1 GHZ DIGITIZER FOR SPACE BASED LASER ALTIMETER

FINAL REPORT

16 October 1991

Prepared For:

NASA GODDARD Space Flight Center
 Greenbelt, Md. 20771

Contract No.: NAS5-30626
Project Manager: Jack Buffon

> Submitted By:
> Amerasia Technology, Inc.
> 2248 Townsgate Road
> Westlake Village, CA 91361

Principal Investigator
Edward J. Staples

```
(NASA-CP-190301) ONE GHz OIGITIZER FOR
N92-24204
jofre U\SEO LASER ALTIMETER FinGl RepOrt,
Aor. 1989 - Aug. 1991 (Amerasia Technology)
107p CSCL 148

\section*{TABLE OF CONTENTS}
Page
1.0 Phase II Objective. ..... 1-1
2.0 Program Summary ..... 2-1
2.1 Initial Technical Approach. ..... 2-1
2.2 Technical Problems Encountered and Possible Solutions. ..... 2-1
2.3 Selected Technical Approach ..... 2-3
3.0 Work Accomplished. ..... 3-1
3.1 Summary ..... 3-1
3.2 Characterization of the AN1000H Hybrid. ..... 3-8
3.2.1 Design of the Test Circuit ..... 3-8
3.2.2 16-Way Active Multiplexer Design. ..... 3-10
3.3 System Description ..... 3-11
3.3.1 Signal Input Stage ..... 3-17
3.3.2 Staggered Clock Generation. ..... 3-17
3.3.3 Analog Memory and Presampler ..... 3-18
3.3.4 Microprocessor Interface and Communications Circuit with Host Computer. ..... 3-19
3.3.5 Power Supply Duty Cycle Control ..... 3-20
3.4 Testing. ..... 3-21
3.4.1 Characterization of the AN1000H Hybrid ..... 3-21
3.4.2 System Tests ..... 3-22
3.4.3 Special Operations Instructions and Notes. ..... 3-24
4.0 Conclusions and Recommendations. ..... 4-1
I. Appendix 1
II. Appendix 2
III. Appendix 3
IV. Appendix 4
V. Appendix 5

\subsection*{1.0 PHASE II OBJECTIVE}

The overall objective of this Phase II Program is to develop, design, fabricate, and test a feasibility model of a low power 1 GHz Waveform Digitizer. The Digitizer is intended for analyzing data collected via a space based Laser Altimeter. It has a 6-bit resolution, and is equipped with a 1 GHz surface acoustic wave (SAW) oscillator, and a random access buffer memory to interface with the 8 -bit parallel bus of the altimeter system computer. Low power consumption is obtained by cutting off the power supply during the absence of data from the altimeter, thus lowering the duty cycle of power utilization.

The following technical objectives were specified for the implementation of the 1 GHz Waveform Digitizer feasibility model.

Functions:
(1) Perform analog-to-digital conversion
(2) Transfer digital data to system computer via a random access memory and an 8-bit parallel bus (DMA)
(3) Provide a 1 GHz system timing clock

Inputs:
(1) Signal bandwidth: \(\quad \mathrm{DC}\) to 350 MHz
(2) Signal pulsewidth:

4 to 10 Nanoseconds
(3) Repetition frequency:
(4) Input impedance:

40 Hz
50 Ohms, nominal

\section*{Outputs:}
(1) Sampling rate:
(2) Resolution:
(3) Clock frequency:
(4) Number of samples:

1 Gigasamples/second
6 bits
1 Ghz
128/second

Power supply:
(1) Average power consumption: 1.5 Watts
(2) Duty cycle:
\(2.5 \%\)
(3) Available supply voltages: \(5 \mathrm{~V},-5.2 \mathrm{~V},-2 \mathrm{~V}\), and 12 V

\subsection*{2.0 PROGRAM SUMMARY}

\subsection*{2.1 Initial Technical Approach}

A system diagram of the initial approach is shown in Figure 2-1. Two Tektronix flash 8 -bit A/D-converters (TKAD10C) were selected to digitize the input signal. Each is capable of 500 Megasamples/second operation. By paralleling these converters an effective 1 Gigasample processor is obtained. The converters have 7-bit accuracy, as specified by its manufacturer. The digitized data can be stored in 32 RAMs, each being an 8 -bit 30 MHz device. Alternatively, eight 4-bit 250 MHz RAMs were considered. Write and Read activities in the RAMs are controlled by an address counter as shown. Sampled data is transferred to the system computer via DMA type bus interface. Timing is derived from a 1 GHz SAW oscillator and distributed to the converters counters, and computer interface bus.

\subsection*{2.2 Technical Problems encountered and Possible Solutions}

It was found later that the total set-up and hold time of the high speed memories (RAM) is equal to the access time ( 4 nanoseconds), hence there is no allowance for any timing errors during acquisition at full speed. The following solutions were considered to overcome this problem:
(1) Replace the RAMS with high speed multistage (128) shift registers utilizing gate array technology
(2) Use 16 RAMS in place of the original 8, allowing for half speed clocking. Incorporate hybrid memory technology.

The first approach was investigated and found to be technically risky and not cost effective, due to the associated nonrecurring engineering cost. The second approach would increase the systems parts count, resulting in higher power consumption and reduced reliability. An existing hybrid memory and data sampling device (AN1000H) was found that is useable and met the technical requirements. This device is manufactured by Analytek and used in their Gigasample data acquisition systems. Therefore, there is minimal technical risk involved with the application of this device. In addition, the devices are readily available.


Figure 2-1, 1 Gigasample/sec. Digitizer System Diagram

\subsection*{2.3 Selected Technical Approach}

A system diagram of the selected technical solution is shown in Figure 2-2. In this approach fast analog storage is provided by the AN 1000 H hybrids, which is followed by a slow readback via an A/D Converter at a moderate speed. The analog memory is made up of 4 hybrids. Each hybrid consists of four channels containing 256 randomly addressable charge storage capacitors capable of storing an analog voltage of \(\pm 2\) volts with a resolution of \(\pm 1\) millivolt. Each channel can operate at 62.5 Megasamples/second. By delaying the data and clock signals appropriately the system can be designed for 16 channels, equally spaced within one 16 nanosecond window, giving 1 nanosecond resolution. Fast sample/hold presamplers on each channel insure adequate aperture parameters to make the acquired signal meaningful at this rate.

Initially the input signal was delayed in increments of one nanosecond via a 16-tap delay line. This approach was not satisfactory because of differences in losses among multiple taps, although small between two adjacent taps, are excessively large thus deteriorating the acquisition accuracy of the digitizer. Moreover, stripline implementation of the tapped delay line is adversely effected by temperature due to expansion and contraction. This problem was resolved by offsetting the acquisition instants of each channel of the hybrids by one nanosecond, respectively.


Figure 2-2, Lola A/D Converter Block Diagram

\subsection*{3.0 WORK ACCOMPLISHED}

\subsection*{3.1 Summary}

During the Phase II development program a feasibility model of the 1 GHz Digitizer was designed, fabricated and tested. Hardware system testing was not fully completed due to limited funding. Preliminary testing of the \(\mathrm{A} / \mathrm{D}\) function of the hardware demonstrated satisfactory results. A software package for data processing and interface with the host computer was developed but not tested. Source code listing of the software is attached in Appendix 1.

The 1 GHz SAW clock required for system timing is included, and a timing interface circuit The 1 GHz SAW clock required for system timing is included, and a timing interface circuit for clock distribution was designed and built as part of the hardware printed circuit board. Average power consumption is within the specified limit, while power up and power down timing were satisfactorily tested.

As mentioned earlier, initially the design was based on utilizing Tektronix's flash A/D converters (TKAD10C). For this purpose a clock distribution circuit was designed, the results of which are shown in Appendix 2 . The 1 GHz oscillator which was acquired for this purpose is also useable in the final design.

The hybrid devices (AN1000H) used in the final design were characterized. For this purpose a test circuit was designed and built. A schematic diagram showing the test circuit and the printed circuit board are shown in Figures 3-1 and 3-2. The results are shown in Appendix 3. During this effort one hybrid, containing 4 channels, was tested by characterizing its transfer function and input-output signal waveforms from 150 KHz to 1 GHz . Each channel of the hybrid contains 256 cells. Each of these cells have variations in gain and offset, consequently the output (sampled data) waveform becomes noisy. Corrections were made and the accompanying result shown, where the waveform is considerably cleaner.

A tapped delay line for the purpose of distributing the input signals with one nanosecond offsets to all the 16 channels of the hybrids was designed and built. This implementation is shown in Figure 3-3 and 3-4; it is basically a transmission line with 16 one nanosecond taps, constructed on epoxy fiberglass (G-10) material utilizing microstrip technique. The result of this implementation was not satisfactory due to dielectric and copper losses. A second version was built utilizing duroid printed circuit board, as shown in Figure 3-5. This implementation was also not satisfactory. Finally the approach was abandoned and this problem resolved by staggering the timing of each channel by 1 nanosecond. The test results of the delay line implementations are shown in Appendix 4.

In what follows the development of the 1 GHz Digitizer utilizing the AN1000H hybrid chips are described. It includes the characterization of these chips prior to hardware design, design of the Digitizer circuit, and software for control and interface with the system computer.


Figure 3-1, Lola Test Circuit


Figure 3-2, Test Circuit Layout


Figure 3-3, 16.Way Active Multiplexer


Figure 3-4, Microstrip Delay Line with pads for JFET mounting.


Figure 3-5, Goddard Delayline

\subsection*{3.2 Characterization of the AN 1000 H Hybrid}

\subsection*{3.2.1 Design of the Test Circuit}

The test circuit is shown in Figure 3-1 and 3-2. Since the objective is to characterize the AN 1000 H hybrid analog memory module, the design includes only one chip. Each hybrid has four inputs; in the 1 Gigasample Digitizer four hybrids are used and data is acquired via a 16 -way multiplexer. Multiplexing is accomplished by a combination of delays in the timing and data paths such that the data latched by each of the inputs is staggered by one nanosecond referenced to time of actual occurrence. In order to achieve this, the presamplers in the hybrids must be fast enough to accurately take their samples. In addition the internal delay times must be known and included in the overall timing delay consideration.

The sampling window and timing is determined accurately in a single hybrid. The sampling waveforms should be the same as if it were one of four hybrids in the final system. The delays should be identical or at one nanosecond intervals so as to represent one or more noncontiguous repetitive samples out of the full set. Identical timing was chosen since it would provide the easiest method of determining channel to channel variations in both timing and amplitude.

In this test circuit on-board microprocessor is not included. The final circuit, however, will be controlled by a combination of microprocessor and dedicated logic, which will also unload and correct the data. Part of our objective is to determine the necessary corrections, therefore raw data is being collected. The on-board A/D converter is connected to a general purpose parallel port on an MS-DOS computer where simple programs in BASIC or C can be used to unload and save the data for further analysis. Analysis will include gain, offset and timing errors for each channel, offset and gain, offset and linearity errors for each memory cell, as well as input frequency versus amplitude errors for each memory cell, to check the sampling accuracy.

The power and control circuitry is not needed in the test board. It has been designed with adequate power and heat dissipation capacity for \(100 \%\) duty cycle. Power down circuitry will be added later to determine its effect on performance and to determine minimum turn-on and turn-off times.

Since only four channels are being driven, a resistive divider is used to provide adequate impedance match. A signal function generator is used as a test source.

Referring to the circuit in Figure 3-1, several power voltages are required and a number of timing signals as shown in Figure 3-6. The hybrid needs Vtt for termination of the ECL inputs, Vsub for substrate biasing and Vofs as a fixed DC offset to the signal paths.


Figure 3-6, Timing Diagram

Voltages needed for sensitive analog portions of the circuit are isolated from noise of the digital circuitry by ferrite beads and bypass capacitors. There are two analog grounds, one at the input of the hybrid and the other between the hybrid and the \(\mathrm{A} / \mathrm{D}\) converter. Isolated analog sections of each plane have been created by partitioning the planes.

The timing signals are summarized in the timing diagram shown in Figure 3-6. The AN 1000 H collects samples during the high portion of the S 12 an S 34 signals. These samples are latched in the presampler on the falling edge of S12 an S34. The data in the presampler is transferred to a memory cell during DCLK high, and latched on the falling edge of the DCLK. The relationship between \(\mathrm{S} 12, \mathrm{~S} 34\) and DCLK should be such as to maximize the time from the falling edge of DCLK. DCLK also clocks the shift registers used to select the next memory cell for writing. These registers are cleared when RSR and RST1 are low and start counting when LSR and START-X go low, loading a 1 bit into the fast row and slow column shift registers respectively. ORST is the same signal as RSR. All analog memory locations are reset on the rising edge of ORST. END1-4 is used to determine the end of the collection (WRITE) phase, so that the unload phase can be started. O2S is used to synchronize the START-X signals. RST2 is held high to prevent read attempts during the collection phase.

\subsection*{3.2.2 16-Way Active Multiplexer Design}

Distribution of signals and time delay to drive the hybrids is accomplished by a 16-Way Multiplexer. System requirements and characteristics of the AN 1000 H hybrid dictate the performance requirement of the multiplexer. Following are the design objectives:

Input parameters:
\(0 \pm 360 \mathrm{mV}\) ( 720 mV P-P)
DC-350 MHz
50 Ohms, Impedance
VSWR 1:8, maximum
Output parameters:
16 Outputs
1 ns delay between each output
\(0 \pm 360 \mathrm{mV}\)
DC-360 MHz, flat frequency response
50 -Ohm impedance load ( 50 Ohms shunted by 4.7 pF )
VSWR 1.8:1 maximum

\section*{Power Supply: \\ 5 VDC \\ -5.2 VDC}

The design of the multiplexer is shown in Figure 3-3. The signal distribution and delay requirements are achieved by tapping a microstrip transmission line at 16 points, each 1 ns apart. The line is meandered to reduce layout length and is adequately spaced to reduce coupling between adjacent segments. Circuit loading at the taps is minimized by using JFET buffer amplifiers with high input resistance and low gate-source capacitance. Current gain is supplied by a bipolar transistor output stage.

The circuit is built on a 31 -mill microstrip board utilizing G10 dielectric material. The delay line is shown in Figure 3-4. Surface mount packaged JFETs are used. Initially, test data is taken with 3.3 pF chip capacitors simulating the gate capacitance of the JFETs. The test results, showing group delay and insertion loss as a function of frequency, are shown in Appendix 4. These measurements show that the transfer characteristic of the delay line has a 3 dB slope down to 350 MHz , which is too large to meet system performance objectives. A second design, shown in Figure 3-5, was tested. In this design lower loss dielectric material (Duroid) was used. A slope of 1.2 dB was obtained, which is smaller but still considered unacceptable. Therefore, this approach was abandoned, and the problem is resolved by sampling the input signal at sampling times staggered by 1 ns from channel to channel.

\subsection*{3.3 System Description}

The 1 GHz Digitizer system block diagram is shown in Figure 2-2, and the detailed circuit diagrams are shown in Figures 3-7 through 3-10. A short duration of the input signal is stored as discrete analog samples in a set of AN 1000 H Hybrids. There are four hybrids, each of which has four channels. Each channel can capture a signal with picosecond precision using fast pre-samplers, but requires a 16 ns cycle to store the sample. The four hybrids provide 16 channels, each staggered by 1 ns thus acquiring a new sample every nanosecond. The pre-sampler clocks are brought out of the hybrids in pairs, allowing for eight different clocks (two nanoseconds apart). The two channels sharing the same clock are connected to different signal paths, one having an extra 1 ns of coax delay in it. Each channel is 256 cells deep, resulting in a total acquisition of 4096 samples, or over 4 microseconds of data. No attempt has been made to shorten the acquisition cycle. After the samples are collected, a readout phase begins, which transfers the successive sample of each channel to a fast 12 bit A/D converter. Only a small fraction of the 4096 samples are actually needed, but the four
channels on each hybrid are arranged such that one must be completely read before the next one can be started. The time (and power consumption) of this requirement is minimized by rapidly clocking out the samples before and after the desired segment, and slowing the clock to the speed of the \(A / D\) converter for the samples which are actually needed. This process is currently implemented using fixed constants, but could be modified to identify the region of interest, with a small increase in on time. The cells beyond the end of the region of interest in the fourth channel in each hybrid do not need to be clocked out at all, so the closer the desired data is to the beginning of the buffer, the less time will be required in the unload phase. The readout clock and A/D converter control are generated in software in the microprocessor. This is a full time task during that interval, and could not have even been considered on a slower processor. For this reason, no processing is done until the readout is completed. Upon completion, the data is scaled by gain and offset values stored from a calibration sequence and transferred to the host system. Calibration consists of starting the calibration sequence, providing a fixed voltage input, doing an acquisition cycle, providing the value of the fixed voltage, changing the voltage, and repeating the process as many times as desired ( 3 minimum, 16 maximum, 6 to 10 suggested). A final call to the calibration routine converts the accumulated summations into slope and intercept parameters for each cell. Separate calibration data is necessary for each cell because of variations in the sample and hold capacitors which store the samples. The host system communicates with the A/D system by means of a 16-bit bi-directional data bus with 6 handshaking wires. A command set is provided that allows not only calibration and operation, but also allows reading and writing (except EPROM) all data memory and code memory addresses, individually or by blocks, and input or output to any I/O address. Extra commands are reserved which are initially NOP's but can be patched to provide added functionality, even in flight.

In order to minimize power consumption and heat dissipation, power duty cycling has been implemented. Many of the power requirements, including all of the GaAs and ECL logic are needed only during the four microseconds of acquisition. These are known as the write loads. Several other voltages are needed only during acquisition and readout. These are known as the read loads. All switched voltages turn on within 5 microseconds, and are designed to be stable within 10 microseconds. Another 10 microseconds is allowed for the circuitry drawing the power to stabilize. Ten microseconds is allowed as a trigger window, and another 10 microseconds for the acquisition and shutdown of the write loads. The read loads remain in for several milliseconds, depending on the size and position of the data to be unloaded.
\(\begin{array}{lc}\text { RISC } & \text { PROGRAM MEMORY } \\ \text { EPROM } & \text { SRAM } \\ 0000 \mathrm{~h} & 8800 \mathrm{~h}\end{array}\)
PROCESSOR


EPROM
0000

\title{
MORY \\ latched output bits \\ DATA PORT
}
-8000h


Figure 3-9, Lola A/D Converter

FOLDOUT FRAME /.


FOLDOUT FRAME 2


Figure 3-8, Lola A/D Coonverter

\begin{tabular}{|c|c|c|c|c|}
\hline Lut trimes: & \multicolumn{4}{|r|}{AMERASIA TECHNOLOGY} \\
\hline \% & \multicolumn{4}{|r|}{LOLA A/D CONVERTER} \\
\hline & \({ }^{\text {If }}\) & rev. 3.0 & nem 1 & nis \\
\hline & \multicolumn{4}{|l|}{mumat in m vilumm} \\
\hline
\end{tabular}

Figure 3-7, Lola A/D Converter



In. 0024

1 vt


Figure 3-10. Lola A/D Converter

\subsection*{3.3.1 Signal Input Stage}

The input amplifier is constructed in two section, as shown in Figure 3-7, each having two stages. The sections are identical except that one section has no delay, the other a one nanosecond coaxial delay line. The first stage is a buffer amplifier which provides minimal loading of the input signal to allow bridging of the two stages, and low enough output impedance to drive the eight second stage amplifiers in parallel. The input signal is terminated in 50 ohms at the end of the 1 nanosecond length of coax. The second stage provides minimal loading to the first stage and a 50 ohm output to match the hybrids. A wideband amplifier having a frequency response which is flat from DC to 350 MHz pushes the state of the art in semiconductors and integrated circuits. It would be much simpler if DC coupling were not required, or if a DC offset could at least be tolerated. DC coupling was a requirement partly to simplify calibration, and partly because any coupling capacitors which could charge and stabilize during the 20 microsecond turn on time would not pass low enough frequencies to leave the pulses being measured undistorted. Operational amplifiers represent the most straightforward method of providing DC coupling without significant offset. The recent development of current feedback op-amps allows their use to frequencies in excess of 300 MHz . The CLC 409 was chosen for this application. With careful construction practices it can be built into a system which is fairly flat to 350 MHz .

\subsection*{3.3.2 Staggered Clock Generation}

