
Studies on Logic Simulation

and

Hardware Description Languages

Nagisa ISHIURA

December 1990

 Studies on Logic Simulation

 and

Hardware Description Languages

Nagisa ISHIURA

 December 1990

 Studies on Logic Simulation

and Hardware Description Languages

Nagisa ISHIURA

Abstract

With the recent advances of semiconductor technologies, larger and larger

and more and more sophisticated digital systems can be realized as hard-

ware, which in turn makes it difficult to achieve design verification of

hardware. In this thesis three major topics in logic design verification

and hardware description languages are discussed. One is on acceler-

ation of logic simulation speed. The increase in computation cost for

logic simulation has been and will be the primary problems in design

verification. As a solution to this problem, fast simulation methods uti-

lizing vector supercomputers are proposed. Another topic is on accuracy

of logic simulation. In verification of circuits which depends on subtle

timing relations, trade-offs between accuracy and computation cost of

simulation becomes an important issue. Discussions are created on this

issue both from theoretical and practical point of view. The last topic

is on hardware description languages. A new model of hardware which

can be a base of formal semantics of hardware description languages is

presented.

 As for acceleration of logic simulation speed, fast logic simulation tech-

niques utilizing vector supercomputers are proposed. Vector supercom-

puters are computers which have special facilities to execute operations

on vectors extremely fast. In chapter 3 and chapter 4, new algorithms of

logic simulation and fault simulation, respectively, are presented which

efficiently bring out the potential of vector super computers.

 i

 ii Abstract

 In chapter 3, three types of simulation algorithms are proposed which

are dedicated for 1) zero-delay simulation of combinational circuits, 2)

zero-delay simulation of synchronous sequential circuits, and 3) simula-

tion with delay consideration. The first two are based on the compiler-

driven method. High vectorization ratio is achieved by processing many

input patterns or simulating many gates at a time. Combinational use

of the vectorization algorithms and the bit oriented vector logical opera-

tions makes it possible to achieve 7.7 x 109 gate-evaluations per second

for combinational circuit simulation and 1.4 x 109 gate-evaluations per

second for sequential circuit simulation on the supercomputer FACOM

VP-200. The acceleration ratio through vectorization is more than 15.

The third algorithm for timing simulation is an extension of the con-

ventional event-driven simulation algorithm. Vectorization is achieved

by processing all the events together which are scheduled to occur at

the same time period. A simulator implemented based on the algorithm

marked 230 x 103 events per second on the supercomputer HITAC S-

810/20. These performance figures are comparable to those of hardware
simulation engines.

 In chapter 4, a vector supercomputer oriented fault simulation algo-

rithm, named a dynamic 2-dimensional parallel fault simulation is pro-

posed which is dedicated for zero-delay two-valued fault simulation of

gate-level combinational circuits with single stuck-at faults. The bit-

parallel simulation technique which is one of the basic algorithms of fault

simulation is extended to two-dimensional parallel simulation technique.

In this technique many faults for many patterns are processed at a time

by vector bitwise logical operations. Although high vectorization ratio

is achieved in this method, it does not necessarily lead to efficient fault

simulation if we try to combine it with the fault dropping which is an

indispensable technique for reducing the computation cost. In order to

counter this problem, dynamic adjustment of the two parallelism factors

Abstract

is introduced. Experimental results on coverage estimation of random

patterns are shown, in which the fault simulator implemented on the FA-

COM VP-200 supercomputer achieved acceleration ratio of 15 through

vectorization and succeeded in simulating 500,000 random patterns on a

circuit of 3,000 gates within 30 seconds.

 As alternatives to logic simulators on general purpose computers, spe-

cial purpose hardware for logic simulation and fault simulation have been

developed, which achieves very high performance by parallel computa-

tion scheme. However, there are trade-offs between simulation speed

and flexibility, or affinity for existing CAD systems on general purpose

computers. The new approach of developing logic simulators and fault

simulators on general purpose vector supercomputer is expected to be the

one that fills the gap between software solutions on conventional scalar

computers and hardware solutions.

 As for accuracy of logic simulation, discussions are created focusing on

a delay model under which delay values are not definite and are specified

with their minimum and maximum values. At first the difficulty of logic

simulation problem under the delay model is theoretically clarified, and

then efficient algorithms to solve the problems are proposed.

 Chapter 5 is dedicated for the theoretical consideration on modeling

of delay and computational difficulty of a hazard detection problem. Re-

lation among models of delay and time, accuracy of verification results

and computation cost for the verification is discussed taking the hazard

detection problem as an example. We also discuss the difference of a

discrete time model and a continuous time model. It is shown that the

problem of detecting hazards on combinational circuits under uncertain

delay assumption is computationally intractable (NP-hard) and that it is

hence difficult to solve the problem by a simple extension of the min/max

delay simulation technique. It is also shown that there is an essential dif-

ference in the verification results obtained based on the discrete time

iv Abstract

model and the continuous time model. The verification result can be

more optimistic in the discrete time model than in the continuous time

model. Further discussions are created on the relation between the con-

tinuous time model and the discrete time model, in which a lower bound

of the width between ticks that make the discrete time model equivalent

to the continuous time model.

 In chapter 6, a new simulation technique named time-symbolic simula-

tion is presented which enables accurate simulation under the uncertainty

delay model. The conventional min/max delay simulation techniques
have been suffering from pessimistic results brought about by reconver-

gent fanouts. In time-symbolic simulation the uncertain delay value is

expressed by a variable, which makes it possible to avoid the pessimism

at reconvergent gates. Time-symbolic simulation also enables us to get

conditions where the circuit under test behaves as expected, which is of

good use for error analysis and for design improvements.

 It is difficult to adapt conventional simulation algorithms to time-

symbolic simulation. In this chapter, two efficient simulation algorithms

for time-symbolic simulation are proposed. One is dedicated for combina-

tional circuits and processes the algebraic formulas representing time by

means of the linear programming. The other algorithm, which is named

coded time-symbolic simulation (CTSS), can handle any kind of gate-level

logic circuits. In the CTSS an uncertain delay value is represented us-

ing a set of Boolean variables based on binary coding which encodes all

the cases of delay values. Simulation is executed by means of Boolean

function manipulation. Both of the simulators are shown to run within

a feasible time for small scale circuits up to 100 gates. In this chapter,

various techniques are also proposed for verification of asynchronous cir-

cuits based on time-symbolic simulation and for analysis of simulation

results.

 The importance of the symbolic approach in this chapter lies in that we

Abstract v

can analyze the simulation result so as to get useful information on error

correction and design improvements, as well as in that we can get accurate

simulation results. Symbolic simulation, including time-symbolic and

value-symbolic approaches, will be one of the most important techniques

for logic design verification along with conventional logic simulation.

 The last part of this thesis is dedicated for the discussion on formal

semantics of hardware description languages. In the trend of standard-

ization, definition of formal semantics of practical hardware description

languages is an important issue. In order to define formal semantics of

hardware description languages which can support various applications

such as logic synthesis and formal verification as well as logic simulation,

a model of hardware is indispensable which can express uncertain behav-

ior of hardware in a strict since. In this thesis, a new behavior model of

hardware named NES (Nondeterministic Event Sequence) is proposed.

The NES can express the uncertainty of hardware behavior by means

of nondeterminism. The behavior of hardware is modeled by nondeter-

ministic abstract machines and is dealt with as a set of all the possible

behaviors. In chapter 7, the formal definition of the NES model, and a

modeling method of a hardware module and connected hardware mod-

ules are presented. Also as an application of the NES model, definition

of the semantics of a hardware description language UDL/I is described.

 The applications of hardware description languages will be wider and

wider. The nondeterministic semantics, which plays an indispensable role

in expressing the relations between behavior of circuits in different de-

sign levels, is considered to be an essential factor of hardware description

languages of the next generation, which can be a basis of variety of appli-

cations such as logic synthesis, formal verification, symbolic simulation,

and so on.

VI Abstract

Contents

Abstract i

Contents vii

1 Introduction

1.1

1.2

Backgrounds

Outline of the Thesis

1

1

5

2 Logic Simulation

2.1

2.2

Modeling of Logic Circuits for

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

Modeling of

Logic Simulation

Structure of Logic Circuits

Modeling of Signal Values

Modeling of Time

Modeling of Delay

Logic Simulation

Basic Algorithms for Logic

2.2.1

2.2.2

2.2.3

2.2.4

Compiler-

ulation

Driven

S-Algorithm

Simulation

Sim ulation and Event-Driven Sim-

and T-Algorithm

Code Generation Method and Table-

Ordering of Gate Evaluations

Driven Method

11

11

11

11

14

14

16

17

17

18

21

22

3 Fast

3.1

Logic Simulation Using Vector Super Computers

Introduction

25

25

3.2

3.3

3.4

3.5

3.6

Vector Supercomputers

Vectorization of Combinational Circuit

3.3.1

3.3.2

3.3.3

3.3.4

 3.3.5

Simulation

Vector-Parallel Simulation Technique

Reduction of Storage

Sorting

Multi-Valued

Requirements

Logic Simulation

Implementation and Experiments

Based on DF-

Considerations for Further Acceleration

Vectorization of Sequential Circuit

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

Gate Grouping Technique

Grouping Algorithms

Simulation

Based on DF-Sorting

Implementation and Performance Evaluation

Code-Generation Method vs.

Modeling of Circuits

Table-Driven Method

Vectorization of Event-Driven Simulation

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

Vectorization of Event Processing

Event Fetch

Event Propagation

Gate Evaluation

Event Registration

Implementation and Performance Evaluation

Compiler-Driven Method vs.

