Systems Analysis Of The Space Shuttle
Final Report
April 17, 1974 - April 18, 1975

National Aeronautics and Space Administration
Johnson Space Center - Houston
under
NASA Contract NAS 9-13940

Department of Electrical Engineering
(NASA-CR-141887) SYSTEMS ANALYSIS OF THE SPACE SHUTTLE Final Report, 17 Apr 1974 18 Apr. 1975 (City Coll. of the City Univ.
of New York.) 196 p HC $\$ 7.00$ CSC 22B
N75-2599?
\qquad

Onclas
27302

Donald L. Schilling Se Jeung Oh Fred Thai
Professors of Electrical Engineering; Co-Principal Investigators

THE CITY COLLEGE of THE CITY UNIVERSITY of NEW YORK

Systems Analysis Of The Space Shuttle Final Report April 18, 1974 - April 17, 1975
 National Aeronautics and Space Administration Johnson Space Center - Houston under
 NASA Contract NAS 9-13940

Department of Electrical Engineering

Donald L. Schilling Se Jeung Oh	Fred Thau
Professors of Electrical Engineering;	Co-Principal Investigators

Introduction
I. Communications System

1. Digital Processing of Video Signals
2. Entropy Encoding of a Delta Modulator Output for Bandwidth Compression
3. Processsing and Caversion of Delta Modulation Encoded Signals
4. A Phase Locked Loop with NonLinear Processor
5. The Measurement of Light Intensity of Computer Generated Pictures
II. Computer System
6. Testability Enhancement in Digital System Design
7. Parallelism Exploitation in Parallel Computing Systems
8. An Experimental Simultaneous Muitiprocessor Organization
III. Power Distribution System
9. Simulation Program Deseription for Space-Shuttle Electric Power Distribution System
10. Automatic Fault Detection

This report consists of three aspects of the Shuttle Systems Analysis problem： Commuications，Computere and Power Distribution．Part I summarizes the Communications rescarch directed by Professor D．L．Sehilling；Part II． summarizes the Computer research directed by Professor S．J．Oh and Part III summarizes the research on Power Distribution directed by Professor F．Thau。

In aldition to the three coprincipal investigators this centract partially supported Dr．C．B．Park and the following Doctoral Students：T．Appelewicz， C．S．Chuang，E．Feria，R．Lei，do LoCicero，Go S．Mersten，Vo Rao， N．Scheinberg，D．Ueci，L。Weiss and C．Zeigler．

Several papers，summarizing particular aspects of the research conducted under this contract，were presented at conferences，and the paper，＂Video Encoding Using an Adaptive Digital Delta Modulator＂by L。Weiss，I．Paz，and D．L．Schilling has been accepted for publication as a Technical paper in the IEEE Transactions on Communications．

I. 1. Digital Processing of Video Signals

A. High Speed Frame to Frame Delta Modulation

Successive frames of a motion picture contain redundant information. The amount of redundancy depends upon the degree of change in the scene from frame to frame. We are currently building a high speed delta modulator which encodes television signals in such a way as to use the frame to frame redundancy of motion pictures to reduce the bit rate required to transmit a television signal.

Figure 1 shows the basic ercoding scheme. Each large square represents a successive frame of a motion picture. Each dot on a frame represents a pixel (picture element). Note that each pixel has associated with it a Delta Modulator (\triangle MOD) that follows the same pixel through successive frames. Thus the \triangle MOD in the upper most left hand corner always encodes the pixel in the upper most left hand corner for every frame.

Bit rate compression is achieved in the following manner. From previous studies of delta modulators it has been observed that high sampling rates are required for a delta modulator to accurately encode rapidly changing signals and low sampling rates may be used on slowly varying signals. The usual xiethod of encoding a picture by sampling successive pixels within the same frame results in rapidly changing signals which require a high delta modulator bit rate (typically, 6 bits per pixel). With the frame to frame encoding teclnique of Fig. 1 each delta modulator is associated with its own pixel. In general the pixel value will change slowly from frame to frame, allowing the delta modulator to accurately encode the slowly changing pixel value at a low bit rate. Using this scheme motion pictures will be encoded at 1 bit per pixel.

At first thought, hardware implementation of Fig. 1 may seem impossible since, at 1 delta modulator per pixel, a typical 200,000 pixels/frame 3 MHz bandwidth TV system would have to contain 200, 000 delta modulators each operating at a 6 MHz sampling rate. Fortunately only 16 MHz delta modulator. need be used to implement Fig. 1 ; however, this single delta modulator will have to contain enough shift register type memory to store an entire picture frame.

The reason that 1 delta modulator can replace all the delta modulators of Fig. 1 with no increase in operating speed is simple. If Fig. 1 were implemented as shown all 200, 000 pixels could be encoded, decoded and displayed in parrallel, but a real time television system requires only one pixel at a time in serial. The retention time of the eye and screen give the appearance of a full picture. We may take advantage of this by starting a single delta modulator at. the upper most left hand corner of a frame, Iet it encode that pixel based upon its previous estimate of the pixel from the previous frame, transmit a bit (E_{k}) store its new estimate (X_{k}) for that pixel, and then repeat the process for the next adjacent pixel in the same frame. The delta modulator will continue to encode, and transmit for each adjacent pixel in turn, until the delta modulator has been multiplexed through the entire frame (typically $1 / 30 \mathrm{sec}$). Then the delta modulator will return to the first pixel and repeat the process for the next frame.

Figure 2 shows the hardware implementation of the high speed video delta modulator. The arithmetic and logic portions are being assembled out of Schottky TTL devices. The 200, 000 bit shift registers will either be assembled out of 4 K dynamic Random Access Memories (RAM's) such as the Intel 2107 or Intel's new 16K Charge Coup.ed Device (CCD) serial memories. The CCD devices are superior to the RAM's but the RAM's may have to be used if the CCD devices cannot be obtained. If the 4 K RAM's are used, special multiplexing and demultiplexing logic will have to be used with them to make the relatively slow 4 K RAM's appear as high speed shift registers. The logic configuration for the 4 K RAM's converted into shift registers is shown in Fig. 3. The addressing logic (not shown) consists of 8 twelve-stage counters counting the pulses of lines $A, B, C, D, \bar{A}, \vec{B}, \bar{C}$, and $\overline{\mathrm{D}}$. Each counter output feeds the address lines of a 4 K RAM.

Construction of the high speed delta modulator without the large shift register memory is complete. Testing of the delta modulator has just begun.

B. Computer Processor for Color Video Signals

We are assembling a computer processor for color video signals. The processor will enable us to feed color video signals from a color TV camera into a computer. The computer will be able to process the video signals and display a picture on a video monitor.

The basic system is shown in Fig。4. An image originatinating in a 35 mm slide projector is focused on a color TV camera. The TV camera has three video outputs, one for the red component of the image, one for the green component of the image, and the third for the blue component of the image. Each of the three video outputs is put into a scan converter which stores a single picture frame in its electrostatic storage tube。 Uprn receiving commands from the computer the scan converter transfers the stored picture into the computer. The rate at which the scan converter sends information to the computer is controlled by the computer. The computer can also randomly access the information stored in the scan converter, $i_{0} e_{0}$, the computer can read the picture elements into its memory in whatever order the computer program requires. After the computer processes the picture, the picture is read out of the computer and stored on three scan converters, one for the red component, one for the green component and one for the blue component of the picture. Again the computer controls the rate and order in which the picture elements are stored in the scan converter. The scan converters are read out onto a TV monitor which displays the picture. Since reading of the sean converters is nondestructive and occurs at 30 frames per second, the user of the system sees the picture frame frozen on the TV monitor. The picture can be kept frozen for several minutes and then photographed for a permanent record.

When the system described above is completed we will have a very flexable research tool. By simply changing computer programs the system can perform image enhancement, bandididth compression or any other type of image processing one might want to perform on color pictures.

FIG. : FRAME TO FRAME ENGODING

FIG.3. 32K SHIFT REGISTER

FIG.4. COMPUTER PROCESSOR FOR COLOR VIDEO SIGNALS

I. 2. Entropy Encoding of a Delta Modulator Output for Bandwidth Compression

A. Abstract

The output bit stream of the Abate Mode Adaptive Delta Modulator with voice source input has been studied. It is found that about 50 per cent of the bits are in a steady state sequence, " 1100 ", when the input voltages are relatively low. Hence, the output bit stream can be coded such that the final bit rate and bandwidth are reduced. Two kinds of coding techniques, the Huffman coding and run length coding, have been considered. The fuffman coding is found to be superior to the run length coding. However, the direct Huffman coding algorithm, which is an information preserving code, does not result in a high data compression ratio. The modified Huffman coding scheme, an information degrading process, is currently being studied.

B. Introduction

1. Historical Background

Source-encoding or data compression techniques are used to reduce the volume of data generated. As a result, the bandwidth of the channel over which the data is transmitted is reduced. There are two kinds of data compression techniques : information preserving and information degrading. When the information preserving process is used for coding, all of the information presented before coding can be regenerated. Wheras, when the information degrading process is used, only part of the original information can be regenerated. However, for the information degrading process, a fidelity criterion can be chosen such that certain bits of information can be ignored in order to obtain a better result in data compression and still be able to retain a relatively high intelligi- bitity。

Source-encoding systems can be classified as either "variable to block" or 'block to variable". A system accepting a variable-length sequence of digits from the source and generating a fixed-length block code word is called a "variable to block" encoder. A system accepting a fix-length block of digits
from the source and generating a variable-length block code word is called a "block to variable" encoder.

A binary memoryless system generating a statistically independent source alphabet, $(0,1)$, can be characterized by the probability, P and (1. P). P is defined as the probability of a digit " 1 " being emitted, and (1 - F) is defined as the probability of a digit " 0 " being emitted. The entropy of the source is defined as

$$
\begin{equation*}
H^{\prime}(p)=-\operatorname{Plog}_{2} P-(1-P) \log _{2}(1-P) \tag{1}
\end{equation*}
$$

and is a measure of the information content of the source.
If a binary memoryless digital system has n possible values, ($x_{1}, x_{2}, \ldots, x_{n}$) to be encoded with the 1 obabilities, $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ respectively. Then, the entropy of the source is

$$
\begin{equation*}
H(p)=-\sum_{i=1}^{n} P_{i} \log _{2} P_{i} \tag{2}
\end{equation*}
$$

For example, $x_{1}=00, x_{2}=01, x_{3}=10, x_{4}=11$, and $P_{1}=1 / 8, P_{2}=1 / 8$, $P_{3}=1 / 4, P_{4}=1 / 2$, Then using Eq。(2),

$$
H(p)=1.75
$$

In the ahove example, code words are not assigned to single digits but to blocks of digits. In other words, the encoder waits for the source to produce a block of two digits, then assigns a code word to the two-digit block.

According to Shannon's noiseless coding theorem (1), the minimum average code-word length is equal to $H(p)$. The theorem is stated as follows: Given a random variable, x, in a binary system with entropy $H(x)$, there exists a code for x whose average code-word length, \bar{I}, satisfies

$$
\begin{equation*}
\mathrm{H}(\mathrm{x}) \leq \overline{\mathrm{n}}<\mathrm{H}(\mathrm{x})+1 \tag{3}
\end{equation*}
$$

If a long source sequence of N blocks is the input to an optimal sourse encoder, the output will be a sequence of $\mathrm{NH}(\mathrm{p})$ bits. In the previous example, since each block consists of 2 digits, the total length of the input sequence is 2 N bits. The output sequence length is 1.25 N bits. The maximum data compression ratio is, then,

$$
\mathrm{C}=\frac{2 \mathrm{~N}}{1.75 \mathrm{~N}}=1.143 \text { 。 }
$$

The maximum data compression ratio depends on the statistics of the encoding source. In other words, once the probabilities of occurrance of the different patterns of the source digits are known, the maximum data compression ratio is theoretically determined.

2. Huffman Coding

The first optimal coding scheme developed was the Huffman coding (2). This is a "block to variable" technique. When Huffman coding is applied to a binary memoryless source, the source sequence has to be broken up into blocks of N bits long. Then, each block contains one of $M=2^{N}$ possible messages. The least probably message is assigned a code word containing the longest sequence of bits. While the more probable messages are assigned code words of shorter length.

3. Run Length Coding

Run length coding (3, 4) technique is "variable to block". It works well when probability P is either very low or very high. In the case of low probability P, the number of consecutive zeros are counted and transmitted as a block of binary digits. In the case of high probability P_{r} the number of consecutive ones are counted and transmitted. The optimal compression ratio as a function of P is shown in Fig. 1.

C．Theoretical Considerations of Source Encoding of an Abate Mode Adaptive Delta Modulator

For a DC input voltage，the Abate Mode Adaptive Delta Modulator has a steady state output pattern as shown in Fig。2。 It is known that during speeches or telephone conversations，there are many short period of pauses．In the noiseless case，this pauses will be considered as DC voltage by the delta modu－ lator and a stream of steady state pattern will be generated．Also when signal voltage and signal frequencies are low，the output bit stream of Adaptive Delta Modulator will be viewed as segments of steady state patterns corrupted by some noise bits，as shown in Fig。3．

The length and frequency of the steady state pattern depend upon factors， such as input signal voltage，minimum step size of the Adaptive Delta Modula－ tor，sampling rate，and signal bandwidth．The run length coding scheme will be used if the steady state pattern is very long．When the steady state pattern is not very long but its probability of occurrance out of the entire bit stream is very high，the Huffman coding scheme should be used．

The steady state pattern is as follows：
．．．0．0．1100110011001100．
If a block of 4 is chosen for the Huffman code，the steady state pattern can be broken up into four different steady state sequences， $1100,1001,0110$ ，and 0011．If a block of 6 is chosen，then the sequence will be 110011,100110 ， 001100，011001．

In the next section，the experimental results will show that blocks of 4 are better than blocks of 6 in the sense that the maximum data compression ratio is higher for blocks of 4．The reason is obviously because the steady state pattern is a repetition of a 4 bit sequence．Higher bit bloeks will diastically increase the number of sequences to be coded thus decreasing the ratio of steady state sequences to other sequences．

D．Summary of Results

1．Experimental Results

In order to determine whether the run length code or the Huffman code is better for the Albate Mode Adaptive Delta Modulator，we must know how
long a run of the steady state pattern is．The average run length of the steady state pattern for this experiment was calculated using a PDP－8 computer． Figure 4 shows the procedure employed to obtain this statistics．Since it is desired to have the computer simulated Adaptive Delta Modulator work in real time，the sampling frequency is，therefore，determined by the length of the computer program．In other words，after each sample value have been transferred to the computer from the A / D converter，the computer will go through the program＇s process of generation the output bit and analyzing the statistics before it goes back to take another sample。Since the PDP－8 is not a high speed computer，the fastest sampling rate we can manage to obtain is about 5 KHz ．However，a sampling rate of 32 K is standard for Delta Modulators．Therefore，a process of slowing down the speed of the source tape is necessary。By alternatively playing back and recording at different speed with two high quaiity．Ampex tape recorder， a voice tape of $1 / 8^{\text {th }}$ of the normal speed was successfully made．This $1 / 8^{\text {th }}$ speed voice tape was originally part of a magnetic open reel tape recerded by the Ampex Company with Ed Begley reading the story of Mark Twain．．This tape was used as the voice source for all the experi－ ments in this report．

All of the programs are written in proper length such that the sampling rate of 4 KHz becomes equivalent to 32 KHz at normal speed．The digital estimated sigual，$\hat{x}(k)$ ，of the simulated Adaptive Delta Modulator was．first fed into a D／A converter；then the analog estimated signal $\hat{x}(t)$ was generated and recorded into a tape recorder．This magnetic tape then went through the reverse process of slowing down，previously deseribed，to return it to the normal speed．Finally，this tape＇s intelligibility was determined by playing it back from a recorder．While the estimated signal $\hat{x}(t)$ was being recorded，the computer was doing statistical computations and storing the results in its memory．The results are compiled for a total of 20 minutes，a time interval which we believe is long enough to collect unbiased statistics．

The average run length of the steady state pattern is listed in Table 1。

Note that the average run length is not very long. A run of 2 or 3 is definitely too short for a rw length codes therefore, the use of a run length code is ruled out.

The output bit sequence of the Adaptive Delta Modulator is intrinsicaly dependent on the slope of the input signal. Increasing the minimum step size, S_{0}, will have the same effect as decreasing the input signal level. The following factors were chosen to perform the experiment:
(1) Voice signals are bandlimited to within the range of 300 Hz to 2.5 KHz 。
(2) Sampling frequency f_{s}, is adjusted to $321 \mathrm{k} \mathrm{m}_{\text {。 }}$. Some other different sampling frequencies are also used for comparison purpose.
(3) The minimum step size, S_{0} is set to be 40 mve
(4) The maximum peak to peak input voltage level is varied in steps from

$$
1 v_{p-p} \text { to } 20 v_{p-p^{0}}
$$

In order to apply the Iuffman coding technique to the output bit stream of the Adaptive Selta Modulator, a computer program is written to search for the steady suate sequences. When blocks of 4 bits are used to form the code word, the ' 1100 ' sequence was being searched for from the entire output bit stream. Whereas, when blocks of 6 bits are used as in the Euffman coding block, the '110011' sequence was being searched for. The results are shown in Table 2 and Table 3 respectively. It is clear that blocks of 4 are better for coding than blocks of 6, and low input voltage level have shorter average code word length. It is also foud that in the case of $f_{S}=32 K H z, S_{0}=40 \mathrm{mv}$, the imput voltage level of 2 volts peak-to-peals or higher results in very high intellegibility. An input voltage level of 1 volt peak-to-peak or lower results in poor performance due to unfiltered in-band gramular noise.

By referring to Table 2, it can be seen that at $2 \mathrm{v}_{\mathrm{p}-\mathrm{p}}$ input signal level, 53 percent of the total bit stream are in the steady state sequence and yet, we still maintain high intelligibility. These results encourage us to do further studies on the probability distributions of 16 different sequences. This data is listed in Table 4. In order to give a better visual comparison,
they are plotted in Fig． 5 through Fig．9．From Fig． 5 and Fig。6，it can be seen that the probability of occurrance of steady state sequences（ 0011 ， 0110，1001，1100）are much higher than the others．This fulfills the fundamental requirements of the Huffman coding scheme．It also can be seen，by referring to Fig。 7 and Fig．8，that the probability of the steady state sequences are not exceedingly higher than the others when the input voltage level is increased．In the extreme case of $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ ，as shown in Fig． 9_{0} the probability of steady state sequences are even less than some other sequences．Hence，a number of general conclusions can be drawn from these results：
（1）Blocks of 4 should be used to construct the Huffman code．
（2）As far as signal to noise ratio is concerned，the performance of the Delta Modulator is very good when the input voltage is $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ or higher．
（3）At low input voltage，the resulting probability distributions are most suitable for coding．
（4）From statements（2）and（3）above，it is clear that the probability distribution for $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ input voltage，as referred to in Fig．6，should be used for the coding scheme．

2．Information Preserving Coding

The entropy of the coding source is a measure of the information content of the source and is the lower bound of the code word length．Table 5 shows the entropy of the source at different input voltages．It was found that at an input voitage of $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ the minimum obtainable code word length is 3.56 ， which gives very little data compression．The actual code word length com－ puted after the code has been constructed，as shown in Fig 10，is 3．598．The data compressicn ratio is $4 / 3.598=1.112$ ，which is certainly not satisfactory。 The reasons are twofold：
（1）The four most probably steady state sequences are coded scparately， consequently，thee digits are needed to code each sequence．However， if these 4 most probably sequences can be represented by one sequence with the probability 4 times higher，then a single digit is enough to code this sequence and a tremendous savings in code word leugth can be expected．
（2）As it can be seen from Fig． 6 and Fig．10，the probabilities of sequences，
'0000', '1111'; '0101', and '1010' are much lower than the other sequences. Thus, they can be neglected without significantly degrading the performance. The 6 digit code word will not exist if these 4 sequences are neglected. Therefore, a further shortening in eode word length can be again expected.

3. Information Degrading Coding

The probability of occurrence of the " 0000 " sequences is very low as shown in Fig. 6. The encoder can be designed to receive this sequence and to send out the more probable sequence, " 0100 ". Similarly, the " 1111 ", " 1010 " and "0101" sequences can be converted into the " 1011 " or " 0100 " sequences as shown in Fig. 11. Futhermone, if a sliding block coding algorithm is used, there would be only one steady state sequence " 1100 ", with probability higher than 50%. If we assume that the 4 steady state sequences could be represented by one sequence, the final total number of sequences to be coded would then be redueed to 9 。The average code word length would thus be reduced to 2.228, as shown in Fig. 11. The performance of this information degrading process is not yet determined. The complete algorithm describing this process is currently being researched. However, the theoretically computed value, 2.228 , gives us some valuable indications that the coding of the Delta Modulator for bandwidth compression is feasible.
E. Conclusions

A thorough study of the statistics of the output bit stream of the Abate Mode Adaptive Delta Modulator has been performed. A few conclusions can be drawn; they are stated as follows:
(1) The "block-to-variable" coding scheme should be used for the Adaptive Delta Modulator. The optimum block length is four bits.
(2) The direct Fiffman coding technique does not yesult in a high data compression ratio. Hence, a modified information-nonpreserving coding scheme based on the Huffman method should be derived to meet the theoretical bound.

Further studies are still to be done in this area. Some theoretical calculations for the information degrading scheme is needed. Transformation methods, such as, Fourier transformation, Hadamard transformation, Karhunen-Loeve transformation, and others, are alternate approaches to reduce the final output bit rate and channel bandwidth. The video signal source using the Song Video Mode Adaptive Delta Modulator has not been analized at the time this report is written. Further expansion from an audio source to a video source is the next planned research.

References

(1) C: E. Shannon and W. Weaver, "The Mathematical Theory of Communication" University of Illinois Press, Urbana, 1949.
(2) Robert Ash, "Information Theory" Interscience publishers, 1965.
(3). Ho Meyr , Ho Go Rosdolsky and T. T. Huang "Optimum Run Length Codes" IEEE Transactions on Communications, Vol. COM-22, No. 6, pp 826-835, Jüne 1974。
(4) J。Pieter M. Schalkwijk "An Algorithm for Source Coding" IEEE Transactions on Information Theory, Vol, IT-18, No. 3 pp 395-399, May 1972.

Table 1

Average Number of Runs of Steady State Sequences at Different Input Voltages

Sequences Input Voltages

	$1 V_{p-p}$	$2 V_{p-p}$	$3 V_{p-p}$	$4 V_{p-p}$	$6 V_{p-p}$
0011	4.81	2.96	1.91	1.86	1.69
0110	4.13	2.25	2.24	1.73	1.53
1001	2.19	1.94	1.86	1.65	1.50
1100	2.56	2.21	2.36	1.97	1.74
Averge:	3.42	2.34	2.09	1.80	1.62

Table 2
The Number of "1100" Sequences Encountered by Shifting Along the Adaptive Delta Modulator Output Bit Stream (In Unites of Ten Thousands Of Bits)

	Input Voltages				
	$1 V_{0-p}$	$2 V_{p-p}$	$3 V_{p-p}$	$4 V_{p-p}$	$6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Number of "1100"	89	66	55	50	41
Sequence					
Total					
Number	500	500	- 500	500	500
Of Bits					
Ratio of Bits					
in '1100"	71%	53\%	44\%	40\%	33\%
Sequence to					
The Total					
Number of					

Table 3
The Number of "110011" Sequence Being Searched (Blocks of 6)

Input VoItages

$$
1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \quad 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \quad 3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \quad 4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \quad 6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}
$$

Number of

"110011"	40	27	22	20	16
Sequence					

Ratio of Bits
in "110011"
Sequence to $48 \% \quad 32 \% \quad 26 \% \quad 24 \%$. 19%
The Total
Number of Bits

Taide 4

Probabilities of 16 Possible Sequences at Different Input Voltages
Input Voltages

Sequences	$1 V_{p-p}$	$2 V_{p-p}$	$3 V_{p-p}$	$4 V_{p-p}$	$6 V_{p-p}$	$0.0 V_{p m p}$
0000	0.006	0.020	0.022	0.028	0.033	0.035
0001	0.035	0.050	0.033	0.037	0.040	0.070
0010	0.018	0.042	0.077	0.081	0.080	0.088
0011	0.245	0.162	0.092	0.090	0.080	0.053
0100	0.047	0.068	0.048	0.050	0.054	0.105
0101	0.004	0.011	0.018	0.022	0.027	0.018
0110	0.243	0.158	0.143	0.128	0.111	0.088
0111	0.008	0.024	0.064	0.066	0.065	0.035
1000	0.008	0.022	0.064	0.061	0.084	0.053
1001	0.133	0.132	0.118	0.105	0.100	0.088
1010	0.004	0.011	0.018	0.024	0.027	0.018
1011	0.063	0.072	0.050	0.055	0.058	0.105
1100	0.125	0.116	0.114	0.103	0.088	0.053
1101	0.020	0.044	0.083	0.083	0.081	0.088
1110	0.037	0.050	0.037	0.039	0.042	0.070
1111	0.004	0.018	0.020	0.026	0.031	0.035

Table 5

Entropies of the Output Bit Stweam of This Abate Mode Adaptive DeIta Modulator When Blocks of 4 Are being Used For Coding

Input Voltages

	$1 V_{p-p}$	$2 V_{p-p}$	$3 V_{p-p}$	$4 V_{p-p}$	$6 V_{p-p}$
Entropy	3.03	3.56	3.78	3.82	3.86

Figure 1. Optimal compression ratio as a function of p

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Steady state output bit pattern of Abate Mode Adaptive Delta Modulator

Figure 4. Block diagram of experimental procedure

Figure 10(a). Constructing the Huffman code

0611:000
0110: 001
1001: 011
1100: 100
1011:0100
0100:0101
1110: 1011
0001:1100

1101: 1110
0010:1111
0111: 10100
1000: 11010
0000:101010
1111:101011
1011:110110
0101:110111

Figure 10(b). The code words

The average code word length, $N=3 \times(0.162+0.158+0.132+0.116)+4 X($ $0.072+0.068+0.050+0.050+0.044+0.042)+5 X(0.024+0.022)+6 X(0.020+0.018+$ $0.011+0.011)=3.598$

| Received Sequence | 0000 | 0101 | 1010 | 1111 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Output Sequence | 0100 | 0100 | 1011 | 1011 |

Figure 11(a). Converting the least probable sequences to more probable sequences

Figure 11(b). Constructing the Huffman code

1100: 0
1011: 101
0100: 110
1110: 1001
0001: 1111

Figure 11(c). The code words

The average code word length, $N=1 x 0.568+3 x(0.099+0.101)+4 x$ $(0.050+0.050)+5 x(0.044+0.042+0.024+0.022)=2.228$

1. 3. Processing and Conversion of Delta Modulation Encoded Signals

A. Performance of a Digital Adaptive Delta Modulator

1. Introduction

The most general form of a digital Delta Modulator (DM) is depicted in Fig。1. Here we have assumed that the input signal, $x(t)$, is bandimited to f_{m} and is sampled well above the Nyquist rate, $i_{0} e_{0}, f_{s} \gg 2 f_{m}$ 。 A general mathematical description of a digital DM is given by the following set of equations:

$$
\begin{align*}
& e_{X}(k)=\operatorname{sgn}\left[\xi_{X}(k)\right] \tag{1a}\\
& \xi_{X}(k)=x(k)-X_{x}^{n}(k) \tag{1b}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{x}(k)=\hat{x}(k-1)+S_{x}(k) \tag{1}
\end{equation*}
$$

where

$$
S_{X}(k)=\text { step size at the } k^{\text {th }} \text { interval. }
$$

The particular type of DN is specified by the step size algorithm used to formulate $S_{x}(k)$. We shall be concerned with the Song Algorithm (1) that is used with audio signals. For this type of adaptive $D M$ the step size increases linearly aud is given by:

$$
S_{X}(k)=\left|S_{X}(k-1)\right| e_{x}(k-1)+\left.S e_{X}(k-2)\right|_{i}
$$

where
$S=$ magnitude of the minimum step size.

In order to evaluate the performance of the Song audio mode DM, we shall let $x(t)$ be a sinusoid of frequency f_{m} and let f_{s} be an integral multiple of $f_{m^{\prime}}$ 。 Whenever the sampling frequency is an integral multiple of the sinusoid frequency, the DM estimate, $\hat{X}(k)$, will assume a periodic sinusoidal steady state pattern. Since the estimate is periodic, it can be expressed as a Fourier series and the fundamental as well as the higher harmonies can be calculated. We can then pass each frequency component thru a realistic low pass filter and use the resulting filtered estimate to calculate the output signal-to-noise ratio.

2. Fourier. Series Representation of the DM Estimate

In order to facilitate the derivation of the Fowner series for $\hat{x}(k)$ we shall assume that its fundamental frequency is f_{m} and not a submultiple of it. If we let $f_{s}=P f_{m}$ and $T=1 / f_{m}$, then this means that $\hat{X}(k)$ periodically talses on P discrete values every T seconds. Using the continuous notation, $\hat{X}(t)$, the Fourier series for the DM estimate is

$$
\begin{equation*}
\hat{x}(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{m} t+\varphi_{n}\right), \tag{2a}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{0}=(1 / T) \int_{0}^{T} \hat{x}(t) d t_{0} \tag{2b}\\
& \dot{C}_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}}, \tag{2c}\\
& \varphi_{n}=-\arctan \left(B_{n} / A_{n}\right), \tag{2d}
\end{align*}
$$

and

$$
\begin{align*}
& A_{n}=(2 / T) \int_{0}^{T} \hat{x}(t) \cos \left(2 \pi n f_{m} t\right) d t \tag{2e}\\
& B_{n}=(2 / T) \int_{0}^{T} \hat{x}(t) \sin \left(2 \pi n f_{m} t\right) d t_{0} \tag{2f}
\end{align*}
$$

Since \hat{X} (t) takes on P discrete values in a period of T seconds, if we represent these values as \hat{X}_{j}, then EqS。(2e) and (2f) can le written as

$$
\begin{equation*}
A_{n}=(2 / T) \sum_{j=1}^{N} \hat{x}_{j} \int_{(j-1) T / N}^{j T / N} \cos \left(2 \pi n f_{m} t\right) d t \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}=(2 / T) \sum_{j=1}^{N}{\underset{x}{j}}^{N} \int_{(j-1) T / N}^{j T / N} \sin \left(2 \pi n f_{m} t\right) d t . \tag{3b}
\end{equation*}
$$

Using the fact that $f_{m}=1 / T$ and some trignometric identities, A_{n} and B_{n} reduce to

$$
\begin{equation*}
A_{n}=\frac{2 \sin (n \pi / N)}{n \pi} \cdot \sum_{j=1}^{N} \hat{x}_{j} \cos [n \pi(2 j-1) / N] \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}=\frac{2 \sin (n \pi / N)}{n \pi} \sum_{j=1}^{N} \hat{x}_{j} \sin [n \pi(2 j-1) / N] \tag{4b}
\end{equation*}
$$

Equations (4a) and (4l) represent the simplest expressions obtainable to determines the strength of the Fourier components, C_{n}. It is easy to see that the digital adaptive DM as well as this method of obtaining the Fourier series for the DM estimate are both readily adaptable for computer simulations on almost any digital computer.

