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Modeling uncertainty is defined in terms of the difference between predicted and

measured eigenvalues and eigenvectors. Data compiled from 22 sets Of analysis/test

results was used to create statistical databases for large truss-type space struc-

tures and both pretest and posttest models of conventional satellite-type space

structures. Modeling uncertainty is propagated through the model to produce inter-

vals of uncertainty on frequency response functions, both amplitude and phase. This

methodology was used successfully to evaluate the predictive accuracy of several

structures, including the NASA CSi Evolutionary Structure tested at Langley Research

Center. Test measurements for this structure were within ± one-sigma intervals of

predicted accuracy for the most part, demonstrating the validity of the metho-

dology and computer code.
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SUMMARY

The purpose of this research was to develop, implement and demonstrate a

methodology for evaluating the predictive accuracy of structural dynamic models.

Implementation includes a general purpose computer code, and databases residing within

the code which quantify modeling accuracy for large truss-type space structures, and both

pretest and posttest models of conventional satellite-type space structures.

The research included the collection of modal analysis and test data for twenty-two

structure-model combinations. The differences between predicted and measured

eigenvalues and eigenvectors were used to generate statistical databases of mass and

stiffness uncertainty. Methods were also developed to estimate a full modal damping

matrix based on experiment_y measured complex eigenvalues and eigenvectors. Multiple

estimates based on different tests provide the information necessary to quantify damping

uncertainty.

Several methods for propagating the uncertainty through the model were developed,

including linear covariance propagation, a fuzzy set method for possibility bounding, and a

Monte Carlo method for numerical simulation. These methods are implemented in the

::_:i:!PDAC computer code which computes uncertainty intervals on both the amplitude and

phase of frequency response functions.

The methodology was demonstrated by applying PDAC to several real structures

for which both analysis and test data were available. Intervals of predictive accuracy were

computed on the basis of the analytical models and the modeling uncertainty database.

These intervals were compared with test results to demonstrate the methodology. Test

measurements were found to lie for the most part within * one-sigma of the nominal

(analytically predicted) response, demonstrating that the methodology produces realistic

results. This represents the first time that data from previously analyzed and tested

structures have been used to evaluate the predictive accuracy of models of other structures.
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FOREWORD

This final report documents the work performed under SBIR Phase II Contract

NAS7-1064 during the period July, 1989 through December, 1991. The report is complete

and self---contained. It documents the methodology for evaluating the predictive accuracy

of structural dynamic models, demonstration of the methodology by application to

practical problems, and the databases for both conventional and large space structures used

in the methodology demonstration. Additional details describing the development of the

methodology may be found in eight quarterly reports numbered TR-89-1152-1 through

TR--_9-1152--8, submitted during the course of the contract. Two interim briefings were

presented at the Jet Propulsion Laboratory in May of 1990 and 1991. The authors wish to

express their gratitude for the support of Mr. John Garba, the JPL Technical Monitor and

Ms. G. Veronica Stickley, the NASA Contracting Officer.

Key data for this project were provided by a number of government agencies and

commercial aerospace companies, without whose support the project could not have been

completed. Data contributions by the Jet Propulsion Laboratory, NASA Langley Research

Center, Air Force Wright Laboratories, Martin Marietta Corporation, TRW Space and

Technology Group, Hughes Space and Communications Division, and General Electric

Astro Space Division are acknowledged. The authors extend their personal thanks to the

numerous individuals within these organizations who were instrumental in providing the

data, for their interest and cooperation.

Significant contributions to the project were made by Professor Timothy Ross and

his graduate student, Steve Verzie, under a subcontract to the University of New Mexico.

Professor Ross was instrumental in developing the fuzzy set approach used for computing

possibility bounds on frequency response functions.

Finally,the authors wish to acknowledge the contributionsof other EMA personnel,

including George Lee who helped with some of the early investigations,John Piersol who

helped with coding and check-,out,and Wendy Keener who produced the finalreport and

software documentation.
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EXECUTIVE SUMMARY

Introduction

The goal of this SBIR project has been to develop a practical tool for evaluating

the predictive accuracy of structural dynamic models. Phases I and II have focused on

initial application to space structures for two reasons: NASA has identified the need to

quantify the accuracy of models used to simulate the performance of flight hardware, and

sufficient analysis and testing have been performed on space structures to establish a

meaningful database. Phase III will seek uses for the tools developed under this contract in

practical aerospace applications, and attempt to extend their application to civil and

commercial structures such as high-rise buildings and offshore platforms.

The objectives of Phase II were to develop a methodology, implement it in a

suitable computer code complete with the necessary database, and finally to demonstrate

the methodology by applying the code to real structures. Specific objectives are outlined as

follows:

. Develop a methodology for:

Realistically quantifying mass and stiffness uncertainty,

Estimating damping and damping uncertainty, and

Propagating these uncertainties through a model to

accuracy.

. Implement the methodology in:

• A general purpose computer code, and

• A database to be accessed by the computer code.

w Demonstrate the methodology for:

• Simple examples, and

• Real structures

evaluate predictive

Application of the methodology to space structures has provided a contextual framework

for the project. Space structures are thoroughly analyzed and tested prior to flight. The

need for the quantification of predictive accuracy therefore relates to posttest models which





havebeentuned and verified in accordancewith test data. Linking the predictive accuracy
codeto a model verification codewas thereforefound to benefit both codes. The predictive

accuracycode PDAC hasbeenlinked to the model verification code SSID. PDAC uses
many of the computational modules found in SSID, while SSID benefits from PDAC's

ability to computeintervals of uncertainty.

Figure 1 showstypical results from PDAC. Part (a) of the figure showsa drawing

of the CSI Evolutionary Structure, identifying locations of sensorsand actuators. Part (b)

showsthe _- l_r uncertainty intervals computed by PDAC for FRF acceleration amplitude

at Coordinate 1 due to force at Coordinate 1. A database of mass and stiffness uncertainty

for large space structures was used to compute these intervals. The CSI Evolutionary

Structure was not part of the database. Measured FRF amplitude is plotted on the same

graph for purposes of comparison. The plot shows that the measured FRF amplitude falls

within the predicted * 1 cr uncertainty intervals across the entire frequency spectrum in this

case, demonstrating that PDAC produces realistic results. This represents the first time

that data from previously analyzed and tested structures have been successfully used to

evaluate the predictive accuracy of other structures.

The remainder of the Executive Summary briefly describes how these results were

obtained.

Development of Methodology

Mass and Stiffness Uncertainty

Mass and stiffness uncertainty is based on the difference between analytically

predicted and experimentally measured eigenvalues and eigenvectors. It is expressed in the

form of linear perturbations to the modal mass and stiffness matrices of a model. These

perturbations, Am and Ak, represent a first order correction to the analytical modal mass

and stiffness matrices which are both diagonal. When the analytical modes are normalized

to unit modal mass, these matrices are the identity matrix, I, and the diagonal matrix of

system eigenvalues denoted by °h. The"corrected" modal mass and stiffness matrices,

designated m and k, respectively, are then given by

m=I+Am

k = o)_ + Ak
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The correction terms, Am and Ak, can be expressed in terms of the difference between

measured and predicted eigenvalues,

and the cross---orthogonality between the measured and predicted eigenvectors,

ocToM¢ = ¢

where o¢ is the matrix of predicted eigenvectors, ¢ is the matrix of measured eigenvectors,

°M is the analytical mass matrix in physical coordinates, and ¢ is the cross---orthogonality

matrix. Ideally, the diagonal terms of ¢ will be close to unity while the off---diagonal terms

are close to zero. The correction terms, Am and Ak are found by linear perturbation

analysis to be

Am = (I- ¢) + (I- ¢)a:

zXk= n), + o_ (I - ¢) + (I - ¢)To/_

By putting Ak in the dimensionless form (and thus removing frequency dependence),

A_: = °,_-t/2 Ak °)_-t/2

these differences in modal mass and stiffness can be averaged over a number of structures

to create a statistical database. In particular, a covariance matrix of the Am's and A_:'s is

derived. This covariance matrix embodies the mass and stiffness uncertainty for the type

of structures represented in the database.

Estimation of Damping and Damping Uncertainty

Since damping in general cannot be modeled, it must be determined experimentally.

It is current practice to represent damping in terms of equivalent (linear) viscous damping.

The damping matrix expressed in the physical coordinate system is denoted by C. The

modal damping matrix is defined in terms of C by
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c= °¢TC°¢

Unfortunately, C cannot be measured directly. While it is common practice to assume that

the modal damping matrix, c, is diagonal, in reality it is not. The off--diagonal elements of

c are generally of the same order as the diagonal terms. As long as the modal frequencies

are well separated, the off-diagonal terms may be neglected. When modes are closely

spaced in frequency, the off-diagonal terms may be important. If so, the inherent

uncertainty in estimates of these terms is also likely to be important.

A previously proposed method for estimating the full modal damping matrix, c, has

been refined and demonstrated for two real structures using complex eigenvalues and

eigenvectors derived experimentally by the ERA method. This is believed to be the first

time a full modal damping matrix has been successfully estimated using digitally recorded

and processed data. Early attempts using analog data achieved only limited success, with

great effort. The basic method is simple. If the complex modes are normalized such that

where now ¢ represents a matrix of complex modes consisting of a real part, ¢1'

small imaginary part i6¢p then the modal damping matrix, c, is obtained from

and a

ZM6 I + W6¢TMOOR.]¢-IC= +

where ( is a diagonal matrix of critical damping ratios, w is a diagonal matrix of circular

modal frequencies, and M is the physical m_s matrix of the structure.

Since c is estimated for a particular structure, uncertainties in c must be quantified

in terms of multiple estimates. Multiple estimates may be derived from the same

measurements by varying the estimation parameters as was done here. A more realistic

estimate of the uncertainty would be obtained by varying the experiment (e.g. relocating

the shakers). This was not done.
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Both SSID and PDAC are structured to handle a full modal damping matrix.

However, the option is not active in the presentversionof PDAC becausethe technologyis

not consideredto be sufficiently mature. It is felt that estimatesof damping uncertainty
should be basedon multiple experiments, rather than multiple estimatesusing the same

data. Until realistic estimatesof damping uncertainty areavailable, its effect on response

predictions cannot be assessed. Until then, it is consideredbetter to withhold the

capability. The current versionof PDAC thereforeacceptsonly the diagonalelementsof c

specifiedin terms of _, consistentwith current practice.

Uncertainty Propagation

One of the advantages of expressing model uncertainty in terms of modal

parameters is that it is readily propagated through a model to determine either (1)

eigenvalue/eigenvector uncertainty, (2) response uncertainty, or (3) the uncertainty of

physical design parameters. The first two are referred to as forward propagation because

the propagation follows the direction of analysis; the latter is called backward propagation
I

or reverse propagation because the propagation is opposite to the direction of analysis.

Three essentially different methods are used for forward uncertainty propagation:

1. Linear covariance propagation;

2. The Vertex Method for evaluating functions of fuzzy variables; and

3. Numerical simulation using the Monte Carlo Method.

All three of the forward propagation methods have been implemented in deliverable

software; each has its particular advantages and disadvantages which make it more suitable

for some applications than others. The software has been written to select the best

combination of methods for general application, i.e. execution defaults to the most suitable

combination of methods for general application based on current experience. Default

overrides are available. Each of the three methods is discussed in the paragraphs which

follow.

Linear covariance propagation is represented by the triple matrix product

T
Suu = TurSrrTur



_ _ _ _, _ .... , .......... .L_ ¸ _._



where Srr is the covariance matrix of modal mass, stiffness and damping matrix elements

discussed previously, and Suu is the covariance matrix of response variables, e.g. frequency

response function (FRF) amplitude and phase at various frequencies. The matrix, Tur , is

the sensitivity matrix of the response variables, u, with respect to the modal parameters, r.

Ou
Tur =

Linear covariance propagation is valid at frequencies which are not near resonances or

anti-resonances (i.e. poles or zeros). The method breaks down near those frequencies as

shown later.

A fuzzy set approach is used to bound the uncertainty intervals near poles and

zeros. This approach makes use of the Vertex Method, where response for all possible

combinations of the upper and lower limits of each parameter are computed. These

combinations correspond to the vertices of a rectangular hyperspace, thus the name Vertex

Method. The upper limit of the response interval is taken to be the largest response

computed from all of these combinations (vertices) while the lower limit is taken to be the

smallest response. This process is illustrated in Figure 2a where a response surface is

plotted as a function of only two parameters, modal mass and stiffness. In this case, the

parameter interval for m is (ml, m2) and for k is (kl, k2). The intervals (ml, m2) and (kt,

k2) might correspond to m o * a m and k o * _rk, for example, in which case (Ua, Uc) would

represent the possibility interval associated with _: lcr parameter intervals.

In the case of frequency response functions, the response surface often includes an

extremum at some point (or points) other than the vertices of the parameter space, but

within the rectangular hyperspace. When this happens, the extremum (or extrema) must

be evaluated and included with the responses computed for all of the vertices, when

searching for the maximum and minimum response. Such a response surface is illustrated

in Figure 2b.

In Figure 2b, the line from the origin through the nominal parameter point in the

m, k plane corresponds to the nominal resonant frequency, °w = I°k/°m. The line through
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E' F" correspondsto anexcitation frequency,fl = w = tr'k_, which is greater than °w, but

for which some combination of k and m results in a resonance at that excitation frequencY.

As a result, the response surface displays a ridge line EF. Thus, while the minimum

response is still u a in this case, the maximum response is now ue, so that the response

possibility interval is (ua, Ue). PDAC offers several options for evaluating Ue, including

random search and constrained optimization techniques.

A third method for evaluating response uncertainty in PDAC is the Monte Carlo

method. With this method one can determine the entire distribution of response, not just

its upper and lower bounds, or standard deviation. This method is also more useful near

poles and zeros where response is dominated by fewer modal parameters.

Imulementation of Methodology

SSlD/PDAC

A computer code was written to implement the three methods of uncertainty

propagation described above. This code is named PDAC (an acronym for PreDictive

ACcuracy). Since model uncertainty is expressed in terms of modal parameters, it was

convenient to formulate PDAC in terms of modal models. This meant that PDAC would

require modeling data in the form of modal mass, damping and stiffness matrices, along

with a modal transformation to convert input and output quantities (forces and forced

response) to physical coordinates. Also required were an eigensolver, response computation

modules, and modules to compute eigenvalue/eigenvector and FRF amplitude and phase

derivatives which are used for uncertainty propagation.

These capabilities were available in a previously developed code called SSID (for

Structural System IDentification). The modules could have been lifted from SSID to create

a separate PDAC code; however, several ways were perceived in which PDAC could

enhance the capabilities of SSID as well. The recognition that PDAC and SSID would

mutually benefit each other led to combining the codes into the code called SSID/PDAC.

A top level functional diagram of SSID/PDAC is shown in Figure 3. This figur.e

shows three types of information being input to the code: an analytical model, model
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uncertainty, and vibration test data. The inputs are shown separately because they are

read as separate data files. Three types of output are provided. They include pretest

response, either with or without pretest uncertainty, a revised model with revised

parameter uncertainty, or posttest response, either with or without posttest uncertainty.

Figure 4 shows a top level flow diagram for SSID/PDAC. SSID is designed to operate in

conjunction with a finite element modeling code such as NASTRAN. It can function in a

stand-alone mode, however, once the necessary modeling data are received from the FEM

code. The PDAC option of SSID/PDAC does not require detailed modeling data from a

FEM code because it works directly with modal parameters rather than physical

parameters. The only modeling data required by PDAC are a list of modal frequencies,

corresponding modal displacements (at selected coordinates only), and a list of (diagonal)

modal damping constants with corresponding uncertainty estimates. Mass and stiffness

uncertainty data are stored internally and are not required as user input. This makes

PDAC very simple to run. Frequency response printer-plots are generated by PDAC for

either screen viewing or hard copy.

Databases

The method described above for processing eigenvalue and eigenvector differences to

obtain covariance matrices of modal mass and stiffness elements was applied to generate

three independent databases and one combined database stored as data files within PDAC.

The three independent databases are Research Models of Large (truss-type) Space

Structures, and both Pretest and Posttest Models of Conventional (Satellite-type) Space

Structures in their launch configuration.

The data acquired for these databases is listed in Tables 1 and 2. The identity and

sources of the CSS data are not revealed to protect the proprietary interests of contributing

organizations. Both tables, however, indicate the number of paired analysis and test modes

available for each situation and the frequency range spanned by those modes. Data for a

total of 22 structure---model combinations were obtained from seven different organizations,

both government and commercial. These data are divided into 7 data sets for LSS

Research Models, 7 data sets for CSS Pretest Models and 8 data sets for CSS Posttest

Models.
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Table 1. Structures in LSS Database.

Structure

Frequency

No.

LSS 1

LSS 2

LSS 3

LSS 4

LSS 5

LSS 6

LSS 7

Description

LaRC Minimast 3-Longeron

Deployable Truss Beam

LaRC Ten Bay 4-Longeron
Cantilevered Erectable

Truss Beam

JPL 4-Longeron Cantilevered

Precision Truss Structure

IPL 3-Longeron Cantilevered

Tetrahedral Bay Truss Beam

JPL 3-Longeron Free-Free

Tetrahedral Bay Truss Beam

PACOSS Free-Free Dynamic

Test Article (DTA)

PACOSS Cantilevered Solar

Array (Substructure of DTA)

Source

NASA Langley
Research Center

NASA Langley
Research Center

Jet Propulsion

Laboratory

Jet Propulsion

Laboratory

Jet Propulsion

Laboratory

Martin Marietta

Corporation

Martin Marietta

Corporation

Modes

5

9

4

5

6

22

9

No.

0.85 - 6.11

18.05 - 200.20

8.31 - 35.53

10.61 - 71.83

17.94 - 69.17

1.03 - 9.26

0.93- 16.6
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Table 2. Structuresin CSSDatabase.

Structure
No.

CSS 1

CSS 2

CSS 3

CSS 4

CSS 5

CSS 6

CSS 7

CSS 8

CSS 9

CSS 10

CSS i1

No. Modes

Pretest Model

9

5

6

6

9

5

N/A

N/A

N/A

N/A

16

Frequency

Range (Hz)

13.71 - 23.58

16.27 - 52.70

14.49 - 49.97

14.45 - 50.29

29.38 - 95.99

15.11 - 27.35

16.15 - 46.60

No. Modes

Pg_;tte_,t Model

N/A

5

6

N/A

9

N/A

34

4

14

12

27

Frequency

Range(Hz)

16.27 - 52.7O

14.49 - 49.97

29.38 - 95.99

7.04 -46.50

41.64 -93.77

5.84 - 24.51

12.50 - 35.67

16.15 - 50.76
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Demonstration of Methodology

The three types of uncertainty propagation described above were first demonstrated

for the simple 2-DOF model shown in Figure 5. In addition to a schematic drawing of the

model the figure shows the SSID/PDAC model input data and nominal FRF amplitude

and phase plots.

Figure 6 shows _= lcr interval plots of FRF amplitude and phase generated by PDAC

using linear covariance propagation and the CSS Posttest database, for the 2-DOF model.

These plots show how the uncertainty intervals tend to "blow up" near resonance. The

intervals are truncated for plotting purposes when they exceed two decades on either side

of the nominal response. When this truncation occurs, the intervals are delimited by

arrows to indicate that the computed intervals are actually greater than those shown.

Figure 7 shows _= 1¢ interval plots bounded by the Vertex Method. These plots

were generated by computing possibility intervals within * 10% of the resonant frequency,

and then taking the smaller of the one-sigma interval obtained by linear covariance

propagation, and the one-sigma possibility bounds obtained by the Vertex Method. At

frequencies within the half power point frequency band, the possibility bounds override the

linear covariance propagation because partial derivatives of amplitude with respect to

modal mass and stiffness go to zero at resonance.

Figure 8 shows amplitude and phase distributions at the selected frequencies shown

in Figure 7. These distributions extend beyond the * lo" intervals shown in Figure 7

because the parameter ranges are not bounded in this case.

The ultimate objective of this project was to demonstrate the methodology for real

structures. Three structures were selected for this purpose: the NASA Mini-mast

Structure, the NASA Ten Bay Truss, and the NASA CSI Evolutionary Structure. Results

for the latter best exemplify application of the methodology because this structure has the

highest modal density and was not included in the LSS database. Figure la shows the

structural configuration with sensor and actuator locations identified. Figures 9 and 10

show measured FRF acceleration amplitude and phase plots (solid lines) for Coordinates 1

and 6 due to force applied at Coordinate 1. Figures 11 and 12 show the PDAC J= la

interval plots for the same locations. Measured FRF amplitude from Figures 9 and 10 are
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replotted on these figures for direct comparison. Measured phase plots did not contain

sufficient resolution to replot and therefore are not shown. These comparisons show that

response uncertainty predictions made by PDAC are realistic. Measured FRF amplitude

tends to fall within the • 1¢ uncertainty intervals.

Practical Applications - Phase III

Engineering Mechanics Associates is currently working with an SBIR Program

Consultant to develop a market for this technology. A secondary market survey of

computerized databases is presently being conducted in an attempt to determine whether

there are any similar tools on the market, and to identify potential market segments.

Following the secondary market survey, a primary market survey will be conducted. The

primary market survey will include direct interviews with key persons in the technical

community, and may also include workshops where key individuals are brought together to

focus on specific apphcations. Following the market surveys, a business plan will be

prepared.

One potential Phase III opportunity has already been identified. EMA has been

contacted by a major aerospace company which has received an Air Force contract to build

a large number of satellites. The company is contractually obligated to develop a

structural dynamic model which matches test frequencies to within + 3% up to 50 Hz, and

matches test mode shapes such that the diagonal terms of the cross--orthogonahty matrix

are at least 0.95 while the off-diagonal terms are no greater than 0.10. None of the eight

models in the CSS Posttest database satisfy these criteria. A preliminary statement of

work has already been received which will require the use of both SSID and PDAC.

Negotiations are expected to lead to a Phase III contract.

This application is typical of potential applications in the aerospace industry, where

structural dynamic models are required to perform launch loads analysis. The accuracy

criteria presently being written into contracts are very stringent. The combination of a

model verification tool like SSID with a predictive accuracy tool like PDAC may provide

the means to satisfy these criteria. So far, to the best of the authors' knowledge, these

criteria have not been met.
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Other potential applications in the aerospace industry relate to large space

structures such as Space Station Freedom. Although requirements for precision control are

not as great on this structure as they are on large antennas, for example, there is strong

interest in determining the accuracy of the structural dynamic model as evidenced by

programs such as NASA LaRC's Dynamic Scale Model Technology (DSMT) Program and

plans for conducting on---orbit identification.

Structures which do require precision control must be modeled very accurately to

achieve desired levels of control system performance. This realization has been one of the

driving factors behind the development of the present technology. What is not yet clear is

how best to present modeling uncertainty for purposes of robust control design. This is an

area where a workshop might be beneficial.

A different type of problem has been encountered in the commercial sector. It

seems that finite element models of large offshore platforms consistently over predict the

fundamental frequency. Attempts to use system identification methods to identify the

source of this problem have so far been unsuccessful. This is a case where there appears to

be an inherent bias-type error, or systematic error in current modeling techniques. Part of

the reason for not being able to identify the source of error could be that random error

combined with the systematic error may be confusing the estimator. This problem could

conceivably be solved by averaging the errors (differences between prediction and

measurement) over a number of structures so as to suppress the random type error. Then

system identification to identify the source of the remaining bias-type error might be more

successful.

In summary, applications for this new technology are being sought in civil and

commercial areas as well as the aerospace industry. Application to aerospace structures is

likely to occur sooner because the necessary databases already exist. These databases will

be enlarged as more data become available.
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1. INTRODUCTION

1.1 Background

Structural dynamic models are used in a wide variety of applications including

design verification, test support, flight load prediction, and in-flight control. These models

offer what may be called "point prediction" in the sense that the models, which are

themselves deterministic, yield deterministic response when acted upon by deterministic

inputs. Occasionally, stochastic inputs are applied to yield stochastic response. In this

case, response may be expressed in terms of response intervals, such as the mean plus or

minus one standard deviation. Rarely is the model itself considered to be stochastic, e.g.

Reference [1-1]. In practical applications, model uncertainty is accounted for either by

perturbing selected model parameters, or by adjusting input levels in an attempt to offset

model uncertainty. Heretofore, there have been no general tools for realistically

quantifying the effects of model uncertainty on response predictions.

The problem lies in acquiring and processing the data necessary to quantify

model uncertainty. Attempts have been made to express model uncertainty in terms of

design parameters at the finite element level, such as material properties and local

geometry, e.g. Reference [1-2]. However, it is not practically feasible to gather sufficient

data at this level because of the diversity of materials, shapes, sizes and methods of

fabrication. Other attempts have been made to gather data at the modal level. These

data, however, have been limited to modal frequencies and damping. Mode shape data

have not been used, possibly because a means for homogenizing the data has not been

apparent.

This report documents the methodology and database which have been

developed under contract to obtain interval predictions of structural dynamic response

resulting from model uncertainty. A database representing mass and stiffness uncertainty

was derived from observed differences between analytically predicted and experimentally

measured natural frequencies and mode shapes. Estimates of damping uncertainty have

been derived from the statistics of damping measurements on truss beams. These data,

however, are presently too limited to form a generic database. Alternative means are

therefore provided to account for the effects of estimated damping uncertainty, until more

data become available.
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1.2 Project Objectives

The goal of this SBIR project has been to develop a practical tool for evaluating

the predictive accuracy of structural dynamic models. Phases I and II have focused on

initial application to space structures for two reasons: NASA has identified the need to

quantify the accuracy of models used to simulate the performance of flight hardware, and

sufficient analysis and testing have been performed on space structures to establish a

meaningful database. Phase III will seek uses for the tools developed under this contract in

practical aerospace applications, and attempt to extend their application to civil and

commercial structures such as high-rise buildings and offshore platforms.

The objectives of Phase II were to develop a methodology, implement it in a

suitable computer code complete with the necessary database, and finally to demonstrate

the methodology by applying the code to real structures. Specific objectives are outlined as

follows:

o Develop a methodology for:

• Realistically quantifying mass and stiffness uncertainty,

• Estimating damping and damping uncertainty, and

• Propagating these uncertainties through a model to

accuracy.

evaluate predictive

, Implement the methodology in:

• A general purpose computer code, and

• A database to be accessed by the computer code.

, Demonstrate the methodology for:

• Simple examples, and

• Real structures

Application of the methodology to space structures has provided a contextual framework

for the project. Space structures are thoroughly analyzed and tested prior to flight. The

need for the quantification of predictive accuracy therefore relates to posttest models which

have been tuned and verified in accordance with test data. Linking the predictive accuracy

code to a model verification code was found to benefit both codes. The predictive accuracy
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codePDAC (for PreDictive ACcuracy) hasbeenlinked to the model verification code SSID

(for Structural System IDentification). PDAC uses many of the computational modules

found in SSID, while SSID benefits from PDAC's interval prediction capabilities. The

following section defines the scope of this SBIR project.

1.3 Scope of Research Effort

The research documented in this report covers the objectives listed above. The

methodology for modeling mass and stiffness uncertainty is presented in Chapter 2.

Chapter 2 is supplemented by Appendix A which documents three generic mass and

stiffness uncertainty databases. The methodology for estimating full modal damping

matrices from complex mode data is presented and discussed in Chapter 3. The approach

taken here is that damping is estimated on the basis of structure-specific tests, rather than

being modeled. Damping uncertainty is therefore derived from repeated estimates

involving the same structure, rather than the difference between model predictions and

experimental measurements on different structures. The propagation of mass, stiffness and

damping uncertainty through a structural model is discussed in Chapter 4, where three

different methods for propagating damping uncertainty are presented.

The predictive accuracy computer code, PDAC, and its integration with the

model verification code, SSID, are summarized in Chapter 5. Details of code

implementation are documented in three separate manuals:

• Theoretical Manual;

• User's Manual; and

• Demonstration Manual.

The Theoretical Manual is a modified version of the SSID Theoretical Manual which

documents the mathematical basis of SSID. The mathematical basis of PDAC is included

as an appendix of that manual. The User's Manual extends the previous SSID User's

Manual by adding the new PDAC input requirements. The Demonstration Manual is

presented in two volumes; the first volume presents SSID demonstration problems while

the second volume presents PDAC-type demonstration problems.
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Primary demonstration of the methodology is contained in Chapter 6, where

application to three real structures is presented. The damping estimation methodology

presented in Chapter 3 is not utilized in the demonstration problems of Chapter 6,

however. Instead, the demonstration problems assume diagonal modal damping with

one-sigma multiplicative uncertainty factors. The methodology of Chapter 3 is

demonstrated with real data and application to real structures in Chapter 3.

In addition to the demonstration problems of Chapter 6, simple numerical

examples selected to illustrate various aspects of the methodology are scattered throughout

the text. These examples are included to facilitate a better understanding of the concepts

involved.

Some avenues of research pursued as part of this investigation are not

documented because they did not produce fruitful results, or because other methods proved

to be superior. Lessons learned from these research efforts are briefly summarized in

Chapter 7.
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2. MASS AND STIFFNESS UNCERTAINTY

2.1 Methodology

Mass and stiffness uncertainty can be expressed in terms of the difference

between analytically predicted and experimentally measured eigenvalues and eigenvectors.

As in many engineering problems, the mathematical formulation is often the key to

obtaining a useful solution. In this case, it will be seen that expressing the mass and

stiffness uncertainty of a model in terms of modal mass and stiffness matrices offers a

number of advantages including the following:

The parameters which contain the mass and stiffness uncertainty information

can be non-dimensionalized so that statistics from different structures may be

combined. This allows statistical databases to be compiled for generically

similar structures. The normalized statistics can then be rescaled to match the

mass and stiffness properties of other structures belonging to that generic

category.

Having rescaled the normalized modal mass and stiffness uncertainties for a

particular structure, they can be propagated forward through the analysis chain

to determine eigenvalue, eigenvector and response uncertainties, either in the

frequency domain or the time domain.

The modal mass and stiffness uncertainties can also be propagated backward

through the analysis chain subject to certain conditions, to evaluate

uncertainties in the basic design variables of the structure.

The development of this methodology is based on perturbation analysis which

assumes that variations between analysis and test results are "small." The term "small" is

used subjectively in the application of this methodology, even though the perturbation

analysis is based on the mathematical definition of small as being of higher order. Here,

the coefficients of variation on modal mass and stiffness matrix elements turn out to be in

the range of approximately 10% to 30%, with a few higher and a few lower, as will be

shown. This is indicative of the accuracy of the present analysis which is based on

comparisons of analysis and test results for 22 different data sets contributed by seven

different organizations, including both government and industry.
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The remainder of this section will establish the mathematical basis for that

portion of the methodologyconcerningmassand stiffnessuncertainty.

2.1.1 Linear Perturbation Analysis

Since mass and stiffness uncertainty is considered to be independent of damping

and forcing function, only the undamped homogeneous equations of motion need to be

considered at this point. They are written as

Mx + Kx = 0 (2-1)

where x is a vector of displacements in the physical coordinate system, and M and K are

respectively the "true" (but unknown) mass and stiffness matrices corresponding to x; the

mass and stiffness matrices of the analytical model will be denoted by °M and °K,

respectively. The undamped eigenproblem may be stated as

(K - AjM)¢j = 0 (2-2)

where )_j and Cj are the jth eigenvalue and eigenvector, respectively, of the "true" system.

The parameters and modal characteristics of the analytical model are related to

those of the "true" model as follows:

K = °K + AK (2-3a)

M = °M + AM (2-3b)

Aj= °Aj+ AA (2-3c)

Cj_ ocj + A_bj (2-3d)

Substitution of these equations into (2-2) gives

(°K- °Aj °M)ACj + (AK - °AjAM - AAj°M)°¢j = 0 (2-4)
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upon neglectingsecondand third order terms.

Premultiplication of (2-4) by o¢_.results in the following for AAj since °K and °M are

symmetric, assuming that the modes, oCj, are normalized to unit modal mass.

AAj = o¢_ (AK_ °AjAM)°¢j

Premultiplication of (2-4) by °¢z i gives

ocZi[(OK-°Aj °M)ACj + (AK-- °AjAM- AAj°M)°¢j] = 0

If ACj can be written as a linear combination of the original eigenvectors, then

(2-s)

(2-6)

a¢j = oCACj (2-7)

Substitution of (2-7) into (2-6) gives

(oAj oAi)A¢i j = o¢_ (AK oAjAM)OCj

since °¢i and ocj are orthogonal with respect to °M.

following terms and notation:

m = °¢TM°¢

k = °_bTK°_b

Om= oCZOMO¢

Ok = oCZOKO¢

Am= °¢ZAM°¢

Ak = °¢TAK°_b

(2-8)

It is convenient to define the

= "true" modal mass matrix in o¢ coordinates

= "true" modal stiffness matrix in o¢ coordinates

= I (identity matrix)

= °A (diagonal matrix of analytical eigenvalues)

=m--I

= k-°A

2-3





With these substitutions, (2---8) becomes

(°Aj --°Ai)A¢i j - Akij - °AjAmij (2-9_)

(°A i -- °Aj)A¢ji = Akij -- °AiAmij (2-9b)

since Am and Ak are symmetric. Taking the difference of these two equations gives

Amij =--(A¢ij + ACji) (2-10)

for i _ j. Adding the equations and using (2-10) for i # j gives

Akij-- --(°AiA¢ij % °AjA¢ji) (2-11)

It remains only to determine the diagonal terms of Am and Ak.

obtained from the normalization condition on Cj which is

The term Amjj is

¢IMCj = 1 (2-12).

Substitution of (2-3b) and (2-3d) into (2-12) while neglecting second and third order

terms gives

Amjj = -- 2A¢jj (2-13)

Substitution of (2-13) into (2-5) gives

_kjj -- AAj --2 °AjA¢jj - AAj + °AjAmjj (2-14)

Combining Equations (2-10) and (2-13), and Equations (2-11) and (2-14) gives

Am= -(_¢ + _¢T)

Ak = AA- °AA¢- ACT°A

(2--15)

(2-16)
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The matrix A¢ is obtained from the cross---orthogonality between the analysis modes, o¢,

and the test modes, ¢.

ocToM¢ = ocWoMo¢¢ = ¢ (2-17)

where, consistent with Equation (2-7), the test modes, ¢, are expressed as a linear

combination of the analysis modes, o¢.

¢ = o¢¢ (2-18)

Substitution of (2-7) and (2-18) into (2-3d) gives

¢=(i+ A¢)

Finally, substitution of (2-19) into (2-15) and (2-16) gives

Am = (I- ¢) + (I- ¢)z

Ak= a_ + °h (I - ¢) + (I - ¢)To_

(2-19)

(2-20)

(2-21)

2.1.2 Statistical Analysis

Statistical analysis involves averaging the elements of Am and Ak over a family

of "generically similar" structures and models. Generically similar structures, for example,

might include conventional space structures, where a conventional space structure is

defined as a stiff bus with flexible appendages stowed in the launch configuration. These

structures tend to have a large proportion of nonstructural mass. They may be contrasted

with the large truss-type space structures currently being used for research purposes.

These structures tend to have relatively little nonstructural mass by comparison. The

models of generically similar structures may also be segregated into pretest models which

have not had the benefit of experimental verification, and posttest models which have been

tuned to match test data as closely as possible. These are rather broad generic categories.

They are largely dictated by the availability of data, and serve to provide a means of

discerning the importance of data segregation. By partitioning the available data into

several groups and comparing the results of using different databases in the evaluation of
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predictive accuracy, one may judge whether it is advantageous to segregate the data and

obtain higher resolution, or combine the data to achieve a larger sample size with more

homogeneous characteristics.

In order to perform a statistical analysis of the Am and Ak data, Ak must first

be normalized to remove frequency dependence. This is accomplished by computing Ak

defined as

A_ = °,_-l/_ Ak °)_-l/2 (2--22)

Having done this, the matrices Am and Ak are then vectorized such that

Vec (Am) =

" Atoll
Amil

/,,,.l ill. ,'l _l

%...i 1£1 _ '9

(2--23a)

Aki21
• I

• n

Vec(A_) = A_2_

Akt3
!

• Aknn

(2-23b)

Then the modal parameter vector, A_, is formed by combining Vec (Am) and Vec (A_,) as

follows:

Vec (Am) "1
a_ = (2-24)

Vec (Ak) J

The covariance matrix of the normalized modal mass and stiffness matrix

elements, mij and kij, may be defined as
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1
S_ = E[A_ A_ T]=

k--1

where E denotes the expectation operator and A[ is understood to represent the difference

between analysis (i.e. the nominal model) and test (assumed to represent the "truth" based

on experimental observation). In reality, the actual truth may not be known; however, it

is reasonable to define predictive accuracy in terms of the difference between predicted and

observed behavior, even if the observations are not perfect.

2.2 Databases

The data required to generate covariance matrices of the modal mass and

stiffness matrix elements consist of the following:

1. A set of test frequencies and mode shapes normalized to unit modal mass,

2. A corresponding set of analysis frequencies and mode shapes normalized to unit

modal mass, and

3. The analytical mass matrix used to normalize the analysis and test modes.

The analytical model must be reduced to the test degrees of freedom (sometimes referred to

as a "Test Analysis Model" or "TAM"); alternatively, the test modes may be expanded to

match the original analytical model for purposes of computing the cross orthogonality

matrix (Equation (2-17)). If the cross-orthogonality matrix is available, then it and the

analysis and test frequencies are all that are needed to compute the covariance matrix, S;;.

It was originally proposed that two separate databases be developed, one for

large truss-type space structures (LSS) and one for conventional space structures (CSS) as

described in Section 2.1.2.

LSS database, and six for

additional structures were

Furthermore, it was found

available.

At the outset, four structures were identified for the

the CSS database. As the project progressed, however,

identified and substantially more data were acquired.

that both pretest and posttest models of some CSS were

In other cases, either pretest or posttest models were available, but not both.
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To date, complete data sets have been acquired for almost twice as many structures: 7 LSS

and 11 CSS. Of the 11 CSS, data for 7 pretest and 8 posttest models were acquired.

The seven LSS models are considered to be neither pretest nor posttest models.

They are not pretest models in the strict sense because all of them have been adjusted to

some extent to resolve differences between the pretest models and test data. However, the

models were not "fine-tuned" as required on models of flight hardware. The models are

therefore not considered posttest models in the same sense as those of CSS. The LSS

models are therefore referred to as "research models" for purposes of this project.

2.2.1 Research Models of Large Soace Structures

Data sets were obtained for the seven large space structures listed in Table 2-1.

The number of modes indicated are the number of analysis-test mode pairs in the

frequency range indicated, beginning with the fundamental mode. In the case of large

space structures, the mode sets are complete within the given frequency range, i.e., none of

the analysis modes were omitted because a test mode was not found to correlate with it.

This is not strictly true in the case of conventional space structures, as discussed later. For

the most part, however, the frequency range for the paired modes was dictated by the

range of paired modes having cross---orthogonalities of at least 0.50, where no analysis

modes were skipped. Exceptions are noted in Appendix A where the data are presented.

LaRC Mini-Mast

Mini-Mast is a 20-meter long, 18-bay, deployable generic space truss,

manufactured by the Astro Aerospace Corporation [2-1]. It was deployed vertically and

cantilevered from its base on a rigid foundation for purposes of testing. At the time of its

construction in 1986, the design duplicated (except in length) the 60-meter MAST truss

under development for the COFS-I flight experiment. The total weight of the structure is

approximately 674 lbs. Its geometry is shown in Figure 2-1.

LaRC Ten Bay Truss

The Ten Bay Truss is a 10-meter long erectable-type truss beam cantilevered

from its base [2-2]. The total weight of the structure is approximately 43 lbs. Its

geometry is shown in Figure 2-2.
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Table 2-1. Structuresin LSS Database.

LSS 1

LSS2

LSS3

LSS4

LSS 5

LSS 6

LSS 7

Description

LaRC Minimast 3-Longeron

Deployable Truss Beam

LaRC Ten Bay 4-Longeron
Cantilevered Erectable

Truss Beam

JPL 4-Longeron Cantilevered

Precision Truss Structure

JPL 3-Longeron Cantilevered

Tetrahedral Bay Truss Beam

JPL 3-Longeron Free-Free

Tetrahedral Bay Truss Beam

PACOSS Free-Free Dynamic

Test Article (DTA)

PACOSS Cantilevered Solar

Array (Substructure of DTA)

Source

NASA Langley
Research Center

NASA Langley

Research Center

Iet Propulsion

Laboratory

Jet Propulsion

Laboratory

Jet Propulsion

Laboratory

Martin Marietta

Corporation

Martin Marietta

Corporation

NO.

Modes

9

4

5

6

22

9

Frequency

Range (Hz)

0.85 - 6.11

18.05 - 200.20

8.31 - 35.53

10.61 - 71.83

17.94 - 69.17

1.03 - 9.26

0.93- 16.6
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Figure 2-1. LaRC Mini-Mast Structure [2-1].
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Triaxlal Accelerometers

Fixed End

Figure 2-2. LaRC Ten Bay Truss [2-2].
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JPL 4-Longeron Precision Truss

The JPL Precision Truss Structure is shown in Figure 2-3 [2-3]. It is

essentially a truss beam consisting of six bays approximately 12 x 12 x 8.6 inches in

dimension. The structure is cantilevered from its base and stands 72.75 inches tall.

JPL Tetrahedral B a.y Truss Beams

Two versions of the JPL Tetrahedral Bay Truss Beam were modeled and tested:

(1) a 6-bay cantilevered truss beam and (2) a 13-bay free-free truss beam. See Figure

2-4. As shown in Figure 2--4, each bay is 1 ft. long, making the overall lengths 6 ft. and 13

ft, respectively. The total weight of the 13 ft. truss beam is 13 lbs.

In both cases, excitation was applied by active strut members. In the

cantilevered configuration the active member was a longeron in the 4th bay from the tip

(Active Member No. 39 in Figure 2--4a). In the free-free configuration, the active member

was a longeron in the 10th bay from the left end (Active Member No. 37 in Figure 2-4b).

No active damping was applied in either of these particular tests.

PACOSS Dynamic Test Article

The PACOSS Dynamic Test Article (DTA) is shown in Figure 2-5 [2-5]. It

consists of seven components as indicated in the figure. All seven components were

separately modeled and tested. A component mode model of the complete system was then

synthesized and vibration tests were performed on the complete DTA. Figure 2--6 shows

the measurement locations on the DTA. Five different shaker configurations, each

employing up to four shakers were used to excite the modes of the DTA.