Remarks and Discussions

Event-Driven Method

28

32

32

33

37

42

48

48

48

52

55

59

60

60

60

62

64

66

68

70

71

72

4 Fast Fault

4.1

4.2

Simulation Using Vector Super Computers

Introduction

Dynamic Two-Dimensional Parallel Simulation Technique

4.2.1

4.2.2

4.2.3

Fault Sim ulation

Two-Dimensional Parallel Simulation

Dynamic Adjustment of the Parallelism Factors

75

75

77

77

79

81

4.3

 4.4

4.5

Multiple Fault Propagation

4.3.1

4.3.2

4.3.3

Selective Tracing

Implementation of Selective Tracing

Determination of Parallelism Factors

Implementation and Experiments

4.4.1

4.4.2

Simulation Speed

Required Storage Size

Remarks and Discussions

84

84

85

91

93

93

96

96

5 Computational Complexity of Logic Simulation

5.1

5.2

5.3

5.4

5.5

5.6

Introduction

Hazard Detection Problem and Modeling of

5.2.1

5.2.2

5.2.3

Hazard Detection Problem

Modeling of Delay and Time

Notation

Hazard Detection Problems of the

Problems

Delay and Time

Discrete Time Model

Relation between the Continuous Time Model

crete

5.4.1

5.4.2

5.4.3

Time Model

and the Dis-

Difference between the Continuous Time Model and

the

The

Discrete

Linear

Time Model

Inequality System Equivalent to a Haz-

ard Detection Problem

Reduction of Continuous

Time Model

Time Model into Discrete

Hazard Detection Problems of the Continuous

5.5.1

5.5.2

Exponential Delay and Discrete Time

Time

Model

Model

An Upper Bound of the Computational Complex-

ity of Hazard Detection Problem of

Time Model

Remarks and Discussions

the Continuous

99

99

101

101

102

104

105

108

108

111

113

115

115

120

120

6

5.A Proof of Lem 5.5 122

 Time-

tion

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Symbolic

Introduction

Simulation for Accurate Timing Verifica-

Problems of Con ventional Min/Max Delay Simulation

Time-Symbolic Simulation Based on T-Algorithm

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

Timing

6.4.1

6.4.2

6.4.3

6.4.4

Coded

6.5.1

6.5.2

Modeling of Uncertain Delay Using Time Variables

Algorithm Based on S-Algorithm

Representation of a Signal History by

Algorithm of Gate Evaluation

Timing

6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

Manipulation of

Verification by

Algebraic

125

125

128

130

130

131

an Event Tree

Expressions

Time-Symbolic Simulation

Hazard Detection

Veri fication of Asynchronous Sequential Circuits

Result-Analysis System

Performance of the Simulator

Time- Symbolic

Modeling

Simulation - CTSS

of Uncertain Delay by Boolean Variables

Representation of Boolean Functions by a Shared

Binary Decision Diagram

Verification by Coded Time-

Result Analysis of the CTSS

Symbolic Simulation

Analysis of Simulation Results Based on Symbolic

Simulation of Finite Automata

Extraction of Algebraic Expressions

Implementation Issues

Experimental Results

Remarks and Discussions

132

133

138

138

138

139

143

144

144

145

147

151

151

151

153

153

155

156

7 NES: A Nondeterministic

Description Languages

7.1

7.2

7.3

7.4

7.5

7.6

Introduction

Behavior Model for Hardware

Basic Concepts of the NES Model

7.2.1

7.2.2

Modeling of Uncertainty by Nondeterminism

Modeling of a Zero Delay

Modelin

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

g and Description of Behavior

Modeling of Waveforms

Modeling of Beh avior

159

of a Hardware Module

of a Module

Description of Behavior of Modules

Description of a Zero-Delay Unit

Simulation of the Abstract

Modeling

7.4.1

7.4.2

and

Machine

Descriptions of Connected Modules

Modeling of Connected Modules

Description of Connected

Applications of the NES Model

7.5.1

7.5.2

Modules

Definition of Semantics of UDL/I
Non

Remarks

deterministic Semantics

and Considerations

and CAD Tools

159

162

162

164

165

165

167

168

170

171

172

172

174

175

175

177

178

8 Conclusions 181

References 187

Acknowledgment 197

List of Publications by

Major Publications

Technical Reports

the Author 199

199

202

XII Contents

Chapter 1

Introduct ion

1.1 Backgrounds

Recent advances of semiconductor technologies have made it possible

to realize large and sophisticated hardware as integrated circuits, which

have brought digital systems to wide variety of applications. On the

other hand, the size and the complexity of the hardware have made the

design processes more and more difficult. It is almost impossible to design

hardware of required scale and complexity without the help of computer-

aided design (CAD) systems.

 Among many steps of designing hardware, design verification is one

of the most laborious ones. The most effective and the most widely used

means of verifying correctness of design is logic simulation, that is to

simulate the behavior of circuit under test on computers.

 Computation time required for logic simulation is roughly proportional
to the size of a circuit under test and to the length of test pattern se-

quence. The increase in circuit size, together with the incidental increase
in test pattern size, has resulted in rapid growth of the computation time

for the simulation. It is reported that about 1800 hours of IBM 370/168
CPU time were required to verify the logic design of 1/4 of a medium-

range System 370 CPU [Den83]. It is one of the most important subject

in the area of CAD of digital systems to develop high-speed logic sim-

 1

2 1. Introduction

ulation techniques. A number of research efforts have been carried out

in recent years in order to reduce computation time for logic simulation,

which include improvements in modeling of logic circuits, development

of efficient simulation algorithms [Bre76, U1r83, Ish84], improvements in
techniques in coding level [Ulr80b, Kro81], and development of special

purpose hardware (hardware simulation engines) [Den83, Sas83, Bla84,
Nak86, Hir87, Nag86]. Among them the special purpose hardware ap-

proach has become a center of attention because of the high performance

achieved by parallel computation schemes. However, the performance is

obtained at the sacrifice of flexibility and affinity for existing CAD sys-

tems on general purpose computers. It is pointed out that it often takes

much longer time to compile and to transmit data than to execute sim-

ulation on hardware simulation engines. High cost by reason of special

purpose hardware is also a demerit of the hardware simulation engines.

On the other hand, software simulators on general purpose computers

are still attractive for their latest device technologies, economical merits

and flexibility. General purpose supercomputers and parallel computers

can be new solutions that fill the gap between the two approaches.

 Along with the computation time for logic simulation, that of fault

simulation is another big problem in the field of CAD of digital circuits.

Fault simulation is in a way a variation of logic simulation, although it is

used for different purposes from logic simulation. While a logic simulator

computes behavior of fault-free logic circuits, a fault simulator computes

behavior of logic circuits which have faults in them. It is used for analysis

of the behavior of faulty circuits, test set generation or quality evaluation

of test sets for logic circuits. Fault simulation requires much more com-

putation cost than logic simulation, because simulation must be carried

out for each of the faults derived from a certain fault model. Under the

single stuck-at fault assumption, the computation time in the worst case

is proportional to the square of circuit size [Har87]. Various research

1.1 Backgrounds 3

projects have been carried out in order to accelerate fault simulation by
improving algorithms [Arm72, Ulr80a, Wai85, Nis85, Ant87], or to de-
velop alternative techniques to fault simulation [Abr83, Jai84, Brg85]. In

spite of these efforts, there are still pressing requirements for faster fault

simulation.

 The large computation cost due to the large circuit size has been and

will be one of the primary problems in design verification. On the other

hand, accuracy of simulation is also an important issue. Especially in

design verification of asynchronous circuits which operate based on sub-

tle timing relations, much more laborious modeling of delay and time

and also much more computation cost are required than in that of syn-

chronous circuits. In the verification concerned with timing there are

close relations among models of delay and time, accuracy of verifica-

tion results and required computation cost. In a simple modeling which

require smaller computation cost, design errors may be overlooked or

possibilities of design errors may be indicated even for correct designs.

One example is the handling of delay whose actual value is unknown and

is specified with minimum and maximum values. In logic simulation the

min/max delay model is employed to handle such uncertainty. The model

allows relatively fast verification but it is well known that the verification

results are often too pessimistic due to reconvergent fanouts [Bre76]. It

has, therefore, come to be an important research theme to find efficient

methods to overcome this problem [Yon89, Cer89]. Although there are

many attempts to solve the problems, few discussions have been made

on what is the essence of the difficulty and how difficult or how much

computation cost is required to solve the problem completely. Another

important issue is modeling of time. Many of the existing verification sys-

tems are based on a discrete time model [Cer89, Hir89, Nak87, Kim88].
There are also few discussions on the point if the discrete time model

provides accurate result as compared with a continuous time model or if

4 1. Introduction

there is a difference in the computation cost of the verification between

the two models. In order to develop efficient and yet reliable verifica-

tion system, it is considered to be important to clarify the theoretical

backgrounds on modeling and accuracy of verification.

 Modeling and accuracy of verification are also one of the central is-

sues in the field of hardware description languages (HDL 's). Hardware

description languages are kernels of CAD systems for integrated circuits

which work as inputs to various CAD tools, design documents and ve-

hicles for design interchange among different CAD systems. Although a
lot of research projects have been carried out on hardware description

languages, we are now confronted with a big turning point due to two

trends; standardization and extension of the applications of HDL's.

 Standardization of a hardware description language (HDL) has an in-
estimable impact on the development of hardware design, including CAD

tool development and design education. There are several activities for

standardization in the U. S., Europe, and Japan [Kar89, Pi183, Coe89,

Har86]. Since a standard HDL is used by many users, including IC man-

ufactures and tool developers working in various kinds of design culture,

we should provide them with a method of sharing a detailed idea on the

HDL. It is therefore essential to define rigid syntax and semantics of the

language. Although almost all the HDL's are designed on the basis of

the formal definition of syntax by a meta language like BNF, there are

very few HDL's, especially among the practical ones, which has clear

definition of semantics. Although there have been a lot of researches

on definition of formal semantics in the area of programming languages

[Bjo78]. There have been, however, few studies in the area of HDL's
other than [Pi183]. Especially there have been no established models

which explain the behavior of the hardware described in HDL's . In view

of the trend of standardization, it is considered to be an urgent research

theme to develop good behavior models for HDL's and to establish formal

1.2 Outline of the Thesis 5

methods for defining semantics of HDL's.

