simplex operation). (This HFT configuration differs from the operational configuration, which uses separate voice lines to each transceiver and independent transmit-receive controls to provide duplex operation.)

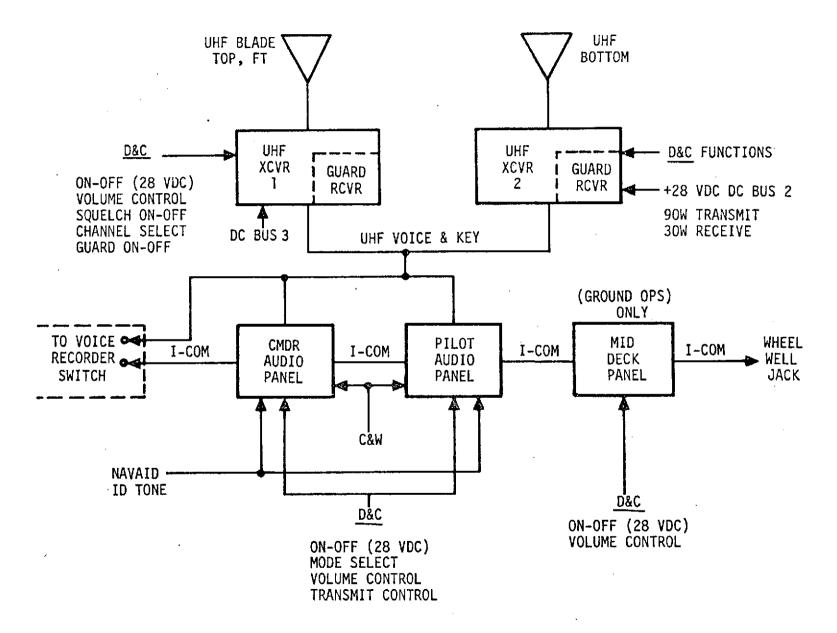


Figure 3.4-2. - Audio-UHF block diagram.

3.4.1.2 <u>S-band transmitters</u>. Figure 3.4-3 is a block diagram of the S-band equipment.

One transmitter is used to transmit the OFI subsystem PCM data (128 kbps), and the other transmitter is used to transmit the DFI subsystem FDM composite data signal. The HFT DFI transmitter is the final operational version. The HFT transmitter for the OFI data will not be the operational S-band FM transmitter, but will be an interim off-the-shelf aircraft telemetry transmitter. Both transmitters use frequency modulation and produce a 5-watt minimum S-band output power. (In the operational C&T subsystem, both of these transmitters and the S-band multiplexer are omitted. The DFI data will not be required, and the OFI data will be transmitted by S-band PM transponders, which are not included in the HFT subsystem.)

Transmitter control consists of separate power OFF-ON switches for each transmitter.

The two transmitter RF power outputs are multiplexed for transmission by a single S-band hemispherical coverage antenna. In the operational subsystem, there are two such antennas mounted in the fuselage top and bottom with an S-band switch to select which antenna is used. The omission of this switch for HFT is still in study. If it is omitted for HFT, the S-band multiplexer output will be connected directly to the upper antenna (not the lower as shown), which is more nearly directed toward the FRC during the steep-descent HFT flight profile.

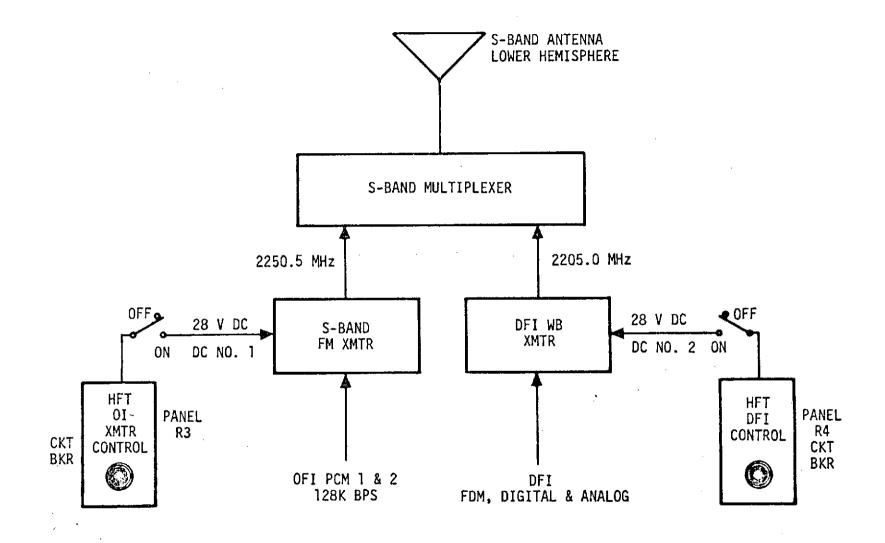


Figure 3.4-3. - S-band equipment block diagram.

3.4.1.3 <u>Ku-band MSBLS</u>. Figure 3.4-4 is a block diagram of the microwave scan beam landing system (MSBLS) equipment.

Each MSBLS string consists of a decoder assembly, an RF assembly, and a dedicated Ku-band horn antenna in the fuselage nose. The three MSBLS strings are identical and can function in any combination simultaneously. Two-way RF transmission between the Orbiter and ground MSBLS equipment allows the decoder assembly to measure range, azimuth, and elevation with respect to the ground equipment with enough accuracy for automatic landing.

Control of each MSLBS string via its control head is shown at the bottom of figure 3.4-5. The controls are power OFF-ON, channel selection, built-in-test (BIT) initiation, and glideslope selection. BIT may also be initiated by the G&N subsystem via an MDM.

Each MSBLS string outputs analog data to the D&C subsystem display driver units and digital data to a G&N subsystem MDM. Both data outputs consist of glideslope deviation (elevation), localizer deviation (azimuth), and the corresponding validity flags. Additional digital data to the MDM's consist of range, range validity flag, channel selection, glideslope selection, and BIT result.

3.4.1.4 <u>L-band TACAN</u>. Figure 3.4-6 is a block diagram of the TACAN equipment.

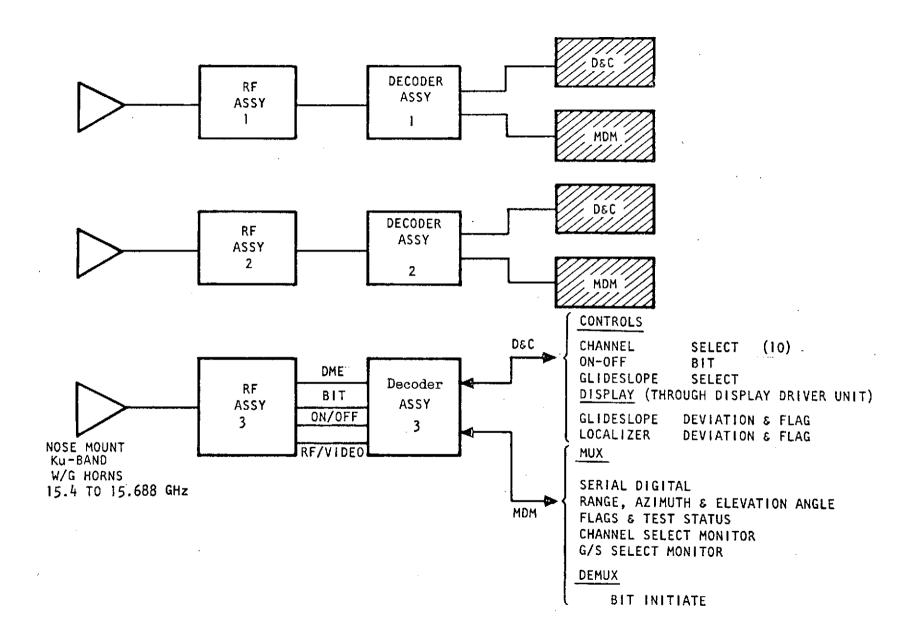


Figure 3.4-4. - MSBLS block diagram.

3-99

.

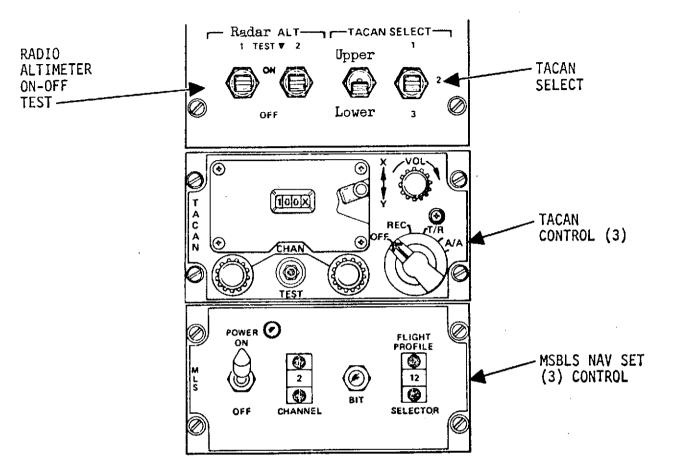


Figure 3.4-5. - Flight test navaid control heads.

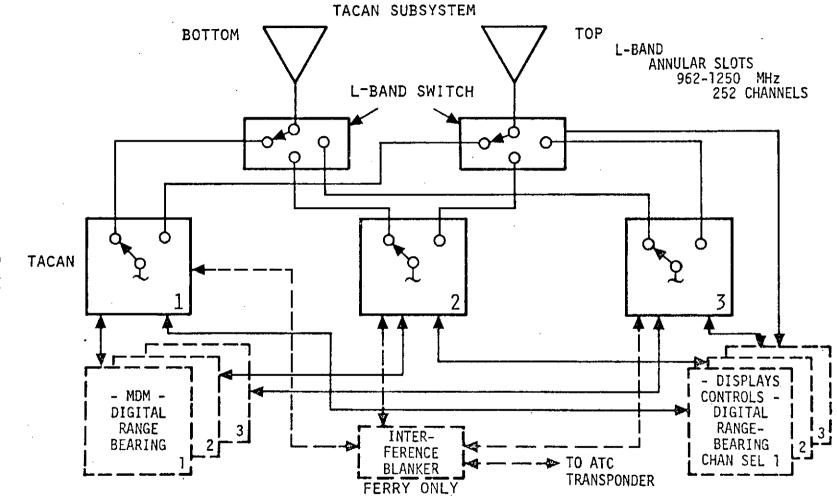


Figure 3.4-6. - TACAN block diagram.

One of the antennas is located on the topside of the fuselage nose. The other antenna is located on the fuselage bottom.

The L-band switch connects both antennas to one of the three TACAN units at a time. Each TACAN unit contains an antenna switch to select which of the two antennas is to be used. At one time, only one of the TACAN antennas can be functionally connected, and only to one TACAN unit. (In the operational C&T subsystem, it will be possible to have one TACAN unit connected to one antenna and another TACAN unit connected to the other antenna at one time.)

Two-way RF transmission between the Orbiter and ground TACAN equipment allows a TACAN unit to measure range and bearing with respect to the ground equipment from post-blackout to landing approach.

Control of the antenna switches via the D&C subsystem is shown at the top of figure 3.4-5. One switch selects which TACAN unit the two antennas are connected to, and the other switch selects whether the upper or lower antenna is to be used.

Control of each TACAN unit via its control head is shown at the center of figure 3.4-5. The controls are power OFFreceive-transmit/receive-air/air, channel select, station ID tone volume, and BIT initiation. BIT may also be initiated by the G&N subsystem via an MDM. Each TACAN unit outputs digital data both to the D&C subsystem display driver units and to a G&N subsystem MDM. The data outputs consist of range, bearing, and the corresponding validity flags. Additional data to the MDM's consist of the channel selection and the BIT result.

Each TACAN unit also outputs a keyed tone to the audio system for TACAN ground station identification.

3.4.1.5 <u>C-band radar altimeter</u>. Figure 3.4-7 is a block diagram of the radar altimeter equipment.

Each radar altimeter has a dedicated transmit antenna and a dedicated receive antenna. The altimeters may function either one or both at a time. Pulse transmission and ground echo reception allow a radar altimeter to measure vehicle altitude above the ground during landing approach and touchdown.

Control of each radar altimeter via the D&C subsystem consists of a single three-position switch for power OFF-ON-BIT, as shown at the top of figure 3.4-5. BIT may also be initiated by the G&N subsystem via an MDM.

Each radar altimeter outputs analog data to a D&C subsystem display driver unit and digital data to a G&N subsystem MDM. Both data outputs consist of altitude and its validity flag. Additional data to the MDM's consists of the BIT result.

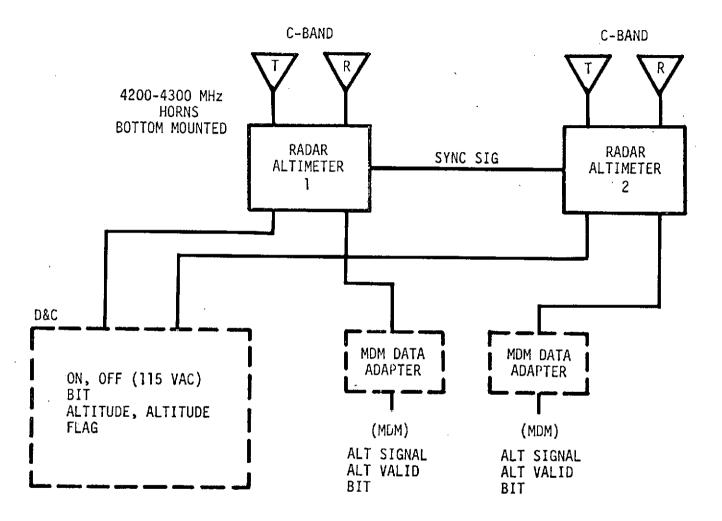


Figure 3.4-7. - Radar altimeter block diagram.

3.4.2 Functional Path Analysis

Figure 3.4-1 shows the HFT C&T subsystem as a collection of 12 functional paths between other subsystems (bottom) and external RF space (top). The larger set of paths represented by functional branching in the more detailed subsystem diagrams is not considered for the PMS because of the lack of selection and control at that level of detail.

Letting duplicate equipment be identified as numbers 1, 2, or 3, the functional paths and associated equipment are:

- CT1 UHF transceiver #1, UHF antenna #1.
- CT2 UHF transceiver #2, UHF antenna #2.
- CT3 TLM transmitter, S-band multiplexer, S-band antenna.
- CT4 DFI transmitter, S-band multiplexer, S-band antenna.
- CT5 MSBLS #1, Ku-band antenna #1.
- CT6 MSLBS #2, Ku-band antenna #2.
- CT7 MSBLS #3, Ku-band antenna #3.
- CT8 TACAN #1, L-band switch, both L-band antennas.
- CT9 TACAN #2, L-band switch, both L-band antennas.
- CT10 TACAN #3, L-band switch, both L-band antennas.
- CT11 Radar altimeter #1, transmit and receive C-band antennas #1.
- CT12 Radar altimeter #2, transmit and receive C-band antennas #2.
 - NOTE: CT3 and CT4 share the same multiplexer and antenna and CT8, CT9, and CT10 share the same antenna switch and antennas.

3.4.3 Subsystem/PMS Interfaces

Table 3.4-1 lists the HFT C&T subsystem measurements to be used by the PMS for fault detection and annunciation (FDA). The measurements required are a primary and a secondary performance measurement for each functional path and whatever hardware status and configuration check measurements are needed for path precondition tests.

The table does not include all of the measurements listed in the MML but only those pertinent to the HFT PMS FDA function. In some cases, the measurement title has been changed from the MML title to agree with the current HFT subsystem concept.

The table includes some measurements that are not listed in the MML but have been introduced here as needed. These use XX-- for the usual four-digit sequence number (characters 5-8 of the measurement ID number). New measurements are summarized in appendix A.

The table also includes some measurements which are listed in the MML but designated there as not being accessible to the PMS. These are the measurement validity flags output from the navigation aids (MSBLS, TACAN, radar altimeter) to the G&N subsystem MDM's. The critical PMS uses these validity flags together with precondition tests to determine whether the navigation aids are functioning properly and outputs resulting failure event data from the data processing subsystem (V72).

The omission of BIT initiation switch scan and BIT result event measurements from the PMS interface reflects the fact that FDA is an online function during operational performance of a functional path, while BIT initiation interrupts operational performance for about 20 seconds and is properly used for LRU checkout offline. (The current BITE development plan for the TACAN and radar altimeter will allow online BIT by continuing to output measurement data from memory with the measurement flags indicating valid but with an additional flag indicating output from memory.)

3.4.4 PMS Requirements

Table 3.4-2 lists the primary and secondary measurements for each functional path and indicates the corresponding FDA tests to be made during each PMS cycle.

When the first column of the table contains a primary measurement, the correlation check column identifies the corresponding secondary measurement that is to be tested if (and only if) the FDA test on the primary measurement indicates functional path failure. A blank correlation check column indicates that the measurement in the first column is a secondary measurement which is to be tested only if the primary measurement test indicates failure. For the radar altimeter functional paths (CT11 and CT12), the primary measurements are fail discretes detected by the G&C software.

The FDA tests on an analog (type A) measurement consist of tolerance checks against the soft and hard limits given in the table. The FDA test on an event (type E or X) measurement consists of observing whether the measurement is a logic "1" for valid performance or a logic "0" for invalid performance. In this case, soft limits are not given, and the hard limits column contains the letter E to indicate event testing.

The use of event measurements (validity flags) to verify the performance of the navigation aids recognizes that these units have built-in logic which performs the FDA function during online operation. The validity flags are output at the same update rate as the navigation data outputs and are distinct from the offline BIT. If all elements of a subsystem included the internal logic for output measurement validity indication, the PMS would simply scan the validity flags to detect faults. The opposite extreme is for the PMS to process raw sensor data from all subsystem elements to detect faults. In the HFT C&T subsystem, the navigation aids are well designed to provide their own fault detection, but the UHF and S-band equipment do not even have sufficient OI measurements to allow the PMS to perform fault detection. (The UHF and S-band measurements in tables 3.4-1 and 3.4-2 are specified for the current PMS development.)

The precondition columns of table 3.4-2 identify the switch scan and event measurements which indicate whether the functional path should be operating and therefore subject to FDA tests. In general, all of the precondition scans and events must be "ON" for the path to be operating. The exceptions are the TACAN paths CT8, CT9, and CT10, whose precondition tests involve OR and NOT logic.

TABLE 3.4-1. PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

3-109

(1 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74VXXX1A — UHF Transceiver No.1 RF Output	A	0-5 Vdc	CT1	New recommended measurement.
V74V0201A — UHF Transceiver No.1 AGC	A	0-5 Vdc	CT1	Not for FDA on MML.
V74SXXX3E — UHF Transceiver No.1 Power - ON			CT1	New recommended measurement.
V74XXXX5E — UHF Transceiver No.1 Transmit	Е		CT1	New recommended measurement.
V74XXXX7E — UHF Transceiver No.1 Receive	E		CT1	New recommended measurement.
V74VXXX2A — UHF Transceiver No.2 RF Output	А	0-5 Vdc	CT 2	New recommended measurement.
V74V0211A — UHF Transceiver No.2 AGC	A	0-5 Vdc	CT 2	Not for FDA on MML.
V74SXXX4E — UHF Transceiver No.2 Power - ON	E		СТ 2	New recommended measurement.
V74XXXX6E — UHF Transceiver No.2 Transmit	E		CT 2	New recommended measurement.

PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

(2 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74XXXX8E — UHF Transceiver No.2 Receive	E	0-5 Vdc	CT 2	New recommended measurement.
V74V0484A — TLM Transmitter RF Output	Α	0-5 Vdc	СТ 3	ID used for FM transmitter no. 1 on MML.
V74VXXX9A — TLM Transmitter DC Power	A	0-5 Vdc	СТ3	New recommended measurement.
V74SXX11E - TLM Transmitter Power - ON	Е		CT 3	New recommended measurement.
V74V0488A - DFI Transmitter RF Output	A	0-5 Vdc	CT4	ID used for FM Transmitter no. 2 on MML.
V74VXX10A — DFI Transmitter DC Power	A		CT4	New recommended measurement.
V74SXX12E — DFI Transmitter Power -ON	E		CT4	New recommended measurement.
V74X0111X — MSBLS No. 1 Range Flag	х		СТ 5	Not for PMS on MML.
V74X0112X — MSBLS No. 1 Elevation Flag	X		СТ 5	Nor for PMS on MML.