In order to acquire samples with 1 ns resolution, a 1 Ghz clock with fast rise and fall times must be the basis of the timing logic. A SAW oscillator was used for this purpose. The oscillator is connected to a power splitter which provides an external output for other uses, and a clock signal to a GaAs shift register. The shift register is connected to circulate a pattern of 8 zeros followed by 8 ones. By tapping this signal at various stages, the four 16 ns clocks were provided (one for each hybrid, four nanoseconds apart). The eight pre-sampler clocks come from GaAs gates which generate pulses based on the time it takes for the basic clock transition to pass from one tap of the shift register to a tap two stages later. This provides a 2 ns wide clock pulse every 16 ns . Eight of these gates provide pre-sampler clocks staggered by 2 ns intervals.

\subsection*{3.3.3 Analog Memory and Presampler}

The heart of the system is the set of AN 1000 H hybrids. Each of these memories have four signal inputs, two pre-sampler clock inputs, one data transfer clock input, and various control signals, as shown in Figure 3-8. The control signals are generated by TTL logic derived from the trigger signal and the data transfer clock for the first hybrid. The control signals must be delayed by 4 ns per hybrid. This is done by re-clocking them for each of the other hybrids, using a 47AC174 quad D flip-flop clocked from that hybrid's data clock. All pre-sampler and data clocks are routed over 50 ohm controlled impedance traces whose paths are match to within \(2 / 1000\) inches to minimize external channel to channel skew. The internals of the hybrids exhibit some skew, as was shown earlier. It has been assumed that this skew is consistent from device to device. The signal inputs to the hybrids from the front-end amplifier are connected via pieces of semi-rigid .141" coax cable. The pieces are all the same length, except for variations calculated to compensate for the internal skew. The following table shows this:
\begin{tabular}{ccc} 
CHANNEL & RELATIVE DELAY & CABLE LENGTH \\
1 & 200 ps & \(+.9^{n}\) \\
2 & 0 ps & \\
3 & 135 ps & \(+.6^{n}\) \\
4 & 260 ps & \(+1.2^{n}\)
\end{tabular}

The hybrids require numerous voltages (see Figure 3-8), all of which are duty cycle switched, some write cycle only, other stay on until the end of the read cycle. The read cycle also has its own clock and control signals which are derived from I/O circuitry on the microprocessor. This approach simplifies the hardware, and adds flexibility. The analog output is shared between all sixteen channels on all four hybrids. It consists of a differential amplifier with feedback, followed by a gain stage, which drives an A/D converter. The A/D converter has 5 volt and 10 volt inputs which are tied together to give a three volt full scale sensitivity. Its input is bipolar, which fits well with the output of the hybrids. No offset was included. The A/D converter has a built in sample and hold, and is very easy to use. Each read starts a new conversion. This does mean that a priming read must be given, or conversely, the first data element is discarded, and an extra read is done at the end. The 5 volt supply to the A/D converter had to be left on all the time because the converter is connected to the computer data bus. A bus buffer chip would have solved this had it been anticipated. The -12 V supply is switched. Because the original intention was to switch the
+5 V supply also, the reference voltage is filtered with a much smaller capacitor than the recommended 47 uf . This may need to be changed if it adds too much noise.

\subsection*{3.3.4 Microprocessor Interface and Communications Circuit with Host Computer}

The microprocessor is a UT1750AR RAD hard RISC processor, as shown in Figure 3-9. It uses a Harvard architecture, having separate code and data memory. Only the lower 16 bits of the code address are decoded, with the first 32k being EPROM and the last 32k SRAM. The only thing in SRAM by design is a command jump table and a few small utility code fragments. These are copied from the EPROM. The remainder of the SRAM is reserved for extensions, including in-flight modifications. The data memory consists of 64 k bytes of fast CMOS SRAM. The original intention was only to populate the first half. Most of this is used up by calibration tables and the data buffer. The second half is unused at present. An RS-232 serial port is built into the processor, but is of limited use because it does not generate interrupts. It is not needed in this application, although a level translator and connector have been added to allow for its use. If it is not used, it may be desirable to cut the power jumpers to this chip to lower the power consumption. I/O decoding is done with a 74AC138. In addition two 74HC259's provide latched output discretes which are set by writing (anything) to a specific I/O address, and cleared by writing to one address lower. U75 deserved particular mention because its clear input comes from U76-Q7. This means that when U76-Q7 is high, U75 acts like a decoder, with all outputs low, except for the one being addressed at a particular moment (if any). This allows short positive pulses to be output instead of levels, which is used to generate the fast two phase read clock used to skip cells. The other outputs of U75 have been inverted as necessary so that their cleared state would be compatible with this operation. Two 74HC573's provide a 16 bit status word. The low byte contains various handshake signals, while the upper byte is a copy of the read and write end signals of all four hybrids. These latter signals are not likely to be used in operation, but are useful for testing. U72 may be optionally removed for in flight use to conserve power, although its consumption is minimal, mostly derived from the extra capacitive loading it provides to the bus. Host communication is provided by U79-U82 (74HC574's) and U83 (status latches). The protocol for this is described elsewhere, and a listing of the software is given in Appendix 1. Notice that U83 is level sensitive, and responds to the leading edge of the pulse. This means that pulses should be less than 500 ns wide so the micro does not have time to start a new operation before the old operation is completed externally.

\subsection*{3.3.5 Power Supply Duty Cycle Control}

The power supply consists of three sections. The first is fixed voltages. The microprocessor subsystem needs a constant source of +5 V . The 1 Ghz oscillator and the RS-232 level shifter need a constant source of +12 V . The second category is switched versions of input voltages. In addition to the above voltages, \(6.5 \mathrm{~V},-5.2 \mathrm{~V}\), and -12 V , are provided to the system. These voltages and +5 V are switched by power mosfets as needed for the write loads and read loads. In each case the switching signal passes through a capacitor to insure that it will time-out in hardware in case of a microprocessor upset or glitch. The third category is switched derived voltages. The write loads need, in addition to the above voltages, \(+5.3 \mathrm{~V},-2 \mathrm{~V},-3.4 \mathrm{~V}\), and -4 V , as well as two offset bias voltages. These are generated by power mosfets controlled by op amps. An LM385-2.5 is used as a precision reference. The original intention was to power it on and off for the 40 microseconds of the write cycle. However, it has several internal capacitors which cannot charge that rapidly, so it is left on, lightly loaded all the time. A copy of the write power control signal is current limited in a 110 ohm resistor and clamped by this regulator. This signal provides a regulated pulse to the op amps controlling the mosfets. When this signal is off, the op-amps shut off the mosfets, and when it is on they regulate the output of the mosfets to the desired voltage. Extra resistors and capacitors were required to provide closed loop stability of the op-amp circuits, while at the same time providing the rapid turn on and settling needed by the loads. The pulse which is clamped by the LM385-2.5 is also capacitor coupled to provide a hardware time-out. This is especially important here because the mosfets which are regulating must dissipate power and are not heat sunk for continuous dissipation. Also the write loads, especially the GaAs, are not heat sunk for continuous dissipation. IT IS VERY IMPORTANT NOT TO BYPASS THIS DUTY CYCLE LIMITING.

The decision of which voltages to require as inputs and which to derive was based on power consumption considerations. All constant power sources were made inputs, since any regulator drops in these would represent full time power consumption and heat losses. It is assumed that these voltages can be generated externally with high efficiency switching power converters. Second, all voltages that would represent a major drop from the next higher available voltage are required as inputs. The +6.5 V input for instance would be very inefficient to derive from +12 V . The remainder of the voltages are derived from these voltages, using the mosfet regulator/switches. The voltages are all write cycle loads having a 40 microsecond duration and a \(.1 \%\) duty cycle, so the losses in the regulator represent a very small fraction of the total power consumption.

\subsection*{3.4.1 Characterization of the AN1000H Hybrid}

The hybrid is characterized in the test circuit shown in Figure 3-1. It is clocked at 62.5 MHz , which is the DCLK clock. The same clock rate is used for the presampler inputs, which are 2 ns wide. The difference between this test circuit and the final implementation of the 1 GHz Digitizer is that the latter consists of four hybrids, for a total of 16 inputs, while the signal to each input are delayed by a different amount, with the differences being exactly 1 ns apart. This provides 16 equally spaced ( 1 ns ) signals every 16 ns (at 62.5 MHz ). For initial testing the test circuit was connected to a 20 MHz function generator, set to produce SINE, SQUARE, and TRIANGLE waveforms at various frequencies. The analog memories (in the hybrids) is filled from this source (all four channels in parallel), and then read out (sequentially) using a \(400 \mathrm{Msamples} / \mathrm{s} 6\)-bit digital oscilloscope to observe the waveform. Plots from the digital oscilloscope are given in Appendix 3. A full set of 256 samples requires 4.096 microseconds to collect, and sequentially reading back the 1024 samples takes 9 milliseconds. Therefore the frequency of the input signal is reduced by approximately 500 to 1.

In this procedure there are several limitations. The four inputs are resistively isolated, causing significant loss of signal, hence requiring maximum output from the function generator. Consequently, little room is left for baseline offset, and may have contributed to some clipping of the waveform. In addition, the oscilloscope resolution of 6 bits tends to exaggerate the noise content of the waveform. The signal would normally be sampled by a sampling A/D converter just before each transition, when it is most stable. The oscilloscope, however, shows all the waveform settling and glitches, which otherwise would not be digitized. To isolate the digital from the analog signals two planes are used, which are segmented. The test results are given in Appendix 3. Figure A3-1 shows the input signal (lower trace) captured by the test circuit. The upper trace is a frame sync signal which defines the beginning and end of the capture interval. The input signal was a portion of the rising half of a 100 KHz triangular wave. The noise on the signal shows the typical resolution and noise of the oscilloscope.

Figure A3-2 shows the output (readback) signal resulting from the input signal. Similarly, the upper trace shows the frame sync (read frame) signal used to define the beginning and end of the readback interval. Notice that there are four copies of the input signal, corresponding to the sequential readback of the four channels. These four copies should be identical. The end purpose of this test circuit is to quantify channel to channel
variations. In Figure A3-3 the same signal as in Figure A3-2 is shown using a faster timebase so that the first channel is given an expanded view. This allows a detailed look at signal variations and noise. Figure A3-4 shows an even faster timebase, so that the individual cell readout is clearly visible. Cell changes occur at 9 -microsecond intervals. Notice in the latter two cases, while there is considerable noise on the signal, the largest spike occurs immediately after a cell transition followed by one occurring near the midpoint of the cell. The last microsecond before a transition remains relatively noise free. This is the point for optimum sampling and digitization.

A 2 MHz triangular input signal is shown in Figure A3-5, and its corresponding output waveform is shown in Figure A3-6. The three discontinuities appearing at the output are not errors, but represent the transition from one channel to another. In order to show this boundary, the input signal frequency is chosen not to be a multiple of the sampling window. With a 1 MHz input sinewave, the output is shown in Figure A3-7. The channel to channel transitions are even more clearly visible. In Figure A3-8, the same output is shown with a faster timebase to show only one channel output. The input sinewave frequency is increased to 20 MHz and the resulting output is shown in Figure A3-9. Since there is no output filtering, the beat frequency between this signal and the 62.5 MHz clock is perceptible in the output waveform. The top trace belongs to the sample/hold clock used by the A/D converter which samples the output. The sample phase ends with the negative edge of this clock, which occurs immediately before the cell transition of the hybrid. The first two clock pulses are part of the initialization process, thus do not present valid data.

From the test results several conclusions are drawn. First, the basic concept is viable. The test circuit captures and reproduce the waveforms. Second, the signal-to-noise ratio is adequate for the intended application. Third, there is some channel to channel offset which needs to be dealt with during calibration. In the remaining test results, given in Appendix 3, further test and analysis are performed with input signal frequencies up to 1 GHz . Output waveforms are displayed with errors due to offset and gain variations. Their corrected versions are also given.

\subsection*{3.4.2 System Tests}

A number of tests and considerable debugging of the system were performed, although it was not \(100 \%\) functional or tested when the funding ran out. The microprocessor and support logic and memory have been fully tested and are fully functional. The intended software has been written, a listing is given in Appendix 1. The startup and monitor code have been fully tested and debugged. The one addition which might be made in this area
would be self-test routines, such as RAM test, EPROM checksum, and as much I/O testing as the design allows for. The conversion cycle routines have been partially tested. The cycle progresses properly without any time-out or errors. The write cycle appears to initialize the system properly, and respond to status properly. The read cycle seems to generate the proper clock and control signals, operate the A/D converter properly, store data in the correct place and scale and output it correctly. Because no calibration has been done and not useful data retrieved, this section is less than fully tested. It has been determined that output data is dependent on input signal, but with the limited amount of testing done, it was not obvious that the output data was a reasonable representation of the input signal. The calibration routine has not been tested at all, and is not guaranteed crash free at this time. A copy of the C code (known to work) from which this routine was derived will be provided with the system as an aid to understanding and debugging this routine. The C code is based on processing one cell at a time from several files, each containing data at a different calibration point. The 1750 code by contrast was designed to accumulate the necessary intermediate values for each cell, one calibration point at a time, and then transform the result to slope intercept form afterward. The power circuitry has been tested. All power supply voltages achieve nominal value within 5 microseconds after turn on. Turn off decay depends on the current drawn by the load, and the number and size of the bypass capacitors across it. Current from the source stops within a microsecond or two after the shutdown command. The hardware time-out circuitry has also been tested and works properly. The signal input circuitry has been tested, both with static power and duty cycled. The value of the feedback resistors has been optimized for maximally flat frequency response. The trace between the first and second stages was found to be inadequate at 350 MHz , and had to be supplemented with a wire. The amplifiers furthest from the source were showing more attenuation. No testing has been done on the coax path length. This testing cannot be done until calibrated signals are available from the system. The test procedure should consist of calibrating the system (DC) and then placing a sine or triangle wave of 20 to 50 MHz and full scale amplitude into the system and examining the output data graphically. Timing errors will result in certain segments of the resulting waveform being higher or lower than they should be. A short path will cause a rising slope to appear higher than expected, and a falling slope to appear lower. This is in contrast with gain errors which will always appear closer to (or further from) the midpoint than expected, or offset errors which will always appear higher (or lower) than expected. If every other channel is off, the \(1 \mathrm{~ns} \mathrm{delay} \mathrm{coax} \mathrm{will} \mathrm{need} \mathrm{trimming}\). channels are off, the coax between the input amplifier and that channel must be trimmed.

The clock and control signals have been examined. It is not possible with the available equipment to fully check out the GaAs clock signals for duty cycle and phasing in a
pulsed system. This is because the available oscilloscope is not fast enough for real time sampling, and the pulsed signal was not long enough to be captured using repetitive equivalent sampling. The signals were verified to be present and on frequency, while the control signals were verified to be present and appropriately timed. The write cycle was measured at 40 microseconds, and the read cycle at 2.8 ms (this is sample size dependent). The read clock was checked, the fast clock was 840 ns and the slow clock was 3.3 microseconds. Both had the expected number of pulses for the skip and sample values used, and were checked with different values. The START-2 signals were check and found to be inserted properly. No check was made of any end signals, although since the software does not read out the trailing skipped values from channel four of the hybrids, no end signal would have been visible unless all channels were read.

\subsection*{3.4.3 Special Operations Instructions and Notes}

The power inputs are assumed to turn-on simultaneously. If it is necessary to sequence them for external reasons, the order should be +5 and +12 first -5 second and then +6.5 . The -12 can be turned on anytime with or after +12 . There is hardware and partial software support for software triggering of a conversion cycle. This is included for testing and calibration purposes. The variable SoftTrig is set to 0 (disabled) on a cold reset. It may be changed to non-zero using the monitor write instruction. When it is non-zero, the software does not wait for a hardware arm signal, and supplies an internal hardware trigger to start an acquisition cycle. This trigger is generated approximately 30 microseconds after the acquisition command is given by the host, when SoftTrig is non-zero. All testing if the system has been done using this method of triggering. It is possible, and may prove desirable, to eliminate the hardware ARM command. Since the host system is likely to have control over the subsystem responsible for the data to be collected, it could issue the acquisition command at the time the system needs to be armed. One easy way to implement this change is to separate the bits of the SoftTrig variable such that one bit is used to skip the ARM check and another to force a software trigger. Presently both tests simply check for a non-zero value. In Appendix 5 the description of hardware interface with the system computer is given.

\subsection*{4.0 CONCLUSIONS AND RECOMMENDATIONS}

The design of the 1 GHz Digitizer for Space Based Laser Altimeter has been completed. A feasibility model was built, and partially tested. Testing was not completed because of the limited funding available at this time. However, a unique method of digitizing wideband signals ( 350 MHz ) with very low average power consumption was developed and proven to be feasible. The heart of the system is a state-of-the-art hybrid memory chip (AN1000H) with built in presamplers. Sufficient hardware testing has been performed to give assurance that the developed technique is feasible. Because of the much lower power consumption achieved as compared to the initially expected amount, a continuous 1 GHz timing output (from a SAW oscillator) is afforded within a limited power budget. A software package to control various functions within the digitizer and to communicate with a host system computer was also developed. Unfortunately, the allowable budget would not permit debugging and testing of the software. Because the status of the digitizer is so close to completion, it is recommended to extend funding of this project to complete all necessary testing and packaging to obtain a working model. At this point technical risk is minimal if not nonexistent. At the completion of this feasibility model, the logical action is to develop a space qualified unit for future space exploratory missions.

APPENDIX \#1
;This file is designed to be assembled with CROSSI6 meta-assembler : version 2.0

\section*{; Pile created 9 August 1991}
; by HIlton Hell
; last modified on 10 Septerber 1991
;Contains stand-alone UTI750AR assenbly language code in native
; mode to control a \(1 \mathrm{Gs} / \mathrm{s} \mathrm{N} / \mathrm{D}\) converter systen using Analytek
; hybrid analog mewory modules in a 16 -way interleaved fashion.
; Code menory map is as follows (addresses are 16 bit words):
; 0000h to 7PPFh is EPROM containing startup and core code.
; 8000 h to FFFFh is SRAM containing linking tables loaded from ; EPROM and dynanically added code modules. ; 10000 h and up are not decoded and wrap into above areas.
00008012=
"|||||
```

```
```