Although each of the seven components was modeled and tested separately,

analysis and test frequency and modal cross-orthogonality data were obtained only from

one of the solar arrays. The finite element model of this solar array is shown in Figure

2--7.
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Figure 2-3. JPL Precision Truss [2-3].
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(a) Cantilevered Configuration

(b) Free-Free Configuration

Figure 2-4. JPL Tetrahedral Bay Truss Beams [2-4].
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COMPONENT

1) Box Truss

2) Ring Truss

3) Tripod

4) Equipment Platform

5) Antenna

6,7) Solar Arrays

DIMENSION, m

2.59x2.59x0.324

Diameter: 2.9t

Diameter at Base: 2.59

Height: 2.59

Length: 1.30

Diameter: 0.65

Length: 2.59

MASS', kg

201.5

116.7 "o

29.9

7.94

2.24

8.93

" Includes Mass of DTA Modal Survey Accelerometers
*° Includes: 16.4 kg Mass of Actuators

12.0 kg Active Mass of Zero Spring Rate Mechanisms

3

Component 1

Figure 2-5. Finite Element Model of PACOSS

Dynamic Test Article [2-5].
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Figure 2--6. PACOSS DTA Measurement Point Diagram [2-5].
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Figure 2-7. FiniteElement Model of PACOSS Solar Array [2-5].
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Covariance Matrix

The covafiance matrix, Sf_, of modal mass and normalized modal stiffness

matrix elements for the first five modes of structures in the LSS Research Model database

is presented in Table 2-2. Since only four modes of data were available for LSS 3, it was

omitted from this computation, leaving 6 structures in the database. The covafiance

matrix is presented in terms of its correlation matrix, p_, and the square roots of its

diagonal elements which correspond to standard deviations cry, of the normalized modal

matrix elements relative to their nominal values (unity for the diagonals and zero for the

off-diagonals). With a_. defined as a diagonal (square) matrix,

The correlation matrix is presented in partitioned form in Table 2-2 as follows:

[ : 1 (2-27)
.....

where Prom is the correlation matrix of modal mass matrix elements, p[_ is the correlation

matrix of normalized modal stiffness matrix elements, and Pm_, is the cross-correlation

matrix of modal mass and normalized modal stiffness matrix elements. The submatrices

Promand PF,F, are presented with the standard deviations of individual matrix elements listed

in the first column of the table. The submatrix Pm_ follows Prom and PF,_ (without the

additional first column).

2.2.2 Pretest and Posttest Models of Conventional Space Structures

Data sets were obtained for the eleven conventional space structures listed in

Table 2-3. In this case, neither the structures nor the source of data are identified at the

request of contributors who consider the data to be proprietary. As shown in Table 2-3,

both pretest and posttest models were available for four of the eleven structures. No

2-18





Table_ _ CovarianceMatrix of Modal Massand
NormalizedModal Stiffness Matrix

Elements for Research Models of LSS.

STD.

0.185

0.183

0.243

0.214

0.104

0.140

0.136

0.235

0.269"

0.151

0.191

0.100

0.330

0.143

0.290

ST.D.

"0.271

0.175

0.353

0.098

0.230

0.214

0.204

0.159

0.316

0.165

0.194

0.123

0.296

0.142

0.230

1. 0C]O-. 327 -. 339

-.3_ 1.000 -.427

-.339 -.427 1.000

-.119 0.162 0.04,7

0.4JL3 -._1 0.109

0.841 0.189 -.647

-.108 -.4._ 0.7]4

-.181 0.349 0.005

0.152 -.374 0.262

O. 187 0.328 -. 869

0.127 0.318 -.733

0.2:82 -.113 -.264

0.295 -.113 0.050

-.OgS -.68S 0.078

0.315 -.337 0.164

1.0C0 -.372 -.652

-.3"_ 1.000 0.(_0

-.652 0.060 1.C(X]

O. 381 -. 1,',6 -. 321

0.843 -.239 -.STS

0.912 -.262 -._2.

0.390 -.489 O.2SS

-.670 0.302 0.740

0.001 -.057 0.122

0.049 0.455 -.SO9

0.220 0.106 -.739

0.298 -.186 -.27_

0.407 -.110 -.036

-.082 -.729 O.C_

O. 398 -.450 0.022

0.945 -.393 -.605

-.263 0.956 -.190

-./_ -.166 0.944

-.134 0.256 0.165

0.432 -.685 -.153

0.&26 0.061 -.801

-.11S -.2'_?. 0.697

-.234 0.452 0.143

0.122 -.3&] 0.G86

0.317 0.0_6 -.824

0.20_ 0.080 -.713

0.307 -.206 -.297

0.361 -.159 -.086

-.(_9 -.732 0.044

0.3_ -.3S9 -.007

CORRELArlCN _ArI_IX [Pt_

-.119 0.433 0.C_1 -.108 -.181 0.152 0.I,_7 0.12.7 0.282

(].162. -.6.3t 0.189 -.438 0.3_9 -.37t, 0.328 0.318 -.113

0.047 0.109 -.647 0.7_4 0.005 0.262 -.869 -.733 -.264

1.CX)O -.789 -.227 0.453 0.963 -.936 -.433 -.660 0.246

-.789 1.(_0 0.27"2 -.045 -.87"2 0.880 0.167 0.28,2 0.134

-.227 0.272 1.(XX] -.518 -.174 0.103 0.$30 0.493 0.134

0.453 -.C4S -.51S 1.0(X) 0.289 -.142 -.871 -.923 0.341

0.963 -.872 -.174 0.289 I.C(X]-.938 -.428 -.561 0.102.

-.916 0.8_ 0.1(:I3 -.142 .._r_ 1.(_0 0.1_:_ 0.358 -.203

-.4.83 0.167 0.530 -.871 -.42.8 0.160 1.CC(] 0.959 -.009

-.6_ 0.282 0.493 -.923 -.561 0.358 0.959 1.CCO -.163

0.246 0.134 0.134 0.341 0.1(]2 -.203 -.009 -.163 1.0C0

-.831 0.768 0.341 -.097 -.8S4 0.861 0.260 0.377 0.056

0.201 0.070 -.447 0.189 0.04_ -.167 -.07'9 -.171 0.083

-.8_,8 0.789 0.268 -.116 -.8_ 0.894 0.223 0.348 -.262

O.381 O.843 O.912 O. 390 -. 670 0.(:(]1 O. 049 O. 220 0. 298

-,14_ -.239 -.262 -.439 0.302. -.057 0.455 0.106 -.186

-.321 -.575 -.602 0.255 0.740 0.122 -.509 -.739 -.273

1.0C0 0.502 0.307 0.596 0.119 -.432 -.518 -.360 0.4_S

0.502 1.CXX] 0.812 0.451 -.6.32 0.024 -.149 0.121 0.283

0.307 0.81:) 1.0(X] 0.398 -.554 -.289 0.133 0.191 0.584

0.596 0.4Sl 0.398 1.0(X] 0.240 -.283 -.827 -.772 0.432

0.119 -.632 -.$54 0.240 1.000 -.426 -.413 -.759 0.131

-.432 0.024 -.289 -.283 -.4,?.6 1.(XX) 0.026 0.237 -.923

-.518 -.149 0.133 -.827 -.413 0.026 1.0C0 0.842 -.G63

-.360 0.121 0.191 -.77_ -.759 0.237 0.8z,2 1.0CO -.153

0.446 0.283 0.584 0.432 0.131 -.923 -.063 -.153 1.000

-.611 0.228 0.532 -.036 -.449 0.18_ 0.399 0.273 0.044

0.232 -.2?2 -.292 0.199 0.096 0.026 -.423 -.160 -.043

-.6C.,8 0,174 0.420 0.044 -.507 0.343 0.209 0.234 -.079

CROSS-CORRELATION MATIX [JOm_]

0.4,89 0.959 0.847 0.479 -.677 0.074 -.142 0.137 0.243

-.150 -.196 -.147 -.630 0.127 -.126 0.657 0.349 -.O92

,.242 -,315 -.421 0.452 O.SSO 0.225 -.666 -.768 -.257

0.735 -.111 -.169 0.4_8 0.691 -._ -.450 -.621 0.259

-.293 0.453 0.471 0.2C0 -.647 0.243 -.051 0.244 0.10,(,

0.279 0.858 0.767 -.0(]3 -.784 0.133 0.334 0.514 0.106

0.222 -.125 0.0(]2 0.794 0.693 -.391 -.717 -.929 0.366

0.674 -.124 -.277 0.239 0,657 -.36,6 -.355 -.521 0.106

-.683 0.153 0.175 -.113 -.541 0.477 0.149 0.311 -.218

-.228 0.131 0.284 -.697 -.718 0.G82 0.8_1 0.970 -.009

*.3<;_ 0.110 0.175 -.T/'3 -.767 0.266 0.831 0.998 -.174

0.479 0.331 0.587 0.4_,3 0.O97 -.905 -.O94 -.143 0.996

o.612 0.300 0.515 -.071 -.541 0.203 0.374 0.349 0.064

0.284 -.250 -.255 0.233 0.132 -.094 -.435 -.160 0.076

-.641 0.228 0.366 -.049 -.(_0 0.523 0.242 0.312 -.251
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0.295 -.095 0.31S

-.113 -.685 -.337

0.050 0.078 0.t64

-.831 0.201 -.SZ,,S

0.768 0.070 0.789

0.341 -.447 0.268

-.097 0.189 -.!16

-.854 0.044 -.889

0.861 -.167 0.894

0.260 -.079 0.223

0.377 -.171 0.34_

0.056 0.083 -.2_Q.

1.0C0 -.470 0.895

-.470 1.0C0 -.225

0.895 -.225 1.000

0.407 -.G82 0.398

-.110 -.729 -.450

-.036 0.064 0.022

-.611 0,232 -.608

0.228 -.272 0.174

0.532 -.292 0.420

-.036 0.199 O.OZ,,A

-.449 0.O96 -.507

0.1_8 0,026 0.343

0.399 -.423 0.2O9

0.273 -.1(::_ 0.234

0.04J, -. 043 -. 079

1.000 -.450 0.914

-.4SO 1.000 -.080

0.914 -.GSO 1.000

0.273 -.O93 0.286

-.074 -.691 -. 416

0.066 0.103 0.181

-.717 0.163 -.788

0.639 0.0?2 0.798

0.314 -.436 0.177

-.CG7 0.151 0.024

-.767 0.016 -.884

0.749 -.133 O.BS4

0.223 -.070 0.1_,

0.294 -,143 0.268

0.014 -.030 -.100

0.961 -.457 0.892

-.47S 0.991 -.122

0.896 -.165 0.97'3
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Table 2-3. Structures in CSS Database.

Structure

No__.._.

CSS 1

CSS 2

CSS 3

CSS 4

CSS 5

CSS 6

CSS 7

CSS 8

CSS 9

CSS 10

CSS 11

No. Modes

Pretest Model

9

5

6

6

9

5

N/A

N/A

N/A

N/A

16

Frequency

Range (Hz)

13.71 - 23.58

16.27 - 52.70

14.49 - 49.97

14.45 - 50.29

29.38 - 95.99

15. I i - 27.35

16.15 - 46.60

No. Modes

P0sttest Model

N/A

5

6

N/A

9

N/A

34

4

14

12

27

Frequency

Range(Hz)

16.27 - 52.70

14.49 - 49.97

29.38 - 95.99

7.04 - 46.50

41.64 - 93.77

5.84 - 24.51

12.50 - 35.67

16.15-50.76
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special treatment is accordeddata from these structures, however; they are treated as

independentdata setsbelongingto either the pretest or posttest genericcategories.

As in the case of Large Space Structures, detailed data for each of the
structure-model combinations is given in Appendix A. Data for the pretest modelsare

given in Tables A---8through A-14 while data for the posttest modelsare given in Tables

A-15 through A-22. Unlike the data presentedin Tables A-1 through A-7 for Large

SpaceStructures, the CSSdata in Tables A---8through A-22 reflect the fact that analysis
modesareoccasionallyskippedor omitted from the databasewhenevera test modecannot
be found to correlatewith it. It is assumedthat the skippedmodesrepresenteither local

modesor otherwise unimportant modeswhich were not excited during test, and therefore

do not adversely affect the completenessof the model relative to its intended use (e.g.

launch loads analysis). For example,in Table A-11, fourteen of the sixteen skippedmodes
between18 and 40 Hz are attributed to local appendagemodes,and none of the sixteen

modescontribute significantly to the effective massof the model at its interface with the
launch vehicle.

In two isolatedcases(Tables A-12 and A-20), modepairs are listed which have

cross---orthogonality coefficients of less than 0.50. Notation is made that the test modes are

94% and 85% represented by linear combinations of the analysis modes listed in their

respective tables. This statement requires some explanation. Equations (2-7) and (2-18)

imply that the test modes can be represented as linear combinations of the analysis modes.

This has been found to be true in an approximate sense. In fact, the test modes, ¢, are

represented by a least squares fit of the modes

_b= o¢¢ (2-28)

This assertion is easily verified by defining an objective function, Jj, as the weighted sum of

the squared differences between the measured mode, Cj, and its approximation, _bj, where

the analytical mass matrix, °M, is used as the weighting matrix.

Jj = (¢j - _bj)"r °M (¢j - _bj) (2-29)
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Substitution of (2-28) into (2-29) gives

jj = (¢j- o¢¢j)T oM (¢j- o¢¢j) (2-3o)

Setting the gradient of Jj with respect to Cj equal to zero gives

VCj Jj----°¢T oM(¢j_o¢¢j)_0
(2-31)

from which Equation (2-17) is obtained. From this result it is understood that

Cj= bj + (2-32)

where the vector ej represents the residual error in the least squares approximation, i.e. the

difference between ¢j and Cj. A measure of this error is given by the difference, 1 - ¢jT ¢j.

It is recalled that the measured modes, ¢j, are normalized such that

cT oM Cj = i (2-33)

Substitution of (2-32) into (2-33) gives

(o¢ Cj + _j)T oM (o¢ Cj + ej) = 1

from which it follows that

1--¢jT Cj = _jT oM (2 o¢ Cj + ej)

T oM= ej (¢j + Cj) (2-34)

In general, then, ej _ 0 unless

_jT Cj = 1 (2-35)
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The percentcompletenessof Cj is definedas

Percent completeness = 100% I¢_ ¢j (2-30)

Covariance Mat rices

The covariance matrices, S_., of modal mass and normalized modal stiffnes

matrix elements for the first five modes of structures in the CSS Pretest and Posttest

Model databases are presented in Tables 2-4 and 2-5, respectively. One would expect the

covariance matrix of modeling error to be smaller for posttest models. It is not

immediately apparent that this is the case; the individual standard deviations appear to be

roughly equivalent. They are not, however, as shown in the following subsection.

2.2.3 Comparison of Databases

As stated earlier, one of the reasons for segregating the data into three separate

databases was to compare them with each other and with the database realized by

combining the three. The five-mode covariance matrix for combined LSS and CSS Pretest

and Posttest Models is presented in Table 2---6. Again, no significant differences are

immediately apparent between the combined database and the three separate databases.

The differences are more apparent when comparing the eigenvalues of these

matrices. It will be observed that all four covariance matrices are singular because rank,

which is governed by the number of structures in the database, is less than the dimension

of the matrices. The dimension is equal to mS + m, where m is the number of included

modes. In this case, m = 5 so that the covariance matrices are of dimension 30 x 30. The

rank of the matrices in general equals the number of structures in the database, as

confirmed by the number of non--zero eigenvalues. Table 2-7 compares the eigenvalues of

the four covariance matrices obtained by singular value decomposition [2--6].

The eigenvalues of a covariance matrix provide a measure of its uncertainty. In

particular the trace of the covariance matrix which equals the sum of its diagonal elements,

or alternatively the sum of its eigenvalues, provides a scalar measure of uncertainty. Now
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Table 2-4. Covariance Matrix of Modal Mass and

Normalized Modal Stiffness Matrix

Elements for Pretest Models of LSS.

ST,D.

0.097

0.084

0.137

0.0_

0.134

0.117

0.131

0.116

0.062

0.094

0.109

0.467

0.177

0,278

ST.D.

0.193

0.104

0.1%

0.072

O. 0'7'2

0.287

0.133

0.122

0.073

0.634

0.096

0.125

O. 407

0.175

0.320

1.000

-. 707

-. 256

0.238

0.0_

0.953

0.821

-.376

0.792

0.7'24

0.62.5

0.87'4

0.120

0.429

1.000

0.025

0.00S

0.089

0.675

0.4_.

-. 12/,

-.259

0.7130

0,4_

0.261

0.437

0.022

0.562

0.654

0.310

0,180

-. 038

0.702

0.4_2

-.210

-,227

O. 592

0.418

0,298

0.35 S

-.001

O.293

-. 707 -. 256

1.0CO O. 140

0.140 1.C00

-. 533 0,305

-.179 0.4,82

-.608 -.249

-._4 -.043

0.739 0.004

O.5(X]-. 368

-.386 -.I09

-. 526 -. 585

-.798 0.013

-.751 -.3_

-.287 O.465

-.284 -.514

-.&33 0.02.5

1.C00 0.040

0.040 1.(X](]

-. 579 -.033

-.555 0.042.

-.0T7 -.158

-.898 -.160

0.390 0.172

0.293 -.304

-.3&_ 0.02.4

-.591 -.362

-.744 0.274

-.712 -.223

-._4 0.299

-.015 -.263

-. 762 -.4O9

0.989 0.016

0.146 0.847

-.571 0.298

-.213 0.287

-. 6.36 -. 4,69

-.'_1 -.019

0.813 -.(305

O.550 -.229

-.407 -.409

-.553 -.4_

-.856 0.094

-._ -.313

-. 329 0. 307

-.243 -.u.O

COSREt,XrlCJ_ _Ar_Ix L°mm]

0.258 0.046 0.953 0.821 -.6_.

-.533 -.179 -.6,08 -.534 0.7"39

0.305 0.482 -.249 -.043 0.0C4

1.000 0.699 0.139 0.6L_1 -.624

0.699 1.000 O.OCO 0.254 -.50a

0.139 0.000 I.C00 0.634 -.434

0.661 0.254 0.634 1.00(]-.878

-.624 -.508 -.434 -.878 1.0C0

-. 937 -. 867 -. 264 -. 643 O. 702

0.002 0.138 0.919 0.381 -.274

-.131 -.6_9 0.656 0.566 -.284

0.851 0.417 0.416 0.941 -.859

0.153 O.OZ_ 0.780 0.781 -.766

0.766 0.987 0.032 0.383 -.625

-._1 -.683 0.530 0.049 0.OCJ_:]

-.376 O,792

O.5C(3 -. 386

-.368 -.109

-.937 O.002

-.8d7 0.138

-.264 0.919

-.643 O. 381

0.702 -.274

I .C(_ -.224

-.224 I.(XX3

0.22.30.378

-. 7'82 0.164

-.265 0.651

-.911 0.115

0.597 0.47"?

CO..ELATZO..,'r,ZX

0,005 0.089 0,675 0,402 -.124 -.259 0,700

-.579 -.555 -.077 -.898 0.390 0.293 -.366

-.033 0.042 -.158 -.160 0.17"2 -.304 0.024

1.000 0.840 -.07'7 0.595 0.157 -.6C0 0.021

0.840 1.0C0 -.OdS 0.630 -.276 -.630 -.042

-.077 -.065 1.CCO -.098 0.109 0.238 0.889

0.595 0.630 -.CR8 1.(_3 -.487 -.413 0.127

0.157 -.276 0.109 -.487 1.0C0 -.159 0,049

-.600 -.630 0.2_38 -.413 -.159 1.000 0.264

0.021 -.042 0.8,39 0.127 0.049 0.264 1.000

-.029 -.119 -.039 0.688 -.386 0.066 0.173

0.761 0.834 -.257 0.817 -.249 -.776 -.Od2

0.295 0.304 0.488 0.613 -.427 0.28=80.716

0.765 0.919 -.059 0.334 -.025 -.717 -.090

-.404 -.443 0.868 -.156 -.003 0.603 0.850

CROSS-CORRELATION MATIX [Pm_]

0.4M, 0.408 0.411 0.825 -.329 -.122 0.541

-.539 -.493 -.118 -.831 0.333 0.271 -.404

0.015 0.193 0,171 -.194 0.194 -.434 0.197

0.764 0.758 -.334 0.658 -.037 -.919 -.220

0.759 0.883 -.018 0.234 0.C,61 -.658 -.072

0.395 0.278 0.616 0.638 -.111 -.045 0.6.82.

0.563 0.622 -.038 0.984 -.482 -.418 0.219

-.627 -.822 0.08d -.869 0.633 0.326 -.118

-.8% -.927 0.103 -.629 0.055 0.850 0,046

0.417 0.264 0.76,8 0,369 0.115 0.043 0,766

-.104 -.197 0.126 0.596 -.4C_ 0,294 0.320

0.678 0.723 -.2T3 0.943 -.384 -.625 -.031

0.424 0.416 0.281 0.779 -.48a 0.156 0.$21

0.7"74 0.931 -.074 0.359 -.061 -.6_2 -.079

-.336 -.4,84 0.531 0,056 -.145 0.741 0.648
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0.724 0.625 0.87_ 0.120 0.429

-.526 -.798 -.75t -.287 -.2B_

-.585 0.0t3 -.330 0,465 -.514

-,131 0.851 0.153 0.766 -.631

-.609 0._17 0.04J-, 0.987 -.6fl3

0.656 0.416 0.7_ 0.032 0.530

0.566 0.941 0.781 0.383 0.049

-.284 -.859 -,766 -.625 O.OC_

0.223 -.782 -.265 -.911 0.597

0.378 0.164 0.651 0.115 0.47"/'

I._ 0.351 0._ -.515 0._1

0.351 1.(_'_3 0.586 0.540 -.221

0.686 0.586 1.0(_0 0.136 0.526

-.515 0.540 0.136 1.000 -.6_9

0.721 -.221 0.526 -.669 1.000

0.436 0.261 0.437 0.022 0.562

-.591 -.744 -.712 -.294 -.015

-.362 0.274 -.223 0.299 -.263

-. 02.9 O.761 O. 295 O. 765 -. 404

-.119 0.834 0.304 0.919 -.443

-.039 -.257 O./-,&_ -.059 0.8_

0.688 0.817 0.613 0.334 -.156

-.3,36 -.249 -.427 -.025 -.003

0.066 -.776 0.258 -.717 0.603

0.173 -.0d2 0.716 -.0_ 0,850

1.000 0.231 0.486 -.440 0.228

0.231 1.(_ 0.257 0.734 -.512

0.48¢50,267 1,000 0.031 0.535

-.440 0.734 0.031 1.000 -.510

0.228 -.512 0.535 -.510 1.CX30

0.703 0.473 0.813 0.106 0.368

-.556 -.691 -.679 -.253 -.057

-.495 0.255 -.196 0.483 -.080

0.079 0.951 -.011 0.772 -,647

-.533 0.649 0.007 0.991 -.478

0.593 0.286 0.774 0.029 0.546

0.659 0.836 0.648 0.356 -.I03

-.328 -.819 -.651 -.584 0.226

0.0_ -.920 -.148 -.915 0,504

0.264 0,116 0.715 0,117 0,623

0.963 0.059 0.614 -.539 0.427

0,503 0.951 0.407 0.519 -.406

0._5 0.419 0.959 0._ 0.330

-.42_ 0.747 0,078 0.997 -,509

0.526 -.450 0.631 -.697 0.833





Table 2-5. Covariance Matrix of Modal Mass and

Normalized Modal Stiffness Matrix

Elements for Posttest Models of CSS.

ST D.

0.125

0.143

0.042

0.044

0.0/_

0.132

0.036

0.043

0.030

0.153

0.061

0.105

0.336

0.096

0.297

ST.D.

0.163

0.1/,2.

0.040

0.049

0.100

0.175

0.023

0.023

0.047

0.233

0.074

0.0'96

0.383

0.111

0.316

1.000

-. 167

0.043

O. 426

-.631

0.c0S

0.161

0.118

0.868

-.951

0.653

0.846

1.000

-.113

-.376

0.849

-.393

-.419

-.090

0.783

-.558

-°622

0.732

0.764

0.784

0.121

-.272

0.670

0.026

-.06_

-.356
0.717

-.645

-.6_

0.666

-.650

0.789

-.167 0.043

1.0C0 -.7q3

-.793 I.CCO

-.101 -.016

-.z_ o_423
-. 4Z'? 0.317

-.968 0.777

O.374 -.293

-. 491 O.492

-.514 0.412

0.069 0.072

0.008 0.116

-._ 0.145

0.518 -.661

-.131 0.175

-.048 -.008

1.000 -.819

-.819 1.000

-.009 -.345

-.111 0.342

-.ZTO 0.158

-.141 -.035

O.548 -. 524

-.494 0.555

-.285 0.268

0.007 0.450

0.013 0.464

-.124 0.130

0.289 -.200

-.128 -.029

-.139 -.306

0.992 -.786

-.796 0.764

-.170 -.177

-.247 0.539

-. &J,O0.001

-.963 0.727

0.28& -.259

-.596 0.668

-.500 0.1/.2

0.002 0.495

0.077 0.417

-.149 0.063

O. 53O -.272

-. 161 -.060

CORRE_TICn ,_AT_[X [fl_m]

0.4,_6 -.631 0._5 0.161 0.11,3

-. 101 -.296 -.427 -.96.8 0.374

-.016 0.423 0.317 0.777 -.293

1.000 -.813 0.585 0.119 0.713

-.813 1.(XX3 -.600 0.301 -.766

0.585 -.600 1.000 0.412 0.232

0,119 0.301 0.412 1.000 -.450

0.713 -.766 0.232 -.450 1.003

0.511 -.081 0.1C2_30.489 0.3_

0.356 -.386 0.942 0.467 0.0.35

-.243 0.451 -.676 -.112 0.160

-.597 0.767 -.860 -.122 -.220

0.498 -.659 0.798 0.0]6 0.56.3

-.327 0._'_5-.849 -.550 0.014

0._ -.654 0.911 0.097 0.398

-.233 0. ,.%_

-.491 -,$14

0.492 0.412

0.511 0.356

-.081 -.386

0.12 0.942

0.489 0.467

0.3_6 O.O35

1. CX_O0.070

0.070 1.000

0.518 -.666

O. 157 -. 743

0.323 0.689

-.262 -.821

0.114 0.847

co,. LATm.,AT,:x

-.113 -.376 0.849 -.393

-.009 -.111 -.270 -.141

-.345 0.342 0.158 -.035

1.CX_ -.459 0.115 0.786

-.459 1.000 -.345 -.247

0.115 -.345 1.000 -.139

0.786 -.247 -.139 1.000

0.281 -.133 -.414 -,072

-.757 0.522 -.233 -.538

0.114 -.322 0.971 -.005

-.367 0.360 -.388 -.012

-.639 0.574 -.600 -.223

0.231 -.382 0.920 -.016

0.331 -.200 -.725 0,492

-.419 -.cYgo 0.783

O. 548 -. 494 -.285

-.524 0,555 0.268

0.281 -,757 0.114

-.133 0.522 -.322

-.414 -.233 0.971

-.072 -.538 -.085

1.0(X]-.382 -.399

-,382 1.0C0 -.282.

-.399 -.282. 1.C'CO

0.157 0.101 -.201

0.055 0.505 -.4,82

-.233 -.471 O.97"3

0.595 -.285 -.649

0.345 -.282 0.938 0.029 -.278 -.457 0.912

CROSS-CORRELATIONMATIX [Pm_:]

0,422 -.558 0.743 0.016 -,211 -.308 0.612

0.058 -. 124 -.253 -.058 O. 561 -. 574 -. 246

-.202 0.558 0,326 -.175 -.462 0.530 0.346

0,956 -,42.7 0,196 0.666 0.334 -.661 0.210

-.848 0.743 -.384 -.4A4 -.360 0.879 -.369

0.515 -.473 0,832 0.192 -.311 -.301 0.761

0.018 0.204 0.194 0.206 -.649 0.530 0.176

0.647 -./.,J, 1 0,192 0.326 0.6.38 -.82.0 0.293

0.386 0.115 0.093 0.555 -,099 -.142 0.24,8

0.257 -.377 0,863 -.051 -.384 -.049 0.756

-.304 O./d]5 -.4J,00.053 0.177 0.131 -.255

-.6J_ 0.642 -.560 -.284 0.123 0.472 -.t,.63

0.432 -.489 0.68a 0.165 -.182 -.583 0.933

-.247 -.020 -.802 -.049 0,535 0.061 -.763

0.414 -.4&2 0.942 0.064 -.232 -.4,850.910
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-.<)(]2-.951 0.653 -.7C(]0.846

0.069 0.C_8 -._ 0.518 -.131

0.072 0.116 0.145 -.661 0.175

-.243 -.597 0.498 -.327 0.468

0.451 0.767 -.659 0.235 -.654

-.676 -.86/]0.798 -.849 0.911

-.112 -.122 0.036 -.550 0.097

0.160 -.220 0.563 0.014 0.398

0.518 0.157 0.323 -.262 0.114

-.666 -.743 0.689 -.821 0.847

1.000 0.880 -.282 0.509 -.553

0.880 1.000 -.599 0.589 -.764

-.2&?. -.599 1.000 -.692 0.9,',6

0.509 0.589 -.692 1.000 -.794

-.553 -.764 0.9/.,,6 -.7_4 1.000

-.558 -.622 0.732 -.809 0.76,;

0.087 0.013 -.124 0.289 -.128

0.450 0.4_ 0.130 -.200 -.029

-.367-.639 0.231 0.331 0.345

0.360 0.574 -.382. -.200 -.282

-.388 -.600 0.920 -.725 0.938

-.012 -.223 -.016 0.492 0.029

0.157 0.055 -.233 0.595 -.278

0.101 0.505 -.471 -.285 -.457

-.201 -.4_2.0.973 -.649 0.912

1.(X)O0.879 -.155 0.452 -.4Z_@

0.87<) 1.000 -.500 0.365 -.714

-.155 -.508 1.0(X]-.528 0.917

0.452 0.365 -.528 1.0C0 -.66_

-.4/.8 -.714 0.917 -.660 1.000

-.883 -.955 0.585 -.556 0.767

0.152 0.024 -.069 0.335 -.095

0.0(]3 0.091 0.205 -.579 0.269

-.320 -.(:_:]40.313 0.270 0.390

0.44-4 0.780 -.511 -.162 -.549

-.689 -.855 0.718 -.531 0.847

-.202 -.056 0.001 -.330 0.068

0. 159 -.269 0.478 0.383 0.348

0.435 0.179 0.258 0.220 0.131

-.670 -.736 0.656 -.652 0.793

0.989 0.683 -.214 0.494 -./,.85

0.878 0,968 -.475 0.319 -.665

-.241 -.621 0.975 -.416 0.920

0.526 0.619 -.686 0.791 -.8#,2

-.516 -.791 0.917 -.576 0.972





Table 2-6. Covaria.nce Matrix of Modal Mass and

Normalized Modal Stiffness Matrix

Elements tbr all Models of LSS and CSS.

ST.D.

0.138

O. 1_,0

0.160

0.133

0.102

0.129

0.109

0.1_

0.1_

0.257

0.124

0.105

0.386

0.142

0.289

S_.D,

0.211

0.142

0.227

0.075

0.145

0.231

0.137

0.114

0.181

0./,10

0.128

0.115

0.368

0.145

0.294

1.000 -.330

-.330 1.000

-.262 -.309

0.019 O.Om

0.119 -.351

0.870 -.190

0.204 -.534

-.229 0.377

0.056 -.250

0.497 -.153

0.074 0.121

-.033 -.185

0.543 -.255

-.152 -.Z19

0.505 -.238

1.030 -.292

-.29Z 1.000

-.389 -.008

0.175 -.218

0.457 -.238

0.770 -.187

0.331 -.502

-.42.6 0.303

-.039 -.051

0.473 -.135

0.146 -.036

0.072 -.278

0.488 -.281

-.190 -.278

0.538 -.183

0.829 -.378

-.259 0.97O

-.168 -.137

-.049 0.026

0.119 -._/2

O. 733 -. 282

0.132 -.499

-.201 0.458

0.035 -.233

O./,69 -. 2_

0.118 -.062

0.048 -.275

0.415 -.]47

-,154 -.251

0.662 -._2

¢clluE',.arlc, N ,Aratx _nm_

-.26¢2 0.019 0.119 0._70 0.204 -.229 0.056 0./.97

-.309 0.C_9 -.351 -.190 -.534 0.377 -.250 -.153

1.0C(] 0.101 0.261 -.]61 0._31 -.Ct33 0.178 -.262

0.101 1.0C0 -.197 -.017 0.&77 0.638 -.881 -.111

0.261 -.197 1.00(] -.012 0.140 -.643 0.308 0.087

-.361 -.017 -.012 1.000 0.081 -.173 0.0.38 0.733

0.431 0.477 0.140 0.081 1.000 -.131 -.191 0.079

-.003 0.6.,_ -.643 -.173 -.131 1.CX:X] -.701 -.229

0.178 -.881 0.308 0.(333 -.191 -.71:]1 1.000 0.005

-.262 -.111 0.087 0.733 0.079 -.229 Q.G05 1.0C0

-.655 -.530 -.0_ 0.285 -.357 -.464 0.333 0.341

-.102 0.269 0.366 -.129 0.517 -.220 -.207 -.067

-.088 -.246 0.131 0.6,4,2 0.369 -.553 0.363 0.575

0.168 0.313 0.614 -.I38 0.227 -.191 -,261 -.055

-.OSS -.511 -.173 0.584 -.012 -.361 0.56/, 0.4,60

CORRELATIONHATRZX [P_k]

-.389 0.175 0.457 0.770 0.331 -.t_.6 -.039 0.475

-.008 -.218 -.2.38 -.187 -.502 0,303 -.051 -.135

1.000 -.221 -._ -.324 0.129 0.531 0.071 -.075

-.221 1.0C0 0.382 0.100 0.575 0.136 -.427 -.OS7

-.4X]3 0.38_ 1.0C0 0.279 0.414 -,475 O.OCa -.084

-.324 0.100 0.279 1.000 0.117 -,187 -.114 0.760

0.129 0.575 0.414 0.117 1.000 -,029 -.285 -.084

0.531 0.136 -.475 -.187 -.029 1.0C0 -.3t_ -.057

0.071 -./,27 0.008 -.114 -.285 -,34/, 1.000 0.(2_9

-.075 -.057 -.08,4 0.760 -.084 -.Q57 0.049 1.000

-.589 -.272 0.121 0.009 -.347 -.5_ 0.201 0.201

-.022 0.345 0.417 -.082 0.496 -,039 -.S99 -.12S

-._ -.029 0.049 0.608 0.216 -,345 0.080 0.669

0.129 0._ 0.029 -.258 0.245 0.061 -.129 -.208

-._ -.251 -.093 0.769 -.0L_I-.188 0.191 0.715

CROSS-CORRELATION"Ar%X [,0=_]

-.t_ 0.453 0.537 0.620 0.484 -.481 0.015 0.293

-.163 -.173 -.203 -.152 -.$39 0.185 -.116 -.077

0.914 -.156 -,167 -.094 0.252 0.410 0.143 -.015

0.186 0.728 -.019 -.164 O.t,_ 0.463 -.525 -,161

0.058 0.129 0.506 0.075 0.183 -.258 0.0/,6 -.092

-.529 0.361 0.366 0.698 0.206 -.414 0.042 0.533

0.412 0.338 0.072 -.002 0.8/,3 0.129 -.311 0.0/-6

0.104 0.303 -.236 -.078 -.056 0.635 -.291 -.101

0._I -.575 0.068 0.!08 -.169 -.392 0._ 0.051

-.4Z_ 0.193 0.051 0.679 0.003 -.128 0.032 0.765

-.607 -.303 0.102 0.059 -.376 -.6(]5 0.253 0.262

-.07";' 0.272 0.435 -.122 0.505 -.102 -.502 -.121

-.1460.053 0.107 0.476 0.302 -./,27 0.072 0.543

0.125 0.399 0.076 -.255 0.253 0.053 -.166 -.20,8

-.135 -.266 -.092 0.582. 0.030 -.322 0.333 0.554
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0.07& -.033 0.543 -.152 0.505

0.121 -.185 -.255 -.219 -.238

-.655 -.102 -.088 0.168 -.055

-.530 0.269 -.2/._ 0.313 -.511

-.O/d, 0.366 0.131 0.614 -.173

0.285 -.129 0.642 -.338 0.584

-.357 0.517 0.369 0.227 -.012

-.t_4 ,.220 -.553 -.191 -.361

0.333 -.207 0.363 -.261 0.56/,

0.341 -.067 0.575 -.055 0.460

1.0C0 0.176 0.329 -.190 0.249

0.176 1.0C0 O.CRO 0.407 -.428

0.329 0.090 1.000 -,192 0.743

-.190 0.407 -.192 1.000 -.541

0.249 -.t_.8 0.743 -.541 1.0C0

0.146 0.072 0.488 -,190 0.538

-.036 -.278 -.281 -.278 -.183

-.589 -.022 -.080 0.129 -.080

-.272 0.345 -.029 O.t,_ -.251

0.121 0.417 0.049 0.029 -.093

0.009 -.082 0.608 -.258 0.769

-.347 0.496 0.216 0.245 -.041

-.583 -.Q39 -.34S 0.061 -.18.8

0.201 -.599 0.080 -,129 0.191

0.201 -.125 0.669 -.208 0.715

1.0C0 0.139 0.208 -.140 0.051

0.139 1.0C0 -.031 0.404 -.456

0.208 -.031 1.0C0 -.239 0.756

-.140 0.404 -.239 1.000 -.442.

0.051 -.456 0.756 -.442 I.(XX_

0.052 -.021 0.502 -.lt, O 0,449

0.152 -.188 -.206 -.238 -.177

-.651 -.037 -.021 0.180 0.066

-.461 0.338 -.2U, 0.337 -.428

-.029 0.467 0.073 0.553 -.147

0.250 -.121 0.620 -.272 0.558

-.332 0.520 0.297 0.206 -.029

-.434 -.212 -.441 -.155 -.224

0.274 -.254 0.313 -.214 0.439

0.281 -.064 0.585 -.042 0.554

0.989 0.058 0.252 -.175 0.131

0.251 0.969 -.006 0.]02 -.433

0.285 0.052 0.957 -.167 0.6.]2

-.14_ 0.499 -.2¢6 0.956 -.4&3

0,168 -.484 0.7'96 -.491 0 911
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the relative degrees of uncertainty represented in the four databases may be compared.

The pretest models reflect the largest uncertainty as expected, while posttest models reflect

the smallest uncertainty. The LSS database involving "research" models lies between the

two extremes while the combined database reflects an average of the three. The

uncertainty of pretest CSS models is seen to be approximately twice that of the posttest

models, while that of the combined database is slightly less than that of the CSS models.
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3. DAMPING ESTIMATION AND UNCERTAINTY

Although recent advances have improved the ability to model damping for

certain types of structures, there are no general tools available for modeling damping as

there are for modeling mass and stiffness; damping is estimated from experimental data.

The rationale for quantifying damping uncertainty is therefore different. Instead of

defining damping uncertainty in terms of the variability between analytical predictions and

experimental measurements for a class of structures, damping uncertainty is defined in

terms of the variability among experimental estimates for a particular structure.

The variability in damping estimates arises from many sources, all related to

the way damping is commonly defined. In structural dynamics, damping is defined in

terms of equivalent viscous damping, More specifically it is defined in terms of modal

damping, analogous to the way modal mass and stiffness are defined. Unlike the modal

mass and stiffness matrices, however, which are diagonal by virtue of the modal

transformation, the modal damping matrix is not diagonal. In general, the off---diagonal

elements are the same order of magnitude as the diagonal elements. Nevertheless, the

off---diagonal elements are typically neglected, while the diagonal elements are expressed in

terms of a critical damping ratio consistent with the assumption that the equations of

motion are uncoupled in modal coordinates. The term "modal damping" is thereby taken

to mean the critical damping ratio of an equivalent linear single degree of freedom system

with viscous damping.

With such an oversimplified damping model, it is not surprising that estimates

of its parameters exhibit a high degree of variability. Modal damping represents the energy

dissipation per cycle in a particular mode, assuming that the mode vibrates independently

of the other structural modes. The modal damping ratio, (j, is proportional to the ratio of

modal dissipative energy, Dj, to modal kinetic energy, Kj, which is constant in the case of

linear viscous damping.
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In general,the ratio of dissipative to kinetic energy is not constant, but dependson other
factors including amplitude, frequencyand temperature. Nevertheless,in the absenceof

more accurate models, the equivalent viscousdamping model is commonly acceptedwith

the understandingthat the parametersof that model must be determined experimentally,

often with a large degreeof uncertainty.

3.1 EstimatiOn of a Modal Damping Matrix

A full modal damping matrix has several uses: (1) off---diagonal terms may

couple modes when their frequencies are closely spaced [3-1] in which case those terms

should be included in response computations; (2) the full modal damping matrix is required

to synthesize structural damping from substructure tests [3-2]; and (3) the full modal

damping matrix enables the parameters of a physical damping model to be estimated,

thereby revealing the type and distribution of damping present in the structure. The first

two uses are discussed in the literature; the third is discussed in Section 3.2.

3.1.1 Perturbation Analysis

A method for estimating the full modal damping matrix of a structure based on

experimentally measured complex modes was first published in Reference [3-3]. Implicit in

the derivation of the method is the assumption that the mass matrix used in the

computation of the modal damping matrix is the "true" mass matrix, i.e. that the

analytical mass matrix accurately represents the actual mass distribution of the structure

in the sense that the real parts of the complex modes diagonalize the matrix, and the real

and imaginary parts of each complex mode are orthogonal with respect to it. In reality

these assumptions are only true in an approximate sense. The orthogonality of the test

modes with respect to themselves through the analytical mass matrix (self---orthogonality)

and the orthogonality of the test modes with respect to the analytical modes (cross-

orthogonality) are only approximately diagonal. This derivation extends the original

derivation of Reference [3-3] to account for these facts.

Equations of motion are first written in the physical (nodal) x---coordinate system:

Mi + C± + Kx = 0 (3-1)
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{:}+ {:7:0 (3-2)

Or

where

Air + By = 0 (3-3)

Y= f"_] (3-4)

The first order eigenproblem is then written as

(B + AjA)_j = 0 (3-5)

where

and

y= _z (3-6)

(3-7)

In this chapter, ¢ and w are used to represent the damped modal displacements and

frequencies, respectively, while ¢_ denotes the real part of the complex modal

displacements, ¢. The asterisks denote complex conjugates. The matrix of complex

modes, _, diagonalizes both A and B. In particular

L¢_: ¢*_,*J
(3-8)
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where

(3-9)

CJ = ¢ltj + 6¢[tj + i6¢Ij _ CRj + i_¢lj
(3-to)

and where i = _':1"---. Here it is assumed that ¢1t are the undamped real modes such that

T
¢1t M CB. = I [modal mass matrix (identity)] (3-11a)

T
¢_t C ¢_ = _ [modal damping matrix (full)] (3-tlb)

T 2
eft K eft = Ao = wo [modal stiffness matrix (diagonal)]

The subscriut "o" denotes undamped eigenvalues and modal frequencies. Perturbation

analysis leads to the following two equations

_jk "-- cT = cT cT 6¢ITjRj CCR k --(O'j + Crk) Rj MCR k + wk Itj M6¢I k + wj M¢_.k

o;jCZ  ¢fj = 0ltj M6¢I k + Wk MCR k

In matrix from these equations may be written as

(3-14)

where 2(w is the diagonal portion of the modal damping matrix, _, and

_jk = _bT
Rj M_¢I k
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The requirement that _jj = 2_jjwj implies

_jj _ CT M_|j - 0 (3-17)Rj

which establishes the second normalization condition on the complex mode

• • (3-1o)
CJ = ¢_, + '6¢xj

the first being Equation (3-11a). This is a condition which heretofore has not been

recognized when "converting" experimentally derived complex modes to real modes for

comparison with undamped modal analysis. Implementation of this condition is addressed

in Section 3.1.2.

