P.107 1 GHZ DIGITIZER FOR SPACE BASED LASER ALTIMETER

1.

FINAL REPORT

16 October 1991

Prepared For:

NASA GODDARD Space Flight Center Greenbelt, Md. 20771

> Contract No.: NAS5-30626 Project Manager: Jack Bufton

Submitted By: Amerasia Technology, Inc. 2248 Townsgate Road Westlake Village, CA 91361

Principal Investigator Edward J. Staples

(NASA-CR-190301) ONE GHZ DIGITIZER FOR N92-24204 SPACE DASED LASER ALTIMETER Final Report, Abr. 1989 - Aug. 1991 (Amerasia Technology) 107 p CSCL 148 Unclas G3/35 0087646

TABLE OF CONTENTS

1.0	Phase II Objective	1-1
2.0	Program Summary	2-1
	2.1 Initial Technical Approach	2-1
	2.2 Technical Problems Encountered and Possible Solutions	2-1
	2.3 Selected Technical Approach	2-3
3.0	Work Accomplished	3-1
	3.1 Summary	3-1
	3.2 Characterization of the AN1000H Hybrid	3-8
	3.2.1 Design of the Test Circuit	3-8
	3.2.2 16-Way Active Multiplexer Design	3-10
	3.3 System Description	3-11
	3.3.1 Signal Input Stage	3-17
	3.3.2 Staggered Clock Generation	3-17
	3.3.3 Analog Memory and Presampler	3-18
	3.3.4 Microprocessor Interface and Communications Circuit	
	with Host Computer	3-19
	3.3.5 Power Supply Duty Cycle Control	3-20
	3.4 Testing	3-21
	3.4.1 Characterization of the AN1000H Hybrid	3-21
	3.4.2 System Tests	3-22
	3.4.3 Special Operations Instructions and Notes	3-24
4.0	Conclusions and Recommendations	4-1
	I. Appendix 1	
	II. Appendix 2	
	III. Appendix 3	
	IV. Appendix 4	
	V. Appendix 5	

1.0 PHASE II OBJECTIVE

The overall objective of this Phase II Program is to develop, design, fabricate, and test a feasibility model of a low power 1 GHz Waveform Digitizer. The Digitizer is intended for analyzing data collected via a space based Laser Altimeter. It has a 6-bit resolution, and is equipped with a 1 GHz surface acoustic wave (SAW) oscillator, and a random access buffer memory to interface with the 8-bit parallel bus of the altimeter system computer. Low power consumption is obtained by cutting off the power supply during the absence of data from the altimeter, thus lowering the duty cycle of power utilization.

The following technical objectives were specified for the implementation of the 1 GHz Waveform Digitizer feasibility model.

Functions:

- (1) Perform analog-to-digital conversion
- (2) Transfer digital data to system computer via a random access memory and an 8-bit parallel bus (DMA)
- (3) Provide a 1 GHz system timing clock

Inputs:

(1)	Signal bandwidth:	DC to 350 MHz
(2)	Signal pulsewidth:	4 to 10 Nanoseconds
(3)	Repetition frequency:	40 Hz
(4)	Input impedance:	50 Ohms, nominal

Outputs:

(1)	Sampling rate:	1 Gigasamples/second
(2)	Resolution:	6 bits
(3)	Clock frequency:	1 Ghz
(4)	Number of samples:	128/second

Power supply:

(1)	Average power consumption:	1.5 Watts
(2)	Duty cycle:	2.5 %
(3)	Available supply voltages:	5V, -5.2V, -2V, and 12V

2.0 PROGRAM SUMMARY

2.1 Initial Technical Approach

A system diagram of the initial approach is shown in Figure 2-1. Two Tektronix flash 8-bit A/D-converters (TKAD10C) were selected to digitize the input signal. Each is capable of 500 Megasamples/second operation. By paralleling these converters an effective 1 Gigasample processor is obtained. The converters have 7-bit accuracy, as specified by its manufacturer. The digitized data can be stored in 32 RAMs, each being an 8-bit 30 MHz device. Alternatively, eight 4-bit 250 MHz RAMs were considered. Write and Read activities in the RAMs are controlled by an address counter as shown. Sampled data is transferred to the system computer via DMA type bus interface. Timing is derived from a 1 GHz SAW oscillator and distributed to the converters counters, and computer interface bus.

2.2 Technical Problems encountered and Possible Solutions

It was found later that the total set-up and hold time of the high speed memories (RAM) is equal to the access time (4 nanoseconds), hence there is no allowance for any timing errors during acquisition at full speed. The following solutions were considered to overcome this problem:

- (1) Replace the RAMS with high speed multistage (128) shift registers utilizing gate array technology
- (2) Use 16 RAMS in place of the original 8, allowing for half speed clocking.
- (3) Incorporate hybrid memory technology.

The first approach was investigated and found to be technically risky and not cost effective, due to the associated nonrecurring engineering cost. The second approach would increase the systems parts count, resulting in higher power consumption and reduced reliability. An existing hybrid memory and data sampling device (AN1000H) was found that is useable and met the technical requirements. This device is manufactured by Analytek and used in their Gigasample data acquisition systems. Therefore, there is minimal technical risk involved with the application of this device. In addition, the devices are readily available.

Figure 2-1, 1 Gigasample/sec. Digitizer System Diagram

2.3 Selected Technical Approach

A system diagram of the selected technical solution is shown in Figure 2-2. In this approach fast analog storage is provided by the AN1000H hybrids, which is followed by a slow readback via an A/D Converter at a moderate speed. The analog memory is made up of 4 hybrids. Each hybrid consists of four channels containing 256 randomly addressable charge storage capacitors capable of storing an analog voltage of ± 2 volts with a resolution of ± 1 millivolt. Each channel can operate at 62.5 Megasamples/second. By delaying the data and clock signals appropriately the system can be designed for 16 channels, equally spaced within one 16 nanosecond window, giving 1 nanosecond resolution. Fast sample/hold presamplers on each channel insure adequate aperture parameters to make the acquired signal meaningful at this rate.

Initially the input signal was delayed in increments of one nanosecond via a 16-tap delay line. This approach was not satisfactory because of differences in losses among multiple taps, although small between two adjacent taps, are excessively large thus deteriorating the acquisition accuracy of the digitizer. Moreover, stripline implementation of the tapped delay line is adversely effected by temperature due to expansion and contraction. This problem was resolved by offsetting the acquisition instants of each channel of the hybrids by one nanosecond, respectively.

Figure 2-2, Lola A/D Converter Block Diagram

3.0 WORK ACCOMPLISHED

3.1 Summary

During the Phase II development program a feasibility model of the 1 GHz Digitizer was designed, fabricated and tested. Hardware system testing was not fully completed due to limited funding. Preliminary testing of the A/D function of the hardware demonstrated satisfactory results. A software package for data processing and interface with the host computer was developed but not tested. Source code listing of the software is attached in Appendix 1.

The 1 GHz SAW clock required for system timing is included, and a timing interface circuit The 1 GHz SAW clock required for system timing is included, and a timing interface circuit for clock distribution was designed and built as part of the hardware printed circuit board. Average power consumption is within the specified limit, while power up and power down timing were satisfactorily tested.

As mentioned earlier, initially the design was based on utilizing Tektronix's flash A/D converters (TKAD10C). For this purpose a clock distribution circuit was designed, the results of which are shown in Appendix 2. The 1GHz oscillator which was acquired for this purpose is also useable in the final design.

The hybrid devices (AN1000H) used in the final design were characterized. For this purpose a test circuit was designed and built. A schematic diagram showing the test circuit and the printed circuit board are shown in Figures 3-1 and 3-2. The results are shown in Appendix 3. During this effort one hybrid, containing 4 channels, was tested by characterizing its transfer function and input-output signal waveforms from 150 KHz to 1 GHz. Each channel of the hybrid contains 256 cells. Each of these cells have variations in gain and offset, consequently the output (sampled data) waveform becomes noisy. Corrections were made and the accompanying result shown, where the waveform is considerably cleaner.

A tapped delay line for the purpose of distributing the input signals with one nanosecond offsets to all the 16 channels of the hybrids was designed and built. This implementation is shown in Figure 3-3 and 3-4; it is basically a transmission line with 16 one nanosecond taps, constructed on epoxy fiberglass (G-10) material utilizing microstrip technique. The result of this implementation was not satisfactory due to dielectric and copper losses. A second version was built utilizing duroid printed circuit board, as shown in Figure 3-5. This implementation was also not satisfactory. Finally the approach was abandoned and this problem resolved by staggering the timing of each channel by 1 nanosecond. The test results of the delay line implementations are shown in Appendix 4.

In what follows the development of the 1 GHz Digitizer utilizing the AN1000H hybrid chips are described. It includes the characterization of these chips prior to hardware design, design of the Digitizer circuit, and software for control and interface with the system computer.

Figure 3-1, Lola Test Circuit

Figure 3-2, Test Circuit Layout

Figure 3-4, Microstrip Delay Line with pads for JFET mounting.

3.2 Characterization of the AN1000H Hybrid

3.2.1 Design of the Test Circuit

The test circuit is shown in Figure 3-1 and 3-2. Since the objective is to characterize the AN1000H hybrid analog memory module, the design includes only one chip. Each hybrid has four inputs; in the 1 Gigasample Digitizer four hybrids are used and data is acquired via a 16-way multiplexer. Multiplexing is accomplished by a combination of delays in the timing and data paths such that the data latched by each of the inputs is staggered by one nanosecond referenced to time of actual occurrence. In order to achieve this, the presamplers in the hybrids must be fast enough to accurately take their samples. In addition the internal delay times must be known and included in the overall timing delay consideration.

The sampling window and timing is determined accurately in a single hybrid. The sampling waveforms should be the same as if it were one of four hybrids in the final system. The delays should be identical or at one nanosecond intervals so as to represent one or more noncontiguous repetitive samples out of the full set. Identical timing was chosen since it would provide the easiest method of determining channel to channel variations in both timing and amplitude.

In this test circuit on-board microprocessor is not included. The final circuit, however, will be controlled by a combination of microprocessor and dedicated logic, which will also unload and correct the data. Part of our objective is to determine the necessary corrections, therefore raw data is being collected. The on-board A/D converter is connected to a general purpose parallel port on an MS-DOS computer where simple programs in BASIC or C can be used to unload and save the data for further analysis. Analysis will include gain, offset and timing errors for each channel, offset and gain, offset and linearity errors for each memory cell, as well as input frequency versus amplitude errors for each memory cell, to check the sampling accuracy.

The power and control circuitry is not needed in the test board. It has been designed with adequate power and heat dissipation capacity for 100% duty cycle. Power down circuitry will be added later to determine its effect on performance and to determine minimum turn-on and turn-off times.

Since only four channels are being driven, a resistive divider is used to provide adequate impedance match. A signal function generator is used as a test source.

Referring to the circuit in Figure 3-1, several power voltages are required and a number of timing signals as shown in Figure 3-6. The hybrid needs Vtt for termination of the ECL inputs, Vsub for substrate biasing and Vofs as a fixed DC offset to the signal paths.

Figure 3-6, Timing Diagram

Voltages needed for sensitive analog portions of the circuit are isolated from noise of the digital circuitry by ferrite beads and bypass capacitors. There are two analog grounds, one at the input of the hybrid and the other between the hybrid and the A/D converter. Isolated analog sections of each plane have been created by partitioning the planes.

The timing signals are summarized in the timing diagram shown in Figure 3-6. The AN1000H collects samples during the high portion of the S12 an S34 signals. These samples are latched in the presampler on the falling edge of S12 an S34. The data in the presampler is transferred to a memory cell during DCLK high, and latched on the falling edge of the DCLK. The relationship between S12, S34 and DCLK should be such as to maximize the time from the falling edge of DCLK. DCLK also clocks the shift registers used to select the next memory cell for writing. These registers are cleared when RSR and RST1 are low and start counting when LSR and START-X go low, loading a 1 bit into the fast row and slow column shift registers respectively. ORST is the same signal as RSR. All analog memory locations are reset on the rising edge of ORST. END1-4 is used to determine the end of the collection (WRITE) phase, so that the unload phase can be started. O2S is used to synchronize the START-X signals. RST2 is held high to prevent read attempts during the collection phase.

3.2.2 16-Way Active Multiplexer Design

Distribution of signals and time delay to drive the hybrids is accomplished by a 16-Way Multiplexer. System requirements and characteristics of the AN1000H hybrid dictate the performance requirement of the multiplexer. Following are the design objectives:

Input parameters:

0 ± 360 mV (720 mV P-P) DC-350 MHz 50 Ohms, Impedance VSWR 1:8, maximum Output parameters:

16 Outputs
1 ns delay between each output
0 ± 360 mV
DC-360 MHz, flat frequency response
50-Ohm impedance load (50 Ohms shunted by 4.7 pF)
VSWR 1.8:1 maximum

Power Supply: 5 VDC -5.2 VDC

The design of the multiplexer is shown in Figure 3-3. The signal distribution and delay requirements are achieved by tapping a microstrip transmission line at 16 points, each 1 ns apart. The line is meandered to reduce layout length and is adequately spaced to reduce coupling between adjacent segments. Circuit loading at the taps is minimized by using JFET buffer amplifiers with high input resistance and low gate-source capacitance. Current gain is supplied by a bipolar transistor output stage.

The circuit is built on a 31-mill microstrip board utilizing G10 dielectric material. The delay line is shown in Figure 3-4. Surface mount packaged JFETs are used. Initially, test data is taken with 3.3 pF chip capacitors simulating the gate capacitance of the JFETs. The test results, showing group delay and insertion loss as a function of frequency, are shown in Appendix 4. These measurements show that the transfer characteristic of the delay line has a 3dB slope down to 350 MHz, which is too large to meet system performance objectives. A second design, shown in Figure 3-5, was tested. In this design lower loss dielectric material (Duroid) was used. A slope of 1.2 dB was obtained, which is smaller but still considered unacceptable. Therefore, this approach was abandoned, and the problem is resolved by sampling the input signal at sampling times staggered by 1 ns from channel to channel.