3. Output Signal-to-Noise Ratio

Since we are concerned with an audio mode DM it would seem reasonable to choose a low pass filter that is applicable to voice signals. A common low pass filter is a fourth order Butterworth type whose magnitude-squared transfer function is given as

$$
\begin{equation*}
|H(s)|^{2}=1 /\left[1+\left(s / \omega_{c}\right)^{8}\right] \tag{5}
\end{equation*}
$$

where

$$
\omega_{\mathbf{c}} \equiv \text { the radian cutoff frequency }
$$

We are interested in the frequency characteristecis of this low pass filter and find them to be

$$
\begin{equation*}
|H(f)|=I / \sqrt{1+\left(f / f_{c}\right)^{8}} . \tag{6}
\end{equation*}
$$

where

$$
\mathbf{f}_{\mathbf{c}}=\omega_{\mathbf{c}} / 2 \pi_{\mathrm{o}}
$$

To realisticly represent a voice signal we shall choose $f_{m}=600 \mathrm{~Hz}$ and $f_{c}=4 f_{m}=2400 \mathrm{~Hz}$ 。 From Eq。(6) we now obtain the attenuation factor, α_{n}, that must be applied to the Fourier components of $\hat{x}(t)$ in order to simulate low pass filtering,

$$
\begin{equation*}
\alpha_{n}=\left[1+(n / 4)^{8}\right]^{-\frac{1}{2}} . \tag{7}
\end{equation*}
$$

Since all harmonics are orthognal we will only be concerned with the attenuation produced by the low pass filter and not consider the phase shift which arises.

After final low pass filtering, the oulput signal power is seen to be

$$
\begin{equation*}
S_{0}=\frac{1}{2}\left(\alpha_{1} C_{1}\right)^{2} \tag{8}
\end{equation*}
$$

The output noise power comes from all the frequency harmonics other than the fundamental. After the low pass filter the output noise power is expressable as

$$
\begin{equation*}
N_{0}=\frac{1}{2} \cdot \sum_{n=2}^{\infty}\left(\alpha_{n} C_{n}\right)^{2} \tag{9}
\end{equation*}
$$

Thus the output signal-to-noise ratio (SNR) is given as

$$
\begin{equation*}
\operatorname{SNR}_{0}=\frac{S_{0}}{N_{0}} \frac{\left(\alpha_{1} C_{1}\right)^{2}}{\sum_{n=2}^{\infty}\left(\alpha_{n} C_{n}\right)^{2}} \tag{10}
\end{equation*}
$$

4. Computer Simulation

Thus far we have successfully simulated the Song audio mode DM on a PDP 8/L computer employing 8 K of memory. We have observed the response to an input sinudoid and have verified that the DM estimate is in fact periodic. In addition, the Fourier components have been calculated using Eqs. (4a); (4b) and (2c) and the resulting output signal-to-noise ratio has been determined. Naturally we did not use an infinite number of harmonics t alculate the noise power as required by Eq. (9). Instead we truncated after the minth harmonic because the term $\left(\alpha_{10} \mathrm{C}_{10}\right)^{2}$ was negligible in comparison to the total noise due to the second thm ninth harmonies.

At this time we are oonstructing a family of curves depicting output signal-to-noise ratio in $d B$ versus relative input signal power also in $d B$ for various ratios of f_{s} / f_{m} and for the minimum step size set to unity. We have found that, for the same input signal amplitude, the periodic pattern that the estimate assumes and consequently the output signal-to-noise ratio is very dependent upon the starting point of the input sinusoid. In Fig. 2 we show the DM response to a constant input. Since the DM estimate is periodic with a period of $4 \mathrm{~T}_{\mathrm{s}}=4 / \mathrm{f}_{\mathrm{s}}$, the input, sinusoid can stait at any point within this period with equal probability. In Fig. 2 we also show a number of possible starting points of the input sinusoid. In order to obtain a truly representative value of output signal-to-noise ratio we are currently averaging the output signal-to-noise ratios obtzined for 20 different starting points of the input sinusoid.

Be Direct Aritlmetic Processing of Delta Modulation Encoded Signals
 A technique for adding and multiplying signals that are DM encoded without first converting them to a Pulse Code Modulation (PCM) format has successfully been developed. The results of this investigation were presented as a

paper, which is included in the appendix, at the National Telecommunications Conforence, December 1-3, 1974, in San Diego, California.

In this paper we develope both an addition/subtraction algorithm and a multiplication algorithm for DM encoded signals. We present the systems to realize these algorithms and show that for constant inputs the performance of these systems is identical to the performance of PCM adders and multipliers. In addition we display experimental results when elementary signals are used as inputs which verify the theory that has been developed.

At the present time we are attempting to apply the Fourier series theory developed above to DM encoded signals which have been subjected to direct arithmetic processing. By forming the direct sumand product of sinusoidal input signals which have first been DM encoded, we will be able to produce output signal-to-noise ratios for both the direct sum and the direct product.

C. DM to PCM Conversion

1. Basic Philosophy

Frequently the situation arises where a signal has been DM encoded and transmitted but at the receiver we wish to use the signal information in a system that requires a PCM encoded signal. Since both DM and PCM are digital encoding techniques, we would like to avoid demodulating the DM signal into analog form and then recoding it in PCM form. Thus the need arises for a direct, all digital method of conversion from DM to PCM.

The most obvious method to convert from DM to PCM would be to pass the DM bits, $e_{x}(k)$, thru the DM digital feedback circuit, as shown in Figo 1 , and produce the DM estimate, $\hat{x}(\mathrm{k})$. Since the DM operates at a rate much higher than the Nyquist rate, it would be necessary to gate $\hat{X}(k)$ at the Nyquist rate so as to obtain PCM format. The problem with merely using DM estimate values that occur at the Nyquist rate for our PCM sample values is that we run the risk of obtaining a "poor" value of $\hat{x}(\mathrm{k})$ 。 By a "poor" value of $\hat{x}(k)$ we mean one which exhibits a laxge variation from the true PCM sample value, $x(k)$ 。 A "poor" DM estimate is frequently produced when the

DM step size has grown too quickly causing the estimate to overshoot the true signal. If the true signals continues to increase, the estimate will reverse direction for one period, due to the overshoot, and then continue to increase. During the one period when the DM has reversed direction, the $\hat{x}(t)$ value is generally a "poor" estimate. When the DM is demodulated to an analog signal, the "poor" estimate values are easily averaged out by a low pass filter because the DM operating frequency is much higher than the Nyquist rate. However, since the PCM samples occur at the Nyquist rate, a "poor" value will give rise to a considerable error even after final low pass filtering.

In order to eliminate these "p oor" values of $\hat{x}(k)$, and still maintain a completely discrete system, we can insert a digital filter after the DM estimate, just before the gating device operating at the Nyquist rate. The digital filter may be viewed as a device which filters in the frequency domain, produces a statistical estimate, or performs a digital interpolation. In all cases the result is to decrease the out of band noise and make our estimate values more accurate.
2. Nonrecursive Filtering Techmique

The use of a nonrecursive filter to achieve DM to PCM conversion was first invertigated by D. Goodman (2) who only considered the case of a linear DM and used a minimun mean square error design criterion to determine the filter coefficients. In order to complete his design, it was necessary to assume input signal statistics. We have dealt with the more general case of any digital adaptive DM. In additon, we use a method to determine filter coefficients wh:ch is completely independent of input signal statistics.

The basic $D M$ to $P C M$ conversion scheme for any digital adaptive $D M$ first forms the step size, $S_{x}(k)$, from the DM bits, $e_{x}(k)$; then accumulates the step sizes to produce the DM signal estimate, $\hat{x}(\mathrm{k})$. These operations are performed at the DM operating frequency,

$$
\mathrm{f}_{\mathrm{s}}=2 \mathrm{~N} \mathrm{f}_{\mathrm{m}},
$$

where N is a positive integer and the input sigual, $x_{i}^{(i)}$, is assumed to be bandlimited to f_{m}. Finally we gate $\hat{x}(k)$ at the PCM or Nyquist frequency ${ }_{\text {; }}$

$$
\mathbf{f}_{\mathrm{N}}=2 \mathrm{f}_{\mathrm{m}}
$$

to produce the PCM samples, $\hat{x}(N / j)$. This scheme is shown in Fig. 3_{8}. In order to eliminate the poor values of $\hat{x}(k)$, we can insert a low pass filter after the accumulator. Now our converter takes the form of the DM step size, $S_{x}(k)$, feeding two cascaded linear filters. The accumulator can be represented as an ideal integrator whose impulse response is given as

$$
\begin{align*}
a(t) & =1, t \geq 0 \\
& =0, t<0 \tag{11}
\end{align*}
$$

Let us designate the impulse response of the nonanticipatory low pass filter as

$$
\begin{array}{ll}
h(t) & t \geq 0 \\
h(t)=0, & t<0 .
\end{array}
$$

In order to complete this converter we must gate the output of the low pass filter to yield the improved PCM sample, $\tilde{z}(N k)$. In Fig. 4 we present this system before the two cascaded filters, $a(t)$ and $h(t)$, have been transformed to a nonrecursive digital filter.

Since both $a(t)$ and $h(t)$ represent linear filters, they can be combined into one Jinear filter, $g(t)$, where

$$
\begin{align*}
g(t) & =a(t) * h(t), \\
& =\int_{-\infty}^{\infty} a(t-\lambda) h(\lambda) d \lambda . \tag{12}
\end{align*}
$$

The upper limit in Eq。（12）becomes t because the accumulator is nonan－ ticipatory，$i_{0} e_{\infty}, a(t-\lambda)=0$ for $\lambda>t$ ，and the lower limit becomes zero since the low pass filter is causal，$i_{0} e_{0}, h(\lambda)=0$ for $\lambda<0$ ．We also notice that for these limits of integration a $(t-\lambda)=1$ 。Therefore Eq。（12）reduces to

$$
\begin{equation*}
g(t)=\int_{0}^{t} h(\lambda) d \lambda= \tag{13}
\end{equation*}
$$

and this is merely the unit step response of the low pass filter．
Now we can express the filtered DM estimate，$\tilde{\sim}(\mathbb{k})$ ，by the following discrete convolution：

$$
\begin{equation*}
\tilde{x}(k)=\sum_{j=-\infty}^{\infty} S_{x}(k-j) g(j), \tag{14}
\end{equation*}
$$

where

$$
g(j)=g\left(j T_{s}\right)
$$

and

$$
\mathrm{T}_{\mathrm{s}}=1 / \mathrm{f}_{\mathrm{s}}=\text { the DM sampling perıod. }
$$

The lower limit of the sum in Eq．（14）becomes zero because the filter $g(t)$ is causal，$i_{\text {。 }}$ e．$g(j)=0$ for $\mathrm{j}<0$ ．Thus we have

$$
\begin{equation*}
\tilde{x}(k)=\sum_{j=0}^{\infty} S_{x}(k-j) g(j) \tag{15}
\end{equation*}
$$

Since $g(t)$ represents the unit step response of a low pass filter，we lnow that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} g(t)=1 \quad \text { or } \lim _{j \rightarrow \infty} g(j)=1 \tag{16}
\end{equation*}
$$

and that there exists a value of j (or $t)$ for which $g(j)$ is arbitrarily close to 1. If we call this value Q, then

$$
\begin{equation*}
g(j) \doteqdot 1 \quad \text { for all } j \geq Q_{0} \tag{17}
\end{equation*}
$$

Using this fact, the filtered DM estimate can be ap proximated very closely by

$$
\begin{equation*}
\widetilde{x}(k)=\sum_{j=0}^{N-1} S_{x}(k-j) g(j)+\sum_{j=N}^{\infty} S_{x}(k-j) \tag{18}
\end{equation*}
$$

If we notice that the second sum can be rewritten, letting $k-j=i$, as

$$
\sum_{j=N}^{\infty} S_{X}(k-j)=\sum_{i=k-N}^{j-\infty} \quad S_{x}(i)=\sum_{i=-\infty}^{k-N} S_{X}(i)
$$

and recall that the DM estimate is given by

$$
\begin{equation*}
\dot{x}(k)=\sum_{i=-\infty}^{k} S_{X}(i) \tag{20}
\end{equation*}
$$

then we can ultimately express the filtered DM estimate as

$$
\widetilde{x}(k)=\sum_{j=0}^{N-1} S_{x}(k-j) g(j)+\hat{x}(k-N)
$$

In Fig. 5, we give the block diagram of this nomrecursive digital filter.
Our design is now complete except for the choice of the filter coefficients,
$\mathrm{E}^{\prime}(\mathrm{j})$. In order to achieve the best out of band noise rejection without any in band signal deterioration, we choose $g(j)$ to be samples of the unit step response of an ideal low pass filter. Although an analog low pass filter is not physically realizable, when a nonrecursive sigital filter is constructed we can choose any coefficients desired to simulate a given characteristic. In Tig. 6 we show the unit step response of an ideal low pass filter plotted on a normalized abscissa. Analytically $g(t)$ is expressed as

$$
\begin{equation*}
g(t)=\frac{1}{2}+(1 / \pi) \text { Si }\left(\omega_{c} t-K_{0}\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { Si }(\alpha)=\int_{0}^{\alpha} \frac{\sin x}{x} d y \\
& \omega_{c} \equiv \text { the radian cutoff frequency, } \\
& K_{0}=\omega_{c} T_{d^{\prime}}
\end{aligned}
$$

and

$$
\mathrm{T}_{\mathrm{d}}=\text { the time delay of the Gilter. }
$$

Since $g(0)=0$ and $\mathrm{Si}(\alpha)$ is an odd function,

$$
\mathrm{Si}\left(\mathrm{~K}_{0}\right)=\pi / 2 \text { or } \mathrm{K}_{0}=1.926 \text { radians. }
$$

In order to obtain the filter coefficients, we select N points of $g(t)$ in the interval $2 \omega_{c} \mathrm{~T}_{\mathrm{d}}$. Thus we set

$$
\begin{equation*}
T_{S}=2 T_{d} / N \tag{23}
\end{equation*}
$$

and write $g(k)$ as

$$
\begin{equation*}
g(k)=\frac{1}{2}+(1 / \pi) \operatorname{Si}\left(\omega_{c} k T_{s}-K_{0}\right) \tag{24}
\end{equation*}
$$

Using Eq. (23) and the fact that $T_{d}=K_{0} / \omega_{c}$, we obtain a final expression for the filter coefticients:

$$
\begin{equation*}
\mathrm{g}(\mathrm{k})=\frac{1}{2}+(1 / \pi) \operatorname{Si}\left[\mathrm{K}_{0}((2 \mathrm{k} / \mathrm{N})-1)\right] \tag{25}
\end{equation*}
$$

What should be pointed out at this point is that the coefficients obtained from Eq. (25) are withen 1% of the values obtained by D. Goodman (2) for the case $N=5$ which is documented in this reference. More significantly we stress that these coefficients were derived independent of input signals statistics. Presentily we are zudertaking a computer simulation of this system in order to obtain signal-to-noise ratuo curves.

3. Recursive Tiltering Techuique

If we approach the problem of achieving DM to PCM couversion from a strictly digital system point ot view, the solution lends itself to the use of recursive digital filters. The objection is to relieve $\hat{x}(k)$ of its "poor" estimate values before the PCM samples are gated out. This can be achieved by a sharp cutoff low pass filter. These characteristics can be best obtained with munimum hardware by using a recursive digital low pass filter. The filter is inserted after the accumulator which produces $\hat{x}(k)$ and before the gating device which renders the PCM sampies, $X(N k)$.

The recursive filter design techniques which have been used are the impulse invariant method and the squared-magnitude method. Both design procedures ane well document by Gold and Rader (3). Currently we are undertaking compater simulations to obtain the performance of this system with various clifferent types of recursive digital low pass filters.

D. PCM to DM Conversion

1. Statement of the Problem

Consider the case where a signal is eneoded in PCM format but we wish to use a digital processing technique that-requires the signal to be DM encoded. Now we wish to couvert from intormation arriving at the Nyquist
rate， $2 f_{m}$ ，to a $D M$ form which has a frequency of occurence which is N times faster．That is，the DM operating frequency is $f_{s}=2 \mathrm{Nf}_{\mathrm{m}}$ 。 In addition，we would like to confine our conversion technique to all digital hardware。

It is evident that this problem is much more complicated than the DM to PCM conversion problem considered in the previous section．In PCM to DM conversion we do not have information about the signal excursion between PCM samples and a DM estimate can follow several paths and still pass thru the given PCM samples．Thus we must address ourselves to a method which first obtains additional sample values between the PCM samples and then uses these to choose the correct DM estimate path．Since the DM estimate is directly related to its output bit stream for a prespecified digital adaptive DM，we will have them achieved the desired conversion．

2．Submultiple Sanipling Technique
Although there are many approaches to this problem，the solution． presented here is consistent with previously developed conversion methods in that it appeals to a basic theoretical principle and results in a system which is easily physically realizable with the current state of the art digital hardware．We normally expect that the best way to demodulate the PCM signal would be to pass it thru an analog low pass filter．By doing this，we extract all the information between PCM samples．However，we seek only a finite number of additional sample values between the PCM points．In order to achieve this，we use a low pass filter which is not only digital but which operates in a submultiple sampling mode（4）。

When a digital system operates in the submultiple sampling mode it means that the system produces outputs at a frequency which is an integer multiple of the input frequency．This is exactly the circumstances that exist when we derive additional sample values from the PCM samples．To facilitate the entire PCM to DM conversion process，we choose to operate the submultiple digital low pass filter at the desired DM frequency，$f_{s}=2 \mathrm{Nf}_{\mathrm{m}}$ ．Then we can use these values as the input to the digital adaptive DM that we are employing and therefore automatically generate the necessary DM bits，$e_{x}(k)$ ．The only
restriction to this technique is that the DM must operate at a high enough frequency so that thare is negligible error between the output of the filter and the resultiug DM estimate. The general block diagram of the PCM to DM converter is given in Fig. 7.

In order to thoroughly describe the submultiple sampling technique that we are investigating, it becomes necessary to dichotomi ze this technique into two types. The first type uses the PCM samples as inputs to the digital low pass filter for onily $T_{s}=1 / f_{s}$ seconds. In the time between PCM samples, ($N-1$) T_{S} seconds, we insert zeros or no input: This is analygous to the situation where the filler input is a series of impulses. The second type employs the PCM samples as fillter inputs for NT_{S} seconds. This is similar to the PCM samples being held for the Nyquist period.

1. PCM Samples with Zeros Inserted

We shall describe the theory for both cases in a general fashicn omitting the partieular characteristics of the low pass filter. Furthermore let us start with the ordinary Z - transform of a digital low pass filter represented by $G(z)$ and the input and output of this filter specified by $X(z)$ and $Y(z)$ respectively: Then as we normally expect,

$$
\begin{equation*}
\bar{Y}(z)=G(z) X(z) \tag{26}
\end{equation*}
$$

In addition, we require that the input occurs once every Nyquist sampling period, $\mathrm{T}_{\mathrm{N}}=1 / 2 \mathrm{f}_{\mathrm{m}}$ 。

If we want the output to occur a times in the Nyquist sampling period and the input, which are PCM samples of $X(z)$, to have zeros between these PCM samples, then the output is expressed as

$$
\begin{equation*}
\mathrm{Y}(\mathrm{z})_{\mathrm{n}}=\mathrm{G}(\mathrm{z})_{\mathrm{n}} \mathrm{X}(\mathrm{z})_{\rho} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)_{n}=[G(z)]_{z=z} 1 / n \tag{27a}
\end{equation*}
$$

$G\left(z_{n}\right.$ is referred to as the submultiple sampling Z-transform of the digital low pass filter and is realized exantiy the same as the ordinary digital filter except delay elements are reduced by a factor n and scalars with the constant T_{N} included are attenuated by a factor n_{o}. This implies that the digital filter operates at a frequency $2 \mathrm{nf}_{\mathrm{m}}$ and for only one out of every n cycles is there an input which is a PCM sample and not an inserted zero. The filter operates on these inputs to produce estimates of the signal between PCM samples.

2. PCIM Samples Held

In order to obtain n outputs per Nyquist sampling period for the case when the input PCM sample is maintained as the filter input of all n cycles of the Nyquist period, it is necessary to employ a digital hold circuit, $H(z)$, after $X(z)$ 。A digital circuit to hold one value as its output for J periods when the held value is the input during the first period and there is zero input for the sccond thrar the $J^{\text {th }}$ periods has the transfer function:

$$
\begin{equation*}
H(z)=\frac{B(z)}{A(z)}=\sum_{i=0}^{J-1} z^{-1} \tag{28}
\end{equation*}
$$

A block diagram of this J period digital hold circuit is given in Fig. 8.
If we incorporate the hold circuit into our digital low pass filter operating ta the submultiple sampling mode then we must hold the PCM sample for n filter cyeles. The desired PCM-held output is given by

$$
\begin{equation*}
X_{I}(z)_{n}=G(z)_{n} H(z)_{n} X(z)_{2} \tag{29}
\end{equation*}
$$

where

$$
H(z)_{n}=\sum_{i=0}^{n-1} z^{-i / n}
$$

This completes the general theory for both types of the submultiple sampling PCM to DM conversion techuique leaving the option to choose whatever digital low pass filter characteristics that may be desired and to set the number of filter cycles per Nyquist period, n, to be a specific number, N, which is large enough so that there is negligible error between the output of the filter and the resulting DM esimate.
3. Normalization

Because the DM can suffer from both slope overload noise and granular noise due to in input which is too large or too small, wespectively, we should take the precaution to insure that our digital low pass filter does not contribute to either of these degradations by amplifying or attenuating the input sigana. This can be accomplished if we normalize the filter transfer function in the fyequency domain. Since $z=\exp \left(j \omega T_{N}\right)$, we normalize $G(z)$ so that at $\omega=0$ it will be unity. This normalization applies to the first type considered were zeros are inserted between PCM samples. If we call the normalize, low pass filter transfer function, $G^{r}(z)$, then

$$
\begin{equation*}
G^{\prime}(z)=G(z) / G(\omega=0) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{1}(z)_{n}=G(z)_{n} / G(w=0) \tag{30a}
\end{equation*}
$$

Using the normalized transfer function, the true filter output is

$$
\begin{equation*}
Y^{\prime}(z)_{n}=G^{\prime}(z)_{n} X(z) \tag{31}
\end{equation*}
$$

For the type of converter when the PCM samples are held we seek to normalize $G(z)_{n}$ so that at $\omega=0$ this will be wity. Let us denote the normalized held transfer function as $G^{\prime \prime}(z)$,n which is then given by

$$
\begin{equation*}
G^{\prime \prime}(z)_{n}=G(z)_{n} / G(\omega=0)_{n^{\prime}} \tag{32}
\end{equation*}
$$

Now the true output becomes the expression

$$
\begin{equation*}
Y_{H}^{\prime \prime}(z)_{n}=G^{\prime \prime \prime}(z)_{n} H(z)_{n} X(z)_{0}^{\prime} \tag{33}
\end{equation*}
$$

4. System Evaluation

In order to determine the performance of both ty pes of PCM to DM converter we are undertalking two different approaches. One will be purely analytical in which we let $X(z)$ equal the Z-transform of a sinusoid of frequency f_{m} which is sampled at the Nyquist rate. After $G(z)$ and n are chosen, we can find the Z transform of the filter output; take the inverse Z-transform; and then evaluate the mean square error.

An alternate approach will be to completely simulate each type of converter and the desired sinusoidal input on a digital computer. We can use the Fourier analysis technique deseribed earlier to determine the signal-to-noise ratio of the DM estimate. This will give us an even more accurate measure of the quality of the conversion system. In both approaches we can vary the filter characteristics and observe the effect of filter hardware complexity upon performance. The latter approach also allows us to vary n and observe the different system performance in terms of a change in DM estimate signal-tonoise ratio.

References

(1) Co Lo Song, Jo Garodnick and D. Lo Schilling, "A Variable Step Size Robust Delta Modulator", IEEE Trans. Commun. Tech., vol. COM-19, pp. 1033-1044, Dec. 1971.
(2) D. J. Goodman, "The Application of Delta Modulation to Analog-to-PCM Encoding", Bell Sys. Tech. Jo, vol. 48, pp. 321-343, Feb. 1969。
(3) Bo Gold and C. M. Rader, "Digital Processing of Signals", N. Yo: McGraw Hill, 1939, pp. 51-70
(4) B. C, Kuo, "Analysis and Synthesis of Sampled-Data Control Systems", Englewood Cliffs, No Jo: Prentice सall, 1983, pp. 32-86.

Direct Arlihmetic Processing Of Delia
 Modulation Encoding SIgnals

J. L. LO CICERO, D. L. SCIILLIING and
Dept. of Electrical Engineering The City College of the Citty University of New York

3. GARODNICK

Goldmark Communications Corp. stamford, Connceticut

Abstract

In this paper we show that two or more Delta Modulation (DM) encoded signals can be added or multiplied without first converting them to a Pulse Code Modulation (PCM) format. These results are obtained for a large class of all digital adaptive DMs as well as for the basic all digital innear DM. The addition and multiplication is performed by operating directly on the DM bit stream and the sum or product signal is presented as either a DM bit stream or in a PCM format.

Bounds are given on the Signal-to-Quantization Noise Ratio (SNR) for these DM arithmetic operations and compared with the results obtained in PCM. Experimental results are presented which verify the theory that has been developed.

Introduction

The conventional approach to arithmetic signal processing is to first encorle the signal in Pulse Code Modulation (PCA) format and then digitally process the PCM signal via standard parailel processing techniques. It is becoming increasingly popular to encode signals in Delta Modulation (DM) format, where aiqital data is presented in a serial rather than a parallel fashion. If we wish to arithmetically process DM encoded signals, it becomes necessary to perform the additional operation of conversion from DM to PCM before processing is initiated. It is, however, possible to avoid this additional operation of conversion and to produce the sum, difference and even the product of DM encoded aignals by direct arithmetic processing of the serial data.

In Fig. 1, we show the basic form of a digital DM. Here we have assumed that the input signal, $x(t)$, is bandlimited to f_{m} and is sampled well above the Nyguist rate, i,e., $f_{s} \gg 2 f_{m}$. The most general mathematical description of a digital DM is given by the following set of equations:

$$
\begin{align*}
& e_{x}(k)=\operatorname{sgn}\left[\xi_{x}(k)\right] \tag{la}\\
& \xi_{x}(k)=x \cdot(k)-\hat{x}(k) \tag{lb}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{x}(k)=\hat{x}(k-1)+S_{x}(k), \tag{1c}
\end{equation*}
$$

where

$$
S_{x}(k)=\text { step size at the } k \text { th interval. }
$$

The particular type of $D M$ is specified by the step size algorithm used to formulate $s_{x}(k)$. For the linear $D M$,

$$
\begin{equation*}
S_{x}(k)=S e_{x}(k-1), \tag{2}
\end{equation*}
$$

where
$S \equiv$ magnitude of the minimum step size.
Although there are many step size algorithms for adaptive DMs, where the step size adapts to the input signal power, we shall be concerned with the class of DMs derived by minimizing a mean square cost function, i.e., those described by the Song Algorithm [1]. For the case of the Song audio mode DM, where the step size increases linearly,

$$
\begin{equation*}
S_{x}(k)=\left|S_{x}(k-1)\right| e_{x}(k-1)+S e_{x}(k-2) \tag{3}
\end{equation*}
$$

and for the Song video mode $D M$, where the step size increases exponentially,

$$
\begin{array}{rlr}
S_{x}(k) & =\left|S_{x}(k-1)\right|\left[e_{x}(k-1)+\frac{1}{2} e_{x}(k-1)\right],\left|S_{x}(k-1)\right|=2 S, \\
& =2 \operatorname{se}_{\lambda}(k-1), \quad\left|S_{x}(k-1)\right|<2 s .
\end{array}
$$

The special region, $\left|S_{x}(k-1)\right|<2 S$, is needed to prevent a dead zone where $S_{x}(k)$ will be driven to zero.

Addition/Subtraction of DM Encoded Signals

Comalimet fwo nfimala, $x(t)$ and $y(t)$, lenth

 pooblam of obtalnher tha man of thonos two alymala, Wn can perform arifthmotic procosinding on $\left\{\mathrm{c}_{x}(k)\right\}$ and $\left\{\mathrm{o}_{y}(k)\right\}$ nid form the direct: mam, $a_{0}(k)$, as tho aum of tho individual. nitgnal. ontemalion, d.o.,

$$
\begin{equation*}
n_{D^{\prime}}(k)=\hat{x}(k)+\hat{y}(k) . \tag{io}
\end{equation*}
$$

Using the DM expression for the estimate of $x(t)$ and $y(t), E q$ (1c), we can form a recursive relationship for the direct sum,

$$
\begin{equation*}
a_{D}(k)=a_{D}(k-1)+S_{x}(k)+S_{y}(k) \tag{6}
\end{equation*}
$$

where $S_{x}(k)$ and $S_{y}(k)$ are formed directly from $\left\{\Theta_{x}^{x}(k)\right\}$ and $\left\{e_{y}(k)\right]$.
The direct sum, $a_{p}(k)$, is available in PCM format, because of the recursive relationship by which it was formulated, i.e., Eq. (6). To obtain the DM bit stream of the sum, $\left\{e_{a}(k)\right\}$, we merely pass $a_{p}(k)$ through a aigital DM. A bloek diagraim showing the structure used to obtain the sum of the $B M$ encoded signals is presented in Fig. 2. The DM digital feedback circuit shown in this figure is, in general, constructed with the appropriate step size network followed by nin accumulator. With this in mind, we notice that in order to physically realize the entire DM direct sum system, it requires only a full adder, an accumulator and the necessary step size network, all time shared.