TABLE 3.4-1. PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

3-111

(3 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74S0109E - MSBLS No. 1 Power - ON	E		CT 5	
V74X0121X — MSBLS No. 2 Range Flag	х		CT6	Not for PMS on MML.
V74X0122X — MSBLS No. 2 Elevation Flag	Х		CT6	Not for PMS on MML.
V74S0119E MSBLS No. 2 Power - ON	E		CT6	
V74X0131X — MSBLS No. 3 Range Flag	Х		CT7	Not for PMS on MML.
V74X0132X — MSBLS No. 3 Elevation Flag	Х		СТ7	Not for PMS on MML.
V74S0129E — MSBLS No. 3 Power – ON	Ε		CT 7	
V74X0143X — TACAN No. 1 Bearing Flag	Х		CT8	Not for PMS on MML.
V74X0145X — TACAN No. 1 Range F1ag	X	· ·	CT 8	Not for PMS on MML.

PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

(4 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74S0859E — TACAN No. 1 Receive	Е		CT8	New recommended switch scan.
V74S0856E — TACAN No. 1 T/R	Е		СТ8	
V74S0862E — TACAN No. 1 A/A	E		CT 8	
V74S0166E — TACAN Select No. 1	Е		CT 8	
V74X0191E — L-Band Coupling Network TACAN Active No. 1	Е		CT 8	Not for PMS on MML.
V74X0153X — TACAN No. 2 Bearing Flag	Х		СТ9	Not for PMS on MML.
V74X0155X — TACAN No. 2 Range Flag	х		СТ9	Not for PMS on MML.
V74S0860E — TACAN No. 2 Receive	E		СТ9	New recommended switch scan.
V74S0857E — TACAN No. 2 T/ R	E		СТ9	

PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

(5 of 6)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V74S0863E - TACAN No. 2 A/A,	E		CT9	
V74X0192E — L-Band Coupling Network TACAN Active No. 2	Е		СТ9	Not for PMS on MML.
V74X0163X — TACAN No. 3 Bearing Flag	Х		CT10	Not for PMS on MML.
V74X01 6 5X — TACAN No. 3 Range F1ag	Х		CT10	Not for PMS on MML.
V74S0861E — TACAN No. 3 Receive	E		CT10	New recommended switch scan.
V74S0858E — TACAN No. 3 T/R	E		CT10	
V74S0864E — TACAN No. 3 A/A	E		CT10	
V74S0168E — TACAN Select No. 3	Е	, , , , , , , , , , , , , , , , , , ,	CT10	
V74X0193E — L-Band Coupling Network TACAN Active No. 3	Е		CT10	Not for PMS on MML.

PMS MEASUREMENT DATA

SUBSYSTEM: COMMUNICATION & TRACKING

(6 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74X0172X — RADAR Alt. No. 1 Flag	Х	, ματά ματα ματα το δια τη ματα τη του	CT11	Not for PMS on MML.
V74S0175E — RADAR Alt. No. 1 ON	E		CT11	
V74X0182X — RADAR Alt. No. 2 Flag	Х		CT12	Not for PMS on MML.
V74S0185E — RADAR A1t. No. 2 ON	Е		CT12	
V74SXX13E ATC XPNDR - On	Event	0/1	N.A.	New recommended measurement.
V74SXX14E C-Band BCN-On	Event	0/1	N.A.	New recommended measurement.
V74SXX15E AUD PNL, CDR -On	Event	0/1	CT 1, CT 2	New recommended measurement.
V74SXX16E AUD PNL, Pilot - On	Event	0/1	CT 1, CT 2	New recommended measurement.
V74SXX17E AUD PNL, Mid Deck - On	Event	0/1	CT 1, CT 2	New recommended measurement.

TABLE 3 4-2.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

٠ .

SUBSYSTEM: COMMUNICATION AND TRACKING

(1 of 4)

PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO. • MEASUREMENT ID	PRE- CONDITION TEST		SOFT LIMIT CHECK		TRENI) CHECX	HARD LIMIT CHECK		BACKUP CAUFION & WARNING		CORRELATION MEASUREMENT
• FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	TOM		нісн	LOW	HIGH	LOW	- - -
 V74VXXX1A UHF XCVR No. 1 RF Output CT1 	XXX 3	XXX5	3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			0201
 V74V0201A UHF XCVR No. 1 AGC CT1 	XXX3	XXX7	3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			
 V74VXXX2A UHF XCVR No. 2 RF Output CT2 	XXX4	XXX6	3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			0211
 V74V0211A UHF XCVR No. 2 AGC CT2 	XXX4	XXX8	3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			
 V74V0484A TLM XMTR RF Output CT3 	XX11		3.2 Vdc	2.5 Vdc	· · · · · · · · · · · · · · · · · · ·	4.0 Vdc	2.0 Vdc			XXX9
 V74VXXX9A TLM XMTR DC Power CT3 	XX11		3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			
 V74V0488A DFI XMTR RF Output CT4 	XX12		· 3,2 Vdc	2.5 Vdc		4.0 Vdc -	2.0 Vdc			XX10

3-115

. '

1

TABLE 1.4-2.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: COMMUNICATION & TRACKING

PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO.	PRE- CONDITIO TEST		LIMIT		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		нісн	LOW	HIGH	LOW	
 V74VXX10A DFI XMTR DC Power CT4 	XX12		3.2 Vdc	2.5 Vdc		4.0 Vdc	2.0 Vdc			
 V74X0111X MSBLS No. 1 Range Flag CT5 	0109					È.	E			0112
 V74X0112X MSBLS No. 1 Elevation Flag CT5 	0109					Е	E			
 V74X0121X MSBLS No. 2 Range F1ag CT6 	0119					Ē	E			0122
 V74X0122X MSBLS No. 2 Elevation Flag CT6 	0119					E	Е			
 V74X0131X MSBLS No. 3 Range, Flag CT7 	0129					Е.	 E			5 0132
 V74X0132X MSBLS No. 3 Elevation F1ag CT7 	0129					Е	Е			

3-116

1

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: COMMUNICATION & TRACKING

(3 of 4)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	·LOW	HIGH	LOW	
 V74X0145X TACAN No. 1 Range Flag CT8 	0166 and 0856 or 0862	<u>ก</u> ำดา				Е	Е			0143
 TACAN No. 1 Bearing Flag CT8 	0166 and 0856 or 0859 or 0862	0191				E	E			
TACAN No. 2 Range Flag	0857 or 0863 not 0166 10t 0168	0192				E	E			0153
 TACAN No. 2 Bearing Flag CT9 	0857 or 0860 or 0863 not 0166 not 0168	0192			-	E	E			
Flag	0168 and 0858 or 0864	0193				E	E	······································		0163
 TACAN No. 3 Bearing Flag CT10 	0168 and 0858 or 0861 or 0864	0193				Е	Е			_ ·

FMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: COMMUNICATION & TRACKING

(4 of 4)

ć

1

PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO. • MEASUREMENT ID	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
• FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	ĹOW	HIGH	LOW	
 V74X0172X Radar Alt No. 1 Flag CT11 	0175					E	E			0172
 V74X0182X Radar Alt No. 2 Flag CT12 	0185			·		E	Е			0182
 V74SXX13E ATC XPNDR - On NA 		х								
 V74SXX14E C-Band BCN - On NA 		х								
 V74SXX15E CDR Aud PNL - On CT1, CT2 		х								
 V74SXX16E Pilot Aud Pnl - On CT1, CT2 		х								
 V74SXX17E Mid Deck Aud Pn1-On CT1, CT2 		x								

3 - 1

Ŧ

...

.118

3.5 ELECTRICAL POWER DISTRIBUTION AND CONTROL (EPDC)

3.5.1 Subsystem Description

The EPDC configuration for Horizontal Flight Test vehicle, Orbiter 101, will be a modified version of the operational EPDC. Primary power is provided by three hydrogen-oxygen fuel cell power plants (see section 3.10).

EPDC consisting of buses, switches, cables, sensors, and other devices required to condition, distribute, and control power, may be catorgorized into four major subsystem elements:

- DC Distribution and Control.
- Essential/Control (ESS/CONT) Bus.
- Inverter AC Distribution and Control.
- Master Events Controllers (MEC's) and Load Control Assemblies (LCS's).

As illustrated in figure 3.5-1, each of three main DC buses are normally connected to a dedicated fuel cell. Configuration options exist to connect any main DC bus to any other main DC bus(s) via a DC tie bus and, hence, any other fuel cell and/or GSE ground power. DC power is distributed from each main bus to local loads via forward, midbody, and aft local DC buses. Appropriate typical loads (as illustrated) are in turn supplied by local buses via protective circuit devices [i.e., Remote Power Controller (RPC), Remote Control Circuit Breakers (RCCB), and isolation fuses].

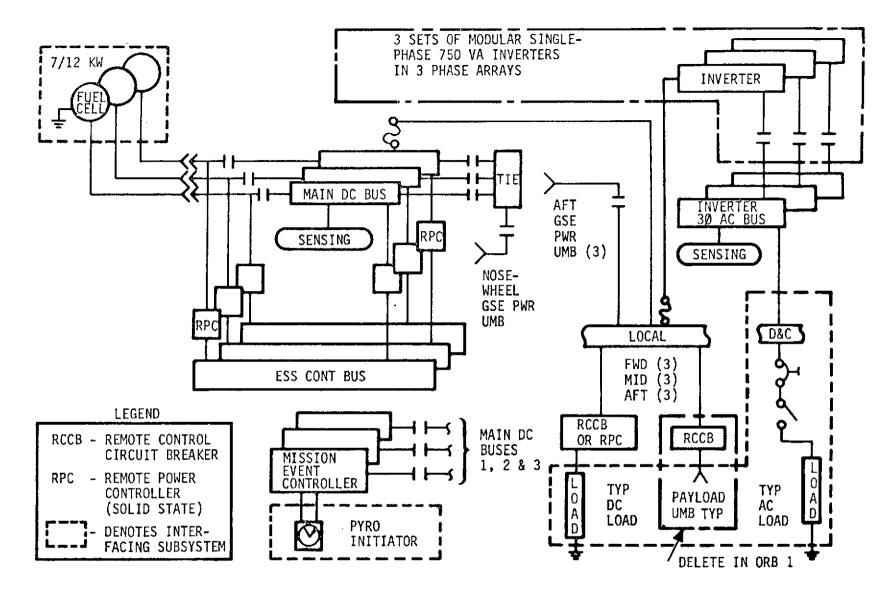


Figure 3.5-1. - Electrical power distribution and control subsystem.

Each inverter bus, utilizing a specific forward local DC bus for source power, is driven by modular single phase 750VA Inverters in 3ϕ arrays.

The ESS/CONT buses supply power to reinitialize main bus power from a power-off emergency power state, and supply power to caution and warning, fire detectors and actuators, and emergency lighting. Each ESS/CONT bus is supplied by one (unique) disassociated main DC bus and the normally associated fuel cell (directly via a dedicated electromechanical contactor).

3.5.1.1 Main DC and ESS/CONT distribution. Figure 3-5-2 is a block diagram of the main DC distribution system for bus This illustration is typical of each main bus ESS/CONT bus 3. configuration. As illustrated, each main DC bus may be supplied by a normally dedicated fuel cell, a forward tie bus connecting GSE external power or the other two main DC buses, and an aft GSE power connection via the aft local bus. These various power sources may be connected in any combination limited logically only by ground or airborne operation, and tie bus actuation may connect any given main bus to the remaining main bus(es) as either a power source or load. This interactive characteristic will require, during dynamic modeling activities, an introduction of DC system modes, to treat the intra-main bus sensitivities (taken as a set) and all interbus dependencies (main-ESS/CONT-AC).

The ESS/CONT bus is interfaced, as illustrated, directly to a fuel cell and a separate main DC bus. Specific mechanization of these interfaces, directed by CCA69 "Electrical Power System Reconfiguration to delete the batteries, etc." (March 4, 1974), are not presently available.

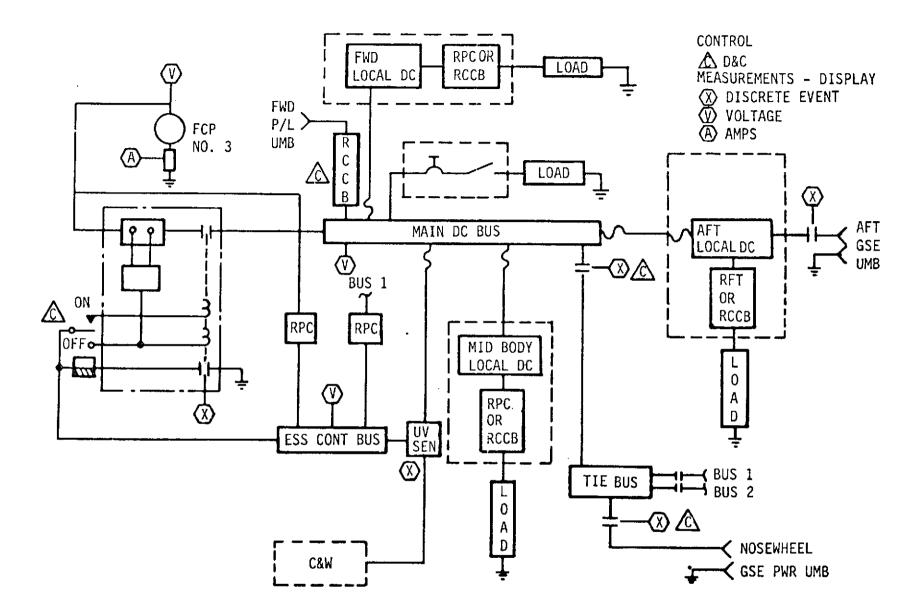


Figure 3.5-2. — Main DC distribution block diagram.

Also illustrated are sensor points and types, local buses and typical loads, and D&C and C&W interfaces.

3.5.1.2 Inverter AC distribution and control. Figure 3-5-3 is a block diagram of the inverter distribution and control elements. The inverter groups are comprised of three sets of modular single-phase 750VA inverters arranged in three phase arrays. Each forward local DC bus supplies primary power to one converter set which in turn supplies 115/200 V, 3ϕ , $400 \sim$ to one inverter bus, (i.e., main DC 1 to inverter set 1 to inverter bus 1). Figure 3-5-3 illustrates this scheme for AC bus 2, which is typical of the remaining two AC buses. Also illustrated are sensor points and type, typical loads represented by various CB panels, and interfaces with D&C and C&W subsystems.

3.5.1.3 <u>Master events controllers (MEC's) load control</u> <u>assemblies (LCA's)</u>. Currently under study by appropriate NASA offices are the partitioning of functions requiring interfaces with MEC's or LCA's.

Presently, insufficient data is available to determine their specific roles, the manner of mechanization or associated instrumentation details. When data becomes available, necessary functional path analysis will be undertaken, results documented, and released either as a revision to this document or as a part of successor documents originated by this activity.

3.5.2 Functional Path Analysis

Figure 3-5-1 shows the HFT EPDC subsystem as a collection of nine functional paths (excluding MEC's and LCA's) which will

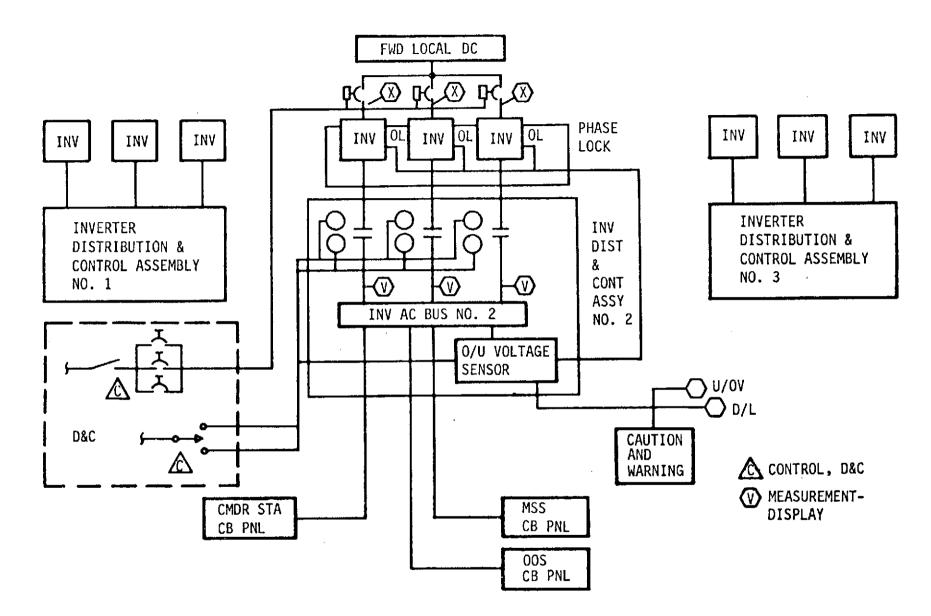


Figure 3.5-3. - AC distribution block diagram.

be treated in a subsequent revision to this document. Analysis shows that all local DC buses (forward, midbody, and aft) may be regarded logically as extensions of their respective main buses. As illustrated in figure 3-5-1, each bus in a given main DC bus set is separated (only) by isolation fuses. Each fuse, in close physical proximity to the main bus, is highly transparent to momentary overloads; fusing occurs only in the event of a severe overload. All local loads have circuit protection (i.e., RPC, RCCB, internal fuses, etc.) and events resulting in their interruption will not fault the bus isolation fuses. For these reasons, only the main bus requires instrumentation to satisfy PMS FDA requirements, and main DC and local DC buses are regarded logically as identical entities.

The resulting nine functional paths are identified below.

- DC1 Main DC Bus 1, associated local buses, and Bus tie contactor four (BTC-4).
- DC2 Main DC bus 2, associated local buses, and BTC-5.
- DC3 Main DC bus 3, associated local buses, and BTC-6.
- DC4 ESS/CONT Bus 1.

DC5 - ESS/CONT Bus 2.

- DC6 ESS/CONT Bus 3.
- AC1 Inverter Bus 1, Inverter set 1, associated input/ output contactors.
- AC2 Inverter Bus 2, Inverter set 2, associated input/ output contactors.
- AC3 Inverter Bus 3, Inverter set 3, associated input/ output contactors.

3.5.3 Subsystem/PMS Interfaces

Table 3-5-1 lists the HFT EPDC subsystem measurements to be utilized by PMS in Fault Detection/Annunciation (FDA) processes. Measurements tabulated for each identified functional path include a primary and secondary sensor. Configuration status data required for interpretation (i.e., fault isolation) of failure annunciation must be supplied by the PMS SCM modules or by FDA precondition tests. Correlation processes and requirements for identity equations are discussed in section 3.5.4.

3.5.4 PMS Requirements

Table 3.5-2 lists the primary and secondary measurements for each functional path previously identified. No preconditions are indicated or required at the EPDC subsystem level in as much as all power buses, both AC and DC are required to be normally powered. Precondition testing is required at the beginning of each major PMS cycle to status each EPDC functional path. It may be assumed that this precondition applies to any configuration/reconfiguration actively initializing a power bus. Treatment of this matter is covered in documents (i.e., FSSR) addressing system level PMS software requirements.

A "detected" fault requires data input to (or from) the SCM module in order to properly interpret fault occurrences and perform specific fault isolations. Each primary power bus is a mode sensitive passive device (i.e., a copper bar) providing service takeoffs for various loads and/or sensors. Each bus is therefore regarded as a dependent variable, driven by the specific subsystem configuration in effect at any given

point in time. Adequate fault isolation (i.e., a process that avoids alarming cascading effects or masking influences resulting from varying configurations) requires (1) a statement of the initialized configuration or the configuration in effect immediately prior to fault detection, (2) power transfer statements, (3) effecter status statements, and (4) an identity statement (derived from the preceeding three items) which permits a logical derivation of bus power status at any given point in time. Such an identity correlation process permits both sensor validation and provides a vehicle by which specific fault isolation processes may occur. These techniques are usually employed in dynamically modeled systems, placing further treatment and/or discussion outside the scope of this document. (Results of preliminary analysis concerning system modes, probable crew procedures, and correlation processes are documented in previous reports originated by this activity.)