3.3 System Description

The 1 GHz Digitizer system block diagram is shown in Figure 2-2, and the detailed circuit diagrams are shown in Figures 3-7 through 3-10. A short duration of the input signal is stored as discrete analog samples in a set of AN1000H Hybrids. There are four hybrids, each of which has four channels. Each channel can capture a signal with picosecond precision using fast pre-samplers, but requires a 16 ns cycle to store the sample. The four hybrids provide 16 channels, each staggered by 1 ns thus acquiring a new sample every nanosecond. The pre-sampler clocks are brought out of the hybrids in pairs, allowing for eight different clocks (two nanoseconds apart). The two channels sharing the same clock are connected to different signal paths, one having an extra 1 ns of coax delay in it. Each channel is 256 cells deep, resulting in a total acquisition of 4096 samples, or over 4 microseconds of data. No attempt has been made to shorten the acquisition cycle. After the samples are collected, a readout phase begins, which transfers the successive sample of each channel to a fast 12 bit A/D converter. Only a small fraction of the 4096 samples are actually needed, but the four

channels on each hybrid are arranged such that one must be completely read before the next one can be started. The time (and power consumption) of this requirement is minimized by rapidly clocking out the samples before and after the desired segment, and slowing the clock to the speed of the A/D converter for the samples which are actually needed. This process is currently implemented using fixed constants, but could be modified to identify the region of interest, with a small increase in on time. The cells beyond the end of the region of interest in the fourth channel in each hybrid do not need to be clocked out at all, so the closer the desired data is to the beginning of the buffer, the less time will be required in the unload phase. The readout clock and A/D converter control are generated in software in the microprocessor. This is a full time task during that interval, and could not have even been considered on a slower processor. For this reason, no processing is done until the readout is completed. Upon completion, the data is scaled by gain and offset values stored from a calibration sequence and transferred to the host system. Calibration consists of starting the calibration sequence, providing a fixed voltage input, doing an acquisition cycle, providing the value of the fixed voltage, changing the voltage, and repeating the process as many times as desired (3 minimum, 16 maximum, 6 to 10 suggested). A final call to the calibration routine converts the accumulated summations into slope and intercept parameters for each cell. Separate calibration data is necessary for each cell because of variations in the sample and hold capacitors which store the samples. The host system communicates with the A/D system by means of a 16-bit bi-directional data bus with 6 handshaking wires. A command set is provided that allows not only calibration and operation, but also allows reading and writing (except EPROM) all data memory and code memory addresses, individually or by blocks, and input or output to any I/O address. Extra commands are reserved which are initially NOP's but can be patched to provide added functionality, even in flight.

In order to minimize power consumption and heat dissipation, power duty cycling has been implemented. Many of the power requirements, including all of the GaAs and ECL logic are needed only during the four microseconds of acquisition. These are known as the write loads. Several other voltages are needed only during acquisition and readout. These are known as the read loads. All switched voltages turn on within 5 microseconds, and are designed to be stable within 10 microseconds. Another 10 microseconds is allowed for the circuitry drawing the power to stabilize. Ten microseconds is allowed as a trigger window, and another 10 microseconds for the acquisition and shutdown of the write loads. The read loads remain in for several milliseconds, depending on the size and position of the data to be unloaded.

FOLDOUT FRAME

 $\overline{}$

Figure 3-8, Lola A/D Coonverter

Figure 3-7, Lola A/D Converter

FOLDOUT FRAME

/.

7

Figure 3-10. Lola A/D Converter 3-16

3.3.1 Signal Input Stage

The input amplifier is constructed in two section, as shown in Figure 3-7, each having two stages. The sections are identical except that one section has no delay, the other a one nanosecond coaxial delay line. The first stage is a buffer amplifier which provides minimal loading of the input signal to allow bridging of the two stages, and low enough output impedance to drive the eight second stage amplifiers in parallel. The input signal is terminated in 50 ohms at the end of the 1 nanosecond length of coax. The second stage provides minimal loading to the first stage and a 50 ohm output to match the hybrids. A wideband amplifier having a frequency response which is flat from DC to 350 MHz pushes the state of the art in semiconductors and integrated circuits. It would be much simpler if DC coupling were not required, or if a DC offset could at least be tolerated. DC coupling was a requirement partly to simplify calibration, and partly because any coupling capacitors which could charge and stabilize during the 20 microsecond turn on time would not pass low enough frequencies to leave the pulses being measured undistorted. Operational amplifiers represent the most straightforward method of providing DC coupling without significant offset. The recent development of current feedback op-amps allows their use to frequencies in excess of 300 MHz. The CLC 409 was chosen for this application. With careful construction practices it can be built into a system which is fairly flat to 350 MHz.

3.3.2 Staggered Clock Generation

In order to acquire samples with 1 ns resolution, a 1 Ghz clock with fast rise and fall times must be the basis of the timing logic. A SAW oscillator was used for this purpose. The oscillator is connected to a power splitter which provides an external output for other uses, and a clock signal to a GaAs shift register. The shift register is connected to circulate a pattern of 8 zeros followed by 8 ones. By tapping this signal at various stages, the four 16 ns clocks were provided (one for each hybrid, four nanoseconds apart). The eight pre-sampler clocks come from GaAs gates which generate pulses based on the time it takes for the basic clock transition to pass from one tap of the shift register to a tap two stages later. This provides a 2 ns wide clock pulse every 16 ns. Eight of these gates provide pre-sampler clocks staggered by 2 ns intervals.

3.3.3 Analog Memory and Presampler

The heart of the system is the set of AN1000H hybrids. Each of these memories have four signal inputs, two pre-sampler clock inputs, one data transfer clock input, and various control signals, as shown in Figure 3-8. The control signals are generated by TTL logic derived from the trigger signal and the data transfer clock for the first hybrid. The control signals must be delayed by 4 ns per hybrid. This is done by re-clocking them for each of the other hybrids, using a 47AC174 quad D flip-flop clocked from that hybrid's data clock. All pre-sampler and data clocks are routed over 50 ohm controlled impedance traces whose paths are match to within 2/1000 inches to minimize external channel to channel skew. The internals of the hybrids exhibit some skew, as was shown earlier. It has been assumed that this skew is consistent from device to device. The signal inputs to the hybrids from the front-end amplifier are connected via pieces of semi-rigid .141" coax cable. The pieces are all the same length, except for variations calculated to compensate for the internal skew. The following table shows this:

CHANNEL	RELATIVE DELAY	CABLE LENGTH
1	200 ps	+.9"
2	0 ps	
3	135 ps	+.6"
4	260 ps	+ 1.2"

The hybrids require numerous voltages (see Figure 3-8), all of which are duty cycle switched, some write cycle only, other stay on until the end of the read cycle. The read cycle also has its own clock and control signals which are derived from I/O circuitry on the microprocessor. This approach simplifies the hardware, and adds flexibility. The analog output is shared between all sixteen channels on all four hybrids. It consists of a differential amplifier with feedback, followed by a gain stage, which drives an A/D converter. The A/D converter has 5 volt and 10 volt inputs which are tied together to give a three volt full scale sensitivity. Its input is bipolar, which fits well with the output of the hybrids. No offset was included. The A/D converter has a built in sample and hold, and is very easy to use. Each read starts a new conversion. This does mean that a priming read must be given, or conversely, the first data element is discarded, and an extra read is done at the end. The 5 volt supply to the A/D converter had to be left on all the time because the converter is connected to the computer data bus. A bus buffer chip would have solved this had it been anticipated. The -12V supply is switched. Because the original intention was to switch the

+ 5V supply also, the reference voltage is filtered with a much smaller capacitor than the recommended 47 uf. This may need to be changed if it adds too much noise.

3.3.4 Microprocessor Interface and Communications Circuit with Host Computer

The microprocessor is a UT1750AR RAD hard RISC processor, as shown in Figure 3-9. It uses a Harvard architecture, having separate code and data memory. Only the lower 16 bits of the code address are decoded, with the first 32k being EPROM and the last 32k SRAM. The only thing in SRAM by design is a command jump table and a few small utility code fragments. These are copied from the EPROM. The remainder of the SRAM is reserved for extensions, including in-flight modifications. The data memory consists of 64k bytes of fast CMOS SRAM. The original intention was only to populate the first half. Most of this is used up by calibration tables and the data buffer. The second half is unused at present. An RS-232 serial port is built into the processor, but is of limited use because it does not generate interrupts. It is not needed in this application, although a level translator and connector have been added to allow for its use. If it is not used, it may be desirable to cut the power jumpers to this chip to lower the power consumption. I/O decoding is done with a 74AC138. In addition two 74HC259's provide latched output discretes which are set by writing (anything) to a specific I/O address, and cleared by writing to one address lower. U75 deserved particular mention because its clear input comes from U76-Q7. This means that when U76-Q7 is high, U75 acts like a decoder, with all outputs low, except for the one being addressed at a particular moment (if any). This allows short positive pulses to be output instead of levels, which is used to generate the fast two phase read clock used to skip cells. The other outputs of U75 have been inverted as necessary so that their cleared state would be compatible with this operation. Two 74HC573's provide a 16 bit status word. The low byte contains various handshake signals, while the upper byte is a copy of the read and write end signals of all four hybrids. These latter signals are not likely to be used in operation, but are useful for testing. U72 may be optionally removed for in flight use to conserve power, although its consumption is minimal, mostly derived from the extra capacitive loading it provides to the bus. Host communication is provided by U79 - U82 (74HC574's) and U83 (status latches). The protocol for this is described elsewhere, and a listing of the software is given in Appendix 1. Notice that U83 is level sensitive, and responds to the leading edge of the pulse. This means that pulses should be less than 500 ns wide so the micro does not have time to start a new operation before the old operation is completed externally.

3.3.5 Power Supply Duty Cycle Control

The power supply consists of three sections. The first is fixed voltages. The microprocessor subsystem needs a constant source of +5V. The 1 Ghz oscillator and the RS-232 level shifter need a constant source of + 12 V. The second category is switched versions of input voltages. In addition to the above voltages, 6.5V, -5.2V, and -12V, are provided to the system. These voltages and +5V are switched by power mosfets as needed for the write loads and read loads. In each case the switching signal passes through a capacitor to insure that it will time-out in hardware in case of a microprocessor upset or glitch. The third category is switched derived voltages. The write loads need, in addition to the above voltages, +5.3 V, -2 V, -3.4 V, and -4 V, as well as two offset bias voltages. These are generated by power mosfets controlled by op amps. An LM385-2.5 is used as a precision reference. The original intention was to power it on and off for the 40 microseconds of the write cycle. However, it has several internal capacitors which cannot charge that rapidly, so it is left on, lightly loaded all the time. A copy of the write power control signal is current limited in a 110 ohm resistor and clamped by this regulator. This signal provides a regulated pulse to the op amps controlling the mosfets. When this signal is off, the op-amps shut off the mosfets, and when it is on they regulate the output of the mosfets to the desired voltage. Extra resistors and capacitors were required to provide closed loop stability of the op-amp circuits, while at the same time providing the rapid turn on and settling needed by the loads. The pulse which is clamped by the LM385-2.5 is also capacitor coupled to provide a hardware time-out. This is especially important here because the mosfets which are regulating must dissipate power and are not heat sunk for continuous dissipation. Also the write loads, especially the GaAs, are not heat sunk for continuous dissipation. IT IS VERY IMPORTANT NOT TO BYPASS THIS DUTY CYCLE LIMITING.

The decision of which voltages to require as inputs and which to derive was based on power consumption considerations. All constant power sources were made inputs, since any regulator drops in these would represent full time power consumption and heat losses. It is assumed that these voltages can be generated externally with high efficiency switching power converters. Second, all voltages that would represent a major drop from the next higher available voltage are required as inputs. The +6.5V input for instance would be very inefficient to derive from +12V. The remainder of the voltages are derived from these voltages, using the mosfet regulator/switches. The voltages are all write cycle loads having a 40 microsecond duration and a .1% duty cycle, so the losses in the regulator represent a very small fraction of the total power consumption.

3.4 Testing

3.4.1 Characterization of the AN1000H Hybrid

The hybrid is characterized in the test circuit shown in Figure 3-1. It is clocked at 62.5 MHz, which is the DCLK clock. The same clock rate is used for the presampler inputs, which are 2 ns wide. The difference between this test circuit and the final implementation of the 1 GHz Digitizer is that the latter consists of four hybrids, for a total of 16 inputs, while the signal to each input are delayed by a different amount, with the differences being exactly 1 ns apart. This provides 16 equally spaced (1 ns) signals every 16 ns (at 62.5 MHz). For initial testing the test circuit was connected to a 20 MHz function generator, set to produce SINE, SQUARE, and TRIANGLE waveforms at various frequencies. The analog memories (in the hybrids) is filled from this source (all four channels in parallel), and then read out (sequentially) using a 400 Msamples/s 6-bit digital oscilloscope to observe the waveform. Plots from the digital oscilloscope are given in Appendix 3. A full set of 256 samples requires 4.096 microseconds to collect, and sequentially reading back the 1024 samples takes 9 milliseconds. Therefore the frequency of the input signal is reduced by approximately 500 to 1.

In this procedure there are several limitations. The four inputs are resistively isolated, causing significant loss of signal, hence requiring maximum output from the function generator. Consequently, little room is left for baseline offset, and may have contributed to some clipping of the waveform. In addition, the oscilloscope resolution of 6 bits tends to exaggerate the noise content of the waveform. The signal would normally be sampled by a sampling A/D converter just before each transition, when it is most stable. The oscilloscope, however, shows all the waveform settling and glitches, which otherwise would not be digitized. To isolate the digital from the analog signals two planes are used, which are segmented. The test results are given in Appendix 3. Figure A3-1 shows the input signal (lower trace) captured by the test circuit. The upper trace is a frame sync signal which defines the beginning and end of the capture interval. The input signal was a portion of the rising half of a 100 KHz triangular wave. The noise on the signal shows the typical resolution and noise of the oscilloscope.

Figure A3-2 shows the output (readback) signal resulting from the input signal. Similarly, the upper trace shows the frame sync (read frame) signal used to define the beginning and end of the readback interval. Notice that there are four copies of the input signal, corresponding to the sequential readback of the four channels. These four copies should be identical. The end purpose of this test circuit is to quantify channel to channel

variations. In Figure A3-3 the same signal as in Figure A3-2 is shown using a faster timebase so that the first channel is given an expanded view. This allows a detailed look at signal variations and noise. Figure A3-4 shows an even faster timebase, so that the individual cell readout is clearly visible. Cell changes occur at 9-microsecond intervals. Notice in the latter two cases, while there is considerable noise on the signal, the largest spike occurs immediately after a cell transition followed by one occurring near the midpoint of the cell. The last microsecond before a transition remains relatively noise free. This is the point for optimum sampling and digitization.

A 2 MHz triangular input signal is shown in Figure A3-5, and its corresponding output waveform is shown in Figure A3-6. The three discontinuities appearing at the output are not errors, but represent the transition from one channel to another. In order to show this boundary, the input signal frequency is chosen not to be a multiple of the sampling window. With a 1 MHz input sinewave, the output is shown in Figure A3-7. The channel to channel transitions are even more clearly visible. In Figure A3-8, the same output is shown with a faster timebase to show only one channel output. The input sinewave frequency is increased to 20 MHz and the resulting output is shown in Figure A3-9. Since there is no output filtering, the beat frequency between this signal and the 62.5 MHz clock is perceptible in the output waveform. The top trace belongs to the sample/hold clock used by the A/D converter which samples the output. The sample phase ends with the negative edge of this clock, which occurs immediately before the cell transition of the hybrid. The first two clock pulses are part of the initialization process, thus do not present valid data.