Equations (3-14) and (3-15) may be derived from the two equations presented in

Reference [3-3]. At this point it is desirable to distinguish between the analytical mass

matrix, °M, and M such that (see Section 2.1.1)

M = °M + AM (2-3b)

In addition, CR. and 6¢x are expanded into linear combinations of the analytical (real)

modes which are designated °¢B .. Then

¢_j= o¢_¢j (3-1s)

6¢ik = °¢itTk (3--19)

Then (3-16) becomes

= cT (oM+

= tb_ (I + Am) 7k (3-20)
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where

°¢T°M¢it = [ °d)T°M°'It--
]

o¢ OM6¢I ,-it -- ,-it 7= 3'

(3-21)

(3-22)

Finally, from Equation (2-20) of Chapter 2

Am = (I-- ¢) + (I-- ¢)I: (2-20)

From (3-12) the off---diagonal terms of the modal damping matrix, _, are found to be

_jk= Wk#jk + Wj#kj (3--23)

An alternate expression found by combining Equations (3-12) and (3-13) is

_jk=(_dk--Wj) (_jk--_kj) (3-24)

Ideally, Equations (3-23) and (3-24) should give the same result. In reality, however,

measurement error affects the complex modes ¢ so that in place of (3-13) one has

_jk= _j #jk + _k#kj

where ejk is considered to be a residual bias error. It is desirable that

ejk < < _jk (3-26)

To the extent that Equation (3-26) is true, one can expect Equation (3-24) to be true also.

Unfortunately, (3-26) has not been found to hold true with experimentally

derived complex eigenvalues and eigenvectors. With the proper normalization of ¢it, it

does hold true with analytically simulated "data" (complex eigenvalues and eigenvectors

3-6





derived from Equation (3-5)). When ejk is not zero, it can be used to obtain a correction

term for _jk in Equation (3-24).

as

The correction term is derived by first rewriting Equations (3-24) and (3-25)

(3-27a)

(3-27b)

where

(3-28a)

(3-28b)

and then solvingfor A/3jkand Aflkj. Substitutionof (3-28) into (3-27) gives

_jk = _jk + _ A_jk "q- 0Jj _kj (3-29a)

_jk = Wj A_j k + _ A/_kj (3-29b)

These equations cannot be solved directly for A_j k and A/_kj because _jk is a third

unknown and there are only two equations. This problem can be circumvented by

imposing an additional condition on A_jk and A_kj, namely that the sum of their squares

be minimized, i.e. that Aflj k and A/3kj are chosen such that the cost function

(3-30)
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is minimized. Substitution of (3-29b) into (3-30) gives

[_jk wjAf_jk]2J= Afi_k+ wk Wk
(3-31)

Minimization of J with respect to A/3jk leads to

2 ] 2wj _jk0J wj Af_Jk
a(azjk)= 2 1+ _ _,

--0 (3-32)

which gives

a]j ] ^A_jk = 2 --
wj + w_ eJk

(3-33a)

Substitution of (3-33a) into (3-29b) leads to the companion equation

Wk ]
wj

(3-33b)

Substitution of (3-33) into (3-29a) then gives

_jk--_jk--2 [ WJ ¢dk ] ^2 eJk
w j+ w_

(3--34)

3.1.2 Dat_,Conditioning

Before Equations (3-27) and (3-34) are applied, several steps are taken to

condition the data consisting of experimentally derived complex eigenvectors and the

analytical mass matrix. They are as follows:
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1. Normalizethe complexmodessoasto satisfy Equation (3-17);

2. Orthogonalizethe real parts of the complexmodes;and

3. Adjust the analytical massmatrix to better representthe "true" massmatrix.

Thesestepsareoutlined in the subsectionswhich follow.

3.1.2.1 Normalization of Complex Modes

Since complex modes have both a real and an imaginary part, they require two

normalization conditions compared with only one condition for real (undamped) modes.

The two conditions are chosen as

ltj •

cT M 6¢I j = 0_tj

hom Equations (3-11a) and (3-17). For the time being, it will be assumed that M is

known.

To begin the normahzation process, a complex eigenvector is first normalized

such that the element with the greatest magnitude has the value (1,0) (i.e. the real part is

unity and the imaginary part is zero). The jth complex eigenvector normalized in this way

is designated

• " (3-35)

A new eigenvector

, • (3-36)
Cj = ¢l_j + 16¢Ij
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is soughtwhich satisfiesthe orthogonality condition

cW M =0
_tj _¢lj

(3-17)

The real and imaginary parts of (3-35) can be written in terms of amplitude and phase,

where the amplitude and phase of the kth element of the jth eigenvector are

_'kj = (_b_kj -t- 6_b_kj)L//2 (3-37a)

_kj = tan'l (6_bik j / _bl_kj)
(3-37b)

Then

¢]tkj = _'kj cos _kj (3--38a)

_¢ikj = Akj sin _akj
(3-3Sb)

The problem is to find the rotation angle, _oj, such that

¢llkj = Akj COS (_kj -- _oj) (3--39a)

_¢ikj = Akj sin (_gkj - _oj)
(3-39b)

satisfy Equation (3-17). This is accomplished by substitution of (3-39) into (3-17) which

gives

Z Z "_kj ilj Mkl cos (_kj -- _Ooj) sin (_j -- (Poj) = 0 (3--40)

k 1
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The rotation angle, _oj, for the jth mode is found after some algebraic and trigonometric

manipulation to be

1 -1
9oj = _ tan

2 Z Z Mkl _b 6¢i1 jk l Kkj

Z Z Mkl (¢R. k _blt )k 1 j l j- _¢Ikj _¢Ilj

1
= _ tan -1

¢_jMCR. j - _ cTjM_¢Ij

(3-41)

This result is similar to the normalization used by Smith at JPL [3-4], where

the complex vector

Xkj = XKk j + iXik j = #kj el_°j + _kj
(3-42)

is normalized so as to minimize

Ej = Z I_kjl2
k

(3-43)

resulting in

1
_Ooj=_ arg Z X_j

k

1
= _ tan "t

2 E X Ik XRkj kj

-x[)

2 X T
l_j Xlj

X T X l - X z
Rj j Ij Xlj
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In view of (3-17), Smith's normalization may be interpreted as satisfying the condition

xT = 0 (3 5)
B.j XIj

or in the present notation

cT = 0
Lj 6¢_j

(3 o)

as opposed to

CT M .
Rj _¢Ij

=0 (3-17)

In other words, the mass matrix is used as a weighting matrix on the eigenvector elements

in the present normalization procedure, whereas all eigenvector elements are weighted

equally in Smith's procedure. Aside from the perturbation analysis whereby (3-17) was

derived, the present method is attractive because of the weighting property. Eigenvector

elements (mode shape measurements) corresponding to light appendages, for example, are

deemphasized by this procedure. In addition, the present procedure requires that the

eigenvectors be complete in the sense that they correspond to a complete mass matrix.

3.1.2.2 Orthogonalization of Real Modes

In some cases, the self---orthogonality of real test modes can be improved by

deriving a new set of modes which is a linear combination of the original set. The method

proposed by Targoff [3-5] is employed here. It is briefly outlined as follows:

Let Ca represent the original set of real modes (i.e. real parts of complex modes). A

new set of orthogonal modes, ¢It' is sought such that

T (3---47)CB. M Ca. - I
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The original modal matrix, _b_, is expressed as a linear combination of the modes in CR' i.e.

¢_ = CRd (3-48)

where

d = I + ,_ (3-49)

is symmetric (not to be confused with the damping matrix, C, used elsewhere in this

report).

The self--orthogonality matrix of the original modes, [OR] is given by

"T
[oft] = ¢,,M _

where _Lj has been normalized to unit modal mass such that

_T M _,,,= 1 (3-51)R.j

Let

= [OR] - I (3-52)

Then oe has the series representation

1_+_2 _3 1 _n,',=_ +_ +... +2-(-ES) +...

The matrix ¢a is then obtained by inverting Equation (3-48)
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It is further assumed that this real transformation can be applied to the complex modes as

well such that

¢I = (_ICol (3-54b)

3.1.2.3 Adjustment of Analytical Mass Matrix

Throughout this chapter, and in particular Equations (3-16) and (3-17), M has

represented the "true" mass distribution of the structure. Equation (2-20) suggests a way

of updating the original analytical mass matrix, °M, to obtain an estimate of M, where

M = °M + AM (2-3b)

Given that

m = °¢'rM°¢ = °¢ T (°M + AM) o¢ = I + Am

it follows that an estimate of AM is obtained by recognizing that

°¢TAM°¢ = (°¢T°M°¢) Am (°¢T°M°¢)

from which

AM = °M°¢Am°¢T°M

where

Am = (I- ¢) + (I- ¢)T (2-20)

and

¢ = ocToM¢_t (3--57)

Thisestimate is nonunique and AM is singular to the extent that o¢ represents a truncated

set of modes. Nevertheless, it may improve °M in some (if not all) cases.
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3.1.2.4 Iterative Procedure

The foregoing discussion suggests an iterative procedure for evaluating the full

modal damping matrix, _, based on experimentally derived complex modes. An iterative

procedure is indicated because normalization and orthogonalization of the complex

eigenvectors utilizes the "true" mass matrix, but adjustment of the analytical mass matrix

to obtain an estimate of the "true" mass matrix depends on the eigenvectors. The iterative

procedure involves using the analytical mass matrix as a first approximation to the "true"

mass matrix, to obtain a properly normalized and orthogonal mode set, which is used to

adjust the analytical mass matrix. The adjusted mass matrix is then used to renormalize

and orthogonalize the eigenvectors. This process is continued to convergence, after which

is finally computed. The entire procedure is summarized below.

Step 1" Normalize the complex mode, _bj = _bR.j + ir_blj

element with the largest magnitude is (1,0).

so that for each mode the

Step 2:

Step 3:

Set M = °M for the,first iteration.

Compute the rotation angle, _oj, for each mode, where

1
qOoj= _ tan -l

¢_jM_I! j -- _ _jM_¢Ij

(3-41)

Step 4:
Compute CRj and _¢Ij

¢Lkj= / kj COS

_¢Ik j "--"_kjsin (_t)kj-- _oj)

for each mode where

- _oj) (3-39a)

(3-39b)
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Step 5:
Normalize Cj = CEtj

CT M ¢_j 1llj •

+ i6¢i j for
each mode such that

Step 6: Set _bEtj and 6eli equal to CFtj and 5¢tj' respectively, for each mode

obtained in Step 5.

Step 7: Orthogonalize _b_t

=

to obtain a new set of modes, ¢lt' where

(3-54a)

(3-54b)

Step 8: Update the mass matrix

M = °M + AM

AM = °M°¢Am°¢Z°M

Am = (I--¢) + (I--¢)T

¢ = °¢T°MCB"

(2-36)

(3-s6)

(3-20)

(3-s7)

Step 9: Repeat Steps 3 - 8 to convergence and use Equation (3-34) to evaluate

the full modal damping matrix, _.

3.1.3 Analytical Example

A 10-DOF analytical model was studied during the course of the investigation,

as a means of better understanding applications involving actual test data. Of primary

interest was the question of whether the complex mode data obtained by the ERA method

contain useful information relative to damping, or whether the imaginary parts of the
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complex modes are dominated by noise. It was hoped that analytical examplesmight

provide someinsight into what the imaginary parts of complex modesshould look like for
known distributions of damping.

An illustration of the 10-DOF analytical exampleis shownin Figure 3-1. Each

of the ten massesand ten springsis assignedthe value of unity. The dashpotsareassigned

valuesranging linearly from 0.01 to 0.10along the length of the spring masschain. The

ten modal frequenciesand correspondingmodal damping ratios are presented in Table 3-1.

Table 3-2 compares the modal damping matrices obtained from

= cTc ¢_. (3-11b)

with those obtained from Equation (3-14) subject to Equations (3-15) and (3-17). It is of

interest to note that the comparison between the modal damping matrices computed by

(3-27) and (3-14) is better for the lower modes than it is for the higher modes. Scatter

plots of the modes in the complex plane (Figure 3-2) reveal that the imaginary parts of the

modes are much larger in the higher modes, even though the modal damping remains less

than 6%. All modes represented in these figures have been normalized such that the

eigenvector element with the largest magnitude is set equal to (1,0) i.e. a real part of 1.0

and an imaginary part of 0.0. The rotation angle shown in each of the plots is the angle

through which the mode must be rotated so that the real and imaginary parts of the modes

are orthogonal with respect to the original analytical mass matrix. Equation (3-14) was

derived by a perturbation method which assumes that 5¢i is much smaller than ¢]_. Thus,

when 5¢I is not small compared to CR.' the perturbation results are no longer valid.

Another case of the same 10-DOF model was run in which the damping values

were reduced by an order of magnitude. In this case, all of the imaginary parts of the

modes were indeed small and Equations (3-27)and (3-14) were found to be in good

agreement for all modes.
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M(typ)___..

5
M=1.0

K=1.0

C_=.Ol; Cz=.02; .... C_o=.I0

K(typ) _

Figure 3-1. 10--DOF Analytical Example.
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Table 3-1. Modal Frequencies and Damping for

the 10-DOF Analytical Example.

**** I0-DOF SYSTEM MODAL CHARACTERISTICS ****

Mode No. Frequency (Hz) Damping

1 0.02379 0.271

2 0.07083 1.229

3 0.11629 2.072

4 0.15915 2.856

5 0.19846 3.571

6 0.23336 4.203

7 0.26310 4.739

8 0.28709 5.165

9 0.30582 5.368

i0 0.31015 5.847

(%)
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Table 3-2. Comparison of Modal Damping Matrices for the 10-DOF Ana, lytica,l Example.

MOOE I 2 3 4 5 6 7 8 9 10

I O.00(38 -0. 0014 -0. 0002 O.C(_]3 -0. 0001 -0.0(]02 -0, CO01 O. 0G01 O.001_0 O. OCX_O

2 -0.0014 0.0109 -0.0069 0.0003 -0.0012 -0. C(_02 -0.C005 0 .L"__JO1 -0 .0L'502 0 .00_'_3

3 -0.0002 -0.0(]69 0.0303 0.0154 -0. G004 -0. 0023 -0.00(_2 O. 0C08 -0. 0001 0.0(]01

4 0,0003 0.0003 0.0154 0.0571 0.0263 O.CCC6 0.O033 -0.0002 0.0010 0.0001

5 -0.0001 -0.0012 -0.0004 0.0263 0.0890 -0.0382 -0.0014 0.0038 -0.0002 0 .(XOL'_O

6 -0.0002 -0. 0002 -0. 0023 O. 0006 -0.0382 O. 1231 -0. 0499 O. 0037 -0. 0031 -0. 0002

7 -0.0001 -0. 0005 -0. 0002 O.0033 -0.0014 -0.0499 O, IS64 O. 05 g3 -0.0085 -0. 0084

8 0.0001 0.0001 0.0008 -0.0002 0.0038 0.0037 0,0S93 0.1858 0.0688 -0.0339

9 0.0000 -0.0002 -0.0001 0.0010 -0.0002 -0.0031 -0.0085 0.0688 0.1955 0.0591

10 0.0000 0.0000 0.0001 0.0001 O. 0000 -0.0002 -0. (_084 -0.0339 0.0591 0.2429

•

P4OOE 1 2 3 4 5 6 7 8 9 10

1 0.0008 -0.0014 -0.0003 0,0003 -0.0001 -0.0002 -0. 0001 0.0001 O. 0000 O. 0(_'_0

2 --_.0(}14 0.0109 -0.0069 O.C(X]3 -0.0012 -0.0(_02 -0. 0005 0.0001 -0.0002 O. O(X]O

3 -0.0003 -0.0069 0.0303 0.0155 -0.0_03 -0.0(523 -0.CC02 0.00_38 -0. 0001 O. CC(X]

4 0.0(303 0.0003 0.0155 0.0571 0.0263 0.0002 0.C031 -0.0001 0.0009 0,0002

5 -0.0001 -0.0012 -0.0003 0.0263 0.0891 -0.0385 0 .CCC{) 0.0032 O. 0(%]0 -0.(X_33

6 -0.0002 -0.0002 -0.0023 0.0002 -0.0385 0.1233 -0.0508 -0.0002 -0.0014 -0.0003

7 -0.0001 -0.0005 -0.0002 0.0031 0.0000 -0.0508 0.1567 0.0620 0.0022 -0.0158

8 0.0001 0.0001 0.0008 -0.0001 0.0032 -0.0002 0.0620 0.1863 0.0744 0.0133

9 0.0000 -0.00(_2 -0.0001 O.OCG9 O. 0000 -0.0014 0.0022 0.0744 0.2063 0.0376

10 0.0000 0,0000 0.0000 0.0(0_2 -0.0003 -0.0003 -0.0158 0.0133 0,0376 0.22.79

3-20





m
i

t

,#

o

-9

o'_ g'a 9"b ho _'b o'o-e'a'-h.oLg'o'-g'o'-o'_-"

i

to

'o

?

.?

9

o

"o

°
"o

c_,_.
o_

i

_r

o

. F'

0"[ g'O g'O h'O _.'0 (]'O- Z'O ° h'O- g'O ° g'O- O'l °

L_Ud _UN [

o

'o

'o

o_

9

.9

.9

L_JUd _ [

£

i

• ce_

7

n-

'o

e,4

:e

m

:i

II

8 '

$ 41,

0

'0

"a

?

.9

.9

a't B'o 9"0 ho z-o o'o- z'o- h'o- 9"0- g'o- o'z-

XYud guN[

I:

0 o.

i

N

om

o

"o_._

o_
*0.

:w

o

?

?

s"

0"| 111'0 $'0 h 0 _'a 0"0- _"0- _'0- $'0- If'O- 0'[-

0

0

0

O

0

3-21





,!

il
r,

I

I:

°:.

'o

_0..

u'1

.?
ii

o_ ',=

-_ ,?

0. ,?

x o.
, , , , , , ,,, ,, , +

Q'E g'O 9"0 h'O (_'0 O'O- _,'0° /1"0° 9"(_- 9"CI- O'T °

LkJl::Idg'clW[

o

il

ii

+ "0

i

eo

o

o

o

_,...
o_

:7'

'0

0

0"[ g'O g'O h'O _'O O'O- _,'O- t','O- 9'0" g'O- O'[ o

LkIUd _UW[

m

J_

CO '_

• •

_z
i

o

{

o

0"[ O'O g'O h'O +'O 0"0- +'0- h'O- 9"0- O'O- O'[-

£U_d _UW[

o

o_

,.,,+
.+_

=P

,?

• a

+

Q _

./

/

/,
/

n

_o

• OI

..." _

o

_o

o_
• • Q_

o

,?

o

O'[ _'O 9"0 _Q _'_ O'Q- ,_'O- _'Q+ 9"0- O'CI+ 0"[-

0

_J

U

.<

0

0

"z::l
0

0

O

O

_,)

r,,,,)

I,-i

==

3-22





3.1.4 Application to Real Structures

This section documents application of the methods described in Sections 3.1.1

and 3.1.2 to real structures. Data were provided by NASA Langley Research Center. Data

provided for two structures, the LaRC Mini-mast Structure and Ten Bay Truss, included

multiple ERA realizations of complex modes, and the TAM-type analytical models of the

two structures. The ERA modes were generated by Richard Pappa with experimental data

provided by Kenny Elliott.

Many realizations of the complex modes were provided. The characteristics of

the mode sets varied considerably with respect to (a) the damping reflected in complex

eigenvalues, (b) the orthogonality of the real parts of the modes with respect to the

analytical mass matrix, and (c) the cross---orthogonality of the real parts of the ERA modes

and analytical modes with respect to the analytical mass matrix.

Vibration test data for both structures were generated with multi-point random

inputs. Three shakers at fixed locations were used to excite each of the structures. The

shakers acted in pairs so that each structure was tested with three different shaker

combinations: (1,2), (2,3) and (3,1). The ERA modes used to compute a modal damping

matrix were allextracted from the same time-histories so that any variability among them

must be attributed to variation among the ERA parameters selected to perform the modal

extraction. In other words, none of the variability can be attributed to different

time-history records, either from different time sequences or from different shaker

configurations.

3.1.4.1 LaRC Mini-mast Structure

Damping estimates for two selected sets of modes were obtained for the

Mini-mast Structure. Each set consists of three different realizations of the first five

modes. The first set, called "Consistent Test Set" utilized data from Shaker Configuration

(2,3) and was selected on the basis that all five modes were obtained from a single

realization of the complex modes. See Figure 2-1. The second set, called "Constructed

Test Set" was selected to maximize the cross---orthogonality between a given test mode and

its analytical counterpart, without regard to maintaining consistent mode sets. In other

words, the cross---orthogonality of each test mode was evaluated with respect to each of the
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analytical modes. The test mode was then associated with the analysis mode with which it

had the highest cross---orthogonality, and rank--ordered with all of the other test modes

associated with that analysis mode, according to its cross---orthogonality. The first

constructed mode set was then selected as Mode Numbers 1 through 5 with the highest

cross---orthogonalities. The second constructed mode set was chosen as Mode Numbers 1

through 5 with the second highest cross---orthogonalities, etc.

Figures 3-3 through 3-7 present scatter plots in the complex plane of both sets

of modes for Modes 1 through 5, respectively. As before, the complex modes in each case

have been normalized such that the eigenvector element with the largest magnitude is set

to (1, 0). It is of particular interest to note the relative magnitudes of the real and

imaginary parts of the modes from mode to mode and set to set.

The complex test modes were first conditioned before being used to compute the

modal damping matrix, in addition, it was found that with real test data, Equation (3-15)

is not satisfied. Thus, the matrix _ was corrected by adjusting each element of _ according

to Equation (3-34). Normalization of _jk to remove it's frequency dependence produces a

full matrix, (, whose elements are

(jk =  jk/2 Wj k

The diagonal elements, (jj, of this matrix are the familiar modal damping ratios.

Table 3-3 presents three sets of modal orthogonality matrices for the consistent

test set, evaluated before and after eigenvector conditioning. These matrices correspond to

the following:

cTM¢ L

(Cross---orthogonality of real analysis and test modes

with respect to analytical mass matrix)

(Self---orthogonality of real test modes with respect to the

"true" mass matrix)

(Cross---orthogonality of real and imaginary parts of test

modes with respect to "true" mass matrix)
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Table 3-4 presents the three individual modal damping matrices computed from

each of the three consistent mode sets, along with an average of the three and the

corresponding covariance matrix presented (as in the case of modal mass and stiffness

uncertainty) in terms of the vector of standard deviations and the correlation matrix.

A similar analysis to the foregoing was performed for the constructed test sets

of the Mini-mast Structure. Table 3-5 presents a comparison of modal orthogonality

characteristics before and after eigenvector conditioning. Table 3---6 presents both the

individual and averaged modal damping matrices.

It is interesting to compare the results of the two mode sets as summarized in

Tables 3---4 and 3--6. In the first place, there are large differences between the modal

damping matrices computed from the constructed test sets and those computed from the

consistent mode sets. These large differences occur on both the diagonal and off--diagonal

dements corresponding to the first two mcdes. The large variabihty within the

constructed test set is reflected in the large standard deviations, especially for the first two

modes. It may also be noted that the diagonal modal damping term in the first mode is

about three times larger in the case of the constructed mode sets. These results seem to

correlate with the poorer original real test mode orthogonality evident in Tables 3-5a, b, c.

Orthogonalizing the modes prior to evaluation of the modal damping matrices did not

appear to help in this case.

3.1.4.2 LaRC Ten Bay Truss

A damping analysis was performed for the LaRC Ten Bay Truss similar to that

performed for the Mini-mast Structure. In this case, however, there were no completely

consistent test sets available. There were consistent sets including Modes 2 through 5,

obtained from Shaker Configuration (1, 2), but these sets did not include Mode 1. Mode 1

was taken from mode sets obtained from Shaker Configuration (1, 3) to obtain complete

sets of five modes each. These mode sets are also referred to as "constructed mode sets,"

although the method of "construction" in this case differs from that used to construct the

Mini-mast mode sets. Figures 3--8 through 3-12 present scatter plots of the modes in the

complex plane. These plots show a high degree of similarity among the different mode sets.
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Table 3--4a. Modal Damping Matrices for the LaRC
Mini-mast Structure, ConsistentTest Sets.

Mode Set #[

_** MODAL D_MP[NG (%) MATRIX "*_

MODE I 2 3 4 5

1 0.5620 0.0600 -0,7379 1.2045 1.3367

2 0.0600 0.9950 3.0681 -2.3787 0.6211

3 -0.7379 3.0681 1.4040 -0.2334 0.0444

4 1.2045 -2.3787 -0.2334 2.1160 -0.0828

5 1.3367 0.6211 0.0444 -0.0828 1.1320

Mode Set #2

*"* MODAL DAMPING (%) MATRIX ***

MODE i 2 3 4 5

1 0.6070 0.0459 -0.7197 1.1244 1.2492

2 0.0459 0.9990 2.9204 -2.3923 0.6290

3 -0.7197 2.9204 1.4090 -0.2644 0.0303

4 1.1244 -2.3923 -0.2644 2.1270 -0.0779

5 1.2492 0.6290 0.0303 -0.0779 1.1290

Mode Set #3

*** MODAL DUMPING (%) MATRIX **_

MODE 1 2 3 4 5

i 0.5980 0.0586 -0.7370 0.9514 1.2863

2 0.0586 0.9530 3.2109 -2.5025 0.5242

3 -0.7370 3.2109 1.4090 -0.2390 0.0228

4 0.9514 -2.5025 -0.2390 2.1350 -0.0858

5 1.2863 0.5242 0.0228 -0.0858 1.1330

Average of Three Mode Sets

*** AVE._AGE MODAL DUMPING (%) ***

MODE I 2 3 4 5

1 0.5890 0.0548 -0.7315 1.0935 1.2907

2 0.0548 0.9823 3.0665 -2.4245 0.59i4

3 -0.7315 3.0665 1.4073 -0.2456 0.0325

4 1.0935 -2.4245 -0.2456 2.1260 -0.0822

5 1.2907 0.59_4 0.0325 -0.0822 1.13i3

3-34





Table 3--4b. Covarianceof Modal Damping Matrix Elementsfor
the LaRC Mini-mast Structure, ConsistentTest Sets.

ST.D. (%)
0.O24

0.008

0.010

0.I_

0.044

0.025

O. 145

0.068

0.058

0.003

0.017

0.011

0._0

0.004

0.002

CORREUkTION MATRIX

1.000 -.718 0.687 -.604 -.970 -.252 -.199 -.420 -.263 0.982 -.774 -.858 0.812 0.319 -.454

-.718 1.000 -.999 -.121 0,866 -.492 0.825 -.329 -.482 -.574 0.996 0.259 -,178 -.889 0.946

0.687 -.999 1.000 0.164 -.843 0.530 -.848 0.370 0.520 0.538 -,992 -.216 0.135 0.908 -.959

-.604 -.121 0.164 1.000 0.392 0.924 -.661 0.977 0.928 -.743 -.037 0.928 -.955 0.563 -.436

-.970 0.866 -.843 0.392 1.000 0.010 0.431 0.187 0.021 -.907 0.9_]50.707 -.646 -.540 0,657

-.252 -.492 0.530 0.924 0.010 1.000 -.898 0.984 1.000 -.430 -.417 0,714 -.769 0.836 -.748

-.199 0.825 -.848 -.661 0.431 -.898 1.000 -.806 -.893 -.010 0.774 -.333 0.410 -.992 0.963

-.420 -.329 0.370 0.977 0.187 0.984 -.806 1.000 0.986 -.584 -,249 0.827 -.871 0.726 -.618

-.263 -.482 0.520 0.928 0.021 I.000 -.893 0.986 1.000 -.440 -.407 0.721 -.776 0.830 -.740

0.982 -.574 0.538 -.743 -.907 -.430 -.010 -.584 -.440 1.000 -.641 -.940 0.908 0.135 -.277

-.774 0.996 -.992 -.037 0.905 -.417 0.7"/4 -.249 -.407 -.641 1.000 0.339 -.260 -.847 0.915

-.858 0.259 -.216 0.928 0.707 0.714 -.333 0.827 0.721 -.940 0.339 1.000 -,997 0.213 -.068

0.812 -.178 0.135 -.955 -.646 -.?69 0.410 -.871 -.776 0,908 -.260 -.997 1.000 -.293 0.151

0.319 -.889 0.908 0.563 -.540 0.836 -.gg2 0.726 0_830 0.135 -.847 0.213 -.293 1.000 -.989

-.454 0.946 -.959 -.436 0.657 -.748 0.963 -.618 -.740 -.277 0.915 -.068 0.151 -.989 1.000
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Table 3--6a. Modal Damping Matrices for the LaRC
Mirfi-mast Structure, Constructed Test Sets.

Mode Set #[

**" MODAL DAMP:NG (%) MATRIX "'"

MODE 1 2 3 4 5

1 [.7950 -0.0]]9 -0.2457 0.2]77 1.9368

2 -0.0]]9 0.9290 0.4987 -1.2645 1.0498

] -0.2457 0.4987 1.4700 -1.1587 -0.2396

4 0.2377 -1.2645 -1.1587 2.1260 -0.0217

5 1.9368 1.0498 -0.2396 -0.0217 1.1280

Mode Set #2

,*t MODAL DAMPING (%) MATRIX *_*

MODE 1 2 3 4 5

1 2.0650 0.2104 -1.8081 3.6247 1.2964

2 0.2104 0.6070 -0.6305 -0.5909 2.0858

3 -1.8081 -0.6305 1.4400 -0.6938 -0.1880

4 3.6247 -0.5909 -0.6938 2.1150 -0.0449

5 1.2964 2.0858 -0.1880 -0.0449 1.1220

Mode Set #3

**_ MODAL DAMPING (%) MATRIX _*

MODE 1 2 3 4 5

i 1.9850 -0.0668 -0.3276 3.4143 -0.2650

2 -0.0668 1.3370 0.5219 0.0945 2.5940

3 -0.3276 0.5219 1.4270 -0.5136 -0.4330

4 3.4143 0.0945 -0.5136 2.1140 -0.0469

5 -0.2650 2.5940 -0.4330 -0.0469 1.1220

Average of Three Hode Sets

t,, AVERAGE MODAL DAMPING (%) *t*

MODE I 2 3 4 5

i 1.948] 0.0366 -0.7938 2.4256 0.9894

2 0.0366 0.9577 0.1300 -0.5870 1.9099

3 -0.7938 0.1300 _.4457 -0.7887 -0.2869

4 2.4256 -0.5870 -0.7887 2.118] -0.0378

5 0.9894 1.9099 -0.2869 -0.0378 1.1240
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Table 3--6b. Covariance of Modal Damping Matrix Elements for the
LaRC Mini-mast Structure, Constructed Test Sets.

ST.D. (%)

0.139

0.151

0.879

1.898

1.133

0.366

0.659

0.680

0.787

0.022

0.333

0.129

0.007

o.m4

0.003

CORRELATION MATRIX

1.000 0.650 -.760 0.972 -.495 -.223 -.716 0.681 0.813 -.830 0,844 -.030 -.933 -.935 -.958

0.650 1.000 -.988 0.453 0.339 -.886 -.996 -.113 0.086 -.115 0.140 0.740 -.333 -.337 -.403

-.760 -.968 1.CXX] -.586 -.189 0.803 0.998 -.042 -.239 0.268 -.292 -.627 0.475 0.479 0.540

0.972 0.453 -.586 1.000 -.685 0.012 -.532 0.834 0,927 -.938 0.946 -.2_ -.991 -.992 -.c_8

-.495 0.339 -.189 -.685 1.000 -.737 -.252 -.973 -.908 0.895 -.884 0.883 0.774 0.7"72 0.724

-.223 -.886 0.803 0.012 -.737 1.000 0.840 0.562 0.386 -.359 0.335 -.968 -.143 -.139 -.068

-.716 -.996 0.998 -.532 -.252 0.840 1.000 0.023 -.176 0.205 -.230 -.676 0.418 0.421 0.485

0.681 -.113 -.042 0.834 -.973 0.562 0.023 1.000 0.980 -.974 0.968 -.752 -.899 -.897 -.864

0.813 0.086 -.239 0.927 -.908 0.386 -.176 0.980 1,000 -1 .(30 0.999 -.606 -.968 -.967 -.946

-.830 -.115 0.268 -.938 0.895 -.359 0.205 -.974 -1.00 1.000 -1.00 0.582 0.975 0.974 0.956

0.844 0.140 -.292 0.946 -.884 0.335 -.230 0.968 0.999 -1.00 1.00(3 -.562 -.980 -.979 -.963

-.030 0.740 -.627 -.264 0.883 -.968 -.676 -.752 -.606 0.582 -.562 1.000 0.387 0.384 0.317

-.933 -.333 0.475 -.991 0.774 -.143 0.418 -.899 -,968 0.975 -.980 0.387 1.000 1.000 0.997

-.935 -.337 0.479 -,992 0.772 -.139 0.421 -.897 -.967 0.974 -,979 0.384 1.000 1.000 0.997

-.958 -.403 0.540 -.998 0.724 -.068 0.485 -.864 -.946 0.956 -.963 0,317 0.997 0.997 1.000
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Another notable feature is that the imaginary parts of the complex eigenvector elements

are all very small. This is in contrast to some of the Mini-mast plots where imaginary

parts as large as 0.2 were observed.

Damping computations were made for all five mode sets. The modal orthog-

onality characteristics are presented in Tables 3-7a through 3-7e. Corresponding modal

damping matrices and their average statistics are shown in Table 3---8.

It is important to note here that, as in the case of the Mini-mast Structure, the

various mode sets were obtained by selecting different processing parameters on the ERA

algorithm. The actual vibration test data used in all cases were the same. The different

mode sets should therefore not be viewed as completely independent realizations. The

variations observed from one mode set to another are a result of differences in the data

processing, not the data themselves. Nevertheless, the results presented here are

encouraging to the extent that consistent estimates of the modal damping matrices for two

different structures have been obtained.

3.2 Estimation of Damping Distribution

Estimating the parameters of a physical damping model requires that a model

first be defined. This is not a trivial task, and one should not be mislead by simplistic

treatment given here. The emphasis here is not on the damping model itself, but rather on

how the modal damping matrix may be used to estimate damping model parameters. To

this end one may consider the equivalent viscous damping matrix, C, to reflect

contributions from various sources, including damping from nonstructural items such as

wiring harnesses, structural material damping, damping due to gravitational preload, and

air damping, for example. Such a model might be formulated as follows:

C -- Zi aiMi 4- Ej/_EjKEj 4- kE_CkgCk 4- _1_tlA1
(3--59)

where o, fl and "), represent model parameters, and the various indices sum over different

zones of the structure. (Note that these fl's and "},'s are unrelated to those used earlier in

the chapter.) In this case, M i represents a portion of the mass matrix, KEj a portion of the
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Table 3--8a. Modal Damping Matrices for the LaRC
Ten Bay Truss, Constructed Test Sets.

MODE
[

2
3
4

5

Mode Sees it[ throu_,h #5

"'" MODAL D_MPINC (%) HATRIX "'"
i 2 3 4 5

0.4340 -0.0025 -0.4089 -1.1533 -0.5818
-0.0025 0.8780 -0.1650 -0.5933 0.3898

-0.4089 -0.1650 0.5790 -0.2324 0.0066
-i.1533 -0.5933 -0.2324 0.2690 0.0384
-0.5818 0.3898 0.0066 0.0384 0.3590

*** MODAL DAMPING (%) MATRIX ***
MODE 1 2 3 4 5

I 0.4810 -0.0024 -0.4285 -i.1552 -0.5957
2 -0.0024 0.9260 -0.1623 -0.6940 0.3948
3 -0.4285 -0.1623 0.5790 -0.2540 0.0075

4 -1.1552 -0.6940 -0.2540 0.3880 0.0280
5 -0.5957 0.3948 0.0075 0.0280 0.3590

*** MODAL DAMPING (%) MATRIX ***
MODE 1 2 3 4 5

I 0.4640 -0.0025 -0.4373 -1.0698 -0.6489
2 -0.0025 0.91!0 -0.1571 -0.7479 0.4046

3 -0.4373 -0.157! 0.5750 -0.2446 0.0096
4 -1.0698 -0.7479 -0.2446 0.4470 0.0106
5 -0.6489 0.4046 0.0096 0.0106 0.3610

*** MODAL D_4PrNG (%) MATRIX ***
MODE I 2 3 4 5

1 0.4320 -0.0024 -0.4493 -0.7983 -0.6891
2 -0.0024 0.8950 -0.1561 -0.7546 0.4015
3 -0.4493 -0.1561 0.5770 -0.2507 0.0016

4 -0.7983 -0.7546 -0.2507 0.3570 0.0327
5 -0.6891 0.4015 0.0016 0.0327 0.3630

*** MODAL DAMPING (%) MATRIX ***
MODE i 2 3 4 5

I 0.4720 -0.0026 -0.4896 -i.0843 -0.6752
2 -0.0026 0.9090 -0.1504 -0.6675 0.3980
3 -0.4896 -0.1504 0.5650 -0.1849 0.0066

4 -1.0843 -0.6675 -0.1849 0.3970 0.0457
5 -0.6752 0.3980 0.0066 0.0457 0.3620

MODE

1
2
]

4
5

Average of Five Mode Sets

*** AVERAGE MODAL DAMPING (%) ***
I 2 3 4 5

0.4566 -0.0025 -0.4427 -I.0522 -0.6381
-0.0025 0.9038 -0.1582 -0.6915 0.3978

-0.4427 -0.1582 0.5750 -0.2333 0.0064
-I.0522 -0.6915 -0.2333 0.3716 0.0311

-0.6381 0.3978 0.0064 0.0311 0.3608
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Table 3---8b. Covariance of Modal Damping Matrix Elements for
the LaRC Ten Bay Truss, Constructed Test Sets.

ST.D. (%)

0.fl22

fl.0{D

0.030

ft. 147

0.048

0.0'18

0.006

0.066

0.006

0.006

0.{3128

0.003

0.066

0.013

0.002

CORRELATION MATRIX

1.0(]0-.396 -.348 -.539 0.086 0.909 0.257 -.132 0.134 -.376 0.223 0.630 0.683 -.176 -.234

-.396 1.0(300.737 0.304 0.317 -.099 -.682 -.261 -.070 0.939 -,955 -.335 -.275 -.407 -.245

-.348 0.737 1.(3(3(]-.291 0.791 -.323 -.968 (].287 -.449 O.924 -.728 O.177 -.496 -.379 -.726

-.539 0,304 -.291 I.(XX]-.772 -.207 0,409 -.656 0.571 0.004 -.225 -,819 0.073 -.015 0.839

0.086 0.317 0.791 -.772 1.0(30-.097 -.890 0.666 -.774 0.598 -.299 0.467 -.486 -.049 -.988

0.909 -.099 -.323 -.207 -.097 1.(3000.279 -.484 0.374 -.199 -.078 0.395 0.799 -.358 -.040

0.257 -,682 -.968 0.409 -.890 0.279 1.00(}-.443 0.637 -.885 0.632 -,164 0.588 0.193 0.830

-.132 -.261 0.287 -.656 0.666 -.484 -.443 1.000 -.914 0.011 0.408 0.191 -.739 0.611 -.622

0.134 -.070 -.449 0.5"71-.774 0.374 0.637 -.914 1.000 -.289 -.116 -.018 0.812 -.587 0.718

-.376 0.939 0.924 0.[3040.598 -.199 -.885 0.011 -.289 1.13(30-.906 -.093 -.409 -.408 -.527

0,223 -.955 -.72S -.225 -.299 -,078 0.632 0.408 -.116 -.906 1.000 0.106 0.026 0.656 0.262

0.630 -.335 0.177 -.819 0.467 0.395 -.164 0.191 -.018 -,093 0.106 I.(_300.4(31 -.464 -.5"72

0.683 -.275 -.496 0.073 -.486 0.799 0.5_ -.739 0.812 -.4_390.026 0.401 1.00(3-.574 0.358

-.176 -.407 -.379 -.015 -.049 -.358 0.193 0.611 -.587 -.408 0.656 -.464 -.574 1.000 0.100

-.234 -.245 -.T26 0.839 -.988 -.OLd]0.830 -.622 0.718 -.527 0.262 -.572 0.358 0.100 I.CX3Q

3-53





elastic stiffness matrix, KCk a portion of the geometric (gravity dependent) stiffness

matrix, and A 1 a portion of the projected area of the structure related to air damping.

Thus, if KGk and A 1 could be defined for a particular ground test configuration, in addition

to M i and KEj , and all of the parameters a, _ and 7 successfully estimated, then the

contributions of gravity and air damping could be subtracted out as a means of estimating

on---orbit damping.

For purposes of illustration, gravity-dependent damping and air damping will

be neglected. Equation (3-59) is thus simplified by neglecting the last two terms. Further

simplification is achieved by dropping the subscript, E, on flj and Kj, and zoning the

structure the same for M and K. These simplifications lead to

C = _ _kMk + k_ _kKkk

which is recognized as similar in concept to proportional damping, except that in

proportional damping, only one a and one fl apply to the entire structure. One might refer

to Equation (3-60) as representing piece--wise proportional damping. Again, it is

emphasized that this model is not necessarily intended to be realistic, but rather

illustrative.

The next step is to transform Equation (3-60) to modal coordinates as

Equation (3-11b).

T T

in

= E (akmk + flkkk)
k

(3-61)
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It follows that the derivativesof _ with respectto c_k and_k are

_k T0 = mk= ¢_MkCR

_k T= k k = ¢ILKk¢IL

It is important to note that in this example, _ is a linear function of the a's and f_'s, so that

the partial derivatives shown in (3-6--62) and (3-6-63) are constant. The relationship between

and the a's and _'s is simplified by arraying the elements of _ in vector form (following

the notational convention of Chapter 2)

r = Vec (_) (3-6--64)

and forming a single vector of the a's and fl's which is designated 0.

o/1 j

OL2

%

•_

Then (3-6-61) may be written simply as

r=TO

where

g_J (3-67)
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and T is a constant matrix of sensitivity coefficients. Whenever T is a square matrix and

nonsingular, Equation (3---66) can be inverted to solve for 0 in terms of r.

0 = T-lr (3-68)

Usually this will not be the case, however.

than 0---parameters, in which case a least squares solution may

least-squares estimate of 0 in this case gives

0 = (TTT)I TTr

provided that the matrix (TTT) is not singular.

minimizing the quadratic cost function

J = (r - T0) T (r - T0)

For example, there may be more r-parameters

be sought for 0. A

The least squares estimator is obtained by

with respect to 0. This is achieved by setting the gradient of J with respect to 0 equal to

zero,

V0J =-T T (r-TO) = 0 (3-71)

from which (3-69) is derived. Equation (3-69) reduces to (3-68) whenever T -1 exists.

Finally, it is recognized that the vector, r, in Equation (3---64) is actually a

vector of random variables, in which case a statistical estimator for 0 is more appropriate

than either (3-68) or (3-69). Since r and 0 are linearly related, it follows from (3---66) that

= (3-72a)

(r-7)= T(O- (3-72b)

where r and _ denote the mean values of r and 0. In addition to f which is obtained by

averaging the modal damping matrices, the covariance matrix of r, defined by

3--56





Srr = E [(r- _)(r- [)T] (3-73)

is also available. One may then define the cost function

J = [(r- _)-T(0- _)]TSr_ [(r- _)-T (0- 0)] (3-74)

which weights the differences between Ar and TA0 by Srr l, regarded as an information

matrix on r. Minimizing J with respect to 0 now leads to

VeJ = -TTSr_ [(r- _)-T (0- _)] = 0 (3-75)

which results in the statistical estimator

T -1 -1 T-1
0 = _ + (T Srr T) W Srr (r- [) (3-76)

The matrix (TTSi_T) "1 has a useful statistical interpretation, realized by substituting

(3-76) for (8- _) in the covariance matrix of 0:

soo = E[(0- -

= E[(TTSrrIT) '' T'rSr_ (r - r) (r - r)T Sr_T (TTS;_T)_,]

= (TTSr_T) '' TTSrr 1E[(r- [) (r- f)T] Sr_T (TTSr_T).,

= (TTSr_T) "I (3--77)

It is important to recognize that (3-77) is only true whenever Srr and (TTSr_T) are

nonsingular. In particular, this means that (a) the number of estimates of _ used in

computing _ = Vec (_) and Srr must be equal to or greater than the number of elements in

r, and (b) that the dimension of r be equal to or greater than the dimension of 0.
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Attempts were made to estimate a set of a's and _'s for the Ten Bay Truss,

since this was the simpler of the two structures for which full modal damping matrices had

been computed. For purposes of this estimation, the truss beam was divided into five zones

of two bays per zone. One _---parameter and one/_---parameter were assigned to each zone.