To subtract DM encoded signals, we just add the negative of the subtrahend signal. If we wished to form $x(t)-y(t)$, all we need do is change $+S y(k)$ to $-\mathrm{Sy}_{\mathrm{y}}(k)$ in Eq. (6) and the result would be the direct difference. Thus, subtraction takes the same structure as the addition shown in Fig. 2.

It is to be noted that the structure derived is completely independent of the type of DM and is therefore universal for any aigital DM. In order to realize the direct sum of signals encoded by a particular type of DM, we must construct the circuitry used to formulate the step size algorithm employed in the original DM encoder. For the modes eited above, the step size circuitry can be constructed using the standard digital hardware i.e., full adacrs, delays, scalers and Exclusive - 0 ? gates. The DM adder for the linear mode and the Song audio mode is shown in Figs. 3 and 4 , respectively.

Averaging Filter

 n mimplo mesuarg wavo with n purlod of twes mamplend $\operatorname{sintervala}$. For any dones mede DM the pertiod in four admpling intervaln. In Pief. 5 we bhow a typicai gteady atate entitmates nitignal for thr Gong audio modo. In thin firfute, tho constant: input, x, has boen quantized to x_{q} and m is a non-negative integer.

Since the direct sum, $a_{p}(k)$, produced by a DM adder was formulated as the sumi of the individuai signal estimates, Ba, (5), we naturally expect the direct sum to also exhibit a periodic pattern when responding to constant inputs. For the Song audio mode, there are four possible steady state direct sum waveforms; one of which is given in Fig. 6. In this figure n and r are both non-negative integers. The important property of the four possible steady siate airect sum patterns is that the arithmetic average of any four consecutive values of $a_{D}(k)$ is always equal to $x_{\mathrm{g}}+Y_{q}$. This fact inspired the use of a four term non-recursive filter after $a_{p}(k)$.

The four term averaging filter employed is described by the following equation:
$A(k)=\frac{1}{4}\left[a_{D}(k)+a_{D}(k-1)+a_{D}(k-2)+a_{D}(k-3)\right]$,
If we apply Eq. (7a) to the waveform given in Fig. 6, the result is

$$
\begin{equation*}
A(k)=x_{q}+y_{q} \tag{7b}
\end{equation*}
$$

for all k, as long as ap (k) has reached the steadystate. Thus it is seen that after a four term averaging filter, the DM sum produces the same result obtainable by PCM adiztion.

In order to illustrate the function of the four term averaging filter, we form the digital transfer function, $H(z)$. Assuming zero initial conditions ana taking the Z-transform of Eq . (7a), we obtain

$$
\begin{equation*}
H(z)=\frac{A(z)}{a_{D}(z)}=\frac{1}{4}\left(1+z^{-1}+z^{-2}+z^{-3}\right) \tag{8}
\end{equation*}
$$

To display the frequency characteristics of this filter, we let $z=\exp (\omega \omega \mathrm{F})$ and form

$$
\begin{equation*}
H(\omega)=\exp (-13 \omega T / 2) \cos (\omega T / 2) \cos (\omega T) \tag{9}
\end{equation*}
$$

where

$$
T=1 / \mathrm{E}_{\mathbf{S}} .
$$

In Fig. 7 we plot $|\mathrm{H}(\omega)|=|\cos (\omega \mathrm{T} / 2) \cos (\omega \mathrm{T})|$ on an abscisja normalized to f_{g}.

From Fig. 7, we observe that $H(w)$ has a zero at $1 / 4 E_{B}, 1 / 2 f_{G}$ and $3 / 4 I_{s}$. It is
precisely the zero at $1 / 4 f_{s}$ that eliminates the four sampling interval periodic component produced by the Song mode DM. We also note that the four term averaging filter exhibita low passs filter charact:crm istices since it silghtiy attenuates even baseband freguencies. Thus care must be taken in utilizing this filter, because it can introduce some distortion to baseband signals.

Nultiplication of DM•Encoded Signals

If we wish to multiply $x(t)$ and $y(t)$ and if we only have the sequerices $\left\{e_{x}(k)\right\}$ and $\left[e_{y}(k)\right]$ available, then we can form the direct product, $\mathrm{p}_{\mathrm{p}}(k)$, by using the prom duct of the individual signal estimates, i.e.

$$
\begin{equation*}
{ }^{\prime} D_{D}(k)=\hat{x}(k) \hat{y}^{A}(k) . \tag{10}
\end{equation*}
$$

As is the case of the direct sum, we can develop a recursive relationship for the

$$
\begin{align*}
& \text { direct product } \\
& P_{D}(k)=p_{D}(k-1)+S_{y}(k) \hat{N}(k-1) \tag{11}\\
& +S_{x}(k) \hat{Y}(k-1)+S_{x}(k) S_{V}(k) .
\end{align*}
$$

The basic block diagram snowing the direct product, both in PCM format $[P D(k)]$ and in DM format $\left[e_{p}(k)\right]$, is given in Fig. 8 .
Since the direct product, $p_{D}(k)$ is formulated as the product of the individual signal estimates, as in the case of the direct sum, we expect the direct product to exhibit a periodic pattern when responding to constant inputs. Similar to the direct sum, the Song audio mode exhibits four possible steady state waveforms for the direct product. In Fig. ? we show a typical steady state waveform: The constants c 1 and c_{2} depend upon X_{q} and Y_{q} and the amplitude of the steady state error pattern ($\hat{x}-x_{\eta}$ and $\hat{y}-y_{C}$), while d_{1} and d_{2} depend only on the latter of these two. ${ }^{2}$ Notice that the arithmetic average of any four consecutive values of $p_{D}(k)$ is always equal to rcy plus a second order term depending on S^{2}. This warrants the use of the following four term non-recursive filter after $P_{D_{0}}(k)$: $P(k)=\frac{1}{4}\left[D_{D}(k)+p_{D}(k-1)+p_{D}(k-2)+p_{D}(k-3)\right]$.
Applying Eq. (12a) to the waveform shown in Fig. 9, we see that

$$
\begin{equation*}
P(k)=x_{q}^{y} q+\frac{1}{2}\left(d_{1}+\alpha_{2}\right) S^{2} \tag{12~b}
\end{equation*}
$$

for all k, as long as Ep (k) has reached the steady state. For any reasonably small value of step size, the term $1 / 2\left(\dot{d}_{1}+\alpha_{2}\right) 5^{2}$ is negligible and thus, after the four term averaging Filter, the DM product yields a result almost identical to the PCM product.

Returning to Fig. 8, we observe that although the structure derived for the direct product is again seen to be universal for any digital DM, it will only be useful if the step size algorithm

La such that we can recursively realize the partial products, that is, the last three terms in Eif. (il). For the iincar modo this is not difficult, and tho direct product is acen to bo

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}}(k)= & \mathrm{P}_{\mathrm{D}}(k-1)+S \mathrm{C}_{\mathrm{y}}(k-1) \hat{x}(k-1) \\
& +S \mathrm{e}_{x}(k-1) \hat{Y}(k-1)+S^{2} \mathrm{e}_{x}(k-1) \mathrm{e}_{y}(k-1)
\end{aligned}
$$

In Fig. 10 we show the black diagram for the DM multiplier for the linear mode. It is important te point out that the ease in. realization of the direct product for this mode stems from the fact that there are mo non-linear operations involved, only simple scaling and multiplication by +1 or -1 .

In orđer to recursively realize all three partial products for the Song audio mode, we must use the following step size relationship which is a property of all types of DMs:

$$
\begin{equation*}
s_{x}(k)=\left|s_{x}(k)\right| e_{x}(k-1) \tag{14}
\end{equation*}
$$

From Eq. (3), we see that this property is applicable for the Song audio mode as long as $\left|S_{(}(k-1)\right| \Sigma s$. Employing the step size relationship, the partial products for the Song audio mode can be expressed as: $S_{y}(k) \ell(k-1)=S_{y}(k-1) \hat{x}(k-2) e_{y}(k-1) e_{y}(k-2)$
$\because+S_{X}(k-1) S_{y}(k-1) e_{Y}(k-1) e_{Y}(k-2)+\mathbb{K}(k-1) S_{y}(k-2)$,
$S_{x}(k) \hat{y}(k-1)=S_{x}(k-1) \hat{y}(k-2) e_{x}(k-1) e_{x}(k-2)$
$\quad+S_{y}(k-1) S_{x}(k-1) e_{x}(k-1) e_{x}(k-2)+\hat{y}(k-1) S e_{x}(k-2)$,
$S_{x}(k) S_{y}(k)=\left|S_{x}(k-1) S_{y}(k-1)\right| e_{x}(k-1) e_{y}(k-1)+$
$S\left|S_{x}(k-1)\right| e_{x}(k-1) e_{y}(k-2)+S\left|S_{y}(k-1)\right| e_{y}(k-1) e_{x}(k-2)$

$$
\begin{equation*}
+s^{2} e_{x}(k-2) e_{y}(k-2) \tag{17}
\end{equation*}
$$

It is easy to see that Egs. (15), (16) and (17) can be constructed using adders: delays, scalers and Exclusive-og gates. In Figs. 11,12 and 13 we show the block diagrams of the partial products for the Song audio mode as specified in EqS. (15), (16) and (17) respectively.

We can aliso construct a DM adder and multiplier for the Song video mode, as defined by Eg. (4). They are similar to the song audio mode devices, since the step size aigorithr takes on a comparable structure. Likewise, the step size reIationship given by Eq. (14) is also applicable as can readily be seen from Eq. (4).

It is important to realize that all of the systems previously mentioned are accumulator or positive feedback type. For both the adder and the multiplier, for all DM modes, the present output is equal to the past output plus additional terms. Thus it is significant to begin with the correct initial condieion for the past output, or else suffer a constant offset exror. It is convenient to start with both signals, $x(t)$ and $y(t)$, at zero so that we can smploy a zere initial condition for the pust output.

Signal-ro-Noise Ratio

The signal-to-noiso ratio for the sum of
two PCM encoded signals is well-known [2],
and is given by

$$
\begin{equation*}
\operatorname{SNR}_{a}(P C M)=\sigma\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) / S^{2} \tag{18}
\end{equation*}
$$

Ifter nonrecursive averaging, the error in a DM encoded signal can be shown to be equal to that of PCM, and hence for a constant input,

$$
\begin{equation*}
\operatorname{SNR}_{a}(\mathrm{DM})=\operatorname{SNR}_{a}(\mathrm{PCM}) \tag{19}
\end{equation*}
$$

The signal-to-noise ratio of the product ©E two PCM signals is algo well-known and is given by

$$
\begin{equation*}
\mathrm{SNR}_{\mathrm{p}}(\mathrm{PCM})=\frac{144 \sigma_{x} \theta_{y}}{12\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) S^{2}+S^{4}} . \tag{20a}
\end{equation*}
$$

If the two signals have equal power and the step size is small $\left(\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma^{2}>S^{2}\right)$, the SNR
becomes

$$
\begin{equation*}
\mathrm{SNR}_{\mathrm{p}}(\mathrm{PCM}) \cong 6 \sigma^{2} / \mathrm{s}^{2} \tag{20b}
\end{equation*}
$$

For the direct product of DM encoded signals we can develop an expression for the signal-to-noise ratio. Again, we include the averaging filter introduced in Eq.
(12a) and the DM error is formulated as

$$
\begin{equation*}
\xi_{p}=p-P \tag{21a}
\end{equation*}
$$

where

$$
\begin{equation*}
P=P(k)=x_{q} y_{q}+6 S^{2} . \tag{2ab}
\end{equation*}
$$

Let us now define the product signal-tonoise ratio for $D M$ signals to be

$$
\begin{equation*}
\operatorname{SNR}_{\mathrm{p}}(\mathrm{DM}) \equiv \mathrm{p}^{2} / \operatorname{Var}\left(\xi_{\mathrm{p}}\right) \tag{22}
\end{equation*}
$$

Sirice $\overline{p^{2}}=\sigma_{x}^{2} \sigma_{y}^{2}$, we evaluate

$$
\begin{align*}
& \overline{\xi_{\mathrm{P}}}=\delta S^{2}, \tag{23a}\\
& \overline{\xi_{\mathrm{P}}^{2}}=\overline{\epsilon_{\mathrm{F}}^{2}}+\delta^{2} S^{4}, \tag{23b}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(\xi_{p}\right)=\overline{\xi_{p}^{2}}-{\overline{\xi_{p}}}^{2}=\overline{\epsilon_{p}^{2}} \tag{23c}
\end{equation*}
$$

But this means that

$$
\begin{equation*}
\operatorname{Var}\left(\xi_{\mathrm{p}}\right)=\operatorname{Var}\left(\epsilon_{\mathrm{p}}\right), \tag{23d}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{SNR}_{p}(D M)=\frac{144 \sigma_{x}^{2} \sigma_{y}^{2}}{12\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) S^{2}+S^{4}} \tag{24a}
\end{equation*}
$$

Again taking $\sigma_{x}{ }^{2}=\sigma_{y}^{2}=\sigma^{2}$ and $\sigma^{2} \gg S^{2}$, this result becomes

$$
\begin{equation*}
\operatorname{SNR}_{p}(D M) \cong 6 \sigma^{2} / \mathrm{S}^{2} \tag{24b}
\end{equation*}
$$

As in the case of addition, the ornclusion is that the performance of the direct PCM multiplier followed by the averaging filter is identical to the PCM multiplier performanee for constant input signals.

Stmulation Results

A computer simulation has been completed for the direct anithmetic processing of DM encoded signals, and results have been obtained for both the direct sum and the direct product employing the song audio
mode DM. Both the direct sum and the direst product were passed Elirough the nomrecursive four term averaging filter mentioned previously. The sum results are shown in Mgs. 14 thru 16 and the product results are shown in Figs. 17 thru 19. In all simulation results both the step size and the sampling period have been normalized to unity.
Fig. 14 shows the sum of a step function and a pulse; Fig. 15 displays the result of adding a step function and a sinusoid; and Fig. 16 gives the addition of two simusoids with the same amplitudes and frequencies that are in phase, In Figs, 17,18 and 19 we show the product of the signals that were added in Figs. 14, 15 and 16 respectively. These simulation results verify. the theory developed for both the DM Direct sum and the DM direct product. We must particularly emphasize the role played by the four term averaging filter to achieve both sum and product results that are 50 accurate. To fully appreciate the effect of this four term averaging, we show in Fig. 20 the direct product of a step and a rulse without the four-term averaging. Comparing this with Fig. 17, which is the result after four term averaging, clear demonstrates the important role played by this iiliter.

As a concluding remark, we observe an interesting. by-product of the DM multiplier. In Fig. 21 we show the response of a Song audio mode DM to a step of amplitude 150. The respense time, needed to reach at least 150 , is seen to be 17 sampling pexiods. Notice, from Fig. 18, that for the multipliex to reach an amplitude of 150 it takes only 8 sampling periods. Thus we have expanded the bandwidth by a factor of two, consistent with the previous assumption of the multiplication process. This type of system may be useful when processing video signals that are characterized by abrupt, ε tep-1ike amplitude variations.

References

[1] C. L. Song, J. Garodnick.and D. L. Schilling, "A Variable Step Size Robust Delta Moaulator," IEEE Trans. Commun. Tech., vol. Com.-i9, pp. 1033-1044, Bec. 1971.
[2] J. M. Wozencraft and I. M, Jacobs, prirciples of Communication Enaineesing, N. Y.: John Wiley \& Sons, Ine. , 1967, pp. 674-676.

POSSIBLE STARTING

Fig. 2. DM Response To A Constant

Fig. 3. Basic DM To PCM Converter

Fig. 5. Nonrecursive Digital Filter

[^0]$$
f_{s}=2 N f_{m}
$$

Fig. 7. PCM To DM Converter

I. 4. A Phase Locked Loop with Nonlinear Processor

A. Introduction

A general configuration for a Digital Phase Locked Loop (DPLL) is shown in Fig. 1. The input sigual, $f(t)$, is a bandlimited (BHz) angle modulated waveform (i.e., FM, PM, TSK, PSK, etc.) of nominal carrier frequency f_{o}, plus an addicive noise sigual, $n(t) . f\left(k T_{s}\right)$ is the digitized version of $f(t)$, where T_{S} is the sampling period, and $f_{v}\left(k T_{S}\right)$ is the Voltage Controlled Oscillator (VCO) waveform in digital format. The Phase Detector (PD) extracts the difference frequency term from the product $f\left(k T_{s}\right) f_{v}\left(k T_{s}\right)$. This signal is then hard limited, scaled, and then processed to produce the loop output signal, $y\left(\mathrm{kT}_{\mathrm{s}}\right)$.

Since in a Phase Locked Loop (PLL) we are interested in extracting the phase of the input signal, we can consider the use of a Phase Controlled Oscillator (PCO) as a feedback device. The frequency information would then be the phase difference $\left[\varphi_{v}\left(\mathrm{kT}_{s}\right)-\varphi_{V}\left(\mathrm{kT}_{\mathrm{S}}{ }^{-T_{S}}\right)\right] / \Delta \mathrm{I}_{\mathrm{S}}$

Let us assume that the form of the input sigual is some phase modulated signal. The digital version of this signal (assuming no additive noise is present) can be shown to be of the form

$$
\begin{equation*}
f\left(k T_{s}\right)=-2 \cos \left[\left(k T T_{s} / 2 j\right)+\varphi_{m}\left(k T_{s}\right)\right] \tag{1}
\end{equation*}
$$

where j is an integer greater than zero and $\varphi_{\mathrm{m}}\left(\mathrm{kT} \mathrm{S}_{\mathrm{s}}\right)$ is the modulating signal.

The VCO waveform will be of the form

$$
\begin{equation*}
{\underset{V}{ }}_{f_{S}}\left(k T_{S}\right)=g\left[\left(k T_{S} \pi / 2 j\right)+\varphi_{V}\left(k T_{S}\right)\right] \tag{2}
\end{equation*}
$$

where $\varphi_{\mathrm{V}}\left(\mathrm{LT}_{\mathrm{S}}\right)$ is the estimate of $\varphi_{\mathrm{m}}\left(\mathrm{kT} \mathrm{S}_{\mathrm{S}}\right)$ and $\mathrm{g}\left(^{\circ}\right)$ is a function defined as follows:

$$
g(x)=S q(x)= \begin{cases}+1 & 0 \leq x<\pi \tag{3a}\\ -1 & \pi \leq x<\pi\end{cases}
$$

and

$$
\begin{equation*}
g(x+2 \pi)=g(x) \tag{3b}
\end{equation*}
$$

Also, the VCO phase is given by

$$
\begin{equation*}
\varphi_{V}\left(k T_{S}\right)=G_{V C O} \cdot \sum_{i=m}^{k-1} y\left(i \Gamma_{s}\right) \tag{4}
\end{equation*}
$$

where $y\left(\mathrm{ir}_{\mathrm{S}}\right)$ is the output of the algonithmic processor at the time instant $t=\mathrm{i} \mathrm{T}_{\mathrm{s}}$. At this point we will normalize T_{S} to unity for simplicity uniess otherwise noted.
B. Linear Delta Modulator (DM) Type Processer

1. System Characteristics

Consider the following digital filter to be used as the algorithmic processor. The new estimate, $y(k)$, will be equal to the old estimate plus some update data, $b(\mathrm{k})$, as in a linear Delta Modulator (DM),

$$
\begin{align*}
& y(k)=y(k-1)+b(k) \tag{5a}\\
& b(k)=g_{d} \operatorname{Sgn}[e(k)] \tag{5b}\\
& e(k+1)=(f(k) \cdot g(k))_{L P F} \tag{5}
\end{align*}
$$

In the above, g_{d} is some scaling factor and (x) LPF has the following comnotation. Since $g(x)=S q(x)$ is a square wave, it can be expanded in a Fourier series to obtain

$$
\begin{equation*}
\mathrm{Sq}(x)=\frac{4}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\cdots+\frac{1}{(2 \mathrm{n}+1)} \sin (2 \mathrm{n}+1) \mathrm{x}+\cdots \cdot\right) \tag{6}
\end{equation*}
$$

where n is a positive integer. Therefore the product
$2 \cos \left[\left(k \pi T_{S} / 2 j\right)+\varphi_{m}(k)\right] \cdot \operatorname{Sq}\left[\left(k \pi T_{S} / 2 j\right)+\varphi_{v}(k)\right]$ generates
harmonics at $f / f_{s}=0,2 \pi / 2 j, 4 \pi / 2 j$, $21 \pi / 2 j$, where 1 is an integer. If we extract the signal content around $f=0$, $i_{0} e_{0}$, we Low Pass Filter (LPF) this signal, we obtain the desired error signal. This is precisely what the PD does.

From Eq. (4) we have

$$
\begin{equation*}
\varphi_{v}(\mathrm{k})-\varphi_{\mathrm{v}}(\mathrm{k},-1)=\mathrm{G}_{\mathrm{VCO}} \mathrm{y}(\mathrm{k}-1) \tag{7}
\end{equation*}
$$

and so

$$
\begin{equation*}
\varphi_{V}(k+1)-2 \varphi_{v}(k)+\varphi_{V}(k-1)=G \operatorname{sgn}\left[\sin \left(\varphi_{m}(k-1)-\varphi_{v}(k-1)\right)\right] \tag{8}
\end{equation*}
$$

where $G=(4 / \pi) g_{d} G_{V C O^{\circ}}$ Equation (8) is a second order difference equation of the loop phase estimate $\varphi_{\mathrm{V}}(\mathrm{k})$. Notice that at any sampling instant, k, the Right Hand Side (RHS) is $\pm \mathrm{G}_{0}$

Jet us assume for a momeint that $\varphi_{\mathrm{m}}=\varphi_{0}$, a constant plase offset. Then, of course, one would like $\varphi_{\mathrm{V}}(\mathrm{k})$ to be a constant approximately equal to φ_{0} since $\varphi_{V}(\mathrm{k})$ is an estimate of $\varphi_{\mathrm{m}}(\mathrm{k})$. In particular one would want $\varphi_{V}(k)=\varphi_{o}$ (modulo 2π). Consider Eq. (8) without the sgn function presents If $\varphi_{V}(\mathrm{k})$ is a constant then the Lelt Hand Sicie (LHS) of Eq. (8) is zero which implies that $\sin \left[\varphi_{m}(\mathrm{k})-\varphi_{\mathrm{v}}(\mathrm{k})\right]=0$ or that $\varphi_{m}(\mathrm{k})-\varphi_{V}(\mathrm{k})=0$ (modulo 2π) in steady state. However, in the actual equation one notices that if $\varphi_{\mathrm{y}}(\mathrm{k})$ is a constant then the LHS of Eq. (8) is zero while the RHS is $\pm G_{0}$. This is elearly a contradiction, Instead what happens is the following. In the steady state lock condition the phase estimate $\varphi_{V}(k)$ will oscillate by a fixed amount, $\Delta \varphi$, about some quiescent value (close to φ_{0}). This can be shown as follows.

Let the difference between the inptt and VCO phase be the phase error $\phi_{e}(k), i_{0} e_{0}$,

$$
\begin{equation*}
\phi_{e}(k)=\varphi_{\text {m }}(k)-\varphi_{y}(k) \tag{9}
\end{equation*}
$$

We can then rewrite Eq. (8) as follows:

$$
\begin{align*}
\phi_{e}(\mathrm{k}+1)-2 \phi_{\mathrm{e}}(\mathrm{k})+\phi_{\mathrm{e}}(\mathrm{k}-1)= & -G \operatorname{sgn}\left\{\sin \phi_{\mathrm{e}}(\mathrm{k}-1)\right\}+ \tag{10a}\\
& {\left[\varphi_{\mathrm{m}}(\mathrm{k}+1)-2 \varphi_{\mathrm{m}}(\mathrm{k})+\varphi_{\mathrm{m}}(\mathrm{k}-1)\right] }
\end{align*}
$$

If $\varphi_{m}=\varphi_{0}$ as above, the bracketed term in Eq. (10a) is zero, therefore we have

$$
\begin{equation*}
\phi_{e}(k+1)-2 \phi_{e}(k)+\phi_{e}(k-1)=-G \operatorname{sgn}\left\{\sin \phi_{e}(k-1)\right\} \tag{10~b}
\end{equation*}
$$

Let us assume that a possible solution to the above is

$$
\begin{equation*}
\phi_{e}(k)=-G_{o} \operatorname{sgn}\left[\sin \phi_{e}(k-1)\right] \tag{10c}
\end{equation*}
$$

where $0<G_{0}<\pi / 2$. Also assume that $\phi_{\mathrm{e}}(k-1)=G_{0}$, so $\phi_{\mathrm{e}}(\mathrm{k})=-\mathrm{G}_{\mathrm{o}}$, and $\phi_{e}(k+1)=+G_{0}$. Using the above for $\phi_{e}(k-1)$ we see from Eq. (10b) that $\phi_{e}(k+1)=-G-3 G_{0}$. For $\phi_{e}(k+1)$ to be $+G_{0}$ and thus satisfy Eq. (10c), G must : be equal to $-4 G_{0}$ or $G_{0}=-G / 4$. So $\phi_{e}(\mathrm{lk})$ will oscillate aljout zero by $\pm G / 4$.

2. Spike Suppression

Consider the above system operating with a PCO. The PD will have a binary characteristic taking on values of ± 1 。 Let us assume we want to track a phase signal or demodulate a phase modulated sigual which is varying linearly with time ($i_{0} e_{0}$, a frequency offset). Since we are operating in a noisy enviromment, we would like to investigate the loop's spike suppression capabilities. To do this we will look at the loop's response to a ramp imput (a crude approximation of a noise spike).

For a PCO in the feedback path the phase exror difference equation becomes,

$$
\begin{equation*}
\phi_{e}(k)-\phi_{e}(k-1)=-G_{p} \operatorname{sgn}\left[\sin \phi_{e}(k-1)\right]+\varphi_{m}(k)-\varphi_{m}(k-1) \tag{11}
\end{equation*}
$$

where $G_{p}=(4 / \pi) g_{d} G_{p c o}$ and $G_{p c o}$ is the PCO gain. Furthermore, let us set $G_{p}=S$, the normalized step size of the $D M\left(S=S^{\prime \prime} / T_{S}\right)$ 。

Let us assume we wish to track a constant plase, $\varphi_{m}(\mathrm{k})=\varphi_{0}=0_{0}$ and that at a time instant $k=0$ a spike of noise occurs which changes $\varphi_{\mathrm{I}}(\mathrm{k})=\varphi_{0}+2 \pi=2 \pi$ in a linear manner as shown in Fig. 3. (Notice: this is an anolog representation of the quantized input and is used for clarity). Assume initially that the system is in steady state, $i_{0} e_{0}$, the loop is tracking the carrier with zero frequency error. The PCO phase will approximate the input phase and differ by a value less than $|\mathrm{s}|$. At time instant $k=0$, the input phase begins to rise at a rate of $T_{R} \mathrm{rad} / \mathrm{sec}$ until it reaches 2π radians, that is,

$$
\varphi_{\mathrm{m}}(\mathrm{k})= \begin{cases}\mathrm{T}_{\mathrm{R}} \mathrm{k} & , \tag{12}\\ 2 \pi & , \\ & \mathrm{k} \leq 2 \pi / \mathrm{T}_{R_{\mathrm{e}}} \leq / 2 \pi / \mathrm{T}_{\mathrm{R}}\end{cases}
$$

where $\lceil x\rceil$ denotes the least integer greater than x.
Since we do not wish to follow the spilie, the PCO phase should not increase by 2π radians. Instead, since we wish to follow the input signal, there must be a time (denoted as the "Turnaround Time"), K_{0}, for which the estimate will decrease and eventually relock to $\varphi_{0}=0$. Due to the binary nature of the PD and the use of a linear DM, $\varphi_{V}(k)$ will increase by one step size each time instant until $\phi_{e}(k)$ is greater than π (but less than 2π), at which time $\varphi_{V}(k)$ will deerease $(b(k)=-1$). Thus it is seen that the PCO phase is a spike and so the time derivative of the phase is a doublet thereby suppresing the spike and improving the SNR (1)。For $k \geq K^{\prime}$ (see Tig. 3) the signal estimate becomes periodic and tracks the
original signal lerel, $\varphi_{0}=0$ 。
The situation indieated in Fig. 3 will occur for $\pi \leq \phi_{e}(k)<2 \pi$ when $k>K_{0}$ so we have

$$
\begin{equation*}
\frac{\pi+\varphi_{V}(0)-S}{T_{R}-S} \leq K_{0}<\frac{2 \pi+\varphi_{V}(0)-S}{T_{R}-S} \tag{13}
\end{equation*}
$$

where $T_{R}>S$ and $\varphi_{V}(0)$ is the phase estimate at $k=0$. (The retson for $T_{R}>S$ is obvious from Fig. 3 , and is equivalent to a slope overload condition in an ordinary linear DM. If this condition were not so, twanaround would not oecur.) The above equation specifies the range of turnaxound time as a function of step size and spike rise time.

It has been shown (2) that T_{R} (spike) $\leq 1 / \mathrm{B}_{\mathrm{IF}}$ where $\mathrm{B}_{\mathrm{IF}}=2(3 \cdots \mathrm{I})$ f_{m} is the bandwidth of the IF filter in the receiver front end. This factor gives the designer an idea of T_{R} (i.e., and upper limit) and so in conjunction with some other exiteria (e.g., a minimum step size or turnaround time) he can find the best parameters for his system.