From the test results several conclusions are drawn. First, the basic concept is viable. The test circuit captures and reproduce the waveforms. Second, the signal-to-noise ratio is adequate for the intended application. Third, there is some channel to channel offset which needs to be dealt with during calibration. In the remaining test results, given in Appendix 3, further test and analysis are performed with input signal frequencies up to 1 GHz. Output waveforms are displayed with errors due to offset and gain variations. Their corrected versions are also given.

3.4.2 System Tests

A number of tests and considerable debugging of the system were performed, although it was not 100% functional or tested when the funding ran out. The microprocessor and support logic and memory have been fully tested and are fully functional. The intended software has been written, a listing is given in Appendix 1. The startup and monitor code have been fully tested and debugged. The one addition which might be made in this area

would be self-test routines, such as RAM test, EPROM checksum, and as much I/O testing as the design allows for. The conversion cycle routines have been partially tested. The cycle progresses properly without any time-out or errors. The write cycle appears to initialize the system properly, and respond to status properly. The read cycle seems to generate the proper clock and control signals, operate the A/D converter properly, store data in the correct place and scale and output it correctly. Because no calibration has been done and not useful data retrieved, this section is less than fully tested. It has been determined that output data is dependent on input signal, but with the limited amount of testing done, it was not obvious that the output data was a reasonable representation of the input signal. The calibration routine has not been tested at all, and is not guaranteed crash free at this time. A copy of the C code (known to work) from which this routine was derived will be provided with the system as an aid to understanding and debugging this routine. The C code is based on processing one cell at a time from several files, each containing data at a different calibration point. The 1750 code by contrast was designed to accumulate the necessary intermediate values for each cell, one calibration point at a time, and then transform the result to slope intercept form afterward. The power circuitry has been tested. All power supply voltages achieve nominal value within 5 microseconds after turn on. Turn off decay depends on the current drawn by the load, and the number and size of the bypass capacitors across it. Current from the source stops within a microsecond or two after the shutdown command. The hardware time-out circuitry has also been tested and works properly. The signal input circuitry has been tested, both with static power and duty cycled. The value of the feedback resistors has been optimized for maximally flat frequency response. The trace between the first and second stages was found to be inadequate at 350 MHz, and had to be supplemented with a wire. The amplifiers furthest from the source were showing more attenuation. No testing has been done on the coax path length. This testing cannot be done until calibrated signals are available from the system. The test procedure should consist of calibrating the system (DC) and then placing a sine or triangle wave of 20 to 50 MHz and full scale amplitude into the system and examining the output data graphically. Timing errors will result in certain segments of the resulting waveform being higher or lower than they should be. A short path will cause a rising slope to appear higher than expected, and a falling slope to appear lower. This is in contrast with gain errors which will always appear closer to (or further from) the midpoint than expected, or offset errors which will always appear higher (or lower) than expected. If every other channel is off, the 1 ns delay coax will need trimming. If random channels are off, the coax between the input amplifier and that channel must be trimmed.

The clock and control signals have been examined. It is not possible with the available equipment to fully check out the GaAs clock signals for duty cycle and phasing in a

pulsed system. This is because the available oscilloscope is not fast enough for real time sampling, and the pulsed signal was not long enough to be captured using repetitive equivalent sampling. The signals were verified to be present and on frequency, while the control signals were verified to be present and appropriately timed. The write cycle was measured at 40 microseconds, and the read cycle at 2.8 ms (this is sample size dependent). The read clock was checked, the fast clock was 840 ns and the slow clock was 3.3 microseconds. Both had the expected number of pulses for the skip and sample values used, and were checked with different values. The START-2 signals were check and found to be inserted properly. No check was made of any end signals, although since the software does not read out the trailing skipped values from channel four of the hybrids, no end signal would have been visible unless all channels were read.

3.4.3 Special Operations Instructions and Notes

The power inputs are assumed to turn-on simultaneously. If it is necessary to sequence them for external reasons, the order should be +5 and +12 first -5 second and then + 6.5. The -12 can be turned on anytime with or after + 12. There is hardware and partial software support for software triggering of a conversion cycle. This is included for testing and calibration purposes. The variable SoftTrig is set to 0 (disabled) on a cold reset. It may be changed to non-zero using the monitor write instruction. When it is non-zero, the software does not wait for a hardware arm signal, and supplies an internal hardware trigger to start an acquisition cycle. This trigger is generated approximately 30 microseconds after the acquisition command is given by the host, when SoftTrig is non-zero. All testing if the system has been done using this method of triggering. It is possible, and may prove desirable, to eliminate the hardware ARM command. Since the host system is likely to have control over the subsystem responsible for the data to be collected, it could issue the acquisition command at the time the system needs to be armed. One easy way to implement this change is to separate the bits of the SoftTrig variable such that one bit is used to skip the ARM check and another to force a software trigger. Presently both tests simply check for a non-zero value. In Appendix 5 the description of hardware interface with the system computer is given.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The design of the 1 GHz Digitizer for Space Based Laser Altimeter has been completed. A feasibility model was built, and partially tested. Testing was not completed because of the limited funding available at this time. However, a unique method of digitizing wideband signals (350 MHz) with very low average power consumption was developed and proven to be feasible. The heart of the system is a state-of-the-art hybrid memory chip (AN1000H) with built in presamplers. Sufficient hardware testing has been performed to give assurance that the developed technique is feasible. Because of the much lower power consumption achieved as compared to the initially expected amount, a continuous 1 GHz timing output (from a SAW oscillator) is afforded within a limited power budget. A software package to control various functions within the digitizer and to communicate with a host system computer was also developed. Unfortunately, the allowable budget would not permit debugging and testing of the software. Because the status of the digitizer is so close to completion, it is recommended to extend funding of this project to complete all necessary testing and packaging to obtain a working model. At this point technical risk is minimal if not nonexistent. At the completion of this feasibility model, the logical action is to develop a space qualified unit for future space exploratory missions.
APPENDIX #1

;This file is designed to be assembled with CROSS16 meta-assembler ; version 2.0

;File created 9 August 1991 by Wilton Helm ; last modified on 10 September 1991 ;Contains stand-alone UT1750AR assembly language code in native mode to control a 1 Gs/s A/D converter system using Analytek : hybrid analog memory modules in a 16-way interleaved fashion. ;Code memory map is as follows (addresses are 16 bit words): 0000h to 7FFFh is EPROM containing startup and core code. 8000h to FFFFh is SRAM containing linking tables loaded from EPROM and dynamically added code modules. 10000h and up are not decoded and wrap into above areas. ; A separate 64k x 16 bit data address space is populated with ; SRAM, and used as described by data equates below. ;A separate I/O space is decoded as described by I/O equates below. ;Special note should be given to the hardware signals OlY and O2Y ; which are a two-phase, non-overlapping readback clock generated in software. There are two modes of generating this signal. For skipping cells, a high speed mode is used where U75 is placed in non-latching decode mode (by asserting its CLEAR pin). Writes to OlYHi and O2YHi in this mode generate pulses on the respective lines. For reading cells, the CLEAR is removed and OIY and O2Y become latching outputs which must be set by OlYHi and O2YHi respectively, and cleared by OlYLow ; and O2YLow respectively. These commands are interspersed with suitable timing waits, A/D reads and loop control commands. ;Note that the assembler used makes no distinction between code and data objects. Both share the same symbol table space. It is up to the programmer to use symbols appropriately. Code space symbols are used only with LRI and STRI instructions. ;The assembler uses one possibly non-standard mnemonic form. I could not see a way to differentiate between: ; ;shift right 4 places sar RO, R4 : and ; ; shift right by amount specified sar RO,R4 ; ; in register 4 ; so I adopted the following convention for the former case: ; ;shift right 4 places sar R0, R+4 and for consistency: ; ;shift left 6 places sar RO, L+6 : ;word length (width in bytes) for the 1750 WDLN 2 CPU "UT1750AR.TBL" ;table of mnemonics to use for 1750

CODE SPACE SRAM EQUATES ;start of RAM code space 8000h ImgDst: equ 0008000 Ξ ;address table for command execution 8000h Ξ CmdJmp: equ 0008000 ;address to return to after command execution 8010h 00008010 Ξ CadRtn: equ :address of warm start routine. WarmLink: equ 8011h Ξ 00008011 ;routine to post checksum changes 8012h Ξ Postchk: equ 00008012 ;end of RAM code space **OFFFF**h Ξ CRAMe: equ 0000FFFF

00000

	; DATA NEMORY EQUATES						
	0000000	=	CodeChk: equ	Oh	;32 bit sum of code RAM		
	00000002	=	Samples: equ	2h	;number of samples to keep (per chan)		
-	00000003	Ξ	Skip: equ	3h	;number to skip before starting (per chan)		
	00000004	=	SoftTria: eau	4h	non-zero if software trigger should be given		
	00000005	=	CalFlag: equ	5h	:non-zero if calibration in process		
	00000006	=	CalVSum: equ	6h	summation of correct calibration values		
	00000007	=	CalCnt equ	7h	:count of number of calibration values used		
	00000000	=	CalSkH equ	8h	:Hold value for skip, used during calib.		
	00000000	-		9h	:Hold value for samples, used during callb.		
	0000009	-	carban. cya	2			
	00001000	Ξ	ADBuf: equ	1000h			
	00002000	=	ADGain: equ	2000h	:m from y = m * x + b		
_	00003000	=	ADOfs: equ	3000h	;b		
	00002000	=	CalSums: equ	2000h	used for curve fitting, overlays gain		
	00003000	=	CalSors: equ	3000h	;used for curve fitting, overlays offset		
	00005000	=	CalVctr: equ	5000h	;used for curve fitting. Sqrs and Vctr		
	•••••		: ending	at 6FFFh	; values are two words wide		
			;1/0 A	DDRESS EQUATES	S		
	00000040	=	DMA: equ	40h	;DMA write and read word to host		
	00000050	=	Status: equ	50h	;read to get system peripheral status:		
	0000001F	=	Cad: equ	31	; b0 = 1 when host is giving command		
_	0000001E	=	CTS: equ	30	; bl is RS-232 handshake (CTS)		
	0000001D	Ξ	InEmpty: equ	29	; b2 is DMAWACK (0 = DATA read by host)		
	0000001C	=	Outfull: equ	28	; b3 is DMARAV (0 = DATA ready to read)		
-	0000001B	=	ADBusy: equ	27	; $b4 = 0$ if A/D conversion finished		
	0000001A	=	ConvBusy: equ	26	; b5 = 0 at end of read cycle		
					; set to 1 by reading I/O 60h		
	00000019	=	AcqBusy: equ	25	; b6 = 1 when triggered and 0 at		
			• • •		; end of write cycle		
	00000018	=	NotArm: equ	24	; b7 = 0 for ARM system request		
	00000017	=	NotREndl: equ	23	; b8 is *END2-1 from hybrid		
	0000016	=	NotREnd2: equ	22	; b9 is *END2-2 from hybrid		
	00000015	=	NotREnd3: equ	21	; bl0 is *END2-3 from hybrid		
	00000014	=	NotREnd4: equ	20	; bll is *END2-4 from hybrid		
_	00000013	=	NotWendl: equ	19	; bl2 is *END1-1 from hybrid		
	00000012	=	NotWend2: equ	18	; bl3 is *ENDI-2 from hybrid		
	00000011	=	NotWend3: equ	17	; bl4 is *ENDI-3 from hydrid		
	00000010	=	NotWend4: equ	16	; b15 is *END1-4 from hybrid		
					At the second standard but		
				The following	ng addresses are activated by		
				;writing. Th	e value written is ignored,		
			B (11 AB	; only the ad	Gress mallers.		
	00000050	Ξ	RstWrOEn: equ	50h	resets the write logic which is not		
				F 11			
	00000051	=	RstwroDis: equ	51N	; releases resel		
	00000052	=	RSTWITEN: equ	540	iesels while logic which must not		
		_		5.25	; De leset during redu		
	00000053	=	KSTWEIDIS: equ	2311 545	removes nower from write logic		
	00000054	=	WEPWEDN: equ	711) 555	applies power to write logic		
	00000055	-	wirwiup: equ	3311 545	removes power from read logic		
_	00000056	-	NORMENT: EQU	2011 575	sonnies power to read logic		
	00000057	Ξ	Kasminb: edn	IIIC	, applies power to read logic te naadad for Write as welll		
		_	Printin, and	CAPPE: KOLAL	-prevente trigger eignal from		
	00000058	-	iriguis: equ	2011	 starting a conversion 		
	0000050	_	TrigEn om	50h	allows trigger signal to start a conversion		
	000000000	-	StartFn Am	5 X h	software trigger		
	00000JN	-		~	······································		