 00008000
    ```
```

 00008000
 00008000
00008000
00008010
00008010
00008011
00008011
00008012
00008012

```
00008011
```

00008011
"
ImgDst: equ 8000h h ;start of RAM code space
=
CadRtn: equ 8010h ;address to return to after comland

``` CPU "UT1750AR.TBL" ; table of meeonics to use for 1750
;CODE SPACE SRAM EQUATES
;A separate \(64 \mathrm{k} \times 16\) blt data address space is populated with ; SRAK, and used as described by data equates below.
;A separate \(I / O\) space is decoded as described by I/O equates below.
;Special note should be given to the hardware signals 01Y and \(02 Y\)
; which are a two-phase, non-overlapping readback clock
; generated in software. There are two nodes of generating this
; signal. For skipping cells, a high speed wode is used where
; U75 is placed in non-latching decode mode (by asserting its
: CLEAR pin). Writes to 01YHi and 02YHi in this mode generate ; pulses on the respective lines. For reading cells, the CLEAR
; is removed and OIY and O2Y become latching outputs which must
; be set by O1YHi and 02 YHi respectively, and cleared by OlYLow
; and 02YLow respectively, These connands are interspersed with
; suitable timing waits, \(M(D\) reads and loop control comands.
;Note that the assembler used makes no distinction between
; code and data objects. Both share the same symbol table space.
: It is up to the programer to use syabols appropriately. Code
; space symbols are used only with LRI and STRI instructions.
:The asseabler uses one possibly non-standard memonic form. I ; could not see a way to differentiate between:
sar RO,R4 ; shift right 4 places
```

and