C. Song Audio and Video Marie DM

Two other types of DM processors are presently being investigated for use as the algorithmic processors. The Song Audio Mode is geverned by the following set of equations

$$
\begin{equation*}
y(\mathrm{k})=\mathrm{y}(\mathrm{k}-1)+\Delta \mathrm{y}(\mathrm{k}) \tag{14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta y(k)=|\Delta y(k-1)| b(k-1)+S b(k-2) \tag{14b}
\end{equation*}
$$

and the Song Video Mode by

$$
\begin{equation*}
y(k)=y(k-1)+\Delta y(k) \tag{15a}
\end{equation*}
$$

and

$$
\Delta y(k)= \begin{cases}|\Delta y(k-1)| b(k-1)+\frac{1}{2} b(k-2) ; & |\Delta y(k-1)| \geq 2 S \tag{15b}\\ 2 S b(k-1) & ;|\Delta y(k-1)|<2 S\end{cases}
$$

The Song Audio mode is characterized by a quadratic increase in step size and the Song Video mode by an exponential rise. Proceeding in a mauner similar to the linear $\mathrm{DM}_{\text {, }}$ we find, for the Song Audio mode, that

$$
\begin{equation*}
\mathrm{SK}_{\mathrm{o}}^{2}+\left(\mathrm{S}-2 \mathrm{~T}_{\mathrm{R}}\right) \mathrm{K}_{\mathrm{o}}+2 \pi+2 \varphi_{\mathrm{V}}(0) \leq 0 \tag{16a}
\end{equation*}
$$

and

$$
\begin{equation*}
S K_{0}^{2}+\left(S-2 T_{R}\right) K_{0}+4 \pi+2 \varphi_{V}(0)>0 \tag{16b}
\end{equation*}
$$

Similarly for the Video mode we have

$$
\begin{equation*}
\pi<\mathrm{T}_{\mathrm{R}} \mathrm{~K}_{\mathrm{o}}+\left\{4 \mathrm{~S}\left[1-(1.5)_{\mathrm{K}} \mathrm{~K}_{\mathrm{o}}\right]-\varphi_{V}(0)\right\}<2 \pi \tag{17}
\end{equation*}
$$

D. Sigual Pius Noise

Let us now consider receiving an FM signal plus additive white Gaussian noise as in Fig. 1. After IF bandpassing the input sigual and obtaining the digital format we have

$$
\begin{equation*}
f_{n}(k)=-2 \cos \left[(k n / 2 j)+\varphi_{m}(k)\right]+n(k) \tag{18}
\end{equation*}
$$

where $f_{n}(k)$ is the igital information signal plus digitized noise, $n(k)$ 。

If we write $n(k)$ in its quadrature form as

$$
\begin{equation*}
n(k)=n_{1}(k) \cos (k \pi / 2 j)-n_{2}(k) \sin (k \pi / 2 j) \tag{19}
\end{equation*}
$$

and assime a high imput $S . N R$, we can write

$$
\begin{equation*}
f_{n}(\mathrm{k})=-2 \cos \left[(\mathrm{k} \pi / 2 \mathrm{j})+\varphi_{m}(\mathrm{k})-\mathrm{n}_{2}(\mathrm{k})\right] \tag{20}
\end{equation*}
$$

where $n_{2}^{\prime}(k)=n_{2}(k) / 2$ 。
Using a PCO and a linear DM we obtain

$$
\begin{gather*}
\phi_{e}(k)=\phi_{e}(k-1)+G_{p} \operatorname{sgn}\left\{\sin \phi_{e}(k-1)-n_{i}^{\prime}(k-1)\right\} \\
+\varphi_{m}(k)-\varphi_{m}(k-1) \tag{21}
\end{gather*}
$$

Letting $H(k)=\phi_{e}(k)-n_{2}^{\prime}(k)$
we have

$$
\begin{equation*}
H(k)-H(k-1)=-G_{p} \operatorname{Sgn}[\sin H(k-1)]-n_{g}(k)+\varphi_{m}(k)-\varphi_{m}(k-1) \tag{22b}
\end{equation*}
$$

where $n_{g}(k)=n_{2}^{\prime}(k)-n_{2}^{\prime}(k-1)$ and is a Gaussian noise process For $\varphi_{\mathrm{m}}(\mathrm{k})=\varphi_{0}, \Delta \varphi_{\mathrm{m}}(\mathrm{k})=\varphi_{\mathrm{m}}(\mathrm{k})-\varphi_{\mathrm{m}}(\mathrm{k}-1)=0$ for all k 。 If we assume that the noise samples are independent, then under the above conditions we see that Eq. (22b) becomes a first order Gauss Markov (discrete) process, and so we can apply a discrete version of the Chapman - Kolmogorov equation to determine a steady state pdf, $i_{0} e_{0}$, the pdf of $H(k)$ conditioned on $H(k-1)(3)$. The equation for the pdr is

$$
\begin{equation*}
p_{k+1}\left(I \mid H_{0}\right)=\int_{-\infty}^{\infty} q_{k}(H \mid z) p_{k}\left(z \mid H_{o}\right) d_{z} \tag{23}
\end{equation*}
$$

where
$H_{0}=\overline{H(0)}=\bar{\phi}_{e}(0)$
p_{k}（H｜II IH_{o} ） pdf of $\mathrm{H}(\mathrm{k})$ ．conditioned on H_{o}
$q_{k}(H \mid z)=$ transition pdf of $H(k+1)$ given $H(x)=z$ 。
Noting that $n_{g}(\mathrm{k})$ is independent of $H(k)$ ，we see from Eq。（22b）that the transition pdf q_{k}（H｜z）is Gaussian with

$$
\begin{equation*}
\text { mean }=E_{k}(H \mid z)=z * G_{p} \operatorname{sgn}(\sin z) \tag{24a}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{varinnce}=\operatorname{Var}(H \mid z)=2 \stackrel{2}{\sigma_{n_{2}}^{\prime}}=\sigma^{2} \cdot / 2=\sigma_{g}^{2}, \tag{24b}
\end{equation*}
$$

where $\sigma_{n_{2}}^{2}$ is the variance of n_{2}^{\prime} and σ^{2} is the variance of the original noise process $n(k)$ ．Notice that the mean and variance are independent of the time parameter k ．Thus we have

$$
\begin{gather*}
p_{\mathrm{k}+1}\left(\mathrm{H} \mid \mathrm{H}_{0}\right)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma}{ }_{\mathrm{g}}^{2}} \cdot \exp \left[-\left(\mathrm{H}-\mathrm{z}+\mathrm{G}_{\mathrm{p}} \operatorname{sgn}(\sin \mathrm{z})\right)^{2} / 2 \sigma_{\mathrm{g}}^{2}\right]^{\circ} \\
 \tag{25}\\
\quad{ }^{\circ} \mathrm{p}_{\mathrm{k}}\left(\mathrm{z} \mid \mathrm{H}_{0}\right) \mathrm{d}_{\mathrm{z}^{\circ}}
\end{gather*}
$$

The range of ϕ_{e} ，and therefone of H ，that we are interested in is generally $[-\pi, \pi]$ 。 In Eq．（25）the range is（ $-\infty, \infty$ ）。A simple adjustment（4） results in the following

$$
\begin{equation*}
P_{k+1}\left(H \mid H_{0}\right)=\int_{-\pi .}^{\pi} K\left(H_{2} z\right) P_{k}\left(z \mid H_{0}\right) d_{z} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{k}\left(H \mid H_{0}\right)=\sum_{n=-\infty}^{\infty} p_{k}\left(H+2 n \pi \mid H_{0}\right) \tag{27a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}_{\mathrm{o}}\left(\mathrm{H} \mid \mathrm{H}_{\mathrm{o}}\right)=\delta\left(\mathrm{H}-\mathrm{H}_{\mathrm{o}}\right) \tag{27io}
\end{equation*}
$$

and

$$
\begin{equation*}
K(H, z)=\sum_{n=-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \quad \exp \left[-\left(H+2 \mathrm{a} \pi-z+G_{p} \operatorname{sgn}(\sin z)^{2} / 2 \sigma{ }_{g}^{2}\right]\right. \tag{28}
\end{equation*}
$$

So that $\mathrm{P}_{\mathrm{K}}\left(\mathrm{II} \mid \mathrm{H}_{\mathrm{O}}\right)$ is periodic modulo 2π 。
As $\mathrm{l} \rightarrow \rightarrow$, we look for a steady state pdf $\mathrm{P}(\mathrm{m})$. $\mathrm{P}(\mathrm{H})$ would then be obtained as the solution to the integral equation

$$
P(H)=\int_{-\pi}^{\pi} K(H, z) P(z) d_{z}
$$

The search for an analytic solution of the above as well as numerical analysis on a digital computer are presently under way. Other items of interest to investigate are mean ime to slip a cycle, location of threshold, and threshold extension. These problems are being investigated presently. Similar studies are proposed for the Song Audio and Video processor algorithms.

Beferences.

(1) H. Taub and D. L.: Schilling, Principles of Communication Systems, New York: MeGraw Hill, 1971 pp 326-329.
(2) I bid, pp 329.
(3) Ja I/ Doob, Stochastic Processes, New Y ork: Wiley, 1953, pp 195-198.
(4) A; Viterbi, Principles of Coherent Communication, N ew York: MeGraw-Hill, $1956 \mathrm{pp} 88-89$.

Figure 2. Binary Phase Characteristic

Figure 3. Illustraing Spike Suppression

1. 5. The Mensurement of Light Intensity of Computer Generated Pictures

A. Abstract

We describe a method of measuring the total light energy in a computer generated picture. This method uses Cadmium Salfide (Cd S) photocells as transducers which convert the light intensity to an electrical signal. This signal is then processed and the result is displayed on a DC meter. This new measwrement technique will provide an efficient tool to aid us in optimally recording computer generated pictures.

B. Introduction

The equipment used in conducting this research is related to both communications and imiaging systems. The apparatus gives a measure of the screen image light energy, which is the ouput of the video communications system. The image is generally discrete in nature, the shape of which is approzimately known. However we want to know the light energy so that we can optimally record the jmage. In Fig. 1 we show a block diagram of the overall system. Figure 2 presents a block diagram of the electrical system that was designed and constructed.

C. Qutical System

A series of experiments were conducted to determine the optionum location of the photocells. It was apparent that tha bast performance, $i_{0} e_{0}$, signal-to-noise ratio, would be obtajned by directing the maximum amount of light from the Cathode Ray Tube (CRT) on to all the photodiodes used. The light had to be directed to the photocells by a method that would not interfere with photographing the image on the CRT sereen. We also had to insure that the anount of illumination reaching the photocells was independent of the position of the CRT dot and depended only on the intensity of the dot. It was found that placing eight photodiodes in a circle arowd the edge of the Polaroid camera lens gave satisfactory results. A sketch of this is given in Fig. 3.

It was found that when the eight photodiodes were connected in parallel their total resistance varied from 500K with maximum illuzaination from the CRT to 5 M in total darkness. This implies that each photocell has a resistance of $8(500 \mathrm{~K})=4 \mathrm{M}$ with maximum illumination. Employing the photocell manufacturer's curve displaying cell resistance versus the illumination, we were able to extrapolate to find that the illumination per cell was 0.005 footcandles.

D. The Detection and Measurement System

The optical information obtained from the photodetectors is processed as follows. Operational Amplifier (OA) 1 (see Fig。4) is a buffer to transform the light intensity, which is proportional to the photocell resistance, into an electrical signal, $m(t)$. During the time interval T_{I} (see Fig. 6), OA 2 integrates $m(t)$ as follows:

$$
\mathrm{v}(\mathrm{t})=\frac{1}{\mathrm{~T}_{0}} \int_{0}^{\mathrm{T}_{\mathrm{I}}<\mathrm{T}_{\mathrm{S}}} \mathrm{~m}(\tau) \mathrm{d} \tau
$$

where
$T_{I} \equiv$ the integration period (switch S_{0} open),
$. T_{0} \equiv 1 / R_{0} C_{0}=$ the integration time constant
and
$T_{S} \equiv$ the seanning period for one video frame.

Just prior to the dump time, T_{D} (see Fig. 6), switch S_{1} closes and a final reading of $v(t)$ is taken and presented to the input of OA6. The output of OA6 is then displayed on a DC meter. When S_{1} opens, S_{0} cioses and dumps the accumulated value of $v(t)$. S_{0} then opens and the cycle repeats during the next scanning interval. The synchmonization circuit of Fig. 5 generates the required enatrol signals to operate switches S_{0} and S_{1} 。
E. Overall Performance

The desigued circuits were found to function reliably under different sereen intensities and complex illumination patterns. In addition, the frequency characteristics of our processing and synchronization circuits are such that we can operate over a wide range of frame scanning time with little change in performance. Thus we are able to obtain a sufficiently good measure of the light energy in a video frame as it appears on our scanner. Using this information to aid in setting the exposure of the Polaroid camera we are able to more precisely record a video frame.

Fig.z. Placement of photosensors around the camera lens.

Fig. 4 . The processing circuit.

OA. 5
Hold switch, S
od
总
俞

II. 1 Testability Enhancement in Digital System Design

C. S. Chuang and S. T. Oh

Digital system applications demand high capability to insure the correct operation of a system. Rapid real-time fault detection is essential to satisfy this aspect of the system performance criteria.

Most of the existing techniques to detect the stuck type failures require, in general, an application of long input sequences generated by a hard core computer according to a complex algorithm. On the other hand, with the recent advances in semiconductor technology, the complexity of circuits fabricated on a single LSI chip tends to increase rapidly. The diagnosis of systems utilizing LSI components poses an extremely difficult problem because of the structural complexity of the components and their limited accessibility.

The problem of augmenting the testability of a digital system becomes the - mportant design criteria. Several approaches to enchance the testability of digital system by means of redundant hardware have been developed recently. But, they are still not efficient enough to provide real time fault detection for stuck at fault model.

One approach to satisfy this requirement is to include the fault detecting capability of the system from the initial stage of the system design. New techniques of employing hardware redundancy to reduce the number of tests to detect the stuck at faults are proposed, so that the criteria of real time fault detection will be possible for a digital system.

Some works have been done for this effort, two papers have been published recently. The results show two tests are enough for stuck at fault detection of any combinational circuitimplemented with
the proposed PLM's and CSI's, and four tests are sufficient for detecting stuck at fault of the combinational logic portion and single permanent malfunction of the flip-flops of a synchronous sequential circuit implemented with the proposed PLM's, CSI's and CMM's. Also, the test patterns are automatically generated by the systematic design procedure.

design of easily detectamie comminational AND SXNCHRONOUS SERUENTML CLRCUITG**

Chin Sheng Chuant and Bo Joung on
Department of Elocirical Enginoertog
The City Colloge of The City Universlify of New York

Now York, Now York

Abstract

- Abatract

The problem to reduce the number of tente for fault dotection in both combinational logio chreutts and synchronoun ecquental circults is investlgatod. Ulihaing programmabio logie module and controllable momory module, systematic deslan and detoction proceduros aro described. Two tosta are sufficient to detect any stuck type faults oí comblnational cheoult, and four tents are necensary and aufficlont to detect any stuck typo foulta of elementary logte gates and the malfunction of SHp-flope of synchronous boquential circuit using D Пip- Ilope.

i. intronuction

Digital system applications demand hifh reliability which imples an fnemased capabllty to assure the correct aystem operation. Rapid real time detection of stuck faults is oflen essental to insure the lntegrity of the syetem performance. One aspect of the bystem to meet these performanee criterta is to imbed the fault deteeting capablity within the system from the inltial stage of system deslgn.
The existing tecinisucs [1$]-[3]$ to detect the stuek fautis require, in general, appliention of long hoput sequences generated by a hard enre computer according to a complex alforttim. On the other hand, due to the recent advances in semicomrituctor techoology, the complesity of rircults fabriented on single LSi chip tends to Increate rapidly. The functhonal dimmonta of byateme utilizling LSI components poses a diffeult problem.
Technlques [4], [5] were investlgated in varfous thrections to simplify the fatilt detection by using hardware redundancy. A new approach is proposed hero which whll allow us to perform fath detection in real timo. The followine deflations are lat reduceds
(1) Input Senmftivity: The benallivity of an Input pattorn for a logite frate in deftnod at tho numbor of individual inputs in the pattern capablo of bending fallures in the gate.

For oxamplo, (00) is tho most gengltive input pattorn for two-input On gate aince any one of the input atuck-at-1 whll affect Its output. The most sensllive input pattern for the $\mathrm{N}-$ input OR gate is $00 \ldots 0^{\prime}\left(\mathbb{N} 0^{\prime} \mathrm{s}\right)$. Jy extendigg hiss fen, the most sens:-ive Input patteme for the ordinary combinational logle gates are estabished as shown in Table-l.
(2) Sensitizing Path: A path which propagatea the fault information to the observable outputs.

- The stuck type faults can te partitioned into two classen. by the logic function nature of the clementary gntea.
(3) Type I Fault: Tho fault set consiseling of stuck-at-1 ($a-n-1$) faulla of the inputs of OR, NOR and the output of NAND, and the stuck-at-0 ($B-a-0$) faulte of the inputs of AND, NAND and the output of NOR.
The complement of Type I fault to defined as Type II fault and they form thes complete clans of atuck typo faults.
It is found that the Typo I fault information in a coinbinallonal logle efreult can always propagate to the observable outputa of the clrcult if and only if the inpuita for all gates are the most aonbltive lnput patterns for tho roopoctivo gatiz.
(4) Proframmabio Loglo Mortute (DLM): A muliple input-afnglo outpud combinational elroult la doifnod to bo a proframmablo logio modula if each of tims logic functhons porformed by tho module esn be usfquoly spacified
"This work was eupportad In part by NABA under tho Contract $\mathrm{NAB} 8-13040$.
by a det of control sirnala,
(5) Control signal tivertor (CSI): An Exelusteo On fato
 'The spocifle logite numeton of liat for AND, (Oll, NAND

 The clrentit constructed ly the use of PLMs and CSIB has three motles of operation: NOMMAL moxle, TEST 1 mode and TEST 2 mode. If we denote one class of stuck type fauts which can be defected by TEST 1 modo as Type I fimit, then this class is equivalent to the Type II fault of TEST 2 mode. Stmllarly, the Type II fault of TEST 1 mode is equivalent to the Type I fatit of TEST 2 mode and it can be detected by TEST 2 mode. So the complete class of stuek lype faults can be detected by settiner the cIrcuit to TEST 1 and TEST 2 modes. For signle stuck lype fault assumplion (s-a-1, $5-\mathrm{a}-0$), any combinational circuit with primary output olservable can be constructed with PLIfs and CSIs so as to doteet the stuck type fauls with two tests input patterns [4].
(v) Controllable Memory Motule (CMM): A memor. element with direet set and resel capability whose outputs are convertable by two oxteral control alfenta. A penoral model of CMA! is shown in Fifs. 3 . Its out-
 $\mathrm{C}_{\mathrm{yd}} / \mathrm{C}_{\mathrm{yl}}$ elepencts on the control sifgats of its successor Phin and dreet set and reset signals of the flip-fiop. Consider a Delay fllp-flop CMM as shown in Fig.4. Type I malfunction Is defined as the fallure of a Delay CMM which falls to propagate 0 when $D=0$. Fig. 4 (a) shows that the $s-a-1$ of D, y, q and $C y$ are equivalent to Type I malfunction. Type If malfunction ts defined as the fallure of a Delay CMM whieh fails to propagate 1 when $\mathrm{B}=1$. Fif. 4 (b) shows that the $\mathrm{s}-\mathrm{a}-0$ or $\mathrm{D}, \mathrm{y}, \mathrm{q}$ and C_{y} are equivalent to Type It malfunction. It is sufficient to detect the malfunction of CMM for fault detection of the Rip-flops portion of a sequential circuit. The relation of control signals between the consecutive gates are shown in Table-HI. $\mathrm{C}_{\mathrm{yI}} / \mathrm{C}_{\mathrm{yi}}$ of CMMis set according to Table-IV. Systematic design and delection procedures are developed. Two examples are used to Illustrate the procedures.

II. COMDINATIONAE CIRCUIT DESIGN

Consider the beolenn function $\mathrm{f}=\mathrm{b}\left(\mathrm{a}^{\prime}+\mathrm{c}^{\prime} \mathrm{d}\right)+(\mathrm{fr})^{\prime}\left(a^{\prime}+\mathrm{c}^{\prime} \mathrm{d}\right)^{\prime}$ as shown in Fige. 5 (a). Its controllable circult is constructed as shown in Fl . 5 (i). All the control signals $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are fot to be 0 during the normal operation. For teat aporation, wo apply the two teata necording to the tetection procedure as follows:
Tissy 1: Set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{5}=011$ (TEST 1 mode) and npply input teat patern abod=0101. If tho observable output= f-1, then the cirealt doee not have otuck faut of Type d . Otherwise, It has at least ono ntuek fatit of Typo 1 .
TEST 3: Sat $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=101$ (TEST 2 modic) and npply

Input toat pattorn nbext $=1010$. If the ohnarvahle output fro, thon tho elreutt itwen not have nituok fault of Typo II. Othorwise, It hat at lanat onos ntuck fande of Typo 12 . Onco the dreult pann twen lwo tonts, the cl reutt in gratantaod to bo froo of tituck-at-1 and atuck-atof fatis,

III. GYNCHIRONOUS : SRQUENTIML CIRCUIT WITH D-WHM-FLOIS

Consicler at wo bit shift right/shift left registor an shown in Fig. $6(a)$ fin which X_{1} is the serial input for shift left, X_{2} is the serial Input for shift right and X_{3} Is the shift control. It is convorted to an easily testable elvcult as shown in Fige. 6 (b), where \mathcal{Z}_{m} is the monitoring t eput. For normal operation we set all the control sigmale to be 0 . For testing, four teats are applled according to the detection procedure as follows:

TEST 1: $\left(\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=10\right):$ Set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{\mathrm{y}_{\mathrm{d}}} \mathrm{C}_{\mathrm{y}_{2}}=01100$ and apply input test pattern $X_{1} X_{2} X_{3}=110 .{ }^{Y_{2}}$ Observe the output Z_{m}. if $Z_{m}=1$, then the combinational logle does not have stuck fault of Type I. Otherwise, it has at least one.
TEST 2: $\left(S_{d} R_{d}=00\right):$ Observe the outpui $Z_{Y_{1}} Z_{Y_{2}}$,
if $Z_{y_{1}} Z_{Y_{2}}=00$, then the flp-hops to not have the TYDE H^{2} malfunction. The disagreement implies tho corrosponding filp-flop hat the Type if malfunction.
TEST 3: $\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=01$): Sat $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{Cy}_{y_{1}} \mathrm{C}_{\mathrm{y}_{2}}=10100$, and apply input tost patiorn $X_{1} X_{2} X_{3}=001$. Observo tho output Z_{m}, If $Z_{m}=0$, then the combinational logic does not have stuck fiult of Typo II. Otherwibe, it has at least onc.
TEST 4: $\left.\mathrm{S}_{\mathrm{d}} \mathrm{IK}=00\right)$: Ohserve the oufput $\mathrm{Z}_{\mathrm{y}_{1}} \mathrm{Z}_{\bar{y}_{2}}$,
if $\mathrm{Zy}_{1} \mathrm{Zy}_{2}=11$, then the flip-flops do tot have the If $Z_{1} y_{1} y_{2}=11$, then the flip-flops do tiot have the corresponding fip-flop has the Iype I maliunction. Cnce the circuit passes these tests, it is guaranteed to be free of atuck at 1 and 0 faults of logle crates and the malfunction of flip-Hops, Notice that the Exciuslve OR unit in the CMM is not necessary for this apectal creult.

IV. CONCLUSION

The utlization of PLMs, ChMs and CEIs rissures that two testis can detect any combinational circult and four tests, for any aynchronous sequential circuit using D-flip-flops. In addition, the tost pattern can be analiy genorated by a bystomatie procedure so as to allow foult detection in roal time.

RETERENCES

1. Kautz, W. II. , "Tault Testing nul Dingnobis in Combinational Digital Clrcults", WEEE Trans, on Computore, Vol.C-17, 1968, pp.352-306.
2. Roth, J, P., 'Diateosis of Automata Faliuro: \boldsymbol{A} Calculua and h Method", IBM joumal R und D, Vol. 10, 1.666, 1P. 278-281.
3. Su, S.Y. H. and Cho, Y.C. " "A Now Approach to the Fatil Location of Combinational Networka', IFLEF Tems, on Computors, Vol. C-21, 1972, pp. 21-30.
4. Sakaucht, M. and Jnose, IH. 'Synthesls of Fault Dingmosaho Logical Circutts by Function Convorslon Method", Trans. C of dec, Vol. 56-1D, No. 1, Jan. 1973, pp. 27-54.
5. Inyos, J. P., "On Modifylug Jogic Networks'to Improvo Their Dlagnosability", IEEE Traib. on Computors, Vol. C-23, 1974, pp. 56-62.

N-Input cate	The Mont Sensitlve Input Pattorn
OH	
Atid	11.0.1 (111'8)
NOR	00.1 .0 (110.0)
Minid	12...1 (i11:0)

Table-I. The most sensitive input pattern of li-input elementary gater.

Module	Desired Logic Function when : $\mathrm{C}=0 \quad \mathrm{C}=1$	
PLM_{1}	AND	OR
PEM_{2}	OR	AND
PLH_{3}	NAND	NOR
$8 \mathrm{LH} / 4$	NOR	NAND

Table-IL. Four bealc programable logic moduleg.

Fig. 1. An implementation of Sour bagic 2-input PiMi.

ORIGINAL PAGE IS OF POOR QUALITY

INPUT
X

Fig. 2. The general model of PLM and bymbols.

Gate	Itw Succensor	Tho Relation of Their Control Signal
OR	OR/NOR -	SAME
	AND/NAND	DIfrerent
AND	OR/ NOR	DIFFERENT
	AND/NAND	SAME
NOR	$0 \mathrm{R} / \mathrm{NOR}$	DIFPERENT
	AND/MAND	SAME
NAND	OR/NOR	SAME
	AND/NAND	DIFFERENT

Table-III. The general rule of determining the PLM control signal settings.

Fig. 3. The general model of CMor.

The Successor of The State Variable of The Flip-Flop (q_{j} or $\overline{\mathrm{q}}_{\mathrm{i}}$)	$\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=10$	$\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=01$
PLM_{1} or PLM_{3}	$\mathrm{C}_{\mathrm{y}_{\mathrm{i}}}=\mathrm{C}_{j}$ \#	$\mathrm{c}_{\mathrm{y}_{\mathrm{i}}}=\overline{\mathrm{c}_{j}}$
	$C_{\bar{y}_{i}}=\bar{c}_{j}$	$C_{\bar{y}_{i}}=C_{j}$
PLM_{2} or PLM_{4}	$\mathrm{C}_{\mathrm{y}_{\mathrm{j}}}=\overline{\mathrm{C}}_{\mathrm{j}}$	$\mathrm{c}_{\mathrm{y}_{\mathrm{i}}}=\mathrm{c}_{j}$
	$\mathrm{C}_{\tilde{y}_{j}}=\mathrm{C}_{j}$	$\mathrm{c}_{\bar{y}_{i}}=\bar{c}_{j}$

* C_{j} is the control signal of PLMs

Table-IV. Control signal of CMM with respect to the predetermined control signal of itis successor PLMs.

(a)

Fig. 4. (a) Type I malfunction of Delay CMA.
(b) Type II malfunction of Delay Cinh.

Type I faults $=\left[a_{1}, b_{0}, c_{1}, a_{0}, e_{0}, g_{0}, h_{0}, i_{0}, j_{1}, k_{0}, i_{1}, m_{0}, n_{0}, p_{0}, i_{0}\right]$
Type II fauits $=\left[a_{0}, b_{1}, c_{0}, d_{1}, e_{1}, g_{1}, j_{1}, i_{1}, j_{0}, k_{1}, j_{0}, m_{2}, n_{1}, p_{1}, j_{1}\right]$
Where $x_{k}=$ the line x stuck-at-k $f=0$ or 1)
Fig. 5. Combinational circuit design example.
(a) Original circuit. (b) Easily testable circuit.

Type I faults $=\left[a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}, g_{1}, h_{1}, i_{1}, j_{0}, k_{0}, l_{1}, z_{m_{0}}\right]$
Type II faults $=\left[a_{0}, b_{0}, c_{0}, d_{0}, c_{0}, f_{0}, c_{0}, h_{0}, i_{0}, j_{1}, k_{2}, I_{0}, z_{m_{2}}\right]$
Fig. 6. Synchronous sequential circuit desifn example.
(a) Original circuit. (b) Easily testable circuit.

Depurtment of Eloctrien Binflucestnf, Tho Clty College of the City Univeratiy of New York
Now York, Now York

Ansmancy

Several apmoaches to evhane the testabillty of difital Eystem ly moms of rellundant hatware have heen pro-
 rethondancy to reduce the momber of tests for fault detection in both combthational and ajnchronous sequential etrcults is invertisited, Au approtich is presented for utllizing systemathe redundaney to simplity destam work. Motels fer lim (prorsmamable logic motule) and CMM (controllable momory mostule) are depteted. Syatemate destan and delecten procedures ner deacephed. Uning . these procecluters, in eastly testable ctrout f for stack

 to detect any shuck foults of combinational logic cirouth. Four tests aro netessary mul suffelent to intect nny stuck falls of elomentary logic gates and the malfonction of fifp-flops of symehronous sequentin? clrctit using Delay flip-flops or Trigner (ilp-flojs.

I. COMANATIONAL NETYORK

If a logre falce can not perform the deshed lopic functlon with respect to the huphe pation appled, then thero exists brome permanctu tatits th the lofite fato. These por-- manent fauth are defined as tituck fath. The stuck fatht can be entegortzed thto two typos, that ts, atuck at logic i ($5-\mathrm{n}-1$) and stuck at loptc 0 ($\mathrm{t}-\mathrm{a}-\mathrm{n}$).

Consbder a two-inpul A ND pates There are four possible binary input patterns (00, 01, 1.0, 111. Some input fallures will not cause the ontput to change, f. e. , they are masked. For example, if 00 is used as the inputas to an AND gate, the output will be affected only when both inputs stuck it 1, and all the other possible stucle fallures will be masked, We introchece the sensitivily of an input pattern to a fate to classtry the patiern aceording to its nbllity to avold fault masking.