-	0000005B	=	StartDis:	equ	5Bh	; end of software trigger
	0000005C	=	StatOff: e	equ	5Ch	; indicates next word to host is data
	0000005D	Ξ	StatOn: e	gu	5Dh	; indicates next word to host is status
	0000005E	=	FastRead:	equ	5Eh	;turns 6X writes into pulses
-				-		;this allows OlY and O2Y to operate
						:faster for skipping cells not needed in hybrids
	0000055	=	SlowRead:	eau	SFh	changes 6% writes into latched data
_	00000000	-	DIVARCUU.	e qu	•••	this mode is needed for all
						chandshaking to hybrids, and for actual
						data reading
_	00000000	-	BocDdCt. c		60h	reading this address resets (1) status b3
	0000060	-	RESRUSE: C	zyu	UVII	, reading this datable reads (1, could be
					more write	strobe addresses
-		_			; HOLE WITCE	sciule addresses
	00000060	-	RSCRUIS: C	equ		recents hybrid read logic
	00000061	=	RSTREN: 0	equ	010	costs OIV slock line low
	00000062	Ξ	UIILOW: C	equ	0211	SELS OIL CLOCK TIME TOW
	00000063	Ξ	OIYH1:	equ	030	Sets off clock the high
					<i></i>	during rast read, purse this for orr
	00000064	=	O2YLow:	equ	64h	Sets OZY clock line low
	00000065	=	O2YHi:	equ	65h	; sets 02Y clock line high
						during fast read, pulse this for 021
	0000068	=	RdlDis:	equ	68h	; trailing edge of START2-1 signal to hyplid
_	0000069	=	RdlEn:	equ	69h	; leading edge of START2-1 signal
	000006A	Ξ	Rd2Dis:	equ	6Ah	; trailing edge of START2-2 signal to hyprio
	0000006B	=	Rd2En:	equ	6Bh	; leading edge of START2-2 signal
	000006C	=	Rd3Dis:	equ	6Ch	;trailing edge of START2-3 signal to hyprid
-	000006D	=	Rd3En:	equ	6Dh	;leading edge of START2-3 signal
	000006E	=	Rd4Dis:	equ	6Eh	;trailing edge of START2-4 signal to hybrid
	000006F	Ξ	Rd4En:	equ	6Fh	;leading edge of START2-4 signal
_				-		
	00000070	Ξ	AD:	equ	70h	;reads N/D converter and starts next conversion
	00000070	=	SWINT:	equ	70h	;write this address to generate a
				•		;software interrupt - used to disable ints.
-						
				; REGIS	STER USEAGES	
			; RO		Short term	temporary use
-			; R16		Subroutine	return address register
			; R18		Interrupt	return address register
			;	(retur	n registers	need only be 16 bit in this system,
			;	since	there is only	y 64k of code space.)
				; PROGE	ram constants	
	00000000	=	IntMask:	equ	0	; change later to allow desired ints.
_						
				; ERROI	R CODES	
	00000000	=	OKStat:	equ	Oh	; OK status word
_	00000001	=	WarmStat:	equ	lh	;Reset caused a warm start
	00000002	Ξ	ColdStat:	equ	2h	;Reset caused a cold start
	0000004	=	Cmpltd:	equ	4h	;Command completed
	00000005	Ξ	IllData:	equ	5h	;Data rcvd when command expected
	0000006	=	NoData:	equ	6h	;Command revd when data expected
	00000007	=	WrInt:	equ	7h	;Command revd before requested data sent
	0000008	Ξ	Aborted:	equ	8h	;Command rcvd during A/D cycle
	0000009	Ξ	NoTrig:	equ	9h	;status word: no trigger after arm
	0000000A	Ξ	NoLoad:	equ	OAh	;Analog write cycle failure
	000000B	=	AcqCal:	equ	0Bh	; λ/D cycle completed, but no data because
			•	-		;calibration cycles have been requested
	00000			org	0	
	-			-		

ACC, RstWrOEn ; value in ACC doesn't matter 00000 1BFF0050 Init: otr ACC, RstWrlEn ; set all resets and power down otr 00002 1BFF0052 ACC, WrPwrDn otr 00004 1BFF0054 otr ACC. RDPwrDn 00006 1BFF0056 ACC, TrigDis ; disable triggering 00008 1BFF0058 otr ACC, StartDis ; and software trigger otr 0000A 1BFF005B ACC, StatOff ; no status word ready otr 0000C 1BFF005C ACC, FastRead ; this resets RstRDis, OlYLow, O2YLow, otr **0000E 1BFF005E** ; St2-1Dis, St2-2Dis, St2-3Dis, St2-4Dis ACC, SlowRead ; undo above resets 00010 1BFF005F otr ;Leave Read reset active 00012 1BFF0061 otr ACC, RstREn ;stop timers ACC, TAH 00014 97F0 inr ACC, TBH 00015 97F1 inr set up any hardware needed for interrupts ; ;get status word and check Command bit RO, STATUS 00016 141F0050 inr tbr RO, Cad 00018 D81F ; if set, force cold start NE, cold br 00019 FE8B 0001A 0000 nop ;test code RAM call R16, Chksum 0001B 0E3F02C0 R2, CodeChk 11 0001D 045F0000 R3, CodeChk+1 ;get comparison value 0001F 047F0001 **1**r CED XRO, XR2 00021 3E12 ; OK, matches EQ, warm 00022 7D1F0020 jc ; no match, restart from scratch 00024 0000 nop :block move RAM constants from EPROM cold: RO, Image 00025 001F02CB DOV R1, ImgDst 00027 003F8000 BOV ACC, RO 00029 03E0 coldlp: BOV 1ri **R**2 0002A 845F ACC, R1 0002B 03E1 BOV stri **R**2 0002C 8840 bba R0,1 0002D A001 RO, ImgEnd 0002E 3C1F02E7 CHD br LT, coldlp 00030 FC98 R1, 1 ;(used if br) add 00031 A021 ; checksum entire code RAM R16, Chksum call 00032 0E3F02C0 ;save result R0, CodeChk str 00034 081F0000 str R1, CodeChk+1 00036 083F0001 ACC, IntMask ; set up interrupt mask BOV 00038 83E0 ACC, MK 00039 9BE5 otr ; initialize calibration table R16, Cal0 call 0003A 0E3F0205 0003C 8000 R0, 0 BOY 0003D 081F0003 str RO, Skip str R0, SoftTrig 0003F 081F0004 BOV R0, ColdStat 00041 8002 X, startcom jc 00042 FF86 00043 0000 nop ACC, WarmLink ; get address of user warm start 00044 03FF8011 warm: **BOV** RO lri 00046 841F ;execute it (will not return call R16, R0 00047 0E20 ; but will jump (call) warmend) warmend: mov RO, WarmStat 00048 8001 00049 startcom: ;turn on interrupts otr ACC, ENBL omit for now ;set status flag ACC, StatOn 00049 1BFF005D otr ;output status word regardless of RO, DMA otr 0004B 181F0040 ;handshaking RO, DMA otr 0004D 181F0040

REGISTER USEAGE BY MONITOR ; low portion of address being accumulated Rl ; starting address for range XR2 ; ending address for range XR4 ; non-zero if address is in code space **R6** ; data portion of command word R7 command / jmp address ACC ;set low portion to zero initially 0004F 8020 monitor: mov R1, 0 XR2,1 :set starting address of 1 00050 8241 NOV ; and ending address of 0 (done) LOV XR4.0 00051 8280 ;set to data space R6, 0 BOV 00052 8000 nextword: inr RO, Status 00053 141F0050 ;see if data available tbr RO, InEmpty 00055 D81D ne, nextword : no, wait br 00056 FE9C ; yes, test for command sequence tbr RO, Cad 00057 D81F ;get command R7, DMA inr 00058 14FF0040 ; not command, error eq, statout 0005A 7D1F0093 jc (error msg - needed if jc) RO, IllData 0005C 8005 **NOR** ;copy to command area R0, R7 DOV 0005D 0007 ;strip data section **0005E 40FF0FFF** and R7, OFFFh ;strip command section RO, OFOOOh 00060 401FF000 and ;shift command down 00062 E803 SCL R0, L+4 ACC, RO 00063 03E0 DOV ;form table address ACC. CmdJmp or 00064 47FF8000 ;get jump address 00066 841F lri RO ; go there, does not return here RO, RO 00067 0000 call ; CMD 0 (0);set code space flag R6,15 00068 80CF CodeLow: nov ;get rest of command x, nextword 00069 7F9FFFE8 jc ;set 12 low bits (jump taken) BOV R1, R7 0006B 0027 ; CMD 1 (1);set data space flag R6, 0 0006C 80C0 DataLow: mov ;get rest of command x.nextword jc 0006D 7F9FFFE4 ;set 12 low bits (jump taken) 0006F 0027 BOV R1, R7 ; CMD 2 ;place upper bits in starting address (2) R2, R7 StHiRng: mov 00070 0047 R3, 0 00071 8060 10V :shift right 4 XR2, R+4 00072 E25C slr ; and combine with low bits or XR2, R1 00073 4641 ;get rest of command x, nextword 00074 7F9FFFDD jc ;clear low bits for end adr (jump taken) R1,0 00076 8020 BOV : CHD 3 ;place upper bits in starting address (3) R2, R7 BOV 00077 0047 StHiRd: 00078 8060 BOV R3, 0 XR2, R+4 :shift right 4 00079 E25C slr ; and combine with low bits XR2, R1 **0**[0007A 4641 ;go read it and put on bus x, MonRd 0007B 7F9F003F jc ;set end = beg for one word (jump taken) 0007D 0292 BOV XR4, XR2 ; CMD 4 ;place upper bits in starting address (4) R2, R7 0007E 0047 StHiWr: mov R3,0 0007F 8060 BOV ;shift right 4 00080 E25C slr XR2, R+4 ; and combine with low bits XR2, R1 00081 4641 10 ;wait for data and write it 10 x, MonWr 00082 7F9F0055

-	00084	0292		BOV	XR4, XR2	;set end = beg for one word (jump taken)
			· CMD 5			
	00085	0047	Execute:	EOV	R2, R7	;place upper bits in starting address (5)
	00086	8060		BOV	R3, 0	
	00087	E25C		sìr	XR2, R+4	;shift right 4
	88000	4641		or	XR2, R1	;and combine with low bits
	00089	023F004F		BOV	R16,monitor	; set up return address
	0008B	0C92		call	R4, XR2	; indirect jump, return 1s:
						; CALL RIG, RIG
						;which will re-enter the monitor
			· CMD 6			
	00080	0087	EndHiRd:	BOV	R4. R7	;place upper bits in ending address (6)
	00080	8080	2000000	BOY	R5.0	, F =
	0008E	E29C		slr	XR4. R+4	;shift right 4
	0008F	7F9F002B		10	x, MonRd	; go read it and put on bus
	00091	4681		or	XR4, R1	; combine with low bits (jump taken)
			; CHD 7		D 4 D0	anlage upper bits in ording address (7)
	00092	0087	EndHiwr:	HOV	R4, R7	; place upper bits in ending address (7)
	00093	80A0		ROV	KD, U	abist right A
	00094	EZ9C		511	AR1, R+1 W MorWr	Shirt right t
	00093	16960012		JC	YDA D1	combine with low bits (jump taken)
	00097	1001		U	A R1, R1	; compile with it it its (jer that,
			; CMD 8			
-	00098	7F9F002E	IORd:	jc	x, MonSnd	; (8)
	0009A	1407		inr	R0, R7	;read I/O, and put on bus (jump taken)
_			• CMD 9			
	0009B	141F0050	TOWT:	inr	RO. Status	;see if data available (9)
	00090	D81D		tbr	RO, INEmpty	•
	0009E	FE9C		br	ne, IOWr	; no, wait
	0009F	D81F		tbr	RO, Cuð	; yes, is it data or command
	000A0	7E9F004D		jc	ne, statout	; command, error - don't continue
	000A2	8006		BOV	RO, NoData	; (error msg - needed if jc)
-	000A3	141F0040		inr	RO, DMA	; data, read it
	000 X 5	7 F9 FFFA8		jc	x,monitor	
	000 A 7	1807		otr	R0, R7	;output data to 1/0 address (jump taken)
			· CHD A			
	00028	EOFC	SetSkn:	slr	R7, R+4	;truncate modulo 16 (10)
	00000	08FF0003	ou on pr	str	R7.Skip	; and divide by 16 to get
	000AF	7F9FFFA2		10	x, monitor	; skip value per channel
	14000	0000		nop		
				-		
			; CMD B		N7 15	round up modulo 16 (11)
	000AL	AOEF	nanacq:	add	K/,10	and divide by 16 to derive
	000AI	EUFC		SIC	K/, K+3 D7 A	; and divide by to to delive
—	00080			u∎p br	R/,V lo Montin	<pre>.don't allow 0 or negative value</pre>
	0000	L FU09			10, nalicim 17, 100b	\cdot or more than 4096 (/16)
	0000	E FORS		v≡µ br	le ManOk	,
		1 ED04 5 0000		DUD.	IC, DOLLAR	
	0000	5 8080 5 80F7	Nani im-	BUN	R7 7	default to 128 (7 * 16) if invalid
	0000	7 08FF0002		str	R7. Samples	: number of cells per channel
	0000	9 78980043	HUDUK,	ic	X. Arm	start conversion cycle
	000B	B 0000		nod	,	• •
				•		

_			: CMD C			
	0000004F	=	AutoAca:	eau	monitor	; reserved
				- 1		
	000BC	3E54	MonRd:	CED	XR2, XR4	;more data to send?
_	000BD	7E1F0030		ic	GT, statout	; no, return completed status
	000BF	8004		LOV	RO, Cmpltd	; (used if jc)
	00000	4406		or	R6. R6	;code or data?
	000001	FD04		br	eg.MonRDta	; data
	00007	03F2		NOV	ACC. XR2	; code, read next word to send
	00002	841F		Iri	RO	
	000003	FF82		br	x. MonNxtR	
	00001	0000		non	.,	
	00000	0412	MonPDta	lr	RO XR2	: data, read next word to send
	00000	12	MonNyt R.	add	YR2 1	ready for next Dass
-	00007	14360020	NonSnd.	inr	Pl Status	aet status word
	00000	11310030	nonono.	thr	RI InFenty	see if data rcvd
	00000	ED00		10	ed snderr	ves should not have been
	00000	D03C		thr	R1 OutFull	·buffer empty?
	00000	DOC		10	ne MonSnd	no wait
	00000	1 L J A			110, 110115110	, 110, Walte
	OUUCE	10100		nop	DO StatOff	volace in data mode
	00000	10100000			RU, SUGLUIT	cond data
	000D1	18110040		110	KV, DRA	tru again
	000D3	78988687		JC	X, HONKU	; cry again
	00005	8005	snoerr:	MON T	KU, IIIDala	
	000D6	7F9F0017]C	x, statout	
	000D8	0000		nop		
						
	000D9	141F0050	Nonwr:	inr	RO, Status	;get status word
	000DB	D81D		tbr	RO, InEmpty	; see ii data revo
	000DC	FE9C		br	ne, MonWr	; no, wait for it
	000DD	D81F		tbr	RO, Cmd	; yes, data of command?
	0 00DE	7E9F000F		jc	ne, statout	; COMEAND, EFFOR
	0 00E0	8006		BOV	RO, NoData	; (error h sg - needed if jc)
	000E 1	141P0040		inr	RO, DMA	; data, fead it
	000E3	44C6		OĽ	R6, R6	; code or data memory?
	000E4	PD04		br	eq,MonWDta	; data
	000E5	03F2		BOV	ACC, XR2	; code, write word
-	000E6	8800		str	i RO	
	000E7	FF82		br	x, MonWrNxt	
	000E8	3 0000		nop	1	
_	000E9	0812	MonWDta:	str	RO, X R2	; data, write word
	000E/	A241	MonWrNxt	: ad	d XR2,1	;ready for next pass
	000EE	3854		CEP	XR2, XR4	;more to come?
	000E(C 7D9FFFEB		jc	LE, NonWr	; yes, continue
	000EH	8004		BOV	RO, Cmpltd	; no, return completion
	000E1	F 8040	statout:	BOV	R2, 0	;timeout in case host not unloading buffer
_	000F	0 143P0050		inr	R1, Status	;get status word
	000F	2 D83C		tbr	R1, Outfull	;buffer empty?
	000F	3 FD03		jc	eg, statol	; yes, proceed
	000F	4 A041		add	R2, 1	; no, increment timer (65536 is fail)
	000F	5 FE99		jc	ne, statout	; 100 ms. time limit, not out
	000F	6 0000		nor)	; ran out, force output
	000F	7 181F005D	statol:	otr	RO, StatOn	;place in status mode
	000F	9 181P0040		otr	RO, DHA	;send data
	000F	B 7F9FFF52		ic	x, monitor	;status sent, return to monitor
	000F	D 0000		nor)	; as a recovery
_	4441					-
			; R0	ter	ıp	
			; R1	te	ID	