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

AND CONTROL

(1 of 6)

		1		
MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V76K0160E—Fuel Cell l to Main Bus 1 Indicator	Event	0/1	DC-1	Precondition — hardware status.
V76X0106E — Fwd Main DC Bus 1 Tie Indicator	Event	0/1	DC-1	Precondition — hardware status.
V76X0101E — Main DC Bus 1 Under- Voltage	Event	0/1	DC-1	Event for Bus l undervoltage; C&W Alarm (Required PMS Alarm)
V76V0100A — Main DC Bus 1 Voltage	Analog	24.0-32.0 Volts DC	DC-1	(Out of limits condition requires PMS Alarm)
V76X0260E — Fuel Cell 1 to Main Bus 1 Indicator	Event	0/1	DC - 2	Precondition — hardware status.
V76X0206E — Fwd Main DC Bus 1 Tie Indicator	Event	0/1	DC-2	Precondition — hardware status.
V76X0201E — Main DC Bus 2 Under- voltage	Event	0/1	DC - 2	Event for Bus 2 undervoltage; C&W Alarm (Requires PMS Alarm)

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

AND CONTROL

(2 of 6)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V76V0200A — Main DC Bus 2 Voltage	Analog	24.0 - 32.0 Volts DC	DC-2	(Out of limits condition requires PMS Alarm)
V76S0360E — Fuel Cell 3 to Main Bus 3 Indicator	Event	0/1	DC-3	Precondition — hardware status.
V76S0306E — Fwd Main DC Bus 1 Tie Indicator	Event	0/1	DC - 3	Precondition — hardware status.
V76X0301E — Main DC Bus 3 Under- voltage	Event	0/1	DC-3	Event for Bus 3 undervoltage; C&W Alarm (Requires PMS Alarm)
V76V0300A — Main DC Bus 3 Voltage	Analog	24.0 - 32.0 Volts DC	DC-3	(Out of limits condition requires PMS Alarm)
V76XXXXXE — ESS/ Cont. Bus 1 Under voltage		0/1	DC-4	Change directed by CCA 69 and MCR 0662 deleting ABES; Specific instumentation of RAC's unavail- able.(N=unassigned MML ID) C&W Alarm (Requires PMS Alarm)
V76V0130A — ESS/ Cont. Bus 1 Voltage	Analog	23.0 - 40.0 Volt:	DC-4	Comment as above; (out of limits condition requires PMS Alarm.

.

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

AND CONTROL

(3 of 6)

AND COM	TROL			
MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V76S0131E — Main Bus 1 to ESS Bus 1 - On	Event	0/1	DC-4	Precondition configuration status.
V76S0334E — Main Bus 3 to ESS Bus 1 - On	Event	0/1	DC-4	Precondition configuration status.
V76XXXXXE — ESS/ Cont Bus 2 Undervoltage	Event	0/1	DC - 5	C
V76V0230A — ESS/ Cont Bus 2 Voltage	Analog	23.0 - 40.0 Volts DC	DC - 5	
V760134E - Mn Bus 1 to ESS Bus 2 - On	Event	0/1	DC-5	Precondition configuration status
V760231E — Mn Bus 2 to ESS Bus 2 – On	Event	0/1	DC-5	Precondition configuration status
V76XXXXXE — ESS/ Cont Bus 3 Undervoltage	Event	0/1	DC-6	

3-130

٠

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

AND CONTROL

AND CON	TROL			
MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V76V1500A — In- verter Bus 1 ¢A Voltage	Analog	110-120 Volts RMS	AC-1	Note: Inverter AC System currently under revision, Instrumentation details soft. (Out of limits con- dition requires PMS Alarm)
V76V1501A — In- verter Bus 1 ¢B Voltage	Analog	110 - 120 Volts RMS	AC-1	(Out of limits condition requires PMS Alarm)
V76V1502A — In- verter Bus 1 ¢C Voltage	Analog	110-120 Volts RMS	AC-1	(Out of limits condition requires PMS Alarm)
V76X1505E — In- verter Bus 1 over/under volt- age	Event	0/1	AC-1	Event for over or under voltage; C&W Alarm.
V76X1506E — In- verter Bus 1 Overload	Event	0/1	AC-1	Event for overload; C&W Alarm.
V76S1511E In- verter Bus 1-on	Event	0/1	AC-1	Precondition configuration status
V76S1531E Bus 1 DC Input to In- verter 1-PhA	Event	0/1	AC-1	Precondition configuration status

3-131

(4 of 6)

PMS MEASUREMENT DATA

	SUBSYSTEM:	ELECTRICAL	POWER	DISTRIBUTION
--	------------	------------	-------	--------------

AND CONTROL

(5 of 6)

•

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V76X1537E—In- verter 1 Ph A Output - On	Event	0/1	AC-1	Precondition hardware status.
V76X1538E—In- verter 1 Ph B Output - On	Event	0/1	AC-1	Precondition hardware status.
V76X1539E—In- verter 1 Ph C Output – On	Event	0/1	AC-1	Precondition hardware status.
V76V1700A — In- verter Bus 3 ΦA Voltage	Analog	110-120 Volts RMS	AC-3	Note: Inverter AC System currently under revision; Instrumentation details soft. (Out of limits condition requires PMS Alarm)
V76V1701A — In- verter Bus 3 ØB Voltage	Analog	110-120 Volts RMS	AC-3	(Out of limits condition requires PMS Alarm)
V76V1702A — In- verter Bus 3 ¢C Voltage	Analog	110-120 Volts RMS	AC-3	(Out of limits condition requires PMS Alarm)
V76X1605E — In- verter Bus over/ under voltage	Event	0/1	AC-3	Event for over or under voltage; C&W Alarm.

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

AND CONTROL

	MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
	V76X1606E — In- verter Bus 3 Overload	Event	0/1	AC-3	Event for overload; C&W Alarm.
	V76X1711E — In- verter Bus 3-On	Event	0/1	AC-3	Precondition configuration status.
	V76X1731E Bus 3 DC Input to In- verter 3 Ph A	Event	0/1	AC-3	Precondition configuration status.
3-133	V76X1737E - In- verter 3 Ph A Output - On	Event	0/1	AC-3	Precondition hardware status.
2	V76X1738E - In- verter 3 Ph B Output - On	Event	0/1	AC-3	Precondition hardware status.
	V76X1739E — In- verter 3 Ph C Output - On	Event	0/1	AC-3	Precondition hardware status.

(6 of 6)

1'ABLE 3,5-2.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

(1 of 4)

.

AND CONTROL										(1 01 4)
PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO.	PRE- CONI TES:	DITION F	SOFT LIMI CHEC	r	TREND CHECK	HARI LIMI CHEC	T	BACKUP CAUTION WARNING	· & ·	CORRELATION MEASUREMENT
MEASUREMENT ID	ы	RAT				:				
 FUNCTIONAL PATH ID SECONDARY/CORRECTION 	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW	- 	HICH	LOW	HICH	LOW	
 V76X0101E (P) Main DC Bus 1 under- voltage DC 1 	V76X- 0160E V76X- 0106E	None	None	None	None	None	Event		Event	V76V0100A
• V76V0100A (S) • Main DC Bus 1 Voltage • DC 1	None	None	None	None	None	32.0 VDC	24.0 VDC	None	None	
 V76X0201E (P) Main DC Bus 2 Under Voltage DC 2 	V76X- 0260E V76X 0206E	None	None	None	None	None	Event		Event	V76V0200A
• V76V0200A (S) • Main DC Bus 2 Voltage • DC 3	None	None ·	None	None	None	32.0 VDC	24.0 VDC	None	None	
 V76X0301E (P) Main DC Bus 3 Under- voltage DC 3 	V76X- 0360E V76X- 0306E	None	None	None	None	None	Event		Event	V76V0300A
• V76V0300A (S) • Main DC Bus 3 Voltage • DC 3	None	None	None	None	None	32.0 VDC	24.0 VDC	None	None	
 V76XNNNNE (p) ESS/Cont Bus 1 Under- Voltage DC 4 	None	V76S- 0131E V76S- 0334E	None	None	None	None	Event	None	Event	V76V0130A
• V76V0130A (S) • ESS/Cont Bus 1 Voltage • DC 4	None	None	None	None	None	40.0 VDC	23.0 VDC	None	None	
"Measurement assigned by										

"Measurement assigned but ID not presently available."

. 3-134

1

JABLE 3.5-2.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM ELECTRICAL POWER	DISTRIB	UTION								(2 of 4)
PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO. • MEASUREMENT ID	PRE CONDJ TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIJ CHECK		BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 FUNCTIONAL PATH ID FUNCTIONAL PATH ID SECONDARY/CORRECTION 	HARDWARE STATUS	CONFIGURATION CHECK	HICH	LOW		HIGH	LOW	HIGH	LOW	
 V76XNNNE (P) ESS/Cont. Bus 2 Undervoltage DC 5 	None	V76S- 0134E V76S- 0231E	None	None	None	None	Event	None	Event	V76V0230A
 V76V0230A (S) ESS/Cont Bus 2 Voltage DC 5 	None	None	None	None	None	40.0 VDC	23.0 VDC	None	None	
 *• V76XNNNE (P) • ESS/Cont Bus 3 Undervoltage • DC 6 	None	V76S- 0234E V65S- 0331E	None	None	None	None	Event	None	Event	V76V0330A
 V76V0330A (S) ESS/Cont Bus 3 Voltage DC 6 	None	None	None	None	None	40.0 VDC	23.0 VDC	None	None	
 V76X1505E (P) Inverter Bus 1 over/ under voltage AC 1 	None	V76S- 1511E V76S- 1531E	None	None	None	Event	Event	Event	Event	V76V1500A V76V1501A V76V1502A
 V76V1500A (S) Inverter Bus 1 \$\$Volts AC 1 	V76X- 537E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76X1505E
 V76V1501A (S) Inverter Bus 1¢ BVolts AC 1 	V76X- 1538E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76X1505E
• V76V1502A (S) • Inverter Bus 1 ¢C _{Volts} • AC 1	V76X- 1539E	None	None	None	None	120 VRMS	110 /RMS	None	None	V76X1505E
 V76X1506E (P) Inverter Bus 1 Over- load AC 1 * Measurement assigned b 	None	None	None	None	None	Event	None	Event	None	None

-3-135

* Measurement assigned but ID not presently available.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

.

(3 of 4)

٠

AND CONTROL PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO.	TEST	DITION	SOFT LIMIT CHECK		TREND CHECK	HARI LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW .	
 V76X160SE (P) Inverter Bus 2 Over/ undervoltage AC 2 	None	V76S- 1611E V76S- 1631E	None	None	None	Event	Event	Event	Event	V76V1600A V76V1601A V76V1602A
• V76V1600A (S) • Inverter Bus 2 \$ A V • AC 2	V76X- 1637E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76X1605E
• V76V1601A (S) • Inverter Bus 2 ¢B V • AC 2	V76X- 1638E	None	None	Nonē	None	120 VRMS	110 VRMS	None	None	V76X1605E
• V76V1602A (S) • Inverter Bus 2 ¢C V • AC 2	V76X 1639E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76X1605E
 V76X1606E (P) Inverter Bus 2 overload AC 2 	None	None	None	None	None	Event	None	Event	None	None
 V76X1705E (P) Inverter Bus 3 over/under voltage AC 3 	None	V76S- 1711E V76S- 1731E	None	None	None	Event	Event	Event	Event	V76V1700A V76V1701A V76V1702A
	V76X- 1737E	None	None	None	None	120 VRMS	110 VRMS	None	Noné	V76V1705E
	V76X- 1738E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76V1705E
	V76X- 1739E	None	None	None	None	120 VRMS	110 VRMS	None	None	V76V1705E

-3-136

ł.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

(4 of 4)

ſ

SUBSISIENT, AND CONTROL PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE CONDI TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECH	r i	BACKUP CAUTION WARNING	&	CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
 V76X1706E (P) Inverter Bus 3 Overload AC 3 	None	None	None	None	None	Event	None	Event	None	None
				· ·						
										, ,

3-137

ł

3.6 AUXILIARY POWER UNITS

3.6.1 Subsystem Description

The APU subsystem provides mechanical shaft power for the hydraulic pumps for HFT, VFT, and orbital missions during prelaunch, ascent, MPS Dump, entry and landing. Each APU drives a hydraulic pump which supplies hydraulic power for one of the three hydraulic systems.

The hydraulic pumps provide power to actuate the aerodynamic surfaces (elevons and rudder/speed brakes), main engine thrust vector controls, main engine controls, landing gear, brakes and steering.

The APU utilizes a monopropellant hydrazine N_2H_4 which is decomposed in the gas generator catalytic bed. Propellant fuel pressure is maintained by helium gas pressure across a diaphragm.

Propellant quantity is determined from pressure and temperature sensors in the helium side of the fuel tanks.

Radiation heaters are used to maintain a temperature of $70^{\circ}F$ for the propellant.

Prior to APU start-up, the gas generator thermal bed is electrically heated for approximately 15 minutes (to approximately 800° F.). As the propellant contacts the catalyst, it instantly decomposes, producing a gas which drives a twostage turbine at 74,000 RPM. Heat of decomposition ranges from 1600° F to 2300° F depending on the amount of NH₃ produced during the hydrazine decomposition. Pressures of 1000 psia

to 1300 psia are developed during this phase of operation. A fuel pump increases the fuel pressure (from tank pressure) to that required to produce maximum peak power (nominal 1300 psi).

The turbine design conditions for fuel consumption calculations are based on an inlet temperature of approximately 1700° F. The turbine shaft is coupled to the loads through an all-attitude, zero-g oil mist lubricated gearbox. The turbine exhausts are ducted to the fuselage outer surface where the gas is vented overboard through propulsive vents. The approximate makeup of the exhaust gas from the decomposed hydrazine is hydrogen (6.3 percent by weight), nitrogen (58.3 percent), and ammonia (35.4 percent).

The APU controller provides for speed control, logic for APU start-up and shutdown, and malfunction protection. Automatic shutdown of a single APU is executed if turbine speed exceeds the prescribed limits. An energy absorbing turbine housing designed for burst containment is provided as protection against turbine wheel failure.

3.6.2 Functional Paths

A schematic diagram of the system and the functional paths used during the review of this system are shown in figure 3.6.1. The functional paths are identified as follows:

AP1	-	APU Module System
AP 2		Gearbox and Lube System

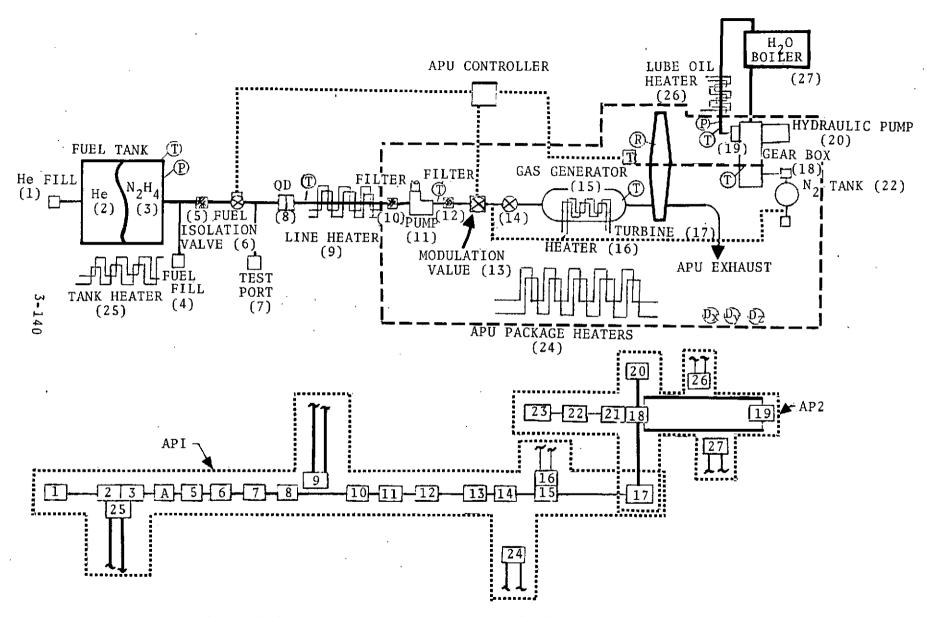


Figure 3.6-1. - Auxiliary power unit (APU) functional paths.

3.6.3 PMS Interfaces

Each APU has instrumentation which monitors the operation of the main components and is interfaced with the PMS. Continuous monitoring of this information will provide system status and early fault identification. Table 3.6-1 lists the measurements required to evaluate the health status of the APU subsystem. All measurements shown are in the MML.

3.6.4 PMS Requirements

The primary and secondary APU measurements required for FDA are summarized in table 3.6-2. This figure also indicates correlation measurements and measurement limits where applicable.

PMS MEASUREMENT DATA

SUBSYSTEM: AUXILIARY POWER UNIT

(1 of 4)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V46X0099E — APU 1-3 Shut Down Inhibit Command	Event		AP1	Determines system status for all three APU's (i.e., operational mode or quiescent).
V46P0100A — APU 1 Propellant Tank Pressure	Press	90-440 psia	AP1	Gives readout of fuel pressure of hydrazine needed for determination of system status.
V46T0101A — APU 1 Propellant Tank Temperature	Temp	50-150°F	AP1	The hydrazine propellant has a normal temperature of 70°F. This temperature is maintained by the tank heaters.
V46S0106E — APU Tank 1/2 Heater Element A	Event		API	This heater maintains temperature of hydrazine propellant at a nominal 70°F.
V46T0108A — APU 1 Discharge Line Temperature	Temp	50-150°F	AP1	Measures temperature of the hydrazine in the line from the fuel tank.
V46S0109E — APU 1 Line Heater Element A-B On	Event	ON	AP1	Heats fuel line from tank to the gas generator. Operation is moni- tored by discharge line tempera- ture measurement.
V46P0111A — Fuel Pump Discharge Pressure	Temp	0-250 psia	AP1	Verifies pump operation.
V46S0113E — APU 1 Package Heater Element A-B On	Event	Off-On	AP1	Heater is used to maintain APU package temperature within opera- ting units in the On-Orbit phase.

PMS MEASUREMENT DATA

SUBSYSTEM: AUXILIARY POWER UNIT

3-143

(2 of 4)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V46S0114E - APU 1 Fuel Isolation Valve - Open Command	Event	Closed- Open	AP1	Allows fuel flow from the tank to the gas generator for APU opera- tion.
V46X0115E — APU 1 Fuel Isolation Valve Position		Closed- Open	AP1	Confirms valve open command execu- tion and gives systems status (i.e., when open is in run condi- tion).
V46S0118E - APU 1 Thermal Bed Heater A On	Event	On-Off	AP1	Heaters used to raise gas gener- ator bed temperature prior to start-up.
V46S0119E — APU 1 Thermal Bed Heater B On	Event	On-Off	AP1	Heater maintains external tempera- ture of the gas generator (meas- surement required for system status).
V46T0122A — APU 1 Gas Generator Bed Temperature	Temp	1350-2200 °F	AP1	Provides indication that the gas generator bed heater is operating and provides a measurement for system status.
V46S0124E - APU 1 Controller Power On Command	Event	On-Off	AP1	Provides information for deter- mination of system configuration.
V46S0126E - APU 1 Start Command	Event		AP1	Provides information for system configuration check.
V46R0135A — APU 1 Turbine Speed	Rate	0-80,000	AP1	Confirms execution of start com- mand and provides indication of system operation. The Turbine

PMS MEASUREMENT DATA

SUBSYSTEM: AUXILIARY POWER UNIT

(3 of 4)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
				drives the hydraulic pump through the gearbox. Therefore, this measurement provides indication of hydraulic power being available.
l Acceln X-Axis	Vibration	TBD	AP1	Measures turbine vibration trend. Measurement will give indication of impending turbine and/or bear- ing failure.
V46D0181A — APU 1 Acceln Y-Axis	Vibration	TBD	AP1	Same as above.
V46D0182A — APU 1 Acceln Z-Axis	Vibration	TBD	AP1	Same as above.
V46S0116E - APU 1 Lube Oi1 Heater Element A-B On	Event	On-Off	AP 2	Heaters maintain oil temperature used for gearbox lubrication.
V46T0150A — APU 1 Gearbox Lube Oil Temperature	Temp	40-230°F	AP 2	Temperature of lube oil is depend- ent upon heater and H ₂ O boiler operation.
V46P0151AA — APU 1 Gearbox Lube Oil Pressure	Press	75-105	AP2	Monitors gearbox operation.
V46T0161A — APU 1 Gearbox Bear- ing Temperature No. 1	Тетр	40-450°F	AP2	Provides correlation of lube oil temperature and trend measurement will give indication of impending bearing failure.