The 5 x 5 modal damping matrix produced an Srr matrix of dimension 15 x 15. However,

since only five estimates of the modal damping matrix were made, Srr was only of rank 5.

A pseudo-inverse based on singular value decomposition was used to obtain Srr1 and

(TTSrr T)-I in Equation (3-76). This attempt yielded a solution for the a's and _'s which

matched the diagonal elements of the modal damping matrix fairly well, but not the

off---diagonal elements. The estimated values of the a's and _'s, however, were not

meaningful; they were an order of magnitude too large and some were negative. This of

course is not surprising since the problem is undetermined.

A second attempt was then made to estimate only four _ and _ parameters, two

a's for the two zones near the free end of the beam and two jS's for the two zones near the

fixed end. The pseudo--inverse was still used to compute Sr_ and (TTSrrT) -i, but the latter

was not singular in this case. This attempt was similarly unsuccessful.

There are several possible reasons for the failure of these attempts:

• The rank deficiency of Srr resulting from insufficient data,

Bias error in the modal damping matrix, possibly resulting from the fact that

all of the data came from only one test, and

• A poor damping model.

It is certainly conceivable that piece-wise proportional damping is incapable of matching

the full modal damping matrix. Any future work, however, should begin by running

enough tests to obtain a nonsingular Srr matrix with reasonably small coefficients of

variation. The different estimates of the modal damping matrix should not all be obtained

from the same test.
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4. UNCERTAINTY PROPAGATION

Models are used to predict the behavior of physical systems. Structural

dynamic models are used to predict how structures respond to dynamic loads. This project

has been concerned with the development of methods for evaluating the accuracy of those

predictions. Chapters 2 and 3 have addressed the problem of quantifying defacto model

uncertainty, based on actual analysis and test experience. This experience is cast in the

form of modal mass, stiffness and damping parameters. The present chapter addresses the

problem of propagating that uncertainty through a model.

One of the advantages of expressing model uncertainty in terms of modal

parameters is that it is readily propagated through a model to determine either (1)

eigenvalue/eigenvector uncertainty, (2) response uncertainty, or (3) the uncertainty of

physical design parameters. The first two are referred to as forward propagation because

the propagation follows the direction of analysis; the latter is called backward propagation

or reverse propagation because the propagation is opposite to the direction of analysis.

Three essentially different methods are used for forward uncertainty

propagation:

1. Linear covariance propagation;

2. The Vertex Method for evaluating functions of fuzzy variables; and

3. Numerical simulation using the Monte Carlo Method.

All three of the methods have been implemented in deliverable software; each has its

particular advantages and disadvantages which make it more suitable for some applications

than others. The software has been written to select the best combination of methods for

general application, i.e. execution defaults to the most suitable methods for general

application based on current experience. Default overrides are available. Each of the three

methods is discussed in the subsections which follow.

4.1 Linear Covariance Prooagation

Linear covariance propagation is addressed first because it is the simplest, most

economical, and most generally applicable method of uncertainty propagation. It may be

used for either forward propagation or reverse propagation as long as an explicit functional
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relationship exists in at least one of the two directions. The methods used in forward

propagation will be addressedfirst, becausethis is usually the direction for which an

explicit functional relationshipexists.

4.1.1 Forward Propagation

Variables "downstream" from the modal parameters (in the flow of analysis) are

referred to as response variables and designated by the vector, u, where

u= u(r) (4-1)

The vector, u, which might represent eigenvalues, eigenvectors or frequency response,

be expanded in a Taylor series about the nominal vector, uo, such that

0u
u = Uo + _- Ar + H.O.T.

may

(4-2)

The matrix, 0u/0r, is called the sensitivity matrix and is designated Tur ,

0u (4-a)Tur -=

Then Au = u - Uo has the linear approximation

&u = Tur Ar (4-4)

The covariance matrix of u is defined as

Suu = E [Au Ar T] = Tur E [Ar Ar T] Tur T = Wur Srr Tur T (4-5)

In general, Srr represents the covariance of modal mass, stiffness and damping

parameters. However, it will be of block-diagonal form, provided that damping

uncertainty is estimated independently of mass and stiffness uncertainty, as assumed here.

The covariance matrix, Srr , can therefore be expressed in partitioned form as
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Srr

Smm Sink 0

Skin Skk 0

0 0 S_

(4--6)

The matrix Srr is no longer in the dimensionless form of S_;, but is obtained from Sj_ by

appropriate frequency scaling. Given Sr_ in the form

Srr =

Smm Sm_ 0

S_m S_ ' 0
,.,,.,,,,,,,,)o,,,,ll,))i,,

0 0 " S_

(4-7)

Srr is obtained by multiplying the individual elements of S_ by the appropriate

frequencies. Therefore when a particular element of Sink corresponds to mg h and kij , then

Smghkij ---- WiW j Smgh_Cij

Similarly when an element of Skk corresponds to kg h and kij ' then

(4-8a)

Skghkij -- OdgOdhOdiOdj S[cgh[Cij

When an element of S_£ corresponds to _gh and _ij, then

(4--8b)

S_gh _ij "- 4 _ WgO3h_OiCd j S_gh_ij (4-8c)

The derivatives, Ou/&, are particularly simple whenever u represents

eigenvalues and/or eigenvectors and r represents modal mass and stiffness parameters.

And of course _/& = 0 whenever u represents (undamped) eigenvalues and/or

eigenvectors and r represents modal damping. When r represents modal mass and stiffness

parameters, Reference [4-1] gives
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1 : r k = kjj

--A j: r k = mjj

0 :otherwise

h=l

-6hi ] .rk = khj

[ 1-t_hj ] _hj--Aj _ ---_-'r k = mhj

0 : otherwise

(4-9)

(4-1o)

The eigenvector derivative matrix is written out in Table 4-1 for the case when ¢, m and k

are all 3 x 3 matrices.

The response variables, u, may also represent frequency response function

(FRF) amplitude and phase. In this case Ou/0r represents the derivatives of FRY

amplitude and phase with respect to the modal parameters, r. These derivatives are

obtained in closed form from the forced equations of motion. Consistent with Equations

(2-1) and (3-1), the damped non-homogeneous equations of motion are written as

M_ + C± + Kx = fx(t) (4--11)

where C is an equivalent viscous damping matrix and fx(t) is the time dependent force

vector. Whenever fx(t) can be separated into a constant spatial vector, Px, and a scalar

time function, g(t), Equation (4-11) becomes

M_ + C_ + Kx = P x g(t) (4-12)

The modal transformation derived from Equation (2-2) gives

x = Cq (4-13)

and when applied to (4-10) results in
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Table 4-1b. Eigenvector Derivatives with Respect to Modal Stiffness.

a_

o o
A_ -A: A, -,_:

4h: ¢.
o 0

A, - A: A_ - A:

o o
A_ - A: A_ - A:

0 0 o
A: - A,

0 0 0
A: - A,

0 0 0
A: -A_

0

0 0
A: -k_

0 0
k: -A,

0 0
k: - At

_L3

A: - A_

A: - A_

A: - A.,

A_ - A:

A, -A:

o

o

0

o

o

o
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I_[ + _t + Aq = cTp x g(t)= Pq g(t) (4-14)

where as before (following Equation (2---8))

cTM¢ -- I (4-15a)

cTK¢ = A -- W2 (4-15b)

and in addition

¢Tc¢ = _ (4-15c)

Transformation of (4-14) to the frequency domain gives

[(A - fl_) + if'/_] Hq (ifl) - Zq Off) Hq Off) = Pq (4-16)

where

Hq (il2) = G_ (4-17)

Zq (ifl) = [(A-Ifl 2) + ifl¢ ] (4-18)

and Q(ifl) and G(ifl) are respectively the Fourier transforms of the vector q(t) and the

scalar g(t). Then

Hq Off) = Zqt Off) Pq (4-19)

Transformation back to the x-coordinates gives

Hx Off) = CZq' Off) CTPx (4-20)

The derivative of the vector Hx(ifl ) with

parameter, rk, (assuming that Px is not a function of rk) is

respect to the (scalar) modal
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OH X (ifl)

Or k = _ Zq' (in) ¢_P,

O_Zq-1 (in)

+ ¢ &k CTpx

+ CZq' (if]) _ Px (4-21)

where

o-_Zq-' (if_) gZq (if_)

O_k _ -- Zq -1 (if]) &k Zq" (if_)
(4-22)

and from (4-18)

OZq (if_)

Ork - -O_k + ifl

When the structure is base--excited, then Px (or its equivalent) will be a

function of r . The equations of motion for a base--excited structure are usually written:
k

M2 + C (/c- 2o) + K (X-Xo)=0 (4-24)

The transformation of variables

z = x - x o (4-25)

leads to

M_ + C/_ + Kz = -M_ o = -Mazg(t ) (4-26)
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where g(t) represents the base input motion and a z is essentially a distribution vector.

Now one may define

Pz = - Maz (4-27)

and Equation (4-26) becomes

M_. + C_ + Kz = Pz _(t) (4-28)

which is of the same form as (4-10) except that _(t) replaces g(t) because the forcing

function is now a base acceleration instead of an applied force. In order to express M in

(4-27) in terms of the modal mass matrix, m, the vector a z is transformed as follows:

a, = ¢% (4-29)

% (¢T¢)_,_.. cT 12z (4-30)

Then (4-20) becomes

H,. (in) = - n 2 CZ_t (in) cZ Me aq

= - fl 2 CZq' (if/) aq

The derivative of Hz(ifl ) with respect to r k is

0Hz(ii'l) _ f12 0¢
Ork = _ Zql(ifl) a'q

OZq'(ifl)

-fl 2 ¢ _r k aq

O_r_q

- n_¢ Zq'(in) (4-32)
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where

O(2q -I -t

(4-33)

It is convenient to express the complex frequency response function, Hx(if2), in

terms of amplitude, A(fl), and phase, _fl), functions.

A(n) = [Hx(n)H:(n)]l/2

= [rt_(_) + i_(_)lI/2 (4-34a)

i,(.)]_fl) -- tan" _j (4-34b)

The asterisk denotes a complex conjugate and Rx(fl ) and Ix(X ) are the real and imaginary

parts of Hx(ifl ). The derivatives of FRF log-amplitude and phase are

OlogA(fl)_k =-_ [ Rx(fl) 0Rx(fl)_ + Ix(fl) 0Ix(fl)] (4-35a)

0 fl

- _k
(4-35b)

It may be noted that both log-amplitude and phase are dimensionless quantities.

There is a fine point to make here regarding the type of modes represented by ,_

and ¢, and the type of mass and stiffness properties represented by M and K. Heretofore,

these symbols have represented the (hypothetical) "truth" model, while the same symbols

with a left superscript "o" have been used to represent the original analytical model,
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assumed to be a close approximation to the "truth." In this chapter, the unsuperscripted

symbols may be considered to represent either the pretest or posttest analytical models, or

the "truth" model, with one small (but conceptually important) adjustment.

If )_, ¢, M, K are taken to represent the analytical model, then the full modal

damping matrix, _, defined in (4-15c) should be replaced by

c = (¢T)-1_ ¢-1 (4-3_)

where ( represents the "measured 't modal damping matrix discussed in Chapter 3, and ¢ is

the transformation matrix relating the true modes, ¢, to the analytical modes, o¢.

¢ = °¢¢

Equation (4-36) follows from the definition of c as

c = °¢TC°¢

and _ as

= ¢TC¢ = CT°¢TCO¢¢= ¢TC¢

where C represents the "true" equivalent viscous damping matrix.

4.1.2 Reverse Propagation

Reverse uncertainty propagation refers to the propagation of uncertainty

backward through the analysis chain. Suppose the analysis chain is described as moving

from design parameters, 0, to modal parameters, r, to response variables, u. This

progression may be indicated symbolically as

_r_u

In other words, response, u, is computed from the modal parameters, r, which in turn are

computed from the design parameters, 0. Forward covariance propagation gives
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T (4-37a)Srr = Tr0 SO0 Tr0,

Suu = Tur Srr TTur (4-37b)

(4-37c)Suu = Tuo SO0 Tuo

Reverse propagation is employed when computing So0 from Srr , Srr from Suu , or S00 from

Suu. Equation (3-77) is an example of reverse uncertainty propagation. In the present

case, however, the Bayesian form is used because prior knowledge is assumed about the

parameters.

In Bayesian parameter estimation [4-2], one has some prior knowledge of the

parameters being estimated. This knowledge is contained in the covariance matrix of

initial parameter estimates, say S00. If new knowledge is gained in the form of information

about r, contained in the covariance matrix, Srr , then S0o may be updated by adding the

new information

T "T o]"S00 = [S_ + T,o Srr (4-38)

Equation (4-38) is seen to be similar to (3-77). The only difference is that prior

knowledge is reflected in the covariance matrix S00. The form of (4-38) is also similar to

the equation for the stiffness of two springs in series, where

I I ]-IK=

In this analogy, uncertainty (represented by variance or covariance) is analogous to

stiffness or rigidity, while information content (represented by the inverse of variance or

covariance) is analogous to flexibility.

There are at least two foreseeable uses for reverse uncertainty propagation. The

first is to estimate the uncertainty in physical design parameters given the uncertainty in

modal parameters. This is potentially useful in Bayesian parameter estimation Where a
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covariancematrix of the initial parameterestimatesis required. Typically, this covariance

matrix is assumedto be diagonal,and the diagonalelementsare determined by intuitively
estimating the coefficient of variation on eachparameterestimate. For someparameters,

this is not difficult. For example, when lumped massesare used to represent the mass

distribution of a structure, the massvaluescan beestimated fairly accuratelybecausemass

propertiescan be measured. On the other hand, stiffnessproperties are more difficult to

estimate, generally requiring detailed finite elementmodeling. It is usually not feasibleto

directly estimate the parametersof thesesmall finite elementsbasedon global test data, so

recourseis made to estimat!ng zonal parameterssuchas linked finite element parameters
or submatrix scaling parameters, for example. It is much more difficult to quantify

uncertainty in the initial estimates of these zonal parameters. The ability to use

uncertainties in modal data to back out uncertainties in zonal parameters could be of

significant benefit, since these uncertainties play an important role in revising the initial

parameter estimates with Bayesian estimation.

Another possible use for reverse uncertainty propagation is in establishing

criteria for modeling accuracy in terms of eigenvalue and eigenvector error. Criteria for

modeling accuracy, or analysis-test correlation, are usually specified in terms of the

difference between analysis and test frequencies (e.g. less than or equal to * 3%) and the

cross---orthogonality between analysis and test modes (e.g. less than or equal to 0.10).

These values are established conservatively on the basis of prior experience, and are rarely

if ever fully satisfied. Questions inevitably arise as to what these criteria imply (or

guarantee) with regard to predictive accuracy, and whether they can be relaxed. Reverse

uncertainty propagation could be used to transform uncertainties in frequency response

back to uncertainties in frequency and cross---orthogonality. The uncertainties in frequency

response could be specified in terms of tolerances on FRF amplitude, representing, say, two

standard deviations. This information would define a diagonal covariance matrix of FRF

amplitude, Suu , at selected frequencies, and selected response coordinates. Uncertainties in

frequency, f, and cross--orthogonality, t/', would then be obtained from Suu as follows:

Sff---[TTuf Suu1 Tuf]'l (4--39a)

S_ = [Tu_ SuulTu_]" (4-39b)
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Since no prior information is known about f and ¢, the form of (3-77) is used rather than

that of (4-38). The sensitivity matrices Tuf and Tu_ are given by

Tuf = Tur Trf (4---40a)

Tu_ , = Tur Tr_ (4-40b)

where Tur is given by (4-21) and (4-35a) and Trf and Tr_ , are obtained from Equations

(2-9), (2-13), (2-14) and (2-19) as

Wrf -

&Tlij

Ok ij

= 4 °fj6ij = 2° j ij

Tr_ =

am _aij

• _ = _ 6ig6jh - 6jg6ih
!

akij

 ig6Jh° i -  jg6ih°, j

(4-41b)

The square roots of the diagonal elements of Sff and S_I , are the standard deviations of the

modal frequencies and cross-orthogonaiity coefficients, respectively•

4.1.3 Example

A simple example is presented to illustrate linear covafiance propagation.

Figure 4-1 shows a 2-DOF spring-mass system. Damping elements are not shown;

however, one-half percent damping is assumed in each of the two modes. Mass and

stiffness uncertainty are represented by the covariance matrix of modal mass and stiffness

for large space structures (Table 2-2). In this case, the covariance matrix is of dimension 6

x 6, including only those rows and columns of the matrix in Table 2-2 which correspond to

the elements mu, mn, m_2 , kn, k12 and k22, i.e. the intersecting elements of rows and

columns 1, 2, 6, 16, 17 and 21. A lognormal distribution on damping was assumed with a

median value of 0.5% and a one---sigma multiplicative factor of 2.0.

4-14





M: i

A X:, Fz

b X_

K t

Nomzncl P_zr_ne_er_:

,Wt = M. = l.O

K t = K, = I.O

(l = (, -" 0.5% 0/" Cntwal

F, = L.O

"'" MODEL _NPUTg FOR 2-0(3F LUMPED MOO£L "'"

(FILF.NA.4F. • 2dof.dam)

l 1 0 0 0 0 0 - X-MAP -

2 2 0 0 0 0 0 (Node I & Do_ Is)

I 2 3 (Mass SkyLine)
1.0 1.0 (Mass Matrix)

i 2 4 (S_iffness skyline)

2.0 L.0 -I.0 (S_i_g Matrix)

L 2 (Coord Ordering Vector)

en

.3

n.

LS0 -

-180 -

-| ................................................... i-

- | .................................... , . , ............ |_

"o

&

O
,.O

2_-

t-

0-

"2-

O.Ol (Frequency Ha) 0.30

Figure 4-1. Two-DOF Model.
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Figure 4-2 shows the nominal and _- 1cr interval response computations for FRF

amplitude and phase corresponding to displacement at the end mass due to force applied at

that coordinate, and spanning a frequency range which encompasses the first mode. It is

noted that the * la uncertainty intervals tend to become very large near resonance. They

are in fact larger than shown. The symbols used to delimit the amplitude intervals are

asterisks as long as the one-sided intervals do not exceed two decades. When an interval

• exceeds that limit, it is truncated at two decades (on either side of the nominal response

log-amplitude) for plotting purposes and delimited by arrows indicating that the

single---sided interval actually computed exceeded two decades. In the case of phase, when

the phase interval exceeds 3600 , it simply wraps around.

It is clear from this simple example that linear covariance propagation breaks

down near resonances where the derivatives with respect to frequency (and therefore modal

mass and stiffness) become large. The same occurs at anti-resonances. Away from these

frequencies, however, the uncertainty intervals computed by linear covariance propagation

appear to be reasonable. Further evaluation of these results is offered later, when the same

2-DOF example is used to illustrate the fuzzy set approach and numerical simulation.

4.2 Fuzzy Set Approach

The fuzzy set approach was identified in Phase I as providing an alternative to

linear covariance propagation for the evaluation of uncertainty intervals in frequency

response near poles and zeros. Since uncertainty expressed in terms of fuzzy sets results in

possibility intervals, this approach was seen as a means of bounding the uncertainty near

poles and zeros where linear covariance propagation yields unreasonably large intervals of

uncertainty. The practical feasibility of this approach depends on the assumption that

only a few modal parameters contribute to response uncertainty near these frequencies.

Otherwise, the computations become prohibitively expensive. Thus, while linear

covariance propagation is ineffective at frequencies near poles and zeros but effective

elsewhere, the fuzzy set approach is effective near poles and zeros but ineffective elsewhere.

The two methods taken together are effective over the entire frequency range.
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4.2.1 Fuzzy Sets

Fuzzy sets are axiomatically different from deterministic and probabilistic

concepts, but there are interesting comparisons between them. Fuzzy sets are represented

by membership functions that can assume values between 0 and 1 and that measure the

degree of membership a member of a set S has to a fuzzy subset F of S. Parameters can be

thought of as being one of three kinds: deterministic, probabilistic, or fuzzy. The

deterministic parameter has complete membership (1) at a distinct value. The probabilistic

parameter varies within some domain (usually called the sample space), but its

membership within (1), and outside (0) these bounds is certain. The fuzzy parameters may

have uncertain membership (between 0 and 1) at a particular level, and may not have

complete membership (1) anywhere.

Fuzzy sets offer an alternative to random variables for representing uncertainty

[4-3]. The degree of uncertainty in a fuzzy set is defined by its membership function as

illustrated in Figures 4-3a. At any particular value of membership (a ; 0 <_.a _< 1), the

interval defined by the intersection (referred to as the "a-cut" interval) of the membership

function with the horizontal line at that level of membership is interpreted as an interval of

confidence, or the range of possibility associated with that membership. Any value falling

outside of the interval is not possible given that membership. Any value falling outside the

range of possibility at the zero membership level is impossible in an absolute sense. Thus,

unlike probability density functions which define the relative frequency of occurrence of a

random variable as a function of the values which the random variable may assume, the

membership function defines the range of possibility of a fuzzy number as a function of

membership. In the case of a triangular membership function where the vertex has a

membership of unity, the value of the fuzzy number corresponding to the vertex is

interpreted as the deterministic value.

It is not necessary to specify the membership function of a fuzzy set in order to

define an interval of possibility. For example, one might define the interval of [-o', +a], or

± la as an interval of possibility associated with some unspecified membership of an

unspecified membership function of a given parameter. In fact, one might define • la

intervals for a number of parameters and seek to determine the corresponding possibility

interval for structural response. If the • la possibility intervals relate to the same

membership level for all of the parameters, then the corresponding possibility interval for
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structural response may be associated with that membership. Otherwise, the possibility

interval for structural response cannot be associated with a membership function.

Nevertheless, the possibility interval will in itself be meaningful as the interval of response

possibility associated with _- lo parameter intervals. If one wishes to associate a • no

interval with a particular membership function, it is easy to do so. For example, a

triangular membership function may be defined to roughly approximate a Gaussian

distribution, by letting the vertex of the triangle assume a membership of unity

corresponding to the mode of the distribution, and letting the base of the triangle span an

interval of ± 2.50. In this case, the membership associated with an interval of + 10 is

approximately 0.60 as illustrated in Figure 4---3b.

It is important to keep in mind that the concepts of a density function and a

membership function are different. A density function is based on probability theory which

in turn is postulated from "crisp set" mathematics. A crisp set merely defines the sample

space of a random variable; the variable is either in the set (a = 1) or it is not (a = 0). A

fuzzy set differs from a crisp set by allowing for vagueness in the prescription of the

boundaries of the sample space. Graphically, crisp sets have vertical boundaries, whereas

fuzzy sets can have sloped or variable boundaries. The degree of the slope is inversely

proportional to the fuzziness in the boundary. It is also noted that crisp sets are special

subsets of fuzzy sets.

Fuzzy sets have been shown to be useful in the sense that they provide a means

of bounding the uncertainty of response predictions, particularly when structural response

is a highly nonlinear function of the uncertain model parameters [4---4]. In this situation,

first---order methods tend to be unreliable, and random simulation may be too costly.

The propagation of uncertainties using fuzzy sets involves computations with

interval variables and functions [4-5]. For example, a variable, x, could have as its value

"a", "b" or "3.5", etc., which are real numbers. Similarly, an interval variable denoted by

X, will have as its value In, b] or I. All arithmetic operations on interval numbers can be

applied to interval variables. A function of the interval variable X = [a, b] can be defined

by

Y = f(x)= {f(x)lxeX )

= {f(x)lxda, b]}
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whosevalue usually would be an interval number. When f(x) is continuousand monotonic

on X = [a, b], Y can simply be obtained by

Y = {min[f(a), f(b)], max [f(a), f(b)]}

4.2.2 The Vertex Method

The Vertex Method can be used to propagate uncertainties whenever Y is a

function of many interval variables [4-5]. When Y = f(Xl, X2, ..., Xn) is continuous in the

n---dimensional rectangular region, and no extreme point exists in this region (including the

boundaries), then the value of the interval function can be obtained by

Y = f(Xl, X2, ..., X n)

= {m!n [f(cj)], max [f(cj)]}; j = 1, n
a ]

(4--42)

where cj represents the coordinates of the jth vertex.

When Y = f(Xt, X2, ..., Xn) represents a frequency response function, where Xj

are interval variables representing uncertain parameters, there may be extreme points,

within the rectangular hyperspace defined by the parameter intervals, corresponding to the

zeros and poles of the frequency response function. In this case, a generalized form of

Equation (4---42) is appropriate [4-5]:

Y = {rain [f(cj), f(Ek)], max [f(cj), f(Ek)]}; j = 1, 2, 3, ... n
j ,k j ,k k 1, 2, 3, ... m

(4--43)

where E k (k = 1, m) define m extreme points within the region.

be located by various means including random search and

methods.

The extreme points may

constrained optimization

When using the Vertex Method, the number of required FKF calculations is

given by:
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n = NaNfNr(2 sp) (4---44)

where

N a = number of alpha cuts

Nf = number of frequencies

N r = number of FRFs

Np = number of uncertain parameters

The number, n, can become very large as Np becomes large. Since the basic

uncertain parameters in the present analysis are modal parameters, Np depends on the

number of modes represented in the generic uncertainty model. For a system with only 10

modes (considering only mass and stiffness uncertainty), Np can be shown to be equal to

110 and Np in Equation (4-45) is on the order to 1033! However, since the fuzzy set

method proves most helpful near resonance and anti-resonance, only a few of the uncertain

modal parameters should be important in these cases. Therefore, a classification method to

identify which of the modal parameters are important near resonance is essential.

4.2.2.1 Clustering

Clustering is the genetic term given to the process of grouping parameters into

different classes. In this case it is only necessary to group the parameters into two classes:

those which contribute significantly to the interval of response uncertainty at a given

excitation frequency, and those which do not, i.e. the important and the unimportant

parameters. The first step is to define an appropriate measure of importance; the second is

to establish a suitable threshold for separating the two classes.

The linearized Taylor series may be used for this purpose, even though the

series itself may not approximate the true response. The linearized Taylor series given by

Equation (4-4) may be rewritten as

Au = Tu;A_ (4-45)
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where the dimensionless parameters _ replace r. In this case, where only one response

variable, uj, is sought, (4--45) becomes

auj = (T.;)jkzX k (4 6)
k

If A_ k is defined to be one standard deviation of the random variable _k, then the product

I AUjkl = ] (Tu_)jkArk I

may be thought of as a measure of the contribution of parameter _k to the uncertainty of

the response variable uj. The ratio

Rj k ] Aujk= -- jl (4-4-48)

is a relative measure of the importance rk with respect to the uncertainty of uj.

log-amplitude, then

Rjk = 10 I AUjk I _ 1

When uj is

(4-49)

With Rjk defined as the measure of importance, one may proceed to specify a threshold.

Intuitively, one would like to choose Rjk to be small, say Rjk << 1, near the

poles where uj is large. On the other hand, when the excitation frequency is near a zero

where uj is small, then the threshold can be chosen much larger without adversely affecting

the computed upper bound on uncertainty. Near the zeros of a FRF, one might choose Rjk

< 1. The error introduced by the truncation of parameters is referred to as the parameter

truncation error, ej. An estimate of this error is given by
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N t

ajk (4-5o)
k:l

where Rjk is summed over the number of parameters which have been truncated, N t. One

must keep in mind that when the excitation frequency is near a pole this truncation error

will be a small fraction of a large number, and when near a zero, it will be a larger fraction

of a small number. The estimated parameter truncation error, ej, can therefore be

expressed as "(100 x ej) percent of (uj)," where numerical values are given for the

quantities in parenthesis.

4.2.2.2 Diagonalization of Covariance Matrix

Before the Vertex Method can be applied, it is necessary to transform the

parameter vector, _, to a set of uncorrelated parameters g. This is accomplished by

diagonalizing the covariance matrix S;; which remains after parameter truncation. (The

effect of parameter truncation on S_; is to eliminate those rows and columns of Sr_

corresponding to the parameters being truncated.) Diagonalization may be performed by

singular value decomposition [2---6] which identifies all of the non--zero singular values

(eigenvalues) and their corresponding eigenvectors. Since S_ is symmetric and

non-negative definite, all of the non---zero eigenvalues are positive and there is only one set

of eigenvectors. These eigenvectors provide the linear transformation between the original

_-parameters which are correlated, and the new g-parameters which are uncorrelated. In

particular,

where 0 is the linear transformation relating A_ to At.

Having made the transformation of variables from _ to g, another clustering

operation is performed on the _ parameters to reduce Np in Equation (4-44). This limits

the number of response computations required by the Vertex Method. (The first clustering
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operation on ? limited the sizeof S_ for singular value decomposition.) The clustering on

is performedin the samemannerit wason i.

Au = Tu_ OAF = Tu_ A_ (4-52)

Auj = _ (Tu_)j k Ai k (4-53)

k

[ Aujk[ = [ (Tu_)jkA._k[ (4-54)

Then Rjk and ej are given by (4-48), (4--49) and (4-50) as before.

vector, _.

2

The truncated singular values a]k , of S_ are the variances of the truncated

Thus, if one wishes to evaluate the possibility bounds on uj corresponding to

* no" parameter intervals, one would let

A_ k -- no._k (4-55)

Given a particular combination, A_, of the scalar parameters Aik, Ai is transformed back

to AI using (4-51). From A_, Ar is obtained by appropriate frequency scaling, thus

determining Am, Ak and A_, from which one obtains

m=I+Am

k = o_ + Ak

= +

The undamped eigenvalues, _, and eigenvectors, ¢, are computed from

(k-_jm) ¢j=0; ¢=°¢¢
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Frequency responseis then computed from (4-20). Responseat the vertices of the

rectangular hyperspace corresponding to _- n_r parameter intervals is determined by

computing the response, uj, for all combinations of A_ k comprising the vector At, with

two exceptions:

(1)

(2)

Any combination, A_, resulting in Amjj < 0 is discarded because Amjj aS

defined by (2-20) is non-negative.

Any combination, A_, resulting in negative eigenvalues is discarded because
negative eigenvalues imply an unstable system.

Negative eigenvalues and negative Amjj's can result from violation of the small

perturbation assumption and the symmetric intervals assigned to As k .

4.2.2.3 Included Maxima and Minima

Equation (4---42) is used to compute response uncertainty intervals as long as no

extremum exists within the parameter space including its boundaries. A test is made to

detect the presence of an extremum. The poles and zeros computed for each combination

of truncated parameter values are searched to determine the highest and lowest in each

case, thus determining a frequency range for the poles and another for the zeros. If the

excitation frequency falls within the range of poles there is an included maximum. If it

falls within the range of zeros, there is an included minimum. An included maximum

means that there is some combination of parameter values which results in a pole at the

excitation frequency. An included minimum means that there is some combination of

parameter values which results in a zero at the excitation frequency. Poles are located by

solving the undamped eigenproblem. Zeros are located by the Method of Golden Sections

[44].

Figure 4-4 illustrates the occurrence of an included maximum. These figures

shows FRF amplitude of the LaRC Ten Bay Truss (Figure 2-2 and Table A-2) at selected

excitation frequencies near the first resonance which is approximately 17.89 Hz. Unlike

conventional FRF plots which are functions of excitation frequency given certain parameter
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values, these plots are functions of selected modal parameters with excitation frequency

fixed. In this case, the modal mass and stiffness of the first mode are varied over the

arbitrarily selected intervals of • 5%. In Figure 4--4, included maxima appear at an

excitation frequency of 18 Hz, but not at 17 or 19 Hz. The circled points represent the

maximum and minimum FRF amplitudes at the vertices. In each case, the parameter

space is a two--dimensional rectangle with four vertices. The four vertices correspond to

the following parameter combinations:

mu kit
1. - 0.95, = 0.95

°miI

.

m u k u
= 0.95, = 1.05

om u

.

mlt kit
= 1.05,

°roll °k u
- 0.95

mtt kit
4. - 1.05, = 1.05

°mll

At the 18 tIz excitation frequency, Combinations 1 and 3 correspond to the maximum and

minimum response at the vertices. Included maxima are seen to occur at the combinations:

mu kit
5. - 0.95, = 0.96

Omit o-_t t

mtt kit
6. - 1.00, = 1.01

°m11

mtt ku
- 0.99, = 1.00

7. om11

,

mu ku
- 1.04, = 1.05

om 11
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In fact, Combinations5 through 8 all have the approximate ratio

Okkll li
- 1.01

ml_ °m_L

implying that the included maxima lie along a ridge line over the two-parameter space.

The ridge line is not quite level, however; the true maximum lies on the mlJomLi = 0.95

boundary. In this example, the included maxima are only slightly greater than FRF

amplitude at the vertices. This is only because the excitation frequency of 18 Hz is so close

to the resonance frequency of 17.89 Hz. If the excitation frequency were 17 Hz or 19 Hz,

for example, and the parameter intervals were ± 20% instead of -_ 5%, the difference

between the highest vertex response and the included maximum would be much greater.

Figure 4-5 illustrates the occurrence of included minima. As in Figure 4-4, the

maximum and minimum response among the four vertices are circled. Included minima are

indicated by the solid triangles. These minima correspond to a zero which occurs between

the resonant frequencies of the first two bending modes of the Ten Bay Truss.

When the presence of an included maximum or minimum is detected, the value

of that maximum or minimum must be determined so that Equation (4-43) may be

evaluated. There are several ways of doing this, but none guarantee that the extremum

will be found with a finite computational effort. All of them, however, improve upon the

interval obtained by computing response at only the vertices, with accuracy improving as

the computational effort increases. The three basic search techniques are:

I. Uniform grid search;

2. Random search; and

3. Constrained optimization.

The uniform grid search simply divides the parameter space into a finer mesh (or grid) and

computes response at the nodes of the mesh as well as the vertices of the parameter space.

The random search substitutes randomly selected parameter combinations within the

parameter space for the regular combinations represented by the refined mesh. In

constrained optimization, a search algorithm with multiple starting points is employed to

find the extremum within the boundaries of the parameter space.
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4.2.3 Example

The 2-DOF system shown in Figure 4-1 is used to illustrate the fuzzy set

approach. The CSS Posttest modal mass and stiffness covariance matrix is used as before

(Section 4.1.3), and 0.5% damping is assumed with a one---sigma uncertainty factor of 2.0.

The results are shown in Figure 4---6 and may be compared with the results of linear

covariance propagation shown in Figure 4-2. Figure 4---6 shows that both the amplitude

and phase intervals have been reduced in the neighborhood of resonance. The plots in

Figure 4--6 use different symbols to delimit the intervals computed by the fuzzy set

approach. Instead of the asterisks used to delimit intervals computed by linear covariance

propagation, plus signs are used to delimit possibility bounds. The composite plot is

obtained by computing uncertainty intervals by both linear covariance propagation and the

Vertex Method, and plotting the smaller of the two.

4.3 Monte Carlo Simulation

Monte Carlo simulation is performed in basically the same way as the random

search for maxima and minima. The only difference is that whereas the random search

uses rectangular distributions limited to * no', Monte Carlo simulation uses normal

distributions for mass and stiffness parameters and lognormal for damping. In place of the

possibility interval, a frequency---of--occurrence distribution is computed. This distribution

could be normalized to unit area to make it a probability density function. However, it is

instead normalized to a maximum occurrence rate of unity for plotting purposes. Figure

4-7 shows a sequence of amplitude and phase distributions, for the frequencies shown in

Figure 4---6. It is interesting to note the bimodal phase distributions which occur near

resonance. These distributions are recognized as being similar to the distribution for sin 0

where 0 is uniformly distributed over the interval [- _'/2, _r/2]. See Reference [4-2].

The distributions in Figure 4-7 may be compared with the • l a uncertainty

intervals in Figure 4---6. The two are seen to be generally consistent, except that the

nominal response does not necessarily coincide with any particular statistic of the

distributions such as the mean, median or mode. It is well to keep in mind, for example,

that in the absence of damping uncertainty, the nominal FRF amplitude at resonance will

very nearly coincide with the upper limit of the distribution. This was illustrated in [4-2].
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Figure 4-7. FRF Amplitude and Phase Distributions for 2-DOF Example.
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As a final comparison between * no" uncertainty intervals and corresponding

distributions, the _: 2_r uncertainty interval was computed for the 2-DOF example. These

results are shown in Figure 4-8. This figure shows that where the uncertainty intervals

have been determined by linear covariance propagation, the intervals double as they

should. However, the possibility intervals computed near resonance do not double. They

tend to increase only in proportion to the increase in damping uncertainty. The increase in

mass and stiffness uncertainty tends to broaden the uncertainty bands in the frequency

direction, but has little effect in the amplitude direction near resonance.
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5. IMPLEMENTATION OF METHODOLOGY

A computer code was written to implement the three methods of uncertainty

propagation described in Chapter 4. This code is named PDAC (an acronym for

PreDictive ACcuracy). Since model uncertainty is expressed in terms of modal parameters,

it was convenient to formulate PDAC in terms of modal models. This meant that PDAC

would require modeling data in the form of modal mass, damping and stiffness matrices,

along with a modal transformation to convert input and output quantities (forces and

forced response) to physical coordinates. Also required were an eigensolver, response

computation modules, and modules to compute eigenvalue/eigenvector and FRF amplitude

and phase derivatives which are used for uncertainty propagation.

These capabihties were available in a previously developed code called SSID (for

Structural System IDentification). The modules could have been lifted from SSID to create

a separate PDAC code; however, several ways were perceived in which PDAC could

enhance the capabihties of SSID, including the following:

1 Reverse uncertainty propagation could be used to obtain the initial parameter

covariance matrices required for Bayesian estimation in SSID. This database

approach for defining an initial parameter covariance matrix should provide a

better "sense of direction" for the Bayesian estimator, and could conceivably

eliminate the need on the part of the analyst to "guestimate" these quantities.

. The interval prediction capability of PDAC would make it possible to translate

the parameter covariance matrices, either input to SSID or computed by

SSID, into response intervals. This capability would provide a valuable

diagnostic tool for SSID by facilitating the interpretation of parameter

covariance matrices.

o A posttest model uncertainty database combined with PDAC's forward

propagation capability would enable SSID to display the accuracy of the models

it tuned.

The recognition that PDAC and SSID would mutually benefit each other led to

combining the codes into the code called SSID/PDAC. Not all of the SSID enhancements

discussed above have been implemented. Since the objective of this project was to
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implement the predictive accuracy methodology rather than enhance SSID, only the last of

the three SSID benefits has been implemented. Thus while PDAC benefits from many of

the code modules resident in SSID, not all of the SSID/PDAC code is needed to compute

predictive accuracy. And whereas SSID now benefits from the ability to compute

uncertainty intervals on either pretest or posttest models, it does not yet utilize all of the

capabilities which PDAC has to offer. The code has been structured so that these

capabilities can be added in the future.

A top level functional diagram of SSID/PDAC is shown in Figure 5-1. This

figure shows three types of information being input to the code: an analytical model,

model uncertainty, and vibration test data. The inputs are shown separately because they

are read as separate data files. Three types of output are provided. They include pretest

response, either with or without pretest uncertainty, a revised model with revised

parameter uncertainty, or posttest response, either with or without posttest uncertainty.

Figure 5-2 shows a top level flow diagram for SSID/PDAC. Mathematical

symbols indicate the flow of primary input to SSID/PDAC from the modeling code

(NASTRAN), ground vibration testing, model uncertainty databases and user input. The

four modal mass and stiffness matrix databases previously discussed reside as data within

the code. SSID/PDAC output is also shown symbolically. Here the asterisks denote

quantities which have been updated by SSID to better match test data. These symbols are

placed on the flow diagram so that the operation of SSID/PDAC can be related to the

mathematical derivations of Chapters 2 through 4.

PDAC.

The following two sections summarize the present capabilities of SSID and

5.1 Summary of SSID Capabilities

This section summarizes the primary capabilities of the SSID portion of the

code. They are grouped according to (1) modeling and analysis capabilities, i.e. the types

of models which may be updated, parameters which may be estimated and machines which

the code will run on; (2) types of test data which may be used to update the models; and

(3) description of parameter estimation algorithms, their limitations, and the format of

output presentation.
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Modeling and Analyses

SSID interfaces with NASTRAN via a NASTRAN-to-SSID input data link.

NASTRAN's linear modeling capabilities, including substructuring and
coordinate reduction can therefore be used to generate finite element models for

parameter estimation in SSID. There is no model size limitation.*

SSID can be sized to run on any machine. To date SSID has been successfully
compiled and executed on 386 PC, Unix Workstation, as well as VAX and

CRAY Mainframe computers.

SSID has its own substructuring capability (currently allowing up to nine
substructures.) Substructure models (physical, modal, Guyan-reduced) can be
read into SSID separately and assembled within.

SSID performs modal analysis and frequency response analysis for lightly
damped structures.

SSID is capable of estimating any mass and stiffness parameter which appears
linearly in the equations of motion, including finite element and lumped
parameters, linked finite element parameters, and submatrix scaling
parameters. SSID also estimates system modal damping parameters including

the off-diagonal elements of modal damping matrices.

Test Data

SSID estimates model parameters based on any combination of eigenvalue and
eigenvector (E/E) data, or any combination of FRF amplitude and phase data.

E/E or FRF data can be combined from any number of test data files to create
a data batch.

• There are no limitations on the amount of data which can be processed.

Parameter Estimation

SSID offers two alternative Bayesian estimators, one for use when the number
of data exceeds the number of parameters, and the other when the number of

parameters exceeds the number of data. Both can be used in either case,
efficiency and numerical stability being the determining factor.

SSID processes data in either single batch or sequential batch estimation
modes.

• SSID evaluates the statistical significance of all parameter estimates.

Although there are no theoretical limitations such as array size, practical limitations such
as available memory and run time should not be overlooked.
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SSID providesa seriesof graphical outputs which summarize the estimation

process.

A comprehensive description of SSID, including its mathematical basis, user instructions,

and a more complete description of its capabilities and limitations are provided in

References [5-1] through [5-3].

5.2 PDAC Modifications to SSID

There is a run option in SSID which allows the user to compute the eigenvalues,

eigenvectors, and frequency response of the initial model without making an estimation

run; no test data are required to exercise this option. This is the run option which was

modified to incorporate PDAC. In simplest terms, PDAC adds the capability to compute

interval response in conjunction with this response---only option.

Three types of interval response are computed by PDAC:

1. Response intervals of • na based on linear covariance propagation,

2. Response possibility bounds based on • n_r parameter intervals, and

3. Response distribution functions based on Monte Carlo simulation.

Linear covariance propagation is the easiest and most straight,forward of the three

computations. It requires only the covariance matrix of modal parameters and the

sensitivity of eigenvalues, eigenvectors and frequency response to those modal parameters.