 Extension of the applications of HDL's is also changing the situation.

For many years logic simulation has been the most important application

of HDL's. In practical situations semantics of an HDL is defined by means

of the simulator for the HDL. However, recent researches in the area of

CAD for integrated circuits have brought about outstanding development

of techniques for various design support by computers. Especially logic

synthesis and formal verification come to become a practical technique

and there are strong demands for HDL's to support these applications.

However, the simulation based semantics often causes inconsistencies in

handling don't cares and uncertain behavior of hardware. In logic syn-

thesis and formal verification, we assume all the possibilities for don't

cares and uncertain hardware specifications. On the other hand, in logic

simulation, they are dealt with using unknown values. This is inevitable

if we consider efficiency of simulation execution but it often brings about

unnatural results. It is considered to be an essential challenge to develop

a formal model which can explain the don't cares and uncertain behavior

of hardware in order to design hardware description languages of the next

generation which are provided with rigid semantics and can be basis of
various CAD applications.

1.2 Outline of the Thesis

In this thesis three major topics in logic design verification and hard-

ware description languages are discussed; acceleration of logic simulation

speed, accuracy of timing verification, and modeling of hardware behav-

ior for formal semantics of hardware description languages.

6 1. Introduction

(1) Algorithms for high-speed logic simulation

As a new approach to accelerating execution speed of logic simulation,

a use of vector supercomputers are proposed. Vector supercomputers

are the computers that have special facilities to execute operations on

vectors extremely fast. As is discussed in 1.1, there are trade-offs between

speed performance and flexibility of high-end simulators. Logic and fault

simulators on supercomputers are considered to be new a solution that

fall between hardware logic simulators and software simulators on general

purpose computers. In order to bring out the performance of vector

supercomputers, vector processor oriented algorithms for logic and fault

simulation are proposed in chapter 3 and chapter 4, respectively.

 In chapter 3, three types of simulation algorithms are proposed which

are dedicated for 1) zero-delay simulation of combinational circuits, 2)

zero-delay simulation of synchronous sequential circuits, and 3) simula-

tion with delay consideration. The first two are based on the compiler-

driven method. High vectorization ratio is achieved by simulating many

input patterns or processing many gates at a time. Combinational use

of the vectorization algorithms and the bit oriented vector logical oper-

ations made it possible to achieve 7.7 x 109 gate-evaluations per second

for combinational circuit simulation and 1.4 x 109 gate-evaluations per

second for sequential circuit simulation on the supercomputer FACOM

VP-200, which are faster by a factor of more than 15 as compared with

conventional scalar processors. The third algorithm for timing simulation

is an extension of the conventional event-driven simulation algorithm .

Vectorization is achieved by processing all the events together which are

scheduled to occur at the same time period. A simulator implemented

based on the algorithm marked 230 x 103 events per second on the super-

computer HITAC S-810/20. These performance figures are comparable
to those of hardware simulation engines.

 In chapter 4, a vector supercomputer oriented fault simulation algo-

 1.2 Outline of the Thesis 7

rithm, named dynamic 2-dimensional parallel fault simulation is proposed

which is dedicated for the zero-delay two-valued fault simulation of gate-

level combinational circuits with single stuck-at faults. The bit-parallel

simulation technique which is one of the basic algorithms of fault sim-

ulation is extended to two-dimensional parallel simulation technique, in

which many faults for many patterns are processed at a time by vector

bitwise logical operations. Although high vectorization ratio is achieved

in this method, it does not necessarily lead to efficient fault simulation

if we try to combine it with the fault dropping which is an indispensable

technique for reducing the computation cost. In order to counter this

problem, dynamic adjustment of the two parallelism factors is combined
with the two-dimensional parallel simulation technique. Experimental

results on coverage estimation of random patterns are shown, in which

the fault simulator implemented on the FACOM VP-200 supercomputer

achieved acceleration ratio of 15 through vectorization and succeeded in

simulating 500,000 random patterns on a circuit of 3,000 gates within 30

seconds.

(2) Accuracy of logic simulation

Accuracy of logic simulation is discussed both from theoretical and prac-

tical point of view, focusing on a delay model in which actual delay values

are not definite and are specified with their minimum and maximum val-

ues. At first the difficulty of the problems is theoretically clarified, and

then efficient algorithms to solve the problems are proposed.

 Chapter 5 is dedicated for the theoretical consideration on modeling

of delay and computational difficulty of a hazard detection problem. Re-

lation among models of delay and time, accuracy of verification results

and computation cost for the verification is discussed taking the hazard

detection problem as an example. We also discuss the difference of a

discrete time model and a continuous time model. It is shown that the

8 1. Introduction

problem of detecting hazards on combinational circuits under uncertain

delay assumption is computationally intractable (NP-hard) and that it is
hence difficult to solve the problem by a simple extension of the min/max

delay simulation technique. It is also shown that there is an essential dif-

ference in the verification results obtained based on the discrete time

model and the continuous time model. The verification result can be

more optimistic in the discrete time model than in the continuous time

model. Further discussions are created on the relation between the con-

tinuous time model and the discrete time model, in which a lower bound

of the width between ticks that make the discrete time model equivalent

to the continuous time model.

 In chapter 6, a new simulation technique named time-symbolic simula-

tion is presented which enables accurate simulation under the uncertainty

delay model. In time-symbolic simulation the uncertain delay value is ex-

pressed by a variable, which makes it possible to avoid the pessimism at

reconvergent gates. Time-symbolic simulation also enables us to get con-

ditions where the circuit under test behaves as expected which is of good

use for error analysis and for design improvements.

 It is difficult to adapt conventional simulation algorithms for time-

symbolic simulation. In this chapter, two efficient simulation algorithms

for time-symbolic simulation are proposed. One is dedicated for combina-

tional circuits and processes the algebraic formulas representing time by

means of the linear programming. The other algorithm , which is named

coded time-symbolic simulation (CTSS), can handle any kind of gate-level
logic circuits. In the CTSS a uncertain delay value is represented using

a set of Boolean variables based on binary coding which encodes the all

the cases of delay values. Simulation is executed by means of Boolean

function manipulation. Both of the simulators are shown to rim within a
feasible time for small scale circuits up to 100 gates . In this chapter, var-

ious techniques are also proposed for verification of asynchronous circuits

1.2 Outline of the Thesis 9

based on time-symbolic simulation and for analyzing simulation results

and extracting delay conditions where the circuit under test behaves cor-

rectly.

(3) Modeling and description of logic circuit for HDL's

In order to define formal semantics of hardware description languages

which can support various application such as logic synthesis and formal

verification as well as logic simulation, a model of hardware is indispens-

able which can express uncertain behavior of hardware in a strict sense.

In the last part of the thesis, a new behavior model of hardware named

NES (Nondeterministic Event Sequence) is proposed. The NES can ex-

press the uncertainty of hardware behavior by means of nondeterminism.

The behavior of hardware is modeled by nondeterministic abstract ma-

chines and we can deal the behavior of hardware as a set of all the possible

 behaviors.

 In chapter 7, the formal definition of the NES model, and a model-

ing method of a hardware module and connected hardware modules are

presented. Also as an application of the NES model, definition of the

semantics of a hardware description language UDL/I is described.

10 1. Introduction

Chapter 2

Logic Simulation

2.1 Modeling of Logic Circuits for Logic Simulation

2.1.1 Modeling of Structure of Logic Circuits

In this thesis we mainly discuss gate-level logic circuits. Structure of

a logic circuit is modeled by a directed graph. The nodes in the graph

represent the primary inputs, the primary outputs and the gates of the

circuit, and the edges represent connections among them. A primary

input is represented by a nodes whose in-degree and out-degree is 0 and

1, respectively, while a primary output by a node whose in-degree and

out-degree is 1 and 0, respectively. A node that represents a gate has n

incoming edges and 1 outgoing edge. A function and delay are defined

for a gate. We do not define them formally here, because it depends on

the modeling of signal values, time and delay. We will refer to a circuit

corresponding to an acyclic graph as a combinational circuit.

2.1.2 Modeling of Signal Values

In gate-level modeling of logic circuits, at least two signal values 0 and 1

are necessary so as to represent logical zero and logical one, respectively.

The model of signal values which deals with the two values is called ,-

valued logic model and logic simulation based on the 2-valued logic model

 11

12 2. Logic Simulation

 0 1
0 1 X

AND 0

1

 X

0 0 0

0 1 X

0 X X

 o 1 x z

AND 0 0 0

1 0 1

 NOT 1 0I 1" 11"IZ 0 1 X l

 (a) 2-valued.NOT 1 0 X NOT 1 0 X 0 (b) 3-valued.
 (c) 4-valued.

 Fig. 2.1 Operation tables of AND and NOT operations.

is called 2-valued logic simulation. Fig. 2.1 (a) is the operation tables of

AND and NOT operations in the 2-valued logic.

 Although the 2-valued logic model may be sufficient for dealing with

ideal logic circuits, we introduce in the practical logic simulation the

following signal values for the purpose of modeling phenomena which are

difficult to explain based on the 2-valued logic model or for the purpose

of accelerating simulation execution. For the details, refer to [Bre76].

Unknown value: It is introduced in order to represent signal values which

 are not definite and usually denoted as `X' or `U' . The unknown
 values are used in the following situations , for example.

 1) Signal values on uninitialized signal lines (especially outputs of

 uninitialized flip-flops).

 2) Output values of gates in response to illegal combinations of

 input values.

 3) Output values of gates in response to don't care input values.

 4) Signal values which are not logical 0 nor logical 1; in transi -
 tion from one to the other, or in other states which can not be

 interpreted as logical 0 nor logical 1.