The aensitivily of in Imput paitern to n gito is dofmed ne the number of indivsdual inputs in the pattem capnble of senning fallares fin the gate.

If we mpply the input pattern 01 to an AND gate, then only the innut "0" stucls-al-I. will affect the output. If we apply the ingut patiem in to tho AND gate, then any or both "i" ntuck-at-0 will catiso the ehange of output. Henco the most sensitive Input patiom for the AND gato is 11. Wo find that ho mort achstlive inpat pattern for an $\mathrm{N}-\mathrm{d}$ mat Aty

 all zero hipul, amel for orsinary And and NaND gato are ; all one hapul. For Exeltaivo-on and Equivalenco gratod, all the posable buput patterns have equal sensittity,

A path in defmed an sanalizime mith if tho fault Information enn propagate along the path to the olmervable outputa. The atued type fait of ay combinationat elrealt com bo partionert fato two diatinct clanses necording to the logie functan merformed by the elementary patc. One clana is the stuck-at-1 (s-n-1) faulto of fan-lin of an OR or HOR gate and fan-out of a NAND sate and the btuck-at-0 8 - $8-01$ faults of fan-in of in AND or NAND gate and fan-out of a Non gate. This clabs is denoted as Type I faulta. Anothor chase ts the eomplement of Typo faults and ia denoted as Type if falta. Wo enn then conclude the following theorem.

Theorem I

Tho Typor ifnult fnformation in a combinntional logto etreult always proparatos to tho obsorvable outputa of tho circuit if and only if the efreutt topolofy is arranged in such n way that tho laputis for all gates are tho most benaltive input patterns for the respective gates.

Proof

1. Suffelent Condition If we use the moat acneitive input patiorns as tho tost inputa, then any stuck at 2 or 6 fault of Type I faulis will alter the output of the fate. Thas whil in turn iffect the output of the fubserpent gatea connectod to It by chain process, and the faut infomation of Type I will evensually propagate to the obacivabie outpute.
2. Noecssary Condilion since the mont Benaltive Input patterns wifl not mask any get of fault information in the Typo I faults, the necessity if obtions.

In tho following discussion, let the line x siuck nt the logic value k be denoted as $x_{k}(k=0$ or 1).

Example I

Consifler the circult shown in Fig. 1. The circuit ; antiafios the conditions of theorem I becauec it in posatble to find a test input pattern such that inputs to every grito are mont nenallive. When wo apply an input pattorn nbedefp $=1101001$ to thes elreutt and observo $t=1$ in responas to the mind, then the chrcult does not have Typo If fulte, where Type I foults $=\int_{0}, b_{0}, c_{1}, d_{0}, e_{1}, f_{1}, g_{0}, h_{1}, f_{0}$,
$J_{1}, k_{1},{ }_{0}, z_{0}$. On the other hand, if $z=0$, there exfale al lant onc Tyne i frult. Similarly, if a new eirebit is fenerated by daterchanging Of to AND, and NOR to NAND, or vico verga in tho clrcitl of Fig. 1, wo ern detoet the comploment of Typo I fnuta of tho original circula fram tho now efreult with tho complement of the input pathorn ugad for detecting tho Typo I faito In the ortginal circult. Tha structurnl converaion for tenting ean ho periormod by meann of the programinable logic moduled (FLM).

* Tht a work win mupmated in part by NASA-Hormion undor. tho NASA Contract NAs $0-13040$.

Fig. 1
A multiple laput-singie output combinational circuit is deffed to be a proprammable loge module if each of the Joge functions performed hy the mothle ean bo wheftely speefficel ly a set of control simats.

The spectife logic functions of PLM for AND, OR, INAND and NOR gates we described in Table I. There are numerous ways to implement the desired PTM. Fig. 2 shows one of the inplementition of PLME fint two-input and one-output gates. 'The genexal representations of JLM's are shown in Fig. 3.

Fig. 2

Module	Desired oogic Function When:$C=0$$C=1$	
PIM 1	ANI)	01 l
गH2	On	ANI
PLM 3	NAND	NOR
PIM 4	NOH	NAND

Table I

Fig. 3

Corollary

Any stacis fault information in the combinational logle network will propagate to the observable outputs if and only If the stricture of the network satisftes theorem I and all the gates are interchanged with the suitable types of programmable logic modules.

Proof

The detection of Type I faults is obvious. The uthration of programmable logic modules allows us to derive a simple test pattern for the detection of the complement of Type I faults by setting the control signals for the PLM: In other. words, any stucli type faults can be detected by a single input pattem and its complement.

The clrcuit eonstructed by the PLMs has three circuit modes, f. e. , NORMAL mode, TEST 1 mode, TEST 2 mode. If we denote the class of stuck type fault that can be delected by TEST I mode as Typo I faults; then it is the Type H faults of TEST 2 mode, so it can be detacted under TEST 2 mode. This implics that the complete stuck fault class will be detected under TEST 1 mode and TEST 2 mode. In the following, we let $\mathrm{C}_{1} \mathrm{C}_{2}=00$ indicate NORMAL mode, $\mathrm{C}_{1} \mathrm{C}_{2}=01$ indicate TEST 1 mode and $\mathrm{C}_{1} \mathrm{C}_{2}=10$ Indicate TEST 2 mode, where $C_{1} C_{2}$ are the control signal of its corresponding plims. Notice that the faults at control signal are equivalent to the corresponding fault class at testing.

Fixample II

Consider tho comblnational circult for $z=\left(x_{1} x_{2}\right)\left(x_{2} x_{3}\right)^{\prime+}$ ($\left.x_{1} x_{4}\right)^{\prime}\left(x_{2} x_{3}\right)^{\prime}$ ns shown in Fig. 4 (a). We use the PLM3 in place of each NAND gate and cennest the control sipmatio as shove in Fig. 4 (b). For normal operation, setting $\mathrm{C}_{7} \mathrm{C}_{2} \approx 00$ (normal modo), fll the PLMJ's function as NAND grted.
 (0000), consegtently, all the fates in ord level become NOR and all the gates in even lovel become NAND. If $\quad \pi=0$, we then know that there exists at least one Type ft fall. Then we set $\mathrm{C}_{1} \mathrm{C}_{2}-01$ (TESSC 1 mode) and $\left(\mathrm{x}_{1} \mathrm{x}_{2} x_{3} x_{4}\right)=(1111)$. Now all the gates in odd level become NAND's and all the gates in even level NOR's. If $z=1$, there exists nt least one Type I fault. We ohserve that the test input sequence is short and easy to prodace if the combluational network is constructed to satisfy the conditions of Theorem I.

Fig. 1
Excem for a restrifted chass of eireuts stich as tho one fllughintet in Example III, we can empert a chrouit to a specffed atructure which will satisfy the requipement of Theorem I during the testhug by projerly setting the control signals of plame'. The cholee of control signal settings for a glven checult is therefore imporitant. The relation of control slgnals between the ennseculive gates are established as shown in Table II based on Theorem I and its corollary.

Gate.	Its Successor	Relation of Their Control Signal
On	OR/NOR	Same
	AND/NAND	Different
AND	OR/NOR	Diffcrent
	AND/NAND	Simac
NOR	OR/NOR	Different
	ANI/NADID	Same
NAND	OR/NOR	Same
	AND/NAND	Different

Table II

Example III

Consitier the Boolean expression $z=x^{\prime} y^{t}+x y$ as shown \ln Fig. 5 (a). It is impossible to construct the checuli to satisfy the comection reptimement by the technique of setting control mignils. The omly way to solve this probiem is to apply a controlled isignal invertor (CSD) at the proper points In the checult to mate the eircuit gatigify the conditions of Theorem 1. The CSI is actually an Exclusive OI gate in
whein one of the Ingat is uncel as level emtrit atemal. So the efreutt can be reconstineted by uaing Plaita and CSI ab shown in Fig .5 (b).

For normnl operation, we set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=\mathbf{0 0 0}$. For teating, we set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=011$ with (xy)=(00), and then ret $\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{3}=101$ with $(x y)=(11)$.

Fig. 5

In our subsequent discusaion, an input variable of the circuit will be atat to be a primary input if the variable is included in the minimal expression of at least one observable cfrcust output. We then concludo the following corollary.

Corollary II

Given any combinational chent, if each observable output of the circuit can be represented as an explict switching function of chrent inputs, and ench circuit inpul variable is a primary input, then the elroult can be constmated with PLM's and CSI so as to detect the stuck falle wilh two test input patterins.

II. SYSTEMATLC DESIGN PROCEDURE FOR COMBINATIONAL CHCUIT

The following definitions are introdtecd to freilitate the discussion of the systematic design procedure.

Predecessor gate,

A gate G is called the predecessor of a gate G if the gate output of G_{j} is one of the inputs of the gate G_{j}. On the other hand, G_{j} is the successor of G_{i}

Level of gate G

Let the level of gate G be denoted as $L(G)$. Then $L(G)=1$ If the gate ontput of G is the primary output (observabie). Otherwise, $L(G)=$ the maximum level of the successors of $\mathbf{G}+1$.

Consider the circuit shown in Fig. 6 , where $Z_{1} Z_{2}$ are primary output. Then $\left.L^{\prime} G_{2}\right)=L\left(G_{4}\right)=1$ because their gate outputs are primary outputs. $\quad L\left(G_{3}\right)=L\left(G_{4}\right)+1=2$ and $L\left(G_{1}\right)=$ $\left.\left.\max \left[L_{(} G_{2}\right), 1 / G_{3}\right)\right]+1=2+1=3$ necording to the definition.

An anfortithm of the ryatematic denifn procedure for the combinational circuit in generatel from the property of the proposed PlM's and the introduced tefintiona. The flow chart is ahown in Fig. 7 and the detalis of the procedure are described below.

. Systematle design procedure

- Step 1 Find out the level of each gate of a glven combinathonal circuit and reconstruct the circuit to a controllable circult by using PLM1, PLM2, PLM3 and PLMA to repince the AND, OR, NAND and NOR gate respectively. Denote tho conirol signal of the predecessor as CP and the logic value of the primary input an 1 II and the referenco control aignal as RS.

Step 2 Let $I=1$ and J the maximum level of the circuit and the control slpnal of PLM1/PLM3 in level- 1 be C_{F} and that of PLM2/PLM4 in level-1 be C_{2}, where C_{2} is the complement of C_{1}.

Step 3 Pick one input of level-1 which is not picked yet and trace back to sta predecessor. If the module from which the smput is picked is PLM1/PLM3, go to step 4. If the module from wisch the input is pleked is PLM2/PLM4, go to step 10.

ORIGINAL PAGE IS OF POOR QUALITY

Step thet US be equal to tho control alpmit of then PLMI/DLMB modite. Then eheck to ace whether the control slimal of its predecessor is defincel or not. Ii yon, go to step 5. Otherwise, go to step 7.

Steps If the predecessor Is:
(1) PLM2/PLM:A, dreck "Is CP=RS?" If yes, go to step G; otherwise go to step fo.
(2) PLM1/PLM4, check "Is CP=Ris?" If yea, go to step 8; otherwise go to step 6.
(3) Primnry inpul, check "Is PI=RS?" If yos, go to step G; otherwiso, go to step 8 .

Steng Insert a CSI in series with this input. Then go to step 8 .

Step 7 If the predecessor is:
(1) PLM2/PLM3, act CP to be the complement of RS.
(2) $2 \mathrm{LM1/PLM4}$, set Cl to be equal to RS.
(3) Primary input, set PI to be the complement of RS. Ther go to step 8.

Step 8 Check to see whether cach input of the lebel-I is pleked or not. If yes, go to step 9; otherwise go back to stcp 3.

Step 9 Check "Is I larger than J?" If yes, the procedures are completed; otherwise led $\mathrm{I}=\mathrm{I}+1$ then go back to step 3.

Step 10 Let RS be equal to the control signal of thite PLM2/PLM4 module. Then check to see whether the control signal of its predecessor 15 defined or not. If yes, go to step 11. Otherwise, go to step 12.

Step 11 If the predecessor is:

(1) PLM2/PLM3, check "Is CP=RS?" If yea, go to step 8; otherwise go to step 6 .
(2) PLM1/PLMA, check 'Ts CP=RS?' If ye', go to step 6; otherwise go to step 8 .
(3) Primary input, check "Its PI=RS?" If yes, go to step 8; otherwise go to step 6.

Step i2 If the predecessor is:
(1) PLM2/PLM3, set CP to be equal to RS.
(2) PLMY/PLMA, aet CP to be the complement.
of RS.
(3) Primary input, set PI to be equal to RS. Then go to step 8 .
p
Fnult detecilon procedire
Fnult detection procons for tha transitited chrcuit is anky to follow. The tert input pattern ti nlroady fenerated by thio denign proceciure. Two tests can detect ah atuck faulta (Typo I nad Typo i:

Tent 1 Set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}-011$ and aply the correaponding teat input pattern. If the observable output of PLM1/PLM2 is 1 and that of PLams/rlam 1s 0 , then the etrcull doce not have any Type I fault. Otherwise, it has at least one.

Test 2 Set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=101$ and apply the corresponding test input pattern. It the observalle output of PLM1/PLM2 is 0 and that of PLMM/PLMA is 1 , then the circult does not have any Type II fablt. Otherwise, it has at least one.

Once the circult passes these two tests, it has guaranteed to be free of stacik faulte, then set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=000$ to perform Ite normal operation.

Fig. 8

Example IV

Consider the circuit shown in Fig. 8 (a), where $z_{1} z_{2}$ are the observable primary outputs. We flrst define the fevel of each gate according to the definition, then the circuit is converted to a easily detectable circuit as shown in Fig. 8 (b) by applying the systematic procedure. The label for cach line is used to define the Type I fault and Type II fault. The input test pattem (abedef(x) $)=\left(\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{2}\right)$ is generated. Two testis are applied as follows:

Test 1 Set $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}=011$ and apply the test pattern. (abedefg) $=(1100111)$. If $z_{1} z_{2}=11$, then the circuit does not lave any Type I fault, where Type I fault $=\left[a_{0}, b_{0} ; c_{1}, d_{1}\right.$, $\left.0_{0}, f_{0}, g_{0}, h_{0}, I_{0}, J_{0}, k_{1}, l_{1}, m_{0},{ }_{0}, z_{10}, z_{20}\right]$. Otherwisc, it hre at lenst one

Toat 2 Sct $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{4}=101$ and apply tho test pattern (abcdefg) $=(0011000)$. If $z_{1} z_{2}=00$, then the efreult doer not have any Type II fault, whore Type If fault $=\left[n_{1} ; b_{1}, c_{0}, d_{0}\right.$,
$e_{1}, f_{1}, k_{1}, h_{1}, 1_{1}, j_{1}, k_{0}, 1_{0}, m_{1}, n_{1}, z_{11}, z_{21} j$. Otherwisc, it has at least one.

Each flip-flop has its om trath table. To deternthe tho necuracy of fip-flop, it is not neeessary to find out where is wrons insith the flip-flop. The important aspect is to know whether the flip-flop does function properly according to its desiver truth talle or nol. If the fiph-flop ean not function correctiy for certain excitation, then we say that the fip-hop has malfunction. "ithe malfunction of nip-flop can be elassiffed, in genernl, into four catemorios:

1. Whe A malfunction is the fipment fails to remain nt its previous state.
2. Type 13 malunction is the Alp-flop falls to change its provious state.
3. Type © matrunction the fip-flop fatis to resot to 0 stnto.
4. Tven D malfunction is the fipmon fatis to set to I state.

Contider a D -fip-flop, it will only have Type C and D malfunctions. Type C malfunction is catsed by the fatiore of falling to resel to 0 state when D-0. Type D malfunction is causer by the failure of fiting to set to 1 state when D-The T-flip-flop will only have Type A ind 13 matructions according to its trath table. The m-filip-fiop whil have at of the four possible malfunctions. Ff the flip-flop does not have the malfometions deseribed ahove, then it is ensured to function properly under all the possible inputs unless there exists a intermittent (transient) fault anside the fipflop.

IV. SYNCIIRONOUS SEQUENTIAT NETWORK

The difference between sequential circuit and combinitional circuit is that the sequential circuit contains memory elements in addition to the combimational logic. In a se-. quential eircuit, the prosent outputs depend on the previous states and/or present primary imputs, and the state transitions depend on the previous states and primary inputs of the efreutt. Consofuently, present fault may not affeet the present outputs. Hence we cannot in general cletect the faults by a single test pattern. It requires a sequence of test patiern to detect the faults in a sequential circuit and the lengti of the test sequence is proportional to the number of meinory elements in the circhit. Theve are several techniques to roduce the length of the test sequence by means of additional confol logic circuitry. In the following discussion, we introduce a new aspect of control cirectitry to delect the fauts in synchronous sermental circuite. In addition to the plal's, we propose the controllabio memory modules for the memory elenents as follows:

A memory eloment wh direct set and reset capability whose outputs are convertible by two external control odgnats is called the controllable memory module (CMM).

A general model of CMM is shown in Fig. 9. If the fitp-- fiop is BFF (of TFF, JKFF, SUFF, etc.), the input is Di (or T, JK, SR, etc.) and the module is denoted as DCMit (or TCMM, HKCMM, SRCMM, etc.). Its outpute are \boldsymbol{f}_{3}
 on the control signals of the successer PLM and ditect fet and reset signals of the flip-flop, and $Z y_{i}$ and $Z \bar{y}_{i}$ are cbservable outputs.

The CMM will operate like the pure flip-hop unit in the CMM when the control gignals are set to 0 . For testing, we set tes control signals according to Table III. The failure of CMM whll be contributed by the faults of its control piortion and the fip-flop unit. In the following discusbion, the fant in CMM is restricted to the single permanent fault.

Successor of the Flip- Fiop	$\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=10$	$S_{d} \mathrm{R}_{\mathrm{d}}=01$
PLM 1/PLM 3	$C y_{i}=C_{j}$	$C \gamma_{i}=\bar{C}_{j}$
	$\mathrm{Cy}_{\mathrm{i}}=\bar{C}_{j}$	$C y_{i}=c_{j}$.
PLM 2/PLM 4	$\mathrm{Cy}_{\mathrm{i}}=\mathrm{C}_{j}$	$\mathrm{Cy}_{i}=\mathrm{C}_{j}$
	$\mathrm{Cy}_{\mathrm{i}}=\mathrm{C}_{j}$	$\mathrm{Cy}_{i}=\mathrm{C}_{j}$

Table II
C_{j} is the control signal of PLM.
Constder the TCMM as shown in Fig. 10. The Type A malfunction can be caused by T_{1} or y_{1} (when the module is nreviously reset) or $\mathrm{Cy}_{1}\left(\mathrm{Cy}_{0}\right)$ or $\mathrm{c}_{1}\left(\mathrm{~g}_{0}\right)$ or the cquivalent fault. It can be detected by first directly reset the module and then apply $T=0$ and $\mathrm{Cy}=0(\mathrm{Cy}-1)$. Type B malfunction can be caused by T_{0} or Y_{0} (when the module is previously reset) or $\mathrm{Cy}_{1}\left(\mathrm{Cy}_{0}\right.$) or $\mathrm{q}_{0}\left(\mathrm{~T}_{1}\right)$ or the equivalent fall. It can be detected by first direclly reset the fip-fop and then apply $\mathrm{T}=1$ and $\mathrm{Cy}=0(\mathrm{Cy}=1)$. The malfunctions of JKCNM can be detected by the bimilar concept. So the malfunctions of CMM can be detected by contain input pattern. The application of using CMM to enhance the testability of synchronous bequentinl ofrcult is illustrated by the following example.

Fig. 10
Exnmuloy

 the ordmary gates and T - $[$!p-fleps with the proper plams and TCants to cabance its testablity, where an additional module is susevied to monfler the behiviov of eombinational forte grotion and ${ }^{2}$ in the montorige output. Alt tho
 teating, four teats are mpiltal na followa

Teat 1 ($\mathrm{S}_{\mathrm{d}} \mathrm{R}_{\mathrm{d}}=10$) Set $\mathrm{C}_{1}=0$ and $\mathrm{Cy}_{1}-0$ for $1=0,2,2,3$. If $z_{0}=1$, then there exists no Type I feill, where Type I faums $=\left[n_{0}, b_{0}, c_{0}, d_{0}, y_{0}\right]$, oherwise the faut information will te sensed nut drives $z m$ to 0 .

Test 2 ($\mathrm{S}_{\mathrm{d}} \mathrm{d}_{\mathrm{d}}=00$) Let $\mathrm{x}=1$ and keep the control stgnals unchanred, If $q_{0} q_{1} q_{2} q_{3}=0000$, then no TCMM has type B m function. Othervise, at least one TCMM has Type B malfundion.

Test 3 ($\mathrm{S}_{\mathrm{d}} \mathrm{d}=01$) Set $\mathrm{C}_{1}=1$ and $\mathrm{Cy}_{1}=0$ for $\mathrm{l}=0,1,2,3$. If $z_{m}=0$, then there cxists no Type II fault, where Type II faults $=\left[a_{1}, b_{1}, c_{1}, d_{1}, c_{1}\right]$, Otherwise the fault information of Type il will foree z_{m} to 1.

Test $4\left(S_{d} R_{d}=00\right)$ Let $x=0$ and keep the control signale unchanged. If $q_{0} q_{1} q_{2} q_{3}=0000$, then no TChin has lype A malfunction. Otherwlse, at least one TCMM has Typo A malfinction.

As long as the circuit passes these four testo, then the logic fates are guarantect to be free of stuck faults, and the TCMMs are maranted to function properly. It is worth to point out tie fact that the Exchasive on unit in TeMM is not reguived in most of the shefl register and comiter circults Which are implemented by using TCaM, It is also true for BCAM. It is important to note that the procedure proposed heve iss indepentent of the number of flip-flops 'and gated in the efroult under test.

> V. Conctusion

The application of ILAts, CMME are proposed which witt transform a cheatif to cortila tuphonical structure to nugmeat the testabitity of the efreuth Two tests cat detect any comblathome efroul with ebservable outputh, syatematic dealim and detection proceduro for comblmational network suen presented Four teris are muffelent for failf detection of bynchionous aequentinl circult implommented with T-nip-

Fig. 11
flops or D -filp-flops. The same concept can be extended for symehronous scopvential circuit using JK-flip-fop or 8R-flip-flop, and foit synchronous seguentital circuil using. mixed type of lijp-Hops. Systematic destin and dietection procedure of any gynchronous sequential circult is morg complicated than that of combinational efreutt and requires further investigation.

REFERENCES

[1] Willams, M. and Angell, J., "Enhancing Testablity of Large-Scale Interrated Circulte vin Test Pointis and Additional Ligic," IPEE Jrans, on Computera, Vol. C-22, Jan. 1973, pp. 40-60.
[2] Snkuchi, M. and Inose, II. "Syotheste of Fault Dingnosable Logleal Clreuits by Function Conversion Method," JIEC Trans. C, Jan. 3973, pj, 47-54.
[3] Hayes, J., "On Modifying Logic Nehworls to Improve Their Diagrosabilly," IBEE Twans, on Computers, Vol. C-23, 1974, pp. 56-62.
[4] Knut $\%$ W. , "Fault Testing and Dignosis in CombinaLonal Digttal Circuits," IEEE Trma, on Computerg, Vol. C-17, 1408, pp. 352-3G6.
[6] Roth, J. "Diapnonls of Antomata Fallure: A Cnlenhins and \triangle Mothod," IBM Jour: R and 1, Vol. 10,1960 : pp. 278-801.
[G] Su, S. Y. H. and Cho, Y. C. " "A New Appronch to the Fault Jocation of Combinational Networke," IEEE Trans. on Coinputors, Fol. C-21, 1972, 1p. 21-30.
II. 2 Parallelism Exploitation in Parallel Computing Systems T. Hsu and So Jo Oh

(II 2-1. Introduction

This report summarizes the result of an investigation on parallelism exploitation in parallel computing systems. The basic need for usiag such a system is to increase the processing speed for realtime application, without excessively increasing the cost or control complexity of the system.

The discussions will center on three major topics,

1) Parallelism detection
2) Task scheduling
3) System configuration

11.2-2. Parallelism Detection

Parallelism refers to the fact that two or more subprocesses of a computing task may be done simultaneously. A necessary and sufficient condition for this to be true is that the input parameters of one process are not functions of the output parameters of another, and vice versa. Under this definition, although not always separable, there are two basic types of parallelism in most computing problems:

1) Algorithmic parallelism: This is the type of parallelism where many independent but similar or identical computations are done as required by the computing algorithms. The parallel algorithm could be a direct adaptation of a serial algorithm, or could be one created mainly for efficient parallel processing. Typical examples are matrix multiplication, array data processing, computation of fast Fourier transforms, etc. Algorithmic parallelism is reflexed in sequential programs (such as Fortran) by DO loops, although careful distinction should be made between the recursive type (where input data are updated as indices are changed), and the non-recursive (or array) type.

Abstract

2) Operational parallelism: This is the type of parallelism in which, although not always evident, exist several subcomputations which either bear no data transfer relations, or are not affected by the precedence order of their executions. It is therefore possible to detect these subcomputations and make them concurrent operations. This type of parallelism generally exists in any sequential programs。 both between statements and within a statement. Good detection algorithms are essential for a)。designing efficient compilers for conventional uniprocessor systems, and b). generating parallel subtasks suitable for concurrent operations in parallel processing systems.

II. 2-3. Task Scheduling

While the parallelism detection algorithm may generate all possible concurrent processes regardless of how they can actually be utilized by the system, it is the function of the scheduling mechanism, either by software or hardware, to properly match these two together and result in an optimal or near-optimal performance in terms of computation time, which is usually the criterion for the measurement of scheduling strategies.

Principle of scheduling can be applied at different levels of a computational process, from program segmentation in a multiprocessor system, to the execution of microinstructions by several arithmetic units. With slight variations, each process can be properly modeled. In a parallel processinc system, we are specially interested in the scheduling of tasks at the machine instruction level, and a deterministic model in the form of a job graph is generally used. Each task node represents an instruction execution, all linked by the precedence
relations, and the node weight corresponds to its execution time-length. Several formal scheduling techniques exist, although most of them are both complicated and lengthy for practical application except for some simpler special cases like:

1) when the graph is a tree and all nodes have equal weights. 2) when there are only two processors to be scheduled and all tasks have equal weights.

For more general problems, experimenta" results have shown that optimal or near-optimal results can oft,en be obtained by using much simpler heuristic algorithms. Two of the most prominent ones are:

1) Critical path scheduling: for the nodes waiting to be processed, those on the critical path are scheduled first in accordance with the number of processors available.
2) Largest-processing-time algorithm for independent tasks: tasks are processed in the order of decreasing task weights.

II. 2-4 System Configuration

While the conventional uniprocessor system operates on singleinstruction single-data stream (SISD), parallel processing and multiprocessor systems have structures to exploit single-instruction stream multiple-data stream (MIMD)。 Specialized systems under the names of array processors, pipenne processors, and associative processors, etc, are variations of the SIMD type, while a number of uniprocessors interconnected under various schemes belong to the MIMD type. Data processing, data access, and data alignment play major roles in the determination of system configuration. Existing SIMD systems have up to hundreds of processing units while MIMD systems are limited to a parallelism of 16 or so.
II. 2-5. Conclusions

We conclude this report with some comments:

1) Efficient parallel algorithms, which in many cases may not
be just simple adaptation of the serial counterparts, have the gross impact on parallel computing, and operational parallelism aids to speed up the computation at the lower level. 2) In practical and real-time applications, simple scheduling techniques prove to be satisfactory. Formal algorithms can be used to establish the optimal standard for comparison.
2) It is desirable to have a system's capability to reconfigure for computing purposes, but the increased problems seem quite prohibitive, Since a close relation between the computing algorithm and the system capability is vital for efficient processing, it appears that a basic need exists to identify the class of problems for application and base the system configeration on the most applicable and efficient algorithms. The advancement of microprocessor application may also point to this direction.

II. 3 An Experimental Simultaneous Muiltiprocessor Organization

> G. S. Mersten and S. Jo Oh

The purpose of this research effort is to develop the basic requirements of a highly parallel information processing system and the specific development and implementation of an advanced experimental computer organization concept entitled, "Simultaneous Multiprocessor Orgrinzation", abreviated "SAMSON". Some of the areas to be studied encompass:

Parallelism and parallel processors,
SISD stream processors,
SIMD stream processors,
MIMD stream processors and,
MISD stream processors.
The primary effort to date has been the development and implementation of one of the uniprocessors of the. SAMSON computer system. This uniprocessor will be used at this time to collect data to determine the preliminary SAMSON configuration.

The SAMSON uniprocessor is a general purpose, parallel digital central processor providing a full parallel sixteen bit arithmetic structure utilizing multiple general purpose accumulators and a microprogrammed control unit.

The Arithmetic Unit of the SAMSON uniprocessor provides the capability to perform arithmetic and logical operations on the various machine registers and memory. The information from the general purpose accumulators, memory, program counter and input bus are routed through the arithmetic unit under control of the MicroControl Unit. The Arithmetic Unit has been built and is fully operational.

The Micro-Control Unit of the SAMSON uniprocessor is the heart of all the processor control and timing signals. The major element of this unit is a micro-control memory implemented with

LSI programable read only memories (PROM,'s). The content of this memory specifies which of the many machine operations is to be performed during every phase of every instruction. The MicroControl Unit has been built and is fully operational. It is anticipated that the instruction set presently microprogrammed will be altered as this research effort progresses.

The Memory Interface Unit consists of the control and interface logic required to interface the uniprocessor with a commercial core memory. This interface is built and is fully operational; it interfaces with a 4 K core memory.

The status of the uniprocessor is displayed by means of the SAMSON Control Panel which provides display, control and loading capability; thus enabling the operator to control and observe the operation of the various uniprocessors. Presently the control panel interfaces with only one uniprocess. As additional uniprocessors are added, the control panel will expand to accommodate the additional uniprocessors. The Control Panel has been built and is operational.