PMS MEASUREMENT DATA

SUBSYSTEM: AUXILIARY POWER UNIT

(4 of 4)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V46T0131A - APU1 Turbine Inlet Temperature	Analog	0-1750°F	AP1	Provide backup to turbine speed (V46R0135A) new measurement for PMS.
V46S0116E — APU1 Lube Oil Heater Element A-B ON	Event	On-Off	AP 2	Heater maintains oil temperature used for gearbox lubrication.
				The information above is repeated for systems 2 and 3 (see table 3.6-2 for a complete listing).

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

.

SUBSYSTEM: AUXILIARY POWER UNIT

(1 of 10)

2

PMS ACTIVITY SYSTEM DATA:	PRE- CONE TEST	TION	SOFT LIMIT CHECK		1 REND CHECK	HARD LIMI CHEC	т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		нісн	LOW	HICH	LOW	
 V46S0099E (P) APU1-3 Shut Down Inhibit CMD AP1 	H. S	X			<u> </u>					None
 V46P0100A (P) APU1 Propellant Tank Pressure AP1 			420 psia	100 psia	x	440 psia	90 psia			.V46P0110A
 V46T0101A (S) APU1 Propellant Tank Temperature AP1 			90° F	60° F		150° F	50° F		- -	V46T0108A
 V46S0106E (S) APU Tank 1/2 Heater Element A - ON AP1 		x								V46T0101A
 V46T0108A (S) APU1 Discharge Line Temperature AP1 			90° F	60° F		150° F	50° F			V46T0101A
 V46S0109E (S) APU1 Line Heater Element A-B - ON AP1 		x								V46T0108A
 V46P0110A (S) APU1 Fuel Inlet Pressure AP1 			420 psia	100 psia		440 psia	90 psia			V46P0100A

3 - 146

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(2 of 10)

÷ .

.

PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO.	TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH 1D 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HICH	LOW	HIGH	LOW	
 V46S0113E (S) APU1 Package Heater Element A-B - ON AP1 		x								
 V46S0114E (P) APU1 Fuel Isolation Valve-OPEN CMD AP1 		x								V46X0115A
 V46X0115E (P) APU1 Fuel Isolation Valve Position AP1 		x		-						V46P0110A
 V46S0116E (S) APU1 Lube Oi1 Heater Element A-B ON AP1 		x			•					V46T0150A
 V46S0118E (S) APU1 Thermal Bed Heater A ON AP1 		х								V46T0122A
 V46S0119E (S) APU1 Thermal Bed . Heater B ON AP1 		X				×.				V46T0122A
 V46T0122A (S) APU1 Gas Generator Bed Temperature AP1 			1900° F	1500° F	x	2200° F	1350° F			None

۰.

3-147

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(3 of 10)

.

PMS ACTIVITY <u>SYSTEM DATA</u> : • MEASUREMENT NO.	TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HICH	TOM		нісн	LOW	HIGH	LOW	
 V46S0124E (P) APU1 Controller Power ON CMD AP1 		x				•				None
 V46S0126E (P) APU1 Start Command AP1 		x								None
 V46R0135A (P) APU1 Turbine Speed AP1 			77,000 rpm	0	x	80,000 rpm	0			V46T0131A
 V46P0151A (P) APU1 Gearbox Lube Oil Pressure AP2 			95 psia	85 psia		105 psia	75 psia			V46T0150A
 V46T0150A (S) APU1 Gearbox Lube Oil Temperature AP2 			200° F	40° F	x	230° F	40° F			V46T0161A
 V46T0161A (S) APU1 Gearbox Brg. Temperature No. 1 AP2 			480° F	None	x	480° F	None			V46T0150A
 V46D0180A (P) APU1 Acceln X-Axis AP1 			TBD	TBD	x	None	None			V46D0181A V46D0182A

.

3-148

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

.

SUBSYSTEM: AUXILIARY POWER UNIT

(4 of 10)

•

PMS ACTIVITY <u>SYSTEM DATA:</u> • MEASUREMENT NO. • MEASUREMENT ID	PRE- CONDITION TEST CONFIGURATIOS CONFIGURATION CONFIGURATION CONFIGURATION		SOFT LIMIT CHECK		TREND CHBCK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
• FUNCTIONAL PATH ID	HARDWARE STATUS	CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
 V46D0181A (P) APUI Acceln. Y-Axis AP1 			TBD	TBD	x	NONE	NONE			V46D0180A V46D0182A
 V46D0182A (P) APU1 Acceln. Z-Axis AP1 			TBD	TBD	x	NONE	NONE			V46D0180A V46D0181A
 V46T0131A (S) APU1 Turbine Inlet Temperature AP1 			NONE	NONE		1750° F	NONE			V46R0135A
 V46P0200A (P) APU2 Propellant Tank Temperature AP1 			4 10 psia	100 psia	x	440 psia	90 psia			V46P0210A
 V46T0201A (S) APU2 Propellant Tank Temperature AP1 			90° F	60° F		150° F	50° F			V46T0208A
 V46S0206E (S) APU Tank 1/2 Heater Element B ON API 		x						0		V46T0201A
 V46T0208A (S) APU2 Discharge Line Temperature AP1 			90° F	60° F		150° F -	50° F			V46T0201A

.

3-149

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(5 of 10)

PMS ACTIVITY SYSTEM DATA: MEASUREMENT NO.	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND HARD CHECK LIMIT CHECK		T I	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	нісн	low		HIGH	LOW	HIGH	LOW	
 V46S0209E (S) APU2 Line Heater Element A-B ON AP1 		x								V46T0208A
 V46P0210A (S) APU2 Fuel Inlet Pressure AP1 			420 psia	90 psia		440 psia	90 psia			V46P0200A
 V46S0213E (S) APU2 Package Heater Element A-B ON AP1 		x								· ·
 V46S0214E (P) APU2 Fuel Isolation Valve-Open CMD AP1 		x								V46X0215A
 V46X0215A (P) APU2 Fuel Isolation Valve Position AP1 		x								V46P0210A
 V46S0216E (S) APU2 Lube Oil Heater Element A-B ON AP1 		x								V46T0250A
 V46S0218E (S) APU2 Thermal Bed Heater A ON AP1 		x				·				V46T0222A

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(6 of 10)

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW		HIGH	TOM	HIGH	LOW	
 V4650219E (S) APU2 Thermal Bed Heater B ON AP1 		x						-		V46T0222A
 V46T0222A (P) APU2 Gas Generator Bed Temperature AP1 			1900° F	1500° F	x	2200° F	1350° F			None
 V46S0224E (P) APU2 Controller Power On CMD AP1 		x								None
 V46S0226E (P) APU2 Start Command AP1 		x								None
 V46R0235A (P) APU2 Turbine Speed AP1 			77,000 rpm	0	x	80,000 rpm	0			V46T0231A
 V46P0251A (P) APU2 Gearbox Lube Oil Pressure AP2 			95 psia	85 psia		105 psia	75 psia			V46T0250A
 V46T0250A (S) APU2 Gearbox Lube Oil Temperature AP2 			200° F	40° F	X	230° F	40° F			V46T0261A

.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

.

(7 of 10)

.

PMS ACTIVITY SYSTEM DATA:	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK		HARD LIMIT CHECK		&	CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	WARE US	HARDWARE STATUS CONFIGURATION CHECK			:			 		
FUNCTIONAL PAIR ID	HARD	CONF	HIGH	TOM		HIGH	LOW	HIGH	TOM	
V46T0261A (S) APU2 Gearbox Brg. Temperature No. 1 AP2			480° F	None	х	480° F	None			V46T0250A
V46D0280A (P) APU2 Acceln. X-Axis AP1			TBD	TBD	x	None	None			V46D0281A V46D0282A
V46D0281A (P) APU2 Acceln. Y-Axis AP1			TBD	TBD	x	None	None			V46D0280A V46D0282A
V46D0282A (P) APUZ Acceln. Z-Axis AP1			ŤBD	TBD	x	None	None	:		V46D0280A V46D0281A
V46T0231A (S) APU2 Turbine Inlet Temperature AP1			None	None		17 50° F	None			V46R0235A
V46P0300A (P) APU3 Propellant Tank Pressure AP1			410 psia	100 psia	x	440 psia	90 psia			V46P0310A
V46T0301A (S) APU3 Propellant Tank Temperature AP1			90° F	60° F		150° F	50° F			V46T0308A

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

.

_

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- CONDITION SOFT TEST LIMIT CHECK		TREND CHECK	BACKUP CAUTION & K WARNING			CORRELATION MEASUREMENT			
MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		нісн	LOW	нісн	LOW	
 V46S0306E (S) APU Tank 3 Heater Element A-ON AP1 		x								V46T0301A
 V46T0308A (S) APU3 Discharge Line Temperature AP1 			90° F	60° F		150° F	50° F			V46T0301A
 V46S0309E (S) APU3 Line Heater Element A-B ON AP1 		x								V46T0308A
 V46P0310A (S) AP3 Fuel Inlet Pres Pressure AP1 			420 psia	90 psia	•	440 psia	90 psia			V46P0300A
 V46S0313E (S) APUI Package Heater Element A-B ON API 		x								
 V46S0314E (P) APU3 Fuel Isolation Valve-OPEN CMD AP1 		x								V46X0315A
 V46X0315E (P) APU3 Fuel Isolation Valve Position AP1 		x				-				V46P0310A

3-153

.....

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(9 of 10)

PMS ACTIVITY <u>SYSTEM DATA</u> :	PRE- CONDITION TEST		SOFT LIMIT CHECK		TREND CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
 V46S0316E (S) APU3 Lube Oil Heater Element A-B ON AP1 	π.ö	X			-					V46T0350A
 V46S0318E (S) APU3 Thermal Bed Heater A ON AP1 		x								V46T0322A
 V46S0319E (S) APU3 Thermal Bed Heater B ON AP1 		x								V46T0322A
 V46T0322A (S) APU3 Gas Generator Bed Temperature AP1 			1900° F	1500° F	x	2200° • F	1350° F			None
 V46S0324E (P) APU3 Controller Power ON CMD AP1 		x								None
 V46S0326E (P) APU3 Start Command AP1 		x								None
 V46R0335A (P) APU3 Turbine Speed AP1 			77,000 rpm	0	x	80,000 rpm	0			V46T0331A

3-154

.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: AUXILIARY POWER UNIT

(10 of 10)

1

PMS ACTIVITY SYSTEM DATA: • MEASUREMENT NO.	PRE- CONDITION TEST		SOFT LIMIT CHECK		TR END CHECK	HARD LIMIT CHECK		BACKUP CAUTION & WARNING		CORRELATION MEASUREMENT
• MEASUREMENT ID . • FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	TOM		HIGH	LOW	HIGH	LOW	
• V46P0351A (P) • APU 3 Gear Box Lube Oil Press • AP1			95 psia	85 psia	•	105 psia	75 psia			V46T0150A
• V46T0350A (S) • APU 3 Gear_Box Lube 0il Temp • AP2			200 °F	40 °F		230 °F	40 °F			V46T0361A
• V46T0361A (S) • APU 3 Gear Box BRG Temp No. 1 • AP2		<i>.</i> .	480 °F	None		480 °F	None			V46T0350A
• V46D0380A (P) • APU 3 Accel X-Axis • APl			TBD	TBD	· · · · · · · · · ·	None	None			V46D0381A V46D0382A
• V46D0381A (P) • APU 3 Accel • AP1			TBD	TBD		None	None			V46D0380A V46D0382A
• V46D0382A (P) • APU 3 Accel Z-Axis • AP1			TBD	TBD		None	None	·		V46D0380A V46D0381A
• V46T0331A (S) • APU 3 Turbine Inlet Tem • AP1	р р		None	None		1750 °F	None			V46P0335A

3-155

۰

3.7 THERMAL PROTECTION SYSTEM (TPS)

3.7.1 Subsystem Description

The TPS consists of materials applied externally to the primary structural shell of the Orbiter vehicle; these materials maintain the airframe outer skin to within acceptable temperature limits. The TPS supports mission requirements by providing the subassemblies (shown in fig. 3.7-1) to maintain acceptable primary structure temperatures:

- High temperature reusable surface insulation (HRSI) and structural attachment components including joints and interface to special function singularities, when exposed to temperatures between 1200°F and 2300°F under design heating conditions.
- Low temperature reusable surface insulation (LRSI) and structural attachment components, including joints and interface to special function singularities, when exposed to temperatures below 1200°F under design heating conditions.
- Reinforced carbon-carbon (RCC) on areas such as leading edge, nose cap, chine, and structural attachments along with internal insulation, when exposed to temperatures greater than 2300°F under design heating conditions.

3.7.2 Functional Paths

There are no functional paths currently identified for this system on the HFT vehicle.

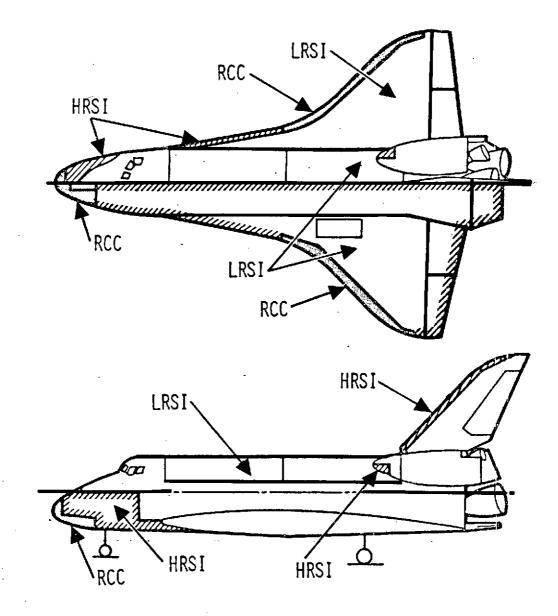


Figure 3.7-1. — Thermal Protection Subsystem (TPS).

3.7.3 PMS Interface

Table 3.7-1 shows the measurements available for PMS interrogation on the HFT vehicle. These consist of 14 temperature measurements located at strategic points on the vehicle.

3.7.4 HFT - PMS System Requirements

The only PMS requirements for the Thermal Protection Control system is to display the temperature data on request. No FDA function for TPS/TCS has been identified.

TABLE 3.7-1.

PMS MEASUREMENT DATA

SUBSYSTEM: THERMAL PROTECTION (TPS)

(1 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V09T1510A — For- ward Fuselage Bondline Temper- ature No. 5	-	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.
V09T1514A — For- ward Fuselage Bondline Temper- ature No. 7	Temp	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.
V09T1516A — For- ward Fuse1age Bondline Temper- ature No.8	Тетр	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.
V09T1524A — For- ward Fuselage Bondline Temper- ature No. 12	Temp	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.
V09T1580A — LH Forward Payload Bay Door Bond- line Temperature No. 1	Temp	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.
V09T1582A — LH Forward Payload Bay Door Bond- line Temperature No. 2	Тетр	-300 to +500°F	N/A	Required for Subsystem Measurement Management (SMM) only.

TABLE 3.7-1.

PMS MEASUREMENT DATA

SUBSYSTEM: THERMAL PROTECTION (TPS)

(2 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V09T1584A — LH Forward Payload Bay Door Bond- line Temperature No. 3	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1590A — RH Forward Payload Bay Door Bond- line Temperature No. 1	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1592A — RH Forward Payload Bay Door Bond- line Temperature No. 2	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1594A — RH Forward Payload Bay Door Bond- line Temperature No. 3	Тетр	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1616A — Cargo Bay Bond- line Temperature No. 9	Тетр	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1624A — Cargo Bay Bond- line Temperature No. 13	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.

TABLE 3.7-1.

PMS MEASUREMENT DATA

SUBSYSTEM: THERMAL PROTECTION (TPS)

(3 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V09T1702A - Aft Fuselage Bond- line Temperature No. 2	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
V09T1724A — Aft Fuselage Bond- line Temperature No. 13	Temp	-300 to +500°F	NA	Required for Subsystem Measurement Management (SMM) only.
· ,				
	<u> </u>			

3.8 LANDING/DECELERATION SYSTEM

3.8.1 Subsystem Description

The Space Shuttle's landing/deceleration system consists of a conventional, dual wheel, forward retract/free fall, aircraft-type landing system. The two main gears and the nose gear have the same material and components found on commercial airlines. The nose gear is equipped with a combination shimmy damper/steering system which is steerable 30 degrees either side of center. The main gears house an anti-skid brake system with locked wheel protection at touchdown. The brakes and nose gear steering are contolled electrically, using the rudder pedals. Gear actuation, steering, and brakes are powered hydraulically. Figures 3.8-1 through 3.8-4 illustrate schematically the functions of the landing/deceleration system.

Provisions for emergency fail-safe free-fall release of the main gear is provided hydraulically. Pyrotechnic release of uplocks is provided for the nose gear to eliminate the need to provide an additional hydraulic power system in the nose of the vehicle. The anti-skid brake system provides the capability to stop the Orbiter within 6,000 feet on a dry runway and 10,000 feet on a wet runway.

Although the main function of the landing system is to provide for mission landings, there are the secondary operation and development of horizontal flight test which impact the design criteria.

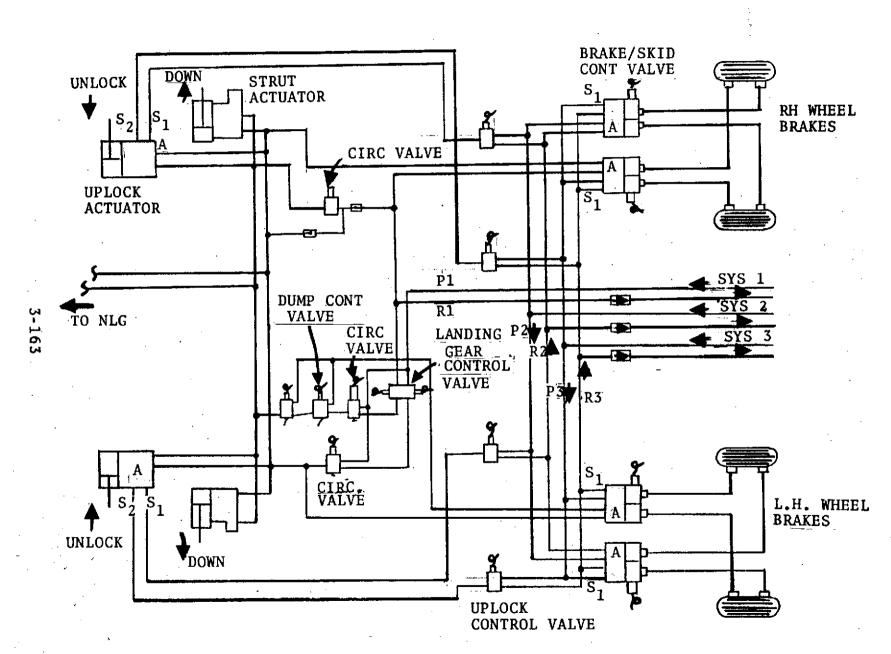


Figure 3.8-1. — Main landing gear system.