AND 0 11 0 0 0

1II0 1 X 1

X 11 0 X X X

Z 110 1 X 1

2.1 Modeling of Logic Circuits for Logic Simulation 13

5) Signal values

 of gates.

6) Signal values

 rors.

which

which

can be 0 and 1 depending on

can be indefinite because

delay

of the

values

design er-

 The model which deals with 0, 1, and unknown value is referred to

 as a 3-valued logic model. Fig. 2.1 (b) is the operation tables for the

 3-valued logic model. Although the unknown values provide many

 conveniences, they sometimes cause undesirable results. One of the

 problems is that the unknown values are used in so many contexts

 that they lead to unexpected simulation results. There should have

 been a clear distinction between the signal values which are not

 logical values and the ones which are indefinite but are logical values.

 It is pointed out that simulation results tend to be pessimistic in the

 current simulation techniques based on the 3-valued logic model,

 because it is based on the calculus in which X + X comes to X

 instead of 1. We will discuss the modeling of indefinite signal values

 in detail in chapter 7.

High-impedance value: It is introduced to express the output of tristate

 gates and usually denoted as Z'. The signal value system consisting

 of 0, 1, X(unknown) and Z is used in many logic simulators and is

 called a 4-valued logic model. The definition of the operation results

 associated with Z is dependent on the technologies that realize logic

 gates. Fig. 2.1 (c) is an example of the operation results.

Transient values: They are introduced to distinguish rising and falling

 signals from erroneous states. They are denoted by `R' and `F',

 respectively, and often used in combination with the min/max delay

 model mentioned in the next subsection.

In a ddition, many kin ds of signal values w hich indicate the possibilities

14 2. Logic Simulation

of undesirable signals which may caused by various design errors, such

as hazards, signal conflict and so on.

 On the other hand, as new attempts to extend logic simulation to

formal verification, signal values represented by sets [Kim88, Ish90y] or

Boolean functions [Car79, Cor81] have been proposed. Logic simulation
based on the signal values represented by Boolean functions is called

symbolic simulation.

2.1.3 Modeling of Time

In gate-level logic simulation, we usually model time by a totally ordered

set T. If T = 3 (the set of integers) the time model is called discrete
time model and if T = R. (the set of real numbers) the model is called

continuous time model. Most of the simulation algorithms and most of

the existing logic simulators assume the discrete time model . A time

period ticked by an integer is called a unit time.

 On the other hand, there are approaches in which time is modeled by a

partially ordered set[Sta85, Tes87]. This model is suitable for representing
causality relationship or before-after relationship among events occurring

in a circuit and suitable for modeling higher level design .

2.1.4 Modeling of Delay

Most of the existing delay models are based on the discrete time model .

Followings are the classification of the delay models which are relevant

to the discussions in this thesis.

Zero delay model: It is a model in which all the delay values of the gates

 are zero. Here delay of zero means that the delay time is less than one

 if measured by the unit time but that there is causality relationship .

 This model is used when we are not interested in the timing issues

 on the circuit. It will cause difficulties in simulating logic circuits

2.1 Modeling of Logic Circuits for Logic Simulation 15

 with feedback loops. Actually delay whose value is zero often causes

 undesirable situations. We will discuss the issue in chapter 7.

Unit delay model: It is a model in which all the delay values of the gates

 are one.

Assignable delay model: It is a model in which arbitrary delay values can

 be defined for each gate. it is further classified according to what

 type of delays are assigned.

 Nominal delay model: A single delay value is assigned to a gate.

 Rise/fall delay model: Two delay values are defined to a gate, which

 represent delay values for 0 —> 1 transitions and for 1 —* 0

 transitions.

Min/max delay model: In actual logic circuits, delay values of gates

 vary depending on the difference of process conditions or usage

 conditions. In order to express this uncertainty the delay value

 is specified by its minimum and maximum values drain and dmax,

 respectively. When a signal change occurs at time t, the out-

 put signal value at time between t + dman and t + dm" becomes

 X (unknown) or transient signal values, as shown in Fig. 2.2.

 Although this model is based on the very realistic assumption,

 it has been pointed out that this model has serious shortcom-

 ings such that simulation results are often too pessimistic due

 to reconvergent fanouts [Bre76]. For example, in Fig. 2.2, the

 unknown states on the output of D indicate the possibility of a

 static hazard, which never occurs in an actual circuit. We will

 discuss this issue in detail in chapter 5 and chapter 6.

 In actual circuits realized as integrated circuits, delay values of con-

nections among gates are much large than those of gates. In this thesis,

16
2. Logic Simulation

A

A

B

C

 B [0:3] C [1:4] D [0:0]

 (a) An example circuit.

D

(b) Result of the simulation.

 Fig. 2.2 Min/max delay simulation.

however, we assume delay only on gates because the delay of a connection

can be expressed by inserting a buffer gate with the delay.

2.1.5 Logic Simulation

Logic simulation is to compute the signal value sequences on the primary

outputs for given descriptions of a logic circuit and signal value sequences

on the primary inputs. Formal definition of logic simulation depends on

models of signal value, time and delay. We show a definition of the case

of the 2-valued logic, discrete time and assignable nominal delay model,

as an example.

 A sequence of signal values on node ni, which represents a primary

input, a primary output or a gate, is modeled as mapping vi : P -* B,

where P is the set of the non-negative integers and B = {0,1}. Let n8 ,
na , • • •, rein'' be nodes which are the direct predecessor of node ni and vi,
v?, • • , vm' be the signal value sequences on ni, n?, • • •, nm', respectively.
Function fi and delay value di are defined for node ni, where fi : l37- --f 23
and di E P. As for nodes representing primary outputs, assume the

2.2 Basic Algorithms for Logic Simulation 17

identity function as fi. Then the following relation holds for each node

ni.

vi(t — di) = fi(vi (t), vi (t), ... , yr' (t)).(2.1)

Logic simulation is to compute vi for each of the primary output ni for

given sequences of signal values on the primary outputs.

2.2 Basic Algorithms for Logic Simulation

2.2.1 Compiler-Driven Simulation and Event-Driven Simula-

 tion

We can classify the algorithms of logic simulation into compiler-driven

methods and event-driven methods. The compiler-driven method is a

simple algorithm in which logic simulation is executed by computing at

each time the formula (2.1) for each node. We refer to the computation

of the Boolean function of a gate to an evaluation of the gate. We have

to pay attention to the order of gate evaluation. In the case of combina-

tional circuits, the order of gate evaluation is usually determined before

simulation execution (the details are described in subsection 2.2.4). If a

given circuit has feedback loops, it happens that the correct signal value

of a node at a certain time is not properly computed by simply evaluate

each gate once. In such cases, we usually continue computation until

the signal values are stable. If the computation does not stop because of

oscillations, simulator detects this and outputs error messages.

 Although the compiler-driven simulation algorithm is simple and easy

to implement, we are forced to evaluate gates whose input values are

the same as the previous values. Signal values do not change so often;

the ratio of the signal change is 1,,,10% or less than that. The event-

driven simulation algorithm attempts to reduce the computation cost by

evaluating only the gates whose input values are different from those at

18 2. Logic Simulation

the previous time period. A change of a signal value is called an event.

Although extra cost is required to manage events, event-driven simulation

is more efficient than compiler-driven simulation especially in handling

assignable delay models.

 Simulation speed is measured in terms of gate evaluations per sec-

ond in compiler-driven simulation and events per second in event-driven

simulation.

2.2.2 S-Algorithm and T-Algorithm

We can classify algorithms of logic simulation also from the standpoint

if they are based on space first evaluation or time first evaluation [Ish84,
Ish85yy]. The space first evaluation is a strategy in which time is ad-

vanced after finishing all the necessary evaluation of gates at a time

frame, while time first evaluation is a strategy in which all the possible

computation on a gate is performed in time direction for each gate (see
Fig. 2.3). We abbreviate an algorithm based on the space first evaluation

to S-algorithm and on time first evaluation to T-algorithm. We can con-

sider four types of algorithms for the combinations of the two strategies

in the previous subsection (compiler-driven and event-driven) and the

two strategies in this section (S-algorithms and T-algorithms) .

(1) Compiler-driven simulation based on the S-algorithm

We assume that the order of gate evaluation is determined before simu-

lation by a method described in 2.2.4. We also assume that time begins

with 0 and the final time at which we stop simulation is given .

 1) Repeat 2) for each time from 0 to the final time .

 2) Repeat 3) until signal values of all nodes become stable .

 3) Evaluate gates in the predetermined order .

2.2 Basic Algorithms for Logic Simulation 19

S-Algorithm

Li1J-

UL

L11_

Li

JL

Li

_1

 T-Algorithm

LEIT7 111"
LI

..... 1111
 (Ti)

Liar Aoklio
LiTh

................ 111111)1F.
 (T2)

ilar 1112:17

................ 111111
 (T3)

 (Si)

(S2)

(S3)

7 :

 (S4)

Fig. 2.3 S-algorithm and T-algorithm.

20 2. Logic Simulation

 Note that in the case of combinational circuit, the signal values become

stable by the first execution of 3) if gates are evaluated in the order
described in 2.2.4.

(2) Event-driven simulation based on the S-algorithm

Events whose occurrences are known are maintained in set S.

 1) Repeat 2) for each time t from 0 to the final time.

 2) Take out events whose occurrence time is t and perform 3) for each

 event.

 3) Evaluate the gates which are affected by the event. If there are signal

 changes, generate new events and include them in S.

 In order to maintain events, we use a data structure called time wheel ,

which consists of linear lists of events and an array of headers to the

linear lists. Each list consists of the events which are know to occur at the

same time frame. This data structure is suitable for efficient extraction

of events in 2) and registration of events in 3).

(3) Compiler-driven simulation based on the T-algorithm

We assume that the order of gate evaluation is predetermined .

 1) Repeat 2) until all the signal values become stable .

 2) Repeat 3) for each gate in the predetermined order .

 3) Perform gate evaluation for all the possible time frames .