- ----

; ;

- R8 I/O address of OlYHi
 R9 I/O address of O2YHi or O2YLow as needed
 R10 Buffer address pointer
 R11 Channel number (1 4) within a hybrid
 R12 Hybrid number (1 4)
 R13 Temp cell counter for skip and read
- ;
- ;
- ;
- ;

	DOOFE	041F0004	Агв:	lr	RO. SoftTrig	:If Software triggered, don't
	00100	4400		or	RO. RO	: wait for hardware arm
	00100	FF8F		br	NE. PwrUp	,
_	00101	0000		non	nu, 1 * 1 vp	
	00102	14180050		inr	RO Status	Wait for hardware Arm status
	00105	11110030		thr	DO Notarm	
	00105	5010 5000		hr	Ad Dwrlin	· Arm request received
—	00100			thr	DO InFenty	• No Arm request yet check for abort
	00107	DOID		br	no lrn	· No data ready loop
	00100	[69] Dolf		DL +br	DO Cad	· Data ready is it command
-	00109				RU, CEU	. Command give abort status
	AUTON	ILYEFFE3		Je	ne, Statout	; COMMAIN, GIVE ADOLE SCALAS
	00100	8008		≣0V	KU, ADULLEU	. Data short with data error
	00100	TESEFE		Jc	X, Statout	; Data, aboit with data error
	0010F	8005	-	BOV	RO, IIIData	There are never to all of M/D system
	00110	1BFF0055	Pwrup:	OUL	ACC, WEPWEUP	; Turn on power to are or AVD system
	00112	1BFF0057		otr	ACC, ROPWEUD	Break all of MD sustan
-	00114	1BFF0050		otr	ACC, RSTWFOEN	; Reset all of A/D system
	00116	1BFF0052		otr	ACC, RSTWEIEn	
	00118	1BFF0058		otr	ACC, TrigDis	; disable triggering
	0011 X	1BPP005B		otr	ACC, StartDis	disable SW trigger initially
_	0011C	1BFP005E		otr	ACC, PastRead	;Reset read latenes
	0 011 E	101FFFD2		NOVC	R0, -46	; wait 20 us for power to settle
	00120	FC9F	ArmLp:	br	lt, ArmLp	; loop time 4 cycles = 1/3 us.
	00121	A0 01		add	RO, 1	; (less 16 cycles allowed for secup below)
	00122	1BFF005F	Enable:	otr	ACC, SlowRead	;end read latch reset
	00124	1BFF0061		otr	ACC, RstREn	;hold read logic reset
	00126	1BFF0053		otr	ACC, RstWrlDis	s ;end write reset condition
	00128	1BFF0051		otr	ACC, RstWrODis	S
	0012A	1BFF0059		otr	ACC, TrigEn	;allow triggering
—	0012C	041F0004		lr	R0, SoftTrig	;see if SW trigger needed
	0012E	4400		or	RO, RO	
	0012F	FD07		br	EQ, Trigger	; no
	00130	0000		nop		
	00131	101FFFE2		BOVC	RO, -30	; yes, wait 10 more us.
	00133	FC9F	Enlp:	br	lt,EnLp	
	00134	A001	•	bbs	R0, 1	
_	00135	18FF005A		otr	ACC, StartEn	; and then trigger it
	00137	003PFD12	Trigger:	BOV	R1, -750	<pre>start 1 ms loop waiting for trigger</pre>
	00139	141F0050	TrigLp:	inr	RO, Status	;16 cycle loop
	0013B	D819	2.	tbr	RO, AcqBusy	;see if triggered
	0013C	7E9F0014		10	NE, Collect	; yes
	0013E	A021		add	R1, 1	; no, count time. Time out?
	0013F	PC99		br	LT. TriqLp	; no, loop
—	00140	8009		BOV	RO, NoTrig	; yes, exit with error code
	00141	1BFF005B	shutdn:	otr	ACC, StartDis	;end software trigger
	00143	1BFF0058		otr	ACC, TriqDis	;disable triggering
	00145	1BPF0050		otr	ACC.RstWr0En	Reset and power down everything
	00147	1BFP0052		otr	ACC, RstWrlEn	
	00149	1BFF0061		otr	ACC, RstREn	
_	0014B	1BFF0054		otr	ACC, WrPwrDn	
	0014D	1BFF0056		otr	ACC, RdPwrDn	
	0014F	7 F 9 FFF 9E		jc	X, statout	
				-		

—	00151	0000		nop			
	00152	AABFFFFF	Collect:	BOV	R117	;start 20 us. timing	
	00154	141F0050	ColLp:	inr	RO, Status	;14 cycle loop	
-	00156	D819	· · · · · · · · · · · · · · · · · · ·	tbr	RO, AcqBusy	;still acquiring?	
	00157	FD06		br	EQ, Unload	; no, unload it	
	00158	A021		add	R1.1	; yes, time it	
	00159	FEQA		br	NE.ColLD	; not out	
	00153	8003		BOV	RO. NoLoad	: timed out, error	
	0015B	7POFFFE4		ic	x. shutdn	; shut stuff off and post erro	7
	00150	0000		noD			
	0015E	1BFF0050	Unload:	otr	ACC, RstWrOEn	;Reset write logic	
	00160	1BFF0058		otr	ACC, TrigDis	;prevent further triggering	
						; (this must occur after RstWrOEn	1)
	00162	1BFF005B		otr	ACC, StartDis	;end software trigger pulse if gi	ven
	00164	1BFF0054		otr	ACC, WrPwrDn	;Turn off write power	
_	00166	18FF0060		otr	ACC, RstRDis	;End Read Reset	
	00168	8184		BOV	R12,4	;number of hybrids	
	00169	015F1000		BOV	R10, ADBuf	;set ptr to buffer	
	0016B	011F0063		DOV	R8, 01YHi	; load OlYHi address into register	aharitat
	0 016D	001F0071	NewHyb:	BOA	RO, Rd4En+2	; set up start address for this ny	DI 10
	0016F	3000		sub	R0, R12		
_	00170	300C	-	sub	RO, R12		
			;The nex	t secti	on of code	 . Do opo alogh gygle	
	00171	1BE8		OUL	ACC, NO	; DO OHE CIOCK CYCLE	
	00172	IBFF0062		110	ACC, OTILOW		
	00174	1BFF0065			ACC, OZINI		
	00176	TRLEADA		otr	ACC DA	·initiate start on channel	
	00178	IBEU		otr	ACC OLVHI	-Do second cycle	
	00179	1DELAND?		cub	DO 1	•convert address to disable	
	00175	DUUI		otr	ACC OIVIOW	, converte addrebb to aroubio	
	00170	1DFF0002		otr	ACC RO	end start pulse	
	00175	18FF0065		otr	ACC. 02YHI		
	00181	1BFF0064		otr	ACC. 02YLow		
	00101		which e	ends her	e, may be able	e to be simplified.	
_			: some	of the	Analytec docu	mentation indicates that	
			; the s	start pu	ilse is positi	ve edge triggered inside the	
			; anale	og memor	ry chip. If t	his is so, the above code	
			; need	only ti	rigger it init	ially and the go directly	
			; into	fast re	ead mode to sk	ip unused cells at the beginning.	
			; It w	ould loo	ok like this:		
_			;		100 0	while alighters the mood for	
			;	otr	ACC, FastRead	petDic ac wall	
			;	a+-		RELIAND OF WILL OF PRICE	
			;	OUI	ALC, KU	; seno out start parse	
			; , then	erin A	or more cells	using fast read. which is alread	v
			; UICII · cet :	akih A	VI NOTE CETTS	using fust feed, which is allow,	1
			, act	up.			
-	0018	3 8164		NON	R11.4	;number of channels per hybrid	
	0018	4 05BF0003		lr	R13, skip	;number of cells to skip initial	ly
	0018	6 45AD		OL	R13, R13	;test for zero	
	0018	7 FD09	SkipAgn	: jc	eg, Read		
	0018	B 0000		nop	-		
	0018	9 013F0065		BOV	R9, 02YHi	;set up second register needed	
-	0018	B 1BFF005E		otr	ACC, FastRead	; set to fast mode	
	0018	D BIAI	SkipLp:	sub	R13, 1	;decrement and test counter	(2 cy)
	0018	E 1BE8		otr	ACC, R8	;Phase 1 pulse	(3 CY)

				. _		lean as peoded	(2 cv)
-	0018F	FE9D		DC	NE, SKIPLP	; toop as needed	$\{\mathcal{L} \in \mathcal{L}\}$
	00190	1BE9		otr	ACC, R9	; Phase 2 pulse, even	II DE Laken (3 Cy)
						; this loop is 10 cyc	les long, so
-						;skips a cell every	833 ns.
	00191	1BFF005F	Read:	otr	ACC, STOWREad	; return to slow mode	
_	00193	1BE8		otr	ACC, R8	;start a cycle to pr	The the A/D
	00194	013F0064		BOV	R9,O2YLow	;set up address need	ed by slow read
	00196	1BFF0062		otr	ACC, OIYLOW		
	00198	1BFF0065		otr	ACC, O2YHI	;	(1 + 3 cy)
	0019A	141F0070		inr	RO, AD	i	(4 cy)
	00190	0000		nop		;	(2 cy)
	0019D	1BE9		otr	ACC, R9	;	(3 cy)
	00198	05BF0002)r	R13. Samples	: to read	(3 cy)
	00130	05BF0002	RdA11:	lr	R13. Samples	waste time	(3 cy)
	00132	18F8	DDHU.	otr	ACC R8	Phase 1Y High	(3 cy)
	00193	0000	m nv.	non	1.007.00	:waste time	(2 cy)
_	001134	0000		nop			(2 cv)
	00171	0000		nop		<i>'</i>	(2 cv)
	CALUU	2000110002	BBL 1	BOA	RU, UTILOW	· Dhace 1V Lo	(1) (2)
	001A7	IBEO	REUT:	011	ACC, KU	Flidse II Lu	(3 cy)
-	001A 8	001F0065		DOV	RO, UZYHI	;	
	001 AA	003F0070		BOV	RI, AD	;	
	001AC	BIAI		sub	R13, 1	; loop counter	(2 cy)
	001AD	1BEO	RPh2:	otr	ACC, RO	;Phase 2Y Hi	(3 CY)
	001 A E	1401		inr	R0, R1	;Read A/D & restart	(3 cy)
	001AF	080A		str	R0, R10	;Store value in buf	(3 cy)
			;		NOTE: full	l 16 bits stored, top	o four are not
			;		vali	id and must be strip	ped before use.
	001B0	1BE9	RPh3:	otr	Acc, R9	;Phase 2Y Low	(3 cy)
	001B1	FE90		10	NE. RPhO	;jmp based on R13	(4 cy)
_	001B2	A141		add	R10, 1	update bufad	(2 cy) always
	••••				-	-	
	001B3	B161		sub	R11,1	;see if more channe.	ls in this hybrid
	001B4	FDOC		jc	EQ, NxtHyb	; no, go to next one	9
_	001B5	0000		nop		; yes	
	001B6	041F0002		lr	RO, Samples	;Number of cells ski	ipped is 256 -
	001B8	OIBFOOFF		BOV	R13, 255	; the number to be	read, - 1 for bogus
	00184	3140		sub	R13. R0	; read used to unle	oad A/D last time
	001BR	700FFFF3		ic	LT. RdAll	if all cells to be	read, don't skip
	00100	0000		non		part of the skipped	d area will be the
	OOIDD OOIDD	780888677		te	x SkinAm	remainder of this	s channel, the rest
-	00100	0000		000	<i>x, ox p</i>	will be the first	t of the next chan.
	00100	D101	Not Hub.	eub	D12 1	,	
	00101	DIOI JROFFENO	RXCHYD:	ic	NIL, I MF NowHyb		
	00102	/L9[[[A9		JC 2020	NE, NEWILYD		
	00104	0000		пор			
	00105	18FF0061	ConvEnd:	otr	ACC. RstREn	;reset read logic a	nd
_	00107	1BFF0052		otr	ACC. RstWrlEn	; remaining write	logic,
	00100	18FF0056		otr	ACC, RdPwrDn	; and power it down	n
	00109	14120005		lr	RO. CalFlag	:Is calibration in	progress?
	00100	7 POFF F7A		1c	NE statout	: ves. return statu	s
—	00100	7 7671114V		Je Je		+ (if ic)	
	UUICE	OVVD			nv, negeat	•DO NOT attempt to	correct data and
						• return it if cal	ibration is in process
_						The results will	be at best garbage.
						· At worst it winh	t cause an overflow
						 AC WOLDE IC BLYIN AC WOLDE IC BLYIN 	01.
						, VI UNCILIUM CII	VL .