```
sar RO,R4 ; shlft right by amount specified ; In register 4
so I adopted the following convention for the former case:
sar RO, R+4 ; shift right 4 places
and for consistency:
sar RO,L+6 ;shift left 6 places
WDLN 2 ; word length (width in bytes) for the 1750
; sar R0,R4 \(\quad\); shlft right by amount specified
so I adopted the following convention for the former case:
and for consistency:
: sar RO,L+6 ;shift left 6 places
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 00000000 & \(=\) & Codechk: equ & On & ; 32 bit sum of code RNM \\
\hline & 00000002 & \(=\) & Samples: equ & 2 h & ; number of samples to keep (per chan) \\
\hline & 00000003 & \(=\) & Skip: equ & 3h & ; \(n\) urber to skip before starting (per chan) \\
\hline & 00000004 & \(=\) & Softrig: equ & 4h & ; non-zero if software trigger should be given \\
\hline & 00000005 & \(=\) & Calflag: equ & 5 h & ; non-zero if calibration In process \\
\hline - & 00000006 & = & CalvSun: equ & 6h & ; sumation of correct calibration values \\
\hline & 00000007 & = & CalCnt: equ & 7 h & ; count of number of calibration values used \\
\hline & 00000008 & \(=\) & CalSkH: equ & 8h & ; Hold value for skip, used during calib. \\
\hline - & 00000009 & \(=\) & CalSaH: equ & 9 h & ;Hold value for samples, used during callb. \\
\hline & 00001000 & \(=\) & ADBuf: equ & 1000h & \\
\hline & 00002000 & \(=\) & ADGain: equ & 2000h &  \\
\hline & 00003000 & \(=\) & ADOfs: equ & 3000h & ; b \\
\hline & 00002000 & \(=\) & CalSums: equ & 2000h & ; used for curve fitting, overlays gain \\
\hline & 00003000 & = & CalSqrs: equ & 3000h & ; used for curve fitting, overlays offset \\
\hline & 00005000 & \(=\) & CalVctr: equ : ending & \[
\begin{aligned}
& 5000 \mathrm{~h} \\
& \text { at } 6 \mathrm{FFPh}
\end{aligned}
\] & \begin{tabular}{l}
;used for curve fitting. Sqrs and Vctr \\
; values are two words wide
\end{tabular} \\
\hline - & \multicolumn{5}{|c|}{:I/O ADDRESS EQUATES} \\
\hline & 00000040 & \(=\) & DHA: equ & 40h & ; DHA write and read word to host \\
\hline & 00000050 & \(=\) & Status: equ & 50h & ; read to get systen peripheral status: \\
\hline & 0000001 F & \(=\) & Cmd: equ & 31 & ; \(\mathrm{bO}=1\) when host is giving comand \\
\hline & 0000001E & \(=\) & CTS: equ & 30 & : bl is RS-232 handshake (CTS) \\
\hline & 0000001D & \(=\) & InRepty: equ & 29 & ; b2 is DHANACK ( \(0=\) DATA read by host) \\
\hline & 0000001 C & \(=\) & OutFull: equ & 28 & : b3 is DIARAV ( \(0=\) DATA ready to read) \\
\hline & 0000001 B & \(=\) & ADBusy: equ & 27 & ; b4 \(=0\) if \(\mathrm{N} / \mathrm{D}\) conversion finished \\
\hline & 0000001 A & \(=\) & ConvBusy: equ & 26 & \[
\begin{aligned}
& ; \mathrm{b} 5=0 \text { at end of read cycle } \\
& ; \quad \text { set to } 1 \text { by reading } \mathrm{I} / 06 \mathrm{~h}
\end{aligned}
\] \\
\hline - & 00000019 & \(=\) & AcqBusy: equ & 25 & \[
\begin{gathered}
\text {; } b 6=1 \text { when triggered and } 0 \text { at } \\
\text { end of write cycle }
\end{gathered}
\] \\
\hline & 00000018 & \(=\) & Notare: equ & 24 & ; b7 = 0 for ARM syster request \\
\hline & 00000017 & = & NotREndl: equ & 23 & ; b8 is EEND2-1 fron hybrid \\
\hline & 00000016 & \(=\) & NotREnd2: equ & 22 & ; b9 is *END2-2 fron hybrid \\
\hline & 00000015 & = & NotREnd3: equ & 21 & ; blO is *END2-3 from hybrid \\
\hline & 00000014 & \(=\) & NotREnd4: equ & 20 & ; bll is *END2-4 fron hybrid \\
\hline - & 00000013 & \(=\) & NotWendl: equ & 19 & ; bl2 is *ENDI-1 from hybrid \\
\hline & 00000012 & = & NotWend2: equ & 18 & : bl3 is *ENDI-2 fron hybrid \\
\hline & 00000011 & = & NotWend3: equ & 17 & ; bl4 is *ENDI-3 from hybrid \\
\hline - & 00000010 & \(=\) & NotWends: equ & 16 & : blS is *ENDI-4 from hybrid \\
\hline - & & & \multicolumn{3}{|r|}{:The following addresses are activated by ; writing. The value vritten is ignored, ; only the address matters.} \\
\hline & 00000050 & \(=\) & RstWroEn: equ & 50 h & ; resets the wite logic which is not ; needed during read \\
\hline - & 00000051 & \(=\) & RstHrODis: equ & 51h & ;releases reset \\
\hline & 00000052 & = & Rsturlen: equ & 52h & \begin{tabular}{l}
;resets write logic which must not \\
: be reset during read
\end{tabular} \\
\hline & 00000053 & \(=\) & Rsturlois: equ & 53h & ; releases reset \\
\hline & 00000054 & \(=\) & WrPwrDn: equ & 54h & ; renoves power from urite logic \\
\hline & 00000055 & \(=\) & MrPwrUp: equ & 55h & ;applles power to write logic \\
\hline & 00000056 & = & RdPurDn: equ & 56h & ; removes power from read logic \\
\hline - & 00000057 & \(=\) & RdPwrUp: equ & \begin{tabular}{l}
57h \\
(NOTE:
\end{tabular} & ;applies power to read logic is needed for Mrite as well) \\
\hline & 00000058 & \(=\) & TrigDis: equ & 58h & \begin{tabular}{l}
; prevents trigger signal from \\
: starting a conversion
\end{tabular} \\
\hline & 00000059 & \(=\) & Trigen: equ & 59h & ; allows trigger signal to start a conversion \\
\hline & 0000005 \({ }^{\text {A }}\) & \(=\) & StartEn: equ & 5An & ;software trigger \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline - & 00000 1BFF0050 & \multirow[t]{4}{*}{Init:} & otr & \multicolumn{2}{|l|}{} \\
\hline & 00002 1BFF0052 & & otr & ACC, RstHilen & ; set all resets and power down \\
\hline & 00004 1BFP0054 & & otr & ACC, WrPwidn & \\
\hline \multirow[t]{4}{*}{-} & 0000618 PFO 56 & & otr & ACC, RDPwidn & \\
\hline & 00008 18FP0058 & & otr & ACC, TrigDis & ;disable triggering \\
\hline & 0000ג 18PF005B & & otr & ACC, StartDis & ; and softvare trigger \\
\hline & 0000C 18PF005C & & otr & ACC, Statoff & ;no status word ready \\
\hline & O000E 1BPFOOSE & & otr & ACC, PastRead & \begin{tabular}{l}
;this resets RstRDis, 01YLow, 02YLow. \\
; St2-1Dis, St2-2Dis, St2-3Dis, St2-4Dis
\end{tabular} \\
\hline & 00010 18P9005F & & otr & ACC, SlowRead & ; undo above resets \\
\hline \multirow[t]{3}{*}{-} & 00012 1BFF0061 & & otr & ACC, RstREn & ;Leave Read reset active \\
\hline & 00014 97F0 & & inr & ACC, TAH & ;stop timers \\
\hline & 00015 97FI & & inr & ACC, TBH & \\
\hline \multirow[t]{4}{*}{} & & set & up any & hardware needed & for interrupts \\
\hline & \(00016141 F 0050\) & & inr & RO, STATUS & ;get status word and check Command bit \\
\hline & 00018 D81F & & tbr & RO, Cnd & \\
\hline & 00019 PE8B & & br & NE, cold & ; if set, force cold start \\
\hline \multirow[t]{3}{*}{-} & 000180000 & & nop & & \\
\hline & 0001B OE3F02C0 & & call & R16, Chksum & ;test code RAM \\
\hline & 0001 D 045 F 0000 & & \(1 r\) & R2, CodeChk & \\
\hline \multirow[t]{3}{*}{-} & 0001 P 047 F 0001 & & Ir & R3, CodeChk+1 & ;get comparison value \\
\hline & \(000213 E 12\) & & cmp & XR0, XR2 & \\
\hline & 00022 7D1F0020 & & jc & EQ, wara & ; OK, matches \\
\hline \multirow[t]{3}{*}{} & 000240000 & & nop & & ; no match, restart from scratch \\
\hline & 00025001 F 02 CB & cold: & nov & RO, Inage & ; block move RAM constants from EPROM \\
\hline & 00027 003F8000 & & 304 & R1, IngDst & \\
\hline \multirow[t]{3}{*}{-} & 00029 O3E0 & coldlp: & nov & ACC, RO & \\
\hline & 0002A 845F & & 1 l & R2 & \\
\hline & 00028 03E1 & & nov & ACC, RI & \\
\hline \multirow[t]{4}{*}{-} & 0002C 8840 & & stri & R2 & \\
\hline & 0002 D 1001 & & add & R0, 1 & \\
\hline & 0002E 3C1F02E7 & & cmp & RO, IngEnd & \\
\hline & 00030 FC98 & & br & LT, coldlp & \\
\hline \multirow[t]{3}{*}{} & 00031 A021 & & add & R1,1 & ; (used if br) \\
\hline & 00032 OE3FO2CO & & call & R16, Chksun & ; checksum entire code RAM \\
\hline & 00034 081P0000 & & str & RO, CodeChk & ; save result \\
\hline \multirow[t]{3}{*}{-} & \(00036083 F 0001\) & & str & R1, CodeChk +1 & \\
\hline & 00038 83E0 & & nov & ACC, IntMask & ; set up intercupt nask \\
\hline & 00039 9BE5 & & otr & ACC, , FK & \\
\hline \multirow[t]{4}{*}{} & 0003^ OE3F0205 & & call & R16, Cal0 & ;initialize calibration table \\
\hline & 0003 C 8000 & & nov & RO, 0 & \\
\hline & 0003D 08170003 & & str & R0, Skip & \\
\hline & \(00038081 F 0004\) & & str & R0, Softirig & \\
\hline \multirow[t]{3}{*}{} & 000418002 & & mov & R0, ColdStat & \\
\hline & 00042 FF86 & & jc & X, startcon & \\
\hline & 000430000 & & nop & & \\
\hline \multirow[t]{4}{*}{} & 00044 03FF8011 & warn: & nov & AcC, WarnLink & ; get address of user warn start \\
\hline & 00046841 F & & 1 l 1 & RO & \\
\hline & 00047 OE2O & & call & R16, RO & \begin{tabular}{l}
;execute it (will not return \\
; but will junp (call) warmend)
\end{tabular} \\
\hline & 000488001 & varmend: & nov & RO, War Stat & \\
\hline \multirow[t]{5}{*}{} & 00049 & startcon & & & \\
\hline & & ; onit & for & now otr & acc, ENBL ; turn on interrupts \\
\hline & 00049 1BPF005D & & otr & ACC, Staton & ; set status flag \\
\hline & 0004 B 181 F 0040 & & otr & RO, DHA & ;output status word regardless of \\
\hline & \(00040181 F 0040\) & & otr & RO, DHA & ; handshaking \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & \multirow[t]{7}{*}{} & \multicolumn{4}{|c|}{register useage by monitor} \\
\hline & & & & \multicolumn{2}{|l|}{low portion of address being accunulated} \\
\hline & & ; XR2 & & starting add & ess for range \\
\hline & & ; XR4 & & ending addr & ss for range \\
\hline & & ; R6 & & non-zero if & address is in code space \\
\hline & & ; R7 & & data portion & of conmand word \\
\hline & & ACC & & command / j & address \\
\hline & 000488020 & monitor: & nov & R1, 0 & ; set low portion to zero initially \\
\hline & 000508241 & & nov & XR2,1 & ; set starting address of 1 \\
\hline - & 000518280 & & nov & XR4, 0 & ; and ending address of 0 (done) \\
\hline & 000528000 & & nov & R6, 0 & ; set to data space \\
\hline & 0005314170050 & nextword: & inr & R0, Status & \\
\hline - & 00055 D81D & & tbr & R0, InEupty & ; see If data available \\
\hline & 00056 PE9C & & br & ne, nextword & ; no, wait \\
\hline & 00057 D81F & & tbr & Ro, Cad & ; yes, test for command sequence \\
\hline & 0005814 PF 0040 & & int & R7, DMA & ;get command \\
\hline \multirow[t]{3}{*}{} & 0005A 7D1F0093 & & jc & eq, statout & ; not comand, error \\
\hline & 0005C 8005 & & Hov & RO, Illdata & : (error usg - needed if jc) \\
\hline & 0005D 0007 & & nov & R0, R7 & ;copy to command area \\
\hline \multirow[t]{3}{*}{-} & 0005E 40FFOPFP & & and & R7, OFPFh & ;strip data section \\
\hline & 00060401 FF 000 & & and & RO, OFOOOh & ; strip command section \\
\hline & 00062 E803 & & scr & R 0 , L+4 & ; shift command dorm \\
\hline \multirow[t]{4}{*}{-} & 00063 O3E0 & & nov & ACC, RO & \\
\hline & 00064 47fP8000 & & or & ACC, CodJmp & ; forr table address \\
\hline & 00066 841F & & 1 l & R0 & ;get junp address \\
\hline & 000670 000 & & call & RO, RO & ; 90 there, does not return here \\
\hline & & \[
\text { ; CKD } 0
\] & & & \\
\hline \multirow[b]{2}{*}{-} & 00068 80CF & & nov & & ; set code space flag (0) \\
\hline & 00069 7F9PFFE8 0006B 0027 & & je
nov & X, nextword
\[
\mathrm{RI}, \mathrm{R} 7
\] & \begin{tabular}{l}
;get rest of command \\
; set 12 low bits (junp taken)
\end{tabular} \\
\hline \multirow[t]{3}{*}{} & 0006C 80C0 & \multirow[t]{3}{*}{; CHD 1 DataLow:} & nov & R6, 0 & ; set data space flag (1) \\
\hline & 0006D 7F9PFFE4 & & jc & x, nextword & ;get rest of command \\
\hline & 0006F 0027 & & nov & R1, R7 & ; set 12 low blts (jump taken) \\
\hline \multirow[t]{2}{*}{} & & \multirow[t]{7}{*}{: CMD 2} & & & \\
\hline & 000700047 & & nov & R2, R7 & ;place upper bits in starting address (2) \\
\hline \multirow[t]{4}{*}{-} & 000718060 & & nov & R3, 0 & \\
\hline & 00072 E25C & & slr & XR2, R+4 & ; shift right 4 \\
\hline & 000734641 & & or & XR2, R1 & ; and combine with low bits \\
\hline & 00074 7P9FPFDD & & jc & x, nextword & ; get rest of command \\
\hline \multirow[t]{2}{*}{} & 000768020 & & nov & R1, 0 & ;clear low bits for end adr (junp taken) \\
\hline & & \multirow[t]{7}{*}{: CKD 3
SthiRd:} & & & \\
\hline - & 000770047 & & nov & R2, R7 & ;place upper bits in starting address (3) \\
\hline & 000788060 & & 100 & R3, 0 & \\
\hline & 00079 E25C & & slr & XR2, R +1 & ; shift right 4 \\
\hline \multirow[t]{3}{*}{} & 0007A 4641 & & or & XR2, R1 & ; and combine with low bits \\
\hline & 0007B 7P9F003F & & jc & \(X\), MonRd & ; go read it and put on bus \\
\hline & 000700292 & & nov & XR1, XR2 & ; set end = beg for one word (jump taken) \\
\hline \multirow[t]{6}{*}{} & & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { : CND } 1 \\
& \text { StHIWr: }
\end{aligned}
\]} & & & \\
\hline & 0007E 0047 & & 10V & R2, R7 & ;place upper bits in starting address (4) \\
\hline & 0007 F 8060 & & 10V & R3, 0 & \\
\hline & 00080 E25C & & slr & XR2, R+4 & ; shift right 4 \\
\hline & 000814641 & & or & XR2,R1 & ; and combine with low bits \\
\hline & 00082 7F9F0055 & & jc & \(X\), Monlir & ;wait for data and write it \\
\hline
\end{tabular}
mov XR4, XR2 ; set end = beg for one vord (jump taken)
; CMD 5