 Note that in the case of combinational circuit, the signal values become

stable by the first execution of 2).

2.2 Basic Algorithms for Logic Simulation 21

(4) Event-driven simulation based on the T-algorithm

In this algorithm [Ish84, Ish85yy], a sequence of signal values are repre-

sented by a linear list of events, where an event is a tuple of time and a

signal value.

 1) Execute 2) for each gate in the predetermined order.

 2) Repeat 3) ti 4) until there is no processed event at input lines.

 3) Among the events which may occur next at input lines, select an

 event whose occurrence time is the smallest, and compute the effect

 of the event.

 4) If the output value of the gate changes as a result of 4), add an event

 to the output line whose occurrence time is a sum of occurrence time

 of the input event and the delay of the gate.

 Most of the existing simulators are based on S-algorithms because
it is difficult to deal with circuits with feedback loops in T-algorithms.

However, T-algorithms are attractive in dealing with combinational cir-

cuits because they are simple and much more efficient than S-algorithms
in simulating combinational circuits. Espacially, it was discovered in-

dependently by [Bar87, Koe86, Ish87] that combination of T-algorithm
based compiler-driven simulation and bit-parallel gate evaluation tech-

nique [Bre76] is a very efficient simulation technique for combinational

circuit. It is also shown that event-driven simulator based on the T-

algorithm is 7 N 8 times faster than that on the S-algorithm [Ish84,

Ish85yy] .

2.2.3 Code Generation Method and Table-Driven Method

The following two methods are know as ones for implementing logic sim-

ulators.

22 2. Logic Simulation

Code-generation method: Generate a code (for computers) to realize

 gate evaluation and perform simulation by executing the code.

Table-driven method: Generate tables containing information neces-

 sary for simulation such as an order of gate evaluation, the kind of

 each gate and connections among the gates. Perform simulation by

 referring the table. In the compiler-driven simulation, this method

 can be regarded as an interpreter-driven method.

 Generally the code-generation method enables faster simulation exe-

cution than table-driven method. The compiler-driven method has good

affinity for code generation method. Actually, the compiler-driven simu-

lators in the early times were implemented by this method which is the

origin of the name compiler-driven method. On the other hand, it is

considered to be difficult to implement event-driven simulators based on

the code-generation method.

2.2.4 Ordering of Gate Evaluations

In compiler-driven simulation and T-algorithms, an order of gate evalu-

ation is important because we can dispense with futile gate evaluation

if we choose a good order. Furthermore it causes a big difference in the

storage requirement for simulation as is discussed in chapter 3.

 The most popular method of ordering is the one called level sorting

 [Bre76]. In this method gates are ordered according to level numbers of
gates. The level number l(ni) of gate n, is defined as follows based on
the notation in the previous section.

 if ni is a primary input l(ni) =
1+ max{l(n'), l(n?), • • • , l(n7')} otherwise.

 For example, in Fig. 2.4, AB CD E F G and B — C —

A — E — D — F — G are obtained in this ordering.

2.2 Basic Algorithms for Logic Simulation 23

 11 12 13 14

level 3

level 2

level 1

15 16 level 0

 Fig. 2.4 Ordering of gate evaluation.

 As a generalization of level sorting, we consider data flow sorting (DF-

sorting) [Ish87, Ish86] . An available gate is a gate whose all input values

have already been computed. Let S be the set of available gates. Then

the order of gate evaluation is determined by the following procedure.

 1) At the beginning, include the gates with its all inputs connected to
 the primary inputs in S.

 2) Repeat 3) and 4) until S becomes empty.

 3) Get gate g out of S and evaluate g.

 4) After the evaluation of g, if any gates become newly available, add

 them to S.

By DF-sorting we can get any of the all orders that yield correct simula-

tion result. In Fig. 2.4, A DBCEF G and B — C — E —

G — A — D — F are the examples of order obtained by DF-sorting but not

by level sorting. The DF-sorting provides us a higher degree of freedom

to allow wide choice in determining the gate evaluation order than level

sorting. We will use this freedom for reducing the storage requirement

for simulation in chapter 3 and chapter 4.

24 2. Logic S imu lation

Chapter 3

Fast Logic Simulat

Super Computers

ion Using Vector

3.1 Introduction

Computation time required for logic simulation is roughly proportional
to the size of a circuit under test and to the length of test patterns. The
increase in the circuit size, together with the incidental increase in the

test pattern size, has resulted in the rapid growth of the computation

time for the simulation. It is one of the most important subjects in the

area of Computer-Aided Design (CAD) for Very Large Scale Integration

(VLSI) to develop high-speed logic simulation techniques. In this chapter,
we propose logic simulation techniques using vector processors, as a new

approach to accelerating simulation speed.

 In order to reduce simulation time, a number of research efforts have

been carried out in recent years. These approaches can be roughly clas-

sified into the following kinds.

1) Contrivance on the circuit modeling: The function level modeling

 and the function level simulation, for example, bring forth the dras-

 tic reduction in computation time and in storage requirements (in
 exchange for a precision, however).

 25

26 3. Fast Logic Simulation Using Vector Supercomputers

2) Improvements in simulation algorithms: The concurrent simulation

 technique [U1r83], clock suppression [U1r83] and time first evaluation
 algorithm (T-algorithm) [Ish84, Ish85yy] are such examples.

3) Techniques in coding: Zoom table look-up [Ulr80b] is one of the most

 popular coding techniques. The vector coding technique for a scalar

 processor by Krohn [Kro81], though it is in some way analogous to
 our approach, also falls under this category.

4) Development of special purpose hardware (hardware simulation en-

 gines): Several types of hardware simulation engines have been de-
 signed and some of them (YSE by IBM [Den83], HAL by NEC

[Sas83], and Logic Evaluator by ZYCAD [Bla84], VELVET by Hi-
 tachi [Nag86], SP by Fujitsu [Hir87], for example) have actually been

 implemented and are in practical use.

 Using parallel computation schemes, the hardware approach has demon-

strated the potential to improve performance by a factor of 1000 over

current software solutions. However, software simulators may be as fast

as hardware simulators, if the power of the fastest computers, or super

computers, can be efficiently harnessed. Furthermore, software is gen-

erally more flexible and portable than hardware. From an engineering

standpoint, there are many benefits to developing a software simulation

method with performance comparable to that of current hardware solu-

tions.

 A vector processor is a supercomputer which has the facility to execute

operations on vectors extremely fast. Several vector processors have been

developed in recent years [Lub85], which are capable of executing sev-

eral hundred MFLOPS (Million FLoating-point Operations Per Second).

Vector processors are developed with a view to accelerating the numerical

computation for problems that require enormous computation power. In

addition to the powerful facilities for floating-point operations, they have

 3.1 Introduction 27

vector operations so versatile that we can use their computation power

in many applications.

 We must note that all programs cannot enjoy the benefit of vector

processors. High vectorization ratio, and yet long vector length are es-
sential for efficient computation. We must tune up our coding schemes

or basic algorithms to be suitable for vector processing.

 In this chapter, we propose new high-speed logic simulation tech-

niques which efficiently utilize the computation power of vector proces-

sors [Ish85ykv, Ish85yki, Ish86, Ish871. We have developed 3 types of
simulation techniques which are dedicated for:

 1) zero-delay simulation of combinational circuits,

 2) zero-delay simulation of synchronous sequential circuits, and

 3) simulation with delay consideration.

 The first two are based on the compiler-driven method and the last

on the event-driven method.

 For the simulation of combinational circuits, we propose vector-parallel

simulation technique (VP-technique), which is based on the time first

evaluation algorithm (T-algorithm) [Ish84, Ish85yy]. A sequence of states
on a signal line is treated as a vector (a pattern vector) and the gate eval-

uation is performed by vector logical operations on pattern vectors. For

the simulation of synchronous sequential circuits, the simulation proce-

dure is vectorized by a gate grouping technique (GG-technique), which

is based on the space first evaluation algorithm (S-algorithm). In this

case, we increase the vectorization ratio by grouping gates of the same

kind and evaluating them together in a vectorized manner.

 In order to carry out the timing simulation with sophisticated delay

models, we have also developed a vectorization technique for event-driven

simulation. The algorithm we adopted is basically the conventional event-

driven method with a time mapping technique. The procedures for event

28 3. Fast Logic Simulation Using Vector Supercomputers

fetch, event propagation, gate evaluation and event registration are vec-

torized by processing all the events together which are scheduled to occur

at the same period. Data structures and the operations on events are

modified to be suitable for vector processing.

 We have implemented logic simulators based on the above simulation

techniques on the FACOM VP-100 and VP-200 (266 MFLOPS and 533

MFLOPS, respectively) at Kyoto University and the HITAC S-810/20

(630 MFLOPS) at the University of Tokyo. The maximum performance
is about 7.7 x 109 gate-evaluations per second for combinational circuit

simulation, 1.4 x 109 gate-evaluations per second for sequential circuit

simulation (by the VP-200) and 230 x 103 events per second for event-

driven simulation (by the S-810/20). This performance is comparable
to that of hardware simulation engines. Moreover, our techniques are so

straightforward that we can implement them on most of the recent vector

processors without serious modifications.

 In the next section, we provide an overview of some important fea-

tures of vector processors The two sections that follow are devoted to an

explanation and consideration of the simulation techniques based on the

compiler- driven method. Section 3.3 deals with the simulation of combi-

national circuits and Section 3.4 with the simulation of synchronous se-

quential circuits. A vector processor oriented technique for event-driven

simulation is stated in Section 3.5. The last section concludes this chapter

with some comments.