A commercial paper tape reader has been interfaced via the Control Panel and paper tape reader interface. This interface is fully operational. In addition, a teletype interface has been built; however the teletype has not been received yet.

A Micro-Meinory Monitor has been built and is fully operational which allows monitoring the sequence of micro-memory executions.

Present efforts are being directed toward the development of data collection software to determine the desireability of specific features of the SAMSON architecture.

Appendix for II. 2.

Compilation and Schduling of FORIRAN Programs for Paxailel Processing Systems*

Terry T. Hsu
and
S. J. On

Lapartment of Electrical Enginearing The city college of the City University of Nev York New York, New York

Compilation and Scheduling of FORTRAN Programs for Parallel Processing Systems

I. Introīuction

Two phases of preprocessing (i.e. compilation and scheduling) of Fortran programs are discussed: The purpose is to make the program more efficiently executable on a parallel processing system by exploiting as many parallel-processable computations as possible. It is hoped that this will increase the throughput as well as system hardware utilization.

Since only the speedup due to concurrent arithmetic operations is concerned, it is necessary to examine the whole program and sort out those statements which involve direct arithmetic computations. Namely, we shall deal only with the following three types:

1. Assignment Statements
2. IF statements involving arithmetic operations
3. DO statements.
II. Compilation and Scheduling of assignment Statements. We call a Block of Assignment Statements (BAS) as a group of Statements consisting of only assignment statements. They are not necessarily continuous statements in the original program, but should preserve the order that they appear in the program. The order is important because a variable may be updated before or after it is used.
4. Parsing of statements.

A common way to show the syntactic structure of an arithmetic expression for the purpose of compiliation is to use a syntactic tree where each node represents a binary operation on nodes or operands of previous levels. Many different techniques have been developed to construct a systactic tree [1], [2] among which, Baer and Bovet's technique [3] using; operator precedence order is in general considered the best to produce a tree with minimum height.Other algorithms using distribution law as developed by Muraoka, Kraska, and others [4], [5], [6], [7] can sometimes be used to further reduce the tree-height. But the complexity of their algorithms prohibits a practical application. Therefore, only operator precedence orders will be considered, and they are, in decreasing order:
$(x, \div),(+,-)$, parentheses ()。
We first define a number of terns:
Def.: A tree is a set of nodes and arcs (edges) in a leveled structure such that each node at level j has two or more inward arcs emanating from nodes at level i, where $i \leqslant j-1$, and each node at level j has only one outgoing arc to a certain node at level k, where $k \geqslant j+\}$. Nodes at level 0 have no inward arcs, and are called leaves or initial nodes.

There is only one node at the bottom level of the tree. It has no outgoing arcs, and is called the root of the tree, or terminal node.

For sake of brevety, unless otherwise specified, a node will generally refer to one of those between the initial and terminal levels.

Def.: If a node N_{i} has a chain of arcs leading to another mode \mathbb{N}_{j}, N_{j} is then called a successor of N_{i}, and N_{i} a predecessor of N_{j}, denoted by $N_{i}<N_{j}$. If there is only one arc between N_{i} and N_{j}, they are called immediate predecesor and immediate successor to each other.

Def: : A binary tree is a tree where each node has exactly two inward axce.

Def.; A syntactic tree is a binary tree representing an arithmetic statement, where each node represents a binary operation and its result on the data carried from the two immediate predecessors by the inward arcs. Sometimes the terms "nodes" and "operands" (which the nodes represent) are used interchangeably.

It is apparent from above definitions that a tree can not form a loop among its nodes.

The following is an algorithm for generating a syntactic tree of an assignment statement.
1). Place all the right-hand-side (RHS) variables and their associated operators at levei 0 。
2). Scan through the RHS of the statement from left to right. If two operands can be joined by the operator between them without violating the operator precedence order, a new node
representing each one operation is created and placed at level 1.

If an operand can be joined with more than one operand, the one scanned first has higher priority.
3). Scan through the nodes in level 1 and those not yet combined in level 0 from left to right. Again combine node pairs where operator precedence orders permit, and place them as new nodes in level 2.
4). Proceed in the same way to combine nodes in level 2 and so on until all operands of the RHS are combined and a single node results at the root which is the desired left-hand-side (LHS) variable of the assignment statement. The syntactic tree is now completed.

An example of parsing is shown in the following.

$$
X=A+B+C+D * E * F+G+H
$$

Level 0
1
2
3
4

It is obvious that a syntactic tree of n initial nodes must have at least $\left\lceil\log _{2} n\right\rceil$ levels, where $\lceil x\rceil$ denotes the least integer such that $\lceil x \geqslant \geqslant x$.
2. The BAS graph

We now extend the structure of a syntactic tree to include all statements in a BAS. Again a few terms are first defined.

Def.: Let S_{i} be the i th statement in a BAS, then $I\left(S_{i}\right)$ is the set of input variables contained in the RHS of S_{i}, and $O\left(S_{i}\right)$ is the output variable of S_{i}, i.e. the THS of S_{i} 。 We observe the following:

If i) $O\left(S_{\mathfrak{i}}\right) \in I\left(S_{j}\right)$, or
ii) $O\left(s_{j}\right) \in I\left(s_{i}\right)$, where $i<j$,
then S_{j} can be completed only after S_{i} is executed. :
Otherwise S_{i} and S_{j} can be executed simultaneously.
In above, condition i) indicates that s_{j} depends directly on the outcome of s_{i}, and condition ii) indicates that $I\left(S_{i}\right)$ will be updated by s_{j} at a later time, hence S_{i} must be executed before S_{j}.
The statements in a BAS are parsed in the following way.
1). Construct the syntactic tree of the first statement according to the procedures described in Sec. 1.
2). Go to the next statement. If $I\left(S_{2}\right) \cap I\left(S_{1}\right)=0$, and $I\left(S_{2}\right) \cap\left(S_{1}\right)=0$, construct the syntactic tree for S_{2} as before, with all its initial nodes at level 0.

Otherwise, s_{1} contains one or more input variable or subexpression (part of the arithmetic expression) which has been encountered in S_{1} and represented by some nodes (initial, terminal, or in between) in the first tree. Hence, in constructing tree of s_{2}, those operands are taken from appropriate nodes of the tree of S_{1}. For any operation that combines N_{j} and N_{j}, where i and j indicate the levels of the nodes, and $j \geqslant i$, the resulting new node is placed in level $\mathrm{j}+1$.
3). Go to the next statement and repeat the same process except that the input variables are now checked against nodes of all previously generated trees to determine if any dependency exists. The process continues until all statements are parsed.

We now have a "tree complex of the BAS. Since some nodes may now have more than one outgoing arc and the whole tree complex can have several terminal nodes, we shall more properly call it a BAS graph.

Def.: A BAS graph is a directed, acyclic graph consisted of interconnected syntactic trees. It shows all the intrastatement and inter-statement operations.

A few points are to be noted:
1). All nodes at same level in a BAS graph are operationally independent and hence can be executed simultaneousiy.
2). If a node has more than one outgoing arc, its information either has to be shared by more than one PE at same time (if immediate successors are at same level), or must be stored for later use (immediate successors at different levels).
3). Since the parsing of statements is done sequentially in order, it may not produce a tree whose intermediate nodes can be directly used for subsequent statements, although such a structurally different but functionally equivalent tree is possible and more desired. For example, for a BAS which contains a statement used in the last example, namely, $X=A+B+C+D * E * F+G+H$ and another statement $Y=B+C+E * F * K$, if RHS
of first statement is parsed as follows(shown partially) instead of what was shown previously,

then nodes a and b are readily usable by the second statement while make no difference to the first one.

This shows that to make even more use of the interstatement parallelism, other parsing algorithms are possible. But its value being offset by the added complexity in searching for identical suboperations among different statements is questionable for practical purpose, except in some simple programs where parsing is done by inspection.
3. Principle of Scheduling

To facilitate later discussions, we define the following terms.

Def.: A graph G is called a relaxed graph, denoted by G_{R}, if all the terminal nodes are placed in the bottom level (which has the largest level number in G_{R}, assuming to be g), and all other nodes are placed in a level such that the distances (i.e. the difference between level numbers) between each and its immediate successors are minimized (the minimum being 1).

Def.: A node weight w_{i} is the number of time units required to perform the operation of node n_{i}.

Def.: The largest backward path value W_{i} of a node n_{i} is defined by $w_{i}=w_{i}+\max \left[w_{j} \mid n_{j}>n_{i}\right]$
It is the largest sum of node-weights between n_{i} and its terminal nodes over all possible paths.

Def.: The largest forward path value D_{i} of a node n_{i} is defined by $D_{i}=w_{i}+\max \left[D_{h} \mid n_{h}<n_{i}\right]$.
It is the largest sum of node-weights between n_{i} and its initial nodes.

Def.: The critical path value C_{q} of G_{R} having q levels is definea as $C_{q}=\max \left[W_{i} \mid n_{i} \in G_{R}\right]$.
The chain of ares resulting in C_{q} is the critical path.
Def.: Let i be the level number in a $G R, l \leqslant i \leqslant q$, and there be m nodes contained in G_{R} from level 1 to level i. The partial node-weight sum, P_{i}, is defined as

$$
P_{i} \neq \sum_{1}^{m} W_{j}
$$

The scheduling of nodal operations is based on a relaxed graph with added information defined above. The resulting graph is commonly called a job graph. We describe the generation of a job graph from a BAS graph next.
1). Place all terminal nodes of G in the bottom level q of the graph.
2). All nodes in G whose successors are only found in level q are placed in level $q-1$.
3). Repeat this process upward in decreasing level order so that all nodes which have successors only in levels greater than i
are placed in level i of G_{R}. Whe process terminates only when all nodes are adjusted. All arcs in G_{R} retain their relations with nodes as they have in G.
4) Include node weights wi for all nodes $n_{i} \in G_{R}$.
5) Compute the largest backward path value W_{i} for all $n_{i} \in G_{R}$. This is easily done starting with nodes in level q and going upward. In general, W_{i} is found by adding w_{i} to the largest of W_{j} 's where n_{j} 's are the immediate successors of n_{i}. The largest W_{i} in the graph is the critical path value, which also determines the critical path.
6) Compute the largest forward path value D_{i} for all nodes. This is done starting with nodes in level 1 and going downward: D_{j} is found by adding w_{j} to the largest of D_{i} 's where n_{i} 's are the immediate predecessors of n_{j}.
The following theorem by Kraska [5] determines a lower bound on the number of PE's required to execute the job represented by G_{R} in critical time C_{q}.
Theorem: If $\max \left[P_{i} / D_{i} \mid i \leqslant q\right]>m-1$, at least m PE's are required to process all nodes of G_{R} in C_{G} time.

Using a job graph, there exist at least two typical optimal scheduling techniques using either forward tracing [8] or backward tracing [5] to schedule the operations of nodes on a fixed number of PE's so that the total execution time is minimized. However, both techniques are too complicated and timeconsuming for real-time applications. It has been tested and shown
that a rather simple heuristic approach can in many cases be as good-as an optimal scheduling. The principle is:
i). Schedule first those nodes which are in the next higher level and/or with highest backward path values.
ii). Keep as many PE's busy as possible by assigning nodes which are processable next.
4. Scheduling and Execution with Operational Stacks

- We now apply the principle of heuristic scheduling to store and transfer information from a job graph to a number of stacks so that they can be directiy executed. These stacks then define the order and concurrence of operations and are called operational stacks. The number of stacks is set equal to the smaller of the number of PE's available in the system or the number determined from Kraska*s theorem cited above. In this way, one PE will be executing instructions from one stack and no redundent PE's are used.

Using the job graph, the stacks are loaded in the following way.
1). Starting from all initial nodes of $G_{R},\{N\}$, load operation instructions defined by each node on top of stacks. Two situaations may occur:
i). If $\#\{N\} \leqslant \#$ (stacks), some top stacks may be left empty. ii). Otherwise, load stacks first from those initial nodes. whick have highest W_{i} 's.
In either case, denote trose loaded nodes in this step by $\{\mathrm{n}\}$ 。
2). Examine the immediate successors of $\{n\}$ and those left in $\{N\}$ (i.e. $\{N\}-\{n\}$), consider those which are parallel
processable (i.e. none are predecessors or yaccessors of each other) as new \{N\} and load the nodes which have highest $W_{i}{ }^{\text {' }}$ in in thext level of stacks until either condition similar to step 1 has occurred. (If a new stack has an empty top level, then the top level is loaded first). In general, when a node n_{i} spawns to two immediate successors (or more) n_{j} and n_{k}, n_{j} is put (directly) under n_{i} in the same stack, and n_{k} in another stack with a predecessor indicator (i.e. (i)k) and n_{i} has a successor indicator (i.e. i(k)). Similar indicators are used when two nodes n_{i} and n_{j} merge into one node n_{k}, and one of the predecessors (say n_{j}) is not in the same stack as n_{k} 。
3). Repeat step 2) throughout G_{R} until all nodes are loaced. The execution phase of instructions is strajght forward. Each stack supplies an instruction sequence to one PE, which is executed serially. All PE's normally run in parallel, independent of one another except when a predecessor indicator occurs before an instruction. This sets up a flag and stops the PE from executing the instruction, unless its predecessors are executed and the successor indicators clearing the flag.

An example of the parsing, operational stacks, and simulated execution of a BAS is shown next.

Example: Assume a BAS as follows:
Data: $T 1, T 4, B 1, B 2, B 3, \times 1, x 2, x 3$.

$$
\begin{aligned}
& T 2=2 *(T 1-T 4) / 3+T 4 \\
& T 3=(T 1-T 4) / 3+T 4 \\
& T 1 B=.5 *(T 1+T 2) \\
& -T 2 B=.5 *(T 2+T 3)
\end{aligned}
$$

```
T3B=.5*(T3+T4)
Z1=Al*TlB+Bl
Z2=A2*T2B+B2
23=A3*T3B+B3
Q=(Tl-T4)/(XI/Z1+X2/Z2+X3/Z3).
```

The job graph is as follows.
i $\mathrm{Pi} / \mathrm{Di}$

Notes: 1). Assume node weights for $\frac{\circ}{\circ}=5$

$$
\begin{array}{r}
x=3 \\
+\quad-=2
\end{array}
$$

2). Numbers outside nodes are largest backward path values W_{i}.
3). Critical path value $=36$, critical path in heavy lines.
4). $\operatorname{Max}\left[\mathrm{P}_{i} / \mathrm{D}_{i}\right]=\mathrm{P}_{10} / \mathrm{D}_{10}=2.1$, hence 3 PE 's is the lower bound for achieving $C_{q}=36$.

Operational Stacks

\#1	\#2	\#3	Time 0	PE\#1.	PEt2	PEH3
a	(b)d(e)	(d) e	2	-	1//	$1 / 2$
b (d)	(f) n	i	4		\%	/
c	1	j	6		/	
$f(h)$	-	m	8	c	d	+
g	q	r (v)	-10	f		e
k	$t(u)$		12		-	i
n			14	g	h	
				k	1	j
p			16			
s			18	n	0	m
(t) u			20			
(r) v			22	p	9	
w			24			-
				s	t	
			$\underline{26}$		L	
			28	u		
			30	v		
			32			
				${ }^{*}$		
			34			
			36	-		

III. Preprocessing of IF Statements

Given an IF Statement of the type
IF (s) $1,2,3$
where s is an arithmetic or logic expression, and 1, 2, 3 are branching instructior, the most obvious way to make use of parallelism is to parse s for maximum parallel suboperations. For example,

IF $(B * B-4 * A * C) \quad 6,8,9$
is converted to $X=B * B-4 * A * C$
IF (X) 6, 8; 9
With added circuitry it is possible to start processing all the branching instructions $6,8,9$ simultaniously, with the final result determined by the outcome of X. However, since most IF statements have only simple expression as argument, the concurrent operations of branching instructions on one IF statement alone does not cause considerable speedup. More sophiscated algorithms can be used to detect a block of statements with high occurrence rate of IF statements and converts the IF statements into a binary decision tree which is then processed by a decision processor. More assignment statements associated with the IF statements are also collected and processed simultaneously. Details on this subject are discussed by Davis [9].
IV. Preprocessing of DO Statements.

The principle in treating Do loops is to separate the loops into several completely independent DO loops and process them
simultaneously. In order to do this, precedence relations among the statements in the loop are examined. But, in addition to the ways encountered in the treatment of a BAS, since data can be used first and updated next and then again used in the next iteration, input variables have to compare with outputs of not only statements before it but also after it.
1). Compare $I\left(S_{j}\right)$ with $O\left(S_{i}\right)$, where $i<j$. If a match in variables with same index is found, then place an arc from node i to node j.

Also compare $I\left(S_{j}\right)$ with $O\left(S_{k}\right)$, where $k>j$. If a match in variables is found whose index is higher in s_{k}, there is an arc from node k to node j.
2). If some subgraphs are completely disconnected at the completion of the graph, each subgraph becomes a new Do loop, and they are all parallel processable.

Before looking into each new DO loop, we first define two terms. Def.: A DO statement is called recursive if it has the form $x_{i}=f\left(x_{i-1}, \ldots, x_{i-m}, a_{i}\right)$ where m is any positive integer and a_{i} some vector of parameters. Otherwise the DO statement is non-recursive and called of array type.

We now continue the steps.
3). Within each new loop:
i). If statements are of array type, one statement can be generated for each index value, resulting in many parallel statements. For example,

$$
\text { DO 1. } I=1,3,1
$$

$$
1 \quad A(I)=A(I+1)+C(I) * D(I)
$$

\therefore.
becomes $A(1)=A(2)+C(1) * D(1)$

$$
\begin{aligned}
& A(2)=A(3)+C(2) * D(2) \\
& A(3)=A(4)+C(3) * D(3)
\end{aligned}
$$

Three PE's (or groups of PE's) can work on A(1), A(2), and A(3) separately and simultaneously.

The assignment and scheduling then are same as in the case of a BAS.
ii). If statements are of recursive type, backward substitution is used to generate statements which qliow simultaneous operations. For example,

DO $1 \mathrm{~J}=1,5$
$1 \quad A(I)=A(I-I)+B(I)$
$A(1)=A(0)+B(1)$
$A(2)=B(1)+B(2)+A(0)$
-
-
$\dot{A}(5)=A(0)+B(1)+B(2)+B(3)+B(4)+B(5)$.
which may be computed in only 3 addition times instead of 5 , with 3 participating PE's.

It is also to be noted that in this case, $A(1)$ through $A(4)$ are actually included in $A(5)$. Hence it suffices to parse only the RHS of $A(5)$ and in the process appropriate intermediate results are obtained for $\Lambda(1)$ through $A(4)$.

An example of decomposing a DO loop is shown next.

	DO $6 \quad I=1,3,1$
1	$T(I)=G(I)+M$
2	$G(I)=T(I)+D(I)$
3	$E(I)=F(I-1)+B(I)$
4	$F(I)=T(I)+G(I)$
5	$H(I)=A(I-I)+H(I-I)$
6	$A(I)=C(I)+N$

In the accompanying graph, we observe:
$1 \rightarrow 2$ because of $T(I)$ in both.
$2 \rightarrow 4$ because of $G(I)$ in both.
$3 \rightarrow 4$ because of $E(I)$ in both.
$4 \rightarrow 3$ because of $F(I)$ in 4 and $F(I-I)$ in 3.
$6 \rightarrow 5$ because of $A(I)$ in 6 and $A(I-1)$ in 5 .
And since there are 2 completely disconnected subgraphs, 2 new DO loops are created:

	DO $4 \mathrm{I}=1,3,1$		DO $6 \mathrm{I}=1,3,1$
1	$T(I)=G(I)+M$	5	$H(I)=A(I-1)+H(I-1)$
2	- $G(I)=T(I)+D(I)$	6	$A(I)=C(I)+N$
3	$E(I)=F(I-I)+B(I)$		
4	$F(I)=E(I)+G(I)$		

We further decompose each new Do loop as follows:
For first subgraph:
(comment)
DO $1 \quad I=1,3,1$
$1 \quad T(T)=G(I)+M \quad$ generate 3 array equations $T(I), T(2), T(3)$ DO $2 \mathrm{I}=1,3,1$
$2 G(I)=T(I)+D(I)$ DO $4 I=1,3,1$
$3 \cdot E(I)=F(I-I)+B(I)$
$4 \quad F(I)=E(I)+G(I)$
generate 3 recursive equations $E(1), E(2), E(3)$
generate 3 recursive equations $F(1), F(2), F(3)$

By back-substitution, the recursive equations for E and F are

$$
\begin{aligned}
& E(1)=F(0)+B(1) \\
& E(2)=F(0)+B(1)+B(2) \\
& E(3)=F(0)+B(1)+B(2)+B(3) \\
& F(1)=F(0)+B(1)+G(1) \\
& F(2)=F(0)+B(1)+G(1)+B(2)+G(2) \\
& F(3)=F(0)+B(1)+G(1)+B(2)+B(3)+G(2)+G(3)
\end{aligned}
$$

Parsing on $F(3)$ produces all the answers for above 6 equations:

- For the second ioop, 3 array equations and 3 recursive equations are generated ji.i similar ways for statements 6 and 5, respectively. We also observe that all three array equations of S_{6} can be executed simultaneously and before S_{5}.
VI. Conclusions
-..
Some compilation and scheduling aspects of computationoriented statements for parallel processing have been discussed. The treatments have been confined to rather general cases, so that the results are applicable to most parallel processing systems. Although other theoretically superior algorithms or techniques are available, it is felt that their real-time applications are not so readily justifiable due to the amount of software/hardware sophistication, except possibly in some rather special applications.

References

1. C.V. Ramamoorthy and M.J. Gonzalez, "A Survey of Techniques for Recognizing Parallel Processable Streams in Computer Programs, "Proc. Fall Joint Computer Conference, 1969.
2. C.V. Ramamoorthy, etal., "Compilation Techniques for Recognition of Parallel Processable Tasks in Arithmetic Expressions," IEEE Trans. Conp., Vol. c-22, no. 11, Nov. 1973.
3. J.L. Baer and D.P. Bovet, "Compilation of Arithmetic Expressions for Parallel Computations," Proc. IFIPS, 1968.
4. y. Muraoka, "Parallelism Exposure and Exploitation in Programs," Ph. D. Dissertation, Univ. Illinois, Urbana, 1971.
5. P. Krasks, "Parallelism Exploitation and Scheduling," Ph. D. Dissertation, Univ. Illinois, Urbana, 1972. .
6. D. Kuck, etal., "On the number of Operations Simultaneously Executable in Fortran-like Programs and Their Resulting Speedup," IEEE Trans. Comp., vol. c-21, Dec. 1972.
7. D. Kuck, etal., "Measurements of Parallelism in Ordinary Fortran Programs," COMPUTER, Jan. 1974.
8. C.V. Ramamoorthy, etal., "Optimal Scheduling Strategies in a Multiprocessor System," IEEE Trans. Comp., vol. c-2l, no. 2, Feb. 1972.
9. E. Davis, "Concurrent Processing of Conditional Jump-trees" COMPCON Digest, 1972.

Appendix for II. 3.

An Experimental Simultaneous Multiprocessor Ongenization*

G. i. Mersten
S. J. Oh

Department of Electrical Engineering The City College of The City University of New York New York, New York

October, 1974
1.0 INTRODUCTI ON

The purpose of this paper is to present a general overview of an ongoing research program in the area of highly parallel information processing system organization and the specific development and implementation of an advanced experimental computer organizational concept entitled, "Simultaneous Multiprocessor Organization": abbreviated "SAMSON". This work is broad in scope, encompassing:

- parallelism and parallel processors; *
- completely independent multiple processors or multiple independent single instruction single data (SISD) stream processors,
- concurrent processors or single instruction multiple data (SIMD) stream processors.
- task sharing computational processors ${ }^{+}$or multiple instruction multiple data (MIMD) stream processors.
- loosely and strongly-connected multiprocessors or multiple instruction single data (MISD) stream processors,
o multiprogrammed multiprocessors,
- real-time multiprocessors,
- memory organization(s),
- communications and data routing and,
- path building and supervisory control.

It is useful to classify the requirements and problems associated with a multiprocessor computer system into two classes, as suggested by Saltzer ${ }^{1}$, intrinsic and technological. Intrinsic

[^1]requirements and problems are inherent in the problem itself whereas technological requirements and problems are transitory in nature, being inherent to the technology at a given point in time. The important intrinsic problems being studied in this research effort are:

- providing an easy ability to access, transform and share information within a multiprocessor in a controlled manner.
- to provide protection of this information, and
- implement an experimental multiprocessor, SAMSON, with these features.

In adition, the technological inmitations which impose bottlenecks within a multiprocessor being investigated as a part of this work are:

- the memory contention problem and,
- the communication problem.

In addition, the SAMSON computer, Figure 1, must be a viable system providing a basis for, and a vehicle upon which, research of advanced multiprocessor organizational and architectural concepts can evolve; that is; a research vehicle for multiprocessor computer system development, capable of supporting a wide range of investigations in computer structures and computer science. SAMSON must be capable of possessing the necessary flexibility and computing capability to assure its applicability to a wide variety of present and future computational applications and to assure the system's continuing evolution and viability.。

To meet these goals and to satisfy the widely varying nature of the computational requirements imposed on a simultaneous multiprocessor, the system demands a general-purpose computer organization capable of a certain degree of parallelism.

In this research work a strongly-connected multiprocessor capable of SISD, SIMD and MIMD stream processing (which are special

cases of MISD stream processing) as well as being capable of MISD stream processing will be developed and an experimental machine implemented, the SAMSON machine. Particular attention will be given to memory organization and communications in order to eliminate the classical memory contention and path building problems peculiar to multiprocessors. Furthermore, the requirements for multiprogranming and real-time multiprocessing will be investigated and, if practical, one or both of these features, incorporated into the SAMSON architecture.
1.1 MOTIVATION FOR PARALLELISM AND MULTIPROCESSING

There are several reasons which exist as motivation for doing research in the area of multiprocessors. Three of the most nbvious reasons being improved reliability, improved maintainability and ease of expandability. However, these motivations, in and of themselves, are not adequate justification for pursuing this research, since duplex systems* (which are not here considered as multiprocessors) offer improved reliability and maintainability while providing an expansion capability through the use of the back-up processor. Thus, additional motivation must exist to justify pursuing this research; this additional motivation is indeed the prime motivation for this research.

This additional motivation results from the ever increasing complexity of present day computational requirements, coupled with

[^2]the necessity of ever increasing: data processing rates, response time, and capacity. These requirements, in specific application have exceeded and, in general, are gradually exceeding the processing capability of some of our present generation computer facilities. ${ }^{2}$

Furthermore, recognition of the fact that generally much of a large computing task is repeated execution (on similar or dissimilar pieces of data) of the same procedure, leads one to the \therefore. observation that utilization of this inherent parallelism in a simultaneous multiprocessor organization might well provide a dramatic improvement in computing power. ${ }^{3}$.

Consequently, it is the ultimate objective of this research effort to develop a multiprocessor organization capable of a significant increase in computing power through computational parallelism, with increased flexibility, reliability and maintainability, without exceeding the existing limitations of the component technology.

2.0

HISTORICAL BACKGROUND
The concept of parallelism is very broad and includes a wide variety of notions. Intuitively these notions include: many devices working together in some way or other on the same task, devices working together on different but related tashs, and one device performing more than one task at a time. This broad notion of parallelismi is, in part, responsible for the wide diversity possible within the area of parallel processing, i.e., SISD, SIMD, MISD and MIMD stream processing.

Prior to a discussion of the historical background of parallel processors, the concepts of global and local control ${ }^{4}$ need be introduced.

Global control implies the existence of one or more central contro? units, either centrally or decentrally located, having
common control over a number of processing elements. Local control implies control of a processing element by its own control unit (either locally or remotely located).

The SOLOMON conputer ${ }^{5}$ is a classical machine concept consisting of an array of 32×32 processing elements, each connected to its four nearest neighbors, under the global control of one central control unit. These processing elemerits have limited processing power; the central control unit processes a single program with each participating processor executing the same instruction stream on its ow data stream, SIMD stream processing. Depending upon the internal state and mode of each of these processing elements, they either participate or do not participate during an instruction execution. The internal state of the processing element is a function of the data it is processing while the mode of the processing element is determined by the control unit. The principle means of control for each processing element is the mode commands. The major disadvantage of this machine organization and of global control structures in general, is its low efficiency when applied to typical general-purpose computations. ${ }^{6}$ These computations require sequential execution; consequently, the central control unit utilizes only one (or relatively few) processing elenents while all others stand ide。

The ILLIAC IV system ${ }^{7,8}$ alleviates the problem of the SOLOMON machine to some degree by: replacing the single global control unit with four such units, by providing I / O access to each processing element, and increasing the power of the processing elements. Each of the four global control units directly governs the operation of an 8×8 array of processing units. These global control units may function independently (64 processors per array) or in groups of two, three, or four arrays. These processing elements.are all but devoid of local control, mode status and data dependent conditions being the only exceptions.

The HOLLAND machine ${ }^{9}$ is a distributed control machine consisting of an array of modules, each of which possesses some measure of local control and a limited capability for independent instruction execution. Within this structure the capability exists (to a limited extent) to execute independent programs simultaneously. HOLLAND proposed the organization to provide a basis for theoretical investigations, not as a practical device. Each module contains a storage register, operand registers and communication paths to its four nearest neighbors. An instruction stream is stored one instruction per module with indicators to denote the predecessor and successor modules (one of the four neighbors). The instructions are executed in time sequence following the above predetermined path. The address of the operand is also stored in the module. The storage register can be loaded from an external source during the first machine cycle. During the second cycle the active module determines the operand location and establishes communications between the operand and the accumulation module. In the final phase the instruction is executed. The proposed attribute of local control structures is the high degree of hardware utilization that can be achieved when many (small) computations are being executed concurrently; however, the HOILAND machine architecture has fallen far short of its goal. The main problem associated with the local control organization of the HOLJAND machine is the spacial structure, of both the array and of the neighborhood communications, which results in serious path building problems.

In addition to the above mentioned array multiprocessors there have been some noteworthy multiple computer systems which have been developed. Ihese include the PILOT, LARC and STAR Systems.