The derivatives of eigenvalues and eigenvectors to those modal parameters is particularly

simple. Eigenvector derivatives do not require a modal summation in this case.

The Vertex Method for computing possibility bounds is the most complex

portion of the code. It involves clustering to limit the parameter space, diagonalization of

the modal parameter covariance matrix to preserve the correlation structure of the data,

and detection and evaluation of included response maxima and minima within the

rectangular hyperspace defined by parameter intervals. The evaluation of included

maxima and minima is the critical part of this operation. Several user options are

available, including (1) uniform grid search, (2) random search and (3) constrained

optimization. These options are described in Section 4.2. Default options have been built

into the code based on experience gained to date. These options may be overridden by the
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user. Additional options allow the user to make trade---offs between accuracy and

computation time. In this way, approximate results can be obtained at relatively little

cost, while any desired level of accuracy may be attained with sufficient computational

effort.

At the present time, there is no uncertainty database for damping, so the user

must specify damping uncertainty in terms of a multiplicative uncertainty factor on the

diagonal elements of the modal damping matrix. For example, a one---sigma uncertainty

factor of 2.0 means that with the assumed lognormal damping distribution, the logarithmic

mean plus one standard deviation will be twice the nominal damping value, and the

logarithmic means minus one standard deviation will be one-half the nominal damping

value. PDAC has been structured to accept a covariance matrix for all of the modal

damping matrix elements, including off---diagonal as well as diagonal terms, so that at some

future time when the data become available (and are considered to be important), this

option may be activated.
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6. DEMONSTRATION OF METHODOLOGY

This chapter discusses application of the methodology to practical problems.

Applications to three real structures are presented, including comparisons with measured

FRF data. The purpose of these comparisons is to show how test results compare with the

intervals of predictive accuracy determined form actuarial data. The results, while

encouraging, should be viewed cautiously because of the limited database and the limited

number of applications which have so far been investigated.

Before presenting these applications, the issue of database sensitivity is

considered. The question is, how sensitive are the computed uncertainty intervals to a

particular database? Four different databases were presented in Chapter 2, three

independent and one combined database. Rather than examine this question with respect

to a particular structure belonging to one of the three independent databases, the 2-DOF

spring-mass model is used as a neutral example.

6.1 Database Sensitivity

Table 2-7 compared the four databases in terms of the singular values and trace

of their covariance matrices. The largest singular value is called the spectral radius, and

the trace is equal to the sum of the singular values. As expected, the pretest models had

the largest spectral radius (0.93), and the largest trace (1.547). The posttest models had

the smallest trace (0.734), roughly half that of the pretest models. The traces of the

research models and combined database fell between those of the pretest and posttest

models, while the spectral radii of the LSS research models, the CSS posttest models and

combined database were nearly the same, ranging from 0.57 to 0.60. In summary, the

CSS pretest models exhibited the most uncertainty, the CSS posttest models the least

uncertainty, with the other two somewhere in between.

Each of the four databases was used to evaluate the predictive accuracy of the

2-DOF model. The results are shown in Figures 6-1 through 6-4. Figure 6-3 corresponds

to Figure 4-6 in that both reflect the CSS posttest database. The frequency range is

extended to cover both modes, however. As expected, the uncertainty intervals computed

with the CSS pretest model database are largest overall. Comparison of Figures 6-1 (LSS)

and 6-3 (CSS posttest) reveals uncertainty intervals which are approximately the same, a
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FUZZY BOUNDING ANALYSIS

FItEQ-HZ NCl_iPHASE

7.00000(-02 -8.07101E-01

7. 20073E- 02 -8. 862/,BE- 01

7./,lq57£- 02 -9.81588E-01
l,.u.

7.63870E-02 -I .09872E*00

7.86_30E- 02 - 1.2_.611R-00

('D 8.09650E- 02 - 1 ./.3756E÷00

O'a 8.33568E- 02 • 1.6960BE*00

8.58186E-02 - Z. 06,46TE*00

B.E3531E- 02 -2.L3280E*OO

9.09625E- 02 -3.622491E.00

C) 9.364B9E- 02 -5.777_P,00

9.6,4147E- 02 - 1.39943E*01

_ 9.92621E- 02 -I .51169E*02
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_t I;_ 1.08319£-01 - 1.76988E*02
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¢_ 1.53600£- 01 -1.79214E-02
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I::r'

1.88310£-01 - 1.7_97&E'-02
_'D I. 93872E - 01 - I. 78791E*02
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little Smaller for the LSS near the first mode and a little larger near the second mode. The

combined database in Figure 6---4 appears to yield an average of the first three as it should.

Between the first and second modes in the frequency range of approximately 0.1 to 0.2 ttz,

there is very little difference among the four databases. The greatest difference is between

the LSS and CSS pretest databases around 0.24 Hz, where the total uncertainty interval for

the latter is three decades compared with only one and a half decades for the former, a

difference of more than an order of magnitude. These results indicate that database

differentiation can be important in some cases.

6.2 Mini-mast Structure

The LaRC Mini-mast structure introduced in Chapter 2 is the first structure

selected to demonstrate the methodology. A finite element model for the structure was

provided, along with measured FRF data [6-1]. Frequency response functions were

computed using the LSS database.

Figure 6---5 shows the excitation and response locations for frequency response

functions presented in [6-1]. Figures 6---6 through 6---8 show FRF amplitude and phase

plots at Bays 6, 10 and 18 due to shaker input at Bay 9. These figures show both the test

measurements (smooth fines) and analytical model predictions (fines with "+" symbols).

Figures 6-9 through 6-11 show PDAC interval plots for the same FRF's. As in previously

shown PDAC plots, the nominal response of the analytical model is denoted by "o"

symbols. One sigma interval boundaries are denoted by " * " symbols when determined by

linear covariance propagation, "+" symbols when determined by the fuzzy set approach

(possibility bounds), and arrows when the interval exceeds two decades from the nominal

in either direction.

FRF amplitude from test measurements are hand-plotted on the PDAC plots

for direct comparison of predicted uncertainty intervals with test results. Where the test

results exceed the * la intervals determined by covariance propagation (asterisks) the

plotted intervals may be doubled (on the log scale) to determine _- 2or uncertainty intervals.

When an interval is delimited by plus signs, this cannot be done because the possibility

bounds are not linear functions of parameter uncertainty. At these frequencies PDAC

would have to be rerun to compute * no" intervals with n > 1, as illustrated in Figure 4--8.

6-10





Bay 18 (Response)

Sensor 32g

Sensor IBS

Shaker 167

Bay I0 (Response)

Bay g (Shaker)

Sensor ]13

Bay 6 (Response)

Sensor 329

1

X

Sensor 185 Y

l

Shaker 167 " y

X

Y
Sensor 113

X

BAY 18

BAY I0

BAY g

BAY 6

Figure 6---5. Excitation and Response Locations
for the Mini-mast Structure.
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FUZZY BOUNDING ANALYSIS

FREO-HZ NON DISPL/FOIqCE

5.00000E-01 2.12569E'05

5.30115E-01 2.24304E-05

5.62043E-01 2.39742E-05

5.95895E-01 2.607_PbE" 05

6.317'85E-01 2.909S7E- 05

6.69837E-01 3.37354E-05

7.10181E-01 4.17091E-05

7.52955E-01 5.83634E-05

7.g830L, E-01 1.11470E-04

8.46386E-01 2.070t, TE-04

B.97363E-01 5.84073E-05

9.51411E-01 2.82845E-05

1.00871E+00 1.64564E-05

1.06947E*00 1.02049E-05

1.13388E*00 6.35892E-06

1.20217E*00 3.76484E-06

1.27458E+00 1.90631E-06

1.35135E+00 5.48056E-07

1.43274E*00 6.64626E-07

1.51903E+00 1.51536E-06

1.61052£+00 2.23447E-06

1.70752E+00 2.B4484E-06

1.81036E+00 3.37381E-06

1.91940E*00 3.B4314E-06

2.03501E+00 4.27032E-06

2.1575TE+00 4.6TOIBE-06

2.28752E*00 5.05617E-06

2.42530E*00 5.44159E-06

2.57137E+00 5.84088E-06

2.72624E+00 6.27143E-06

2.89044E+00 6.75643E-06

3.06J,53E*O0 7.33010E-06

3.24911E+00 8.04855E-06

3.44480E*00 9.01592E-06

3.65228E+O0 1.04596E-05

3.87"225E*00 1.30143E-05

4.10548E*00 1.9463_E-05

6.3527'5E+00 5.47570E-05

4.61491E*00 6.46928E'06

4.89ZE,6E÷O0 2.BT759E-06

5.16756E+00 6.94431E-06

5.50000E*00 1.14981E-05
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5.0000_-01 -1.61517E*00

5.30115E-01 -1.86762E÷00

5.62043E-01 -2.19878E*00

5.9589SE-01 -2.65095E*00
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8.FT]_E-01 -1.62738E+02

9.51411E-01 -1.69476E*02

1.00_71E*00 -1.71818E*02

1.06947E+00 -1.7"271(_+02

1.13388E+00 -1.72745E÷02

1.20217E+00 -1.71765E÷02

1.27458E+00 -1._378E*02

1.35135E+00 -1.48/._;*02

1.43274E+00 -1.W>405E+01

1.51gO3E*O0 -6.85137E+00

1.61052E+00 -3.Bg467E+O0

1.70752E*00 -2.66148E+00

1.810_SE÷00 -2.0_*00

1.91940E*00 -I.65891E+00
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5.50000E*00 -5.5617'3E*00
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FUZZY BOUNDING ANALYSIS

FREO-HZ NOI DISPL/FORCE

5.00000E-01 4,58191E-05

5.30115E-01 4.86246E-05

5.620_3E-01 5.?..3166E-05

5.95895E-01 5.73532E-05

6o31785E-01 6.45713E-05

6.69837'E-01 7.56790E-05

7.10181E-01 9.47776_-05

7.52955E-01 I.?_,695E-04

7.98304E-01 2.62179E-04

B.46386E- 01 4.98326E- 04

8.97363E-01 1.44785E-04

9.51411E-01 7.28272E-05

1.00871E+00 4.45616E-05

1.06947E+00 2.9627"/E-05

1,13388E+00 2.0Zd,76E-05

1.20217E+00 1.42615E-05

1.27458E+00 9,827'20E-06

1.35135E+00 6.50380E-06

1.43Z74E÷00 3.927"_E-06

1.51903E+00 1.88209E-06

1.610_2E+00 3.60102E-07

1.70_2E+00 1.2_24E-06

1.81036E+00 2.4494_-_

1.91940E+00 3.48370E-06

2.03501E+00 4.40487'E-06

2.157'57E+00 5.24367E-06

2.Z87'SZE÷O0 6.02766E-06

2.42530E+00 6.78287E-06

2.57137E+00 7.53604E-06

2.72624E+00 8.31767E-06

2.89044E+00 9.16665E-06

3.06._53E÷00 1.01386E-05

3.24911E+00 1.13232E-05

3.44480E+00 1.2B855E-05

3.65228E÷00 1.51847E-05

3.87225E*00 1.92244E-05

4.10548E*00 2.94171E-05

4.3527"5E*00 8.61649E-05

4.61491E+00 1.15292E-05

4,89286E+O0 3.02208E-06

5.18756E+00 8.99192E-06

5.50000E*00 1.56709E-05
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FUZZY BOUNDING ANALYSIS

FREO-HZ II(_q PHASE

5.00000E- 01 - I.?B114E+O0

5.30115E'01 -2.0_gBZE+O0

5 ._.043E-01 -2.39977E+00

5.9_B95E-01 -2.87397E*00

6.317B5E-01 -3.551/,,(R+O0

6.69EL_7E- 01 -4.59476E÷00

7.10181E-01 -6.39768E÷00
I,.," •

on_ 7.52955E-0t -1.02132E÷01

7.98304E- 01 - 2.30035E÷01

B.46386E- 01 -1.21141E÷02

C_ B.97363E-01 - 1.63_02E*02

9.51411E-01 - 1.702._5E402

C_ 1.00871E+00 -I. 7'2800E*02

I. 06947E*00 -1.74045E÷02

I,_ 1.1:1 1.13388E÷00 - 1.7467"TE+OZ

1.20217E÷00 -I .74917E+02

" 1.27451R÷DO -1.74806E÷02

,--. 1.35135E÷00 - 1.74222E÷02

_ 1.4_zT,.E.oo-L_6_E-OZ

_ 1.51903E+00 -1.67_E+02

_ 1,61_÷00 -1.16_*02

D I ._+00 -1._x3901E+01
J-I
I:= 1. BI0361_+00 -5.54393E+00

0 _<: 1.91940E*00 -3.50399E+00
1,.,1

0 2.03501E÷00 -2.57844E+00
I--i p-%

2.157571E ,-00 -2.08576E+00

. _. . 2.2875ZE÷00 -I .80821E+00

E_. 2.42530E÷00 - 1.65695E'+00

2.57137E÷00 -1.59146E÷00
2._4E+00 -I. 5F3_E÷O0

_:_ 2.890_E,"00 -I. 66095E+00
e.,t-

3.06453E÷00 -I. BOI93E+O0

3.24911E+00 -2.04574E*00
0

3. 44480E÷00 -2.46094E÷O0

3.65228E+00 -3.22277E÷00

3.87225E÷00 -4.58991E+00

4 .lOr_.SE÷OO -I. 02_35E÷01

4.35273E÷00 - 7.18038E*01

4.61491E÷00 -1.49360E÷02

4. 89286E" O0 "3.5967_E÷01

5.18_÷00 -8.14916E_'00

5.50000E÷O0 "5.91057E+00

e,.* Y-DISPL,SEMS 185 DUE TO Y-FOR _ SHKR 167 °*e

-1.8000E*02 ° PHASE(DE e:') • "I .80DOE÷02

I I I I I I I I i
o..*o. ..... • .... °o ........... *o**.o,.oooo° .... oo.o.o*. ..... o ........ ,oo ........ °°

0

o. +

o
"0 T •

_'_

-- .... o.... E__:
÷ ....... .--0 ...... . .............. + _ 0

+-o--° _

0

0

I*-o.... -

• ...... 0--4.

°-0"

O*

O*

"0

•0

0

0

0

0

0

°0

O*

O*

°o[
• -0,* I

.............. °'''0 ..... * ........ "_1÷

• ---0--* I

........ • ......... °'0 ...... ÷l

,,oI
....... ,ooo..** ................. ° ................ ,*,,. ............ ,° .... * ........

I I I I I I I I I
- I .BOOOE*O2 t PHASE(DE(;) • -1 .BOOOE÷O2

°•* Y'D]SPL,SEN$ 1B5 DUE 1'0 Y-FC_ _ 5HK!R 16"7 ***

OR!G!_,_AL PALE ;$

OF POOR QUALITY





6I-9

O_

I-1
£D

I

PI

¢_ 0

_.

O

FUZZY BOIJ_4DINGANALYSIS

FREO-HZ MOl4DISPL/FORCE

5.00000E-01 9.B4553E'05

5.30115E'01 1.05531E-04

5.620_3E-01 1.14&46E-04

5.9589SE- 01 1.27558_- 04

6.31785E-01 1.45785E-04

6.69837E- 01 1. 73847E-04

7.10181E-01 2.22127E-04

7.52955E-01 3.?.3121E-04

7.98304E-01 6.46325E-04

B.46386_-01 1.2679BE-03

8.97363E-01 3.82641E-04

9.51411E-01 2.01383E-04

1.00871E+00 1.30149E-04

1.06947E+00 9.253071E-05

1.13388E*00 6.943""_E-05

1.20217E+00 5.39000E-05

1.2745_*00 4.27976E-05

1.35135E+00 3.45097E-05

1.43274E+00 2.81173E-05

1.51903E_00 2.30592E-05

t.6105ZE÷00 1,89T'60E-05

1.70752E÷00 1.56133E-05

1.81036E+00 1.26077E-05

1.91940E+00 1.0430_-05

2.03501E*00 8.38749E-06

2.15757'E*00 6.60434E-06

2.28752E+00 5.020<J_PE-06

2.42530E+O0 3.5857DE-06

2.57137E*00 2.25202E-06

2.72624E+00 9.84183E-07

2.89044E+00 4.?_)_-07

3.06453E+00 1.80551E-06

3.24911E+00 3.43173E-06

3.44480E*00 5.54456E-06

3.65228_+00 8.69428E-06

3.87225E+00 1.4476BE-05

4.1054_+00 3,0139BE-05

4.35275E+00 1.33930E-04

4.61491E*00 3.B3080E-O5

4.8928_+00 2.04522E-05

5.18756E*O0 1.47868E-05

5.50000E*00 1.259B6E-05
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FUZZY ROUMDiHG ANALYSIS

FREQ- HZ NOD( PHASE

5.00000E- 01 -2.07589E+00

5.30115E'01 - 2.36809E*00

5.62043E- 01 -2.7_,31E*00

5.95895E-01 -3.2/_03E+00

6.3171SSE-01 -3.95895E÷00

O_ 6.69a3"?E-01 -5.0_041E*00

7.10181E-01 -6. B873_4-00
1-,I
t'_ 7.52955E-01 -1.07545E+01

7.98304E- 01 - 2.36.076E+01
I

p.., 8.46386E- 01 -1.21B291E+02

8.97'363E" 01 - 1.64164E+OZ

9.51411E-01 - 1.71107E'_02

P'z"J _ 1.00871E'_00 - 1.7380_+02

_ _ I 06947E-00 -I _230E-02
_. 1.13"388E+00 - 1.76106E+02

_l _ 1.20217E+00 - 1.76693E*02

"d 1.27458E*00 - 1.7710_+0Z
i'D

1.35135E*00 - 1. ?'741_',02

_ 1.43274E*00 - 1.77_3E*02

1. 51903E+00 - 1.77792E*02

_ I 61052E+00 - 1 77899E+02

_ 1.70752E+00 - 1.77955E+02

1.81036E*00 - 1.7",'95"_+02

¢,_ _,_ 1.919_.0E+00 - 1.77/Hr3E'-02
t_

_;_ 2.03501E+00 - 1.77739E+02¢D
i,..d.

_. 2.15757E+00 - 1.774_3E+02

2.28752E+00 -1.7689_*022./.2530E÷00 -1. ?SB20E'_02

2.57137E',00 -I. T_287E+02

e-_ 2.72_4E*00 -1.63512£+02

2.890_E+00 -4.08807E*01

0 3.0&45_E*O0 -1.2050_*01

3.24911E÷O0 -8.18L, J,._ -,00

" 3.44480E+00 -7.2292_*00

3.65228_÷00 -7.5572_+00

3.87225E+00 -9.38Z24E*00

4.10548E*00 - 1.563TZE*01

4.35275E+00 -7. 95606E*01

4.61491E*00 -1.66595E*02

4.8928_*00 - 1.74_k_TE*02

5. IB?'56E*O0 - 1.7718_*02

5.50000E+00 - 1.79124E*02
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Direct comparisons between PDAC response intervals and test data are not

presented for FRF Phase. This is because the hard copy plots (e.g. Figures 6---6 through

6---8) available for comparison did not show sufficient detail; predicted and measured phase

were too close to differentiate.

The Mini-mast demonstration case was selected to perform sensitivity analyses

with respect to approximations employed by PDAC to limit run time. Sections 4.2.2.1 and

4.2.2.2 discussed modal parameter clustering and the diagonalization of the modal

parameter covariance matrix. Clustering of the r-parameters is performed to reduce the

size of the covariance matrix subjected to singular value decomposition (SVD) at each

excitation frequency near a pole or zero. Figures 6-10, 6-12 and 6-13 illustrate the

sensitivity of computed response intervals to the selected clustering thresholds. See

Equations (4---47) through (4---49). The r-parameter thresholds are 5%, 2.5% and 10% at

the poles, and 100%, 50% and 200% at the zeros in Figures 6-10, 6-12 and 6-13,

respectively. These results show small but relatively insignificant differences, even at the

highest threshold level.

All three of the above runs were executed with a 5% threshold on the

s-parameters. See Equations (4-54), (4---48) and (4--49). The same problem (with 5% and

100% r-parameter thresholds at poles and zeros), was rerun at s-parameter thresholds of

10% and 15% to investigate the sensitivity of results to s-parameter truncation. These

results are presented in Figures 6-14 and 6-15.

Again, the plots show small, insignificant differences. With the threshold at 5%

a maximum of 21 s-parameters was required near the first zero (1.707 Hz); at 10% only 16

s-parameters; and at 15% only 12 s-parameters. At any given frequency, the elimination

of each s-parameter reduces the computation time by half. The computation time with a

5% threshold was therefore 2 g = 512 times longer than the computation time at a threshold

of 15%. Of course, these computations are not made at all frequencies. In this case the

fuzzy set approach was applied at only those frequencies listed in Table 6-1. The number

of s-parameters retained after truncation at each frequency for each threshold are shown

for comparison.

6-21
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FUZZY BOUNOING ANALYSIS

FREO-HZ NOR DISPL/FORCE

[ 5.0000DE-(TI 4.58191E-05

[._ 5.]_115E-01 4. _6,_/o6E -0_

[_ 5.620&3E--01 5.2-3166E-05

5.9¢a89_ E-.01 5.73_.E-05

I_ _ 6.317'85E-01 6.45713E-05

_. 6.69837E-01 7.56T90E-05

_ 7.10'181E-01 9.47776E-05
i,-,,
_ 7.52'955E-01 1. 34695E-.O&b-=o b.D.

0
¢_ 7. 9830&E-01 2 .6217'9E-O&

0 8. &6386E-01 4. 98326E-(_

_ 8.973,63E-01 1./J.785 E-04

0 _._ 9.51411E-01 7.28272E--05
,. O[_'IE.,,.O0 4.45616E-05

"_ 1.069&7E+O0 2.96277E-05

B _ I. 13_,8E'_0 2.0_76E-.05

o
_. 1.35135E+00 6. 50380E-06

j..J°
Ca _¢'_" 1.4_'/4E+00 3. 92772E-06

1.5190_E'HJO 1. 88209E-06

1.61052E+00 3. 60102E.-07
_'" 0

_ 1.70752E+00 I. 27224E--06

_r' _ 1.81056E+00 2.44946E.-06
_ 1.91¢N, OE+O0 3.483TOE-06

2.05501E+00 4. L_48"/E-06
0
_'_ _ 2.15757E+00 5.24367E.-06

_ 2. 28752E+00 6.02766E-06

I_ _" 2. _.S30E+O0 6.7_?.87E'-06

_" 2. 57137E+00 7. 5360_E-06

0 3.06_53E.,'.00 I. 01386E-05

,._ 3.24911E._00 I. 13232E.-053.4/J,80E+O0 1.28855 E-05

3.65Z28E+O0 "l. 51B47E-05

3.87"_'5 E+O0 I. 922_J,E-05

&. I0548E+DO 2.9"171E--05
_t_ 4.3527"SE'H_O 8.61649E--05

4.61491E',,.00 1.15292E-05

k'TJ &. 89L_6E *00 3. 02208E -06

S. 18"/'56E+00 8.99192E-06

5.50000E *00 1. 56709E-05
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FUZZY BO_DZNG ANALYSIS

FREQ-HZ NO_ PHASE

5.00000E-O1 -I. 7B114E+O0

5.3011._-.O1 -2._9S2[_0

5.62043E--01 -2. 39977E"00

5.95t_SE-O'I -2 B7397E+00

6.31785E-01 -3.551,_:,E+DO

6.69_37E -01 -6,. 59476E+00

7.10181E -01 -6. 39768E*00

7.52955E-01 -1,021_E+01

7.9_30&E -01 -2.30035E+01

8. _E-.01 -I. 211&lE+02

8.97363E-01 -1.63,C,02E+OZ

9.51411E-.01 -1.70Z_,_

1. OOB','IE÷O0 -1.72800E+02

1.06947E '.00 -1.74Gt, SE+02

I. 13_dBSE+DO -1.7&,6?'TE._.O_

I ._0_17E_00 -1.74917E+0_

1.Z?45BE+O0 -1.7/_06E*0_

1.35135E+00 -1.7_E "_

1.43Z?4E+O0 -I. 726_E+_.

I. 51903E+00 -1.67875 E'_.

1.61052E+00 -1.1636_E+0_

1.70752E*00 -1. _90E+01

1.810_E+O0 -5.5_393E+00

1.91940E*00 -3.5(_

2.03501E+00 -2.57B_Ee(X)

.15"/'57E+00 -2. O8576E'H30

2._5752E÷00 -I. BOB_E'+O0

2.4,Z530E+O0 -1.65695E+00

2.57137E'_00 -I. 591&6E_O

2.726_4E._0 -I.5939BE.H30

2.890+J.E+gO -I .660%E+00

3.06453E+00 -I. 80193E+00

3.249"11E÷O0 -2.04574E_]0

3.&_.80E+O0 -2._09_E+00

3. 6522.BE'_0 -3 .22Z77E_O

3.1S77.2.5E+DO -4. B8991E+O0

4.105,,_E'_O -1 ._35E_1

4.35275E*O0 -7.1BO_d_-'_01

4.61491E+DO -1. 49360E+02

&. B9286E+O0 -3 . 596,75E+0_

5. IE/'56E*O0 -8.14916E+00

5.50000E+00 -5.9_7E,'.00
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FUZZY BOUNDING ANALY$;$
i.d,

FREO-HZ _ DZSPL/FORCE
o,a
j 5.000CX:)E-01 4.58191E-05

='--' 5.30115E-01 4.862/,,6E-05

I_ 5.62043E-01 5.23166E-05

_ 6. 31785 E-'01 6. 45713E-05

_ 6.69B]7E"01 7. 56790E-05

_-_" 7. i0'181E"01 9. 477'76E-05
_'-'"
_. 7.52'955E-01 1. 34695E"0,4e,,_.

0 .e._ 7.9L_O4E.,.01 2.6217'9E-04
=

0 8. ,66386E-01 4.98326E.-O&

8.97363E.-01 1./,J,785 E.-04

_ _ 9.SI411E-_ 7.2_E--05
t'D 1. 00671E+00 4. 45616E-05

_.._ _, 1.00947E+00 2.96277E--05
I. 133,_E+00 2. O/.d.76E -05

(1>
_. "el I .ZO_17E.O0 "=._6_ SE-._
_-'0 _-_ 1.27458E+00 9.82_-06

_ 1.35135E,00 6.50380E-06

_" _ I. 1_3274E+00 3.927TZE-06
i.,.=•

I-_ 0 I • 519C_E*00 1 .88209E-06
I . 61052E+00 3.60102E.-07

= 1.70752E*00 1.27224E---06

_ 1.=no36E,oo z _9_,E-06
I_ _ I. 91940E+00 3.48370E-06=r'

_ 2.03501E+O0 4./*0487E-06

0 _ 2.157'57E+00 5.24367E-06
_ 2.28752E+00 6.02766E-06

I'_.. 'I__.. 2.42530E+00 6.78,_87E.-06
0_"

_" 2.57137E-,.00 7.53604£-06

_ _ _.r_ _._7_-_
_ 2.8_K2,44E*CX) 9.16,665E-06

I 0 3.06453E*00 I. 01386E--05

._,_ 3.24911E+O0 1.13232E-053. 44480E*00 1.28855E-05

[_ 3.65228E',00 1. 518L, TE-O5

t:_ 3. E_225 E*O0 1. 922L'CE-05

4.105/_E+00 2 94171E--05

'r •35275E+00 8.61(_r, gE-O <.
_'_ 4.61491E÷00 1.15292E--05

_'_ &. 89286E+00 3.02_-_ -o6

5.18756£',.00 B. 99192E-06

t';, 5. 50000E*O0 I. 56709E-05
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I-_ FUZZY E_tNDING ANkLYS]S

orca

("D FREQ-HZ NOI'I PHASE

5. O0000E -01 -I. _114E+0CI

J 5.301154E.-01 -2. 0491B2E*O0

5.62043E --01 -2.3997"7E+00

$. 95B95E--01 -2. B7397E+O0

  ,,6E.OO
_r_ 7. I0181E-01 .-6. ]9768E+00

=-+- 7, 52955E-01 -1._132E+01
=..=.

l_ .,_ 7.9_30,/,E--01 -2 . 30035E+.01

',_ 8._._6E.-m -1.a1141E+02
8.97363E-01 -1.6_d, O2E'_.

t._ 9,51411E-01 -1.7'0238E',(_

_) _'_ I. (X_T1E+O0 -I. 7'2BOOE+02
1.069&TE+O0 -I. 74._5 E'H_.

t_ 1.20217E.+00 -1.74917E+02
i,-i

I. Z745BE+O0 -I. 74806E+02

CO _ 1.3513SE.,+00 -1.7/_..2E+02

0 I. 4_7/.,E +'00 -I. 7"2683 E 'H_

_ I. 519(_E+00 -1. 67875E÷02
¢"a
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_. FUZZY BOUND|NG ANALYSIS

FIIEQ-HZ NOel DISPL/FORCE

5.00000E-01 4.58191E.-05
5.3(7'115E-01 /.,. 862._,6E -05

I_ 5. (5=-_Y_E --01 5.23166E--05

5.9¢a895E-01 5.7"35_E-05

I_ C_ 6.31785E-01 6. _,5713E-05

_ 6.69_'7E-01 7. 567gOE-05

('a _ 7.10"181E--01 9.4T?76E-05

t:_ _" 7.$2955E-01 I. 3,C,695E-04
t-,,. 0.-,
0 ¢"+ 7.9_304E--01 2. 62179E-0_

= "_ S.,_86E-Ol ,_9_a6E_

_-4 9.51411E-01 7.28272E-05

_1 _ 1.00671E,'-O0 4.65616E-05

1.0694.7E+00 2.96277E-051.13Z_E+O0 2. OLJ,76E-05

1.202'17E+00 I .&261,E-05

'_" _ 1.27458,.+00 9.87.T'_OE-06

_, 1.35135E,"00 6. 50380E-06
I_- _.,.

,... _ 1.4_/.E+O0 Z.927";'2E-06
= _"" 1.51903E+O0 1.88ZO9E-06

,_1 1.61052E+00 .3.601r_E-07

_. 0 1.7tTtS2E+O0 1.2722.4E-06

1 . BII:_6E+O0 2. _,9&6E--06

_ 1.9"1940E_'00 3 .4J_371:)E-06
or' f-v
I_ _ 2.03501E+00 4. 40487E-06

2.157'37E+00 5.24_67E--06

2.2r/S2E+O0 6.02766E-06

_"j '_ 2./,2530E,,00 6.78287E-06

_ 2.571£E+00 7.53(:_.E--06

_ 2.7"2624 E"-00 8.31767E-06
(1) 2. BgO,_E _00 9.16665E-06

3.06,t,53E*CO I. 013_E --05?o
3..tJ,..&_E+O0 1. 28855 E-05

I;_ 3.65ZZ'SE+O0 I. 51_7E-05
i-i

3.87225E'_0 1.9221,J,E -054.105_E+00 2.9_,171E-05
C'D

&. 35Z'/'SE+O0 8.616/,9E-05
(1

L61491E+O0 I. 15292E.-05

I_ /,. B9286E.H_O 3.02208E-06
[-I
I_ 5.1875_E,'-00 8.99192E-06

5.50000E+00 1.56709E-05
C'a
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FUZZY BOUNDXNG ANALYSX5

F REG-.-HZ NOR PHASE

5. O0000E-O'I -1 .TBI14E+O0

5.30115E-0"1 -2. o&gB2E÷O0

5.620,t,3E -0'1 -2.39977E+00

5.95_E.-01 -2.8"/'397E*00

6.317BSE-01 -3. 551/,6E_'DO

6.69_]7E-01 -._,. 59_76E+00

7.10181E-01 -6.39768E*00

7. SE95SE-01 -I. 02'132E+0"1

7.9_0&E-01 -2.30035E+01

8. &6._GE -01 -I. 21141E+02

8.97"_63E -0_ -1.6_(_E*02

9.51411E-"01 -1. 70238E*02

I. 00B71E+O0 -1.72800E+02

1.06_7E+00 -I. 7&O65E+02

1.133_BE+00 -1.74,677E.H_2

I. _(]_17E+00 -1.7A,9'I7E+OZ

I .Z7458E+CX) -1.7&ZIO6E+02

I .]5135E÷00 -I. 7/,222E+02

I. &]27&E+O0 -I. 7"26_3E+(_

1. 51903E*00 -I. 67875E+(_

1.61C)52E-'-00 -I. 16368E'H32

1.707_2E+00 -1.7._90E+0'1

1. B1ff36E+O0 -5. 54393E+00

1.91¢_r,0£+00 -3.5n'_99E÷O0

2.nx501E*O0 -2. ST'E_E+O0

2. '157'57E+00 -2,0_576E+00

2.2J_52E+O0 -I. BOB21E+O0

2. ¢25"_E_ -I. 656,95E+00

2.5"r'13"rE,_OO -1.591/,6E+00

2.72624E+00 -1.5939_E+00

2.890/#,E+00 -I. 66095E+00

3.06&53E+O0 -1.80'193E+00

3.2&911E_.O0 -2. OZ, S76E+CO

3./,,4480£ +00 -2./,609&E._X)

3.65Z2BE+O0 -3. 22277E*00

3 . ff'/'225 E+C30 -4. 8899'1E+(X)

&. 105/,.8E *00 -1. 02835E+01

4.35275E÷00 -7.18_JSE+01

&.6169"i E+O0 -1 . "_9360E+0_

/,,. B9286E'_O -3. 59675E+01

5. I B"/'¢'a6E ÷BO --B. 1 _,916E ",'00

$. 50000E_O0 -5. 91057E"_0
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FUZZY BOUNDING ANALYSIS

FREQ-HZ NO_ DZSPL/FORCE

5.00000E -.01 4. 58191E-05

S.30115E-01 4.86266E-.05

5. 620,_3E-.01 5.23166E--05

5.9589_E-01 5,73532E-05

6.3T785E-01 6. &$7'I3E-05

6.69637E-D1 7. 567'_0E.-05

7.10181E-'01 9.47776E-05

7. $2'955E-01 1. 34695E-04

7.9t53_E-01 2.62179E-04

8.46386E-01 4.98326E.-(_

B.9_E-01 1./d.785 E--O,_

9.5"1411E-01 7.28272E-05

1.0087_ E+O0 4.45610E--05

I. 069/.7E+(X) 2. 96277E-0_

1.13388E'_0 2. O/J,76E-05

'I. 2_217E÷00 I./,2615E-05

1.2745BE+00 9.82720E--06

1.35135E'100 6. 50380E-06

1.4._74E*00 3,92772E-06

I.51903E+00 I,882{]_ -.06

1.61052E+00 3.60102E-07

1.70752E+00 1. Z7224E-06

1.81036E+00 2./d.9_-06

1.919_E+00 3.4837'0E-06

2.a3501E+O0 4.40_87E-06

2.15757E÷00 5.243671E-06

2.28752E_0 6.02766E-.06

2.42530E+00 6.78287E-06

2.57137E+00 7.5"3;_E -06

2.72624E+00 B.31767E-.06

2.BgO_E+O0 9.16665E-06

3.06453E*00 1.013B6E-.05

3.24911E+O0 1.13232E-05

3.4,t,.480E+O0 1.28855E--05

3.657..2BE+00 1.51B47E--05

3.8"7225E+00 I. 92,?./,.4E-05

4.10S48E+00 2.9,C,171E-05

4.35;'75E÷00 8.61649E-05

4.6149'1E*00 1.15LX)2E-'05

4.89286E+00 3. OZ2OBE.-06

5. IBT$6E÷O0 8.99192E -06

5.50(XX)E+O0 I. 5.6709t-05
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FUZZY BOUNDING AHALYSIS

FRE'Q-HZ NO_ PHASE

5.00000£.-01 -1. TB11 _,E*O0

5.30115E-01 -2.04962E+DO

5.62043£.-01 -2.39977E4.00

5.9589_ E--01 -2.8?397E',00

6.31785E--01 -3.55146E*00

6.69B37E_l .-4.59476E+00

7.10181E_31 .-6.39768E+00

7.5L_55E_71 -I. OEI32E+01

7.gg30_E_l -2.30_5E_1

8. &638_E-01 -I. 21141E*02

B. 97363E.-01 -1.6-.x_O_E+02

9. 51411E'-01 -1.7_38E+(32

1.00BTIS+O0 -1.72BOOE+02

¶. 06947E_0 -1.74045E_]_

1.13388E_0 -I.7_67?E_E

1.20_17E+00 -I .74917E+02

1 .ET_SBE_O -1.74806E_

1.35135E+00 -1.7/,Z22E+OE

1.43Z74E+O0 -1.72683E+02

I. 51903E_0 -I. 6TSTSE_Z

I. 610_2E+00 -I. I _*02

I. "IO'_2E +OO -I. Z3390E_I

1.81036E+00 -5._393E_0

1.91_ -3.5_

2.0{3501 E_O -2. 571_00

2.157_7E+00 -2. OB576E_O

2.28752E+O0 -I .80BZIE+O0

2 ./,_5_OE+{X) -I . 6569_E,_10

2.5713?E_:X) -1.59146E+00

2. 72624E+DO -I . 5939_E+(30

2. B9044E*O0 -I. 66095E_0

3.06453E_10 °1 .BO193E+O0

3.24911 _ -2.0_574E+00

3._.80E+00 --2.4609/.E

3.65228E_0 -3.22277E+00

3. WY225E+O0 -1.. 889_ E+O0

4. I05./,,8E+00 -I. 02_5E+01

&.35_75E+O0 -7.18{_8E_1

4.61491E_30 -1.49360E_

4.89286E÷00 -3.59675E_

5.1_ -8.14_6E+00

5.50CX]OE _0 -5. 91057E_0
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Table 6-1. Number of S-Parameters Retained Above Error Threshold.

Frequency Error Threshold
(nz) 5__ 10% 15%

0.753 10 7 6

0.798 12 7 6

0.846 11 8 8

0.897 8 7 4

1.519 14" 10 9

1.611 15" 14' 11

1.707 21" 16" 12

4.105 11 8 7

4.353 10 9 7

4.615 16" 12 8

4.893 11 11 8

5.188 14" 11 7

*Note that in cases where more than 12 s-parameters were required to satisfy the given

threshold, the number actually used was limited to 12 to conserve run time.
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6.3 CSI Evolutionary Structure

The LaRC CSI Evolutionary Structure described in Reference [6-2] is the only

one of the three structures selected to demonstrate the PDAC methodology which is not

included in the present LSS database. However, it consists of truss beams and a rib

antenna, as shown in Figure 6-16, which clearly qualify it as a member of the genetic

category of large space structures. The suspension system is not soft enough to

approximate free-free modes, but this was not a requirement for the initial phase of

testing. In fact, the structure has six suspension modes ranging from 0.147 Hz to 0.874 Hz.

The first structural mode is 1.474 Hz. The first 43 modes of the structure and its

suspension system are listed in Table 6-2.

Reference [6-2] presents preliminary analysis and test data for the

CSI Evolutionary Structure, including analysis and test frequencies, analysis mode shapes

and measured frequency response functions. Frequency response functions from an

analytical model are also presented, however they do not seem to agree precisely with the

analytical frequencies and mode shapes. Discussions with LaRC personnel confirm the

possibility that in this preliminary report, the analytical models represented by the

frequencies and mode shapes, and the FRF plots may be different, one of them representing

a later version of the finite element model. This is of no consequence for purposes of the

present demonstration, since the models appear to be reasonably close and interval

prediction with either model should therefore suffice for comparison with the test data.

The analytical model used herein is the one represented by the frequencies and numerical

modal displacements contained in Tables 11 and 12 of [6-2].

A representative selection of four frequency response functions was made for

interval prediction and comparison with FRF data. The four functions include

Y-acceleration response at Coordinates 1, 3, 6 and 8 due to force input at Coordinate 1.

See Figure 6-16. The nine modes indicated by asterisks in Table 6-2 were selected to

represent the analytical model. These modes were chosen because of their contributions to

response at the selected locations. Interval predictions for FRF amplitude and phase were

computed over frequencies ranging from 1 to 6 Hz. As before, since FRF derivatives which

involve a modal summation are used in these computations, the number of modes included

in the model exceed the range of frequencies over which interval predictions are made.
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Table 6-2. Modal Frequencies and Damping for CSI

Evolutionary Structure

PDAC

Mode

1

2

3

4

5

6

7

Mode

No......._.
1

2

3*

4

5

6

7*

8

9*

10
11

12

13

14

15

16"

17"

18

19

20
21

22*

23

24

25

26

27

28*

29
30

31

32

33*

34

35

36

37

38

39

40

41

42
43

Test

Frequency
0.145

0.149
0.148

0.718

0.740

0.900

1.500
1.710

1.900

2.570

4.040

4.300

5.330

5.920

6.140

6.650

6.790

7.240
8.260

9.110

Test Analysis Analysis

Frequency Damping
0.147 5.7

0.149 7.5

0.155 7.5

1.5 0.730 0.7

1.2 0.748 0.7

0.6 0.874 0.2

0.4 1.474 0.2

0.7 1.738 0.3

0.5 1.883 0.3

2.301 0.1

2.535 0.1

2.1 2.839 O. 1
3.419 0.1

3.486 0.1

3.587 0.1

0.4 4.015 0.1

0.9 4.032 0.1

4.206 0.1

4.392 0.1

5.029 0.1

5.034 0.1

0.7 5.501 O. 1

1.1

0.3 6.180 0.1
6.231 0.i

6.471 0.1

6.670 0.1

0.3

0.2

0.6

0.3

0.2

7.372 0.1

8.293 O. 1

8.409 0.1

8.456 0.1
8.824 0.1

8.926 0.1

8.966 0.1

9.235 0.1

9.527 0.1

9.901 0.1

12.486 0.1

13.615 0.1

14.315 0.1

14.718 0.1

15.886 0.1

16.853 0.1

16.993 0.1

PDAC Mode

Descri tig!Lg..q

Suspension

1st Twist/lst Bending

1st Bending/lst Twist

2rid Bending

2rid Bending

1st Vertical

Refl Twist/Truss Bend

3rd Bending

Truss End LOC Bend

6-33





METHODS FOR EVALUATING THE PREDICTIVE ACCURACY OF STRUCTURAL

DYNAMIC MODELS

PART 3



dr



Figures 6-17 through 6-20 show measured FRF amplitude and phase plots at

the four locations previously identified. The dashed lines represent an analytical model,

but as discussed above, it is apparently different from the one used here.

Figures 6-21 through 6-24 show the analytical FRF amplitude and phase

intervals computed by PDAC as well as the nominal response. Measured FRF amplitude

from Figures 6-17 through 6-20 have been replotted in Figures 6-21 through 6-24 for

purposes of direct comparison. These comparisons again show quite good agreement, with

measured response falling within the * ia intervals for the most part. The most obvious

difference between predicted and measured response occurs near the frequency of 2.7 tIz

where the test FRF's exhibit a mode not present in the analytical model. This mode shows

up at Coordinates 3 and 6 and very weakly at Coordinate 1 (Figure 6-17). At Location 8

the amplitude is apparently too low to be accurately measured. The rest of the frequency

range between 1 and 6 Hz appears to match the data reasonably well.

Phase was not plotted again because the resolution of the plots was inadequate.