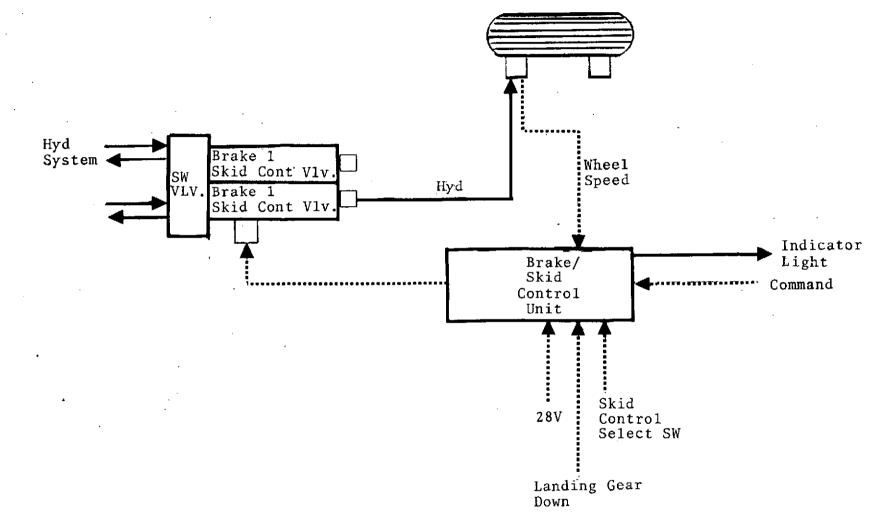
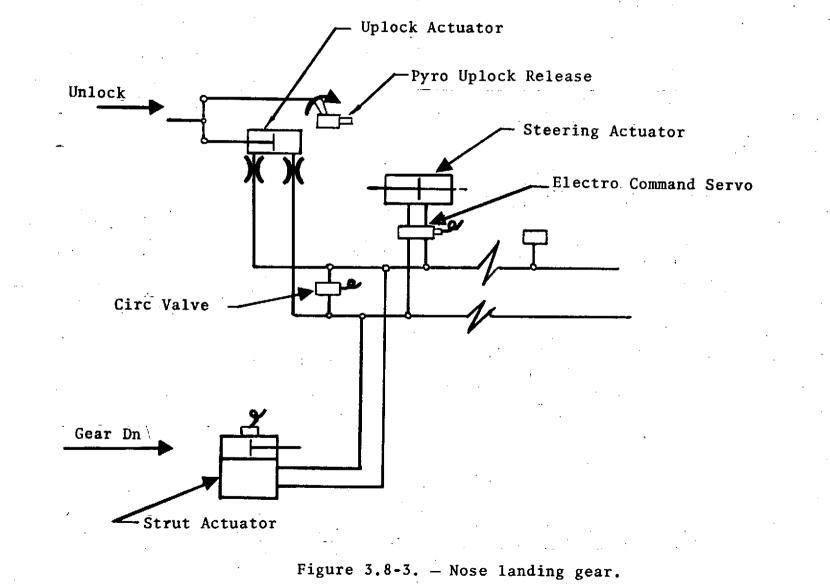



Figure 3.8-2. — Brake system.

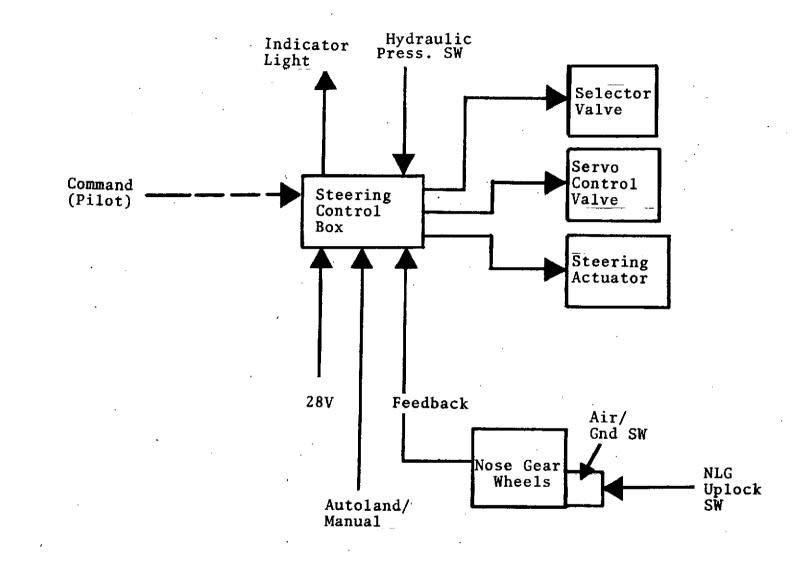


Figure 3.8-4. - Nose gear steering.

3.8.2 Functional Paths

The functions currently identified which this system performs are the following (fig. 3.8-5 shows the functional paths used in the review of this system):

- Braking Main gear hydraulic brakes with anti-skid device (functional paths DL3 and DL4).
- Steering Nose gear steering, using hydraulic actuators (functional path DL2).
- Landing gear activation (functional path DL1).

3.8.3 PMS Interfaces

The instrumentation currently proposed for this system limits the operations and monitoring which can be performed by the PMS. Analysis of the deceleration and landing system in conjunction with the capability of the PMS resulted in the following definitions:

- (1) System condition checks
 - Hydraulic pressure (confirm pressure available at the landing gear selector).
 - Electrical power available to all valves.
 - Temperature limits not exceeded during mission.
- (2) System operation monitoring
 - Landing gear down (must be from independent source to produce backup capability to normal system).

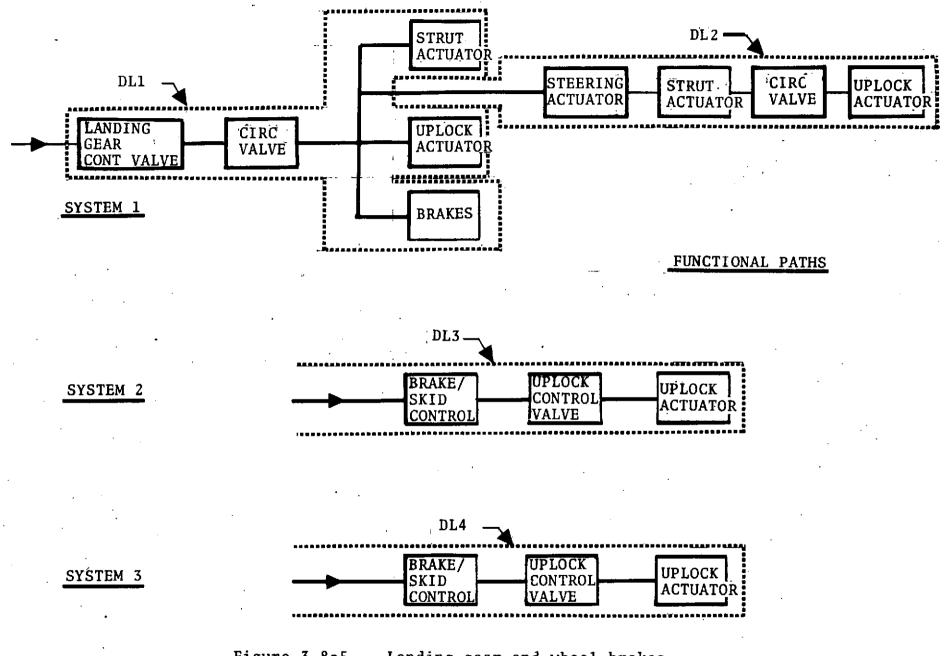


Figure 3.8-5. - Landing gear and wheel brakes.

- Provide warning of landing gear not down (time dependent from gear down command or selection event).
- Electrical power available for brake/steering systems.
- Wheel brake temperatures for taxi tests.

Table 3.8-1 provides a summary of the measurements required to evaluate the health status of the landing/deceleration system. It should be noted that 10 out of 14 of these measurements are not currently included in the MML.

3.8.4 HFT - PMS System Requirements

The PMS-FDA functions implemented for this system should be the following:

- Provide system status checks prior to deployment of the landing gear.
- (2) Determine that all gears are down and locked prior to touchdown, and provide failure indication if malfunction occurs.
- (3) Check status of brake/steering system.
- (4) Monitor brake temperatures during taxi-tests.

Figures 3.8-1 through 3.8-3 are block diagrams of the main landing gear control functions and the nose landing gear, respectively. These diagrams show the electrical, mechanical, hydraulic, and operation interaction. Figure 3.8-4 is a schematic of the nose gear steering system. These figures show the interrelation of the hydraulic power supply to these functions. Table 3.8-2 summarizes the FDA measurements for the L&D subsystem and gives measurement limits where applicable.

TABLE 3.8-1.

PMS MEASUREMENT DATA

SUBSYSTEM: DECELERATION & LANDING

(1 of 2)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
Hydraulic Pres- sure at Landing Gear Control Valve System 1	Press	2000-4050 psia	DL1	New Measurement recommended. Re- quired for the precondition check. Determination of hydraulic power available for landing gear actua- tion.
Electrical Power To Landing Gear Control Valve, Uplock Valves, Circulation Valves, Dump Con- Control Valves			DL1	New measurement recommended. Re- quired for precondition check. Determination of system status prior to landing gear selection.
V51S0005E — Landing Gear HDL UP SW	Event		DL1	Determine selection of landing gear up or down.
V51X0125E — Left Main Gear Down- locked	Event		DL1	Will provide backup to normal sys- tem providing instrumentation source is independent of cockpit system.
V51X0225E — Right Main Gear Downlocked	Event		DL1	Same as above.
V51X0325E — Nose Gear Downlocked			DL1	Same as above.
LH Forward Brake Press.	Press	2000-4050 psia	DL1, (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.

.

C3

TABLE 3.8-1.

PMS MEASUREMENT DATA

SUBSYSTEM: DECELERATION & LANDING

(2 of 2)

MEASUREMENT	· TYPE	RANGE	FUNCTIONAL PATH	REMARKS		
LH Rear Brake Pressure	Press	2000-4050 psia	DL2 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.		
RH Forward Brake Pressure	Press	2000-4050 psia	DL1 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.		
RH Rear Brake Pressure	Press	2000-4050 psia	DL2 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake acutation.		
LH Inboard Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to i sure brakes are not over-heated during taxi tests.		
LH Outboard Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.		
RH In board Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.		
RH Outboard Brake Tempera- ture	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.		

TABLE 3.8-2.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: LANDING & DECELERATION

(1 of 2)

	PMS ACTIVITY TEM DATA: MEASUREMENT NO.	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
•	MEASUREMENT ID FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
• ¦	New Measurement (P) HYD Press. Landing Gear Control Valve DL1	· .		3200 psia	2500 psia		4050 psia	2000 psia	-		V58P0114A
. • <u>E</u>	New Measurement (P) Lec. Pwr. For Landing Gear Valves DL1		1			· · · · · ·	•				
• 3	/51S0005E (P) Landing Gear HDL Up Switch DL1	· · · · · · · · · · · · · · · · · · ·	1	1					-		V51X0125E. V51X0225E V51X0325E
• 1	/51X0125E (P) MG Downlocked DL1		-			-					V51S0005E
• •	/51X0225E (P) RMG Downlocked DL1		1			•					V51S0005E
•. N	/51X0325E (P) NLG Downlocked DL1		4						·		. V51S0005E
• 1	lew Measurement (P) .H FWD Brake Pressure DL1 (DL3)			3200 psia	2500 psia	1	4050 psia -	2000 psia			V51P0114A

TABLE 5.8 4.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: LANDING & DECELERATION

(2 of 2)

PMS ACTIVITY SYSTEM DATA:	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREND CHECK	HARD LIMI CHEC	т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
MEASUREMENT NO.MEASUREMENT ID	E	URATI								
• FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	LOW	HIGH	LOW	
New Measurement (P) LH Rear Brake Press. DL2 (DL3)			3200 psia	2500 psia	V . (4050 psia	2000 psia			V58P0214A
New Measurement (P) RH Fwd Brake Press. DL1 (DL3)			3200 psia	2500 psia		'4050 psia	2000 psia		**	V58P0114A .
New Measurement (P) RH Rear Brake Press. DL2 (DL3)		•	3200 psia	2500 psia	¥ .	4050 psia	2000 psia			V58P0214A
New Measurement (P) LH Inboard Brake Temperature DL1, DL2			TBD	Not Reqd.		TBD	Not Reqd.			
New Measurement (P) LH Outboard Brake Temperature DL1, DL2			TBD	Not Reqd.	×	TBD	Not Reqd.			
New Measurement (P) RH Inboard Brake Temperature DL1, DL2			TBD	Not Reqd.		TBD	Not Reqd.			• -
New Measurement (P) RH Outboard Brake Temperature DL1, DL2		·	TBD	Not Reqd.		TBD	Not Reqd.			

3-174

ł

3.9 DISPLAYS AND CONTROLS

3.9.1 Subsystem Description

The displays and controls (D&C) subsystem consists of those equipments and devices in the Orbiter crew compartment which allow the crew to supervise, control, and monitor the functions of the Shuttle vehicle and its subsystems. The D&C subsystem includes all D&C panels; flight instruments; manual controllers; CRT displays, keyboards, and associated electronics; decoding and conversion electronics associated with interfacing instruments and manual controllers; crew compartment interior and integral lighting; and the caution and warning subsystem.

In addition to displaying PMS information to the crew, certain D&C components are themselves candidates for PMS FDA. Excluding D&C panels and lighting, the following electronic and electromechanical components comprise the D&C subsystem.

a. <u>Flight Displays</u>

Attitude Direction Indicator (3)Horizontal Situation Indicator (2)Airspeed/Mach Indicator (2)Altitude/Vertical Velocity Indicator (2)G-Meter (1)Mission Event Tower (2)Event Timer (2)CRT Display Unit (4)Delete 1 for HFTKeyboard (3)Delete 1 for HFTAlpha Meter (1)

3-175

1 34

Cross Pointers (1) Radar Altimeter Indicator (1) C&W Annunciator Assembly (1) Surface Position Indicator (1) Add 1 for HFT Total Air Temperature Indicator (1) HFT only

b. Flight Controls

Rotation Hand Controller (3) Delete 1 for HFT Master Thrust Controller (1) Delete for HFT Translation Hand Controller (2) Delete for HFT Manipulator Hand Controller (1) Delete for HFT Rudder Pedal Transducer Assembly (2) Speed Brake Hand Controller (2)

c. <u>Display and Subsystem Interface Electronics</u>

Display Electronics Unit (4) Delete 1 for HFT Display Driver Unit - Fwd (2) Display Driver Unit - Aft (1) Delete for HFT Caution and Warning Unit (1) Performance Monitor Electrical Unit (1)

d. D&C for Subsystem Management

Dedicated meters, tape indicators, digital displays, and flag and illuminated event indicators are employed for display of subsystem data. Controls consist of toggle switches, rotary switches, thumb wheels, push button switches, circuit breakers, valves, knobs, and handles.

Figure 3.9-1 illustrates schematically some of the major components and interfaces within the D&C subsystem.

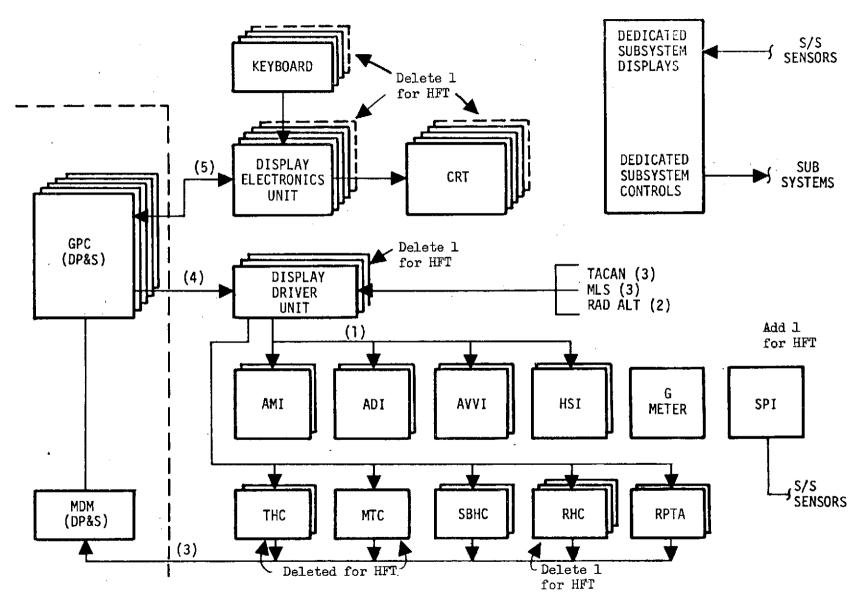


Figure 3.9-1. - Displays and controls.

3.9.2 Functional Paths

In general, each of the D&C components having BITE is considered a functional path, since fault detection and isolation of each is inherent within the PMS. Equipment which affects subsystem measurement data throughput, and which must be checked as a precondition for FDA includes the Display Electronic Units, Display Driver Units, Performance Monitor Electrical Unit, Keyboards, and CRT Display Units. These units should have BITE signals available for FDA processing as precondition tests. BITE measurements from other D&C components would be processed as FDA health status measurements for the D&C subsystem.

Generally, those equipments identified previously in sections 3.9.1 (a) and 3.9.1 (c) are candidates for BITE. Some of these equipments will be more amenable to BITE than others (i.e., those that are software driven, etc.). Studies are currently being done by the Shuttle contractor and potential subcontractors to define BITE applicability for these equipments.

The equipments listed in 3.9.1 (b) are generally more amenable to crew-initiated test sequences prior to use, since they do not function continuously during all phases of the mission. These equipments are not considered candidates for continuous FDA monitoring. Contingent on results of BITE analyses for these equipments, the following preliminary functional path identifications are assigned:

Attitude Direction Indicators	DC1, DC2, DC3
Horizontal Situation Indicators	DC4, DC5
Airspeed/Mach Indicator	DC6, DC7
Attitude/Vertical Velocity Indicator	DC8, DC9
G-Meter	DC10
Mission Event Timers	DC11, DC12
Event Timers	DC13, DC14
CRT Display Units	DC15, DC16, DC17
Keyboards	DC18, DC19
Alpha Meter	DC20
Radar Altimeter Indicator	DC21
C&W Annunciator Assembly	DC22
Surface Position Indicators	DC23, DC24
Total Air Temperature Indicator	DC25
Display Electronic Units	(see Table 3.1.1)
Display Driver Units	DC26, DC27
Caution and Warning Unit	DC28
Performance Monitor Electrical Unit	DC29

3.9.3 PMS Interfaces

Table 3.9-1 summarizes the measurement requirements for the D&C functional paths discussed above. The majority are BITE discretes that provide indications of the operational integrity of the equipment.