The PILOT system ${ }^{10}$. consists of three independent processors. The basic computer functions are divided, among these three different processors, upon the basis of the processing task. Each processor is optimized to perform one of the following basic functions:
arithmetic and logical operations, control and housekeeping operations, or input-output operations. The processors are independently programmed to perform their own tasks. The PILOT is not here considered a multiprocessor.

The LARC system ${ }^{11}$ is a dual computing system consisting of two main computers, a totally time shared memory bus (with a maximum of 39 independent memories), and an input-output processor. The main feature of the LARC system is its memory organization. The memory system consists of a single time multiplexed memory bus and includes such features as overlapping (which makes possible the processing of several instructions concurrently), priority determination and interlocking memory rotection. The LARC is, here considered, a limited multiprocessor; the two main computers are capable of operating either independently or jointly to a limited degree.

The STAR computer ${ }^{12}$ is a replacement system utilizing a redundant machine organization having one or more (unpowered) spares, which are switched on-line to replace units. To detect and replace these failures, the system utilizes: error detecting codes, software diagnostics, software recovery procedures, transient fault identification (by repetition of program segments), and redundant special purpose processors to monitor, vote and replace subsystems. The STAR is not here considered a multiprocessor.

Other than the ILLIAC IV* none of the above are contemporary processors. The only major contemporary processor under construction is the C .mmp (Carnegie Mellon multi-mini-processor). 13,14 The Commp is in its early stages and little can be said in the way of operating features, performance, etc. at this time.

[^3]The concepts of parallelism and of multiprocessors are both very broad in scope. It is the intent of this section to attempt to define, ${ }^{15} \mathrm{o}_{\mathrm{i}}$ at least to place some bounds, on these concepts.

3.1
 DEFINITION OF PARALLELISM

Previously the intuitive notions associated with the term parallellsm were intraduced. The concept of parallelism can best be formally defined by dividing it into two types, applied and natural parallelism. Applied parallelism is the property that enables two or more identical operations within a set of computations to be processed concurrently on the same or distinct data bases. Natural parallelism is the property that enables two or more operations within a set of computations to be processed concurrently and possibly independently on the same or distinct data bases.

From these definitions it is clear that applied parallelism is Just a special case of natural parallelism. However, the distinction is made because of the important impact it has on computer organizations. Applied parallelism is efficiently handled by global control techniques since it provides common control for identical operations. Natural parallelism is efficiently handled by local control techniques since it provides independent processing for different operations. Figure 2 illustrates now the expression

$$
A / X+B / X+C Y=Z
$$

is computed with and without the use of applied and natural parallel1 sm 。

The SOLOMON machine discussed above is based upon the principles of applied parallelism while the Holland machine is based upon the principles of natural parallelism.

FIGURE 2 Computation of the Expression $\Lambda / X+B / X+C Y=Z$
in (a) sequential steps. (b) utilizing applied parallelism,
(c) utilizing natural parallelism, and (d) utilizing applied and natural parallelism.

(b)

ORIGINAL PAGE LS
OF BOR QUALItY

3.2 DEFINITION OF MULTIPROCESSOR

Much controversy exists in regard to the definitions of multiple computer systems. Frequently, the terms multiple computer, multiple processors, parallel processors, multicomputer and multiprocessor are used interchangeably; in this work a distinction is made and their broad definitions presented.

MULTIPLE COMPUTERS, MULTIPLE PROCESSORS or PABALLEL PROCESSORS as defined in this work are general terms which are used interchangeably and apply to any system containing two or more, not necessarily identical digital computers. Thêse digital computers. may be elementary processing units or full scale digital computers; they may be conventional or unconventional, general purpose or special purpose, and they may operate jointly or independently of one another.

MULTICOMPUTERS as defined here is a group of two or more, not necessarily identical, digital computers interconnected via their input-output system (i.e. obtaining intercomputer communication by considering other computer(s) as peripheral devices). These digital computers may be elementary processing units or full scale digital computers; they may be conventional or unconventional, and they may be general purpose or special purpose.

MULTIPFOCESSORS as defined here is a group of two or more, not necessarily identical, digital computers interconnected on an integrated basis (to effect intercomputer communications) capable of operating concurrently on the same or similar phases of a processing task. Similarly, these digital computers may be elementary processors or full scale digital computers, conventional or unconventional, and/or general purpose or special purpose. (The requirement of operating on similar phases of the processing task simultaneously eliminates the class of multicomputers having independent processors for arithmetic functions, control functions, and

I/O functions from being here considered as multiprocessors.)
Bauer ${ }^{1}{ }^{16}$ definition of a multiprocessor (which he referred to as a multi-computer system) required that it satisfy the following four criteria:
"1. There are two or more separate arithmetic control units capable of operating simultaneously and with special hardware facility for operating two or more programs simultaneously.
2. There are two or more indepently operating primary random access memories.
3. Communications among major elements of the system is of the memory-to-memory type at memory access speeds.
4. All major components of the system are in use during normal operations."

In this work Bauer's criteria for defining a multiprocessor are amended as follows: Criterion 2, is intended to imply that two or more quantities can be accessed simultaneously; however, Bauer used this criterion to eliminate from contention systems having one large random access memory. Systems having one such large random access memory, capable of being accessed by more than one processor simultaneously (i.e. by interleaving), as well as, systems having multiport memories should not be, and are not here, elimated from being classified multiprocessors. Therefore, criterion 2 should read: Two or more independent quantities can be accessed simultaneously.

Criterion 3 does not apply to systems which provide for access to a common memory. Furthermore, register to register type communications should be respected as a possible means of intermachine communications. In fact, since minimum communication time is frequently a major multiprocessor goal, register to register communications is an extremely desirable feature and indeed should be a sought after objective in a multiprocessor architecture.

The frequency of use of all or most of the major components of the system should be sufficiently high to justify a multiprocessor. (Unfortunately, whether or not criterion 4 is satisfied, assuming a reasonable architecture, is largely a function of the programmer's ability and ingenuity, his familiarity with the system, and the nature of the programs for which the system is utilized.) Alternatively, the extent to which a multiprocessor utilizes its hardware efficiently could be considered secondary to the speed advantage hoped to be gained by a multiprocessor organization.
SAMSON CONFIGURATION
Throughout the development of such an experimental
multiprocessor, evaluations of various design alternatives and a
determination of the effects of various parameters on total system
performance will be studied. Through this effort we will be advancing
our knowledge of the type of architectural and programming techniques
required of future generation parallel processors to achieve increased
effectiveness, performance and computational capabilities.*.

No one machine organization can handle widely divergent tasks with equal capability. However, the multiprocessor should be capable of handling a broad range of tasks more efficiently, at least time wise, than a uniprocessor. These tasks should not be so broad that the efficiency of any particular task be seriously impaired. In the worst case a multiprocessor should be no worse

[^4]than a general purpose uniprocessor.
Hardware utilization efficiency must be secondary to computing power if system versatility is sought. If the tasks to be handled are highly restricted and well defined in advance, then special purpose hardware can be utilized to optimize the processing tasks. However, use of such special purpose machines, on tasks not originally included in the limited set of tasks considered, would be highly restrictive and inefficient.

Consequently, if versatility is a goal, a general-purpose architecture is called for and the related-inefficiencies associated with particular tasks must be accepted. A general purpose architecture tends to increase total execution time; this is equally true of uniprocessors and multiprocessors.
4.1 OPERATIONAL FEATURES

The operational features of the SAMSON machine must include the facility for data manipulation and computation as well as the capability of controlling the sequencing of instructions.

SAMSON will include all of the conventional facilities for (local) instruction execution and it will provide global instruction features. In addition, SAMSON will possess a high degree of concurrency in that simultaneous operation of several processors jointly on one task or separately on different tasks will be possible.

The basic processor (central processor) elements of the SAMSON computer are 16 bit general purpose microprogrammed processors having multiple general purpose registers operating on 16 bit data words. Their instruction repertoire will include special multiprocessor instructions (global instructions), such as FORK, JOIN, etc.

The major characteristics of the SAMSON processor elements are:

- Type
--general purpose, digital, binary
-full paralrel organization
-microprogrammable
- Arithmetic
-winary, fixed point
- -16 bit data word
-negative numbers in 2° s complement form
-add time: $1 \mu \mathrm{sec}$ (registeroto register)
$2 \mu \mathrm{sec}$ (memory to register)
--multiply time: $21 \mu \mathrm{sec}$ (Average, register to register)
- divide time: 27.5 H sec (Average, register to register)
- Memory.
--DRO core
- - 1μ sec cycle time
--each memory is expandable to 32 K words in 4 K or 8 K increments
- Adaressing Modes
-direct addressing to 512 words of memory
- indexed addressing (execution time unaffected)
-multilevel indirect addressing
- Input/Output
- -program interrupts expandable
- - power fail and power-restore interrupts can be provided
- I/O communicates with CPU and memory by means of separate common data and address bus; $1 / 0$ devices can be added as required
--standard peripherals - teletype and/or CRT display and paper tape reader

Execution time based on a memory cycle time of i μ sec.

- Logic
--implemented with LSI and MSI arrays of $T^{2} L$
4.2

MEMORY ORGANIZATION
Multimemory accessability is required at the processor
level in a multiprocessor since, in general, it is impossible to operate solely out of one memory unless swapping procedures, anticipative procedures, or mapping techniques are utilized. Although these features are desirable in a uniprocessor memory hierarchy to obtain an economical configuration, their usefulness as the primary memory for a multiprocessor is questionable. Nevertheless, these techniques could be utilized to supplement the primary memory. SAMSON'S present memory organization will not include these features; however, provisions can be provided for their addition at a later date, should the research in this area so indicate.

A modular memory organization consisting of several small singleport memories, rather than one large common multiaccess or multiport memory, will be utilized in the present SAMSON architecture. It should be noted that this was one of Bauer's criteria for a multiprocessor and although exception was taken previously, the exception was based upon this criteria being a necessary condition (and not on it being a desirable condition). Each memory module will be accessible by all processing elements. This scheme provides for parallel transfer of individual words or entire memory modules using present day switching technology; thus providing the capability of transferring large quantities of information at full memory rates. This multi-memory organization allows procrams and data to be shared by several processing elements on a high speed basis while providing a means of insuring privacy of data. When independently operating, the processors which comprise the SAMSON computer system will be able to communicate via memory to memory triansfers under program control. Memory transfers will be on a
request basis, thus avoiding catastrophic memory destruction Carerul consideration must be given with regard to providing a means of insuring privacy and protection of data without unduly limiting the capability of sharing.

It is intended that at any given time each processor can have access to several memories, but only those assigned to it. Furthermore, any processor (if assigned) can have accessibility to all memory modules (memory stacking) which would be in excess of its inherent addressing capability; thus providing an expanded high speed memory capacity.

In a multiprocessor, it may well be desirable to be able to write identical, duplicate copies of data and/or instructions into several memories without any additional expenditure of time. This feature is presently being considered for the SAMSON machine. Research in this area is required.

The above memory organization enables the total computing power of SAMSON to be applied to those tasks requiring the full computing power of the machine.
4. 3 COMMUNICATIONS STRUCTURE

The communication requirements of a multiprocessor can be divided into two classes of communications: intermachine communications and input/output (I/O) communications. In either event the time investment made in establishing the connection should be minimal, or alternatively the connection should be retained for a relatively long period of time in order to justify the time expenditure in establishing the communication link. Furthermore, the data rate should be sufficiently high to satisfy system operating requirements.

Three basic communications techniques exist where by the major system components and peripherals can be interconnected, namely,
space-division, time-division and frequency division.
The space-division techniques, including completely dedicated communications as well as multilevel switching techniques (crossbar switching), are concoptually the simplest. However, an excessive amount of hardware is required and/or operationsl difficulties such as path building, conflicting communications requirements, and extended periods of time required to estabilsh connections may occur.

Time-division or time multiplexing techniques are a Viable alternative approach. Here queuing and priority schemes are utilized to insure that one and only one device pair can have access to the data bus during any one time slot. With this technique time slots can be either preassigned or a dynamic allocation procedure utilized. The drawback of this technique is the possibility of one device pair (with proper priority) completely tying up the communication link.

A frequency-division (frequency-multiplexing) schemie appears to offer the greatest flexibility and potential. The major drawbacks to this approach are: carrier frequencies in the range of $100^{\circ} s$ of megahertz are required (to meet the processors data rate ${ }^{17}$ requirements) and furthermore, the necessary hardware for modulators and demodulators (which are not standara computer components) needed for transmitting large amounts of information would be excessive.
4.3.1 INTERMACHINE COMMUNICATTONS

SAMSON'S intermachine communications, as presently viewed, will be a combination of both time multiplexing and spacial communication techniques. It is felt that this approach is the most amenable to present state of the art computer techniques.

Memory communications will use both of these techniques, in that each memory will be assigned a dedicated communication path to its associated processor as well as a connection to the common intermachine memory communication network.

Intermachine register to register communications is also being considered for SAMSON. However, no decision has been made whether such communications will be included in the present SAMSON architecture.

4.3.2 INPUT/OUIPUT FACILITIES

The purpose of an input-output (I/O) system is to efficiently, reliably, and in an orderly fashion transfer the maximum amount of information in a minimal amount of time and with minimal interference to other subsystems. The I/O philosophy should provide a general purpose interface with all the necessary control and communications paths to allow data transfers between the various peripheral devices and the main processing system.

I/O communication requirements differ from intermachine communication requirements since the peripheral devices have widely varying characteristics, because of the multiplicity of the peripheral devices, and the unrestricted physical length over which the comminication may take place. An additional fundamental difference in the type of communications results from the assignment of peripherals. Whereas memories are assigned to computers under program control (either by request or otherwise) I/O peripherals belong to a common pool of devices which, although available to all, are only "loaned" to a particular processor. The peripheral remains on loan to the assigned processor until the request is fulfilled or in some instances until an interrupt occurs from a higher priority source.

Reasoning as above, SAMSON's I/O communication philosophy will be based upon a time multiplexed system. (Fixed time slots will
not be utilized here due to the pseudo randon nature of the required interconnections). Furthermore, the I/O system will be a requestresponse system, thus allowing maximum transmission rates over various physically different iength paths.

In addition, the SAMSON I/O facility includes both internally and externally controlled data transfers.

5.0 RESEARCH ITATUS

It is the objective of this work to physically implement the SAMSON machine, as described herein, with appropriate modifications reflecting the results of the ensuing research.

The SAifON machine will be a useful tool for performing precise mathematical operations across a broad spectrum of applications while providing a multiprocessor both suitable for, and with the necessary capabilities to enable research in such areas as:

- Multiprocessor architecture (few multiprocessors have been constructed; thus each represents a major research milestone)18
- The processor-memory interconnection
- The memory contention problems
- The communication and control of a multiprocessor memory
- The communication structure of multiprocessors
- The instruction repertoire mandated by a multiprocessor
- Applied and natural parallelism
- Global and local control
- The hardware operating system
- The effect of a multiple accumulator andor multipie index register structure
- Interrupt handing, DMA operatisit, cycle stealing and priority assignments
- The effect of a hierarchical memory organization on a multiprocessor
- The effects of overlapping, prefetching instructions and operands, multiple instruction decoding and conditional branching
- Data flow efficiency and input/output flexibility
- Diagnostic procedures, reconfiguration and degraded operation
- The optimum sequencing problem
- Software application versatility, decomposition of computations and overall executive efficiency

It is beyond the scope of any one research effort to study all or even most of the above mentioned subject matter. Some of these topics will be covered as part of this research in the development of the SAMSON machine; i。e. multiprocessor architecture, processor-memory interconnection, memory-contention, memory communication and control, communications, instruction repertoire, parallelism, and global and local control. It is felt that the subjects covered by this work, the additional subject matters listed above, as well as any additional topics uncovered as a result of this and other research efforts will be continued in future research activity. It is felt that SAMSON will be an invaluable ald to future research efforts in the area of multiprocessors since research in this area has a strong experimental and empirical component requiring research, design and construction of many systems. 19

The SAMSON machine is in the initial research stage of development and will consist of four (4) uniprocessors capable of concurrent processing (as a strongly-connected multiprocessor).

The first SAMSON processor element is presently being debugged. Similarly, the SAMSON test set is also in the debugging stage. One piece of support test equipment has been completed and is being used to assist debugging of the $S A M S O N$ processor element.

References

1．Seltzer，Jo Ho i Traffic Control in a Multiplexed Computer System，MAC－TR－30，Thesis，MIT，Cambridge，Mass．，July 1966．

2．Curtin，Wo Io：Multiple Computer Systems Advances in Computers，1963．4，245－303．

3．Aschenbrenner，H_{0} Fo；Intrinsic Multiprocessing，Spring Joint Computer Conf．1967，81－86．

4．Koczela，L．Jo；The Distributed Processor Organization， Advances in Computers，1968，9，286－353．

5．Slotnick，Do Lo；The SOLOMON Computer；Fall Joint Computer Conference，1962，97－107．

6．Murtha，Jo Co；Highly Parallel Information Processing Systems，Advances in Computers，1966，7，1－226．

7．Burroughs Corp．ILLIAC IV Systems Characteristics and Programming Manual，NASA CR－2159，1973，Feb

8．Bouknight，Wo Jo；The ILLING IV System，Proceedings of the IEEE，Vol．60， 4, April 1972，369－388．

9．Comfort，W．To；A Modified HOLLAND Machine，Fall Joint Computer Conference，1963，481－488．

10．Leiner，A。L。；PILOT－A New Multiple Computer System， Journal，ACM，6，1959，315－35．

11．Eckert，J．Po；Design of UNIVaC－LARC System Io g Proc of the Eastern Joint Computer Conference，1959，Dec．1959．

12．Avizienis，A．；et al．，The STAR Computer，Jet Propulsion Laboratory，California Institute of Technology．
13．Bell，G．C．and Wulf，Wo Fo；Comp－A Multi－mini－processor， Fall Joint Computer Conference，1972：765－777．

14．Bell，G．C．and Freeman，P。；C．a1－A Computer Architecture for AI Research，Fall Joint Computer Conference，1972，779－790．
15．Koczela；op．cit．，Distributed Processor；289．
16．Bauer，W．Fo；Why Multicomputers？Datamation 6，Sept．1962，51－55．
17．Curtin；op．cit．Multiple Computer；256．
18．Bell；op．cito，Comp；766．
19．Ibid．．765．

1IX. Digital Computer Simulation and Automatic Fault Detection for Space

Shuttle Electric Power Distribution System

by F.E. Thau and C. B. Park

One aspect of our analysis of the Space Shuttle power distribution system has been concerned with the development of a flexible digital computer program, comprising a fixed main routine and a number of user-supplied subroutines, which simulates the dynamic performance of the distribution system given a specification of a sequence of mission modes and the load distribution in each of these modes. The program, previously delivered to NASA, has been tested successfully on a network of about the size of one third of the proposed power distribution system, This program can be applied for the evaluation of competing proposed modifications in the electric distribution system structure or in the ratings of ele nents of the distribution system. A description of the program is contained in section III. 1 .

A second aspect of our analysis has been the development of techniques for automatic fault detection for application in future space shuttle designs. Two approaches have been taken: a reduced, search procedure was developed to use a limited number of physical measurements together with a listing of nominal conditions to automatically specify which loads or cables are faulted. This approach is outlined in section III. 2.a. The second approach uses a dynamic model of the distribution system in the design of a sampled - data observer or filter whọe inputs are the available measurements of voltage and current and whose outputs are the state of the power distribution system. This approach is outlined in section IIT: 2.b.

A number of problems remain to be studied in order to apply automatic fault detection for future space shuttle power distribution systems. First, the automatic fault detection schemes outlined above should be tested on networks of full size to determine the computational requirements that each technique would impose on the on-board computers. Second, automatic fault correction or reconfiguration techniques should be developed to fully implement an automatic fault detection and correction sub-system.

SEPDIS PROGRAM

A configuration of the electric power distribution system of the space shuttle is assumed. A sequence of distribution modes of the power system associated with relay states is also given in real time. The operation of the power system follows the schedule specified by the mode sequence. Section I gives the analytic basis for the simulation program. Section II describes the program in detail and Section III contains an application example.
A. Simulation Program Background

Assumptions

Assume that the electric power distribution of the shuttle spaceship (EPDS) is represented by a schematic diagram in Fig. 1.

Fig-1

In Fig. 1 the non-linear function of $I_{0} f(I)$ depends on the nature of the $V-I$ characteristics of the given Fuel Cell (D.C. source). Assume that all the elements of the power system can be approximated as linear, lumped, and are given as circuit elements for a given mode, i.e. .

1) Dynamic of each load is described by a linear differential eq or by a circuit description
2) For simplicity each relay is simulated by a Resistor \mathbf{R}

$$
\begin{aligned}
& R=0.01 \Omega \text { when closed } \\
& R=10^{8} \Omega \text { when open }
\end{aligned}
$$

with a delay time given.
ii) Determination of System Differential Equation

One can describe the dynamic of the given power system under the assumptions made by

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
\hdashline \underline{q}
\end{array}\right]=\left[\begin{array}{lll}
A_{11} & A_{12} \\
\hdashline & 1 & - \\
A_{21} & A_{22}
\end{array}\right] \quad\left[\begin{array}{c}
\underline{z} \\
\hdashline \underline{q}
\end{array}\right]+\left[\begin{array}{c}
G_{1} \\
\hdashline G_{2}
\end{array}\right] \quad \underline{u}} \\
& \underline{u}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \underline{v}-\left[\begin{array}{cc}
\mathbf{f} & \left(I_{2}\right) \\
\mathbf{f} & \left(I_{2}\right) \\
\mathbf{f} & \left(I_{3}\right)
\end{array}\right], \quad \underline{I}=\left(\begin{array}{l}
I_{4} \\
\boldsymbol{I}_{2} \\
I_{3}
\end{array}\right]
\end{aligned}
$$

Where

$$
\begin{aligned}
& \underline{u}=\left[\left.\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array} \right\rvert\, \quad u_{1}, u_{2}, u_{8}, \quad\right. \text { input variables } \\
& \underline{q}=\left(\begin{array}{l}
q_{1} \\
\vdots \\
\vdots \\
\vdots \\
q_{\text {NSV }}
\end{array}\right) \text { state variables of the system }
\end{aligned}
$$

$\underline{\mathrm{I}}=\left(\begin{array}{l}I_{1} \\ \mathrm{I}_{2} \\ \mathrm{I}_{3}\end{array}\right\}$
output variables of the system
$\underline{z}=\left|\begin{array}{l}z_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ z_{\text {NAUX }}\end{array}\right|$

> auxiliary variables which connect some states, input and output variables

A determination of the submatrices $A_{11}, A_{12}, A_{21}, A_{22}, E, G_{1}, G_{2}$ depends on how to choose the auxiliary variables and state variables as physical elements.

From the standpoint of computer analysis of the complex circuit Ref. 1 the state variables are taken to be all the inductive currents and all the capacitive voltages. Moreover, let the auxiliary variables be all the node voltages and all the branch currents except for those node voltages and branch currents corresponding to state variables, i.e.,

V_{i} indicates the i-th node voltage ($i=1,2, \ldots$, NNode)
Ib_{i} indicates the i -th branch current ($\left.\mathbf{i}=1,2, \ldots, \mathrm{Br}\right)$

Rewriting (1) in terms of physical variables $\underline{V}_{N}, \underline{I}, \underline{g}$ gives

$$
\left(\begin{array}{c}
0 \\
\hdashline 0 \\
\hdashline \mathbf{E q}
\end{array}\right)=\left[\begin{array}{c:c:c}
F_{11} & F_{12} & F_{13} \\
\hdashline F_{21} & F_{22} & 0 \\
\hdashline F_{31}! & 0 & A_{22}
\end{array}\right]\left[\begin{array}{c}
\underline{v_{N}} \\
\hdashline \underline{q} \\
\hdashline \underline{q}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
\hdashline B_{2} \\
\hdashline 0
\end{array}\right]
$$

(2).

Where the submatrices $F_{11}, F_{12}, F_{13}, B_{1}$ are determined by applying KCL law at each node. Therefore, the NNode x NNode matrix F_{11}, NNode $\times 3$ matrix $B 1$ are null and all the elements of the matrices F_{12}, F_{13} are 1 if entering into the node, $\mathbf{- 1}$ if flowing out of the node, otherwise zero. And the submatrices $\mathrm{F}_{21}, \mathrm{~F}_{22}, \mathrm{~F}_{31}, \mathrm{~A}_{22}, \mathrm{~B}_{20}$ and E are determined so that all the branch elements, resistors, inductances, capacitances and independent sources are defined.
iii) Formulation of Normal Form of State Equation

To formulate the normal form of the state equation from the system differential equations (2), one has to eliminate the auxiliary variables in eq(z). For the elimination of the auxiliary variables a gauss-elimination method has been used, i.e., from (2) one can have

Where the indicated inversion of the matrix is assumed to exist.

From (2), (3) one can obtain state equation

Therefore, the normal form of state equation is

$$
\begin{align*}
& \left.\underline{\circ}=E^{-1}\left(A_{22}-\left[\begin{array}{l:l}
F_{31} & 0
\end{array}\right]\left[\begin{array}{c:c}
0 & F_{12} \\
\hdashline F_{21} & F_{22}
\end{array}\right]^{-1}\left[\begin{array}{c}
F_{13} \\
\hdashline 0
\end{array}\right]\right] \underline{q}^{-1}\right]\left[\begin{array}{l}
1 \\
F_{31} \\
0
\end{array}\right] \\
& \left.\left[\begin{array}{c:c}
\mathrm{Q}_{1} & \mathrm{~F}_{12} \\
\hdashline \mathrm{~F}_{21} & \mathrm{~F}_{22}
\end{array}\right]\left[\begin{array}{l}
\mathrm{O} \\
\hdashline \mathrm{~B}_{2}
\end{array}\right]\right] \underline{\underline{u}} \tag{4}
\end{align*}
$$

and

iv) Solution of Non-Linear Differential Equation

The dynamic of the EPDS can be described by a set of non-linear differential eqs,

$$
\begin{align*}
& \underline{\ddot{q}}=A \underline{q} \quad \dot{+} \quad B \underline{\mathbf{u}} \tag{5}\\
& \underline{\mathbf{u}}=\left[\begin{array}{l}
\underline{v} \\
\mathbf{v} \\
\mathbf{v}
\end{array}\right]-\quad\left[\begin{array}{c}
f\left(I_{1}\right) \\
f\left(I_{2}\right) \\
f\left(I_{3}\right)
\end{array}\right]
\end{align*}
$$

where all the elements of A, B are given.

A solution of the above non-linear differential equation becomes very much unrealistic when some of eigenvalues of A are very large. When some relays are open that may give this case since the relay is simulated by a resistor whose value is 0.01 if closed, 10Ω if it is open. To integrate the system with some eigenvalues large, one has to take a very small integration step size which may take prohibitive large integration time. One may overcome such a difficulty by finding steady state solution of some state variables corresponding to very large eigenvalues as a problem of singular perturbation.

B Computer Program of Simulation of EPDS

Computer program of simulation of EPDS consists of four main steps, i.e.,
(1) Read data according to the specification of a circuit's branches and their connection and formulate a set of system differential equations. Read data for mode sequance associated relay states.
(2) Reduce the system differential equations to the state normal form.
(3) Solve non-linear differential eq.
(4) Check all the relay states according to a mode sequence and modify system differential equation.

To see these steps refer to flow chart.

FLOW CHART

As shown in the accompanying flow chart, the SEPDIS program consists of six major subroutines, DATIN, RELAY, PLINS, FUEL, AIOUT, RINPG。

NVAR ${ }_{2} \mathrm{NOU}, \mathrm{NN}, \mathrm{NZ}, \mathrm{NAUX}_{2} \mathrm{NK}, \mathrm{K} 11, \mathrm{NO}$
DATIN reads all the circuit elements, resistors, inductors, voltage sources associated with two nodes and store them in KECT and in VALUI (corresponding numerical value of element), i.e.,

Outputs:	KECT VALUI		
NR:	number of	resistive elements	
NL:	$"$	$"$	inductive "
NC:	$"$	$"$	capacitive "
NV:	$"$	$"$	independent voltage sources
NI:	$"$	$"$	independent current sources
M:	$"$	$"$	mutual inductances
NCV:	$"$	$"$	capacitance voltages
NCI:	$"$	$"$	capacitance currents
NAUX:	$"$	$"$	auxiliary variables
NVAR:	$"$	$"$	the order of system
NEQN:	$"$	$"$	NAUX + NVAR
NOU:	$"$	$"$	number of outputs
NINP:	$"$	$"$	number of inputs
NN, NZ, NK, K11, NO are working variables			

SUBroutine Relay (NRLAY; R, IRY, NR, T, TSEQ, NMODE, IJK, KECT, VALUL, VN)
Inputs: NRLAY, R, IRY, NR, T, TSEQ, NMODE (READ), IJK (Main), VN (see note)

Outputs: KECT, VALUI

Note

Note that a diode can be modeled by a relay associated with two adjacent node voltages. However, in this subroutine simulation of diode has been neglected at the present program.