Nevertheless, there are some notable differences, for example at Coordinate 3 near 1.6 Hz

where measured phase jumps from -1800 to + 180 °, while the predicted phase interval

remains below 0 °. This type of situation suggests the possibility that an analytical mode is

missing. From approximately 2.0 to 2.7 Hz and from 2.9 to 4.0 Hz the measured phase is

1800 while the predicted phase is -180 °. In a sense, the two are equivalent because of the

wrap-around feature of the plots. The omission of weakly participative analytical modes

could conceivably cause this type of difference. On the other hand, the fact that measured

FRF amplitude is small in this range lowers the accuracy of phase measurements.

Since analytical response computations, point predictions (nominal response) as

well as interval predictions, both involve modal summations, a sensitivity study was made

to investigate the effect of modal truncation on predicted response. Response at

Coordinate i due to force at the same coordinate was selected for this purpose. Both

FRF amplitude and phase response were computed over the frequency range of 1.0 to 2.5

Hz, including the first three modes, for solution based on 9, 7, 5 and 3 modes. The results

are shown in Figures 6-25 through 6-28, respectively. These figures show that both the

nominal and interval response predictions are nearly the same in all four cases, indicating

low sensitivity to modal truncation.
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Figure 6-25a. Sensitivity of Predictive Accuracy to Modal Truncation,
CSI Evolutionary Structure, FRF Amplitude,
9-Mode Solution.
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CSI Evolutionary Structure, FRF Amplitude,
7-Mode Solution.
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Figure 6-28b. Sensitivity of Predictive Accuracy to Modal Truncation,
CSI Evolutionary Structure, FRF Phase,
3-Mode Solution.

6--54





6.4 Ten Bay Truss

Model verification has two goals: (1) to compare model predictions with

appropriate test data and adjust the model so that it agrees with the data as closely as

possible; and (2) to improve the predictive accuracy of the model so that it may be used

with greater confidence in future applications. The words "appropriate" and "improve" are

underscored to make the point that a model can be adjusted to match certain data without

improving the model from the standpoint of its predictive accuracy. For example, the

model might be tuned to match data in one range of frequencies and in the process become

distorted so that it matches less well at other frequencies. Or it may be tuned to better

match data at certain locations at the expense of matching less well at other locations. Or

it may be tuned to match frequencies, only to find that it does not match mode shapes as

well. A model should be verified for a specific use and its predictive accuracy quantified fo..._.r

that use.

When Bayesian parameter estimation is used in model verification, a covariance

matrix of the parameter estimates is obtained. This covariance matrix provides a measure

of confidence in the mean. It can be propagated forward to obtain uncertainty intervals on

response, but these intervals reflect confidence in the estimated mean response; they do not

reflect the degree of variation between the estimated mean response and the data, i.e. the

sample covariance. The only way to obtain a sample covariance for a particular structure

would be to have an ensemble of models to compare with test results (assuming the test

results are repeatable). Since this is not possible, uncertainty intervals obtained from a

generic database involving similar but different structures offers the best alternative.

In order to fully demonstrate Bayesian estimation with uncertainty intervals on

both pretest and posttest response predictions, the following information is required:

1. A pretest analytical model of the structure;

2. Appropriate test data for that structure;

3. A pretest model uncertainty database; and

4. A posttest model uncertainty database.

The first three of these items were available for the LaRC Ten Bay Truss shown

in Figure 2-2. The given analytical model is treated as a pretest model and the LSS

research model uncertainty database is treated as a pretest model database for purposes of
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demonstration. This treatment is consistent with the data since the analyt,_.d frequencies

and mode shapes of this model were used in compiling the model uncertainty database. It

is therefore appropriate to use the LSS uncertainty database to determine the predictive

accuracy of the given model. This model can then be tuned to match available data and

the nominal response of the tuned model compared with the original model and its

predictive accuracy, as represented by uncertainty intervals on FRF amplitude and phase.

FRF data were not available to use in parameter estimation, so frequency and

mode shape data were used instead. Nevertheless, FRF plots are obtained for both the

original model and the refined model. The model refinement is reported in Reference [6-3],

and included in Appendix B of this report. Figure 6-29 shows the nominal response of the

original (given) model with uncertainty intervals based on the LSS database. The revised

nominal response after tuning the model is shown by the dashed lines. Dashed lines are

used instead of solid fines so that they will not be confused with actual test data which are

plotted with solid fines in earlier plots.

Figure 6-30 shows the nominal response with uncertainty intervals in the

out---of-plane direction. The nominal response is as one would expect, but the uncertainty

intervals in the neighborhood of the primary bending modes are very large. In an attempt

to avoid potential numerical problems with closely spaced modes, a minimum frequency

separation of one half of one percent is arbitrarily enforced between close modes. To

determine whether the closely spaced modes were causing the large uncertainty intervals,

this frequency separator was increased to two percent. The results are shown in Figures

6-31 and 6-32 for both response directions.

This study shows that frequency separation does indeed have a major effect on

out---of-plane response. Large uncertainty was expected near resonance, but not at

frequencies well below resonance. A Monte Carlo run was therefore made to check the

results obtained by linear covariance propagation. Distribution functions of FRF

amplitude and phase were generated for frequencies of 10 Hz and 15 Hz. These distribu-

tions are presented in Figures 33 and 34 for the nominal case where frequency separation

between modes was again set at a minimum of 0.5°£.

The numerical simulation tends to confirm the results obtained by linear

covariance propagation, in the sense that the intervals of uncertainty are indeed large.

What is apparently happening here is that mass and stiffness uncertainties are causing
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FtEQ-NZ NON PUS[

1.00000(*01 - 1.9266S(*00

1.0S09_;,01 "2.12871E*00

I. 10650(*01 -2.37115E_00

1.16078(o01 - 2.6671_E-00

1. Z199"_*01 -3.03982E*00

1.;_2.09E*01 - 3. $2063E*00

1.3&Tt,2E ,.01 -&. 1671¢1E*00

1.&1607E,.01 - S. 0839_E*00

1.L88Z_*O| -6. _663E_00

1.S6406E*01 - 8.89877E*00

1.6&373E*O 1 -I .39661E'-01

1.7"Z'/31E ",'01 "3.053891E*01

1o81553_E*'0| - I. Z_r941£*-02

1.90_Y.E*01 -1.61591£*_?.

2.0052_01 - 1.69_0E*02

2. I07/,_+01 "1.72&liE*02

2.21¢821E*01 -1.76122E'_02

2.32767E-"01 -1.73189£4"02

2.U,_27E*01 -I. 75915E*02

2.5709_*01 - 1.7_37E*02

2.70192E*01 -1.76827E_02

2._959E*01 -1.77_ _E,_?.

2.9e42_*01 - 1.77354[*02

3.1363_*01 -1.7_29E*02

3.29615£_-01 - 1.77658E*02

3.46t, lOE_01 -1. TrTU._., 02

3.6/.06iE*01 -1.77T37E.,-02

3.II2611E*01 - 1. Tr778E*02

&.O;_IOTE*01 -1. T/70_*02

&.2259_*01 - 1.77516E402

_. k,f,129£+01 "1. T/'I/,J,[_02

&.&6739_*01 - 1.763671_*02

&.9054ZE_01 -1.7tdd.OE *02

5.155371["01 - I._,_512£*02

5.41_05E*01 -3._29_*01

5.694121E*01 - 1.2_20¢E*01

5.91_26_*01 * 1.38rOSE*01

6.2891_*01 -9.$4671Eo01

6.6096_E*01 - 1.70126_*02

6.94_ZE,01 * 1.73989£*02

7.300"_71E*01 "1.73¢25E', 02

7.67_$E*01 -1.631661[-02

8.0_29E_0 _ -I .66120E-01

8.47414E*01 -8.0_719E+00

8.90593E*01 - 1.01555£',01

9.35973_-01 * 1.113701E*02

9.8366_,E '*01 - 1.7371_1E*02

1.0.]37_E.02 - 1.7700_E.02

1. C_>/,6_E*02 - 1.71_22E-02

1.1&lB2E*02 - _. 7'_B_ o02

1.200001E,02 • 1.7_7"3a.E-02
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FUZZY BOUNO%NG A_ALV[:$

FREQ-HZ _K_ DISeL/FOeCE

I, I]IZ]OOE *01 9.2Tt_i,E -OJJ

I. I0,_,50E÷Crl I. 0131_-0,t.

I. 1_'Z'SE-01 I. 080/.IE_

1.21993E _01 I. 17669_ -0,/.

1.28209E*01 1.32137E-.Oa,

1. ],/.Tt,,,?,E*01 1.55_E-O/.,

I. 416GTE+01 I. 95051E -O,/,,

1. ,_8_ E","01 _.. 7158,2E .-{_

1.56/,,06E-01 _,.1.5080E-OJ.

1.6_375E*01 9.7'35_E .-G/.

1.727'51E,,0_ 4.08351E-.03

1.81553E*'01 1. 50188.E -.02

I,9OSCV,E+01 1.597'15E-03

2.00526E+01 S. 2.3,(,05E-0/.

2. lOT/,,4E+Oq 2._-04

2.21/,,82E,_01 1. 68585(--0/.

2.3¢_'67E',01 1. 26191E-0_

2. M-6,ZTE _'01 I. 05581E.-0,/.

2.57092E+.01 9.518_E-05

2.70'1'192E *01 9.0015:_'-05

2.83959E*01 8.77574E-05

2.9_4,2_E+01 8.7276BE--0_

3.1363_,E','01 8.8015./.E--05

3.2'9615 E*,01 8.971ZTE -05

3./,,6_10E'_01 9.22BO3E-.05

3.6,4t_1E'N)I 9. 57478E-.05

3 •8.?.611E'*01 I. 002/._.-0,_

4. r_lO7E+_l I. 060Z'9E-(_

4.7._96E_I I. 1350_E-04

4./d,l_E,,01 1. ?..3352E-04

4.667_9E'_1 1. _67'1_E -OL.

,r,,.905._,E ÷01 1.556671E -_.

5.15537E'_1 I. 8a,371E.-04

$.41805E.,,01 2.32525E-0/.

S. 69/.12E*01 3. Lx71(]3E-04

5.96,_5E÷01 6.157'771E -O,t,,

6.28918E*(_1 3.14123E-(]3

6. 6096_E÷01 5.2E3L_E -04

6.9_,6.,_.E *01 2. 50707E-06

7.672.35 E÷01 I. 069_0£ -Gt,

8.06329£÷01 7.6,_86,E -0_

8.47_,1&E.*.01 5.197B_-0_

B. 90_93E".01 I. 0,_97'E -05

9.35973E*01 1. _._771E -03

9.8.._X_, £ _01 I. 22781£-05

1.0337'9E -02 I,8..,-_4E...05

I. O_E*G2 1. 6532_E-0_

1. "l_1_7E", _. 1.32'" 90E-05

1 ._O00E. 0,2 9.81_I£-.06
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FREQ-HZ NOR P_ASE

1. (_C_IOE +O1 -1.9_2E oO'1

I. 0SO9_E,+O1 -2.2Z'9_z3E*O1

I. IO,;SOE *'01 -2. $1686E*01

'I. 160'78E+0'I -2.86,292E .'O1

'1. Z199'3E,_O1 -3.2B.2OIE+,O1

1.2B209E+01 -3. 79025E*01

I +3&742E*01 -4.. I.OZ,,28E+01

I. 4't _E+01 -5.13gO, i.E+01

1._E+01 -6.00?77E+.01

1..TW>t,O6E ._3"1 -7.05813E.*.01

1.64.37S E+01 4.49560(+01

1. T275 IE+0'I -I. 177+.,2E"02

1.81553E*01 4.28571E*01

1.908_E+01 -3.4C_33E+01

2. _26E.*.01 -4. LCl c;_r,E,_-I

2. I07_.Z.E,.01 -,r,.3?!rMlE.*01

2 ._ 1,82.E+01 -3.8';'_IE+01

2. _'67'E+01 -3._9_5E+01

2. U,,627E,,.O'I -,?.. $5021E+.01

2.5";/_Q_ E+O'I -I. 98S2BE +_

2.70192E+01 -1.5_'E ,,.01

2.83959E4_1 -I. 19223E+01

2.196_8E+0"1 -9.32S,',9E+00

3.13_3,_.E+0"1 -7. _'381E+CO

3.2'%15E..,,01 -5.907"18E*00

3.1,,6,t,I 0 E._01 .-_. BOS_E+00

x. 6/,061 E+O'[ -3.96128E+00

3.11261 '1E+01 -3.37269E+00

&. 02"I07E*01 -2. 936_9E*00

4.22596E+'01 -2.6&_T'_+O0

4. 'c'r129E'_01 -2. ,_8737E'vO0

&. 90542E+01 -P. 5QOZ._E.,'O0

S. 1553"7E._01 -2.91978E_0

S./,,1B05 E*01 -3. 67739E'_00

5.69_12E+01 -5. _Y?'I 5E,'O0

5.96_6E+0'1 -I. 050B9E+01

6.2t191BE',.01 -9. 37256E+0"1

6. 609_E _0"1 -1. 69452E_2

6.9,_,2E ÷0'I -1.7,',d,9_'E *0_.

7. _C_7E ',01 -1. 7619'1E"02

7.67'23S E'_01 -I. 7'70_E _2.

B. 06329E <-01 -1.7'7'$73E ',02

8. &741LE,_01 -1.7'?'7"28E +O2

B. 90'_'9_ E,_'1 -1. LTOOBE"02

9.35973E._01 I.&3858E+02

9. B366z. E+C_ I, 237_'9E +0,?.

I. 0337'9E _. 1.76_9E*0_

1 066/.6E,,02 '1 "F)660E ",02

I. 141B,2(*02 -1. 791";'2E+0_

1.2C000E-02 -1. 78338E +02
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FUZZY EIOUNDZNG ANALYSZ$

FItEO-HZ NOR DI$PL/FORCE

I .O0000E+01 3. B22B6E'-03

1.05095E*01 4.00371£--03

1.10450E*01 &. 22520E--03

1.16078E*01 4. 50118£-.03

I. 21993E*'01 4,8526_E.-03

I. ZI_OglE*01 5.31267£-03

1.347_7.E*01 5.93713E-03

1.41607E*01 6. B4?,760E-03

I./.8823E+01 8.1902.4E-03

I. ,_,/_6E+01 1.05143E-02

1.64375E*01 1 .$2843E-02

I. 7Z'/51E+01 2.9137_E-02

1 .E'I553E_01 5.0_92£--0_

1.9_O&E+O_ 1.92155E-02

2.00S26,1E+01 1.01140E-0_

2.10744E*01 6.59286E-03

2.Z14_E+01 4.73585£--03

2.3Z_67E',01 3.59/_E-03

2. &_271E_l 2. B_459E-03

2.57D9_E_01 2.ZT"Z_E-(_

2.70192E+01 I. 85915E-0_

2.E_959E_l 1.5_76E-0_

2.96_28E+01 I. 28400E-03

3.136.3&E_01 1.07710E-03

3.L_61SC-H_I 9.06057E-O&

3.4,6410E+01 7.6_41BE-,04

3.6/,,061E+01 6./,OOZE-04

3._511E+01 5 ._61E-04

4.0_107E,_01 4. 41443E-04

4.Z2596E+01 3.585&6E-04

4.4,41L_AE,_01 2.82832E-04

4.66759E',_1 2.11521E-04

4.905._.E'_1 I. 41273E-04

5.15537E_01 6. 74749£--05

5.41_0SE*01 3.13303E-.05

5.6961_E_01 1.6_9E -0_

5.9_426E÷01 4.8"T713E--O_

6. zBg'lBE*01 3.16859E-03

6.6_6d.E+01 5. 97545E-0/.

6. W,6_E*01 2. B&399E-O_

7.30037£*01 1.50_93E-04

7.67_5E+01 5. 66747E-05

8.06329£ *01 4.15093E-0_

8.47&14E*01 I. 721EO£-O&

8. 90593E*01 4. 87819£-04

9.35973E*01 1. 79309E-03

9.8._6_E*01 B. 256_E-0/,

I ._E-_ 2,72356E-04

1.14182E-0_ 2, C2924E-04

1.20000_* 02 1,584/.9_-04
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FUZZY BOUNDZh_ ANALYS|_

FEEQ-HZ NO_q PHASE

1. CX3OOOE _'I -1,92758E _0

1. 05095E*01 -2.12959E,.00

I. 10,ASOE4.01 -2. 37193E ,'00

1.1607'8E*01 -2.66_5E*00

1.2'1993E+01 -3. O&OI6E +-00

1,2_,09E4.01 -3.5_2E*00

1.347_E*01 -4.16631E+00

1,41607E_1 -5.08197E÷00

1.4/_SZ3E4.01 -6. 48267E +00

1.56/,06E+01 -B. B917_E•O0

1.66375E+01 -I. 39774E+01

1.727_1E_01 -3.05855E4.-01

1.81553E*0'1 -1. OGr,,SS E_32

1.908_E+01 -1.60_,I E+'02

2.(_526E*01 -1. 6910,t, E,_?.

2. 107_,.E'.01 -1.7'2352E4.(_

2.2'I 4,82E4..01 -I. 7/.090E4.02

2.3Z767E_l -1. 75170E'_2

2. &4#_E _I -1. 759_.E4._.

2. 57092E*01 -1. 76428E'_32

2. "rOI92E+01 -1.76821E',02

2. B3959E+01 -I .77120£+02

2.98428E+01 -1.7'7"_51E*'02

3.1_4E_ -I. 7"752BE*02

3.29615E+01 -I. 77658E*C_?.

3.46410E.H:]1 -I. 77746E+02

3.64061E+01 -1.77791E+02

3.B2611E+01 -1.7778_E+02

4. r_lOTE'_01 -I. 77710E+(_

4.22_96E'_31 -1.77_31E4.02

4.441ZgE*O'_ -1. T?169E'_,_.

4.667'S9E*01 -1.76413E+02

4.9(35_.E'_31 -I. 74551E4.02

5.15537E÷0_ -1. 67090E+02

5.41BOSE*01 -3. %14_E4.01

$.69_12E*01 -1.25_,_3E_01

5._6E+01 -I .39015E*01

6.28918E÷01 -9.55382E','01

6.6.096.&E _01 -1. 70214E*02

6. 94642E+01 -1. 74147E4"0_,

7+ 30037E+01 -1 +7'3857E+02

7.67'235E ÷01 -I. (:,&609E+02

8. 063_9E÷01 -2.10256E+01

8. 47414E÷01 -8. 265/,,8E ÷00

8. 90593E*0_ -9. _,Z,37?E*00

9.35973E*0_ -9.85827E*01

9. 836_E+01 -1. 71665E*G2

1 .I_37<_ *02 -I. 76_:,_ l *02

I. 08,6_E+02 -t. 77878E*0_

1.1/.1 _.E',.02 - 1.78,/,17E*02

I. 20000E*02 -1. 78696_*C_
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coupling between the first two bending modes because of the closely spaced frequencies.

Whether or not this coupling is real or the result of inaccuracies in the uncertainty

database is not known at this time. The numerical simulation appears to rule out the

possibility of a numerical problem in the uncertainty propagation. It does not, however,

rule out the possibility that small random variations in the database might cause this type

of coupling when the frequencies of two modes axe very close. One thing the study points

out is that small asymmetries or eccentricities in the mass or stiffness properties of a

structure with closely spaced modes may couple the modes in ways which are not expected.

Further study of this phenomenon is warranted.
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7. CONCLUSIONS AND RECOMMENDATIONS

The primary goal of this research has been to develop a practical tool for

evaluating the predictive accuracy of structural dynamic models. The emphasis on

practicality means that the tool must produce meaningful results, based on real data. It

also implies that these data should be readily available and preferably incorporated as part

of the tool. This goal has been accomplished. That is not to say that the tool is foolproof.

While numerous sensitivity studies and varied practical applications have demonstrated

the viability of the tool, much more remains to be done before a full appreciation of its

capabilities and limitations can be realized. This appreciation will come only through use.

As with any new tool, skillful application and refinement of the tool go hand in hand.

Conversely, it is fair to say that if a tool is not used, it must relinquish its claim to

practicality.

• The following sections are intended to bring a sense of closure to the project and

to establish a benchmark reference for future work, whether that work be in the nature of

practical application or further research. To this end the next three sections are ordered

according to the maturity of the technologies they address: Section 7.1 addresses the

technology incorporated in the Predictive Accuracy code, PDAC. Section 7.2 addresses the

estimation of a full modal damping matrix from measured complex modes. Section 7.3

addresses other research efforts which were eventually abandoned in favor of more fruitful

endeavors. That is not to say that these efforts were not worthwhile, or that future efforts

in pursuit of the same objectives would not be fruitful. Lessons were learned in the process

which should benefit future research.

Finally, this chapter concludes with several recommendations. The recommen-

dations extend the thinking of the project team beyond that which may be concluded from

the work accomplished to date, and are offered as suggestions to those who may continue

research in this area.

7.1 PDAC Methodology

Methods have been developed, implemented and demonstrated for evaluating

the predictive accuracy of structural dynamic models. Primary implementation of the

methods is embodied in the computer code, PDAC, an acronym for PreDictive ACcuracy.
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Together, the methods comprise a methodology for "interval prediction", a capability

which augmentsthe "point prediction" of conventional structural dynamic analysis. The

following subsectionspresentthe major conclusionsdrawn from eachstageof this research
effort.

7.1.1 Development

There are three major parts to the PDAC methodology: (1) the characteriza-

tion of mass and stiffness uncertainty, (2) the characterization of damping uncertainty, and

(3) the propagation of these uncertainties through the model to obtain response uncertainty

in the form of response intervals.

Mass and stiffness uncertainty is cast in the form of a covariance matrix of

modal mass and normalized modal stiffness matrix elements, derived from differences

between predicted and measured eigenvalues and eigenvectors. The latter were expressed

in terms of the modal cross---orthogonality matrix. This formulation has proven to be

effective as a basis for computing frequency response intervals.

Whereas mass and stiffness uncertainty can be derived from prior analysis and

test experience on generically similar structures, damping uncertainty must be treated

differently because as yet there is no way to predict structural damping in general.

Instead, damping must be determined experimentally, and damping uncertainty therefore

must be expressed in terms of the variability among damping measurements or estimates.

Although considerable effort was devoted to estimating a full modal damping matrix from

experimentally derived complex modes, and this effort appears to have been successful,

PDAC presently assumes that the modal damping matrix is diagonal. The use of a full

modal damping matrix is beyond the current state--<)f-the-practice in structural dynamic

analysis, and there were insufficient data available to construct a meaningful database.

Uncertainty propagation through a model proved to be the most difficult part of

the methodology development. Phase I showed that linear covariance propagation could be

used effectively away from poles and zeros, and that a fuzzy set approach involving the use

of possibility intervals ought to provide meaningful results near poles and zeros. The

practicality of the latter approach depends on whether frequency response near the poles

and zeros can be approximated with only a few modal parameters. If so, the Vertex
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Method provides an efficient means of bounding response in the vicinity of these

frequencies. When the response surface includes maxima or minima internal to the

rectangular hyperspace defined by the parameter intervals, special techniques must be used

to evaluate the included maxima and minima. Random search and constrained

optimization techniques were the most successful.

Use of the random search technique led to the use of numerical simulation as a

means of estimating the distribution of response at a given frequency. This provided a

third way of characterizing response uncertainty. At the outset it was thought that

numerical simulation would be too costly because of the number of samples required to

define a distribution for a multivariate system. This remains true in general. However, as

an auxiliary method, numerical simulation can be quite valuable. It provides insight to the

distribution of response that neither of the two interval methods offer. It too benefits from

parameter truncation near the poles and zeros.

Perhaps the least obvious part of the methodology is the selection of parameter

truncation thresholds. A clustering method is discussed in Section 4.2.2.1, and sensitivity

analyses are presented in Section 6.2. Although this clustering method makes use of the

derivatives, some of which become very large near the poles and zeros, it is the smaller

(well-behaved) derivatives which control the clustering. The fact that some of the

derivatives may be very large is of no consequence; they are simply used to identify the

parameters which should be retained in the truncation.

7.1.2 Implement ation

The foregoing methodology for FRF interval prediction is implemented in

PDAC. One of the run options in an existing structural system identification code, SSID,

was modified to incorporate PDAC. The combined code, SSID/PDAC, offers the

capability to compute FRF amplitude and phase with uncertainty intervals on either

pretest or posttest models. That is, predictive accuracy can be evaluated either before or

after a model has been tuned to match experimental data.

SSID/PDAC is exceptionally easy to run in the PDAC mode. It requires no

test data, and requires no modeling data other than modal frequencies and corresponding

modal displacements at input/output locations. Mass and stiffness uncertainty databases
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are stored internally and are selected by specifying the desired option. Current database

options include:

• Large Space Structure (LSS) Research Models;

• Conventional Space Structures (CSS) Pretest Models;

• Conventional Space Structures (CSS) Posttest Models; and

• A Combined Database (including all of the first three).

At the present time, nine modes of data are available in each database, resulting in modal

mass and normalized modal stiffness covariance matrices of dimension 90 x 90. In general,

the dimension of this matrix will be n2 + n, where n is the number of modes included. For

a database including 30 modes, the covariance matrix would be of dimension 930 x 930.

The present databases are designed to be updated as more data become

available. A summary of the currently available data is given in Tables 2-1 and 2-3 which

hst seven structures in the LSS database, and seven and eight structures, respectively in

the CSS Pretest and Posttest databases. A continuing effort will be made to expand these

databases during Phase III. Four additional structures have been identified for both the

CSS Pretest and Posttest databases as of this writing.

7.1.3 DemonstratiQn

PDAC has been demonstrated by application to three real structures for which

both analysis and test data were available. In two of the three cases, the NASA

Mini-mast and CSI Evolutionary Structures, measured FRF amplitude and phase data

were available to compare with uncertainty intervals based on analytical frequencies and

mode shapes, measured damping values, and the LSS database. The analyses span the first

three modes of the Mini-mast Structure and the first seven modes of the CSI Evolutionary

Structure, although in view of the modal sensitivity analysis performed on the latter, the

analyses might have been extended to include five modes and nine modes, respectively. As

it was, measured FRF amplitude and phase tended to fall within the * one--sigma

uncertainty intervals for the most part. One notable difference between the two cases is

that the CSI Evolutionary Structure is not included in the LSS database, demonstrating

that uncertainty data from generically similar structures can be used to effectively evaluate

the predictive accuracy of other structures belonging to the same generic family.
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A different capability was demonstrated with the Ten Bay Truss. In this case,

FRF data were not available, but both analysis and test frequencies and mode shapes were

available. The test frequencies and mode shapes were used to tune the original model using

the parameter estimation capability of SSID. FRF plots were generated for both the

original and revised models. Uncertainty intervals generated for the original model were

shown to enclose the FRF amplitude and phase of the revised model.

Numerous sensitivity studies were conducted to test the validity of PDAC

interval predictions. Different databases were run with the same model to examine the

sensitivity of interval predictions to different databases. This study showed that while

different databases can produce significantly different results at certain frequencies, the

model itself tends to dominate the envelope of uncertainty as a function of frequency. One

of the questions often raised about the validity of the method is whether the results are

meaningful, considering the fact that different kinds of modes with inherently different

characteristics tend to be averaged together in the statistical processing of the data. This

question might be explored, for example, by creating a special database of structures within

a very narrow generic classification (such as cantilevered truss beams) where the modes

tend to have similar characteristics (e.g. a pair of bending modes followed by a twist mode

followed by another pair of bending modes, etc.). Then interval prediction using this

database could be compared with those using less homogeneous databases such as the ones

developed here. Unfortunately, the present database does not support such a study because

it does not contain a sufficient number of structures of any one type. However, the feeling

is that because of all of the averaging (i.e. summing) taking place in the analysis,

differences tend to be smoothed over so that the end results are indeed meaningful. It is

worth noting the various summing operations which occur.

.

o

o

,

For any given structure, summing occurs when computing the
cross---orthogonality coefficients, i.e. mode shape differences are integrated over
the structure.

Opposing off-diagonal terms in the cross---orthogonality matrix are summed to
obtain the differences in modal mass and stiffness.

Modal mass and stiffness differences are summed over a number of structures

when computing the modal mass and stiffness covariance matrices.

Modal contributions to response uncertainty are summed when transforming
response from modal coordinates to physical coordinates.
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In short, the summationsoccur over the spatial geometry of each structure in the database

for each structural mode, over the ensemble of structures in the database, and over a range

of frequencies for the particular structure being analyzed.

Other sensitivity analyses examined the sensitivity of computed response

intervals to parameter truncation and modal truncation, and found the sensitivity to be

small in the limited number of cases studied.

7.2 Estimation of a Full Modal Damping Matrix

Research conducted nearly twenty years ago produced a method for estimating

a full modal damping matrix from experimentally derived complex modes. Practical

application of the method was of limited success because of difficulties inherent in the use

of analog data acquisition and processing techniques. Yet, the full modal damping matrix

is known to be useful in the synthesis of structural damping from substructure tests, and

could be useful in identifying the source of damping by location and damping mechanism.

This could open the door to pretest damping prediction, finding application in the

prediction of on---orbit damping.

The earlier research was extended under this project to make use of available

digital data acquisition and processing technology. Refinements to the earlier technology

include a method for removing bias-type errors from the digitally processed complex

modes, methods for orthogonalizing the complex modes, and a method for updating the

mass matrix used in the computation of a full modal damping matrix.

The refined methodology was applied to two real structures for which

experimentally derived digitally processed complex modes were available: the NASA

Mini-mast Structure and Ten Bay Truss. Estimates of the modal damping matrix in each

case based on multiple realizations of the complex modes by the ERA method showed good

repeatability provided that consistent mode sets were used, i.e. where all modes were

derived from the same realization. Mode sets constructed from different re_zations

produced much poorer results in terms of repeatability, i.e. uncertainties in the estimates

were greater by an order of magnitude.

7--6





Another interesting observation was that the consistent mode sets in the case of

the Mini-mast Structure yielded a much lower estimate of damping in the first mode, i.e.

0.59% compared with 1.94% derived from the constructed mode sets.. Frequency response

plots appear to confirm the lower estimate, although the resolution is not good enough to

be certain.

While the results of this effort are clearly encouraging, it would be premature to

draw any strong conclusions on the basis of the limited data processed so far. Nevertheless,

the positive results which have been achieved provide sound justification for testing the

methodology in future applications.

7.3 Other l_scarch Efforts

Several avenues of research were pursued which did not prove to be as fruitful.

Even so, lessons were learned which are worth reporting. This section is included to report

those findings.

An attempt was made to construct a simple knowledge based system (KBS) to

facilitate model verification planning and execution. Several attempts were made to

generate a rule base to operate on a given set of factual information so as to produce

meaningful, nontrivial results. This effort was abandoned when it was realized how much

effort would be required to produce a meanin_ul KBS, even for purposes of illustration. It

was furthermore concluded that the knowledge available to build into such a KBS is

presently inadequate. More practical experience with currently available model

verification software like SSID is required before an adequate knowledge base can be

formulated.

Another attempt was made to generate a KBS for purposes of pretest damping

prediction. The first step was to try to estimate the distribution of damping in a structure

by type of damping. Damping proportional to localized mass and stiffness submatrices was

the assumed model. Attempts to estimate the distribution of damping in the Ten Bay

Truss based on a 5 x 5 modal damping matrix were unsuccessful because of an inadequate

database. Although only 10 parameters (5 mass proportionality constants and 5 stiffness

proportionality constants) were being estimated from 15 modal damping matrix elements,

only five independent estimates of the 5 x 5 modal damping matrix were available. This

resulted in the 15 x 15 covariance matrix of modal damping matrix elements having a rank
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of only 5. In essence, 10 parameters were being estimated from 5 pieces of information.

The individual estimates were therefore meaningless. Failure to successfully complete this

first step meant that the task could be pursued no further. Additional data were not

available to compute additional modal damping matrices so the effort was abandoned.

Fuzzy clustering was one of the methods investigated for truncating parameters.

While the method showed initial promise, it proved to be too difficult to use. The

clustering depended on too many variables, including the number and type of features

defined for each parameter, the number of dusters into which the parameters would be

grouped, and the membership level which ultimately determines the truncation threshold.

In retrospect, this was probably not an application well suited to fuzzy clustering. The

simpler method described in Section 4.2.2.1 is more understandable and the threshold

relates directly to truncation error.

7.4 Recommendations

As stated in the opening paragraph of the Chapter, the utility of the predictive

accuracy tool developed under this project will not be realized until it is used. The first

recommendation therefore is to install and use the SSID/PDAC code. Although the

documentation is imposing, simple demonstration problems are provided to guide the

prospective user so that he or she can be making successful runs within a few hours once

the code is installed.

As the code receives broader usage, it is likely that needs will arise for

capabihties which the present version of the code does not offer. Some possibilities which

come to mind include interval prediction for eigenvectors, and interval prediction for the

location of poles and zeros in the complex plane. A second recommendation therefore, is to

identify alternative formats for evaluating and presenting the predictive accuracy of

structural dynamic models to satisfy particular needs. The basic information and

methodological framework are available to do so.

The third and final recommendation is to attempt further application of the

method for estimating a full modal damping matrix. Damping synthesis based on

substructure testing, and on---orbit damping prediction are two of the possible benefits to be

derived. Additional benefits may accrue to the interpretation of the complex eigenvalues

and eigenvectors derived by the ERA method and perhaps other methods as well.
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APPENDIX A

Mass and Stiffness Uncertainty Database

The mass and stiffness uncertainty database compiled under this project is

contained in Tables A-1 through A-22. The data are grouped into three generic categories

as follows:

Tables A-1 through A-7:

Tables A--8 through A-14:

Tables A-15 through A-22:

Research Models of Large Space
Structures (LSS)

Pretest Models of Conventional Space

Structures (CSS)

Posttest Models of Conventional Space
Structures (CSS)

The tables are presented in two parts. Part (a) lists the paired modes, showing both

analysis and test frequencies, the cross--orthogonality between analysis and test modes, and

a general description of the modes. The mode description in the LSS portion of the

database can be interpreted with reference to the information presented in Section 2. Since

the identity of Conventional Space Structures is not disclosed in this report, the mode

descriptions serve only to identify the general character of the modes as given by the

contributing organizations. To some extent, local appendage modes can be distinguished

from primary structural modes based on these descriptions. However, it is not possible to

do so in all cases. Some of the abbreviations cannot be understood without identifying the

structure, and the degree of coupling between appendage motion and motion of the primary

structure is such that a clear distinction cannot always be made. Nevertheless, the mode

descriptions are included for the useful information they do provide.

Two general criteria were used in selecting the modes to include in this

database.

1. The analysis modes should (in some sense) be a complete representation of the
mass and stiffness characteristics of the structure within the frequency range

spanned by the modes.
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2. The test modesshould (in somesense)becompletelyrepresentedby the
analysismodes.

The sensein which eachof these criteria are satisfied is discussed below.

Complete representation of the mass and stiffness characteristics of the

structure within the frequency range spanned by the modes implies that no analysis modes

are skipped within that frequency range. For the most part, analysis and test modes tend

to correlate well at low frequencies, and poorly at higher frequencies. There is often a clear

transition between the two regimes so that the modes can be truncated at a frequency

below which every analysis mode correlates with one of the test modes. This was true for

all of the structures in the LSS database. Within the frequency ranges spanned by the

included modes, no analysis modes were skipped. Of the 61 modes included in the

database, 77% had cross-orthogonalities of at least 0.90, and only 5% had

cross---orthogonalities less than 0.70, the smallest being 0.64.

The CSS database is not as clear cut. Analysis modes are occasionally skipped

and some of the cross---orthogonalities are lower, especially for the pretest models. Skipped

modes and cross---orthogonalities less than 0.50 are noted in the tables. The intent is still

to truncate the analysis modes when correlation with the test modes becomes poor.

However, in a few cases no test mode could be found to correlate with an analysis mode, in

which case the analysis mode was omitted. In one case (Table A-11) fourteen analysis

modes are skipped between the 4th and 5th mode listed. However, all of these are

identified as local appendage modes which do not contribute significantly to the effective

mass of the structure at the spacecraft/launch vehicle interface. In fact, while the two

skipped modes between the 2nd and 3rd listed modes could not be definitely identified as

local appendage modes, they nevertheless do not contribute significantly to the effective

mass and therefore are not important for calculating spacecraft/launch vehicle interface

loads.

A general assumption has been made in the interpretation of these data. It is

assumed that all of the important modes of the structure were recorded during testing, i.e.

that the primary objective of the modal survey was accomplished. Completeness of the

mass and stiffness representation of the structure is therefore guaranteed provided that the
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secondcriterion is satisfied, i.e. that the test modes are "completely" representedby a

linear combinationof the correspondinganalysismodes. Completenessin this caserefers to

the definition given in Equation (2-36) which is

Percentcompleteness= 100% _¢jT Cj

where Cj is the jth column of the cross---orthogonality matrix.

It may be noted that each column of the cross--orthogonality matrices presented

in Part (b) of Tables A-1 through A-22 is followed by a number (close to unity) which is

the sum of the squares ("SUM SQ') of the numbers in that column, i.e.

SUM SQ = cjT Cj

Thus, even when the cross---orthogonality between a particular analysis mode and test

mode is not close to unity, as long as all of the significant modes are included in the test

mode set, ¢, and CjT Cj is close to unity, the essential mass and stiffness characteristics of

the model will be represented.
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Table A- I. AnalysisandTest Data for LSS 1,
LaRCMini-Mast Structure.

(a) Modal Frequencies

Mode Analysis Test Cross
No, Fr_. /I{z) Freq. (!-Iz) O_ho

1. 0.801 0.854 0.78

2. 0.812 0.862 0.86

3. 4.410 4.100 0.98

4. 6.189 6.054 0.95

5. 6.232 6.109 0.96

Mode

Description

1st bending, X and Y

1st bending, X and Y

1st twist

2ridbending,X and Y

2nd bending,X and Y

fo) Cross-orthogonality Matrix

Freq 0.85 0.86 4.10 6.05 6.11

0.80 0.78 -.49 0.12 0.00 -.02

0.81 0.61 0.86 0.08 -.03 0.00

4.41 0.09 -.05 0.98 0.00 -.04

6.19 -.02 0.03 -.02 0.95 -.25

6.23 -.07 0.00 -.04 0.28 0.96

SUM SO 0.99 0.98 0.98 0.98 0.99
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Table A-2. Analysis and Test Data for

LSS 2, LaRC Ten Bay Truss.

(a) Modal Frequencies

Mode

No.

i.

2.

3.

4.

5.

6.

7.

8.

9.

Analysis Test Cross Mode

Fr_. (I-Iz) O_ho Description

17.889 18.048 1.00 Ist bending, Y and Z

17.892 18.040 0.94 Ist bending, Y and Z

63.047 68.043 0.99 Ist twist

93.569 92.610 0.83 2nd bending, Y and Z

94.011 91.634 0.96 2rid bending, Y and Z

170.688 160.764 0.99 1st axial

192.093 200.153 0.90 2nd twist

219.786 200.195 0.89 3rd bending, Y and Z

225.218 192.538 0.68 3rd bending, Y and Z

Co) Cross-orthogonality Matrix

Freq 18.05 18.04 68.04 92.61 91.63 160.76 200.15 200.20 192.54

17.89 1.00 -.35 0.06 0.04 0.06 0.03 -.09 -.07 0.07

17.89 0.02 0.94 0.00 -.02 -.06 0.01 -.05 -.10 0.20

63.05 0.00 0.03 0.99 -.02 0.(30 0.02 -.10 -.04 -.12

93.57 0.01 0.00 -.03 0.83 -.19 0.02 0.10 0.21 -.03

94.01 -.02 0.02 -.02 0.53 0.96 0.02 -.07 -.16 0.24

170.69 0.130 0.00 -.01 0.04 0.02 0.99 0.20 0.04 0.06

192.09 -.01 O. 01 O. 04 -.04 -.07 -.06 O.90 O. 04 O.28

219.79 0.00 0.(30 -.01 -.07 -.06 -.02 0.17 0.89 0.48

225.22 -.01 0.03 0.03 0.02 -.03 0.00 -.25 -.30 0.68

SUB _ 1.00 I.01 0.99 0.98 0.97 0.99 0.98 0.97 0.89
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Table A-3. Analysis and Test Data for LSS 3,
IPL Precision Truss Structure.

(a) Modal Frequencies

Mode Analysis Test Cross

No. Freq, (Hz) Fr_. (Hz_ O_ho

1. 8.21 8.31 0.90

2. 10.72 10.79 0.98

3. 11.31 11.51 0.98

4. 34.99 3S.52 0.97

Mode

Description

1st bending, Z

1st bending, Y

1st twist

2ridbending,Z

Co) Cross-orthogonality Matrix

Freq 8.31 10.79 11.51 35.53

8.21 0.90 -.07 0.04 0.00

10.72 0.05 0.98 0.17 -.01

11.32 -.04 -.05 0.98 0.03

34.99 0.00 0.02 -.01 0.97

SUM SQ 0.81 0.97 0.99 0.94
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Mode

No.

I.

2.

3.

4.

5.

Table A-4.

Analysis

Fr_. (Hz)

10.73

I9.90

37.87

54.27

78.15

Analysis and Test Data for LSS 4, IPL

Tetrahedral Bay Cantilevered Truss Beam.

(a) Modal Frequencies

Test Cross Mode

Fr_. ffIz) O_ho

10.61 0.99 1st bending, vertical

17.5 i 0.97 1st bending, horizontal

37.99 0.99 1st twist

55.02 0.99 2ad bending, vertical

71.83 0.88 2ad bending, horizontal

(b) Cross-ortlaogonality Matrix

Freq 10.61 17.51 37.99 55.02 71.83

10.73 0.99 0.00 -.07 0.12 0.01

19.913 -.04 0.97 0.07 0.02 0.05

37.87 -.02 0.06 0.99 -.06 0.12

54.27 0.01 0.04 -.03 0.99 0.10

78.15 0.00 -.19 0.!1 -.03 0.88

SUM SQ 0.98 0.98 1.00 1.00 0.80
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Table A-5. Analysis and Test Data for LSS 5, JPL

Tetrahedral Bay Free-Free Truss Beam.

(a) Modal Frequencies

Mode Analysis Test Cross

No. Er_. (r,qz) Freq. fflz) O_ho

1. 16.28 17.94 0.97

2. 27.76 29.87 0.99

3. 33.31 34.13 0.99

4. 42.04 45.66 0.96

5. 65.79 66.71 0.92

6. 67.13 69.17 0.97

Mode

Description

Ist bending, vertical

Ist bending, horizontal

1st twist

2rid bending, vertical

2rid bending, horizontal

2rid twist

(b) Cross-orthogonality Matrix

Freq 17.94 29.87 34.13 45.66 66.71 69.17

16.28 0.97 0.00 0.05 -.12 0.03 0.04

27.76 0.02 0.99 -.05 0.00 0.11 -.16

33.31 0.130 -.04 0.99 0.05 0.01 -.01

42.04 0.02 -.02 0.01 0.96 0.00 0.01

65.79 0.01 0.02 -.02 -.02 0.92 0.02

67.13 0.00 0.03 0.00 0.00 0.01 0.97

SUM SQ 0.94 0.98 0.99 0.94 0.86 0.97
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Table A-6. Analysis and Test Data for LSS

PACOSS Dynamic Test Article.