3.2 Vector Supercomputers

Vector processors are supercomputers which have been developed to meet

the requirements for large scale computation in such area as hydrodynam-

ics, numerical weather prediction, and nuclear energy research. Compu-

tation speed is increased by executing the uniform operations on array

3.2 Vector Supercomputers 29

structured data using functional pipeline units. Main storage has a large

capacity of several hundred mega bytes and is designed to afford enough

access speed to balance the high throughput of the functional pipeline

units. The maximum performance of recent vector processors reaches sev-

eral MFLOPS (Million FLoating-point Operations Per Second) [Lub85],

ten to hundred times faster than the largest general purpose computers.

 Although the maximum performance of vector processors is very high,

this performance is available only when almost all the operations in a

program are executed by vector instructions. The execution speed will

degenerate in accordance with the decrease of vectorization ratio, which

is defined as the rate of the operations executed by vector instructions

to all the operations. Let us define vector execution of a program as ex-

ecuting possible operations by vector instructions, scalar execution of a

program as executing all the operations by scalar instructions and accel-
eration ratio of a program as the ratio of the execution speed by vector

execution to that by scalar execution. When the vectorization ratio is

50 percent, acceleration ratio can not exceed 2.0 no matter how efficient

the vector instructions are. Acceleration ratio increases markedly when

vectorization ratio goes by 90 percent.

 Another important factor to be considered is vectorlength. Since the

overhead for setting up a vector instruction is considerably large, enough

efficiency is not available if the operand vectors are short. (Sometimes

vector instruction becomes less efficient than scalar instruction). More-

over, the execution speed is also swayed by such factors as the type of

memory accesses, the type of instructions and the number of pipelines

which can operate in parallel. With due regard to the above factors, we

have not only to tune up the coding schemes but also to choose, modify

or newly design basic algorithms so that the programs will be suitable

for vector processing.

 Table 3.1 summarizes the specification of the FACOM VP-100, VP-

30 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.1 Specification of vector supercomputers.

FACOM VP-100 FACOM VP-200 HITAC S-810/20

Instruction
82-vector
195 scalar

82 vector
195 scalar

83 vector
195 scalar

Functional
Pipelines

add/logical
multiply
divide
mask
load/store X 2

add/logical
multiply
divide
mask
load/store X 2

add/logical
multiply + add
multiply/divide + add
mask
load X 2
store

Pipeline cycle 7.5ns 7.5ns 15ns

Vector Register 32KB 64KB 64KB

Maximum
Capacity of
Main Memory

128MB 256MB 256MB

Peak CPU
Speed

266MFLOPS 533MFLOPS 630MFLOPS

Vectorizing
Facilities

Fortran77/VP
Compilers
with Interactive
Vectorizer

Fortran77/VP
Compilers
with Interactive
Vectorizer

Fortran77 HAP
Compilers

3.2 Vector Supercomputers 31

200 and the HITAC S-810/20, new vector processors on which we have

developed our logic simulators. They have many advanced features mak-

ing it versatile for a wide range of applications. The functional pipeline

units can afford not only floating point operations but also fixed-point op-

erations and bit-wise logical operations. The load/store pipeline, which
transfers data between the main storage unit and vector registers, can

afford three types of vector accesses:

 a) contiguous vector access,

 b) constant stridden vector access, and

 c) indirectly addressed vector access.

 As for the access speed, (a) is the fastest and (c) is the slowest. The
indirectly addressed vector access allows an operation coded in the fol-

lowing FORTRAN statements to be vectorized and executed efficiently.

 DO 10 I=1,N

10 A(I)=B(L(I))

Where the array L is an array of integers. This facility is particularly

appropriate to the vectorization of table look-ups in the logic simulation.

 In addition, these vector processors are capable of handling DO loops

containing the conditional statements.

 DO 20 I=1,N

20 IF (A(I).GT.O. 0) B(I)=B(I)+C(I)

 Another powerful vector function is a vector compress function, which

gathers the elements of a vector whose corresponding subscripts satisfy
certain conditions. We can use this function by the following coding.

32 3. Fast Logic Simulation Using Vector Supercomputers

 K=0

 DO 30 I=1,N

 IF (A(I).GT.0.0) THEN

K=K+1

 C(K)=B(I)

 ENDIF

30 CONTINUE

 This function plays a very important part in the event-driven simula-

tion to be discussed in Section 5.

 As well as the above powerful vector processing facilities, these vector

processor have very large main storage. The maximum capacity of the

main storage is 256M bytes (VP-200 and S-810/20) and 128M bytes (VP-
100).

3.3 Vectorization of Combinational Circuit Simula-

tion

3.3.1 Vector-Parallel Simulation Technique

For the simulation of combinational circuits, we propose vector-parallel

simulation technique (VP-technique) which vectorizes the simulation pro-

cedure. This approach is based on a combination of the compiler-driven

method, the T-algorithm and the parallel simulation technique . A se-

quence of states on a signal line is expressed with a vector of logical type

(we call it a pattern vector). The evaluation of a gate is performed by
a vector logical operation (or combination of operations) corresponding

to a logical function of the gate. The order of gate evaluation is just the

same as the conventional compiler-driven method. First, the pattern vec-
tors on the primary inputs are given. Then gates are evaluated according

to the order determined by level sorting or DF-sorting, and finally the

3.3 Vectorization of Combinational Circuit Simulation 33

pattern vectors on the primary outputs are computed. If these vector log-

ical operations are bit-wise, we can use the parallel simulation technique

in combination. Since one bit is enough to express a state of each signal

line in the two-valued logic simulation, we can express w states with a

word of w bits. By bit-wise logical operations, a result of gate evaluation

for w patterns is computed simultaneously. In our vector-parallel simu-

lation, we express a pattern of length p with a vector of length [p/w,
where [xi is the smallest integer not smaller than x. If p is so large that

vector length is not allowable because of storage limitations, we divide

the pattern into patterns of adequate length and perform simulation by

installments.

3.3.2 Reduction of Storage Requirements Based on DF-Sorting

In order to bring out the performance of vector processors, the length

of pattern vectors are set to be very long, that is, many patterns are

processed at a time. Since the storage space required to store these

vectors increases with the length of pattern vectors and with the circuit

size, the storage requirements for a large scale simulation will be quite

large.

 Fortunately, we need not store the pattern vectors for all signal lines

in the circuit throughout the entire simulation. At the beginning of the

simulation, only the vectors associated with the primary inputs must be

stored. As a result of gate evaluation, some new pattern vectors are

created and must be stored. On the other hand, there will be some

vectors which will no longer be referred to. Since they are not necessary

for the simulation after that point, we can use the memory area occupied

by the vectors for storing newly generated vectors. By this strategy, the

number of pattern vector areas required for simulation is usually expected

to be much less than the total number of signal lines in the circuit. We

will show some experimental results later.

34 3. Fast Logic Simulation Using Vector Supercomputers

 AB C D

Fig. 3.1 Mr's for different

 ABCD
E ABCDE

 ABCDE
F ABCDEF My = 6

 CDEF
G CDEFG

 EDG
H EDGH

 H

 ABCD
G ABCDG

 ABG
E ABGE

 ABGE
F ABGEF My =5

 GEF
H GEFH

 H

orders of gate evaluation.

 Let Mr be the number of pattern vector areas required to simulate

a circuit by an order of gate evaluation. Mr varies with the change of

the gate evaluation order for a circuit. Fig. 3.1 shows an example, in

which Mr is 6 for the order E-F-G-H, while Mt, is 5 for the order G-E-

F-H. If we employ DF-sorting, we can get more candidates for the order

than level sorting and can expect to have better order. Since the DF-

sorting can deliver all the orders that allow correct simulation, it would

be possible to choose the order that minimizes the storage requirements.

But this optimization problem is very hard to solve completely (this

problem can be shown to be NP-hard by the transformation from the

register sufficiency problem [Gar79]). In order to find a near optimum

solution by a brief computation, we introduce the following heuristics

into DF-sorting.

 We use NDV (the Number of Disposable Vectors) as a measure of

choice. The NDV of an available gate at a certain simulation step is

defined as the number of pattern vectors that will no longer be referred

3.3 Vectorization of Combinational Circuit Simulation 35

Not Available

 Available Available Evaluated

NDV(E) = 2
 NDV(F) = 1

B C

 Evaluated
 EvaluatedEvaluated

 Fig. 3.2 NDV: the measure for choosing the next gate.

to after evaluation of the gate. In Fig. 3.2, gates A, B, C, D and G are

already evaluated, E and F are available and H is not available. If we

evaluate F in this situation, we can release the area for the output of

gate D, but we must not release that of gate C because it will be referred

to in the evaluation of gate E. Thus the NDV of F is 1, and similarly

the NDV of E is 2. As shown in Fig. 3.3, the number of pattern vectors

to be stored is equal to the number of primary inputs at the beginning

and becomes 0 at the end. (We assume that result pattern vectors are

stored into files as soon as they are computed). It is then clear that the
maximum number of pattern vector areas required for simulation may

be reduced when the gates with large NDV values are processed prior to

those with small NDV values (see Fig. 3.3).

 Table 3.2 shows a typical example of Mr's for the order obtained by

our heuristic algorithm based on the DF-sorting and by the conventional

level sorting. We can see:

 1) M„ is much less than the number of total signal lines (number of

 gates in a circuit).

 2) Compared with the level sorting, our heuristics reduce the My by

36 3. Fast Logic Simulation Using Vector Supercomputers

Number of Pattern Vector areas

Fig.

 D' V Ldrye rvvv 1-iii. - .
Number.
 of

 Primary
 Inputs

 Simulation Step

3.3 Storage requirement for the strategies of gate ordering.

Small NDV First

/.-4 Large NDV First

A .

Table 3.2 Comparison of M,

Number of
Gates

(Depth)

Level
Sorting

DF-Sorting Ratio[%]

85 (13) 19 14 73.6

168 (25) 31 22 70.9

270 (22) 38 26 68.4

346 (48) 55 38 69.0

1240 (48) 142 63 44.3

5296 (76) 542 119 22.0

3.3 Vectorization of Combinational Circuit Simulation 37

 20%N70%.