Execute 000868060 00087 E25C 000884641 00089 023F004F 0008B 0C92

LOY R2 R7
nov R3, 0
slr
, sha comblie
XR2,R1 ;and combine with low bits
nov R16, monitor ; set up return address
call R1, XR2 ;indirect junp, return is:
; CALL R16,R16
; which will re-enter the monitor
; CHD 6
EndHIRd:
mov R5,0
slr \(\quad\) XR4, R 4 ; shift right 4
jc \(\quad x\), MonRd \(\quad\);go read it and put on bus
or \(\quad \mathrm{XR4}, \mathrm{RI}\); combine with low bits (jump taken)
; CHD 7

00098 7F9F002E
0009A 1407

0009B 141F0050
0009D D81D
0009E FE9C
0009F D81F
000A0 7E9F004D
000R2 8006
000A3 141P0040
000入5 7F9PFPA8 000271807

000A8 EOFC
000A9 08FF0003
000AB 7P9FFFA2
000AD 0000

OOOAE AOEF
000AF EOFC
OOOBO BCEO
000B1 PD84
000B2 3CFF0100
000B4 PD82
000B5 0000
OOOB6 80E?
000B7 O8FF0002
000B9 7P9P0043
000BB 0000

EndHinr
10 R R, 0
slr XR4, R+4
jc \(\quad x\), Monlir ; wait for data and write it
or \(\quad \mathrm{XR4}, \mathrm{Rl}\); combine with low bits (jump taken)
; CMD 8
IORd: jc \(x\), MonSnd ;
;place upper bits in ending address (7)
; shift right 4
int RO,R7 ;read I/O, and put on bus (jump taken)
; CHD 9
IONr: inr RO,Status ; see if data avallable
tbr RO, InEapty
br ne,IONr ; no, wait
tbr RO,Cod ; yes, is it data or command
jc ne, statout ; command, error - don't continue
nov RO, NoData ; (error usg - needed if jc)
inr RO, DMA ; data, read it
jc \(x\), monitor
otr RO,R7 ;output data to I/O address (junp taken)
; CMD \(\lambda\)
SetSkp:
R7, R+1 ; truncate modulo 16
str RT, Skip ; and divide by 16 to get
jc \(\quad x\), monitor ; skip value per channel
DOP
: CMD B
ManAcq:
\begin{tabular}{|c|c|c|}
\hline add & R7, 15 & ; round up modulo 16 \\
\hline slr & R7, \(\mathrm{R}+1\) & ; and divide by 16 to derive \\
\hline cmp & R7, 0 & \\
\hline br & le, ManLIn & ; don't allow 0 or negative value \\
\hline cmp & R7, 100h & ; or more than 4096 (/16) \\
\hline br & le, Man 0 k & \\
\hline nop & & \\
\hline mov & R7, 7 & ; default to 128 ( 7 * 16) if invalid \\
\hline str & R7, Samples & ; number of cells per channel \\
\hline jc & \(\boldsymbol{x}\), Ar & ;start conversion cycle \\
\hline nop & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & 0000004F \(=\) & ; CMD C AutoAcq: & \multicolumn{2}{|l|}{equ monitor} & ; reserved \\
\hline & O00BC 3E54 & \multirow[t]{9}{*}{MonRd:} & ctip & XR2, XR4 & ; more data to send? \\
\hline & O00BD TEIF0030 & & jc & GT, statout & ; no, return completed status \\
\hline & O00bF 8004 & & nov & RO, Capltd & ; (used if jc) \\
\hline \multirow{4}{*}{-} & \(0000014 \mathrm{C6}\) & & or & R6, R6 & ; code or data? \\
\hline & 00001 PD04 & & br & eq, MonRDta & ; data \\
\hline & 000 C 203 F 2 & & nov & ACC, XR2 & ; code, read next word to send \\
\hline & 00063841 F & & 1 l & R0 & \\
\hline - & 000 C fr82 & & br & \(x\), HonNxtR & \\
\hline & 000050000 & & \multicolumn{2}{|l|}{nop} & \\
\hline & 000060412 & MonRDta: & 15 & R0, XR2 & ; data, read next vord to send \\
\hline \multirow[t]{4}{*}{-} & 00007 A241 & MonNxtr: & add & XR2,1 & ; ready for next pass \\
\hline & \(000<8143 F 0050\) & MonSnd: & inr & R1, Status & ; get status word \\
\hline & 000CA D83D & & tbr & RI, InEmpty & ; see if data revd \\
\hline & 000CB PD09 & & jc & eq, snderr & ; yes, should not have been \\
\hline \multirow[t]{3}{*}{-} & OOOCC D83C & & tbr & R1, OutPull & ; buffer eupty? \\
\hline & OOOCD PE9A & & jc & ne, MonSnd & ; no, wait \\
\hline & OOOCE 0000 & & nop & & \\
\hline \multirow[t]{4}{*}{-} & 000CP 181F005C & & otr & R0, StatOff & ; place In data node \\
\hline & 00001 181F0040 & & otr & RO, DYA & ; send data \\
\hline & 00003 7P9PPFE7 & & jc & \(x\), MonRd & ; try again \\
\hline & O00D5 8005 & snderr: & nov & RO, Illdata & \\
\hline \multirow[t]{2}{*}{} & 00006 7F9F0017 & & jc & x, statout & \\
\hline & 000080000 & & nop & & \\
\hline \multirow[t]{4}{*}{-} & 0000914170050 & \multirow[t]{13}{*}{Monlir:} & \multicolumn{2}{|l|}{inr RO, Status} & ; get status mord \\
\hline & O000B D81D & & tbr & RO, InEepty & ; see if data rcvd \\
\hline & O00DC FE9C & & br & ne, Monily & ; no, wait for it \\
\hline & O00DD D81F & & tbr & Ro, Cad & ; yes, data or comand? \\
\hline \multirow[t]{3}{*}{-} & OOODE 7E9P000F & & jc & ne, statout & ; consand, error \\
\hline & O00E0 8006 & & nov & RO, NoData & ; (error msg - needed if jc) \\
\hline & OOOE 141 P 0040 & & inr & RO, DHA & : data, read it \\
\hline \multirow[t]{3}{*}{-} & OOOE3 44C6 & & or & R6, R6 & ; code or data nemory? \\
\hline & OOOE4 PDO4 & & br & eq, MonMDta & ; data \\
\hline & OOOE5 03F2 & & nov & ACC, XR2 & ; code, mrite word \\
\hline \multirow[t]{3}{*}{-} & O00E6 8800 & & stri & RO & \\
\hline & O00E7 Pr82 & & br & \(x\), Monlurkxt & \\
\hline & O00E8 0000 & & \multicolumn{2}{|l|}{nop} & \\
\hline \multirow[t]{4}{*}{} & O00E9 0812 & \multirow[t]{5}{*}{MonWDta:
MonWrNxt} & str & RO, XR2 & ; data, mite word \\
\hline & OOOEA A241 & & : add & XR2,1 & ;ready for next pass \\
\hline & O00EB 3E54 & & cap & XR2, XR4 & ; more to cone? \\
\hline & O00EC 709FPPEB & & jc & LE, Honiv & ; yes, continue \\
\hline \multirow[t]{2}{*}{-} & O00EE 8004 & & nov & RO, Capld & ; no, return cospletion \\
\hline & OOOEF 8040 & \multirow[t]{7}{*}{statout:} & : 10 V & R2, 0 & ; tireout in case host not unloading buffer \\
\hline \multirow[t]{4}{*}{-} & 000F0 143F0050 & & inr & R1, Status & ; get status mord \\
\hline & 000F2 D83C & & tbr & R1, Outfull & ; buffer enpty? \\
\hline & 000F3 PD03 & & jc & eq, statol & ; yes, proceed \\
\hline & O00F4 1041 & & add & R2,1 & ; no, increment timer (65536 is fall) \\
\hline \multirow[t]{3}{*}{-} & 000F5 PE99 & & jc & ne, statout & ; 100 ns. tine linit, not out \\
\hline & 000560000 & & nop & & ; ran out, force output \\
\hline & 000F7 181F005D & \multirow[t]{4}{*}{statol:} & otr & R0, Staton & ; place in status mode \\
\hline \multirow[t]{3}{*}{-} & 000F9 181P0040 & & otr & RO, DHA & ; send data \\
\hline & 000Fb 789FPF52 & & jc & \(x\), ionitor & ;status sent, return to monitor \\
\hline & O00FD 0000 & & nop & & ; as a recovery \\
\hline \multirow[t]{2}{*}{-} & & & & & \\
\hline & & \[
\begin{array}{ll}
\text { R } & \text { R } \\
; & \text { R }
\end{array}
\] & \[
\begin{aligned}
& \text { tenp } \\
& \text { tenp }
\end{aligned}
\] & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline 00191 & 18PF005F \\
\hline 00193 & 1BE8 \\
\hline 00194 & 013F0064 \\
\hline 00196 & 1BFF0062 \\
\hline 00198 & 18FF0065 \\
\hline 0019A & 141P0070 \\
\hline 0019C & 0000 \\
\hline 0019D & 1BE9 \\
\hline 00198 & 05BF0002 \\
\hline 00120 & 05BF0002 \\
\hline 00122 & 1BE8 \\
\hline 00183 & 0000 \\
\hline 00114 & 0000 \\
\hline 00145 & 00170062 \\
\hline 00117 & 1BE0 \\
\hline 00148 & 001F0065 \\
\hline 001AA & 003F0070 \\
\hline 001AC & BIA1 \\
\hline O01AD & 18E0 \\
\hline OOIAE & 1401 \\
\hline 001AF & 080A \\
\hline
\end{tabular}

001BO 1BE9
001B1 FE90
001B2 A141

001 B3 B161
001B4 FDOC
001B5 0000
001B6 041F0002
001B8 OLBFOOFF
001BA 31A0
001BB 7C9FFFE3
001 BD 0000
001BE 7P9FPFC7
001 CO 0000
001C1 8181
001 C 2 789FPEA9
001 C 40000
\(001 C 5\) 1BFF0061
\(001 C 7\) 1BFF0052
\(001 C 9\) 1BFF0056
001CB 041P0005
OO1CD 7E9FEF20
DOICF 800B
br NE,Skiplp ; loop as needed (2 cy)
otr \(A C C, R 9 \quad\);Phase 2 pulse, even If br taken ( 3 cy )
; this loop is 10 cycles long, so
; skips a cell every 833 ns.
Read: otr ACC, SlowRead ; return to slow mode

> otr
nov
otr
otr
; start a cycle to prine the \(N D\)
R9,02YLow ; set up address needed by slow read
ACC, O1YLOW
ACC. 02 YHI ; (1 3 cy\()\)
InT RO,AD ; (4 cy)
nop : (2 cy)
otr ACC,R9 ; (3 cy)
Ir R13, Samples if to read (3 cy)
RdAll: Ir R13, Samples ; waste time (3 cy)
RPhO: otr ACC, R8 ;Phase IY High (3 cy)
;waste tiae (2 cy)
(2 cy)
(2 cy)
(3 cy)
(2 cy)
(2 cy)
(2cy)
RPh2: otr ACC, RO ;Phase 2Y Hi (3 cy)
inr RO, Rl ;Read ND: restart ( 3 cy )
str R0, R10 ; Store value in buf ( 3 cy )
; NOTE: full 16 bits stored, top four are not
; valid and must be stripped before use.
RPh3: otr
Acc, R9 ;Phase 2Y Low (3 cy)
\(\begin{array}{llll}\text { jc } & \text { NR,RPh0 } & \text {; jap based on R13 } & \text { (4 cy) } \\ \text { add } & \text { R10,1 } & \text {; Update bufad } & \text { (2 cy) always }\end{array}\)
sub Rll, 1 ; see if wore channels in this hybrid
jc EQ, NxtHyb ; no, go to next one
nop ; yes
lr RO, Samples ; Nurber of cells skipped is 256 -
nov R13,255 ; the number to be read, - 1 for bogus
sub R13,RO ; read used to unload ND last time
jc LT, RdAll if all cells to be read, don't skip
nop ;part of the skipped area will be the
jc \(x\), SkipAgn : remainder of this channel, the rest
nop ; will be the first of the next chan.
NxtHyb: sub RL2,1
jc Ne, Newlyb
nop
Convend: otr ACC, RstREn ; reset read logic and
otr ACC, RstWrIEn ; remaining write logic,
otr ACC,RdPwrDn ; and power it down
lr Ro,Calplag ;is calibration in progress?
jc NE,statout ; yes, return status
nov RO,AcgCal : (if jc)
; DO NOT attempt to correct data and
; return it if calibration is in process.
; The results will be at best garbage.
; At vorst it might cause an overflow
; or underflow error.
;Now clean up and output the values using the following pseudo-code:


001FF 7F9FfEEE
002010000
00202 7F9FFEEB 002048005

00205 001F2000
\(00207003 F 3000\)
0020900511000
0020B 007F1000
0020D 8080
0020E 0860
0020F 0881
00210 A001
00211 B041
00212 PE9B
00213 A021
002148000
0021508170005
00217 OE31
jc \(x\), statout
nop
unlerr: jc \(x\), statout nov RO, IllData ; (used if jc)
; Calo loads the entire gain table with 1 (unity gain)
; and the offset table with 0 . These are obviously not
; accurate values, but serve as a starting point until
; calibration can be done. This routine is called on
; cold start. It also clears the Calflag variable.
Cal0: Nov RO, ADGain ;address of beginning of gain table
nov Rl,ADOfs ;address of beginning of offset table
Lov R2,4096 ; table size (256*16)
nov R3, 4096 ; set gains to \(1(* 4096)\)
nov R4, 0 ; and offsets to 0
CalLoop:
str R3,R0 ; store gain in table
str R4,R1 ; store offset in table
add RO,1 ;next gain address
sub R2,1 ;how many left
br Ne, Calloop
add Rl,1
; next offset address (done before br)
nov RO, 0
str RO, Calflag
call R16,R16
;Routine to generate table of gains and offsets. There are three ; ways to call this routine. The first call (which notices that ;Calflag is not set) sets it and initializes the work areas. ; While Calflag is set, this call cannot be repeated. The ND ; cycle will not return data when Calflag is set, only a ;completion code. This initial call also sets the skip value to ; zero and Samples to 256 to provide a complete calibration table. ; (This may not be a good idea, as tining and related temerature ; variations may make calibration under actual skip and sample ;conditions more accurate.)
;Subsequent calls to callbrate should occur after each \(N / D\) cycle. ; They provide the value ( 0 to 4000) representing the voltage used ; in that calibration cycle. These calls cause a sumnation of data ; values to occur wilch wlll be used later by the curve fitter. ;The actual values given will deteriline the scaling of subsequent ;data. i.e. 0 to 1000 for 0 to 1 v would yield 1 my per count.
:The final call to calibrate is done after all calibrate cycles ;have been completed, and the summations have been done. The ;call is done with a data value of 4095 (OPPPh) wich signals ; completion of the callbration. A least squares fit is done, ;fitting the data to the equation \(y=\mathbf{x}+\mathrm{b}\). The values of \(\boldsymbol{m}\) ; and b are used as AdGain and Adofs respectively. Calflag is ;again cleared, allowing norsal processing to resume.
;Note that this routine destroys AdGain and Adofs by useing the ; same area of nemory as workspace. It should not be aborted ; without conpleting.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{11}{*}{Calib:} & lr & Ro, Calflag & ; Is callbration in process? \\
\hline & jc & NE, CalCont & ; yes \\
\hline & nov & RO, 1096 & ; loop counter used in all cases \\
\hline & nov & R4, 15 & ; no, set up to start \\
\hline & str & R4, Calplag & \\
\hline & mov & R1, 0 & \\
\hline & str & R4, CalVSun & \\
\hline & str & R4, CalCnt & \\
\hline & mov & R1, CalSums & \\
\hline & mov & R2, Calsqrs & \\
\hline & nov & R3, CalVctr & \\
\hline \multirow[t]{21}{*}{Calter:} & str & R4, R1 & ;clear array area \\
\hline & add & R1,1 & \\
\hline & str & R4, R2 & \\
\hline & add & R2,1 & \\
\hline & str & R4, R2 & ; squares and vectors are double prec. \\
\hline & add & R2, 1 & \\
\hline & str & R4, R3 & \\
\hline & add & R3, 1 & \\
\hline & str & R4, R3 & \\
\hline & sub & RO, 1 & \\
\hline & br & NE, Caller & \\
\hline & add & R3,1 & ; (If br) \\
\hline & lr & R1, Skip & \\
\hline & str & R1, CalSkH & \\
\hline & str & R4, Skip & ;skip nothing \\
\hline & 15 & RO, Samples & \\
\hline & str & R0, CalSaH & \\
\hline & nov & RO, 256 & ;read all \\
\hline & str & RO, Sanples & \\
\hline & jc & X, statout & ;Return with completed status \\
\hline & nov & RO, Cmpltd & : (if jc) \\
\hline \multirow[t]{12}{*}{CalCont:} & cap & R7, OPFTh & ; ternination code? \\
\hline & nov & R1, CalSuns & ; set up pointers to arrays \\
\hline & nov & R2, CalSqr & \\
\hline & jc & eq, Calfin & : yes, compute new corrections \\
\hline & Mov & R3, CalVctr & ; (either way) \\
\hline & 1 l & R4, CalVSum & ;add current value to sum \\
\hline & add & R4, R7 & \\
\hline & str & R4, CalVSun & \\
\hline & \(1 r\) & R4, CalCnt & ; and increment count \\
\hline & add & R4, 1 & \\
\hline & str & R4, CalCnt & \\
\hline & nov & R4, ADBuf & \\
\hline \multirow[t]{14}{*}{Callp:} & 1 r & R5, R4 & ; get raw value \\
\hline & and & R5, OPFPh & : strlp off garbage \\
\hline & 15 & R6, R1 & ; add it to sur \\
\hline & add & R6, R5 & \\
\hline & str & R6, R1 & \\
\hline & add & R1, 1 & ; ready for next pass \\
\hline & nov & XR10, R5 & ; square raw value \\
\hline & nuls & XR10, R5 & \\
\hline & 15 & R8, R2 & ; add square to sum of squares \\
\hline & add & R2,1 & : (squares is double word) \\
\hline & \(1 r\) & R9, R2 & \\
\hline & add & XR8, XR10 & \\
\hline & str & R9, R2 & \\
\hline & sub & R2, 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline - & 0026E 0902 & & str & R8, R2 & \\
\hline & 00268 1042 & & add & R2, 2 & ; ready for next pass \\
\hline & 002700345 & & nov & XR10, R5 & ;calculate raw value * correct value \\
\hline - & 00271 6P47 & & muls & XR10, R7 & \\
\hline & 002720503 & & 1 r & R8, R3 & ; add to total \\
\hline & 002731061 & & add & R3, 1 & \\
\hline & 002740523 & & Ir & R9, R3 & \\
\hline - & 00275 231A & & add & XR8, XRIO & \\
\hline & 002760923 & & str & R9, R3 & \\
\hline & 00277 B061 & & sub & R3. 1 & \\
\hline - & 002780903 & & str & R8, R3 & \\
\hline & 00279 B001 & & sub & RO, 1 & ; loop counter \\
\hline & 0027A 7E9FEPE3 & & jc & Ne, Callp & ; repeat until done \\
\hline & 0027C A062 & & add & R3, 2 & ; (if jc) \\
\hline & 0027D 7P9PFE70 & & jc & x, statout & ; then exit with completion code \\
\hline & 0027F 8004 & & nov & RO, Capltd & : (If jc) \\
\hline - & 00280 009F2000 & Calfin: & H0V & R4, AdGain & ; Set up pointers specific to this part \\
\hline & 00282 OOBF3000 & & nov & R5, Ad0fs & \\
\hline & 00284 04DF 0007 & & 15 & R6, CalCnt & \\
\hline - & 00286 04PP0006 & & 1 r & R7, CalVSun & \\
\hline & 002880501 & CPLp: & 1 r & R8, R1 & ; get sun of data \\
\hline & 00289 A021 & & add & R1, 1 & ; ready for next \\
\hline & 0028A 0168 & & mov & R11, R8 & ; copy It \\
\hline & 0028B 8140 & & Hov & R10,0 & ; (unsigned to double precision) \\
\hline & 0028C 7B46 & & divs & XR10, R6 & ; divide by number of points. \\
\hline & 0028D 012B & & Bov & R9, R11 & ;R9 is an important Intermediate \\
\hline - & 0028E 0168 & & nov & All, R8 & ; sum * R9 \\
\hline & 0028F 8140 & & OV & R10, 0 & \\
\hline & 00290 6F49 & & nuls & XR10, R9 & \\
\hline - & 002910582 & & 1 r & R12, R2 & ; subtract fron sum of squares \\
\hline & 00292 A041 & & add & R2,1 & \\
\hline & 00293 05A2 & & 15 & R13, R2 & \\
\hline & 00294 A041 & & add & R2, 1 & \\
\hline & 00295 339A & & sub & XR12, XR10 & ; denominator of gain tern \\
\hline & 002960543 & & \(1 r\) & R10, R3 & ;get constant vector \\
\hline & 00297 A061 & & add & R3, 1 & \\
\hline - & 002980563 & & 1 r & R11, R 3 & \\
\hline & 00299 1061 & & add & R3, 1 & \\
\hline & 0029A O1E9 & & Dov & R15, R9 & \\
\hline - & 0029B 81C0 & & 20V & R14, 0 & \\
\hline & 0029C 6PC7 & & muls & XR14, R7 & ; subtr. sur of correct values * R9 \\
\hline & 0029D 335E & & sub & XR10, XR14 & ; numerator of gain term \\
\hline & 0029E 454A & & or & R10, R10 & ; If numerator isn't too large, \\
\hline -- & 0029F FE84 & & br & NE, CESD & \\
\hline & 002A0 0000 & & nop & & \\
\hline & 002A1 E74B & & sar & XR10, L+12 & ; multiply it by 4096 to scale gain \\
\hline - & \(002 \lambda 2\) PF82 & & br & \(x, \mathrm{CFSC}\) & \\
\hline & 002A3 0000 & & nop & & \\
\hline & 002A4 E794 & CFSD: & sar & XR12, R+12 & ; otherwise divide denoninator by 4096 \\
\hline & 002A5 7B5C & CFSC: & divs & XR10, XR12 & ;gain \\
\hline & \(002 \lambda 60964\) & & str & R11, R1 & ; and store It \\
\hline & \(002 \lambda 7\) 1081 & & add & R4, 1 & \\
\hline & 002A8 6F48 & & muls & XR10, R8 & \\
\hline - & 002A9 E754 & & sar & XR10,R+12 & ; undo scaling for this \\
\hline & 002AA 0387 & & nov & XR12, R7 & ; sum of correct values \\
\hline & 002AB 339A & & sub & XR12, XR10 & \\
\hline - & 002AC 7B86 & & divs & XR12, R6 & ;divide by nunber of data samples \\
\hline & 002AD 09A5 & & str & R13, R5 & ; offset \\
\hline & 002AE B001 & & sub & RO, 1 & ;loop counter \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline - & 002AF 7E9fFFD \\
\hline & 002BI A0AI \\
\hline & 002B2 043F0008 \\
\hline & 00284 083F0003 \\
\hline & 002B6 043F0009 \\
\hline & 002B8 08370002 \\
\hline & 002BA 8020 \\
\hline & 002BB 083F0005 \\
\hline & 002BD 7F9FFE \\
\hline & 002BF 8004 \\
\hline
\end{tabular}
```

-
- 002C28200
002C3 845F
002C42202
002C5 964E
002C6 3C7PFPFF
002C8 PE9A
002C9 A3E1
002CA OE31

```
\begin{tabular}{|c|c|}
\hline - & 002CB \\
\hline & 002CB 0068 \\
\hline & 002CC 006C \\
\hline & 002CD 0070 \\
\hline & OO2CE 0077 \\
\hline & 002CF 007E \\
\hline & 002D0 0085 \\
\hline - & \(002 \mathrm{D1} \mathrm{008C}\) \\
\hline & 002020092 \\
\hline & 002 D 30098 \\
\hline & 002D4 009B \\
\hline & 002D5 00A8 \\
\hline & O02D6 OORE \\
\hline & \(002 \mathrm{D7}\) 004F \\
\hline & 002080218 \\
\hline & 002D9 004f \\
\hline & 002DA 004 \\
\hline
\end{tabular}