		; FOR C	cell = 0	to Samples -	1 ; cell within each channel
		;	For cha	n = 0 to 15	;channels multiplexed
				data = ADBuf(chan * Samples + cell] ;raw data
		•		gain = ADGain	<pre>ichan * 256 + cell + skip] ;gain correction</pre>
		<i>.</i>		ofs = ADOfsin	han * 256 + cell + skipl : offset correction
		,		OLS = ADOLD[C	anin) / 4006 - offset corrected value
		;		tes - luara -	gain, 7 4090 " Offsee , confeeted varae
		;			
_		;Notes:			
		; 1. Gi	ain and	offset values	exist for all cells, data values
		; e:	xist onl	ly for request	ted cells, thus providing the tables
_		: W	ith two	different siz	e multipliers.
		2. V	alues we	re collected	in Hybrid unload order for maximum
			nload sr	eed and thus	minimum power consumption. The
		, u	ata ic i	interleaved th	provolution the 16 channels on the four
		; 0	ubride	and thus must	be retrieved in a different order
		; U	yDETUS,		the fille order
		; 5	o as to	come out in	Live Lime Dioci.
		; 3. T	he gain	values have f	been multiplied by 1090 to allow
—		; S	caling l	both upward a	nd downward. the multiply should be
		; d	one in a	a 32 bit regis	ster and then the result divided by
		; 4	096 (or	shift right	12).
-		: 4. T	he offse	ets are subtra	acted off after scaling, not before.
		: T	his aff	ects the way	the offsets are calculated.
		, -		•	
	00100 8100		BOV	R8 0	cell number (O to Samples - 1)
			1r	DO Camples	number of cells collected per channel
			11 1.e	NJA Chin	, number of define defined per charges
	00103 05570003		11	RIU, SKIP	channel number (0 to 15)
	001D5 8160	Unitp:	NO	K11,0	(Chamber humber (V to 15)
	001D6 018B	UnlLp2:	BOA	R12, R11	; calculate index to Abbui
	001D7 6D89		muls	R12, R9	; chan * Samples
	001D8 2188		bba	R12, R8	; + cell
_	001D9 219F1000		add	R12, ADBuf	; + base address
	001DB 042C		lr	R1. R12	;get raw data
	001DC 421F0FFF		and	XRO. OFFFh	:mask garbage and setup double word
			BOV	P12 P11	calculate index to corrections
_	ANDE PIOT		elr		• chan * 256
	001DE 6107		311 54d	D12 D9	
	00120 2188		d0 0	KIZ, KO	, T CCII
	001E1 218A		900	R12, R10	; + SKIP
	001E2 219F2000		add	R12, ADGain	; + Dase address
	001E4 05AC		lr	R13, R12	;get gain factor
	001E5 6EOD		muls	XRO, R13	;scale it
_	001E6 E614		sar	XRO, R+12	;correct shift
	001E7 219F1000		bba	R12, ADOfs-AD	Gain ;new base address, for offset
	001E9 05AC		lr	R13. R12	;get offset correction
	001EA 302D		sub	R1, R13	subtract off, only 16 bit needed here
-		· DOW 9	send wor	d to host	• • •
		, 110# 1			
	00188 141800E0	[m] Cnd-	inr	DO Status	·aet status word
	OUIED 141FVUDV	onrand:	1111 + h	NV, Jiaius	, get status word
-	OULED DEID			RO, INEmpty	, see in data itee
	001EE 7D1F0012		JC	eq, unierr	; yes, should not have been
	001F0 D81C		tbr	RO, OutFull	; putter empty?
	001F1 FE99		br	ne,UnlSnd	; no, wait
	001F2 BD6F		cmp	R11,15	;more channels at this cell offset?
	001F3 183F005C		otr	R1, StatOff	;place in data mode
	001F5 183F0040		otr	R1. DMA	;send data
	OOLF7 7COFFEDD		ic	LT. UnlLn2	; yes (more channels)
	00170 1161		add	R11.1	next channel (if ic)
	VUID 11V1		add	RA 1	next cell offset
	VVILU UTAT			DO DO	end of cells?
	OUTER SDOA		c∎p	RO, KY	, DA CADÍDIA
	001FC 7C9FFFD7]¢	LT, UNILP	; NV, CONCINC
	001FE 8004		₩0V	RO, Cmpltd	; yes, tinisneo

-	001FF 7F9FFEEE 00201 0000		jc nop	x, statout	
	00202 7F9FFEEB 00204 8005	unlerr:	jc Bov	x, statout R0, IllData	; (used if jc)
_		; Cal0 ; an ; ac ; ca	loads d the curate librat	the entire g offset table values, but ion can be do	ain table with 1 (unity gain) with 0. These are obviously not serve as a starting point until ne. This routine is called on
		; co	ld sta	rt. It also	clears the CalFlag variable.
	00205 001F2000 00207 003F3000 00209 005F1000 0020B 007F1000 0020D 8080 0020E 0860 0020F 0881 00210 A001 00211 B041 00212 FE9B 00213 A021	Cal0: CalLoop:	NOV NOV NOV Str str add sub br add	RO, ADGain R1, ADOfs R2, 4096 R3, 4096 R4, 0 R3, R0 R4, R1 R0, 1 R2, 1 NE, CalLoop R1, 1	<pre>;address of beginning of gain table ;address of beginning of offset table ;table size (256 * 16) ;set gains to 1 (* 4096) ;and offsets to 0 ;store gain in table ;store offset in table ;next gain address ;how many left ;next offset address (done before br)</pre>
	00213 N021 00214 8000 00215 081F0005 00217 0E31		nov str call	RO, O RO, Calflag R16, R16	,

;Routine to generate table of gains and offsets. There are three ;ways to call this routine. The first call (which notices that ;CalFlag is not set) sets it and initializes the work areas. ;While CalFlag is set, this call cannot be repeated. The A/D ;cycle will not return data when CalFlag is set, only a ;completion code. This initial call also sets the skip value to ;zero and Samples to 256 to provide a complete calibration table. ;(This may not be a good idea, as timing and related temerature ;variations may make calibration under actual skip and sample ;conditions more accurate.)

;Subsequent calls to calibrate should occur after each A/D cycle. ;They provide the value (0 to 4000) representing the voltage used ;in that calibration cycle. These calls cause a summation of data ;values to occur which will be used later by the curve fitter. ;The actual values given will determine the scaling of subsequent ;data. i.e. 0 to 1000 for 0 to 1 v would yield 1 mv per count.

;The final call to calibrate is done after all calibrate cycles ;have been completed, and the summations have been done. The ;call is done with a data value of 4095 (OFFFh) which signals ;completion of the calibration. A least squares fit is done, ;fitting the data to the equation y = m + x + b. The values of m ;and b are used as AdGain and AdOfs respectively. CalFlag is ;again cleared, allowing normal processing to resume.

;Note that this routine destroys AdGain and AdOfs by useing the ;same area of memory as workspace. It should not be aborted ;without completing.

REGISTER USEAGE BY CALIBRATION ROUTINE R0 through R15 used temporarily

;

:

	00218 041F0005	Calib:	lr	RO, Calflag	;is calibration in process?
	0021A 7E9F002D		10	NE, CalCont	; yes
	0021C 001F1000		BOV	R0, 4096	;loop counter used in all cases
	00216 608F		BOV	R4.15	; no, set up to start
	0021E 089E0005		str	R4.CalPlag	
	00221 8080		BOV	R4.0	
-	00222 089F0006		str	R4. CalVSum	
	00222 089F0007		str	R4. CalCnt	
	00226 003F2000		BOV	R1.CalSums	
	00228 005F3000		BOV	R2. CalSors	
	0022A 007F5000		BOV	R3.CalVctr	
	0022C 0881	CalZer:	str	R4. R1	;clear array area
	0022D A021		add	R1.1	· ·
-	0022E 0882		str	R4, R2	
	0022F A041		add	R2, 1	
	00230 0882		str	R4. R2	;squares and vectors are double prec.
—	00231 A041		bbs	R2.1	•
	00232 0883		str	R4. R3	
	00233 A061		add	R3, 1	
_	00234 0883		str	R4. R3	
	00235 B001		sub	R0, 1	
	00236 FE95		br	NE, CalZer	
	00237 A061		add	R3, 1	; (if br)
_	00238 043F0003		lr	R1, Skip	
	0023A 083F0008		str	R1, CalSkH	
	0023C 089F0003		str	R4, Skip	;skip nothing
-	0023E 041F0002		lr	RO, Samples	
	00240 081F0009		str	RO, CalSaH	
	00242 001F0100		BOV	RO, 256	;read all
_	00244 081F0002		str	RO, Samples	
	00246 7F9FFEA7		jc	x, statout	;Return with completed status
	00248 8004		NON	RO, Cmpltd	; (if jc)
		CalCont.	CB D	DJ OFFFb	<pre>.termination code?</pre>
	00249 JUIIVIII	Calcuit:	Cap		•set up pointers to arrays
	0021D 003F2000			D2 CalGare	, see up poincers so arrais
_	00240 003F 3000		ic ic	ea CalFin	ves compute new corrections
	00211 JUICUUZE		JC	D3 CalVetr	(either way)
	00251 00753000		lr.	DA CalVCU	add current value to sum
	00233 01920000		add	R4, Calvour R4 R7	
	00233 2007 00233 2007		etr	RA CalVSum	
	00258 04950007		lr	R4 CalCnt	and increment count
	00250 04910007		add	R4 1	,
—	00258 08970007		str	R4.CalCnt	
	0025D 009F1000		BOV	R4. ADBuf	
	0025E 04A4	Calln:	lr	R5. R4	:get raw value
	00260 40BF0FFF	ourop.	and	R5. OFFPh	strip off garbage
	00262 04C1		lr	R6. R1	add it to sum
	00263 2005		add	R6, R5	
	00264 0801		str	R6. R1	
	00265 A021		add	R1.1	:ready for next pass
	00266 0345		BOV	XR10. R5	;square raw value
	00267 6F45		n uls	XR10. R5	•
—	00268 0502		lr	R8. R2	;add square to sum of squares
	00269 A041		add	R2, 1	; (squares is double word)
	0026A 0522		lr	R9, R2	- · •
	0026B 231A		add	XR8. XR10	
	0026C 0922		str	R9, R2	
	0026D B041		sub	R2, 1	
				-	

_	0026F 0002		str	R8 R2	
	0020E 0902		add	D2 2	•ready for next nass
	0020F A012			N2,2 VD10 D5	calculate raw value * correct value
	00270 0345			ARIV, RJ	, carcarace raw value correct value
	00271 6847		BUIS	KRIU, K/	- dd da dadal
	00272 0503		lr	R8, R3	
	00273 A061		bbs	R3, 1	
	00274 0523		lr	R9, R 3	
_	00275 231A		add	XR8, XR10	
	00276 0923		str	R9, R3	
	00277 B061		sub	R3, 1	
	00278 0903		str	R8. R3	
	00270 B001		sub	R0.1	:loop counter
	00213 D001 00171 70055552		ic	NF Calin	· repeat until done
	VVZIA JESEELES		ju Data		(if ic)
_	UUZIC AUGZ		d00	KJ, Z	; (II JU) then evit with completion code
	0027D 7E9FFE70		JC	X, Statout	; then exit with completion code
	0027F 8004		ROA	RO, CEPICO	; (11]C)
					and we existence encodifie to this part
	00280 009F2000	Calfín:	BOA	R4, AdGain	; Set up pointers specific to this part
	00282 00BF3000		BOV	R5,AdOfs	
	00284 04DF0007		lr	R6, CalCnt	
-	00286 04FF0006		lr	R7, CalVSum	
	00288 0501	CFLp:	lr	R8, R1	;get sum of data
	00289 A021	-	add	R1,1	;ready for next
	00288 0168		BOV	R11, R8	; copy it
—	0028B 8140		NOV	R10.0	: (unsigned to double precision)
	00280 7846		divs	XR10.R6	divide by number of points.
	0020C 7010		mov	DQ D11	•R9 is an important intermediate
	00200 0120 0020F 0169		BOV	D11 DR	sim * RQ
	0020E 0100				, Due Ky
	0020F 0140			NIU,U VDIO DO	
	00290 6849		nuis	ARIU, RY	whetroot from cum of compres
	00291 0582		IL	R12, R2	Subilder from Sum of Squares
	00292 A041		900	R2, 1	
	00293 05A2		1 r	R13, R2	
	00294 A041		add	R2, 1	
	00295 339A		sub	XR12, XR10	; denominator of gain term
	00296 0543		lr	R10, R3	;get constant vector
	00297 A061		add	R3, 1	
_	00298 0563		lr	R11, R3	
	00299 A061		bbs	R3, 1	
	0029A 01E9		BOV	R15, R9	
	0029B 81C0		BOV	R14.0	
	00290 6807		muls	XR14.R7	subtr. sum of correct values * R9
	00290 0107 00200 335F		sub	XRIO XRI4	numerator of gain term
	00290 353E		or	R10 R10	if numerator isn't too large.
	VV476 131A AAAAR 8804		UL br	NE CECh	
	UUZYE FE01		DOD	NL, VE DU	
	UUZAU UUUU		пор	ND10 1.10	multiply it by 1006 to coale main
	002A1 E74B		sar	AKIU, L+12	; multiply it by toso to scale gain
_	002A2 FF82		Dr	X, CESC	
	002A3 0000		nop		abbandes divide dependenter by 4006
	002A4 E794	CFSD:	sar	XR12, R+12	; otherwise divide denominator by 1096
	002A5 7B5C	CFSC:	divs	XR10, XR12	;gain
	00276 0964		str	R11,R4	; and store it
	002A7 A081		add	R4,1	
	002A8 6F48		muls	XR10, R8	;gain * sum of data
—	002A9 E754		sar	XR10, R+12	; undo scaling for this
	002AA 0387		BOV	XR12, R7	;sum of correct values
	002AB 339A		sub	XR12. XR10	
	002AC 7886		divs	XR12.R6	;divide by number of data samples
_	002AD 09A5		str	R13. R5	;offset
	002AE 8001		sub	R0, 1	:loop counter
	AANIN RAAT				• •

	002AF 7E9FFFD7	jc	NE, CFLp	
	002B1 A0A1	add	R5,1	; (if jc)
	002B2 043F0008	lr	R1, CalSkH	Protoco alternational and analysis
	002B4 083F0003	str	RI, SKIP	; Restore skip and sample values
	002B6 043F0009	lr	RI, Calsan	
	002B8 083F0002	str	RI, Sampies	
_	002BA 8020	BOV	KI,V DI CalElag	Clear CalFlag
	00200 00310000 00000 70000000	501	KI, COILIDY	, creat carring
	002DD /1911630	JC	RO Carolto	· (if ic)
_	VUZDE OVVY	104	NO, OMPICO	, ()-,
		;Routine to	calculate checks	um of code RAM to determine if it
_		;has been co	rrupted.	ad followed by "str YDO CodeChk"
		;This routing	e snould de call	ed, Idilowed by Sti ARV, courciak
		; when the system to the code	DAN (stri to 80	out to PFFFh). The code write
_		command doe	NOT do this au	tomatically. It is necessary to
		on a code e	xecute at addres	s 8011h after code writes.
		Chksun may	be called anytim	e the integrity of the code RAM is
_		in question	. The value in	XRO should agree with the value
		;stored in C	odeChk. Chksum	is automatically called before a warm
		;start and i	f code RAM doesn	't check, a cold start is done
		;instead.		
-		;Destroys AC	C and R2, return	s to R16
	00100 02FF9000		ACC Impost	•where to check
	00200 03110000	CHRSUE: EUV	YRA A	initial sum
	002C2 0200	ckln· lri	R2	value at address
	00203 0131	add	XRO. R2	add to sum
	002C5 964E	inr	XR2, ACC	copy to 16 bit register so compare will work
	002C6 3C7PFFFF	CEP	R3, CRAMe	; done?
	002C8 FE9A	br	NE, cklp	; no, cont
	002C9 A3E1	bbs	ACC, 1	;next place to check
	002CA 0E31	cal	.1 R16, R16	;return with results in XRO
		DAM THACE F		ROODE in code area
	002CB	Tmage		
	002CB 0068	dvi	CodeLow	(OMD = 0 (OXXXh) - set CODE flag & 12 low bits
	002CC 006C	dvi	DataLow	:CMD = 1 (1xxxh) - set DATA flag & 12 low bits
	002CD 0070	dwa	StHiRng	;CMD = 2 (2xxxh) - hi bits, form start adr
	002CE 0077	đwi	StHiRd	;CMD = 3 (3xxxh) - hi bits, form adr and rd l
	002CF 007E	đwi	n StHiWr	;CHD = 4 (4xxxh) - hi bits, form adr and wr 1
	002D0 0085	dvi	Execute	; $CMD = 5 (5xxxh) - hi bits, form adr and ex$
-	002D1 008C	dwa	n EndHiRd	;CHD = 6 (6xxxh) - hi bits, form end adr & rd rng
	002D2 0092	dwi	e EndHiwr	(CMD = 7 (7xxxh) - h1 bits, form end add & wr rng
	002D3 0098	dwi	I IORd	(CM) = 8 (8XXXn) - 12 bit add and input word
_	002D4 009B	CW1	I IOWE CotSkn	(MD = 10 (Avyvh) = 12 bit skip count (not 16)
	002D5 00A8	Civil Civil	i Setskp	(mod = 1) (Ryyyh) = 12 bit cryt crit (mod 16) and arm
	002D0 00AE	UW) dwa	a namecy Autoleg	(CND = 12 (Cxxxh) - reserved for auto skip and cnt
_	00207 0031	UWU Purity	a Calih	:CMD = 13 (Dxxxh) - calibration routine
	002D0 0210	UNI Chan	monitor	:CMD = 14 (Exxxh) - reserved
	002DA 004F	പ്പ	Bonitor	;CMD = 15 (Fxxxh) - reserved
-	VVDVN VVIL	J.		· ·····
	002DB 004F	dwi	a monitor	; return address for execute, etc
	002DC 0048	dwi	n warmend	;link address for warm start
-	OO2DD OE3FO2CO	cal	11 R16, Chksum	; callable routine to update checksum
	002DF 081P0000	st	RO, CodeChk	; resides at build
	002E1 083F0001	sti	R1,CodeChk+	1