TABLE 3.9-1

PMS MEASUREMENT DATA

SUBSYSTEM: ____DISPLAY & CONTROL

(Page 1 of 2)

MEASUREMENT	. TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V73X 1311E	Discrete	I/0	DC4 (HSI)	Discrete BITE for FDA Processing
V73X 1411E	Discrete	I/0	DC5 (HSI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC1 (ADI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC2 (ADI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC3 (ADI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC6 (AMI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC7 (AMI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC8 (AVVI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC9 (AVVI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC10 (G-Meter)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC11 (MET)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC12 (MET)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC13 (ET)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC14 (ET)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/O	DC20 (Alpha)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC21 (Rad/Alt)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC22 (C&W)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC23 (SPI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/0	DC24 (SPI)	Discrete BITE for FDA Processing
New Measurement	Discrete	I/O	DC25 (TATI)	Discrete BITE for FDA Processing

TABLE 3.9-1

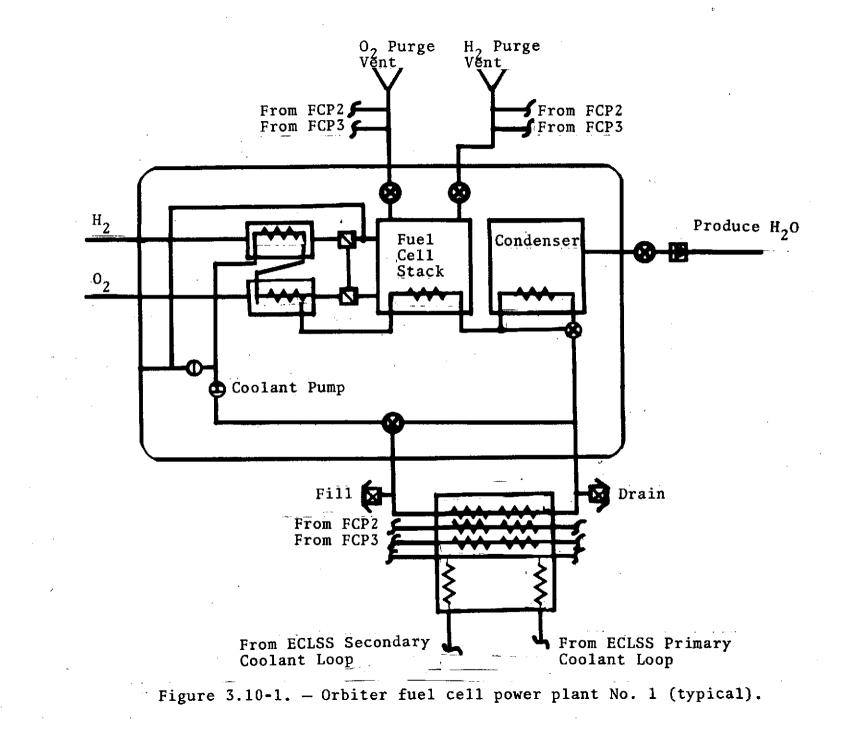
PMS MEASUREMENT DATA

SUBSYSTEM: DISPLAY & CONTROL

(Page 2 of 2)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V73X 1300E	Discrete	I/0	DC26 (DDU)	Precondition test for all FDA on the D&C System (BITE)
V73X 1400E	Discrete	I/0	DC27 (DDU)	17 TT TT TT TT
New Measurement	Discrete	I/0	DC29 (PM Unit)	tt it it tt
New Measurement	Discrete	I/0	DC15 (CRT)	17 T1 \$1 FT \$3
New Measurement	Discrete	1/0	DC16 (CRT)	13 ty ti 18 ty
New Measurement	Discrete	1/0	DC17 (CRT)	17 71 81 18 18
New Measurement	Discrete	I/0	DC18 (K/B)	17 F1 F1 17 18
New Measurement	Discrete	I/0	DC19 (D/B)	15 TT 19 TT 77
V73S2065E	Discrete	I/0	DC19, DE2	Precondition Configuration Status
V73S2066E	Discrete	I/0	DC19, DE2	Precondition Configuration Status
V73S2061E	Discrete	I/0	DC18, DE1	Precondition Configuration Status
V73S2062E	Discrete	I/0	DC18, DE1	Precondition Configuration Status
V73S2063E	Discrete	I/0	DC18, DE2	Precondition Configuration Status
V73S2001E	Discrete	I/0	DE1	Precondition Configuration Status
V73S2002E	Discrete	I/0	DE1	Precondition Configuration Status
V73S2011E	Discrete	I/0	DE 2	Precondition Configuration Status
V73S2012E	Discrete	I/0	DE 2	Precondition Configuration Status
V73S2021E	Discrete	I/0	DE 3	Precondition Configuration Status
V73S2022E	Discrete	I/0	DE 3	Precondition Configuration Status

3.10 ELECTRICAL POWER GENERATION SUBSYSTEM


3.10.1 Subsystem Description

For HFT, primary power is supplied by three fuel cells. The EPG system consists of two major subsystem elements which, as installed, will be less complex than similar systems on operational vehicles. The two elements are:

- Power Reactant Storage and Distribution (PRSD).
- The fuel cell power plants (FCP).

Because of the short flight times involved, high pressure gaseous O_2 , H_2 , and appropriate tankage will be used instead of cryogenic reactants and tankage. Also, H_2O products are routed to a collection tank instead of being passed to the ECLSS for eventual crew usage.

3.10.1.1 FCP. The FCP is the primary source of electrical power for all Orbiter systems. Three FCP's are utilized in the EPG subsystem to supply three normally isolated These buses in turn feed all other distribumain DC buses. tion buses and/or loads. The FCP illustrated in figure 3.10-1 consists of those components, subassemblies, and assemblies necessary to produce electrical power and potable product water (not used on HFT) while consuming gaseous hydrogen and oxygen supplied by the PRSD. Waste heat generated during operation of the FCP's is rejected to ECLSS by means of an external coolant loop. The FCP includes a reactor stack and reactant control, thermal control, water removal, purge devices, instrumentation, and electrical control. For purpose's of functional path analysis, as described in subsequent discussions, each FCP is considered an LRU.

Each FCP is characterized as supplying 27.5 to 32.5 Vdc over a power range of 2.0 to 12.0 kW. Steadystate supply is 2.0 to 7.0 kW with a peakload capability of 12.0 kW for 15 minutes.

3.10.1.2 <u>PRSD</u>. PRSD consists of necessary tankage, plumbing, valves, regulators, filters, instrumentation, etc., to contain, distribute, and control the gaseous H_2/O_2 reactants required by the FCP's. In the HFT configuration illustrated in figure 3.10.2, the PRSD assemblies (from the H_2 and O_2 isolation subassembly input backward) are modified. Carryon high-pressure tanks are arranged in two three-tank clusters for H_2 and two two-tank clusters for O_2 . The use of noncryogenic fuels permits use of the simple plumbing, regulation, and vent relief installation illustrated. Design requirements contained in MCR0628/0664 provide the following sizing detail:

٠	Total Energy	25.2	kWH
٠	Peak Design Power Level	15.3	kW
		н ₂	02
٠	Usable Reactants — LBS	2.6	20.8
•	Maximum Flow Rate — LB/Hr	1.43	11.4
٠	Operating Pressure — PSIA	250-150	900-200
•	Maximum Supply Pressure — PSIA	335	1050

The following reactant flow profile for baseline missions is also provided for "Drop" and Landing:

		^H 2	⁰ 2
٠	Cruise — Lb/Hr	0.88	~ 7.0
•	Peak Flow — Lb/Hr	1.44	11.45

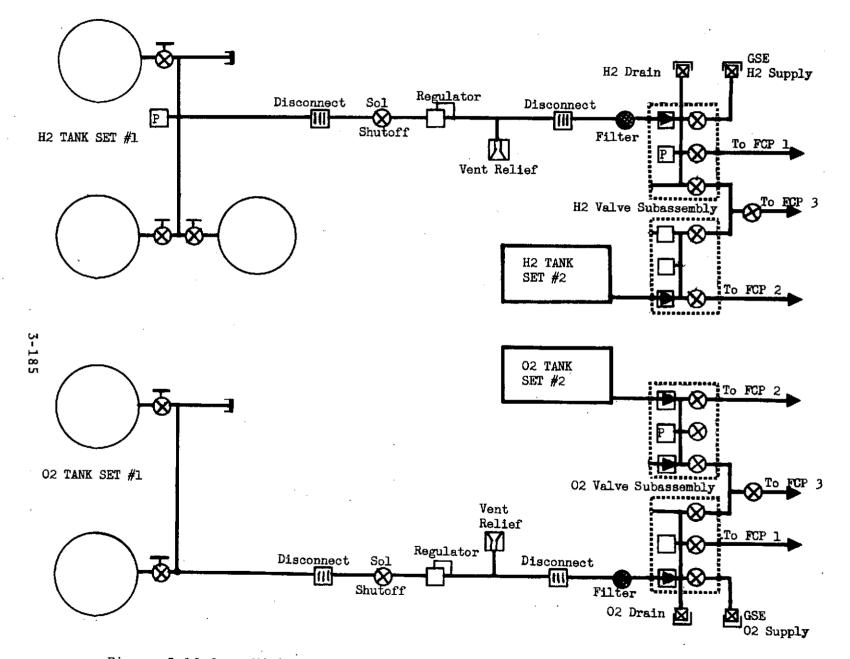


Figure 3.10-2. - High pressure gas storage system (Orbiter 101 MCR 0628/0664).

3.10.2 Functional Path Analysis

An analysis has been conducted on the EPG subsystem elements to identify the number of functional paths, as previously defined in section 3.0, requiring PMS services. Methodology employed identifies and tabulates involved components and/or LRU groupings, then categorizes and tabulates these groupings into hardware functions, and finally tabulates those hardware functions satisfying the functional path definition statements. The PRSD O_2 , H_2 , and FCP assemblies are treated separately for analytical purposes. Appropriate sketches and tables are included to support these analyses at each level of detail. Resulting functional paths are summarized as "major subsystem functions."

Table 3.10-1 summarizes the coding scheme employed to identify/categorize component groupings, hardware functions, and resulting functional paths.

FCP component functions are illustrated by figure 3.10-3 and are summarized in table 3.10-2. Resulting hardware functions and functional paths are summarized in table 3.10-3.

PRSD O₂ component functions are illustrated by figure 3.10-4 and summarized in table 3.10-4. PRSD O₂ hardware functions and functional paths are summarized in table 3.10-5.

PRSD H_2 component functions are illustrated by figure 3.10-5 and are summarized in table 3.10-6. PRSD H_2 hardware functions and functional paths are summarized in table 3.10-7.

Subsystem Element	FP Code	Hardware Function Analysis Code		Component Function Analysis Code	
Fuel Cells	FPIFPN	FCHx-y	x = Code No. y = Fuel Cell No. y=0 = Common path	FCxy x = Fuel Cell No. x=0 = Common path y = Component/grouping code	
prsd o ₂	POIPON	ROFx-y	x = Code No y = Fuel cell/ Tank set No. y=0 = Common path	ROxy x = Tank set No y = Component/groupin code	
PRSD H ₂	PHI PHN	RHFx-y	x = Code No. y = Fuel Cell/ Tank set No. y=0 = Common path	RHxy x = Tank set No. y = Compact Grouping code	

TABLE 3.10-1. - EPG FUNCTIONAL ANALYSIS CODES

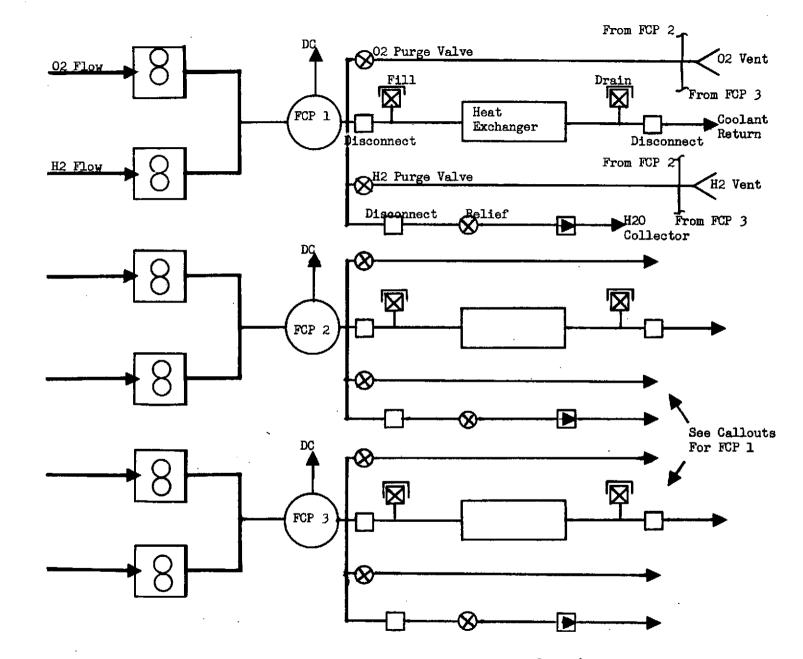


Figure 3.10-3. - Fuel cell plant component functions.

3-188

TABLE 3.10-2. - FUEL CELL COMPONENT FUNCTIONS

FCP#1

```
FC11 = 0_2 Flow • H<sub>2</sub> Flow • Fuel Cell 1
FC12 = 0_2 Purge Valve
FC13 = H<sub>2</sub> Purge Valve
FC14 = H_2^{-0} Disconnect · H_2^{0} Relief Valve · H_2^{0} Check Valve
FC15 = Disconnect · Heat Exchanger · Disconnect
FCP#2
FC21 = O_2 Flow \cdot H_2 Flow \cdot Fuel Cell 2
FC22 = O_2 Purge Valve
FC23 = H_2 Purge Valve
FC24 = H_2O Disconnect \cdot H_2O Relief Valve \cdot H_2O Check Valve
FC25 = Disconnect · Heat Exchanger · Disconnect
FCP#3
FC31 = O_2 Flow \cdot H_2 Flow \cdot Fuel Cell 3
FC32 = 0_2 Purge Valve
FC33 = H_2 Purge Valve
FC34 = H_2O Disconnect \cdot H_2O Relief Valve \cdot H_2O Check Valve
FC35 = Disconnect · Heat Exchanger · Disconnect
COMMON
FC06 = DC Bus 1 + DC Bus 2 + DC Bus 3
FC07 = H_2O Tankage
FC08 = 0_2 Vent Port
FC09 = H_2 Vent Port
                                                 Code:
                                                 FCXY
```

y=0 = Common function

x = Fuel Cell No.

y = component/grouping No.

FCP(I) = Fuel Cell Power Plant; I = 1, 2, 3

TABLE 3.10-3. - FUEL CELL HARDWARE FUNCTIONS AND PMS FUNCTIONAL PATHS

HARDWARE FUNCTIONS

FCH1 - Electrical Power Output FCH2 - Product H₂O FCH3 - Fuel Cell Coolant Loop FCH4 - 0, Purge FCH5 - H₂ Purge FCH1-1 = (FC11)(FC06)FCH1-2 = (FC21)(FC06)FCH1-3 = (FC31)(FC06)FCH2 = FC07 [FC14 + FC24 + FC34]FCH3-1 = (FC11)(FC15)FCH3-2 = (FC21)(FC25)FCH3-3 = (FC31)(FC35)FCH4-1 = (FC11)(FC12)(FC08)FCH4-2 = (FC21)(FC22)(FC08)FCH4-3 = (FC31)(FC32)(FC08)FCH5-1 = (FC11) (FC13) (FC09)FCH5-2 = (FC21)(FC23)(FC09)FCH5-3 = (FC31)(FC33)(FC09)

PMS FUNCTIONAL PATHS

FP1	=	FCH1-1
FP2	=	FCH1 - 2

FP3 = FCH1 - 3

Code:

FCHx-y

x = Hardware function No.

y = Fuel Cell No.

y=0 = Common path

FCH = Fuel Cell Hardware

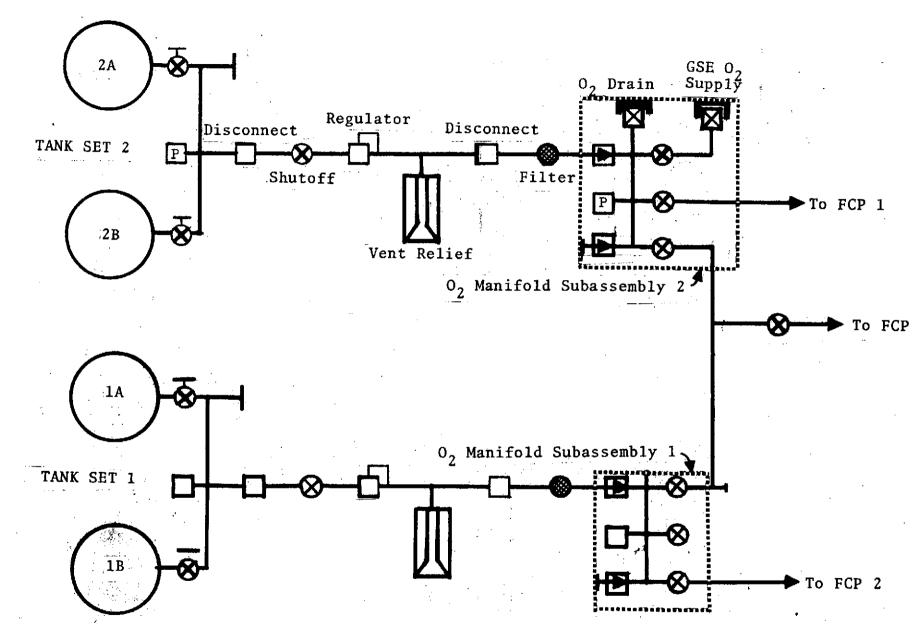


Figure 3.10-4. - Oxygen PRSD functions.

TABLE 3.10-4. - PRSD 02 COMPONENT FUNCTIONS

ROA1 = Tank la · Manual Valve la ROA2 = Tank lb · Manual Valve 1b ROA3 = Capped line ROA4 = Disconnect la · SO1 Shutoff Valve · Regulator ROA5 = Vent Relief ROA6 = Disconnect 1b · Filter · Check Valve 1a ROA7 = Shutoff Valve la ROA8 = Shutoff Valve 1b ROA9 = Check Valve 1b · Capped line ROA10 = Shutoff Valve 1c ROA11 = Shutoff Valve 1d ROB1 = Tank 2a · Manual Valve 2a ROB2 = Tank 2b · Manual Valve 2b ROB3 = Capped line ROB4 = Disconnect 2a · SO1 Shutoff Valve · Regulator ROB5 = Vent Relief ROB6 = Disconnect 2b · Filter · Check Valve 2a ROB7 = Shutoff Valve 2a ROB8 = Shutoff Valve 2b ROB9 = Capped line . Check Valve 2b ROB10 = Drain Cap ROB11 = GSE Supply Cap and Shutoff Valve

Code:

ROxy

x = Tank set No.

y = Component/grouping No.

TABLE 3.10-5. - PRSD O₂ HARDWARE FUNCTIONS AND PMS FUNCTIONAL PATHS

HARDWARE FUNCTIONS

= Supply 0_2 to Fuel Cells, x = 1, 2, or 3 ROF1-x ROF 2 = 0₂ Drain Purge ROF3-x = Vent Relief, x = 1, or 2= GSE 0_2 Supply to Fuel Cells, x = 1, 2, or 3 ROF4-xROF1-1 = ROB7 [(ROA1 + ROA2)(ROA4)(ROA6)(ROA10)(ROB8) +(ROB1 + ROB2)(ROB4)(ROB6)]ROF1-2 = ROA8 [(ROA1 + ROA2)(ROA4)(ROA6) + (ROB1 + ROB2)(ROB4)(ROB6) (ROB8) (ROA10)] ROF1-3 = ROA11 [(ROA1 + ROA2)(ROA4)(ROA6)(ROA10) + (ROB1 + ROB2)(ROB4)(ROB6)(ROB8)] = ROB10 [(ROB1 + ROB2 + ROB3)(ROB4)(ROB6) + ROF2 (ROA1 + ROA2 + ROA3) (ROA4) (ROA6) (ROA10) (ROB8)] ROF3-1 = (ROA1 = ROA2)(ROA4)(ROA5)ROF3-2 = (ROB1 + ROB2)(ROB4)(ROB5)ROF4-1 = (ROB11)(ROB7)ROF4-2 = (ROB11)(ROB8)(ROA10)(ROA8)ROF4-3 = (ROB11)(ROB8)(ROA11)

PMS FUNCTIONAL PATHS

PO1 = (ROA1 + ROA2)(ROA4)(ROA6)PO2 = $(O_2 \text{ Manifold 1 Subassembly})$ PO3 = (ROB1 + ROB2)(ROB4)(ROB6)PO4 = $(O_2 \text{ Manifold 2 Subassembly})$

Code:

ROFx-y

ROF = Reactant Oxygen Function

x = Hardware function - No

y = Fuel Cell/Tank set No.

y=0 = Common

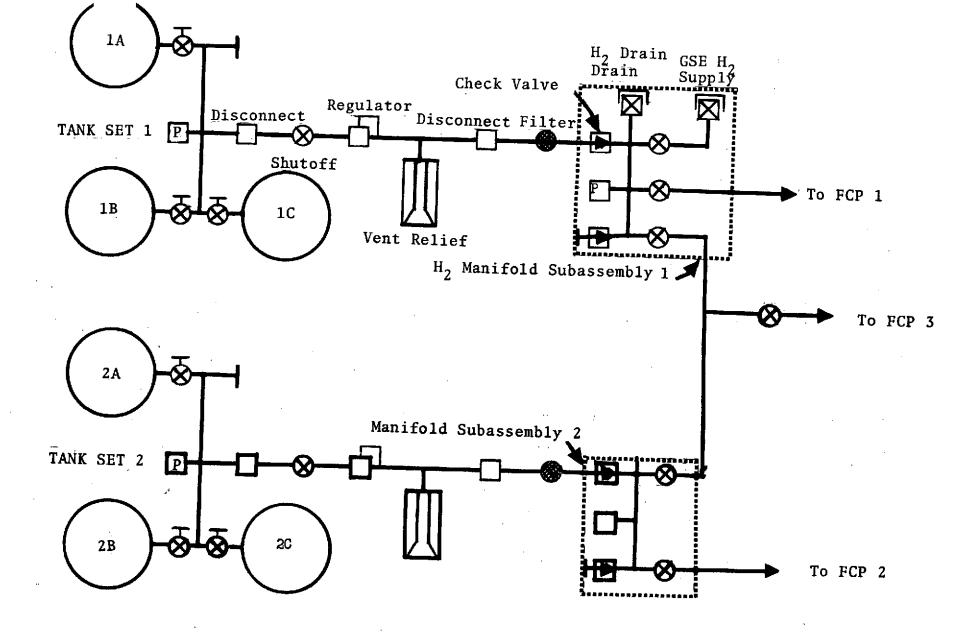


Figure 3.10-5. — Hydrogen PRSD component functions.