(a) IvIodal Frequencies

6_

Mode Analysis Test Cross

No. Freq. (Hz) Freo. fHz)

1. I.(D0 1.03 0.96

2. 1.03 I. 10 0.99

3. 2.61 2.61 0.97

4. 3.01 2.8I 0.64

5. 3.08 2.89 0.68

6. 3.29 3.25 0.93

7. 3.50 3.53 0.88

8. 3.70 3.72 0.97

9. 3.81 4.13 0.99

I0. 4.14 4.15 0.91

II. 4.15 4.24 0.93

12. 4.60 4.83 0.88

13. 4.81 5.04 0.94

14. 4.86 4.96 0.97

15. 5.32 5.42 0.98

16. 5.32 5.43 0.95

17. 6.12 6.48 0.91

18. 7.52 9.40 0.76

19. g.94 8.89 0.96

20. 8.95 9.32 0.99

21. 9.04 8.92 0.97

22. 9.28 9.26 0.88

A----9

Mode

Description

1st blanket bending, solar array 1

1st blanket bending, solar array 2

1st symetric ring truss bending

Symmetric horizontal solar array mast

bending

Aati_c horizontal solar array

mast bending

Anti-symmetric solar array vertical
bending w/box truss rocking

Anti-symmetric solar array vertical

bending w/tripod

Equip platform vertical bending w/
tripod & solar array symmetric bending

Equip platform horizontal bending

1st blanket torsion, solar array 1

1st blanket torsion, solar array 2

Symmetric antenna bending w/tripod

bending

Symmetric antenna dish, equipment

platform, tripod

Tripod torsion

2nd blanket bending, solar array 2

2nd blanket bending, solar array 1

Anti-symn_tric tripod bending w/box

rocking& solararray vertical bending

Symmetric antennadishbending

2ridblankettorsion,solararray I

2nd blankettorsion,solararray2

Anti-symmetrictripodbending

Symmetric tripodbendingw/antenna

and ringbending





Table A-6. Analysis and Test Data for LSS 6,

PACOSS Dynamic Test Article (Cont'd).

(b) Cross-orthogonality Matrix

Freq 1.03 1.10 2.61 2.81 2.89 3.25 3.53 3.72 4.13

1.00 0.96 0.00 -.14 0.46 -.23 -.11 0.00 -.10 0.00

1.03 0.21 0.99 0.00 0.55 -.63 0.00 0.00 0.00 0.00

2.61 0.00 0.00 0.97 -.14 0.00 0.00 0.00 0.00 0.00

3.01 0.00 0.00 0.00 0.64 0.13 0.00 0.00 0.00 0.00

3.08 0.00 0.00 0.013 -.11 0.68 0.00 0.00 0.00 0.00

3.29 0.013 0.00 0.00 0.00 0.00 0.93 -.35 0.013 0.00

3.50 0.00 0.00 0.130 0.00 0.00 0.30 0.88 0.13(} 0.00

3.70 0.00 0.00 0.00 0.130 0.00 0.00 0.00 0.97 0.00

3.81 O.00 O.00 O.00 O.00 0.O0 O.00 O.O0 O.O0 O.99

SUM SQ 0.97 0.98 0.96 0.96 0.93 0.97 0.90 0.95 0.98
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Table A-7. AnalysisandTest Datafor LSS7,
PACOSSSolar Array.

(a) Modal Frequencies

Mode
No.

Analysis Test Cross

Freq. CHz) _ O_ho

1. 0.89 0.93 0.99

2. 2.90 2.8 0.93

3. 3.75 3.7 0.82

4. 4.07 4.0 0.97

5. 5.36 5.3 0.99

6. 8.84 9.0 0.99

7. 10.51 9.8 0.95

8. 12.43 12.8 0.93

9. 15.95 16.6 1.00

Mode

Description

1st blanket/TMD (blanket

and TMDs in phase)

Blanket/mast horizontal

bending

1st nmst/blanket torsion mode

Vertical mast bending

2rid horizontal blanket bending
mode (TMD secondmodecoupled)

2ridblanket/masttorsion

3rdblankethorizontalbending

3rdblankettorsion

4thblankettorsion

Co) Cross-orthogona/ity Matrix

Freq 0.93 2.80 3.70 4.00 5.30 9.00 9.80 12.80 16.60

0.89 0.99 -.18 0.40 0.18 0.00 0.00 0.00 0.00 0.00

2.90 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.75 0.14 0.29 0.82 -.14 0.00 0.00 0.00 0.00 0.00

4.07 0.00 0.16 -.29 0.97 0.00 0.00 0.00 0.00 0.00

5.36 0.00 0.00 0.00 0.00 0.99 -.12 0.00 0.00 0.00

8.84 0.00 0.00 0.00 0.00 0.00 0.99 0.18 0.00 0.00

10.51 0.00 0.00 0.00 0.00 0.00 0.10 0.95 -.30 0.00

12.43 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.93 0.00

15.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 1.00

SUM SQ 1.00 1.01 0.92 0.99 0.98 1.00 1.00 0.98 1.00
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Table A-8. Analysis and Test Data for

tbr CSS I, Pretest Model.

(a) Modal Frequencies

Mode

No,

I.

2.

3.

4.

5.

6.

.

8.

9.

Analysis

Freq. fHz)

13.49

13.74

16.44

18.15

18.83

20.42

20.52

21.27

22.97

Test Cross Mode

Freq. (Hz) O_ho Description

13.71 0.97 HGA bending X

13.69 0.96 HGA bending Y

18.59 0.96 Science boom X

17.95 0.86 Core bending +Y, -X

17.66 0.71 Core beading +X, -Y

23.08 0.53 RTG Z; probe Y; science
boom Z

21.60 0.78 RTG Z; RPM bus X

24.85 0.94 Torsion

23.58 0.57 RTG Z; probe Y; science
boom Z

(b) Cross-orthogonality Matrix

Freq 13.71 13.69 18.59 17.95 17.66 23.08 21.60 24.85 23.58

13.49 0.97

13.74 -.05

16.44 0.07

18.15 0.130

18.83 -.15

20.42 -.04

20.52 0.01

21.27 0.02

22.97 0.02

O.06

0 96

- 02

0 20

- 05

0 02

- 09

0.00

-.07

SUM SO 0.97 0.98

0.13 0.15 0.49 0.01 -.04 0.03 -.01

0.02 -.29 -.07 0.03 0.02 0.02 -.01

0.96 -.19 -.33 0.04 -.11 -.08 -.02

-.01 0.86 0.21 -.20 -.03 -.03 0.08

0.39 0.22 0.71 0.04 -.02 0.02 -.03

0.03 0.08 0.07 0.53 0.58 0.09 -.35

0.07 0.02 0.09 -.52 0.78 -.02 0.28

-.04 0.03 0.00 -.03 -.02 0.94 -.07

0.02 0.00 0.00 -.36 0.08 0.13 0.57

1.10 0.94 0.92 0.73 0.97 0.92 0.54
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Table A-9. Analysis and Test Data for

CSS 2, Pretest Model.

(a) Modal Frequencies

Mode

No.

1.

2.

3.

4.

5.

Analysis Test Cross Mode

Freq, ('Hz) Ortho Description

14.51 16.27 1.t30 First Y bending

15.20 17.08 1.00 First X bending

39.14 52.70 0.97 Probe fixture Y

41.11 (I) 44.96 1.00 Bounce

44.I8 49.92 0.99 Torsion

Analysis mode at 39.37 Hz. was skipped. Maximum cross-orthogonality of this mode

with respect to test modes listed above is 0.14.

Co) Cross-orthogonality Matrix

Freq 16.27 17.08 52.70 44.96 49.92

14.51 1.00 0.01 -.17 -.01 -.01

15.20 -.01 1.00 -.05 0.00 0.00

39.14 -.12 0.02 0.97 0.04 0.12

41.11 0.02 0.00 -.02 1.00 -.02

44.18 0.01 0.00 -.11 0.01 0.99

SUM SQ 1.01 1.00 0.98 1.00 1.00
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Table A-10. Analysis and Test Data for

CSS 3, Pretest Model.

(a) Modal Frequencies

Mode

No.

i.

2.

3.

4.

5.

6.

Analysis Test Cross Mode

Fr_. (Hz) Freq. (Hz) O_ho Description

13.54 14.49 0.97 First Y bending

14.17 15.41 0.97 First X bending

18.83 18.28 0.94 Second Y bending

19.58 19.63 0.96 Second X bending

40.62 (I) 44.49 1.00 Bounce

44.16 49.97 0.99 Torsion

Note:

(1) Analysis modes skipped at 39.01 and 39.24 Hz. Maximum cross-orthogonality of these

modes with respect to test modes listed above is 0.12.

Co) Cross-orthogonality Matrix

Freq 14.49 15.41 18.28 19.63 44.49 49.97

13.54 0.97 -.07 -.29 -.02 0.01 -.01

14.17 0.04 0.97 -.01 -.20 0.00 0.00

18.83 0.29 -.02 0.94 -.11 0.00 0.00

19.58 0.05 0.25 0.08 0.96 0.00 0.00

40.62 -.01 0.00 0.01 -.01 1.00 0.02

44.16 0.01 0.00 -.01 0.00 -.02 0.99

SUM SQ 1.03 1.01 0.97 0.97 1.00 0.98
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Table A- 11. Analysis and Test Mode Frequencies

for CSS 4, Pretest Model.

(a) Modal Frequencies

Mode

No.

1.

2.

3.

4.

5.

6.

Analysis Test Cross Mode

Freq. (Hz_ Freq. (I-lz) O_ho

13.42 14.45 0.94 First Y bending

14.05 15.42 0.90 First X bending

18.85 (1) 18.31 0.63 SecondY bending

19.55 19.59 0.95 Second X bending

40.60 (2) 44.77 0.97 Bounce

45.02 50.29 0.95 Torsion

Notes.

(I)

(2)

Analysis modes skipped at 18.65 and 18.74 Hz. Maximum cross-orthogonality of these
modes with respect to test modes listed above is 0.31.

Fourteen analysis modes skipped in frequency range of 20.26 - 39.65 Hz. Maximum
cross-orthogonality with respect to test modes listed above is 0.29.

(b) Cross-orthogonality Matrix

Freq 14.45 15.42 18.31 19.59 44.77 50.29

13.42 0.94 -.04 -.25 0.01 -.04 0.00

14.05 0.05 0.90 -.02 0.17 0.02 -.02

18.85 0.23 -.02 0.63 0.05 0.00 0.00

19.55 -.05 -.22 -.08 0.95 0.130 0.01

40.60 0.00 0.02 -.01 -.02 0.97 -.02

45.02 0.01 0.00 0.00 0.00 0.03 0.95

SUM SO 0.94 0.86 0.47 0.93 0.94 0.90
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Table A-12. Analysis and Test Data for

CSS 5, Pretest Model.

(a) Modal Frequencies

Mode Analysis Test

No. Ereq. (Hz't Freq. (Hz)

1. 29.81 29.38

2. 34.92 29.88

3. 41.21 40.13

4. 42.11 35.55

5. 46.19 41.66

6. 55.20 46.34

7. 59.99 59.54

8. 66.83 68.60

9. 106.35 (2) 95.99

Notes:

(I)

(2)

Cross Mode

O_ho Description

0.90 Primary reflector rocking about
X axis

0.91 X translation

0.83 Primary reflector in-plane
translation

0.49 (1) Radiometer +X, reflector-X

0.97 Radiometer torsion about Y axis

0.76 Secondary reflector X

0.68 Secondary reflector Z

0.64 Secondary reflector torsion

0.91 Radiometer Y

Although the cross-orthogonality of this mode pair is less than 0.50, the test mode is 94%

represented by a linear combination of the analysis modes listed above.

Four local analysis modes skipped in frequency range of 77.76 - 104.57 Hz. Maximum

cross-orthogonality of these modes with respect to test modes listed above is 0.20.
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Table A-12. Analysis and Test Data for

CSS 5, Pretest Model (Cont'd).

(b) Cross-orthogonality Matrix

Freq 29.38 29.88 40.13 35.55 41.66 46.34 59.54 68.60 95.99

29.81 0.9(I -.10 0.07 -.16 -.02 0.15 0.26 -.28 0.(30

34.92 0.29 0.91 -.17 0.46 0.12 0.33 -.17 0.00 0.03

41.21 -,02 -.17 0.83 0.41 -,14 0.37 0.32 0.23 0.02

42.11 0.(3(] -.18 -.55 0.49 -.20 0.38 -.39 -.13 -.04

46.19 -.07 -.02 -.13 0.02 0,97 0.17 -.08 0.05 -.13

55.20 -.09 -.18 0.10 -.49 0.01 0.76 -.03 -.18 0.11

59.99 0.21 -.01 0.03 0.02 0.00 -.06 0.68 -.67 -.07

66.83 -.06 -.06 0.17 -.03 -,04 0.12 0.67 0.64 -.01

1136.35 0.01 0.14 0.09 -.01 -.01 -.03 -.05 0.130 0.91

SUM SQ 0.96 0.96 1,139 0.89 1.02 1.04 1.27 1.04 0.87
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Mode

No.

i.

2.

3.

4.

5.

Analysis
Fr_. fHz)

16.13

20.80

23.73

24.99

27.35

Table A-I3. Analysis and Test Data

for CSS 6, Pretest Model.

(a) Modal Frequencies

Test

Fr_. (I-Iz?

15.11

23.56

27.08

Cross

Onho

0.97

0.95

0.72

0.69

0.82

25.70

28.40

(b) Cross-orthogonality Matrix

Mode
Descriotion

SIC X translation

SIC Y translation

SIC symmetric bending about
Y axis

EGRET/BATSE Y bending

SIC torsion about Z axis

Freq 15.11 23.56 27.08 25.70 28.40

16.13 0.97 -.01 -.06 0.23 -.03

20.80 0.01 0.95 0.00 0.09 0.15

23.73 0.13 0.03 0.72 -.58 -.02

24.99 -.11 -.04 0.57 0.69 -.11

27.35 0.00 -.18 0.10 0.09 0.82

SUM SQ 0.97 0.94 0.86 0.88 0.71
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Mode

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Note:

(1)

Table A-14. Analysis and Test Data for

CSS l l, Pretest Model.

(a) Modal Frequencies

Analysis Test Cross Mode

Fr_, fI-Iz} Ere, o_. (Hz) Ortho Description

15.00 16.15 0.99 Y bendingfundamental

16.03 18.24 0.97 X bendingfimdamental

22.32 28.52 0.92 Thruster X

23.03 24.15 0.95 Thruster Y

26.03 26.58 0.87 Subnadir

26.76 25.71 0.98 OX tank 2 torsion

31.18 (1) 31.59 0.94 OXl OX2 lateral

32.18 31.36 0.76 Subnadir

34.01 35.50 0.72 OX 2 tank lateral

34.34 36.12 0.97 OX10X2 X

Analysis mode skipped at 27.24 Hz. Maximum cross-orthogonality of this mode with

respect to test modes listed above is 0.30.
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Table A-14. Analysis and Test Data for

CSS l 1, Pretest Model (Cont'd).

(b) Cross-orthogonality Matrix

Freq 16.15 18.24 28.52 24.15 26.58 25.71 31.59 31.36 35.50

15.00 0.99 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.130

16.03 O. 130 O. 97 O. O0 O. O0 O. O0 O. O0 O. O0 O. O0 O. O0

22.32 O. O0 O. O0 O. 92 -. 29 O. O0 O. 130 O. O0 O. O0 O. O0

23.03 0.00 0.00 0.28 0.95 0.00 0.00 0.130 0.00 0.00

26.03 0.130 0.00 0.00 0.00 0.87 0.00 0.00 0.16 0.00

26.76 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

31.18 0.00 0.00 0.14 0.00 0.00 0.00 0.94 -.19 0.00

32.18 0.00 0.00 0.00 0.00 -.14 0.00 0.18 0.76 -.46

34.01 0.00 0.00 0.00 0.00 -.11 0.00 0.00 0.40 0.72

SUM SQ 0.98 0.95 0.94 0.99 0.79 0.96 0.92 0.80 0.73
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Table A-I5. Analysis and Test Data for

CSS 2, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test Cross

No. FrrA. (Hz) Freq, fHz) Onho

1. 16.27 16.27 0.98

2. 17.18 17.08 0.98

3. 45.21 44.96 0.97

4. 50.76 49.92 0.95

5. 58.09 52.70 0.98

Mode

Description

First Y bending

First X bending

Bounce

Torsion

Probe fixture Y

Co) Cross-orthogonality Matrix

Freq 16.27 17.08 44.96 49.92 52.70

16.27 0.98 0.05 0.05 -.01 -.03

17.18 0.01 0.98 0.00 -.02 0.00

45.21 -.01 0.00 0.97 0.02 0.08

50.76 0.00 0.130 -.02 0.95 0.04

58.09 0.06 0.00 -.04 -.12 0.98

SUM SQ 0.96 0.96 0.95 0.92 0.97
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Table A-16. Analysis and Test Data for

CSS 3, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test Cross

No. _ Freq. f[-Iz) O_ho

1. 14.75 14.49 0.99

2. 15.51 15.41 0.99

3. 18.64 18.28 0.98

4. 19.40 19.63 0.98

5. 44.67 44.49 0.97

6. 46.80 49.97 0.94

Mode

Description

First Y bending

First X bending

SecondY bending

SecondX bending

Bounce

Torsion

(b) Cross-orthogonality Matrix

Freq 14.49 15.41 18.28 19.63 44.49 49.97

14.75 0.99 0.04 -.08 =.06 0.03 -.01

15.51 -.06 0.99 -.01 -.04 0.00 -.01

18.64 0.06 0.03 0.98 -.09 -.02 0.01

19.40 0.03 -.01 0.09 0.98 0.00 -.01

44.67 -.01 0.(30 0.01 0.00 0.97 -.02

46.80 0.(30 0.01 0.00 0.01 0.02 0.94

SUM SO 0.99 0.98 0.98 0.97 0.94 0.88
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Table A-17. Analysis and Test Data for

CSS 5, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test

No. Freo. (Hz) Fr_. (Hz)

1. 29.35 29.39

2. 29.94 29.88

3. 35.79 35.55

4. 39.64 40.13

5. 41.40 41.66

6. 46.13 46.34

7. 60.53 59.54

8. 67.05 68.60

9. 94.20 (I) 95.99

Cross Mode

O ho

0.97 Primary reflector rocking about
X axis

0.92 X translation

0.89 Radiometer +X, reflector-X

0.93 Primary reflector in-plane
translation

0.92 Radiometer torsionabout Y axis

0.95 Secondary reflector X

0.64 Secondary reflector Z

0.63 Secondary reflector torsion

0.97 Radiometer Y

Three analysis modes skipped in frequency range of 77.08 - 86.86 Hz. Maximum cross-

orthogonality of these modes with respect to test modes listed above is 0.15.
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Table A-17. Analysis and Test Data for

CSS 5, Posttest Model (Cont'd).

(b) Cross-orthogonality Matrix

Freq 29.39 29.88 35.55 40.13 41.66 46.34 59.54 68.60 95.99

29.35 0.97 0.25 -.09 -.04 0.01 -.01 -.12 -.10 0.01

29.94 0.12 0.92 -.30 0.03 0.02 0.16 -.09 0.06 0.06

35.79 -.01 0.21 0.89 -.08 0.05 -.14 0.11 -.05 0.10

39.64 0.03 0.01 0.09 0.93 0.37 0.10 0.22 -.08 -.01

41.40 -.05 -.06 -.03 -.21 0.92 -.05 -.13 0.05 0.01

46.13 -.07 -.15 0.24 -.08 -.07 0.95 -.43 0.06 0.00

60.53 0.09 0.02 -.06 -.06 0.01 0.05 0.64 0.68 -.01

67.05 -.04 -.03 0.12 0.20 -.04 -.07 -.48 0.63 -.02

94.20 -.01 -.03 -.02 0.00 -.08 0.02 -.03 0.01 0.97

SUM SQ _0.97 0.98 0.98 0.97 1.00 0.97 0.93 0.89 0.96
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Table A-18. Analysis and Test Data for

CSS 7, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test Cross

No. Fr_. (I-Iz_ _ Ortho

1. 6.97 7.04 0.84

2. 7.06 7.16 0.86

3. 14.12 14.30 0.85

4. 14.59 14.69 0.74

5. 14.61 14.56 0.69

6. 15.25 15.46 0.98

7. 16.74 16.51 0.98

8. 17.44 17.26 0.95

9. 19.08 19.97 0.95

10. 20.44 20.21 0.85

11. 20.67 20.65 0.92

12. 21.40 21.47 0.94

13. 23.21 23.65 0.94

14. 24.56 24.23 0.95

15. 25.17 24.86 0.94

16. 26.03 25.79 0.83

17. 26.69 27.06 0.72

18. 26.99 27.53 0.88

19. 27.38 27.77 0.88

20. 27.69 28.11 0.84

Mode

Description

Primar 7 bending Y

Primat 7 bending Z

Solidrocket motor Y

Solid rocket motor Z, Y

Solid rocket motor Z, Y

Appendage Z

Appendage Z

Appendage Y

Appendage Z, Y

Appendage Y

TmakZ

Primary axial

Secondary bending X, Y

Secondary bending,X, Y, Z

Tsmks X, Y

Tank Y

Solid rocket motor X

Tanks Y, Z

Tank Z

Tank Z
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Mode
No.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

No_:

(1)

(2)

Table A-18. Analysis and Test Data for
CSS 7, Posttest Model.

(a) Modal Frequencies (Cont'd)

Analysis Test Cross Mode
Fr_. C_z_ _ Ortho

29.99 (1) 29.83 0.74 Tanks X, Y

30.13 29.99 0.54 Tank X

31.23 30.49 0.81 Tanks X, Y

31.99 31.44 0.86 Tanks X, Y

32.52 32.66 0.82 Tank Z

37.37 36.04 0.78 Tank X, Z

37.66 35.67 0.88 Tanks X, Y, Z

37.86 35.49 0.71 Tanks X, Y, Z

40.49 40.36 0.90 Appendage X

43.05 38.38 0.91 Tanks X, Y, RX, RY

43.79 42.23 0.92 Tanks X, RX, RY

47.43 45.29 0.69 N/A

49.46 (2) 44.36 0.90 N/A

50.52 46.50 0.92 N/A

Analysis mode skipped at 29.24 Hz. Maximum cross orthogonality of this mode with

respect to test modes listed above is 0.23.

Analysis mode skipped at 48.09 Hz. Maximum cross orthogonality of this mode with

respect to test modes listed above is 0.28.
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Table A-18. Analysis and Test Data for

CSS 7, Posttest Model (Cont'd).

(b) Cross-orthogonality Matrix

Freq 7.04 7.16 14.30 14.69 14.56 15.48 16.51 17.26 19.97

6.97 0.84 0.49 -.

7.06 -.50 O.86 0

14.12 0.03 0.130 0

14.59 -.02 0.01 0

14.61 0.06 0.02 -

15.25 0.02 0.00 -

16.74 0.00 0.00 -

17.44 0.00 -.01 -

19.08 0.(30 0.01 -

SUM SO, O. 96 0.98 O.

02 -.02 0.02 -.02 0.00 -.02 0.00

130 -.02 0.01 0.00 0.00 0.02 -.01

85 -.30 0.37 -.02 -.01 0.04 0.04

45 0.74 -.42 0.00 0.02 -.02 -.06

11 0.58 0.69 -.08 -.03 0.04 -.03

01 0.06 0.08 0.98 0.(30 0.11 -.03

02 0.01 0.07 0.02 0.98 -.15 0.04

02 0.00 0.00 -.12 0.15 0.95 -.14

02 0.09 -.03 0.00 -.01 0.18 0.95

94 0.99 0.80 0.98 0.98 0.97 0.93
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Table A-19. Analysis and Test Data for

CSS 8, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test Cross

No. Freq. (Hz) Freq. (I-lz) O_ho

1. 37.13 41.64 0.98

2. 41.52 44.91 0.96

3. 64.55 75.18 0.95

4. 80.57 93.77 0.83

(b) Cross-orthogonality Matrix

Mode

Descriotion

X axis translation

Z axis translation

Y axis rotation

Local radiator bending

Freq 41.64 44.91 75.18 93.77

37.13 0.98 -.18 -.01 -.01

41.52 0.14 0.97 0.01 0.06

64.55 -.06 0.02 0.95 -.30

80.57 0.03 0.01 -.03 0.83

SUH SQ 0.98 0.97 0.90 0.78
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Mode

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

lI.

12.

13.

14.

N'o_.-

(1)

Table A-20. Analysis and Test Data for
CSS 9, Posttest Model.

(a) Modal Frequencies

Analysis Test Cross Mode

Fr_. ¢Hz_ _ Ortho

6.13 5.84 0.98 Fundamental Z

7.36 7.31 0.94 Fundameatal X

9.98 10.86 0.98 MMS-Y; CLAES-Y

10.59 10.36 0.73 IM-Z; MMS-Z; SSPP-Z

12.71 12.80 0.84 Fundamental Y

16.33 16.87 0.79 SSPP-X,Y; MMS-Y; IM-Y

18.09 17.32 0.85 CLAES-Z; MMS-Z; SA-Z

18.59 18.23 0,64 SSPP-Z,X; SA-Z

19.00 20.41 0.56 Outrigger mode

20.42 19.60 0.42 (1) SSPP-Z; ]M/X; CLAES-Z

20.95 21.41 0.93 Keel mode

22.05 23.48 0.71 HALOE-X; SSPP-Z; SA-Y,Z

22.43 20.97 0.79 Outrigger mode

24.79 24.51 0.57 SSPP-X,Z; CLASE-Y

Although the cross orthogonality of this mode pair is less than 0.50, the test mode is 85 %

represented by a linear combination of the analysis modes listed above.
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Table A-20. Analysis and Test Data for
CSS 9, Posttest Model (Cont'd)

Co) Cross-orthogonality Matrix

Freq 5.84 7.31 10.86 10.36 12.80 16.87 17.32 18.23 20.41

6.13 0.99 -.13 0.01 -.05 0.06 0.03 0.03 -.04 0.01

7.36 0.12 0.94 0.07 -.16 -.17 0.08 -.01 -.05 0.02

9.98 -.01 -.07 O.98 -.01 O.04 O.01 O. 01 O.05 -.02

10.59 -.04 0.07 -.03 0.73 0.45 0.30 0.14 0.07 -.01

12.71 0.02 0.11 0.02 -.39 0.84 -.14 -.15 -.09 -.04

16.33 -.02 -.08 -.02 -.22 -.04 0.79 -.28 -.14 -.02

18.09 -.07 0.03 -.04 -.11 0.06 0.24 0.85 -.17 0.07

18.59 0.01 0.02 0.01 0.06 0.00 0.11 0.05 0.64 0.30

19.00 -.02 -.02 0.01 0.00 0.00 -.05 -.02 -.13 0.66

SUM SQ 1.00 0.93 0.97 0.78 0.95 0.81 0.85 0.49 0.53

A-30





Table A-21. Analysis and Test Data for

CSS 10, Posttest Model.

(a) Modal Frequencies

Mode Analysis Test Cross

No. FreqLfHz_ _ O_ho

1. 11.21 12.50 1.(30

2. 12.04 13.46 0.99

3. 18.43 21.47 0.97

4. 20.61 22.91 0.78

5. 22.59 23.45 0.85

6. 23.77 25.57 0.87

7. 23.90 30.59 0.89

8. 25.22 27.56 0.91

9. 27.13 33.82 0.88

10. 29.09 29.89 0.88

11. 30.18 31.55 0.89

12. 33.21 35.67 0.85

Mode

Description

Fundamental Y-bending

Fundamental X-bending

Fundamental longitudinal Z

Tank rotations

Tank rotations

Tank rotations

Local $1A (+Y) flat panel
mode

Torsional mode

Local SIA (-Y) flat panel mode

S/A(+ Y) flat panels + tanks

$/A(+Y), tanks, eyl

S/A(+Y) panels (out of phase)
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Table A-21. Analysis and Test Data for

CSS 10, Posttest Model (Cont'd).

Co) Cross-orthogonality Matrix

Freq 12.50 13.46 21.47 22.91 23.45 25.57 30.59 27.56 33.82

11.21 1.00 -.08 0.00 0.02 -.02 -.03 0.01 0.01 0.00

12.04 0.04 0.99 0.00 -.03 0.00 0.04 0.01 -.01 -.02

18.43 -.02 0.02 0.97 0.11 -.07 -.06 -.02 -.12 -.03

20.61 0.03 0.02 -.15 0.78 -.46 -.26 -.03 0.01 0.01

22.59 0.00 0.00 0.01 0.52 0.85 0.00 0.13 -.03 0.07

23.77 , -.01 -.01 0.05 0.26 -.11 0.87 -.13 0.19 0.02

23.90 -.01 0.00 -.01 -.01 -.14 0.22 0.89 -.26 -.04

25.22 0.02 0.00 0.12 -.09 -.04 -.05 0.24 0.91 -.08

27.13 0.00 0.00 0.01 -.02 -.03 0.01 0.05 0.10 0.88

SUM SQ 1.00 0.99 0.98 0.97 0.97 0.88 0.89 0.96 0.79
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Mode

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

I1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(1)

Table A-22. Analysis and Test Data for
CSS 1I, Posttest Model.

(a) Modal Frequencies

Analysis Test Cross Mode

Frea. tHz) Freo_. f[-h) O_ho Description

16.60 16.15 0.99 Y-bending fundamental

17.70 18.24 0.98 X-bending fimdamental

24.82 24.15 0.94 Thruster Y

25.70 25.7t 0.98 OX tank 2 torsion

26.12 (1) 26.58 0.95 Subnadir

28.71 28.52 0.92 Thruster X

29.65 29.63 0.90 Cruciform

30.20 29.76 0.91 Subnadir;, Cruciform

31.47 31.36 0.95 Subnadir

31.66 31.59 0.98 OXI OX2 lateral

33.66 33.30 0.91 Subnadir; OX2 tank

35.12 34.56 0.90 North panel

35.38 35.50 0.94 OX2 tank lateral

36.09 36.47 O.89 Southpanel

37.58 36.12 0.95 OXI OX2 X

38.21 38.03 0.93 South panel

38.77 37.87 0.94 North panel

39.23 39.24 0.91 OXl OX2 lateral

41.76 40.43 0.91 Fuel 2 torsion

42.42 42.46 0.88 Fuel2 Y

Analysismode skippedat26.04 Hr...Maximum crossorthogonalityof thismode with

respect to test modes listed above is 0.26.
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Table A-22. Analysis and Test Data for

CSS 1 l, Posttest Model.

(a) Modal Frequencies (Cont'd)

Mode Analysis Test

No. Fr_. (I-Iz_ Freq_ (I-Iz)

21. 42.67 43.43

22. 42.88 42.91

23. 44.50 46.60

24. 47.70 46.89

25. 47.98 47.30

26. 49.37 49.92

27. 50.15 50.76

Cross Mode

0.73 Fuel I torsion; Fuel 1, 2

lateral

0.93 Fuel I torsion

0.89 Bus Z

0.86 Fuel I X Fuel 2 Y

0.86 Fuel 2 X Fuel I Y

0.96 North, south panel

0.91 North, south bus and

battery Z

(b) Cross-orthogonality Matrix

Freq 16.15 18.24 24.15 25.71 26.58 28.52 29.63 29.76 31.36

16.60 0.99 0.00 0.00 0.130 0.00

17.70 0.00 0.98 0.00 0.130 0.00

24.82 0.00 0.00 0.94 0.00 0.00

25.70 0.00 0.00 0.00 0.98 0.00

26.12 0.00 0.(](3 0.00 0.00 0.95

28.71 0.00 0.00 -.33 0.00 0.00

29.65 0.130 0.00 0.00 0.00 0.00

30.20 0.00 0.00 0.00 0.00 0.00

31.47 0.00 0.00 0.00 0.00 0.00

SUM SQ 0.98 0.96 0.99 0.96 0.90

O.O0

000

0 31

000

000

0 92

000

000

O.O0

0.00 0.00 0.00

O. O0 O.O0 O. O0

0.00 0.00 0.00

0.00 0.00 0.00

O. O0 O.O0 O. O0

O. O0 O. O0 O. O0

O. 90 O.O0 O. O0

0.00 0.91 -.13

0.00 0.10 0.95

O. 94 O. 81 O. 84 O. 92
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Abstract

A recent survey on system identification for large
space structures [1] disclosed that the great majority of
papers in the published literature present methods
demonstrated with simulated data (i.e. "data" generated
by perturbing an analytical modet) or present tile results
of particular case studies in which selected parameters of
a particular model were identified using a particular
method with selected data. Few publications have
addressed the practical problem of verifying a model of a
real structure using real test data where the correctness
of the model, correctness of the data, selection of
parameters, and selection of data are critical issues.

One of the major drawbacks is the flexibility of
available system identification software. This limitation
has been partially alleviated by the development of a
code called SSID (for Structural System Identification).
This code interfaces with standard finite element
modeling codes such as NASTRAN and offers numerous
options for modeling, parameterization and data
selection.

This paper presents a recent case study of a ten bay
truss structure modeled and tested at the NASA Langley
Research Center. Of particular interest are comparisons
of results obtained by using different types of vibration
test data including both eigenvalues and eigenvectors.

Introduction

System identification is the process of using the
observed input to a system and its observed response (or
output) to derive art analytical model. System
identification applied to structural systems appeared in
the technical literature during the 1960's and became a
popular research topic during the 1970's. Hundreds of
papers, numerous survey articles and several textbooks
have since been written on the subject. One report [1]
recently prepared by an ASCE committee of eight
members including representatives from the Government,
universities and private industry contains 207 references
and a bibliography of over 500 publications. The great
majority of these articles are essentially theoretical, some
with numerical demonstrations. Relatively few address
practical applications.

The development of system identification for
structural dynamic applications may be grouped into
three distinct areas, including identification of:

1. Input---output relationships,
2. Modal characteristics, and
3. Model parameters.

The first is well developed, particularly along the
lines of frequency-domain spectral analysis. The second
is still evolving but has seen extensive practical
application during the past decade. The third area is just
beginning to receive attention for practical application.
One of the difficulties is that to be of practical use, model

*PresidentxEAnAgineeringMechanicsAssociatesMember
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parameter identification must be linked to currently used
modeling codes. This requirement has resulted in severe
limitations, including cost, time and flexibility.

All methods for model parameter identification
require the computation of parameter sensitivity to either
modal characteristics or structural response. Some
general modeling codes such as NASTRAN have a
capability for design sensitivity analysis and compute
these derivatives. NASTRAN, for example, computes
derivatives of eigenvalues and eigenvectors with respect
to model parameters. Several efforts have recently been
reported where parameter estimation algorithms have
been linked to NASTRAN. Some use only the eigenvalue
sensitivities computed in NASTRAN [2] while others
have attempted to use both eigenvalue and eigenvector
sensitivities [3, 4, 5]. Limited studies have shown that
parameter estimation based only on eigenvalue data can
improve the eigenvalues while allowing the eigenvectors
to deteriorate [6].

On the other hand, it is computationally expensive
to compute eigenvector derivatives in NASTRAN.
NASTRAN uses Nelson's method [7] for computing
eigenvector derivatives which requires that the complete
stiffness matrix be used in solving a full set of linear
algebraic equations for every eigenvector derivative; i.e.
the sensitivity of each eigenvector to every estimated
parameter in every iterative cycle of the estimation must
be evaluated. Bronowicki [5] has found a way to use
intermediate NASTRAN output to implement Fox's
method [8] of modal summation, thereby significantly
reducing the computational effort. NASTRAN must still
be called in each cycle of the iterative parameter
estimation, however.

Another issue of practical concern is the selection of
an estimation algorithm. Hasse]man and Chrostowski,
Ojalvo and Fries, among others, have used least square
and Bayesian-type estimators [9, 3, 10], Martinez and
Simonian have used Kalman filtering [11, 12, 13], while
Bronowicki, Flanagan and Allen have used optimization
algorithms [5, 2, 4]. Kalman filter algorithms have been
used only with frequency response data, whereas
optimization algorithms have so far been used only with
eigenvalue and eigenvector data. Bayesian estimation
algorithms have been used with all three. There is no
reason, however, why any of the three algorithms could
not be used with all three types of data. In fact, it is
desirable to have the option of selecting the estimation
algorithm as well as the type of data for any given
application.

These are some of the issues which have motivated
development of the code SSID (an acronym for Structural
System Identification). SSID is a mo_del verification code
designed to improve existing analytical models, e.g.
NASTRAN models, using vibration test data. SSID
updates the original estimates of selected model
parameters based on selected test data. The sections
which follow highlight the features of SSID, and present
some results of its application to a practical problem.

Copyright © 1990 American Institute of Aeronautics and

Astronautics, Inc. All rights rese_'ed:
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SS!D Cod,e

SSID was developed for Sandia National
Laboratories to be used as a research and production tool.
As a research tool it was designed to be flexible, modular
and expandable. As a production tool it was designed to
be efficient and machine independent. It utilizes
dynamic memory management and skyline matrix
storage and has been run on machines ranging from a
PC to a CRAY.

An important feature of SSID is its ability to
interface with standard finite clement codes. This,
requires that an interface code be written to extract the
necessary data files form the finite element code and
translate them into SSID format. Such an interface code
has been written by Sandia for NASTRAN, although
some additional effort is presently required to generate
the mass and stiffness sensitivity matrices which are not
yet available from NASTRAN.

Other system identification codes have been written
which interface with NASTRAN, e.g. [5, 6, 7]. These
codes require looping back through NASTRAN in each
cycle of the iterative parameter estimation. An iterative
solution is required because the estimation problem is
inherently nonlinear; eigenvalues, eigenvectors and
frequency response are all nonlinear functions of the
parameters being estimated. SSID, on the other hand, is
designed to operate in a stand-alone mode once the basic
modeling data are read in. The advantage of this feature
is a large gain in efficiency making it possible to execute
small to medium sized problems on a PC or a
workstation. For example, 15 parameters of a 240
degree---of-freedom structure were updated after five
estimation cycles using 33 eigenvalue and eigenvector
data elements in approximately three minutes on an IBM
PC-386/16 MHZ machine running under DOS and a
640K RAM ceiling The same problem on a Unix-based
Silicon Graphics Personal Iris workstation ran ten times
faster. The disadvantage is that while typical finite
element codes compute mass and stiffness sensitivity
matrices for purposes of design optimization and/or
eigenvalue and eigenvector derivatives, they are treated
as intermediate results and are not yet directly
accessible. This situation is likely to change, however, as
a need is established.

A top level flow diagram illustrating the operations
performed in the finite element code (NASTRAN in this
ease) and SSID is shown in Figure 1. Three return loops
are shown for updating the model after an iteration has
been completed. The solid line represents the option
implemented in the initial version of SSID. This loop
enables SSID to execute in a stand-alone mode after
receiving modeling data from NASTRAN. The inner
loop will allow the updated model to be rerun in a
reduced set of modal coordinates. This speeds up
execution for large models. The outer loop will facilitate
direct updating of the finite element model (in this case
the NASTRAN bulk data deck). This will allow the
estimation of parameters which appear nonlinearl_' in the
mass or stiffness matrices, such as the thickness ota plate
or the depth of a beam. When the mass or stiffness
matrix are nonlinear in an estimation, parameter,
derivatives of the matrix must (in general) be
reevaluated after each iteration. This necessitates
looping back through the FEMcode which is time
consuming. When the mass and stiffness .m__a__tricesare
linear functions of the parameters, their derivatives are
constant and need only be evaluated once. The FEM
code does not need to be recalled until the final
parameter estimates are ready to be run.

Finite Element Model of the NASA LaR¢ Ten Bay Truss

Figure 2 shows the nodal geometry of the NASA
Langley Research Center (LaRC) Ten Bay Truss. A
NASTRAN model was furnished by NASA. It consists of
bar elements having six degrees of freedom per node.
With 40 free nodes (the base being fixed) the model has
240 DOF. Mass was lumped at the nodes as point
masses, which as it turns out, introduced a slight
modeling error. The mass was distributed too far from
the centerline of the truss. This resulted in the mass
moment of inertia about the x-axis being too large,
which caused the frequency of the first twisting mode to
be too low by about 7%.

Vibration Test Data

Vibration testing was conducted on the Ten Bay
Truss with its base fixed to ground. Multiple shakers
were located at mid--span ann the free end. Triaxial
accelerometers were located at diagonally opposed
corners at every other bay as shown in Figure 2.
Multiple uncorrelated random inputs were applied by the
shakers. Test modes computed by the ERA method
produced complex modes. These modes were furnished
by NASA. They were normalized to obtain a least
squares fit on the phase angles in the complex plane, and
a largest eigenvector element magnitude of 100. The
procedure used by NASA and others for converting these
complex modes to real modes is to compute the
magnitude of each complex element and give it the sign
of the dominant (real or imaginary) part of the
eigenvector. The dominant part of the complex vector is
that vector whose Euclidean norm is the greatest. The
frequencies and self-orthogonality of these test modes is
shown in Table 1. The test frequencies are obtained from
the imaginary part of the complex eigenvector, ), = a +
iw, as

fj = (1)

the self---orthogonality matrix is

om = dOT °MdO_. (2)

where °M is the original analytical mass matrix for the
Test Analysis Model or TAM, reduced from the finite
element model to the set of measurement coordinates,
and dOx is a matrix of the real test modes. Perfect

self---orthogonality would result in om= I where the test
modes, dOx'have been normalized to unit modal mass.

As can be seen in Table 1, orthogonality between
the three sets of bending modes (Modes 1 and 2, 4 and 5,
8 and 9) and between the second twist mode (Mode 7)
and the third set of bending modes is not particularly
good due to the closeness in frequency between the modes
and the consequent difficulty of obtaining "pure"
experimental modes.

An attempt was made to condition these modes
based on the orthogonalization method presented in
Reference [14]. This method does two things in sequence:
First, it renormalizes the phase angles of the complex
modes such that the cross---orthogonality between the real
and imaginary parts of the complex eigenvector is zero.

If the original jth complex mode is denoted by

dOJ= dOh+ i dOxj (3)
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this conditionrequiresthat the cross--orthogonality
product with respectto the analyticalmass matrix is
zero.

i joM4,j=0 (4)

are expressed as functions of the
In this case, Rj and qbij

normalizing phase angles 0oj , by the following:

CRkj= AkjCOS(0kj--Ooj) (5a)

d_ikj= Akj sin(Ski--8oj) (5b)

where

_kj = t_a'l ({_|kj/{_Rkj) (6b)

This renormalizationtypicallyresultsinphase correction

angleson the orderof I0° or less.The renormalization
processproducesa revisedsetofcomplex modes denoted
by

_J = _itj + i_Ij (7)

The second step involves orthogonalization of the
real parts of the modes by Targoff's procedure [15] to

produce an orthogonal set of real modes, d_Lj, which are

linear combinations of the modes. SLj"

The effect of this conditioning on the test modes is
shown in Table 2 which compares three self-
orthogonality matrices:

2.

Based on the real parts, _L' of the original

test eigenvectors,

Based on the conventional procedure for
using the magnitudes of eigenvector
dements with the sign of the dominant (real
or imaginary) part of the complex vector,
and

3. Based on the conditioning procedure
described above.

The rotation angles produced by Equation (4) and
reflected in the conditioned dgenvectors used in Table
2(c) are shown in Table 3.

System Identification Using S$ID

The results of three system identification runs are
presented. The first run uses both eigenvalue and
eigenvector data to estimate 14 parameters. The 14

parameters include two stiffness parameters for each of 5
two-bay sections. One of the two parameters is a scaling
coefficient on the longerons and battens of the two-bay
section. The other is a scaling parameter on the
diagonals. A mass parameter is also included for each of
the top four two--bay sections*. It is the mass moment
of inertia about the x-axis at each node. Since the
original model had no mass moments of inertia, this
parameter was initially zero. The stiffness scaling
parameters were initially set to unity. Eigenvalue and
eigenvector data from the first five modes were used to
estimate these parameters. Eigenvector data included
the y and z modal displacements at Nodes 2, 8 22 and 32
(see Figure 2).