-	002E3 03FF8010		BOV	ACC, CmdRtn	
	002E5 863F		lri	R16	
	002E6 0E31		call	R16, R16	;(return to monitor)
_	002E7	imgend:			
	00000	-	END		

	00000008	ABORTED	00000019	ACOBUSY	0000000B	ACQCAL
	00000070	AD	00001000	ADBUF	0000001B	ADBUSY
	00002000	ADGAIN	00003000	ADOFS	000000FE	ARM
	00000120	ARMLP	0000004F	AUTOACO	00000205	CALO
	000000007	CALONT	00000249	CALCONT	00000280	CALFIN
	000000005	CALFLAG	00000218	CALIB	0000020E	CALLOOP
	00000005F	CALLP	00000009	CALSAH	0000008	CALSKH
_	00000231	CAL SORS	00002000	CALSUMS	00005000	CALVCTR
	00003000	CALOGINO	00000220	CALZER	00000288	CFLP
	000000000	CESC	00000234	CESD	000002C0	CHRSUM
	00000263	CKID	0000001F	CMD	00008000	CMDJMP
	00000203	CHORTN	00000004	CMPLTD	00000000	CODECHK
	00000010	CODFLOW	00000025	COLD	00000029	COLDLP
	000000000	COLDCTAT	00000023	COLLECT	00000154	COLLP
—	00000002	CONVRICE	00000152	CONVEND	0000FFPF	CRAME
	00000017	277	00000065	DATALOW	00000040	DMA
	00000012	ENABLE	00000080	ENDHIRD	00000092	ENDHIWR
—	00000111	FNIP	00000085	EXECUTE	0000005E	FASTREAD
	00000133	TIIDATA	000002CB	TNAGE	0008000	INGDST
	00000005	THEFND	00000010	TNEMPTY	00000000	INIT
_	00000227	INTMASK	00000098	TORD	0000009B	IOWR
	00000003F	NANACO	00000086	MANLTM	000000B7	MANOK
	000000AE	NONTTOR	000000007	MONNYTR	000000BC	MONRD
	00000000	MONROTA	000000008	MONSND	000000E9	NONWDTA
-	000000000	NONWR	000000EA	NONWRNXT	0000016D	NEWHYB
	000000000	NFYTHODD	00000000	NODATA	0000000A	NOLOAD
	000000000	NOTARM	00000017	NOTRENDI	00000016	NOTREND2
	00000010	NOTOFNDS	00000014	NOTREND4	00000009	NOTRIG
	00000013	NOTWENDI	00000012	NOTWEND?	00000011	NOTWEND3
	00000013	NOTWEND4	00000101	NYTHYR	00000063	OIYHI
_	000000062	OTVLOW	00000065	02YHI	00000064	02YLOW
	000000000	OKSTAT	0000001C	OUTFULL	00008012	POSTCHK
	00000110	PWRIIP	00000068	RDIDIS	00000069	RDIEN
	00000063	RD2DIS	0000006B	RD2EN	0000006C	RD3DIS
	0000006D	RDJEN	0000006E	RD4DIS	0000006F	RD4EN
	00000130	RDALL	00000056	RDPWRDN	00000057	RDPWRUP
	00000191	READ	00000060	RESRDST	000001A2	RPHO
-	000001A7	RPH1	000001AD	RPH2	000001B0	RPH3
	00000060	RSTRDIS	00000061	RSTREN	00000051	RSTWRODIS
	00000050	RSTWROEN	00000053	RSTWRIDIS	00000052	RSTWRIEN
	00000002	SAMPLES	000000A8	SETSKP	00000141	SHUTDN
	00000003	SKIP	00000187	SKIPAGN	0000018D	SKIPLP
	0000005F	SLOWREAD	000000D5	SNDERR	00000004	SOFTTRIG
	00000049	STARTCOM	0000005B	STARTDIS	0000005A	STARTEN
-	000000F7	STATOL	0000005C	STATOFF	0000005D	STATON
	000000EF	STATOUT	00000050	STATUS	00000077	STHIRD
	00000070	STHIRNG	0000007E	STHIWR	00000070	SWINT
—	00000058	TRIGDIS	00000059	TRIGEN	00000137	TRIGGER
	00000139	TRIGLP	00000202	UNLERR	000001D5	UNLLP
	000001D6	UNLLP2	0000015E	UNLOAD	000001EB	UNLSND
	00000044	WARM	00000048	WARMEND	00008011	WARMLINK
	00000001	WARMSTAT	00000007	WRINT	00000054	WRPWRDN
	00000055	WRPWRUP				

••••

APPENDIX #2

-

-	ics			
_	ithi			б С
	lou			198
	Mo			07,
_	ra			U
_	Sieı	\geq		De
_				
			Lao Lao	
—		~	De d d	
		\triangleleft	C Bi	4 <u>.</u>
_				
-				
_				
_				

-

-

_

-

12/05/89 (clkal.doc)

SIERRA MONOLITHIC'S EXPECTED FUNCTIONAL & PERFORMANCE OPERATION FOR THE MODULE A CLOCK GENERATOR.

- Module A will take an unbalanced ECL Input signal (Fo)ranging in frequency from 250Mhz to 1Ghz, then produce as outputs, FOUR balanced ECL compatible signals, namely Fo/2, Fo/2-, Fo/4 (I), & Fo/4 (Q).
- Fo/4 (I) shall be in phase with the POSITIVE edge of Fo/2, & Fo/4 (Q) shall be in phase with the NEGATIVE edge of Fo/2. Hence, Fo/4 (Q) is always 90 degrees out of phase with respect to Fo/4 (I).
 - Over the Fo INPUT frequency range, Fo/4(I) output changes logic states at least 725ps before and at least 725ps after the negative clock edge of Fo/2. Likewise, it is true for Fo/4(Q) relative to the negative clock edge of Fo/2-.

ELECTRICAL CHARACTERISTICS:

<u>POWER CONSUMPTION:</u> 2.1 Watts (approx).

INPUT SIGNAL PORT (FO):	
Input Sensitivity:	100mV (min) Single-Ended.
Input Impedance:	50 ohms at 1Ghz - with matching.
	20 - j50 at 1GHz - w/o matching.
	100 - j175 at 250MHz - w/o matching.

OUTPUT SIGNAL LEVELS: (Fo/2, Fo/2-, Fo/4(I), Fo/4(Q)

	00	3	25C	75C
	Min	Max	Min Max	Min Max
Output HIGH Volt	-1.02	-0.84	-0.98 -0.81 -1.95 -1.63	-0.92 -0.735 -1.95 -1.595
Input HIGH Volt Input LOW Volt	-1.17	-0.84 -1.48	-1.13 -0.81 -1.95 -1.48	-1.07 -0.735 -1.95 -1.450 300ps 800ps
Output Rise/Fall time (20-80%) SKEW (U3_outputs)	Buops	100ps	100ps	100ps

NOTE: Motorola states that 10E Series type IC's do not have a problem driving 100E or 100K chips.

DKS0108-1289

11/8/89 (CIA. DUC)

.

PARTS LIST - AMERASIA: CLOCK GENERATOR - MODULE A.

440	ON TORO	DTSTRITTOR	SHIP	0TY	PRICE	PRICE
292	• • • • • • • • • •		WEEKS)		(EACH)	(TOTAL)
IJ	SP8822B1/DG (Plessey)	Select Electronics (Arlene:714 739-8891) Sample requested(11/8/89)	14	ы	\$49.76	\$49.76
U2	MC10E131FN (Motorolla)	WYLE	12	r-1	\$17.31	\$17.31
CU	MC10E111FN (Motorolla)	HAMILTON AVNET (213)217-6830	STOCK	ч	\$28.23	\$28.23
U4	MC7905.2CT (Motorolla)	Hamilton Avnet (213)217-6830 call local distr	12	Ч	\$. 54	\$.54
U5	MC1458U (Motorolla)	Hamilton Avnet (213)217-6830	STOCK	ч	\$.96	\$. 96
бђ	(Pur) <u>+LONE</u>	Local Distr	STOCK	ч	\$ 1.00	\$ 1.00
I	30136-01 (Semflex)	Cain Technology (213)326-5236 (plus \$200 setup charge?)	6 .	4	\$101.00	\$404.00
SMA	50-651-0000-31	Selectro Corp (914)698-5600) Sealectro West (213)990-8131	r.	თ	\$ 10.00	00.0e \$
TOTA	L ESTIMATED COE	* E S				\$542.04

_

O ANDERSEN LABORATORES CODE IDENT 03947	SPECIFIC	CATION	SPEC NUMBER	RE
PREPARED BY DATE	SURFACE ACOUS	TIC WAVE HYBRID (SCILLATOR	
TITLE STANDARD SPECIFICAT			· · · · · · · · · · · · · · · · · · ·	
APPROVED BY DATE	REV. APPROVED BY	DATE	MODEL NO	
			50-1030-400-1	.0
Carrier Frequency (f	o)	1030 MHz		17 1
Frequency Deviation		.04 (T-Tref) ²	ppm max., Tref =	 25°C
Output Power		+10dBm ± 2dBm	(IVPK)into 500	nomina
Operating Temperatur	e Range	-45°C to +85°C		= \
Tuning Range (Af)		400 KHz minimu	III	•
Tuning Voltage (∆v)		0 - 12 V		-
Spurious - Harmonic		30dBc		-
- Non-harmo	nic	-60dBc		-
Phase Noise		-65dBc/Hz @ 10	—————————————————————————————————————	-
		-85dBc/Hz @ 1	КН <i>г</i>	-
		-105dBc/Hz @ 10) KH7	-
Power Supply		+15 V DC ± 5%.	125 mA	-
Note(s): 1) Tuning ra	inge supplied is suf		ain the enorified	-
Carrier 1 Outline:	requency over the e	effects of temper	ature and load pi	, Jling.
;	012-018 .3048)			
	<u>+</u>	£ ***	(1.83 1 36 PL	.20j C'S
	.50 MAX (12.7) 26 PLC'S		6	
	AHDER 0394	SEN MARI		
	1.085 MAX ALO7985 (27.88)	··· -		
	\$/H =====	C:: 24		
		DATE		
	17 EO. 81 .000=1,2 (2,54=30 BOTH 61	P et .00 0000 .40)00 1.20 DES 20	0012 301 PLC 8	
	· 1			

APPENDIX #3

				•				a., 00000 v
-100.000 ח	1			2,40				80 0000C . H
٢								
								•
+ + + -+							-mun - mun	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
					-+			

Va 1 n	Timebase 500 ns/div	Delay/Pos <b>~100.000 ns</b>	Reference <b>Left</b>	Mode <b>Realtime (NORMAL)</b>
Channel 1	Sensitivitv 2.00 V/d1v	Offset 0.00000 V	Probe <b>10.00 : 1</b>	Coupling <b>dc (1M ohm)</b>
Channel 2	1.00 V/div	-1.00000 V	10.00:1	dc (1M ohm)
Trigo Dn Negetive	er mode : Edge Edge Of Chan	8 4		
Trigger Lev Chant = 2 Holdoff = 4	el .00000 V (no: 0.000 ns	ise reject OFF)		

## FIGURE A3-1, Input Signal



Main	Timebase 1.00 ms/div	Delay/Pos - <b>100.000 us</b>	Reference Left	Mode <b>Realtime (NORMAL)</b>
Channel 1 Channel 2	Sensitivity <b>2.00 V/d1v</b> <b>1.00 V/d1v</b>	Offset 0.00000 V 3.00000 V	Probe 10.00:1 10.00:1	Coupling dc (1M ohm) dc (1M ohm)
Tr199	er mode : Edge Edge Of Charl			
Trigger Leve Chani = 2 Holdoff = 4	el 1.00000 V (noise 0.000 ns	reject OFF)		

FIGURE A3-2, Output Signal (Readback)



Main	Time 200	base <b>us/div</b>	Delay/Pos <b>-10.0000 us</b>	Reference Left	Mode <b>Realtime (NORMAL)</b>
Channel 1 Channel 2	Sens 2.00	sitivity V/d1v V/d1v	Offset 0.00000 V 3.00000 V	Probe 10.00 : 1 10.00 : 1	Coupling dc (1M ohm) dc (1M ohm)
Dn Positive	jer mod ) Edge	le : Edge Of Chan1			
Trigger Lev Chani = 2 Holdoff = 2	.el 2.00000 40.000	) V (notse ns	i reject OFF)		