TABLE 3.10-6. - PRSD H₂ COMPONENT FUNCTIONS

RHA1 = Tank 1a · Manual Valve 1a RHA2 = Tank 1b · Manual Valve 1b RHA3 = Tank 1c • Manual Valve 1c RHA4 = Capped line 1 RHA5 = Disconnect la · SO1 Shutoff Valve · Regulator RHA6 = Vent Relief RHA7 = Disconnect 1b · Filter · Check Valve 1a RHA8 = Capped line · Check Valve 1b RHA9 = Shut off Valve la RHA10 = Shut off Valve 1b RHA11 = Shut Off Valve 1c $RHA12 = H_2$ Drain Cap RHA13 = GSE H_2 Supply Valve and Cap RHB1 = Tank 2a · Manual Valve 2a RHB2 = Tank 2b • Manual Valve 2b RHB3 = Tank 2c · Manual Valve 2c RHB4 = Capped Line 2 RHB5 = Disconnect 2a · SO1 Shutoff Valve 2 · Regulator 2 RHB6 = Vent Relief 2 RHB7 = Disconnect 2b · Filter 2 · Check Valve 2a RHB8 = Capped line 2 · Check Valve 2b RHB9 = Shutoff Valve 2a RHB10 = Shutoff Valve 2b

Code:

RHxy

RH = Reactant Hydrogen

x = Tank set No.

y = Component/grouping No.

TABLE 3.10-7. - PRSD H₂ HARDWARE FUNCTIONS AND PMS FUNCTIONAL PATHS

```
HARDWARE FUNCTIONS
 1 - RHF1 = Supply H_2 to Fuel Cells No 1, 2, 3
 2 - RHF2 = H_2 Drain/Purge
 3 - RHF3 = Vent Relief
 4 - RHF4 = GSE H<sub>2</sub> Supply to Fuel Cells
 RHF1-1 = RHA10
                   [(RHA1 + RHA2 + RHA3)(RHA5)(RHA7) +
                     (RHB1 + RHB2 + RHB3)(RHB5)(RHB7)(RHB9)(RHA9)]
RHF1-2 = RHB10 [(RHA1 + RHA2 + RHA3)(RHA5)(RHA7)(RHB9) +
                    (RHB1 + RHB2 + RHB3)(RHB5)(RHB7)]
RHF1-3 = RHA11 [(RHA1 + RHA2 + RHA3)(RHA5)(RHA7)(RHA9) +
                     (RHB1 + RHB2 + RHB3)(RHB5)(RHB7)(RHB9)]
       = RHA12 [(RHA1 + RHA2 + RHA3 + RHA4)(RHA5)(RHA7) +
RHF2
                     (RHB1 + RHB2 + RHB3 + RHB4)(RHB5) (RHB7)
                     (RHB9)(RHA9) + (RHA13) + (RHB8)(RHB9)(RHA9) +
                     (RHA8)]
RHF3-1 = RHA6 [(RHA1 + RHA2 + RHA3)(RHA5)]
RHF3-2 = RHB6 [(RHB1 + RHB2 + RHB3)(RHB5)]
RHF 4-1 = RHA13 [RHA10]
RHF4-2 = RHA13 [(RHA9)(RHB9)(RHB10)]
RHF4-3 = RHA13 [(RHA9)(RHB9)(RHB10)]
FUNCTIONAL PATHS
PH1 = (RHA1 + RHA2 + RHA3)(RHA5)(RHA7)
PH2 = (H_2 Manifold 1 Subassembly)
PH3 = (RHB1 + RHB2 + RHB3)(RHB5)(RHB7)
                                                  Code:
PH4 = (H_2 Manifold 2 Subassembly)
                                                  RHFxy
                                                  x = Hardware Funct. No.
                                                  y = Fuel Cell/Tank Set No.
```

3-196

y=0 = Common

The EPG functional paths and resulting major functions are illustrated and summarized in figure 3.10-6.

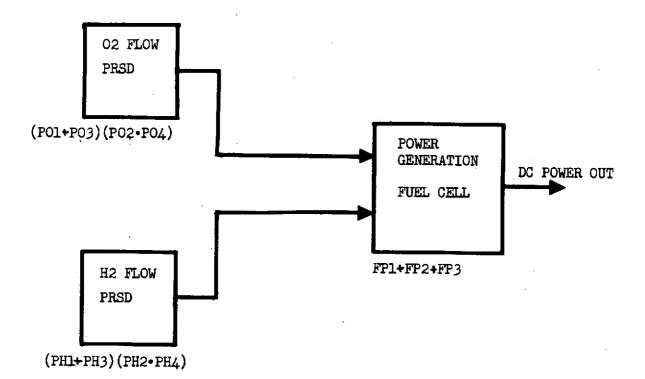

3.10.3 EPG Subsystem/PMS Interfaces

Table 3.10-8 summarizes the operational instrumentation measurements necessary to perform PMS fault detection and annunciation (FDA) for the EPG subsystem.

3.10.4 PMS Requirements

Table 3.10-9 lists the primary and secondary measurements for each EPG functional path previously identified.

Correlation measurements where indicated must be regarded as preliminary, and, in general, are directly complementary to primary measurements. FDA processes indicated are predicated on a viable subsystem configuration as determined by crew procedures for manual functions, and by SCM sources and/or crew procedures in subsystem modes/submodes where instrumentation is available.

Fuel Cell 1 Power Out = $[(PO1+PO3)(PO2 \cdot PO4)]$ [PH1+PH3)(PH2 \cdot PH4)] FP1 Fuel Cell 2 Power Out = $[(PO1+PO3)(PO2 \cdot PO4)]$ [PH1+PH3)(PH2 · PH4)] FP2 Fuel Cell 3 Power Out = $[(PO1+PO3)(PO2 \cdot PO4)]$ [PH1+PH3)(PH2 · PH4)] FP3

Figure 3.10-6. - EPG functional path summary.

TABLE 3.10-8.

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER GENERATION

3-199

(1 of 3)

_

2

TYPE	RANGE	FUNCTIONAL PATH	REMARKS
Voltage	27.5-32.5 VDC	FP:1	Precondition: V45X0105E — FC # 1 Ready
Current	0 - 500 Amps	FP 1	Precondition: V45X0105E - FC # 1 Ready
Pressure	0-100 psia	F.P. 1	C&W correlation V45R0160A — FC # 1 O ₂ Flow
Pressure	0-100 psia	FP 1	C&Wcorrelation V45R0170A — FC # 1 H ₂ Flow
Тетр	-50° +300°F	FP 1	C&W Precondition - TBD
Voltage	27.5-32.5 VDC	FP 2	Precondition: V45X0205E — FC # 2 Ready
Current	0-500 Amps	FP 2	Precondition: V45X205E - FC # 2 Ready
Pressure	0-100 psia	FP. 2	C&W correlation V45R0260A — FC # 2 O ₂ Flow
Pressure	0-100 psia	FP 2	C&W correlation V45R0270A - FC # 2 H ₂ Flow
	Voltage Current Pressure Pressure Temp Voltage Current Pressure	Voltage $27.5-32.5$ VDCCurrent $0 - 500$ AmpsPressure $0-100$ psiaPressure $0-100$ psiaTemp $-50^{\circ}_{+300^{\circ}}F$ Voltage $27.5-32.5$ VDCCurrent $0-500$ AmpsPressure $0-100$ psia	Voltage 27.5-32.5 VDC FP:1 Current 0 - 500 Amps FP 1 Pressure 0-100 psia FP 1 Pressure 0-100 psia FP 1 Temp -50° +300°F FP 1 Voltage 27.5-32.5 VDC FP 2 Current 0-500 Amps FP 2 Pressure 0-100 psia FP 2 Pressure 0-100 psia FP 2

TABLE 3,10-8.

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER GENERATION

(2 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V45T0220A — FC#2 stack cool out Temp	Temp	-50° +300°F	FP 2	C&W Precondition TBD
V450300A — FC#3 Voltage	Voltage	27.5-32.5 VDC	FP 3	Precondition: V45X0305E — FC # 3 Ready
V450301A - FC#3 Current	Current	0-500 Amps	FP 3	C&W correlation V45X0305E FC #3 Ready
V45P0365A — FC#3 O ₂ Req. Pressure	Pressure	0-100psia		C&W Correlation V45R360A - FC #3 0 ₂ Flow
V45P0375A — FC#3 H ₂ Req. Pressure	Pressure	0-100psia	FP 3	C&W correlation V45370A - FC #3 H ₂ Flow
V45T0320A - FC#3 Stack Cool Out Temp	Temp	-50°F +300°F	FP 3	C&W Precondition , TBD
V45P1140A — 0 ₂ Manifold 1 Pressure	Pressure	900 ± 5 psia	PO 2	Correlation:V45P1145A — O ₂ Manifold 2 Pressure
V45P1145A — O ₂ Manifold 2 Pressure	Pressure	900 ± 5 psia	PO 4	Correlation:V45P1140A — O ₂ Manifold 1 Pressure
(45P1100A - Tank (set) 1 0 ₂ Pres	Pressure	2200 200 psia	PO 1	C&W correlation TBD

TABLE 3.10-8.

PMS MEASUREMENT DATA

SUBSYSTEM: ELECTRICAL POWER GENERATION

(3 of 3)

	MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
	V45P1200A - Tank (set) 2 0 ₂ Pres.	Pressure	2200 200 psia	PO 3	C&W correlation TBD
	V45P2140A — H ₂ Manifold 1 Prés	Pressure	250 ± 5 psia	PH 2	Correlation:V45P2145A — H ₂ Manifold 2 Pressure
	V45P2145A — H ₂ Manifold 2 Pressure	Pressure	250 ± 5 psia	PH 4	Correlation:V45P2140A — H ₂ Manifold 1 Pressure
3-20	V45P2100A — H ₂ Tank (set) 2 Pressure	Pressure	2400 150 psia	PH 1	C&W correction: TBD
1	V45P2200A - H ₂ Tank (set) 2 Pressure	Pressure	2400 150 psia	РН 3	C&W correlation TBD
-					

TABLE 3.10-9.

FMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER GENERATION

(1 of 4)

1

PMS ACTIVITY SYSTEM DATA:	PRE CON TES	DITION T	SOFT LIMIT CHECK		TREND CHECK	HARJ LIM CHEX	ÍT	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	ļ	T				WARNING		
	HARI STAT	CONF	HICH	LÓW		HIGH	LOW	HIGH	LOW	
V45V0100A FCP 1 Voltage FP 1	4	¥45X- 01,05E	TBD	TBD	N/A	32-5 	27-5 VDC	N/A	N/A	
V45C0101A — FCP 1 Current FP 1	7	V45X- 0105E	TBD	TBD	гвр	500 Amps	0	N/A	N/A	
V4SP0105A FCP 1 O ₂ Req. Press FP 1	/		TBD	TBD	ſBD	100 psia	TBD	TBD (Req'd.)	TBD (Req'd)	V45R0160A
V45P0175A — FCP I H ₂ Req. Press. FP 1		1	TBD	TBD	TBD	100 psia	TBD	твр	TBD (Req'd.	
V45T0120A — FCP 1 Stack Cool Out Temp	1	7	TBD	TBD	TBD	+300°F	-50°F	+300°F	-50°F	TBD .
V4SX0105E — FCP 1 Ready FP 1	1	1	N/A	N/A	N/A	Event	Event	N/A	N/A	N/A
V45R0160A - FCP 1 0 ₂ Flow FP 1	1		TBD	TBD	TBD	TBD	TBD	N/A	N/A	V45P0165A
/45R0170A — FCP 1 H ₂ Flow FP 1	1		TBD	TBD	TBD	TBD	TBD	N/A	N/A	. V45P0175A
V45V0200A - FCP 2 Voltage FP 2	1	V45X- 0205E	TBD	TBD	N/A	32.5 VDC	27.5 VDC	N/A	N/A	
V45C0201A - FCP 2 Current FP 2	1	V45X- 0205E	TBD	TBD	ГBD	500 Amps	0	N/A	N/A	· .

TABLE 3,10-9.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER GENERATION

PMS ACTIVITY <u>SYSTEM DATA:</u>	PRE- COND TEST	ITION	SOFT LIMIT CHECK		TREAD CHE/X	HARD LIMI CHEC	Т	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
 MEASUREMENT NO. MEASUREMENT ID FUNCTIONAL PATH ID 	HARDWARE STATUS	CONFIGURATION CHECK	HIGH	LOW		HIGH	. TOM	HIGH	LOW	
V45P0265A — FCP 2 O ₂ Req. Press. FP 2	1	,	TBD	TBD	TBD	100 psia	TBD	TBD (Reqd)	TBD (Reqd)	V45R0260A
V45P0275A — FCP 2 H ₂ Req. Press. FP 2	,	•	TBD	TBD	TBD	100 psia	TBD	TBD (Reqd)	TBD (Reqd)	V45R0270A
V45T0220A - FCP 2 Stack Cool Out Temp FP 2	, ,	1	TBD	, TBD	. Ten	+300°F	5.0°.F.	+.30.0°F	-50°F	TBD
V45X0205E — FCP 2 Ready FP 2	. 7	3	N/A .	N/A	N/A	Event	Event	N/A	N/A	N/A
V45R0260A — FCP 2 0 ₂ Flow FP 2	1	3	TBD	TBD	TBD	TBD	TBD	N/A	N/A	V45P0265A
V45R0270A — FCP 2 H ₂ Flow FP 2	4	\$	TBD	TBD	TBD	TBD	TBD	N/A	N/A	V45P0275A
V450300A — FCP 3 Voltage FP 3	1	V45X- 0305E	TBD	TBD	N/A	32.5 VDC	27.5 VDC	N/A	N/A	
V45C0301A FCP 3 Current FP 3	4	V45X- 0305E	TBD	TBD	TBD	500 Amps	0	N/A	N/A	
V45P0365A $-$ FCP 3 0 ₂ Req. Press. FP 3	4	1	TBD	TBD	TB:)	100 psia	TBD	TBD Reqd)	TBD (Reqd)	V45R0360A
V45P0375A — FCP 3 H ₂ Req. Press. FP 3	/	1	TBD	TBD	TBj)	100 psia	TBD	TBD (Reqd)	TBD (Reqd)	V45R0370A

3-203

(2 of 4)

TABLE 3.10-9.

PMS MEASUREMENT REQUIREMENTS FCI: FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER GENERATION

(3 of 4)

.

PMS ACTIVITY SYSTEM DATA: MEASUREMENT NO. MEASUREMENT ID	TESI	DITION	SOFT LIMIT CHECK		TREND CHECK	HARL LIMI CHEC	T	BACKUP CAUTION WARNING		CORRELATION MEASUREMENT
• FUNCTIONAL PATH ID	HARDWARE STATUS	CONFIGURATION CHECK	нісн	LOW		HIGH	LOW	HIGH	rom	
V45T0320A — FCP 3 Stack Cool Out Tmp FP 3	,	1	TBD	TBD	TBD	+300°F	-50°F	+300°F	-50°F	TBD
V45X0305E - FCP 3 Ready FP 3	3	1	N/A	N/A	N/A	Event	Event	N/A	N/A	N/A
V45R0360A — FCP 3 0 ₂ Flow FP 3	1	Ţ	TBD	TBD	TBD	TBD	N/A	N/A	N/A	V45P0365A
V45R0370A — FCP 3 H ₂ F1ow FP 3		3	TBD	TBD	TBD	TBD	N/A	N/A	N/A	V45P0375A
V45P1140A — O, Manifold 1 Press. PO 2	3	3	N/A .	N/A	. N/A	905 psia	895 psia	N/A	N/A	V45P1145A
V45P1145A — O, Manifold 2 Press. PO 4	3	4	N/A	N/A	N/Ą	905 psia	895 psia	N/A	N/A	V45P1140A
V45P1100A — Tank (set) 1 0 ₂ Pressure	1	1	N/A	N/A	N/A	2200 psia		2200 psia	200 psia	TBD
V45P1200A — Tank (set) 2 O ₂ Pressure PO 3.	1	1	N/A	N/A	N/A	2200 psia	200 psia	2200 psia	200 psia	TBD
V45P2140A - H, Manifold 1 Pressure PH 2	1		N/A	N/A	N/A	255 psia	245 psia	N/A	N/A	V45P2145A
V45P2145A — H ₂ Manifold 2 Pressure PH 4	1	1	N/A	N/A	N/A	255 psia	245 psia	N/A	N/A	V45P2140A
						· · · · · · · · · · · · · · · · · · ·				

3-204

.

TABLE 3.10-9.

PMS MEASUREMENT REQUIREMENTS FOR FAULT DETECTION AND ANNUNCIATION

SUBSYSTEM: ELECTRICAL POWER GENERATION

а. -PMS PRE-ACTIVITY CONDITION SOFT TREND HARD BACKUP CORRELATION TEST LIMIT CHECK LIMIT CAUTION & MEASUREMENT SYSTEM DATA: CHECK CHECK WARNING CONFIGURATION CHECK MEASUREMENT NO. MEASUREMENT ID HARDWARE STATUS ۰ • FUNCTIONAL PATH ID HIGH LOW HIGH LOW HIGH LOW V45P2100A -H₂ Tank (set) 1 Pressure PH 1 1 2400 2400 150 150 N/A N/A N/A psia. psia psia psia TBD V45P2200A --2400 150 2400 150 H₂ Tank (set) 2 Pressure PH 3 1 N/A N/A N/A psia psia psia psia TBD

3-205

. .

.

(4 of 4)

4.0 SUBSYSTEM CONFIGURATION DATA FOR FDA

Status data needed to determine the correctness of the vehicle subsystems configuration, at predetermined points in the mission timeline, will include switch scan data and possible subsystem function status data from operational instrumentation. The requirements for subsystem configuration management (SCM) are not treated in this document, but will doubtless require scanning most vehicle switches for a complete configuration check. Switch scan requirements for FDA will be for precondition checks on key subsystem switches whose positions affect the limit check measurements being made on the subsystem. These switches scanned for FDA are a subset of the SCM switch scan requirements.

Table 4.0-1 summarizes for each Orbiter 101 subsystem the number of switches which should be scanned for FDA together with the total number of switch scan measurements. The number of scan measurements per switch varies depending on the number of switch positions avaiable. The switch scan philosophy currently employed by the Orbiter contractor appears to be to scan three positions of a four-position switch, one position of a two-position switch, etc. This same philosophy was used in preparing the requirements given herein. A tradeoff must obviously be made to determine which switch scan method is more effective: i.e., scan all but one pole and use software to deduce the last position; or scan all positions and reduce software, but increase the total number of scan measurements.

TABLE	4.0-1.	- SWITCH	SCAN	SUMMARY	FOR
	FDA	-ORBITER	101	(HFT)	

5	UBSYSTEM	NO. SWITCHES	NO. MEASUREMENTS
1.	OI/DPS		
2.	ECLSS	18	19
3.	HYDRAULICS	14	21
4.	C&TS	18	25
5.	EPDC	12	12
6.	APU	26	26
7.	TPS	·	
8.	LĘD	1	1
9.	D&C	8	11
10.	EPG		
<u> </u>	Totals	97	115

Table 4.0-2 lists for each Orbiter subsystem the switch scan measurements which are recommended as precondition measurements for FDA. The majority of these measurements are available and were obtained from the Shuttle Master Measurement List. Those new measurements which are recommended are identified by using X's or N's in field 4 of the measurement ID.