002DB 004F
OO2DC 0048
OO2DD OE3FO2CO
002DF 081P0000
002E1 083F0001
\begin{tabular}{|c|c|c|}
\hline jc & ne, cflp & \\
\hline add & R5, 1 & ; (if jc) \\
\hline 15 & R1, CalSkH & \\
\hline str & R1, Skip & ;Restore skip and sample values \\
\hline \(1 r\) & R1, CalSaH & \\
\hline str & R1, Saiples & \\
\hline nov & R1, 0 & \\
\hline str & R1, Calflag & ;Clear CalFlag \\
\hline jc & x, statout & \\
\hline nov & RO, Cmpltd & ; (lf jc) \\
\hline
\end{tabular}
;Routine to calculate checksum of code RAM to determine if it ; has been corrupted.
;This routine should be called, followed by "str XRO, CodeChk" ; when the syster is cold started, and after any modification ; to the code RAM (stri to 8000 h to PPFPh). The code wite ; comand does NOT do this autonatically. It is necessary to ; do a code execute at address 8011 h after code writes.
;Chksun may be called anytine the integrity of the code RMM is iIn question. The value In XRO should agree with the value ; stored in CodeChk. Chksur is automatically called before a varn
;start and if code RAM doesn't check, a cold start is done ; instead.
;Destroys ACC and R2, returns to R16
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Chksum:} & nov & ACC, ImgDst & ; where to check \\
\hline & mov & XRO, 0 & ; Initial sum \\
\hline \multirow[t]{7}{*}{cklp:} & 1 l & R2 & ; value at address \\
\hline & add & XRO, R2 & ;add to sum \\
\hline & inr & XR2, ACC & ;copy to 16 bit register so compare will work \\
\hline & cip & R3, CRAMe & ; done? \\
\hline & br & NE, cklp & ; no, cont \\
\hline & add & ACC, 1 & ; next place to check \\
\hline & call & R16, R16 & ;return with results in XRO \\
\hline
\end{tabular}
;RAM IMAGE DATA TO LOAD AT 8000h in code area
Inage:
\begin{tabular}{|c|c|c|}
\hline dwn & Codelow & ;CKD \(=0\) (0xxxh) - set CODE flag \& 12 low bits \\
\hline dMII & Datalow & ;CHD \(=1\) ( \(1 \times x \times \mathrm{h})-\) set DATA flag \(\$ 12\) low bits \\
\hline dwn & SthiRng & CCKD \(=2(2 \times x x h)-\) hi bits, form start adr \\
\hline dve & Sthird & ; \(C M D=3\) ( \(3 \times x \times h\) ) - hi bits, form adr and rd 1 \\
\hline dwn & Sthins & ;CKD \(=4(4 \times x \times h)-\) hi bits, form adr and ur 1 \\
\hline din & Execute & ;CMD \(=5(5 \times x x h)-\) hi bits, form adr and ex \\
\hline dwn & EndHiRd & ;CHD \(=6\) ( \(6 \times x \times h\) ) - hil bits, form end adr \& rd rng \\
\hline dwn & Endiliwr & ; CHD \(=7\) ( \(7 \times x \times h\) ) - hi bits, form end adr i wr rng \\
\hline dwn & IORD & ;CMD \(=8\) (8xxxh) - 12 blt adr and Input vord \\
\hline dwI & IONT & ;CKD \(=9(9 x x x h)-12\) bit adr and Output word \\
\hline m & SetSkp & ;CMD \(=10(\) Axxxh \()-12\) bit skip count ( \(\operatorname{lod} 16)\) \\
\hline Own & Mankcq & ; CMD \(=11\) (Bxxxh) - 12 bit cnvt cnt (mod 16) and arm \\
\hline dwn & Autodicq & ; CHD \(=12(\) Cxxxh \()-\) reserved for auto skip and cnt \\
\hline dwn & Callb & ;CKD \(=13\) (Dxxxh) - calibration routine \\
\hline dwil & monitor & ;CKD \(=14(\) Exxxh \()-\) reserved \\
\hline dwis & conitor & ;CMD \(=15\) (Pxxxh) - reserved \\
\hline dwn & monitor & ; return address for execute, etc \\
\hline dnis & varmend & ; link address for warn start \\
\hline call & R16, Chksum & ;callable routine to update checksum \\
\hline str & R0, CodeChk & resides at 8012h \\
\hline str & R1, CodeChk +1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline - & 002E3 03FF8010 & nov & ACC, CadRtn & \\
\hline & 002E5 863F & \(1{ }^{1} 1\) & R16 & \\
\hline & 002 E 6 OE31 & call & R16, R16 & ;(return to monitor) \\
\hline - & \(002 \mathrm{E7}\) & imgend: & & \\
\hline & 00000 & END & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline -00000008 & ABORTED \\
\hline 00000070 & AD \\
\hline 00002000 & ADGAIN \\
\hline 00000120 & ARMLP \\
\hline 00000007 & CALCNT \\
\hline 00000005 & calflac \\
\hline 0000025F & CALLP \\
\hline 00003000 & CALSQRS \\
\hline 00000006 & CALVSUM \\
\hline 00000215 & C \\
\hline 000002 C 3 & CKLP \\
\hline 00008010 & CMDR \\
\hline 00000068 & CODELON \\
\hline 00000002 & COLDSTAT \\
\hline 0000001 A & CONVBUSY \\
\hline 0000001E & CTS \\
\hline 00000122 & ENABLE \\
\hline 00000133 & ENLP \\
\hline 00000005 & ILLDATA \\
\hline 000002 E 7 & IMGEND \\
\hline 00000000 & INTMASK \\
\hline 000000AE & HANACO \\
\hline 0000004 F & MONITOR \\
\hline 00000066 & MONRDTA \\
\hline 000000D9 & MONWR \\
\hline 00000053 & NEXTNORD \\
\hline 00000018 & NOTARM \\
\hline 00000015 & NOTREND3 \\
\hline 00000013 & NOTKENDI \\
\hline 00000010 & NOTNEND4 \\
\hline 00000062 & O1YLOM \\
\hline 00000000 & OKSTAT \\
\hline 00000110 & PRRUP \\
\hline 0000006A & RD2DIS \\
\hline 0000006 D & RD3EN \\
\hline 00000110 & RDALL \\
\hline 00000191 & READ \\
\hline 00000127 & RPHI \\
\hline 0000060 & RSPRDIS \\
\hline 00000050 & RSTWROEN \\
\hline 00000002 & SAMPLES \\
\hline 00000003 & SKIP \\
\hline 0000005 F & SLOWREAD \\
\hline 00000049 & Startcom \\
\hline 000000F7 & STAT01 \\
\hline 000000EF & STATOUT \\
\hline 00000070 & STHIRNG \\
\hline 00000058 & TRIGDIS \\
\hline 00000139 & TRIGLP \\
\hline 00000106 & UNLLP2 \\
\hline 00000044 & HARM \\
\hline 00000001 & WARMSTAT \\
\hline 00000055 & URPWRUP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 00000019 & ACOBUSY \\
\hline 00001000 & ADBUF \\
\hline 00003000 & ADOFS \\
\hline 0000004 F & AUTOACQ \\
\hline 00000249 & CALCONT \\
\hline 00000218 & CALIB \\
\hline 00000009 & CALSAH \\
\hline 00002000 & CALSUMS \\
\hline 0000022 C & CALZER \\
\hline 000002A1 & CFSD \\
\hline 0000001 F & CAD \\
\hline 00000004 & CHPLTD \\
\hline 0000025 & COLD \\
\hline 00000152 & COLLECT \\
\hline 000001C5 & CONVEND \\
\hline 0000006C & DATALON \\
\hline 0000008C & ENDHIRD \\
\hline 00000085 & EXECUTE \\
\hline 000002CB & IMAGE \\
\hline 0000001 D & INEMPTY \\
\hline 00000098 & IORD \\
\hline 000000B6 & HANLIM \\
\hline 00000007 & HONNXTR \\
\hline 000000c8 & MONSND \\
\hline 000000EA & MONHRNXT \\
\hline 00000006 & NODATA \\
\hline 00000017 & NOTRENDI \\
\hline 00000014 & NOTREND4 \\
\hline 00000012 & NOTNEND2 \\
\hline 000001 Cl & NXTHYB \\
\hline 00000065 & 02YHI \\
\hline 0000001 C & OUTPULL \\
\hline 00000068 & RDIDIS \\
\hline 0000006B & RD2EN \\
\hline 0000006E & RD4DIS \\
\hline 00000056 & RDPWRDN \\
\hline 00000060 & RESRDST \\
\hline 00000180 & RPH2 \\
\hline 00000061 & RSTREN \\
\hline 00000053 & RSTNRIDIS \\
\hline 000000A8 & SETSKP \\
\hline 00000187 & SKIPAGN \\
\hline 000000D5 & SNDERR \\
\hline 0000005B & STARTDIS \\
\hline 0000005C & Statorf \\
\hline 00000050 & STATUS \\
\hline 0000007E & STHIUR \\
\hline 00000059 & TRICEN \\
\hline 00000202 & UNLERR \\
\hline 0000015E & UNLOAD \\
\hline 00000048 & URRMEND \\
\hline 00000007 & VRINT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 00000008 & ACQCAL \\
\hline 0000001B & ADBUSY \\
\hline 000000FE & ARM \\
\hline 00000205 & CALO \\
\hline 00000280 & CALPIN \\
\hline 0000020E & CALLOOP \\
\hline 00000008 & CALSKH \\
\hline 00005000 & CALVCTR \\
\hline 00000288 & CFLP \\
\hline 000002 CO & CHRSUM \\
\hline 00008000 & CMDJMP \\
\hline 00000000 & CODECHR \\
\hline 00000029 & COLDLP \\
\hline 00000154 & COLLP \\
\hline 0000FFPF & CRAME \\
\hline 00000040 & Dra \\
\hline 00000092 & ENDHIWR \\
\hline 0000005E & PASTREAD \\
\hline 00008000 & IMGDST \\
\hline 00000000 & INIT \\
\hline 0000009B & IONR \\
\hline 00000087 & MANOK \\
\hline 000000BC & MONRD \\
\hline 000000E9 & MOMTDTA \\
\hline 0000016D & NEHHYB \\
\hline 0000000A & NOLOAD \\
\hline 00000016 & NOTREND2 \\
\hline 00000009 & NOTRIG \\
\hline 00000011 & NOTHEND3 \\
\hline 00000063 & O1YHI \\
\hline 00000064 & 02YLOM \\
\hline 00008012 & POSTCHK \\
\hline 00000069 & RDIEA \\
\hline 0000006C & RD3DIS \\
\hline 0000006 F & RDEEN \\
\hline 00000057 & RDPWRUP \\
\hline 00000122 & RPHO \\
\hline 00000180 & RPH3 \\
\hline 00000051 & RSTWRODIS \\
\hline 00000052 & RSTHRLEN \\
\hline 00000141 & SHUTDN \\
\hline 0000018D & SKIPLP \\
\hline 00000004 & SOFTTRIG \\
\hline 0000005A & STARTEN \\
\hline 0000005D & Staton \\
\hline 00000077 & STHIRD \\
\hline 00000070 & SWINT \\
\hline 00000137 & TRIGGER \\
\hline 000001D5 & UNLLP \\
\hline 000001EB & UNLSND \\
\hline 00008011 & HARMLINK \\
\hline 00000051 & WRPVRDN \\
\hline
\end{tabular}




SIERRA MONOLITHIC'S EXPECTED FUNCTIONAL \& PERFORMANCE OPERATION FOR THE MODULE A CLOCK GENERATOR.

Module A will take an unbalanced ECL Input signal (Fo)ranging in frequency from 250 Mhz to 1 Ghz , then produce as outputs, FOUR balanced ECL compatible signals, namely Fo/2, Fo/2-, Fo/4 (I), \& Fo/4 (Q).
FO/4 (I) shall be in phase with the POSITIVE edge of Fo/2, \& Fo/4 (Q) shall be in phase with the NEGATIVE edge of Fo/2. Hence, Fo/4 (Q) is always 90 degrees out of phase with respect to Fo/4 (I).

Over the Fo INPUT frequency range, Fo/4(I) output changes logic states at least 725ps before and at least 725 ps after the negative clock edge of Fo/2. Likewise, it is true for \(F O / 4(Q)\) relative to the negative clock edge of Fo/2-.

\section*{ELECTRICAL CHARACTERISTICS:}
- POWER CONSUMPTION:
2.1 Watts (approx).

INPUT SIGNAL PORT (FO): Input Sensitivity:

100 mv (min) Single-Ended. 50 ohms at 1 Ghz - with matching. 20 - j50 at 1 GHz - w/o matching. 100 - j175 at 250 MHz - w/o matching.

OUTPUT SIGNAL LEVELS: (FO/2, FO/2-, FO/4(I), FO/4(Q)
\begin{tabular}{lcccccc} 
& \multicolumn{5}{c}{ Min } & Max \\
Output HIGH Volt & -1.02 & -0.84 & -0.98 & -0.81 & -0.92 & -0.735 \\
Output LOW Volt & -1.95 & -1.63 & -1.95 & -1.63 & -1.95 & -1.595 \\
Input HIGH Volt & -1.17 & -0.84 & -1.13 & -0.81 & -1.07 & -0.735 \\
Input LOW Volt & -1.95 & -1.48 & -1.95 & -1.48 & -1.95 & -1.450 \\
Output Rise/Fall & 300 ps & 800 ps & 300 ps & 800 ps & 300 ps & 800 ps \\
time (20-808)
\end{tabular}

NOTE: Motorola states that 10E Series type IC's do not have a problem driving 100 E or 100 K chips.

PARTS LIST - AMERASIA: CLOCK GENERATOR - MODULE A.