FIGURE A3-3, Output Signal Observed with Faster Timebase



Main	Timebase 10.0 us/div	Delay/Pos <b>-10.0000 us</b>	Reference Left	Mode <b>Realtime (NORMAL)</b>
Channel 1 Channel 2	Sensitivity 2.00 V/d1v 1.00 V/d1v	Offset 0.00000 V 3.00000 V	Probe 10.00:1 10.00:1	Coupling dc (1M ohm) dc (1M ohm)
Tr199	er mode : Edge			
On Positive Triager Lev	Edge Of Charl al			
Holdoff 1 4	.00000 V (noise 0.000 ns	reject OFF)		

FIGURE A3-4, Output Signal Observed with Faster Timebase



Main	500	ns/div	-100.000 ng	Left	Healtime (NUHN
	Sens	itivity	Offset	Probe	Coupling
Channel 1	2.00	V.'d1V	0.00000 V	10.00:1	dc (1M ohm)
Channel 2	1.00	V/d1v	-1.00000 V	10.00 : 1	dc (1M Ohm)
Tr100	er mode	a : Edge			
On Negative	Edge	Of Chan1			
Trigger Lev	e]				
Chan1 = 2	.00000	v (noise	reject OFF)		
Holdoff = 4	0.000	80			

FIGURE 2.3-5, 2 MHz Triangular Input Signal


Main	limebase 1.00 ms/div	Delay/Pos -100.000 us	Reference Left	Mode <b>Realtime (NORMA</b> L
Channel 1 Channel 2	Sensitivity 2.00 V/d1v 1.00 V/d1v	0ffset 0.00000 V 3.00000 V	Probe 10.00:1 10.00:1	Coupling <b>dc (1M ohm)</b> <b>dc (1M ohm)</b>
Trigg On Positive Trigger Lev Chani = 2 Holdoff = 40	sr mode : Edge Edge Of Chan1 al .00000 V (noise 0.000 ns	reject OFF)		

FIGURE A3-6, Output Signal with Triangular Signal Input



Main	1.00	ase <b>ms/d1v</b>	-100.000 US		Realtime (NORMAL)
Channel 1 Channel 2	Sensi 2.00 1.00	tivity V/d1v V/d1v	Offset 0.00000 V 3.00000 V	Probe 10.00:1 10.00:1	Coupling dc (1M ohm) dc (1M ohm)
Trig On Positiv Trigger Le Chani = Holdoff =	1981 mode 6 Edge 0 7.0000 2.0000	: Edge f Chani V (noise ne	rejact OFF)		

FIGURE A3-7, 1 MHz Sinewave Input Signal



Main	TimeDase 100 us/div	-10.0000 us	Left	Realtime (NORMAL)
Channel 1 Channel 2	Sensitivity 2.00 V/div 1.00 V/div	0ffset 0.00000 V 3.00000 V	Probe 10.00 : 1 10.00 : 1	Coupling dc (1M ohm) dc (1M ohm)
Trigg On Positive	er mode : Edge Edge Of Chan1			
Trigger Lev Chani = 2 Holdoff = 4	el .00000 V (noise 0.000 ns	reject OFF)		

FIGURE A3-8, Output Signal with Sinewave Input



Main	<b>Timebase</b> 20.0 us/div	<b>Delay/Pos</b> -10.0000 us	Hererence Left	Realtime (NORMAL)
Channel 1 Channel 2	<b>Sensitivity</b> 4.00 V/d1v 2.00 V/d1v	offset 0.00000 V 3.00000 V	Probe 10.00 : 1 10.00 : 1	Coupling dc (1M ohm) dc (1M ohm)
Trigg On Positive	er mode : Edge Edge Of Ext1			
Trigger Lev Exti = 1 Holdoff = 4	el .87500 V (noise 0.000 ns	reject OFF)		

FIGURE A3-9, Output Signal with 20 MHz Sinewave Input



TRANSFER FUNCTION Averaged over all cells, per channel









_















_

,









APPENDIX #4













On Positi Trigger L Chani Holdoff -	Chennel 1 Channel 2 Th	Mein	
evel 2.00000 V (noie 40.000 ns	Sensitivity 2.00 V/div 1.00 V/div	Timebase 200 us∕div	
r <b>eject OFF)</b> FIGURE 7	0ffset 9.00000 V 3.00000 V	Delay/Pos -10.0000 us	WWW AND A A A A A A A A A A A A A A A A A A
	Probe 10.00 : 1 10.00 : 1	Reference <b>Left</b>	
	Coupling dc (1M ohm dc (1M ohm	Mode Realtime (	When the second
	22	NORMAL)	

......

4

_____





(: 1) in 2







- -





CH1

ຽ 2 1

log MAG

Ч

dB/

H F F

0

а В

Ņ

.8104

о В



CHD NHD ດ ເ → ទ ខ 1 1 START delay ٠ ₫ . 300 4 000 Ş 500 1000 MHz ξ /sd J ⊳ H H H H 争 5 0 ល STOP B ۶ 700.000 70. p 100 کے 628.26 8 8 10 10 000  $A | \mathsf{REF} = 1$ ٤ мнz NHZ Z s G



_

Δ

APPENDIX #5

-----

## **APPENDIX 5**

## HARDWARE INTERFACE

- 1. 16 bit bi-directional parallel data
- 2. Four wire handshake
  - a. DMAWREQ negative pulse by host initiates transfer
  - b. DMAWACK 0 after DMAREQ, 1 when accepted by  $\mu$ P.
  - c. DMARAV 0 after  $\mu$ P loads latch, 1 after read by host
  - d. DMARREQ negative pulse by host reads data and clears status
- 3. Write transaction (Host to  $\mu$ P)
  - a. data is latched on trailing (+) edge of DMAWREQ
  - b. low level on DMAWREQ sets WR status FF (DMAWACK = 0)
  - c.  $\mu$ P read clears WR status FF (DMAWACK = 1)
- 4. Read transaction ( $\mu$ P to Host)
  - a. Generally occurs as a result of request from host
  - b. Only exception is error condition status
  - c.  $\mu$ P writes data to latch
  - d. this sets read status FF (DMARACK = 0)
  - e. DMARREQ low places data on Q bus
  - f. DMARREQ low level resets read status FF (DMARACK = 1)
- 5. commands are 16 bit data
  - a. 12 lsb is value
  - b. 4 msb is command
    - 0 = code address low first word of Read, Write or Execute in code memory. (with low 12 bits of address)
    - 1 = data address low first word of Read or Write in data memory. (with low 12 bits of address)
    - 2 = start address high second word of Read or Write range (upper 8 bits of code address or 4 bits of

code address right justified in lower 12 bits)

- 3 = start address high second (final) word to read one word from memory. Next transaction is a single read transaction.
- 4 = start address high second word to write one word to memory. Next transaction is a single write transaction with a 16 bit data word.
- 5 = execution address high second (final) word to start execution at address (upper 8 bits of address right justified in lower 12 bits)
- 6 = end address high fourth (final) word to read an inclusive range of memory. This is preceded by a second low address (0 or 1). This is followed by N+1 read transactions.
- 7 = end address high fourth word to write an inclusive range of memory. This is preceded by a second low address (0 or 1). This is followed by N + 1 write transactions.
- 8 = I/O read 12 lower bits are I/O address. Next transaction is a single read transaction with data word read (no prefix command needed).
- 9 = I/O write 12 lower bits are I/O address. Next transaction is a single write transaction with data word to be output (no prefix command needed).
- A = skip value 12 lower bits contain number of cells to skip at the beginning of an acquire. This should be a multiple of 16.
- B = acquire value 12 lower bits contain number of cells to read and convert. This command also does a software arm. This should be followed by a hardware arm and trigger. The hardware will respond with a sync strobe, and the  $\mu P$  will initiate N read cycles with data.
- C = auto acquire (optional) Number of cells to skip and
read determined by the  $\mu P$  by inspecting the data.

12 lower bits are ignored. Otherwise works like command 9.

- D = calibrate. First call set mode, remaining calls give value of last acquire. Final call with value of 0FFFh calculates coefficients.
- E F reserved
- a. These go to jump vectors in code RAM

b. Initially they are programmed as NOP's

- 6. Timing
  - a. When host writes data to system, data is latched on trailing edge of strobe. Status is level sensitive, so responds to leading edge. In order to prevent multiple reads by system, pulse width must be less than 500 ns.
  - b. When host reads data, both data enable and status are level sensitive. The strobe pulse width must be less than 500 ns in order to prevent  $\mu P$  from placing second word on bus before end of pulse.
  - c. Read data is valid from 30 ns after DMARREQ goes low until a small time after DMARREQ goes high (20 ns typ.)
  - d. Write data must be valid at least 30 ns before the rising edge of DMAWREQ and remain valid at least 5 ns after the rising edge of DMAWREQ.
  - e. The Status output bit (Data/Status, 0/1) is valid from the time DMARAV goes low until it goes high again.
  - f. The Command input bit (Data/Command, 0/1) must be valid from the falling edge of DMAWREQ until the subsequent rising edge of DMAWACK. This is best accomplished by providing an non-Tristate ff whose state is changed just before data is written.
  - g. The command bit is interrogated during a reset (either power up reset, or external reset). If it is a 1, a cold reset is forced (all variables initialized to default,

calibration values all set to gain = 1 and offset = 0, all code extensions eliminated and a new code memory checksum computed. If Command = 0 a warm start is done instead, provided that the code checksum agrees with the value stored in the data memory.

- 7. Error and status codes (Status = 1)
  - 0. OK
  - 1. Warm start (after reset, unsolicited)
  - 2. Cold start (after reset, unsolicited)
  - 3. (reserved)
  - 4. Completed (generally at end of block reads)
  - 5. Illegal data data written when not expected
  - 6. No data Command written when more data was expected, or during operation.
  - 7. Write interrupt (not used)
  - 8. Aborted Command received after Acquire command, before arm signal received.
  - 9. Not Triggered A/D acquire cycle did not start, probably due to lack of a trigger.
  - 0A. No Acquire A/D acquire cycle did not complete.
  - 0B. In Calibration A/D cycle completed. No data will be sent because data is being used for calibration.NOTE: attempt has been made to keep error codes in the range of 0 0Fh so that they can be loaded with a single word mov instruction.

National Amona aris and Space Administration	Hehou Documentati	
I. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
	Creek Paced Lacor	16 October 1992
l GHz Digitizer for Space Based Laser Altimeter		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report N
		CP0120_0
E.J. Staples		10. Work Unit No.
9. Performing Organization Name an	d Address	11 Convert or Grant No
Amerasia Technology	Inc.	The contract of Grant No.
2248 Townsgate Road Nacticko Village CA 91361		NAS5-30626
westlake village, CA	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	13. Type of Report and Period Covere
12. Sponsoring Agency Name and Address		Final Report
National Aeronautics Goddard Spaceflight Greenbelt, MD 2077	and Space Administration Center 1	April 1989 — August 1 14. Sponsoring Agency Code
15. Supplementary Notes		
15. Supplementary Notes 15. Abstract		ush and dovelopment of the
16. Supplementary Notes 18. Abstract This is the final 1 GHz Digitizer is model was designed essential function funding availabled which allows anal The actual sampled channels, to provide power consumption A 1 GHz SAW oscial nal is also made package was also and for data commis equipped with	l report for the resea fo Spaced Based Laser ed, built, and tested. ons of the Digitizer w e at this time. Hybrid log storage (memory) of ing rate is 62.5 MHz, wide an effective samp n of the 1 GHz Digitiz llator is incorporated available externally developed for interna munications with the h an on-board microproc	arch and development of the Altimeter. A Feasability Only partial testing of vas completed, due to limited technology was incorporated of the digitally sampled dat but executed in 16 parallel oling rate of 1 GHz. The ave der is not more than 1.5 Wat for timing purposes. This for system timing. A softwa al use (controls, commands, nost computer. The Digitizer cessor for this purpose.
<ul> <li>16. Supplementary Notes</li> <li>18. Abstract This is the final I GHz Digitizer is model was designed essential function funding availabled which allows anal The actual sampled channels, to provide the provided of the second sec</li></ul>	l report for the resea fo Spaced Based Laser ed, built, and tested. ons of the Digitizer w e at this time. Hybrid log storage (memory) c ing rate is 62.5 MHz, vide an effective samp n of the 1 GHz Digitiz llator is incorporated available externally developed for interna munications with the h an on-board microproc	Arch and development of the Altimeter. A Feasability Only partial testing of vas completed, due to limited technology was incorporate of the digitally sampled dat but executed in 16 parallel oling rate of 1 GHz. The ave ter is not more than 1.5 Wat for timing purposes. This for system timing. A softwa al use (controls, commands, nost computer. The Digitizer tessor for this purpose.
<ul> <li>16. Supplementary Notes</li> <li>18. Abstrect</li> <li>This is the final l GHz Digitizer is model was designed essential function funding availabled which allows anal The actual sample channels, to propower consumption A l GHz SAW oscial nal is also made package was also and for data commiss equipped with</li> <li>17. Key Words (Suggested by Author l GHz Digitizer memory.</li> </ul>	l report for the resea fo Spaced Based Laser ed, built, and tested. ons of the Digitizer w e at this time. Hybrid log storage (memory) c ing rate is 62.5 MHz, vide an effective samp n of the 1 GHz Digitiz llator is incorporated available externally developed for interna munications with the H an on-board microproc or(s)) , SAW, Hybrid 1- 5- 1-	Arch and development of the Altimeter. A Feasability Only partial testing of Vas completed, due to limited technology was incorporated of the digitally sampled dat but executed in 16 parallel oling rate of 1 GHz. The avec ter is not more than 1.5 Wat for timing purposes. This for system timing. A softwa al use (controls, commands, nost computer. The Digitizer tessor for this purpose.
<ul> <li>15. Supplementary Notes</li> <li>16. Abstract This is the final 1 GHz Digitizer is model was designed essential function funding availabled which allows anal The actual sampled channels, to provide power consumption A 1 GHz SAW oscial nal is also made package was also and for data commitis equipped with 17. Key Words (Suggested by Auth) 1 GHz Digitizer memory. </li> </ul>	l report for the resea fo Spaced Based Laser ed, built, and tested. ons of the Digitizer w e at this time. Hybrid log storage (memory) of ing rate is 62.5 MHz, vide an effective samp n of the 1 GHz Digitiz llator is incorporated available externally developed for interna munications with the H an on-board microproc or(61) , SAW, Hybrid 1- 5- 1-	Arch and development of the Altimeter. A Feasability Only partial testing of vas completed, due to limited technology was incorporated of the digitally sampled dat but executed in 16 parallel oling rate of 1 GHz. The ave der is not more than 1.5 Wat for timing purposes. This for system timing. A softwa al use (controls, commands, nost computer. The Digitizer cessor for this purpose. Distribution Statement Contract Specialist Technical Officer NASA Scientific & Tech Info.Faci (Accessioning Department) 21 No of pages 22 Price

NASA FORM 1626 OCT 86