SSID uses a Bayesian Estimator [1, 16, 17] which
requires uncertainties to be defined for the initial
parameter estimates and the data. Uncertainties on the
parameter estimates were specified as coefficients of
variation (C.O.V.) of 20%. Uncertainties on the test
frequencies were specified as C.O.V. of 2% while
uncertainties on the test eigenvectors were specified as
C.O.V. of 20%. The results of this run are summarized
in Tables 4(a, b, c) where part (a) compares the original
and revised frequencies, (b) compares the original and
revised eigenvectors and It) compares the original and
revised parameter estimates. It is of interest to note that
for the most part, the stiffness estimates changed by less
than 20% except for stiffness parameters near the base
where the largest change was 80%. This represented a
change of four standard deviations relative to the initial
parameter uncertainty. This change was considered too
larse to accept. It is also interesting to note that
estimates of the mass parameters ranged from --0.0068 to
--0.0198. The calculated correction factor based on the
actualmass distributionwas -0.0140.

Interpretationoftheseresultsled tothe conclusion
thata differentsetofparametersshouldbe estimated,a
set that allowedfor some asymmetry in the stiffness
propertiesnearthebaseofthestructure.This conclusion

was partiallyinfluencedby feedbackfrom engineersat
LaRC who commented thata loosestrutinthelowerbay
had beendiscoveredafterthetest.

The alternateset ofparametersincludedthe same
12 mass and stiffnessparametersfor the first8 bays
(c.o.untedfrom the top),but replacedthe two symmetric
stiffnessparameterswhich had been definedforthe last
two baysby thefollowingtenparameters:

Bay 9 & 10Iongerons,+y, +z, corner
Bay 9 & 10longerons,-y, +z, corner
Bay 9 & 10longerons,-y, ---z,corner
Bay 9 & 10longerons,+y, ---z,corner
Bay 9 battensand in-planediagonal
Bay 10battensand in-planediagonal
Bay 9 & 10diagonals,-y face
Bay 9 & 10diagonals,+y face
Bay 9 & 10 diagonals, +z face
Bay 9 & 10 diagonals, ---z face

The same data used in the previous run were used
to estimate these parameters, which were also assigned
coefficients of variation of 20%. The results of this
estimation run are summarized in Tables 5(a, b, c) which
compare original and revised frequencies, eigenvectors
and parameter estimates, respectively. Frequency errors
in this case were reduced from a maximum of 7.63% to
2.19% compared with a reduction to 4.79% in the
previous case. Eigenvector errors were roughly the same
in both cases, the maximum error being about 36%.

*It was omitted from the fifth section to achieve parity
with a subsequent run.
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The most strikin$ difference was between the
parameter estimates in the two cases. Whereas in the 14
parameter case one parameter was changed by 80%, the
maximum change in the 22 parameter case was in the
stiffness of the say 9 & 10 diagonals on the -y face which
decreased by only 38%.

A third run was made where the 22 parameters
from the second run were estimated using only the
frequencies of the first five modes. This run resulted in a
somewhat greater reduction of the frequency errors but
the eigenvectors deteriorated significantly from the
original eigenvectors. The maximum error in this case
increased from approximately 36% to 60%. The results
of this run are summarized in Tables 6(a, b, c).

SSID Graphics

One of the most difficult aspects of system
identification is the interpretation of.results. Without
exception, the behavior of a parameter estimation run
must be scrutinized to ascertain its validity. The
following questions typically arise:

Have the eigenvalues converged, and if so
how smoothly?

Have the eigenvectors converged and have
they improved on the average? Have they
improved in terms of the maximum error of
any single element relative some norm of the
vector?

How have the parameter estimates
converged? Have they converged? Has
convergence been monotonic or oscillatory?
Have there been any large jumps in the
estimates?

What is the statistical significance of the
estimates?

How has the estimator converged relative to
minimizing the overall objective function?

Answers to these questions are facilitated by the
graphical output of $SID. This graphics capability is
illustrated in Figures 4 through 8. Each figure presents
two examples. Part (a) shows the graphical output from
a successful run, while part (b) shows the same output for
an unsuccessful run.

Figures 4, 5, 6 and 8 are fairly self explanatory.
Figure 7 requires some explanation. Figure ? shows how
the estimated value of each parameter has changed as the
result of Bayesian estimation, relative to its initial
estimate. The horizontal axis of the figure is labeled in
values ranging from -4 to +4. These numbers represent
the number of standard deviations from the mean or
initial value of the estimate. For example, if the original
estimate of a parameter is 10, and its uncertainty is
specified as a C.O.V. of 20%, then zero on the ordinate of
the graph implies a value of 10, ---4 implies a value of 2,
and +4 implies a value of 18.

Corresponding to each of the estimated parameters
an interval is depicted. The interval is symmetric about
the center symbolized by a zero. A shift of this zero to
the right or left corresponds to the change in the
estimated parameter value. For example, if the zero
shifts to a value of +2, it means that the value of the
parameter has increased by two standard deviations. In
the case of a parameter with an initial value of 10, and a
C.O.V. of 20%, such a shift would indicate a 40%

increase in the parameter value to 14.

The width of the interval signifies the degree to
which the uncertainty of the parameter has been reduced.
If the uncertainty has not been reduced at all, the width
of the interval will be • 2 or a total of 4, indicating
approximately the • 95% confidence bounds in the
estimate. If the width of the interval shrinks to 2, it
means that the revised standard deviation, and the _95%
confidence interval on the estimate is half as large as it
was to begin with. An interpretation of these results has
been presented in earlier papers [1, 16].

Conclusions

This paper presents the results of a recent case
study in system identification. The case involves a real
structure modeled and tested at the NASA Langley
Research Center.

The first part of the paper discusses the condi-
tioning of complex eigenvectors derived by the ERA
method. The conditioning involves a phase angle rota-
tion to remove bias errors from the small imaginary part
of the eigenvector, and a Tar$off orthogonalization to
improve the orthogonality of the eigenvect0rs, particu-
larly for closely spaced modes. Off---diagonal terms of the
orthogonality matrix were reduced by. an order of
magnitude in the worst case, e.g. from 32% to 2%.

The second part of the paper presents results of
parameter estimation using the SSID code. Results for
three cases are presented. The first two cases use both
eigenvalue (frequency) and eigenvector data from the
first five modes. The conditioned eigenvectors were used
in both cases. One run estimated 14 symmetric
parameters. The second run estimated 12 of the original
14 parameters plus an additional 10 asymmetric
parameters replacing two of the symmetric parameters in
the lower two bays. In the first case, some of the
)carameter estimates exceeded reasonable bounds

ousidered to be two to three standard deviations from
the initial estimate). In the second case, all of the
estimates were considered reasonable. In addition, the
frequency errors were reduced to approximately half of
those obtained in the first case.

A third run was made to investigate the importance
of eigenvector data in the estimation. A run similar to
the second run was made, but with frequency data only.
The residual frequency errors were somewhat smaller in
this case than in the case where eigenvectors were used,
but the eigenvectors of the revised model deteriorated
significantly.

On the basisof thisexperience,as wellas other
experiencenot reportedhere,itis concludedthat (I)
parameterestimationbasedon modal datashouldinclude
eigenveciors as well as eigenvalues, (2)the eigenvectors
should be orthogonalized when the orthogonality is poor
due to closely spaced modes (p.L0_._[_ that one has
confidence in the analytical mass matrix), and (3) the
parameters used in the estimation should enable the
model to match the data.

Finally, the paper presents examples of the
graphical output provided by SSID. These graphics have
proven to be a valuable tool in the practical application
of system identification and model verification.
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Table l. Frequencies and Orthogonality of Original Test Modes

Mode

1
2
3

4
5
6
7
8
9

Freq(Hz)

18.040
18.048

68.043

91.634

92.609

160.765

192.537

200.154

200.195

** [Phi-real(orig)]-t[M(orig)][Phi-real(orig)] **

1.0000 -.3250 .0073 .0592 -.0130 -.0067 .0757

-.3250 1.0000 .0584 -.0521 .0289 -.0248 .0557

0073 .0584 1.0000 .0148 -.0483 -.0011 -.0209

0592 -.0521 .0148 1.0000 -.3350 .0461 -.0623 -

- 0130 .0289 -.0483 -.3350- Y_O0 -.0624 .0371

- 0067 -.0248 -.0011 .0461 -.0624 1.0000 -.0778

0757 .0557 -.0209 -.0623 .0371 -.0778 1.0000 -

0105

0803

0105 0803

0609 0737

0403 0644

1081 - 2457

0172 - 0194

1660 0228

2827 -.2255

.0609 .0403 --I081 .0172 .1660 -.2827 1 0000 .1614

.0737 .0644 -.2457 -.0194 .0228 -.2255 .1614 1.0000
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Table 2. Comparison of Orthogonality Matrices

(a) Based on Real Parts of Original Complex Eigenvectors

** [Phi-real(orig)]-t[M(orig)][Phi-real(orig)] **

1.0000 -.3250 .0073 .0592 -.0130 -.0067 0757

-.3250 1.0000 .0584 -.0521 .0289 -.0248 0557

.0073 .0584 1.0000 .0148 -.0483 - 0011 - 0209

.0592 -.0521 .0148 1.0000 -.3350 0461 - 0623 -

-.0130 ,0289 -.0483 -.3350 1.0000 - 0624 0371

-.0067 -.0248 -.0011 .0461 -.0624 i 0000 - 0778

.0757 .0557 -.0209 -.0623 .0371 - 0778 1.0000 -

.0105 .0609 .0403 -.1081 .0172 1660 -.2827 1

.0803 .0737 .0644 -.2457 -.0194 0228 -.2255

.0105 .0803

.0609 .0737

0403 .0644

1081 -.2457

0172 -.0194

1660 .0228

2827 -.2255

0000 .1614

1614 1.0000

(b) Based on Conventional Procedure for Converting Complex
Eigenvectors to Real Eigenvectors

*** [Phi-raw(mag)]-t[Mass-Orig][Phi-raw(mag)] ***

1.0000 -.2075 .0085 .0626 -.0143 -.0018 .0881 0193 .0597

-.2075 1.0000 .0570 -.0475 .0334 -.0231 .0649 0475 .0970

.0085 .0570 1.0000 .0143 -.0532 .0036 -.0313 1139 .0480

.0626 -.0475 .0143 1.0000 -.1941 .0184 -.0409 - 0805 -.2894

-.0143 .0334 -.0532 -.1941 1.0000 -.0589 .0457 0283 -.0187

-.0018 -.0231 .0036 .0184 -.0589 1.0000 -.0901 1614 .0235

.0881 .0649 -.0313 -.0409 .0457 -.0901 1.0000 -.3326 -.1764

.0193 .0475 .1139 -.0805 .0283 .1614 -.3326 1.0000 .1559

.0597 .0970 .0480 -.2894 -.0187 .0235 -.1764 .1559 1.0000

(c) Based on Real Parts of Conditioned Eigenvectors

** [Phi-real(new)]-t[M(orig)][Phi-real(new)] **

1.0000 -.0387 .1346 .0062 0400 .1433 .1093 .0888 - 0006

-.0387 1.0000 -.0691 .0139 -

.1346 -.0691 1.0000 -.0346

.0062 0139 -.0346 1.0000 -

.0400 - 0061 .0108 -.0334 1

.1433 - 1098 -.0198 .0249

.1093 0485 -.0171 -.0811 -

.0888 - 0092 -.0272 -.0007

-.0006 - 0019 .0615 -.0430

0061 -.1098 .0485 -.0092 - 0019

0108 -.0198 -.0171 -.0272 0615

0334 .0249 -.0811 -.0007 - 0430

0000 .0064 -.0256 .0055 0067

0064 1.0000 -.0097 .0223 - 0161

0256 -.0097 1.0000 .0834 - 0353

0055 .0223 .0834 1.0000 - 1697

0067 -.0161 -.0353 -.1697 1.0000

Table 3. Rotation Angles Computed in the Renormalization of
Complex Test Modes

MODE # 1 ROTATION ANGLE = -8.9180E-02 DEG

MODE # 2 ROTATION ANGLE = 8.2883E-02 DEG

MODE # 3 ROTATION ANGLE = 2.5080E-01 DEG

MODE # 4 ROTATION ANGLE = 2.3497E+00 DEG

MODE # 5 ROTATION ANGLE = -1.7157E+00 DEG

MODE # 6 ROTATION ANGLE = 3.3203E-01DEG

MODE # 7 ROTATION ANGLE _ 9.0292E+00 DEG

MODE # 8 ROTATION ANGLE = -3.2233E+00 DEG

MODE # 9 ROTATION ANGLE = -4.6475E-02 DEG
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Table 4. Summary of SSID Results for Case 1.

(a) Comparison of Original and
Revised Frequencies (below)

(c) Comparison of Original and
Revised Parameter Estimates (right)

NOOE ORIG MODEL REVISED MODEL TEST FREQ ORIG PREV CYC CURR CYC

NO. FREQ (HI) FREQ (Hz) (HI) OIFF(%) blFF(%) DIFF(%)

I 1.7_570+01 1.765840+01 I._0+01 0.90 2.29 2.27

2 1.7_0+01 1.764740+01 1.804000+01 085 2.19 2.18

3 6.285270+01 6.478570+01 6.804300+01 7.63 4.86 4.79

4 9._7540+01 9._6_3D+01 9.163_0+01 -1.57 -2.10 -2.19

5 9.31229D+01 9.372160+01 9.260900+01 -0.55 -I ,12 -1,20

6 1,686360+(]2 1.667390+02 *NOt Used* ..................

7 1.87045D+02 2.004930+02 *Not Used* ..................

8 2.133810+02 2_049780+02 *Not Used* .... _.............

9 2.137320+02 2.053520+02 *Not used* ..................

PARAMETER NAME

BAY 1&2 DIAG STIFF

BAY I&2 NON-DIAG STF

BAY 3_ DIAG STIFF

BAY 3_ NON-DIAG STF

BAy 5K6 DIAG STIFF

BAY 5K6 NON-DIAG STF

BAy 7_ DIAG STIFF

BAY 7_ NON-DIAG STF

BAY 9¢10 OIAG STIFF

BAY 9&10 NON-DIAG SF

BAY 1_=2 X-ROT INERT

BAY _& X-ROT INERT

BAY 5_ X-ROT INERT

BAY _,8 X-ROT INERT

ORIG EST

I.00(XXX_OD÷00

I._D+O0

I._0+00

I. 000(0000÷00

I. 00(X_000D+00

I.000(0X)00+00

1. _0+00

I.CX;O(OX)OO+00

1._0+00

1.0000(3000+00

O. 00000000+00

O. 00000000+00

O.O000000D+O0

O. 000C0000+00

PREV CYCLE EST

9,4_I_D-01

8.5918520D-01

1,35651620+00

I. 22817200+00

9.6829342D-01

I. 1226958D+00

I. 17531700+00

2.0333471 D-01

6. 2086706D-01

1 •48623650+00

-I • 95_7170-02

- I. 6897402 D-02

-I. 2433253D-02

-6.76497010-03

CURR CYCLE EST

9. 3993998D-01

B. 6400129D-01

1. 3560265 0+00

I. 21_I02D+00

9. 7607880D-0t

1.1320683 D+00

1.16&50160+00

I.90342410-01

6.2468390D-01

I, 49749280+00

-I. 9837102D-02

-I. 7100451D-02

-1. 2614899D-02

-6.85167320-03

Table 5. Summary of SSID Results for Case 2.

(a) Comparison of Original and
Revised Frequencies (below)

(c) Comparison of Original and
Revised Parameter Estimates (right)

NODE ORIG NOOEL REVISED MODEL TEST FREQ ORIG PREV CYC CURR CYC

NO. FREQ (Hz) FREQ (HI) (HI) DIFF(%) DIFF(%) DIFF(%)

I 1.7_570_1 1.791_D_01 1._0+01 0.90 0.73 0.72

2 1.7_D+01 1.791880+01 1.804000+01 0.85 0.67 0.67

3 6.285270+01 6.655130+01 6.804_D+01 7.63 2.29 2.19

4 9.307540+01 9.262_)1D+01 9.163400÷01 -1.57 -1.13 -1.12

5 9.31229D+01 9.2_80+01 9.26090D÷01 -0.55 -0.22 -0.21

6 1.686_D+02 1.671960+02 *Not Used* ..................

7 1.870_50+02 1.927050÷02 *NOt Used* ..................

8 2.13381D+02 2.14:_01D+02 *NOt Used* ..................

9 2.137320+(}2 2.154500+02 *NOt Used* ..................

PARAMETER NAME

BAY I_ DIAG STIFF

BAY 1&2 NON-DIAG STF

BAY _ DIAG STIFF

BAY 3_ NON-OIAG STF

BAY 5_ DIAG STIFF

BAY 5F_6 NON-DIAG STF

BAY _ DIAG STIFF

BAY 7&_ NON-DIAG STF

BAY 9¢I[10 LONG+Y+Z

BAY 9¢10 LOHG-Y+Z

BAY 91L10 LOHG-Y-Z

BAY 9110 LOHG+Y-Z

BAY 9 BATTENS

BAY 10 BATTENS

BAY 9¢10 -Y DIAGS

BAY 9¢10 +Y DIAG5

BAY 9¢10 +Z DIAGS

BAY 9¢10 -Z DIAGS

BAY 11L2 X-ROT INERT

BAY _e4 X-ROT INERT

BAY 5&6 X-ROT INERT

BAY 7_ X-ROT INERT

ORIG EST

1. 00000000+00

1. _0+00

1. O(X_O(O]Oo+O0

1.00000000+00

1. GOOOOOQo+O0

1.00000000+00

1. _D+00

I .(X_OOO_0+O0

1.O000000O+O0

1.0000000 0+00

1,000O0000+00

1. 000(X_00+00

1.0(XXX]00D+00

1. O00(X)OOD+00

I. OO0O3000+00

1. O0(X;O000+O0

1. O00O3000+0O

I. O0OO3000+00

O. 0000000D+00

O. 0000000D+00

O. 00000000+00

0.00(0]0000+00

PREV CYCLE EST

9. 97471990-01

9,7830210D -01

1.05%7980+00

1 ._161770+00

I. 16796680+00

9.14215_0 -01

1.19757020_

8.8138184D..-01

1.2142._0_

1.04621710+00

9. 47006170-01

1,1050587D÷00

9. 98077690-01

9,98518570-01

6.23516120-01

1._461710+00

8.2_80261D-01

1.0718_180+00

-1.3717859D-02

-1.16435040-02

-7.24/_57_D-03

- 1.9_1 _0-03

CURR CYCLE EST

9.9729872D-01

9. 7854145 D-01

1,05925620+00

1. O420375 O+(X_

1.16999350+00

9,1_3203D-01

1.20147010+00

8.81319370-01

1.21_5980+_

I. 04705880+00

9.45312_D-01

1.10&_760+00

9.97993200-01

9.98435_0-01

6.1673718D -01

1. 25737320+00

8. 23644980-01

1. 06932590÷00

-I. 40_3020-02

-I. 19:36157D-02

-7. 4372327D-03

-1 .98641210-03

Table 6. Summary of SSID Results for Case 3.

(a) Comparison of Original and
Revised Frequencies (below)

(c) Comparison of Original and
Revised Parameter Estimates (right)

MODE (}RIGMODEL REVISED NODEL TEST FREQ

NO. FR_ (HI) FRED (Nz) (NZ)

1 1.7_57D_1 I._170+01 1._0+01

2 1.7_0+01 I._D+01 I._0+01

3 6.28527P01 6.643070+01 6._0+01

4 9.307540+01 9.253130+01 9.1614_D+01

5 9._12290+01 9.271090+01 9.26090D+01

6 1.686360+02 1._530_ *Not Used*

7 1.870&5D_ 1.927990+02 *Not Use,d*

8 2.13_1D+_ 2.138980+02 *Not used*

9 2.13T_20+4_ 2.14_60+02 *Not Used_

ORIG PR_ CYC CURR CYC

DIFF(%) DIFF(%) DIFF(%)

0.90 0.27 0.26

0.85 0.14 0.13

7.63 2.45 2.37

-I .57 -0.99 -0.98

-0.55 -0.12 -0.11

PARAMETER NAME

BAY I ¢7 DIAG STIFF

BAY lJ_2 NO_-DIAG STF

BAY _4 DZAG STIFF

BAY _ NON-DIAG STF

BAY 5_,60IAG STIFF

BAY 5_6 NON-OIAG STF

BAY 71_ DIAG STIFF

BAY 7_ NON-DIAG STF

BAY 9¢10 LONG+Y+Z

BAY 9&10 LON6-Y+I

BAY 9¢10 LO_G-Y-Z

BAY 9¢10 LOk_+Y-Z

BAY 9 BATTENS

BAY 10 BATTENS

BAY 9¢10 -Y DIAGS

BAY 9¢10 +Y DIAGS

BAY 9¢10 +Z OIAGS

BAY 9¢10 -Z DIAGS

BAY I_2 X-ROT INERT

BAY _ X-ROT INERT

BAY 5_,6 ](-ROT INERT

BAY _ X-ROT INERT

ORIG EST

I. _0+_

1.O(XXX_00D+O0

1.0C(;('I_000+00

I ._O_

I._0+_

1.0(_(_(_0000+00

I. (X_00000+00

1.000C0000+00

1.00000000+00

1. COCC0000+00

1. O0(](X)D00+00

1,_0÷00

1.O(O)OCOOD+00

I.C_3C(]_7_00+00

1._D+00

I.00(X3000¢_+00

1.00000000+00

0. _0+00

O. _0+_

0._O

O. 0000(0W_0+00

PREV CYCLE EST

9.99432340-01

9.93529440-01

I._594_Y)0+00

9. Z,_51422D-01

1,0925002D+00

9. 29951 _ -01

1.11404190+00

1 ._50+00

1.01106310÷00

1.01363_0+00

1.01106470+00

I.01405240+00

1.00045400+00

1. _7T60_

1, _D+00

1.0205702D+00

1.04303640+00

I. 0431 _0_

-9.98493140-0_

-8. _271226D-05

-5.62O7765O.-O3

-2,6935197D-_

CURR CYCLE EST

9. 99409510-01

9.9_1920-01

1. 03648780+00

9.4160221 D-01

1.09373_00÷00

9.289_620-01

1.115_9350+00

I.04265410+00

1.01129680+00

I.0I _J_800+00

1.01129850+00

1-0I_2T290+00

1,000_120+00

I. (_0_710+00

I. 0207896D+00

I, 02078940+00

1.0_384.60D+00

1.04_9580D+00

-I.015_100-02

-8, S69_1080-03

-5.71496550-03

-2. T_95742D-03
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Table 4(b). Comparison of Original and Revised Eigenvectors

N** TEST MODE NO. 1 VS ANALYSIS MODE NO. 2 for TEST SETUP NO, I ***

.................................................................................................................

COMP NODE DOF ORIG MODEL REVISED MODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. MO. VECTOR VECTOR VECTOR DIFE(%) DIFF(%) DIFF(%)

.................................................................................................................

} 2 Y 2.83280+00 2.59490÷00 2.33480_-00 --21 .33 -11.19 -11 ,lh Y-MOTION @ NODE 2

1 2 Z -4.93990+00 -S.221TD+CX] -5.65640+00 12.70 7.78 7.72 Z-MOTION @ NODE 2

I 8 Y 2.45990+00 2.24260+00 1.90950+00 -28.83 -17.51 -17,45 Y-MOTION @ NODE B

I 8 Z -4.2793D+00 -4.470"70+00 -4,32060+00 0,96 -3.43 -3.47 Z-MOTION @ NODE 8

I 22 Y 1.02,950+00 8.666J+D-01 7.1352D-01 -44,20 -21.70 -21,46 Y-MOTION @ NODE 22

I 22 Z -1.71980e00 -I,63300+00 -1.7511D+00 1.79 6.63 6.74 Z-MOTION @ NODE 22

I 32 Y 4.69240-01 3.5289D-01 5.26740-01 10.92 32,73 33.01 Y-MOTION @ NODE 32

I 32 Z -7.02360-01 -5.05540-01 -4.94130-01 -42,14 -3.05 -2.31 Z-MOTION _ NODE 32

I 2 Y 4.94060+00 5.2250O+00 5.10270+00 3.18 -2.33 -2,40 Y-MOTION @ NODE 2

1 2 Z 2.83200+00 2.59409+00 1.41270+00 -I00.47 -83.70 -83.62 Z-MOTION @ NODE 2

I 8 Y 4,27810+00 4.47180+00 4.6797D+00 8.58 4.48 4.44 Y-MOTION @ NODE 8

1 8 Z 2.460_D+00 2.2437D+00 1.8668D+00 -31.80 -20,25 -20,19 Z-MOTION @ NODE B

I 22 Y 1.71930÷00 1.63160+00 1.83990+00 6.55 11.20 11.31 Y-MOTION @ NODE 22

I 22 Z 1.02930÷00 8,65850-01 8.93050-01 -15.26 2.86 3.05 Z-MOTION @ NODE 22

1 32 Y 7.02020-01 5.1095D-01 6.74760-01 -4.04 23.75 24.28 Y-MOTION @ NODE 32

I 32 Z 4.68830-01 3.51810-01 2.92900-01 -60,06 -20.61 -20.11 Z-MOTION @ NODE 32

1 2 Y 3.00900+00:3._1_0+00 3.04780+00 1.27 -0.94 -1,11 Y-MOTION @ NODE 2

I 2 Z 2.99470+00 3,07040+00 2.5395D+00 -17,93 -20,73 -20.91 Z-MOTION @ NODE 2

I 8 Y -2.95100+00 -3.03200÷00 -3.0019D+00 1.70 -0.89 -I.00 Y-MOTION @ NODE 8

I 8 Z -2.951]0+00 -3.03130+00 -2.71t_50+00 -8,72 -11.54 -11.66 Z-MOTION @ NODE 8

I 22 Y 2.08500+00 2.3391D÷00 2.39130+00 12.81 2.38 2.18 Y-MOTION @ NODE 22

I 22 Z 2.08510+00 2.33750+00 1.9628D+00 -6.23 -18.86 -19.09 Z-MOTION @ NODE 22

I 32 Y -1.33380+00 -I,55050+00 -1.64260+00 18.80 5,57 5.60 Y-MOTION @ NODE 32

I 32 Z -1.33380+00 -1.5526D÷00 oi.26740+00 -5.24 -22.54 -22.50 Z-MOTION @ NODE 32

TEST MODE NO, 4 vs ANALYSIS HODE NO. 4 for TEST SETUP NO. 1 ***

.................................................................................................................

CO_qP NODE DOE ORIG MODEL REVISED MODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

.................................................................................................................

I 2 Y 3.12660+00 1.56330+00 2.4579D+00 -27.21 35,41 36.40 Y-MOTION @ NODE 2

1 2 Z .3.StJo40÷O0 3.9405D+00 3.28640+00 -7,91 -19,54 -19.90 Z-MOTION @ NODE 2

1 8 Y 1.54940÷00 7.2454D-01 2.81510-01 -450.40 -162.52 -157,38 Y-MOTION @ NODE 8

I -_=Z 1.823g_P+O0 1.94620+00 2.317GD+00 21.29 16.08 16.02 Z-MOTION @ NODE B

I 22 Y -2.79240+00 -1.54080÷00 -2.{]8350+00 -34,02 24.86 26.05 Y-MOTION @ MODE 22

I 22 Z -3.05360+00 -3,79130+00 -3.43660+00 11,14 -9.96 -10.32 Z-MOTION @ NODE 22

1 32 f -2.19510+00 -1.41190+00 -I.78670+00 -22.86 19.61 20.98 Y-MOTION @ NODE 32

1 32 Z -2,52010+00 -3.50650+00 -3.5649D+00 29.31 1,81 1.64 Z-MOTION @ NODE 32

1 2 Y 3,56770+00 3.96880+00 3.28630+00 -8.56 -20,39 -20.77 Y-MOTION _ NODE 2

I 2 Z -3.11160÷00 -1.55240+00 -2.30220+00 -35,16 31.51 32.57 Z-MOTION @ NODE 2

1 8 Y 1.81410+00 1.93840+00 2,7155D+00 33,20 28.68 28.62 Y-MOTION @ NODE B

I 8 Z -1.56270+00 -7.302_0-01 -1.00500+00 -55.48 25.89 27.34 Z-MOTION @ NODE 8

I 22 Y -3.03280+00 -3.77430+00 -3.35490÷00 9,60 -12.13 -12,50 Y-MOTION @ NODE 22

1 22 Z 2,81090+00 1.54520+00 1.53580+00 -83.03 -2.24 -0.61 Z-MOTION @ NODE 22

I 32 Y -2.50400+00 -_.46600+00 -3.60640+00 30.57 4.06 3.89 Y-MOTION @ NODE 32

I 32 Z 2.21060÷00 1,43180+00 1.83050÷00 -20,76 20.44 21.78 Z-MOTION @ NODE 32
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Table 5(b). Comparison of Original and Revised Eigenvectors

TEST NODE NO. I v$ ANALYSIS MODE NO. 2 for TEST SETUP NO. I ***

................................................................................. ................................

COMP NODE DOF ORIG MODEL REVISED MODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. NO. VECTOR vECTOR VECTOR DIFF(%) DIFFC.) DIFF(%)

............................................................................... ._-_-_. ...........................

1 2 Y 2.8328D+00 2.2188_+00 2.3}_.80*00 -21.33 4,33 I..97 y-MOTioN _ NODE 2

I 2 Z -4,939qD+00 -5.2927D+00 -5.65840+00 12.70 6.58 6.46 Z-NoTioN a NODE 2

1 8 Y 2,459'90+00 1,9412D+C0 1._5D*00 -28,83 -2.32 -I,66 Y-MOTiON @ NODE 8

I 8 Z -4,2793D+00 -4.5557D+00 -4.3206D+00 0.96 -5.32 -5.44 Z-MOTION @ NODE 8

I 22 Y 1.0295D+00 7._D-01 7.13520-01 -44,29 -11.58 -10,83 Y-MOTION @ NODE 22

I 22 Z -I,7198D+00 -1.80050+00 -I.7511D+00 1.79 -2.70 -2.82 Z-MOTION @ NODE 22

I 32 Y 4,6924D-01 3.77870-01 5.2674D-01 10.92 27,92 28.26 Y-MOTION @ NODE 32

I 32 Z -7.0236D-01 -7.0771D-01 -4.9413D~01 -42.14 -43.07 -43.22 Z-MOTION @ NODE 32

,4,r, TEST MODE NO. 2 vs ANALYSIS MODE NO. I for TEST SETUP NO. I ***

................................................................................................................

COMP NODE DOF ORIG NODEL REVISED MODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

.............................................................................................................

1 2 Y 4.9406D+00 _.2933D+00 5.1027D+00 3.18 -3.61 -3.74 Y-MOTION @ NODE 2

1 2 Z 2.8320D÷00 2.23380+00 1.4127D+00 -I(X_.47 --5r9_17 --58.12 Z--MOTION @ NODE 2

1 8 Y 4.2781D+00 4.5550D+00 4.6797D+00 8.58 2,78 2.67 y-MOTION @ NODE 8

I 8 Z 2.4603D+00 1.9217D+00 1.8668D÷00 -31.80 -3,63 -2.94 Z-NOTION @ NODE B

I 22 Y 1,7193D+00 1.7994D+00 1.83990+00 6.55 2.31 2,20 Y-MOTION @ NODE 22

I 22 Z 1.02930+_ 8._200-01 8.9305D-01 -15.26 8.82 9.39 Z-MOTION @ NODE 22

I 32 Y 7.0202D-01 7.0477D-01 6.74760-01 -4.04 -4.32 -4.45 Y-MOTION @ NODE 32

I 32 Z 4,6883D-01 3.5874D-01 2.92900-01 -60.06 -23.19 -22.48 Z-MOTION @ NODE 32

_t_t TEST MODE NO. 3 vs ANALYSIS MODE NO. 3 for TEST SETUP NO. I _**

................................................................................................................

COt_P NODE DOF ORIG MODEL REVISED MODEL TEST ORIG PREV CURR cOORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

.................................................................................................................

I 2 Y 3.0(_0D+00 2.93510+00 3.04780+00 1.27 3.74 3.70 Y-MOTION @ NODE 2

1 2 Z 2,9947D+00 2,70520+00 2,5395D+C0 -17,93 -6,77 -6.52 Z-MOTION @ NODE 2

1 8 Y -2.95100+00 -_.1129D+00 -3,0019D÷00 1.70 -3.63 -3.70 Y-MOTION @ NODE 8

1 8 Z -2.95130+00 -3.23720+0_ -2.7146D+00 -8.72 -19.01 -19,25 Z-MOTION @ NODE 8

1 22 Y 2.0850D+00 2.3014D+00 2.39130+00 12.81 3.86 3.7(5 Y_MOTtON @ NODE 22

1 22 Z 2.0851D+00 2.4790D+00 1.96280+00 -6.23 -25.86 -26,30 Z-MOTION @ NODE 22

1 32 Y -1.3338D+CX_ -1.3097D+00 -1.6426D+00 18.80 20.44 20,27 Y-NOTION @ NODE 32

1 32 Z -1.3338D+00 -I.0812D+00 -1.2674D+00 -5.24 14.29 14,69 Z-MOTION @ NODE 32

_t TEST MOOE NO. 4 vs ANALYS|S NODE NO. 4 for TEST SETUP NO. 1 ***

................................................................................................................

COt_P NODE OOF ORIG MODEL REVISED MODEL TEST ORIG PREV CURR COOROINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DIFF(%) DIFF(%) OIFF(%]

...............................................................................................................

1 2 Y 3.1266D+00 2.2320D÷00 2.45790+00 -27,21 8.60 9.19 Y-MOTION @ NODE 2

I 2 Z 3.54640+00 4.5812D+00 3.28640+00 -7.91 -38,96 -39_40 Z-MOTION @ NODE 2

I 8 Y 1.54940+00 5 5312D-01 2.81510-01 -450.40 -I02.69 -96,49 Y-MOTION @ NODE 8

1 8 Z 1.8239D+00 1.7_11D+GO 2.3t74D+00 21.29 22.58 22.71 Z-MOTION @ NODE 8

1 22 Y -2.79240+00 -1.5_,840+00 -2.0835D+00 -34.02 23_64 24.72 Y-MOTION @ NODE 22

1 22 Z -3.0536D+Od -3.56880÷00 -3.4366D+00 11.14 -3.74 -3,85 Z-MOTION @ NODE 22

1 ]2 Y -2.1951D+00 -1.3692D+00 -1.78670+00 -22.86 22.60 23,36 Y-MOTION @ NODE 32

1 32 Z -2. $2010+00 -3.11950+00 -3.56490+00 29.31 12.73 12.49 Z-MOTION @ NODE 32

TEST MODE NO. 5 v$ ANALYSIS MODE NO. 5 for TEST SETUP NO. I ***

...............................................................................................................

CONP NODE DOF ORIG MODEL REVISED NODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

........................................................................ _ .....................................

I 2 Y 3.567;'D+00 4.25550+00 3.28630+00 -8.56 -29.27 -29.49 Y-MOTION @ NODE 2

I 2 Z -3.1116D+00 -I._9D+00 -2.3022D+00 -35.16 18.11 19.00 Z-MOTION @ NODE 2

I 8 Y 1.8141D+00 2.15T90-+00 2,7155D+00 33_20 20.94 20176 Y-NOTION @ NODE 8

I 8 Z -1.5627D+00 -9.1425D-01 -1.00500+00 -55.48 7,90 9.03 Z-MOTION @ NODE 8

1 22 Y -3.0328D+00 -3.7446D+00 -3.35490+00 9.60 -11.35 -11.62 Y-MOTION @ NOOE 22

1 22 Z 2.810'90+00 'I.76080+00 t.53580*00 -83.03 -15.89 -14.65 I-MOTION @ NODE 22

1 32 Y -2.5040D+00 -3.08730+00 -3.60640+00 30.57 14.60 14.40 Y-MOTION _ NODE 32

1 32 Z 2.21060",00 137700+00 1,83050+00 -20.76 23.96 24.78 Z-MOTION @ NODE 32
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Table 6(b). Comparison of Original and Revised Eigenvectors

TEST HODE NO. 1 vs ANALYSIS HOOE NO. 2 for TEST SETUP NO, 1 ***

...............................................................................................................

COf(P NODE DOF ORIG MODEL REVISED MODEL TEST ORIG PREV CURR COORDINATE DESCRIPTION

NO. NO, VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

...............................................................................................................

i Z Y 2.8,]250+00 4.49_B0+Q(} 2.33480+(X) -21.33 ........ 92.58 Y-MOTION _ NODE 2

I 2 Z -4.93990+00 -3.52630+00 -5,65840+00 12.70 ....... 37.68 Z-MOTION @ NODE 2

1 8 Y 2.45990+00 3.89580+00 1.9095o+00 -28.83 ........ I0&.02 Y-MOTION @ NODE 8

1 _ Z -4.2793D+00 -3.04TTD+CX3 -4,3206D+0(] 0.96 ....... 29.46 Z-MOTION @ NODE 8

I 22 Y 1.02950+00 1.58690+00 7,1352D-01 -44.29 ........ 122,40 Y-MOTION @ NODE 22

I 22 Z -1.71980+00 -1.1938D÷00 -1.75110+00 1.79 ....... 31.82 Z-MOTION _ NODE 22

1 32 Y 4.6924D-01 6.9232D-01 5.2674D-01 10.92 ........ 31.43 Y-MOTION @ NODE 32

I 32 Z -7.0236D-01 -4.71110-01 -4.9413D-01 -42.14 ....... 4.66 Z-MOTION @ NODE 32

1 2 y 4.94060+00 3.52670+00 5.1027D+00 3.18 ....... 30.89 Y-MOTION @ NODE 2

I 2 Z 2.8320D+(X] 4.49670+00 1.41270+00 -100.47 ........ 218.31 Z-MOTION @ NODE 2

I B Y 4.2781D+00 3.0466D+00 4.67970+00 8,58 ....... 34.90 Y-MOTION @ NODE 8

B Z 2,4603D+00 3._g60D÷O0 1.8668D÷00 -31.80 ........ 108.71 Z-MOTION @ NODE B

1 22 Y 1.71930+00 1.1936D+00 1.83990+00 6.55 ....... 35.13 Y-MOTION @ NODE 22

I 22 Z 1.02930+00 1,58760+00 8.93050-01 -15.26 ........ 77.78 Z-MOTION @ NODE 22

1 ]2 Y 7,0202D-01 4.7003D-01 6.74760-01 -4.04 ....... ](3,34 Y-MOTION @ NODE 32

1 32 Z 4._D-01 6.93570-01 2.92900-01 -60.06 ........ 136.79 Z-MOTION @ NODE 32

fnt* TEST I_DE NO. 3 v= ANALYSIS MODE NO. 3 for TEST SETUP NO. 1 ***

.........................................................................................................

COflP NODE OOF ORIG _,EL REVISED MODEL TEST ORIG PREY CURR CCORDINATE DESCRIPTION

NO. NO, VECTOR VECTOR VECTOR DIFF(%) DIFF(%) DIFF(%)

I 2 Y 3.00_ 3_10570+00 _.04_b÷O0 1.27 ........ 1.90 Y-NOTION @ NODE 2

I 2 Z 2.99470+00 3.09150+00 2.53950+00 -17.93 ........ 21.74 Z-MOTIO_ @ NODE 2

I 8 Y -2.9510D+00 -3.04720+00 -3.O019D+OO 1.70 ........ 1.51 Y-MOTION @ NODE 8

I 8 Z -2.9513D+00 -3.CK720+00 -2.71460+00 -8.72 ........ 12.25 Z-MOTION @ NODE 8

I 22 Y 2.OeSOO+O0 2.13960+00 2.39130+00 12.81 ...... 10.52 Y-MOTION @ NODE 22

1 22 Z 2,015510+00 2,13950+00 1.96280+00 -6.23 ........ 9.01 Z-MOTION @ NODE 22

1 32 Y -1.3338_+00 -1.3_D÷00 -1._,,?.60+00 18.80 ....... 15.45 Y-MOTION @ NODE 32

I 32 Z -1.3338D+00 -I.]8910+00 -1.2674D+00 -5.24 ........ 9.60 Z-NOTION @ NODE 32

Jr/r* TEST NODE NO. 4 vs ANALYSIS NODE NO. 4 for TEST SETUP NO. 1 _-k*

........................................................................................................

(::(]PIP NIXIE OOF ORIG NOOEL REVISED MODEL TEST ORIG PREY CURR COORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR. DIFF(%) DIFF(%) DIFF(%)

.....................................................................................................

1 2 Y 3.12660+00 9.9924D-01 2.4579D+00 -27.21 ....... 59.35 Y-MOTION @ NODE 2

I 2 Z 3.54640+00 4.63550+00 3.2864D+(X) -7.91 ........ 41.05 Z-MOTION @ NODE 2

1 8 Y 1.54940+00 4.69950-01 2.81510-01 -450+40 ........ 66.94 Y-MOTION @ NODE 8

1 8 Z 1.P_X9D+O0 2,34770+00 2.31740+00 21.29 ....... 1.31 Z-MOTION @ NODE 8

I 22 Y -2.79240+00 -9.66590-01 -2.08350+00 -34.02 ....... 53.61 Y-MOTION @ NODE 22

I 22 Z -3.05360+00 -4.04310+00 -3'. 43660+00 11.14 ........ 17.65 Z-MOTION @ NODE 22

I _2 Y -2.19511P_]0 -6.7514D-01 -1.7867D+00 -22.86 ...... 62.21 Y-MOTION @ NODE 32

1 32 Z -2.52010+00 -].22720+C0 -3,56490+00 29.31 ....... 9.47 Z-NOTION @ NODE 32

JHl-k TEST MODE NO. 5 vs ANALYSIS NODE NO. 5 for TEST SETUP NO. 1

.........................................................................................................

COMP NOOE DOF ORZG MODEL REVISED NOOEL TEST ORZG PREV CURR COORDINATE DESCRIPTION

NO. NO. VECTOR VECTOR VECTOR DZFF(%) D|FF(%) DIFF(%)

.................................................................................. - .........................

I 2 Y 3.56770+00 4.66740+00 3.28630+00 -8.56 ........ 42,02 Y-MOTION @ NODE 2

I 2 Z -3.11160+00 -9.9532D-01 -2.30220+00 -35.16 ....... 56.77 Z-MOTION _ NODE 2

1 8 Y 1.8141D+00 2.3313D÷00 2,71550+00 33.20 ....... 14.15 Y-MOTION @ NODE 8

I 8 Z -1.5627D+00 -4.76920-01 -1.00500+00 -55.48 ....... 52.55 Z-MOTION @ NODE 8

1 22 Y -3.03280+00 -4.02030+00 -3.3549D÷00 9.60 ........ 19.83 Y-MOTION @NODE 22

I 22 Z 2.81090+00 9.73660-01 1.5358D*00 -83.03 ....... 36.60 Z-MOTION @NODE 22

1 ]2 Y -2.5040D+00 -3.19870+00 -3.6064D+00 30,57 ....... 11.30 Y-MOTION @ NODE 32

1 ]2 Z 2.21060+00 6.80620-01 1,83050+00 -20,76 ....... 62.82 Z-MOTION @ NODE 32
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