SUBroutine PLINS ($\mathrm{A}, \mathrm{B}, \mathrm{KECT}, \mathrm{VALUI}, \mathrm{NR}_{2} \mathrm{NL}_{2}, \mathrm{NC}, \mathrm{NV}, \mathrm{NI}, \mathrm{M}, \mathrm{NCI}, \mathrm{F} 21, \mathrm{NK}, \mathrm{K} 11$, NCV, NEQN, NINQ, NVAR, NOV, NN, NSVR, NO, NZ, NAUX, GI, NRPT

Inputs: KECT (DATIN), VALUI (DATIN), NR, NL, NC, NV, NI, M, NCI, NK, K11, NCV, NEQN, NINP, NVAR, NOV, NN, NO, NZ, NAUX, (all from DATIN), NPRIN (READ)

Outputs: $A_{0} B_{0}$ F21, G1, NSVR
A: System matrix B: I nput

$$
F \underset{F 21}{\left[\begin{array}{lll}
A_{11} & A_{12}
\end{array}\right]} \underset{(\text { See eq.1) }}{ }, G_{1}
$$

(see eq.5) ${ }^{\prime}$

SUBroutine Fuel (YIN, X, NDeg, NVAR)
input: $\quad X$ (from read initially and from integration subroutine RINPC) NDeg (read), NVAR (DATIN)

Output: YIN

$$
\text { YIN }=\left[\begin{array}{l}
32 \\
32 \\
32
\end{array}\right]-\left[\begin{array}{l}
f\left(L_{1}\right) \\
f\left(L_{2}\right) \\
f\left(I_{3}\right)
\end{array}\right]
$$

where the non-linearality must be programmed in the subroutine fuel.
SUBroutine ALout (F21, YIN, X, PN, VNo NSV, ITK, T, Numbr, NDeg, NLoad, NNode, NAUX, BRC, W, G1, NINP)

Input: F21 (PLINS), YIN (Fuel), X (RINPC), NSV (NSVR), IJK, T, Numbr (Main), NDeg, NLoad, NNode, NAUX (liead), G1 (PLINS), NINP (DATIN)
Output: VN, PN
VN (${ }^{\circ}$): all the node voltages, branch currents
PN (\because): instantaneous powers at all the loads. At the present time, PN (0) has not been programmed
SUBroutine RINPC (X, DX, T, Step, ISW, Rmax, Emax, NDeg, NLoad, IJK, YIN, A, B, NSV_{2} Numbr)

Subroutine RINPC is followed by subroutine DERIV (DX, X, YIN, A, B, NDeg, NSV); In the Subroutine Deriv Input-Output specification is as follows:

Input: X (RINPC and initially read). YIN (Fuel), A, B (PLINS), NDeg (Read), NSV ($=$ NVAR)
Output: $D X$ describing the given dynamic structure of the system, i.e..

$$
\mathrm{DX}=\mathrm{AX}+\mathrm{B} \mathrm{U}
$$

The arguments of the subroutine RINPC is as follows:
Input: DX (Deriv), Step (Read), Rmax ($=$ TSEQ (NNode) , NDeg (Read), NLoad (Read), YIN (Fuel), A, B (PLINS), ISW, IJK, Numbr (working variables)
Output: X
An integration routine in RINPC is based on the fourth order R-K method.
Restrictions on the Present Program

1. The dynamic system is assumed to be at rest initially
2. Only circuits having 60 system variables $(=$ number of auxiliary variables + number of state variables). 10 state variables, 3 inputs, are allowed.

Input to Program

The present program accepts circuits having up to 60 system variables (= number . of state variables + number of auxiliary variables), 10 state variables, 3 inputs, no restrictions on output variables.
(1) Data-input to the Program

Block 1

i) The first card provides the number of relays, the number of modes, the number of loads, the number of nodes and should be punched in the format

$$
13,13,13,13
$$

ii) The second card gives an initial integration step, initial time, and frequency of print out in the following format
E15.5, E15.5, I5

Bloci 2

i) The first set of cards in Block 2 provides the mode sequence in real time and is punched in the format
4E15.5
ii) The second set of cards gives the locations of relays in terms of node label, i.e.. $\operatorname{IRY}\left(I_{0} J\right), J=1,2$ will identify the I-th relay by two nodes. The format is,

213
iii) The third set of data cards in Block 2 provides all the relay states, i.e., $R\left(I_{0} J\right)$ indicates the i-th relay state between the j-th mode and the $(j+1)$ th mode. The tbird set of data cards should be punched in the format

4E15.5

Block 3

Block 3 defines all the branches of the circuit to be analyzed. For each branch a single card should be punched

$$
E L(I, J)= \pm A
$$

in the format

$$
1 \mathrm{~A} 1,1 \mathrm{X}, 13,1 \mathrm{X}, 13,2 \mathrm{X}, \mathrm{E} 16.5
$$

The integer i and j are the initial and terminal node labels of the branch, respectively, and EL defines the kind of branch

The number A, the numerical value of the branch element $E L_{0}$, the number A may be any real number if $E L=V$. The last four cards in Block 3 should punch in the first column for each card.

C Example 1. Example of Input Data Format

Consider a following two loads problem with one input as a test problem.

Assume that the system is rest initially. Analyze the transient response of the system from 0 to 1 second when the relay between the node 1 and 2 is open at time 0.5 sec .

$$
f(i)=\operatorname{Exp} . \quad(-0.01 * I)
$$

Input Data

Block 1

i) The first card 3326 (in the format 4I3)
ii) The second card 0.01 0. 10 (in the format 2E15.5, I5)

Block 2
i) The first card $0.0 .5 \quad 1$. (4E15.5)
ii) The second card 12

The third card 23
iii) The fourth card

11

1
11

R	1	2	$1 . E-2$
R	2	3	$1 . E-2$
R	2	4	$1 \cdot E-2$
R	3	5	2,2
R	4	6	$1 . E$

L 6 O 1.EO
L. $5 \quad$ O EO

Exampen 1 PRINT-OUT

State Equations for Each Mode
Mode 1
Mode 2

STATE EQUAL ION PRINT OUT
STATE EQUATION PRINT OUT

Q VECTOR OF STATE VARIABLES Q VECTOR OF STATE VARIABLES

| INDUCTIVE BRANCH CURRENT | 5 | 0 | INDUCTIVE BRANCH CURRENT | 5 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| INDUCTIVE BRANCH CURRENT | 6 | 0 | INDUCTIVE BRANCH CURRENT | 6 | 0 |

X VECTOR OF -INPUT VARIABLES X VECTOR OF INPUT VARIABLES

VOLTAGE SOURCE 0 VOLTAGE SOURCE $0 \quad 1$

E -MATRIX = IDENTITY MATRIX - MATRIX = IDENTITY MATRIX

A MATRIX
A MATRIX

ORIGINAL PAGE IS OF POOR QUALITY

Example-2 APPLICAITION TO $1 / 3$ DISTRIBUTION NET WORK

MODE DESCRIPTION
MODE 1 ($0 \leqslant t<0.5$)
$R_{1,2}, R_{1,8}, R_{14,15}, R_{15,16}, R_{1,16}, R_{1,17}, R_{1,19}, R_{621}$ $R_{1,15}$ are closed
$R_{2,3} ; R_{1,11}, R_{1,14}$ are open

MODE 2 $(0.5 \leqslant t<1)$
$R_{1,2}, R_{2,3}, R_{2,4}, R_{1,14}, R_{14}, 15, R_{15,16}, R_{1}, 17, R_{15,16}$
$R_{1,15}, R_{1,16}, R_{1,19}, R_{1,21}$ are closed
$R_{1,8}, R_{1,11}$ are open
MODE $3(t=1)$
STOP OPERATION
FInd ALl THE Branch currents. node VOLTAGES.

Example-2 State Equations For Each Mode
MODE 1
MODE 2
. VOLTAGE SOURCE 0 VOLTAGE SOUREE 0 1

E MATRIX $=$ DENTITY MATRIX
E MATRIX = IDENTITV MATRIX

A MATRIX
A MATRIX

B_MATRIX

ORIGINAL PAGE IS
B MATRIX OF POOR QUALITY

1	J	$B(1, J)$	(NON-ZERO)
1	1	1.2JJJJE 23	
2	1.	3.99973E-01	
3	1	9.09091E-31	
4	1	8.33333E-31	
5	1	1.3JJJJE 23	
6	1	1.00000E 00	
7	1	2.2500)E 00	
8	1	9.09091E-31	
9	1	1.25JJJE.JJ	
10	1	1.00000 El	

REFERENCE

1. Stagg, G. W. and El-Abiad, A. H.; "Computer Mehods in Power System Analysis

MeGraw Hill Book Company.; 1968

III.2.a Combinatorial Method

2.a.1 Preliminary

Consider the Electric Power System described by equation (5) of section III.1. Assume for simplicity a single-input system, and $f\left(I_{1}\right)=0$. Then

$$
\begin{aligned}
& \dot{q}=A q+B_{1} u_{1} \\
& y=C q
\end{aligned}
$$

where

$$
B u=\left[B_{1}: B_{2}: B_{3}\right] \cdot\left[\begin{array}{ll}
u_{1} \\
u_{1} \\
u_{2}
\end{array}\right]
$$

and
y is the measurable output vector $\left[y_{1}, \ldots, y r\right]$.
Assume that faults occur due to openings of some relays connected to loads. The problem is to detect faults of the system and to find their locations from the output measuremints.

One can detect faults simply by comparing the actual outputs with all the combinations of possible fault-outputs. However, this method requires 2^{n} comparisons for a single measurement output. In the case that one could measure routputs, the number of comparison can be substantially reduced to

$$
\sum_{i=1}^{r} 2^{n_{i}}
$$

where η_{i} is the number of loads in the isth group associated with outputs $z_{i}, z_{i}=y_{i+1}-y_{i}$ (see fig. 2)

Fig. 2.1
2.a. 2 Program Description For Combintorial Method

The program consists of main two steps.
(1) Partition the original system into NG Groups. For each Group find the ideal steady state load currents
(2) For each Group associated with the corresponding output, find all the possible faulted outputs in each Group if some faults are indicated in that Group and compare them with the corresponding actual output. (Refer to flow chart.)

As shown in the accompanying flow chart (see also the program listings), the FAUIT Program consists of two major subroutines FAULII, COMBT
(i) Subroutine FAULII (N, A, NG, Yact, IL, AL) Inputs:
$\mathrm{N}:$ the order of system (the number of loads)
NG: the number of partitions
$L L(K):$ the number of loads in the K-th partitioned Group ($\mathrm{K}=1,2, \ldots . \mathrm{NG}$)
$A L(K):$ the k-th ideal load current.
$k=1,2, \ldots, N$.
Yact(I): the I-th output load current flowing in the I-th partition.

Outputs:

$A(J)=A L(I I+J)$, the $J-t h$ load in the II-th partitioned Group.
YIDEL(I): Ideal load current flowing in the I-th partitioned Group.
(ii) COMBT (N, Ao Yact, INDEX)

Input:

N: the order of system
A(FAULII), Yact (FAULII)

Output:

Index incicates the index-th faulted partition. This program can detect faults of order less than five。 Example:

Assume that the above system was operating in the steady states. Assume that suddenly the actual output measurements Yact(1). Yact(2) are different from the ideal ones and that they are
(i) $\quad \operatorname{Yact}(1)=5$

Yact (2) $=0$
(ii) $\operatorname{Yact}(I)=5$

Yact(2) $=3$
find fault locations for each case.

Input Data
Block 1
(i) Read N 5 (in the format I5)
(ii) Read $A L(I), I=1, \ldots 5$ (4E15.5)

$$
(5 ., 3.33,2.5,2 \ldots 1,)
$$

Block 2

(i) Read NG (I5) , NG=2
(ii) Read $L L^{(I)}, I=1,2,(2,3)$

Printouts for each case
(i) Yact $=5$, Yact (2) $=0$ 。
(ii) Yact (1) $=5$
Yact (2) $=3$

are as follows:

(i)

A DIAGNOS IS DF THE FAJLT LDCATIONS

A SINGLE FAULT MAY OCCUP AT THE 2-TH LOAD IN THE $1-T H$ GRCUP
THE TRIPPLE FAULTS MAY ORCUR AT $10 \quad 20$ $38 N$ THE $2-T H$ GRCUP

\qquad

THE END OF CIAGNOSIS

(ii)
A. DIAGNOSIS OF THE FAULT LDCATIONS

A SINGLE FAULT MAY OCCIO AT THE Z-TH LOAD IN THE I-TH GROUP

A SINGLE FAULT MAY DCCUP AT THE I-TH LOAD IN THE 2-TH GROUP
\qquad

THE END OF OIAGNOSTS

ORIGINAL PAGE IS
OR POOR QUALITY

LISTINGS FOR COMBINATORIAL MEIHOD

$\$ \mathrm{Jcs}$

CIMENSION A(20),YACT(10).LL(10).AL(20)
READ (5.11) N^{-}
REAC $(5,15)(A L(I), I=1, N)$
READ(5.11) NO:
REAC(5.11)(LL(1), $1=1, N G)$
$\operatorname{YACT}(1)=5 \circ$
$\operatorname{YACT}(2)=0$ 。
CALL FAULII T,A NG,YACT,LLOAL)
11 FORMAT(15)
15 FCRMAT (4E15.5)
stop
END
DIMENSION AL(70) OLL (10), YACT(10), YIDEL(10) 。A(20)
C NO NUMBER OF LOADS
C NGO NUMBER DF GRRUPS
C LLTDO NUMBEROF LOADS FOR THE I-TH GROUP-
18
19
20
21
$M 2=L L(1)$
$\mathrm{M}=1$
$\mathrm{Nl}=\mathrm{NG}-1$
$R=1$
$Y \operatorname{IDEL}(K)=\pi .0$
WRITE(6,500)
WRITE(6.550)

23500 FORMAT(${ }^{\circ} 1^{\circ}, 5 x^{\circ}$ " A DIAGVOSIS JF THE FALLT LOCATIONS')
24
DO 2 I I $=\mathrm{N}, \mathrm{M} 2$
21 VIDEL(K)=YTDEL $(K)+A L(I)$
IFTTK + I) : GT ©. Ca GO TO 24
$M=M+L L(K)$
$M 2=M 2+L[K+C]$
$K=K+1$
60 TO-28
24 CONTINUE
DO $30^{-} I=1, N G$
IF(ABS(YACT(T)-YIOEL(I))OLE.O.OL) GO TO 3 ?
$1 \mathrm{I}=0$
INDEX = !
$\mathrm{N}=$ LLTINDEX)
IFIINDEX.LEOI) GJ TO 46
$40-11=11+L E(T N D F X-17$
G0 TO 46
DO $4 \mathrm{I}-\mathrm{J}=1 . \mathrm{N}$
$A(J)=A L(I I+J)$
YACTV =ABSTY ©CT(I)-YTDE[TT)
CALL COMBTIN, A,YACTV OINDEXI
31 CONTINUE
CONTINJE
WRITE(6.501)
WRITE 6,551)

49501 FORMAT $/ / / / / / 10100_{0}^{\circ}$ THE EVD JF DIAGNOSIS:
RETURV
ENE

```
IF(ABS(YACTL-A(I)),GE.C.O1) GJ TO &1
\begin{tabular}{ll}
55 & \\
56 & \\
57 & 300
\end{tabular}
```


WRITE(6,300) I INDEX

```
FORMATI/ \(105 X^{\circ}\) A SIVGLE FAULT MAY OCCUR AT THE O \(150^{\circ}-T H^{\circ}\) L2X: \({ }^{\circ}\) LOAD IN THE \({ }^{\circ}, 15,{ }^{\circ}-\) TH GROUP © 1
\begin{tabular}{llll}
58 & 11 & & CONTINJE \\
59 & & 10 & CONTINUE
\end{tabular}
        IF(NOLT.2)TOTO 200
        N1=N-1
                DO 20 I= 10VI
                        11=1+1
                DO 20 J=IL.N
                B(J)=A(I)+A(J)
                \triangleF(AES ( YACTL-B(J))OGT.0.01) GO TO2L
                WRITE(6,301) I.J.INDEX
```



```
            10TH LOAC IN THEO, 1500-TH GROUPO)
            21 CONTINJE
                CONTINUE
    IF(NOLT.3) GOT0}300
            Ni=N-2
            DO 30 I=1,NI
                N2=N-1
                II=I+1
                DO 30 J=11,N2
                JI=J+1
                    DO 30 K=J1,N
        B(K)=A(I)+A(J)+A(K)
            IF(ABS(YACTL-R(K)).GT.O.01)GJ TO 31
                WRITE(6.302) I% J,<,INDEX
                FORMAT (//,5 500THE TRIPPLE FAULTS MAY OCCUR AT 0.1500.0001500000
            1.150%IN THEO: 50%-TF GROUPO;
                CONT INUE
                    CONTINUE
            IF(NOLT.4) GO TO 400
                        NI=N-3
            00 40 I=1.0N1
                II=1+1
                N2=N-2
                    DO 40 J=I1,N2
                    J1=J+1
                    DO 40 K=J1,N3
                00 40 L=K1,N
        B(K)=A(I) +A(J)+A(K)+A(L)
            IFIABS(YACTL-B(L')).GE. 0.OL)GO TO 41
        WRITE(6,303) I, JPKPL INDEX
    303 FORMAT(///,5*."THE QUADRAPLE FAUL.TS`.
```



```
        100.41 CONTINUE
            101 400
            103 400 CONTIVUE
    104 RETURN
    105 END
```


III 2.b Fault Detection Using Dynamic Observer Networks

We assume that measurements are made at discrete sampling time instants and, hence, the dynamic model of the distribution system of section 111.1 is converted to a set of difference equations:

$$
\begin{equation*}
x(k+1)=A x(k)+B \tag{1}
\end{equation*}
$$

where the available measurements are

$$
\begin{equation*}
\underline{y}(k)=C \underline{x}(k) \tag{2}
\end{equation*}
$$

The vector of inputs \underline{f} are "pseudoinputs" that do not exist in the actual distribution system, but are introduced in the fault detection system design to simulate possible fault conditions. For example, $\underline{f}=\underline{0}$ might represent the no-fault condition and $\underline{f}=\underline{f}^{1}$, a vector of constant components, would represent a faulted condition characterized, in the case of an open circuit, by having a state component $x_{i}=0$. A dynamic observer will be designed to use the available distribution system measurements to obtain estimates of the state of the power system and thereby determine whether a fault condition exists.

A discrete dynamic observer is a sampled-data system described by

$$
\begin{align*}
& \hat{\underline{x}}(k+1)=F \hat{\hat{x}}(k)+K \underline{y} \tag{3}\\
& \underline{y}(k)=C \underline{x}(k) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
F=A-K C \tag{5}
\end{equation*}
$$

Note that the inputs to the observer are the measurements (2). The gain matrix K is selected so that the state of the observer $\hat{\underline{x}}(k)$ is an estimate of the state \mathbf{x} (k). Using (1) - (4) it can be shown that the observation error

$$
\begin{equation*}
e(k)=x(k)-\hat{x}(k) \tag{6}
\end{equation*}
$$

and the difference between actual measurements and observer outputs

$$
\begin{equation*}
\tilde{y}(k)=\dot{y}(k)-\hat{y}(k) \tag{7}
\end{equation*}
$$

satisfy

$$
\begin{align*}
& \underline{e}(k+1)=F \underline{e}(k)+B \underline{f} \tag{8}\\
& \tilde{y}(k)=C \underline{e}(k) \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{e}(0)=\underline{x}(0)-\hat{\underline{x}}(0) \tag{10}
\end{equation*}
$$

The automatic fault detection strategy is as follows: a sequence of measurements of the distribution system y (1), y (2), ... y (n) are made. Then, with the observer initially set in the zero shote, $\hat{\underline{x}}(0)=\underline{0}$, the sequence $\tilde{y}(1), \tilde{y}(2), \ldots \tilde{y}(n)$ is obtained from (3) and (4). Then, the following matrix equation is obtained:

$$
\left[\begin{array}{c}
\tilde{y}(1) \\
\tilde{y}(2) \\
\vdots \\
\tilde{y}(n)
\end{array}\right]=\left[\begin{array}{c:c}
C F & C B \\
C F^{2} & C(F B+B) \\
\vdots & \vdots \\
C F^{n} & C\left(F^{n-1}+\cdots+F+I\right) B
\end{array}\right]\left[\begin{array}{c}
e(0) \\
\hdashline \cdots \\
f
\end{array}\right]
$$

for the unknown $e(0)=x(0)$ and \underline{f}.

Assume that when the measurement process, starts the power system is in either a faulted or a no-fault steady-state condition, $x(0)=x_{s s}$.

Then, from (1)

$$
\begin{equation*}
\underline{e}(0)=(I-A)^{-1} B \underline{f} \tag{12}
\end{equation*}
$$

One can rewrite (12) as

Thus,

$$
\begin{equation*}
\underline{e}_{1}=M_{11} f_{1}^{1}+M_{12} f_{n} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n}=\underline{\mathbb{M}}_{21} \underline{f}_{1}^{\mathbf{p}} \tag{14}
\end{equation*}
$$

Also one can rewrite (11) as

Eliminating the e_{1} in (15) using (13), (14) gives

Where $f_{n}=0$ (fault) or α_{n} (no-fault), and α_{n} is a given constant.

The problem of fault detection is reduced to the problem of solving the linear algebraic equations in (16) for f_{1}^{\prime} and e_{n}.

One must be careful in designing the observer system to guarantee that (16) can be solved uniquely. As yet, general conditions that guarantee uniqueness have not been obtained. The example below illustrates application of the approach to a simple problem.

Example

Consider a system illustrated by

One can formulate a corresponding discrete system with zero-order hold as follows:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}[(k+1) T] \\
x_{2}[(k+1) T]
\end{array}\right]=\left[\begin{array}{c}
e^{-0.69 T} \\
0
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv A \underline{x}(k T)+B \underline{f}^{\prime} \\
& y(k T)=x_{1}(k T)+x_{2}(k T) \equiv \underline{C}^{\prime} \underline{x}(k T)
\end{aligned}
$$

where

$$
\underline{f}^{\prime}=\left[\begin{array}{l}
5-f_{1} \\
5-f_{2}
\end{array}\right], \text { and } y(\cdot) \text { is }
$$

the measuring output.

One can also obtain the corresponding observer with gain vector K so that (F, C) is observable, whe re

$$
F=A-\underline{K} C
$$

Choose $K=\left[\begin{array}{l}18 / 25 \\ 14 / 75\end{array}\right], T=1$

Then the corresponding observer can be built as

$$
\underline{x}(k+1) T=F \underline{x}(k T)+\underline{K} y^{*}
$$

Where $y^{*}{ }^{\text {is }}$ an actual output measurement.

Using the program listed below we have simulated the automatic fault location proce dure for the following output measurement:
(i) $\mathrm{y}^{*}=7.2464$
(ii) $\mathrm{y}^{*}=4.5455$
(iii) $\mathrm{y}^{*}=11,792$

Input Data to the program:

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathbf{C}(1)=1_{0} \quad \mathbf{C}(2)=1 \\
& \mathrm{~K}(1)=18 / 25, \quad \mathrm{~K}(2)=14 / 75 \\
& \mathrm{~A}(1,1)=\operatorname{Exp} .(-0.69), \mathrm{A}(1,2)=\mathrm{A}(2,1)=0.0 \\
& \mathbf{A}(2,2)=\operatorname{Exp} .(-1,1) \\
& \mathrm{B}(1,1)=(1-\operatorname{Exp} .(-0.691) / 0.69 \\
& \mathrm{B}(2,2)=(1-\operatorname{Exp} .(-1,1)) / 1.1 \\
& \mathrm{~B}(1,2)=\mathrm{B}(2,1)=0.0
\end{aligned}
$$

(i) THE DUPUT MEASUREMENT $\gamma=0.724 \in 4 E$ Cl

THE N X ZN MATRIX

$F(1), F(2), 0000 F(\Lambda-1), E(N), A R=2 R E$

$$
0.50000 \text { ET } 0.48601 E-n 6 \text { Fault in the } 2 n d \text { load }
$$

$$
\text { (ii) THE CUPUT MEASUREMENT } Y=0.45455 E \text { OI }
$$

THE A $X 2 N$ MATRIX

F(1), $F(2) .0000-1 N-1), E(N), N=-2 R E$

$$
0.41787 \mathrm{E}-06 \quad 0.45454 \mathrm{EnT}
$$

- fault in the find load

$$
\begin{aligned}
& -0.40509 \mathrm{E} 00-0.57380 \mathrm{E} \text { CO-0.72235E 00-0.60648E CO } 0.19559 \mathrm{E} 00 \\
& 0.20777 E 00 \quad 0.42974 \mathrm{E} 00 \quad 0.25848 \mathrm{E} 00
\end{aligned}
$$

(iii) THE QUPUT MEASUREMENT $Y=0.11792 E 02$

THE $N \times 2 N$ MATRIX

$$
=0.40509 \mathrm{E} 00-0.557380 \mathrm{E} 00 \quad 0.72235 \mathrm{E} 00 \quad 0.60648 \mathrm{E}-00 \quad 0.19559 \mathrm{E} 00
$$

$0.20777 E 00 \quad 0.42974 \mathrm{E} 00 \quad 0.25845 \mathrm{E} 00 \mathrm{l}$

\qquad

ORIGINAL PAGE IS OF POOR QUALITY

59	21	CONTINUE
60	20	CONT INUE

$61 \quad$ CO $30 \quad 1=10.9$
CO $31 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~N}$
F([9J) $=A([95)-0(19 J)$
CONTINUE CONT INUE
$\mathrm{N} 2=\mathrm{N} * 2$
CALL MAT FMPNOC-F;B,OT
DO $40 \quad I=1, N$ DO $41 \mathrm{~J}=10.4$
41
$A(1, J)=-A([, J)$
CONT INUE
DO $50 \quad \mathrm{l}=1,4$
ATIOI =ATIOIT+IOC
CO $60 \mathrm{~J}=1, \mathrm{~N}$
DO $61 \quad \mathrm{I}=1 \mathrm{I}$ 明
$B B(1)=B(10.5)$
CO 65 IJK $=10 \mathrm{~N}$
DO $62 \quad$ IJJ $=1, N$

CONTINUE
CALL GAUSS (NTO, BB, S.ILES
CO $63 \mathrm{~K}=1$, N
DC(K.J) $=5(K)$
CONTINIE
$\mathrm{CO} 70 \mathrm{I}=7 \mathrm{~N}$
DO $71 \mathrm{~J}=\mathrm{I}_{0} \mathrm{~N}$.

71
CONT INUE
CONTINUE
$\mathrm{N} 1=\mathrm{N}-1$
DO $80^{-1} \mathrm{I}=1 \mathrm{I}^{\mathrm{M}} \mathrm{I}$
DO B1 $J=1, N 1$
ATI?Jj $=0.0$
DO $82 \mathrm{~K}=1,4!1$
82
81

CONT INUE
CONT INUE
DE $90\left[=1, N_{1}\right.$
DO-91J $=1 \mathrm{NI}$
$91 \quad$ CD(I, J)=A(I, J$)+0(1, J+N)$
CONTINUE
DO $100 \quad 1=10 \mathrm{~N}$
CD $(I, N)=7(1 . N)$
DO $120 \quad I=I, N 1$
S(i) $=0$.
DO $111 \mathrm{~J}=1,111$
$121 \quad S(I)=S T I T+D(T O J * D T J O N$
cont inue
CO $120^{\circ} \mathrm{I}=1, \mathrm{NL}$
S(I)=S(1)+O(1,2*N)
CALE OBSCYTXAYANOVECS
DO $130 \quad I=1, N \mathrm{NL}$
BE(I)=Y(IT-S(I)*FO
BO $140 \quad I=1$, N1
$\mathrm{DO}\left(\mathrm{N}_{\mathrm{F}} \mathrm{I}\right)=0.0$
DO $141 \mathrm{~J}=1, \mathrm{~N} 1$
78$510 \quad 0(1, \bar{I}+N)=0(1,1+N)+C(J) * B(J, I)$
CO 40 1JK $=2{ }^{\circ} \mathrm{N}$
DC $42 \mathrm{~J}=1 . \mathrm{N}$
$O($ (JKR $J+N)=0.0$
Co $43 \mathrm{k}=1 \mathrm{i} \mathrm{N}$

43 CONTINUE
42 CONTINUE
41 CONTINUE
40 CONTINUE
DO $611=1$. N
D0 $60^{\circ} \mathrm{J}=1 \mathrm{TN}$
60. $\quad Q(I, J)=O(I, N+J)$
61
CONTINUE
DO $70 \quad 1=2, \mathrm{~N}$
C0 $75 \mathrm{~J}=1 \mathrm{i} \mathrm{N}$
$71 \quad 0\left(I_{0}, j+N\right)=0(I, J+N)+Q(I-1, j)$
70 CONTINUE
RETJRN
END
SUBROUTIVF CBSEY($X, Y, N, Y O, C)$
DIMENSICN $\times(10,10)$ Y Y (10). $2(10), C(10)$
$2(1)=0.0$
DO $10 \mathrm{~K}=1, \mathrm{~N}$

$X(1, K+1)=(E X P(-0.69)-18, / 25) * X.(1, K)-18.125 . * X(2, K)+18.125 .0 * Y 0$
$Z(K+1)=0.0$
DC $15 \mathrm{~J}=10.9$

cant inuf
Continue
CO $20 \mathrm{~K}=1$ 。iv
YTK) $=$ Y $0-27 K+77$
CONTINUE
RETURN
END
SUBROUTINE GAUSS(N, A, B, X_{9} ILLI
CIMENS ION ATNONTOBTNI-XTNT
ILL=0
(FIN-174.1.4
1
IF(A11,1))20.3.2
XT2) $=\mathrm{BIT}$)/AT1.27
RETURN
TLI $=1$
RETURN
NLESS $1=\mathrm{N}-1$
CO 13 I=1, VLESSS 1
EIG=ABS(AIIOTH
$\mathrm{L}=1$
$\operatorname{IPLUS} 1=1+1$
DC $6 \mathrm{~J}=$ IPLUS $1, \mathrm{~N}$
IF(ABS(A) J.I) 1 -BIG)-6.6.5
5
EIG=ABS(A(J, I))
L- $=\mathbf{J}$
CONTINE
IF(BTGIB.7. 7
1LL=1

\$DATA

[^0]: Pass Filter

 Response
 Unit Step
 Fig. 6.

[^1]: * This paper uses the term "processor" rather than computer here, to distinguish the structure of the computational processing from the overall computer system which includes input/output, I / O, processing; peripherals; etc.
 + As distinguished from task sharing with separate processors for I/O, computation, etc.

[^2]: * A duplex system usually consists of two ldentical processors operating so that, in the event of shut downs due to maintenance, checkout, improvements, etc., of one processor, the second can operate without a reduction in capability of the system. In addition, the back-up processor may be utilized to run lower priority tasks or as a slave to the primary processor (in which case a shut dow of either will reduce system capability).

[^3]: *ILLIAC IV is still in the construction and debugging phase; only one of the four quadrants will be constructed.

[^4]: * No specific programming development is intended as a part of this research; however, insight will be gained regarding programming techniques during architectural development.