 Since this order is determined statically from the circuit structure

in the preprocessing stage, no overhead is brought about in simulation

execution.

3.3.3 Multi-Valued Logic Simulation

As is the case with the conventional scalar processors, our vector pro-

cessors support only two-valued logic operations. In order to handle

multi-valued logic [Bre76], we must make up a mechanism to perform
multi-valued logic operations. One of the most popular ways to realize

multi-valued logic operation is a table look-up technique, such as zoom

table look-up [Ulr80b]. Although the procedures for such a table look-up

technique may be vectorizable, the simulation speed will be much slower

than in two-valued logic simulation by the VP-technique for the following

reasons.

 1) Since one word is used to represent a logic value, we can not combine
 the parallel-simulation technique.

 2) The array accesses for table look-ups are vectorized by indirectly

 addressed vector accesses, which are several times slower than vector

 logic operations.

 As an alternative way, we propose the following vector bit coding tech-

nique which allows a simulation speed near to that of two-valued logic

simulation.

 1) Encode a vector of multi-valued logic with multiple vectors of two-

 valued logic.

 2) Carry out multi-valued logic operations by combination of vector
 logic operations for the two-valued vectors.

38 3. Fast Logic Simulation Using Vector Supercomputers

y1 = ((aL
y2 = a2

a a, a2

0 0 0

1 0 1

Z 1 1

X 1 0

(a)

a

b

 Y a 1 z x

0 0 0 0 0

1 0 1 1 X

Z 0 1 1 X

X 0 X X X

(b)

4-Valued

 a1a2

+ a2)-(b1 + b2))®y2

2

 (d)

 b,b,

Y,Y2 00 01 11 10

00 00 00 00 00

01 00 01 01 10

11 00 01 01 10

10 00 10 10 10

a

b

 0011 XXX••••

011ZX10••••

y = a•b

a,

a2

b,

b2

(c)

2-Valued

 0000111--

0011000-•••

0001100•-••

0111010••••

 0011XX0•••-

y1 = ((a
y2 = a2•i

y Y1

Y2

(e)

+ a2)•(b1 + b2))ey2

2

 Fig. 3.4 Four valued logic simulation.

(a) Coding. (b) Table for four-valued AND operation. (c) Decomposition
into two-valued logic. (d) Example of realization. (e) Logical operation

on vectors.

3.3 Vectorization of Combinational Circuit Simulation 39

 Fig. 3.4 shows an example for four-valued logic simulation. The values

0 , 1, X and Z are used for representing logical zero, logical one, unknown

and high-impedance, respectively. If we use a coding {0 = (0, 0), 1 =

(0,1), X = (1, 0), Z = (1,1)} shown in Fig. 3.4 (a), the four-valued sc
and operation defined by the table Fig. 3.4 (b) are decomposed into two

two-valued logic function expressed with the Karnaugh map in Fig. 3.4

Fig. 3.4 (c), which can be realized by the five two-valued logic operations
like those in Fig. 3.4 (d). Here only NOT, AND, OR and EXCLUSIVE-OR are

allowed as two-valued logic operations, because only the corresponding

vector logic operations are available on our vector processors. As shown

in Fig. 3.4 (e), the vector y, the result of four-valued AND between the

vector a and b, is computed by encoding a and b with (al, a2) and (b1, b2),

respectively, and executing the logic operations shown in Fig. 3.4 (d).
 As is seen from the above discussion, the computation time required

for the gate evaluation is proportional to the number of two-valued logic

operations to realize the multi-valued logic operations. In order to reduce

the simulation time, it is essential to realize the multi-valued logic opera-

tions with the minimum number of two-valued operations. The problems

to be considered are:

 1) How to find the best coding?

 2) How to find the way to realize the objective functions with the min-
 imum number of two-valued operations?

 If the coding and the operation table for the multi-valued operation are

given, the objective functions will be fixed uniquely. Then the problem
2) is the minimum logic design problem [Mur72].

 The choice of the coding must be closely related to the kind of the

gates making up the circuit to be simulated. For example, in the case

where the circuits are assumed to be designed only with ECL gates of

NOR-OR function, it is preferable to choose the coding which minimizes

40 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.3 Number of 2-value d logical operations for 3-valued logic.

Coding

not and or
ex-

or

n-
and

nor
Ave-

400 01 10 11

0 1 X
- 1 0 X 0 2 2 6 2 2 2.5

0 X 1
- x 0 1 1 4 5 4 5 5 3.5

1 x o
- X 1 0 .

1 5 4 4 5 5 3.5

0 - 1 X
0 1 - X

2 3 5 3 5 6 3.3

o - x 1
0 X - 1

2 2 2 6 4 4 3.0

0 1 X -
0 X 1 -

2 5 4 4 6 5 3.8

1 - 0 X
1 0 - X

2 5 3 4 6 5 3.5

1 - X 0
1 X - 0

2 2 2 7 4 4 3.3

1 0 X -
1 X 0 -

2 4 5 4 5 6 3.8

X - 0 1
X o - 1

1 5 3 3 5 4 3.0

X - 1 o
X 1 - 0

1 3 5 4 4 5 3.3

X 0 1 -
X 1 0 -

0 2 2 6 2 2 2.5

the number of two-valued operations to realize NOT, OR and NOR (of

four-valued logic). Moreover we may be able to change the coding for
every circuit so as to minimize the total number of two-valued operations

required for simulating the circuit.

 We have solved the minimum logic design problem mentioned above

for the NOT, AND, OR, EXCLUSIVE-OR, NAND and NOR of three-valued

and four-valued logic for every possible coding, and have realized the

operations with two-valued logic operation and the number of opera-

tions required. The branch-and-bound algorithm is employed to solve

the minimum logic design problem. The results are shown in Table 3.3

 3.3 Vectorization of Combinational Circuit Simulation 41

Table 3.4 Number of 2-valued logical operations for 4-valued logic.

Coding

not and or
ex-

or

 n-
and

nor
Ave-

400 01 10 11

0 1 X Z
0 X 1 Z

3 5 4 8 6 5 5.0

0 1 Z X
O Z 1 X

3 7 6 7 8 6 5.8

0 X Z 1
0 Z X 1

3 4 3 8 6 5 4.5

1 0 X Z
1 x 0 z

3 7 6 8 8 6 6.0

1 0 Z X
1 Z 0 X

3 7 3 6 7 5 4.8

1 X Z 0
1 Z X 0

3 4 3 9 6 5 4.8

X 0 1 Z
X 1 0 Z

2 6 4 6 6 4 4.5

X 0 Z 1
X Z 0 1

2 7 3 5 7 4 4.3

X 1 Z 0
X Z 1 0

2 7 6 8 7 5 5.8

Z 0 1 X
Z 1 0 X

2 6 4 7 6 4 4.8

Z O X 1
Z X 0 1

3 8 7 8 8 6 6.5

Z 1 X 0
Z X 1 0

3 6 4 8 6 5 5.3

42 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.5 Number of 2-valued logical operations.

Ciruit 2-Valued 3-Valued 4-Valued

32-bit Adder
 nand X 384

768
(1.00)

768
(1.00)

2304
(3.00)

32-bit Adder
nand X 128, and X 496
exorX 64

352
(1.00)

704
(2.00)

1344
(3.82)

16-bit Multiplier
nand X 2880, and X 256

6016
(1.00)

6272
(1.04)

18304
(3.04)

16-bit Multiplier
nand X 960, and X 496
exor X 480

2896
(1.00)

5792
(2.00)

11584
(4.00)

and Table 3.4. From the limitation of the computation time, we have

got only approximate solutions for some of them. "Ave-4" in the tables,

which gives the average for NOT, AND, OR and EXCLUSIVE-OR, shows

that there exist codings that enable three-valued and four-valued logic

simulation with a computation time on the average 2.5 times and 4 .2

times greater, respectively, than in two-valued logic simulation . If we

choose the best coding for each circuit, computation time will be further

reduced, as shown in Table 3.5.

3.3.4 Implementation and Experiments

We implemented a gate-level (two-valued) zero-delay simulator based on

the above simulation technique. As for the simulation control method
,

the code generation method is adopted. Fig. 3.5 shows the system con -

figuration. First of all, the circuit description is written in SHDL (Struc -
tured Hardware Design Language) [Sak82]. A translator reads this de-
scription and generates a FORTRAN program which will realize vector -

parallel simulation of the circuit (Fig. 3.6). The order of the gate evalu-
ation is determined in this phase. The gate evaluation is coded using the

built-in logic functions of FORTRAN (IAND, IOR in Fig. 3.6). The FOR-
TRAN program is compiled into an object code for the vector proces sors

3.3 Vectorization of Combinational Circuit Simulation 43

 Circuit
Description

I
1
1
I

Fortran
Program

 Machine

 Code
for VP, 5-810

FACOM
 HITAC

Fortran

Compiler

M-382
M-280H

 Pattern
Description

 Pattern
Translator

Pattern
 Data

 Vector
Processor

VP-200
 VP-100
S-810

-I

1
1
1
1
1
1

1
1
1
1
I

Simulation
 Result

Fig. 3.5 System configuration of the combinational circuit simulator.