(1 of 7)

Measurement Number	Description
OPEI	RATIONAL INSTRUMENTATION/DATA PROCESSING
No FDA swite	ch scan requirements identified.
	ENVIRONMENT CONTROL/LIFE SUPPORT
V61S2561E	Cabin Fan 1 - ON
V61S2562E	Cabin Fan 2 - ON
V61S2563E	Cabin Fan 3 — ON
V61S2601E	Primary H ₂ O Pump Control No. 1 — ON
V61S2603E	Primary H_2^2 O Pump Control No. 2 — ON
V61S2701E	Secondary H ₂ O Pump Control — ON
V61S2645E	Avionics Bay 1 Fan A — ON
V61S2646E	Avionics Bay 1 Fan B — ON
V61S2650E	Avionics Bay 2 Fan A — ON
V61S2652E	Avionics Bay 2 Fan B — ON
V61S2661E	Avionics Bay 3 Fan A — ON
V61S2662E	Avionics Bay 3 Fan B — ON
V63S1178E	NH ₃ System Automatic 1 Mode Command
V63S1182E	NH ₃ System Automatic 2 Mode Command
V63S1111E	Primary Freon Loop Coolant Pump No. 1 CMD
V63S1121E	Primary Freon Loop Coolant Pump No. 2 CMD
V63S1311E	Secondary Freon Loop Pump No. 1 CMD

(2 of 7)

Measurement Number	Description
V63SXXXXE	NH _z Evaporator Flow Control Valve CMD
V63SXXXXE	Secondary Freon Loop Pump No. 2 CMD
	HYDRAULICS
V58S0086E	Hydraulic System Automatic Thermal Control — ON
V58S0087E	Hydraulic System Left Outboard Elevon Actuator Heater — AUTO
V58S0088E	Hydraulic System Left Outboard Elevon Actuator Heater — ON
V58S0089E	Hydraulic System Left Inboard Elevon Actuator Heater — ON
V58S0090E	Hydraulic System Left Inboard Elevon Actuator Heater — AUTO
V58S0097E	Hydraulic System Right Outboard Elevon Actuator Heater — AUTO
V58S0098E	Hydraulic System Right Outboard Elevon Actuator Heater — ON
V58S0099E	Hydraulic System Right Inboard Elevon Actuator Heater — ON
V58S0108E	Hydraulic System Right Inboard Elevon Actuator Heater — AUTO
V58S0104E	Hydraulic System 1 Main Pump Depress — ON
V58S0167E	Hydraulic System 1 H ₂ O Boiler Heater - ON
V58S0168E	Hydraulic System 1 H_2^2 0 Boiler Heater - AUTO
V58S0204E	Hydraulic System 2 Main Pump Depress — ON
V58S0246E	Hydraulic Power System 2 Main Engine Supply Valve - CLOSE

(3 of	7)
-------	---	---

	
Measurement Number	Description
V58S0267E	Hydraulic System 2 H ₂ O Boiler Heater — ON
V58S0268E	Hydraulic System 2 H ₂ O Boiler Heater — AUTO
V58S0304E	Hydraulic System 3 Main Pump Depress — ON
V58S0346E	Hydraulic Power System 3 Main Engine Supply Valve — CLOSE
V58S0367E	Hydraulic System 3 H ₂ O Boiler Heater — ON
V58S0368E	Hydraulic System 3 H ₂ O Boiler Heater — AUTO
V58S0146E	Hydraulic Power System 1 Main Engine Supply Valve — CLOSE
	COMMUNICATION & TRACKING
V74SXXX3E	UHF Transceiver No. 1 Power — ON
V74SXXX4E	UHF Transceiver No. 2 Power — ON
V74SXX11E	TLM Transmitter Power — ON
V74SXX12E	DFI Transmitter Power — ON
V74S0109E	MSBLS No. 1 Power - ON
V74S0119E	MSBLS No. 2 Power - ON
V74S0129E	MSBLS No. 3 Power - ON
V74S0859E	TACAN No. 1 Receive Power — ON
V74S0856E	TACAN No. 1 T/R Power — ON
V74S0862E	TACAN No. 1 A/A Power — ON
V74S0860E	TACAN No. 2 Receive Power — ON
V74S0857E	TACAN No. 2 T/R Power - ON
V74S0863E	TACAN No. 2 A/A Power — ON

(4 of 7)

Measurement Number	Description
V74S0861E	TACAN No. 3 Receive Power - ON
V74S0858E	TACAN No. 3 T/R Power - ON
V74S0864E	TACAN No. 3 A/A Power — ON
V74S0166E	L-Band Switch TACAN No. 1
V74S0168E	L-Band Switch TACAN No. 3
V74S0175E	Radar Altimeter 1 Power — ON
V74S0185E	Radar Altimeter 2 Power — ON
V74SXX13E	ATC Transponder Power — ON
V74SXX14E	C-Band Beacon Power - ON
V74SXX15E	Audio Panel, CMDR, Power — ON
V74SXX16E	Audio Panel, Pilot, Power — ON
V74SXX17E	Audio Panel, Mid-Deck, Power — ON
Ē	ELECTRICAL POWER DISTRIBUTION & CONTROL
V76S0131E	Main Bus 1 to ESS Bus 1 - ON
V76S0134E	Main Bus 1 to ESS Bus 2 - ON
V76S0231E	Main Bus 2 to ESS Bu s 2 — ON
V76S0234E	Main Bus 2 to ESS Bus 3 — ON
V76S0331E	Main Bus 3 to ESS Bus 3 — ON
V76S0334E	Main Bus 3 to ESS Bus 1 — ON
V76S1511E	Inverter Bus 1 - ON
V76S1611E	Inverter Bus 2 - ON
V76S1711E	Inverter Bus 3 - ON
V76S1531E	Bus No. 1 dc Input to Inverter 1 - PHA

(5 of 7)

Measurement Number	Description
V76S1631E	Bus No. 2 dc Input to Inverter 2 - PHA
V76S1731E	Bus No. 3 dc Input to Interter 3 - PHA
	AUXILIARY POWER UNIT
V46S0099E	APU1 Through 4 Shutdown Inhibit CMD
V46S0126E	APU1 Start Command
V46S0226E	APU2 Start Command
V46S0326E	APU3 Start Command
V46S0106E	APU Tank 1/2 Heater Element A - ON
V46S0206E	APU Tank 1/2 Heater Element B — ON
V46S0306E	APU Tank 3/4 Heater Element A — ON
V46S0109E	APU1 Line Heater Element A-B — ON
V46S0114E	APU1 Fuel Isolation Valve - OPEN COMMAND
V46S0116E	APU1 Lubrication Oil Heater Element A-B - ON
V46S0118E	APU1 Thermal Bed Heater A - ON
V46S0119E	APU1 Thermal Bed Heater B — ON
V46S0124E	APU1 Controller Power - ON COMMAND
V46S0209E	APU2 Line Heater Element A-B — ON
V46S0214E	APU2 Fuel Isolation Valve - OPEN COMMAND
V46S0216E	APU2 Lubrication Oil Heater Element A-B - ON
V46S0218E	APU2 Thermal Bed Heater A — ON
V46Ş0219E	APU2 Thermal Bed Heater B — ON
V46S0224E	APU2 Controller Power - ON COMMAND
V46S030 9 E	APU3 Line Heater Element A-B - ON

(6 of 7)

\$

Measurement Number	Description
V46S0314E	APU3 Fuel Isolation Valve - OPEN COMMAND
V46S0316E	APU3 Lubrication Oil Heater Element A-B - ON
V46S0318E	APU3 Thermal Bed Heater A - ON
V46S0319E	APU3 Thermal Bed Heater B - ON
V46S0324E	APU3 Controller Power - ON COMMAND
	DECELERATION & LANDING
V51S0005E	Landing Gear Handle — UP
	DISPLAY & CONTROL
V73S2065E	Forward Right Keyboard — CTR DEU. Select A — ENABLE
V73S2066E	Forward Right Keyboard — CTR DEU. Select B — ENABLE
V73S2061E	Forward Left Keyboard - Left DEU. Select A - ENABLE
V73S2062E	Forward Left Keyboard — Left DEU. Select B — ENABLE
V73S2063E	Forward Left Keyboard - CTR DEU. Select A - ENABLE
V73S2001E	Forward Left DEU. Power - ON
V73S2002E	Forward Left DEU. Power - STANDBY
V73S2011E	Forward Center DEU. Power - ON
V73S2012E	Forward Center DEU. Power - STANDBY

(7 of 7)

Measurement Number	Description				
V73S2021E V73S2022E	Forward Right DEU. Power — ON Forward Right DEU. Power — STANDBY				
	ELECTRICAL POWER GENERATION				
"ready" even	h scan requirements identified. Fuel cell ts (V45X0105E, 0205E, 0305E) are used as pre- sts to establish system configuration readiness				

ц,

5.0 REFERENCES

- Orbiter Program Astronaut Orientation System Description Briefings, Rockwell International, Space Division SSV 74-6, January 28, 1974.
- Orbiter Requirements Definition Documents, Rockwell International, Space Division SD-72-SH-0100 Series, January 31, 1974.
- Orbiter 101 Preliminary Design Review (PDR) Briefings, Rockwell International Space Division SSV 74-4, February 4, 1974.
- RI/SD Ltr. 395-001-73-060, "Measurement/Stimuli for Operational Phase of Shuttle Flight Hardware,"
 E. P. Smith, March 21, 1973.
- 5. <u>Shuttle Master Measurement List (MML) Baseline Draft</u>, SD 72-SH 0096, November 16, 1973.

APPENDICES

APPENDIX A

έ.

ومد ۽

PMS - NEW MEASUREMENTS - SUMMARY

SUBSYSTEM	ANALOG	DISCRETES	DIGITAL	TOTAL
ECLSS	1	5	3	9
ELECTRICAL				
POWER	. 0	3	0	3
DECELERATION AND				
LANDING	9	1	0	10
COMMUNICATIONS AND				
TRACKING	· 6	15	0	21
TOTALS	16	24	3	43

PMS - NEW MEASUREMENTS - SUMMARY

: :

A-1

SUBSYSTEM: <u>ECLSS - NEW MEASUREMENTS</u>

(1 of 2)

.

MEASUREMENT	TYPE	RANGE	FUNCTIONAL P	H RE	MARKS
V61PXXXAA Filter/Debris Trap Differen- tial Pressure	Pressure	0.05-0.15		Provides capabi fan or filter/t	lity to isolate a rap failure.
V63SXXXBE Secondary Freon Coolant Loop Pump #2 CMD	Event	Off-On	······		condition test to dary freon coolant tus.
V63QXXXCA - Primary NH ₃ Tank Quanity	Quantity	30-90%			t and isolate an ilure during active
V63SXXXDE — Evaporator Flow Control Valve Command	Event	Off/Auto/Man	1		recondition test monia evaporator
V63SXXXEE - NH ₃ Evaporator	Event	System 1 System 2	··········	System 2 positi control valve 2	on actuates flow and tertiary NH ₃
System Select				tank isolation secondary measu whether flow co	valve. Needed as a rement to isolate ntrol valve 1 or 2 3 tank isolation)
••••••••••••••••••••••••••••••••••••••				has failed.	-

A-2

SUBSYSTEM: ECLSS - NEW MEASUREMENTS

(2 of 2)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V63XXXXFE — NH ₃ Evaporator Flow Control Valve 1	Event	Close-Open		New recommended measurement. This measurement will act as a second- ary measurement to determine whether the control valve has received signal.
V63QXXXGA — Sec NH ₃ Tank Quantity	Quantity	30-90%		New recommended measurement. This measurement is needed to detect and isolate an ammonia tank fail- ure during active and standby modes.
V63QXXXHA - Ter- tiary NH ₃ Tank Quantity	Quantity	30-90%	- <u></u>	New recommended measurement. This measurement is needed to detect and isolate an ammonia tank fail- ure during active and standby modes.
V63XXXXIE — Ter- tiary NH ₃ Tank Isolation Valve- Flow Control Valve 2 Position	Event	Close-Open		New recommended measurement. This addition will serve as a secondary measurement to provide information whether tertiary NH_3 tank isola- tion valve and flow control valve 2 have received signal when ammonia evaporator system 2 is selected.

SUBSYSTEM: ELECTRICAL POWER DISTRIBUTION

(1 of 1)

MEASUREMENT	ТҮРЕ	RANGE	FUNCTIONAL PATH	REMARKS
V76XNNNNE - ESS/ Cont. BUS 1 Under Voltage	E	0/1	,,,,,,,,,	Change directed by CCA 60, and MCR 0662 deleting ABES; specific instru- mentation of RAC's unavaiable (N= Unassigned MCA ID) (C&W Alarm).
V76XNNNNE — ESS/ Cont. BUS 2 Under Voltage	E	0/1		C
V76XNNNNE - ESS/ Cont. BUS 3 Under Voltage	E	0/1	-498	

A-4

,

SUBSYSTEM: DECELERATION AND LANDING - NEW MEASUREMENTS

A-5

(1 of 2)

TYPE	RANGE	FUNCTIONAL PATH	REMARKS
Press e	2000-4050 psia		New measurement - required for the precondition check. Determination of hydraulic power available for landing gear actuation.
Event	1/0		New measurement recommended - required for precondition check. Determination of system status prior to landing gear selection.
Press	2000-4050 psia		Provides verification of hydraulic pressure for brake actuation.
Press	2000-4050 psia	DL2 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.
Press	2000-4050 psia	DL1 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.
Press	2000-4050 psia	DL2 (DL3 sec- ondary)	New measurement recommended. Pro- vides verification of hydraulic pressure for brake actuation.
	Press e Event Press Press Press	Press 2000-4050 psia Event 1/0 Press 2000-4050 psia Press 2000-4050 psia Press 2000-4050 psia Press 2000-4050 psia Press 2000-4050 psia Press 2000-4050 Press 2000-4050	Press 2000-4050 e psia Event 1/0 Press 2000-4050 psia psia Press 2000-4050 psia DL2 (DL3 sec- ondary) Press 2000-4050 psia DL1 (DL3 sec- ondary) Press 2000-4050 psia DL1 (DL3 sec- ondary) Press 2000-4050 DL1 (DL3 sec-

7

SUBSYSTEM: DECELERATION AND LANDING - NEW MEASUREMENTS

(2 of 2)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	REMARKS
LH Inboard Brake Temperature	Temp	TBD .	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.
LH Outboard Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.
RH Inboard Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.
RH Outboard Brake Temperature	Temp	TBD	DL1, DL2	New measurement recommended to in- sure brakes are not over-heated during taxi tests.

SUBSYSTEM: COMMUNICATIONS AND TRACKING - NEW MEASUREMENTS

(1 of 3)

MEASUREMENT	TYPE	RANGE	FUNCTIONAL PATH	I	REMARKS
V74VXXX1A — UHF Transceiver No.1 RF Output	4	0-5 Vdc	CT1	ew recommende	ed measurement.
V74SXXX3E - UHF I Transceiver No.1 Power - ON	3	<u>_</u>	CT1	ew recommende	ed measurement.
V74XXXX5E — UHF I Transceiver No.1 Transmit	3		CT1	ew recommende	ed measurement.
V74XXXX7E - UHF H Transceiver No.1 Receive	3	· · · · · · · · · · · · · · · · · · ·	CT1	ew recommende	ed measurement.
V74VXXX2A - UHF Transceiver No.2 RF Output	\	0-5 Vdc	CT2	ew recommende	ed measurement.
V74SXXX4E — UHF H Transceiver No.2 Power - ON	3	· · · · · · · · · · · · · · · · · · ·	CT2	ew recommende	ed measurement.
V74XXXX6E — UHF H Transceiver No.2 Transmit	3	······································	CT2	ew recommende	ed measurement.
V74XXXX8E — UHF E Transceiver No.2 Receive		0-5 Vdc	CT2	ew recommende	ed measurement.
			· · · · · · · · · · · · · · · · · · ·		

A-7

SUBSYSTEM: <u>COMMUNICATIONS AND TRACKING - NEW MEASUREMENTS</u>

A-8

.

÷

(2 of 2)

MEASUREMENT	,TYPE	RANGE	FUNCTIONAL PATH	REMARKS
V74VXXX9A - TLM Transmitter DC Power	A	0-5 Vdc	CT3	New recommended measurement.
V74SXX11E - TLM Transmitter Power - ON	E		CT3	New recommended measurement.
V74VXX10A — DFI Transmitter DC Power	A	• <u>•</u> ••• <u>•</u> •• <u>•</u> •• <u>•</u> ••	CT4	New recommended measurement.
V74SXX12E — DFI Transmitter Power - ON	Е		CT4	New recommended measurement.
V74SXX13E ATC XPNDR - On	Event	0/1	N.A.	New recommended measurement.
V74SXX14E C-Band BCN - On	Event	0/1	N.A.	New recommended measurement.
V74SXX15E AUD PNL, CDR - OI	Event	0/1	CT1, CT2	New recommended measurement.
V74SXX16E AUD PNL, Pilot - On	Event	0/1	CT1, CT2	New recommended measurement.
V74SXX17E AUD PNL, Mid Deck - On	Event	0/1	CT1, CT2	New recommended measurement.

APPENDIX B

MEASUREMENT NUMBER IDENTIFICATION

APPENDIX B

MEASUREMENT NUMBER IDENTIFICATION

Each measurement has a unique identification number. The number consists of six fields. The program element, the subsystem, and the type of measurement are specified by fields 1 through 3, respectively. Fields four and five provide the identification of the measurement within the subsystem and the type of signal, respectively. Field six is used to identify signals with peculiar characteristics. The identification number is an alphanumeric consisting of nine characters and one symbol. These characters and symbols are identified as follows:

	v	45	T.	2222	Δ	• *	
							_
FIELD NO.	. 1	2	3	4	5	б	

FIELD NUMBER 1

The first character is an alpha character identifying a major element of the Shuttle program.

- A Ground Test Article
- B Booster (SRB)
- E Main Engine
- F Facility Ground Support Equipment
- G Ground Support Equipment

P - Payload or Experiment

T - External Tank

V - Orbiter Vehicle

FIELD NUMBER 2

The second and third characters are numerical and designate the subsystem.

- 09 Orbiter TPS/TCS
- 10 Wing L/R
- 11 Wing Leading Edge
- 12 Wing Box
- 13 Elevon

19 Wing TPS

20 Vertical Stabilizer

21 Vertical Stabilizer Leading Edge

22 Vertical Fin

23 Rudder/Speed Brake

29 Vertical Stabilizer TPS

30 NA

31 Fuselage, Upper FWD

32 Fuselage, Lower FWD

33 Crew Module

34 Fuselage, MID

35 Fuselage, AFT

36 NA

37 Payload Bay Doors

38 Purge and Vent

39 Fuselage TPS

40 NA

41 Main Propulsion

42 Reaction Control

43 Orbit Maneuver

44 Air Breathing

45 Electrical Power Generation

46 Auxiliary Power Unit

47 Solid Rocket Booster

48 External Tank

49 NA

50 NA

51 Landing Gear

52 Deceleration

53 Docking

54 Payload Accommodation

55 Ordinance

56 Attachment Separation

57 Aerosurface Flight Control

58 Hydraulic

59 Miscellaneous Systems

60 NA

61 Atmospheric Revitalization

62 Life Support

63 Thermal Control

64 Airlock Subsystem (ALS)

65 Crew Accommodation

66 Crew Equipment

67 Biomedical

68 NA

69 NA

70 Flight Control

71 Guidance and Navigation

72 Data Processing

73 Display and Control

74 Communication and Tracking

75 Instrumentation Oper.

76 Electrical Power Distribution and Control

77 Automated Wire List

78 Instrumentation, Development

79 Wire Installation

FIELD NUMBER 3

The fourth character is an alpha identifying the type of measurement.

- A Acceleration
- B Phase, Electrical
- C Current
- D Vibration
- E Power
- F Frequency
- G Force
- H Position/Attitude
- J Biomedical
- K Stimulus
- L Velocity
- M Multi-data
- N Resistance
- P Pressure
- Q Quantity/Humidity
- R Rate
- S Switch Scan
- T Temperature
- U Radiation
- V Voltage
- W Time
- X Discrete Event
- Y Acoustics
- Z Ph Acidity/Silver Ion

FIELD NUMBER 4

Characters five through eight are numbers assigned sequentially within the subsystem.

FIELD NUMBER 5

Character nine is an alpha which identifies the type of signal.

- A Analog
- B Digital Serial Software Signal
- C Analog Software Signal
- D Digital Serial
- E Discrete Event
- F Frequency Modulation (FM)
- S Step Function
- V Video
- X Discrete Event Software Signal

FIELD NUMBER 6

The tenth character may be an asterisk that identifies a signal that has peculiar characteristics. It is used as a flag to alert the user to look elsewhere (such as remarks) for information.