TOTAL ESTIMATED COST:





FIGURE A3-1, Input Signal

Reference Mode (NORMAL)
Reference
Left
Probe
\(10.00: 1\)
\(10.00: 1\)
Delay/Pos
-100.000 us
\(0 f f s e t\)
\(0.00000 \quad v\)
\(3.00000 \quad v\)

\footnotetext{
.Oes : Ooue mocoun
On Positive Edge of Chani
Trigger Level
Chani \(=2.00000 \quad v\) (noise reject off)
Holdoff \(=40.000\) ns
}
,
\(\wedge \zeta P /\) ®W \(00^{\circ}\)
aseqowt
Sensitivity
2.00 vaiv :i.oo vaiv
FIGURE A3-2, Output Signal (Readback)


Reference Mode (NOAMAL)
\(\begin{array}{ll}\text { Delay/Pos } \\ -10.0000 \text { us } \\ 0 f f s e t & \\ 0.00000 & V \\ \mathbf{3 . 0 0 0 0 0} & \mathrm{~V}\end{array}\)

Trigger mode : Edge
On Positive Edge of Cioni
Trigger Level

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Main & \[
\begin{aligned}
& \text { Time } \\
& 10.0
\end{aligned}
\] & \begin{tabular}{l}
se \\
s/div
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Delay/Pos } \\
-10.0000 \text { us }
\end{gathered}
\]} & Reference Left & \begin{tabular}{l}
Mode \\
Realtime
\end{tabular} & (NORMAL) \\
\hline & Sens & ivity & Offset & & Probe & Coupling & \\
\hline Crannel 1 & 2.00 & v/div & 0.00000 & \(v\) & 10.00:1 & dc (1M ohm) & \\
\hline Channel 2 & 1.00 & v/div & 3.00000 & \(v\) & 10.00:1 & de (1M ohm) & \\
\hline \multicolumn{8}{|l|}{On Positive Edge of Chani} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Trigoer Leval \\
Chani \(=2.00000 \mathrm{~V}\) (noise reject OFF)
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{Holdoff - 40.000 ne} \\
\hline
\end{tabular}

Reference Mode
Realtime (NORMAL)
de (1 M ohm)
de ( 1 M ohm)
Probe
\(10.00: 1\)
\(10.00: 1\)
Delay/Pos
-100.000 ns
\(0 f f s e t\)
0.00000
\(-1.00000 \quad v\)OFF)

\(\begin{array}{ll}\text { Reference } & \text { Mode } \\ \text { Left } & \text { Realtime (NORMAL) } \\ \text { Probe } & \text { Coupling } \\ 10.00: 1 & \text { dc (1M ohm) } \\ 10.00: 1 & \text { dc (1M ohm) }\end{array}\)
Delay/Pos
-100.000 us
\(0 f f s e \pm\)
\(0.00000 \quad V\)
\(3.00000 \quad V\)
I imebase
\(1.00 \mathrm{~ms} / \mathrm{div}\)
Sensitivity
\(2.00 \mathrm{~V} / \mathrm{div}\)
\(1.00 \mathrm{~V} / \mathrm{div}\)
Channel 1
Main


\[
\begin{aligned}
& \text { Mode } \\
& \text { Realtime (NORMAL) } \\
& \text { Coupling } \\
& \text { de ( } 1 \mathrm{M} \text { ohm) } \\
& \text { de ( } \mathrm{Ohm} \text { ) }
\end{aligned}
\]
Reference
Lett
Probe
10.00: 1
10.00: 1
Delay/Pos
-100.000 us
\(0+f\) set
0.00000
\(3.00000 \quad V\)
Timebase
\(1.00 \mathrm{~ms} / \mathrm{div}\)
K7!ヘ!titsuas
AFP/A \(00^{\circ}\) Z
Channel 1
Channel
2


FIGURE \(\mathrm{A} 3-8\), Output Signal with Sinewave Input

Reference Mode Realtime (NORMAL)
coupling
de (1M ohm)
de (1M ohm)
FIGURE A3-9, Output Signal with 20 MHz Sinewave Input

TRANSFER FUNCTION


TRANSFER FUNCTION
Averaged over all cells, per channel












150 Khz Sine wave (+/-. 3 v pk ) Channel l only


150 Khz Sine wave ( + /- . 3 v pk )






APPENDIX \#4


DELAY, \(3 \mathrm{~ns} / \mathrm{div}\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & 守 & & & & \\
\hline & & & & 表 & & & & \\
\hline & & & & Fnompmonn & numwon & Nammor & numm & \\
\hline & Cown & －manmmen & Nommond & ＋1， & － & & & \\
\hline & & & & F & & & & \\
\hline & & & & \(\pm\) & & & & \\
\hline  & － & & & 者 & & & & \\
\hline & & & &  & & & & 3000．005 \\
\hline
\end{tabular}
9 gynoia


\[
\begin{aligned}
& \text { On Poaitive Edge of Chani } \\
& \text { Triager Lavel }
\end{aligned}
\]
\[
\begin{aligned}
& \text { (WपO WV) op } \\
& \text { (W4O WV) op } \\
& \text { GUTTInoo }
\end{aligned}
\]
(רWHON) כwrfreou
\(\angle\) มษก〇I』
\[
\begin{aligned}
& \text { rueus to ofps onffreod Uc } \\
& \text { oops : opow Joberal }
\end{aligned}
\]
\[
\text { AIP/A } 00.5 \quad \sum \text { Ieuueus }
\]
\[
\begin{aligned}
& \text { ATP/8n ooz } \\
& \text { aseqəuF1 }
\end{aligned}
\]
UTOW




\(1-2\)
6 gษกภIa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \(10700 / 04\) & \begin{tabular}{l}
fou) \\
tuey \\
-D03
\end{tabular} &  & \[
\begin{gathered}
000 \\
0000 \\
\text { o60 } \\
\text { pow }
\end{gathered}
\] & & +\$OPTOH Tueप5 JOBCT」 EBEN 40 1 \\
\hline &  & \[
\begin{aligned}
& F: 00^{\circ} O t \\
& 5: 00^{\circ} 0 t \\
& \text { aqoud }
\end{aligned}
\] & \(\hat{\wedge}\) & \[
\begin{gathered}
00000^{\circ} \square \\
00000^{\circ} 0 \\
725+40
\end{gathered}
\] & \[
\begin{aligned}
& \text { AFD } \\
& \text { AFD } \\
& \text { КFT }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \wedge \\
& 1 \Lambda \\
& \wedge T 7
\end{aligned}
\] & \[
\begin{array}{r}
00^{\circ} \% \\
00^{\circ} z \\
\text { r suas }
\end{array}
\] & \[
2
\] & Touve 5 roune4a \\
\hline (7VWHON) & N) owrfreoy apow & \[
\begin{array}{r}
7+07 \\
\text { asuevałey }
\end{array}
\] & & 000 007 d/Kerag & & \[
\begin{aligned}
& \text { /su } \\
& \text { ose }
\end{aligned}
\] &  & & UFOW \\
\hline
\end{tabular}

Ot gyก૭Ia




21 มบกัเม
 гueus to efpgeatifirod vo -80p3 : opow sobiful
ATP/A 00. \(\quad\) 己 Teuveup
3
5
3


 (7VWHON) 2wrfreot
£เ มษกวัa


\[
\begin{array}{r}
- \\
-0 \\
-1 \\
D \\
-1 \\
-1
\end{array}
\]
ก
\(\frac{\square}{\frac{T}{N}}\)
N
N
\(i\)
0
-0
7
0
\(\begin{array}{r}0 \\ -0 \\ -0 \\ -\frac{3}{N} \\ \hline\end{array}\)

\([\)

\(\begin{array}{r}0 \\ -\mathrm{O} \\ \mathrm{O} \\ -\mathrm{O} \\ -\mathrm{O} \\ \mathrm{O} \\ -\quad 3 \\ \hline \frac{1}{\mathrm{~T}}\end{array}\)
\(\Omega \quad 130.46 \mathrm{nH}\)
70.169882 MHz
\(\triangle R E F=1\)


> N \begin{tabular}{l} \(\square\) \\ \(\perp\) \\ \hline \end{tabular}

0
\(\square\)
\(T\)
\(N\)


s 0 」ヨヨ／sd 00s


日ค 6ETB ：己
Ketap \(\quad\) İs


日ค 0 」ヨヨ／日P し

\(-\quad \rightarrow \quad ก\)
I

\section*{－}


\section*{APPENDIX \#5}

\section*{APPENDIX 5}

\section*{HARDWARE INTERFACE}
1. 16 bit bi-directional parallel data
2. Four wire handshake
a. DMAWREQ - negative pulse by host initiates transfer
b. DMAWACK - 0 after DMAREQ, 1 when accepted by \(\mu \mathrm{P}\).
c. DMARAV - 0 after \(\mu\) P loads latch, 1 after read by host
d. DMARREQ - negative pulse by host reads data and clears status
3. Write transaction (Host to \(\mu \mathrm{P}\) )
a. data is latched on trailing \((+)\) edge of DMAWREQ
b. low level on DMAWREQ sets WR status FF (DMAWACK \(=0\) )
c. \(\mu \mathrm{P}\) read clears WR status FF (DMAWACK \(=1\) )
4. Read transaction ( \(\mu \mathrm{P}\) to Host)
a. Generally occurs as a result of request from host
b. Only exception is error condition status
c. \(\mu \mathrm{P}\) writes data to latch
d. this sets read status FF (DMARACK \(=0\) )
e. DMARREQ low places data on \(Q\) bus
f. DMARREQ low level resets read status FF (DMARACK \(=1\) )
5. commands are 16 bit data
a. 12 lsb is value
b. 4 msb is command
\(0=\) code address low - first word of Read, Write or
Execute in code memory. (with low 12 bits of address)
\(1=\) data address low - first word of Read or Write in
data memory. (with low 12 bits of address)
\(2=\) start address high - second word of Read or Write range
(upper 8 bits of code address or 4 bits of
code address right justified in lower 12 bits)
\(3=\) start address high - second (final) word to read one word from memory. Next transaction is a single read transaction.
\(4=\) start address high - second word to write one word to memory. Next transaction is a single write transaction with a 16 bit data word.
\(5=\) execution address high - second (final) word to start execution at address (upper 8 bits of address right justified in lower 12 bits)
\(6=\) end address high - fourth (final) word to read an inclusive range of memory. This is preceded by a second low address ( 0 or 1 ). This is followed by \(\mathrm{N}+1\) read transactions.
\(7=\) end address high - fourth word to write an inclusive range of memory. This is preceded by a second low address ( 0 or 1 ). This is followed by \(\mathrm{N}+1\) write transactions.
\(8=\mathrm{I} / \mathrm{O}\) read -12 lower bits are I/O address. Next transaction is a single read transaction with data word read (no prefix command needed).
\(9=\mathrm{I} / \mathrm{O}\) write -12 lower bits are I/O address. Next transaction is a single write transaction with data word to be output (no prefix command needed).
\(A=\) skip value -12 lower bits contain number of cells to skip at the beginning of an acquire. This should be a multiple of 16 .
\(B=\) acquire value -12 lower bits contain number of cells to read and convert. This command also does a software arm. This should be followed by a hardware arm and trigger. The hardware will respond with a sync strobe, and the \(\mu \mathrm{P}\) will initiate N read cycles with data.
\(C=\) auto acquire (optional) Number of cells to skip and
read determined by the \(\mu \mathrm{P}\) by inspecting the data.
12 lower bits are ignored. Otherwise works like command 9 .
\(\mathrm{D}=\) calibrate. First call set mode, remaining calls give value of last acquire. Final call with value of 0 FFFh calculates coeficients.
E-F reserved
a. These go to jump vectors in code RAM
b. Initially they are programmed as NOP's

\section*{6. Timing}
a. When host writes data to system, data is latched on trailing edge of strobe. Status is level sensitive, so responds to leading edge. In order to prevent multiple reads by system, pulse width must be less than 500 ns .
b. When host reads data, both data enable and status are level sensitive. The strobe pulse width must be less than 500 ns in order to prevent \(\mu \mathrm{P}\) from placing second word on bus before end of pulse.
c. Read data is valid from 30 ns after DMARREQ goes low until a small time after DMARREQ goes high ( 20 ns typ.)
d. Write data must be valid at least 30 ns before the rising edge of DMAWREQ and remain valid at least 5 ns after the rising edge of DMAWREQ.
e. The Status output bit (Data/Status, \(0 / 1\) ) is valid from the time DMARAV goes low until it goes high again.
f. The Command input bit (Data/Command, 0/1) must be valid from the falling edge of DMAWREQ until the subsequent rising edge of DMAWACK. This is best accomplished by providing an non-Tristate ff whose state is changed just before data is written.
g. The command bit is interrogated during a reset (either power up reset, or external reset). If it is a 1, a cold reset is forced (all variables initialized to default,
calibration values all set to gain \(=1\) and offset \(=0\), all code extensions eliminated and a new code memory checksum computed. If Command \(=0\) a warm start is done instead, provided that the code checksum agrees with the value stored in the data memory.
7. Error and status codes (Status \(=1\) )
0. OK
1. Warm start (after reset, unsolicited)
2. Cold start (after reset, unsolicited)
3. (reserved)
4. Completed (generally at end of block reads)
5. Illegal data - data written when not expected
6. No data - Command written when more data was expected, or during operation.
7. Write interrupt (not used)
8. Aborted - Command received after Acquire command, before arm signal received.
9. Not Triggered - A/D acquire cycle did not start, probably due to lack of a trigger.
0 A . No Acquire - A/D acquire cycle did not complete.
0B. In Calibration - A/D cycle completed. No data will be sent because data is being used for calibration. NOTE: attempt has been made to keep error codes in the range of \(0-0 \mathrm{Fh}\) so that they can be loaded with a single word mov instruction.

16. Supplementary Noles
16. Abstract
This is the final report for the research and development of the 1 GHz Digitizer fo Spaced Based Laser Altimeter. A Feasability model was designed, built, and tested. Only partial testing of essential functions of the Digitizer was completed, due to limited funding available at this time. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz , but executed in 16 parallel channels, to provide an effective sampling rate of 1 GHz . The average power consumption of the 1 GHz Digitizer is not more than 1.5 watts. A 1 GHz SAW oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc. and for data communications with the host computer. The Digitizer is equipped with an on-board microprocessor for this purpose.
17. Kor Words (Suggested by Authar(s))

1 GHz Digitizer, SAW, Hybrid memory.
19. Distribution Statement
\[
\begin{aligned}
& \text { 1- Contract Specialist } \\
& \text { 5- Technical Officer } \\
& \text { l- NASA Scientific \& Tech Info.Facility } \\
& \text { (Accessioning Department) }
\end{aligned}
\]```