000001

000002

000003

000004

000005

000006

000007

000008

000009

000010

000011

000012

000013

000014

000015

000016

000017

000018

000019

000020

000021

000022

DO 10 J = 1,LEN
BUFF(J,4) = NOT(BUFF(J,1))
BUFF(J,5) = NOT(BUFF(J,3))
BUFF(J,6)= NOT(BUFF(1,2))
BUFF(J,7) = IAND(BUFF(J,1),BUFF(J,2))
BUFF(J,7)= IAND(BUFF(J,5),BUFF(1,7))
BUFF(J,8)= IAND(BUFF(J,2),BUFF(J,3))
BUFF(J,8)= IAND(BUFF(J,4),BUFF(J,8))
BUFF(J,9)= IAND(BUFF(1,4),BUFF(J,5))
BUFF(J,9)= IAND(BUFF(J,6),BUFF(J,9))
BUFF(J,1)= IAND(BUFF(J,1),BUFF(J,3))
BUFF(J,1)= IAND(BUFF(J,1),BUFF(J,6))
BUFF(J,7) = IOR(BUFF(J,7),BUFF(J,8))
BUFF(J,9)= IOR(BUFF(J,9),BUFF(J,1))
BUFF(1,10) = IOR(BUFF(1,7),BUFF(J,9))
BUFF(J,10) = NOT(BUFF(J,10))
BUFF(1,1) = IAND(BUFF(J,4),BUFF(J,5))
BUFF(1,3)= IAND(BUFF(J,5),BUFF(J,6))
BUFF(J,7) = IAND(BUFF(J,4),BUFF(J,6))
BUFF(J,1) = IOR(BUFF(J,1),BUFF(J,3))
BUFF(J,1) = IOR(BUFF(J,1),BUFF(J,7))

10 BUFF(J,1) = NOT(BUFF(J,1))

Fig. 3.6 A generated Fortran program.

44 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.6 Summary of the speed performance.

 (the combinational circuit simulator)

Computer

Execution Speed
 [X 106 gate / sec] Vector

Scalar

Scalar Vector

VP-100 3865

VP-200 322 7698 23.9

S-810 93 4204 45.2

by the FORTRAN77/VP compiler (FACOM) or the FORTRAN77HAP
compiler (HITAC), and is executed with pattern data on vector proces-
sors.

 Since the logic functions are compiled into vector logic operations in

a straightforward manner, almost all the operations in the program are

processed by vector instructions. All the vector accesses are contiguous

accesses and the simulation speed is extremely fast. The vector length is

 [p/321 (where p is a pattern length to be processed at a time) by the 32-
bit parallel simulation technique. Simulation speed then depends on the

pattern length but not on the circuit size or circuit structure. Fig. 3.7

shows the relation between simulation speed and vector length. The

simulated circuit is a full-adder of 19 gates. The simulation speed grows

with the vector length but the nearly maximum speed is available at

vector length 128 N 512. Table 3.6 shows the maximum speed obtained

by the scalar execution and the vector execution on the machines. An

execution speed of 7.7 x 109 gate-evaluations per second is obtained on

the FACOM VP-200. This speed is 20 N 40 times faster than that by

the scalar execution.

 The capacity of the simulator (the maximum number of gates that can

be simulated) is bounded by the storage size. In the VP-technique with

3.3 Vectorization of Combinational Circuit Simulation

Speed (x 106 gate evaluation /sec)

7000

 8

Fig. 3.7

16 32

Relation

 (the

 64 128 256 512

between vector length

combinational circuit

VP-200 (Vector)

VP-200 (Scalar)

S-81020 (Scalar)

 1024 2048 4096 8192

 Vector Length

and simulation speed.

simulator)

45

46 3. Fast Logic Simulation Using Vector Supercomputers

code-generation method, the storage is used for the simulation code and

for the pattern vector areas. It is difficult to estimate the precise size of

the simulation code, because it depends on the optimization strategies

of the FORTRAN compilers. We can say that the code size is roughly

proportional to the sum of the number of gates and the number of in-

put/output lines of the gates. In the case of two-input gates, about 24
bytes are required per gate. As for the pattern vector areas, the storage

required is proportional to the length of pattern vectors and to the My

discussed in 3.3. It is difficult to get the M„ of a circuit only from its size

because M„ also depends on the structure of the circuit. With reference

to the result of Table 3.2, it is estimated that we can simulate more than

6M gates using the main storage of maximum size 256M bytes.

 As an effective application of the VP-technique, we consider the Boolean

comparison of two given combinational circuits. We prove the logical

equivalence of the circuits by applying all possible patterns to the cir-

cuits and testing the consistency of the outputs of the two circuits. The

consistency is tested by simulating the circuit shown in Fig. 3.8 and

checking whether the state on V is always 0.

 Let m, n, N1, N2 be the number of the primary inputs, the primary

outputs, the gates of circuit-1, the gates of circuits-2, respectively. Then

the number of the gate evaluation necessary for proving equivalence is

2771 x (Ni +N2-{-2n-1).

 In the case where m = n = 32 and N1= N2 = 2000 (approximately as

same as 16-bit multipliers), the computation time required for simulation

is about 40 minutes using FACOM VP-200. Although the computation

times for pattern generation and result testing must be added (they are
also vectorizable), one hour will be enough to prove the equivalence of

the circuits.

 Recent researches on Boolean comparison using binary decision dia-

grams [Fuj88, Min90] have made it possible to verify Boolean equivalence

3.3 Vectorization of Combinational Circuit Simulation 47

 All Possible patterns

Fig. 3.8 The circuit for Boolean comparison.

48 3. Fast Logic Simulation Using Vector Supercomputers

within feasible storage and time for many practical functions. However,

there are still many functions which are hard to handle by binary deci-

sion diagrams [Bry86, Bry90, Ish90y]. Multiplication is one of the typical
examples. For such complex functions the use of our logic simulator on

vector supercomputers is currently the most effective way of Boolean

comparison.

3.3.5 Considerations for Further Acceleration

In the present system, we assign one FORTRAN statement for each gate.

Load and store operations will be executed for each gate evaluation but

some of them are not necessary if vector resistors are efficiently used. We

can reduce this redundant load and store operations by programming

in assembler or in machine code, but unfortunately FORTRAN is the

only available language for programming on our vector processors. We

can expect the similar effect by collecting several neighboring gates and

expressing them in a single FORTRAN statement as shown in Fig. 3.9.

By simple experiments with a circuit of ten and several gates, about 20

percent improvements in the simulation speed is observed.

3.4 Vectorization of Sequential Circuit Simulation

3.4.1 Gate Grouping Technique

A synchronous sequential circuit is generally composed of a combinational

circuit part and registers or memories. For simplicity, we will consider

a sequential circuit of the type shown in Fig. 3.10. Since loops in the

circuit contain registers, simulation of a synchronous circuit is performed

by evaluating the combinational circuit part at every clock period . Un-

fortunately, time first evaluation is impossible because evaluation of the

combinational circuit part at a certain clock period requires the result of

3.4 Vectorization of Sequential Circuit Simulation 49

 I
 1

r ^

F
1

G

1 1
•

D

j r

AM B rm
N

 11 12 13 14 15 16

A = IAND(11,12)
B = NOT(13)
C= IAND(14,15)
D = IOR(A,13)
E = IOR(B,C)
F = IAND(D,E)
G = IAND(E,16)

Or
E = IOR(NOT(13),IAND(14,15))
F = IAND(E,IOR(13,IAND(I1,12)))
G = IAND(E,16)

Fig. 3.9 An acceleration technique.

Primary

Inputs
—^

 Combinational

 Circuit Part

Registers

Primary

Outputs

Clock •

Fig. 3.10 A model of synchronous sequential circuits.

50 3. Fast Logic Simulation Using Vector Supercomputers

61 16 ~uu
r

1--------I# ~i {

31 13 I: 5 5 1 8 8 8

_ _I__J _J__J ._1_J

r !,)
 t

 Fig. 3.11 Grouping of gates (1).

the previous clock period. Although it is possible to achieve vectoriza-

tion by simulating many cases at a time, it will not be feasible for the

following reasons.

 1) In order to bring out the effect of the vector processing, we must
 simulate thousands of cases at a time.

 2) When a circuit contains a large memory, we have to store the con-

 tents of the memory corresponding to all the cases.

 We have developed alternative techniques based on the conventional

space first evaluation algorithm. We increase the vectorization ratio by

the gate grouping technique (GG-technique). Gates of the same type

are grouped and are evaluated together in a vectorized manner. The

grouping must be done with careful consideration so that the order of

the gate evaluation will be correct. Fig. 3.11 shows an example of the

grouping. The groups of gates are processed in the order of their numbers

3.4 Vectorization of Sequential Circuit Simulation 51

V: states of lines

 Fig. 3.12 Vectorization of gate evaluation.

in the figure. Registers are treated as simple buffers and are evaluated

at the end of the clock period.

 Fig. 3.12 illustrates how the gate evaluation procedures are vectorized.

The vector V holds the states of the signal lines, and the vector XI gives

the correspondence of the input lines of gates and the signal lines. The

evaluation of gates in a group is performed as follows.

 1) Input states for the gates are fetched from the vector V using the in-
 formation of XI. This operation is vectorized by indirectly addressed

 vector accesses.

 2) The logical operations for gates are performed. Since all the func-

 tions of the gates in a group are the same, this operation can be

 processed by vector logical operations.

 3) The result of the logical operations is stored into the vector V. This

 is vectorized using contiguous vector access.

52 3. Fast Logic Simulation Using Vector Supercomputers

 In the vector V, one word is assigned for a signal line in order to allow

access V by the word. We can use the parallel simulation technique in

combination by stuffing b states in a word (where b is the word length).

Multi-valued logic simulation is also possible by the vector bit coding

technique outlined in Section 4.3.

 From the standpoint of efficient vector processing, it is desirable to

make the average group size large, or to make the total number of groups

small. In our approach, the average group size becomes large when (1)

the circuit size is large and (2) the logical depth of the circuit is small.
In large scale logic design, there is a tendency to increase the number

of registers and reduce the depth of combinational circuits in order to

improve testability or throughput [Seg83]. Thus we can conclude that
our approach is suitable for the simulation of the latest large scale digital

systems.

3.4.2 Grouping Algorithms Based on DF-Sorting

In this section we discuss the problem of gate grouping. The grouping

shown in Fig. 3.11 is determined based on level sorting. That is, the gates

which have the same functions in the same level are grouped together.

They are evaluated in the order of the level number.

 There exist other grouping methods which also guarantee correct sim-

ulation. Fig. 3.13 shows such a grouping on the same circuit as the

previous example which yields larger average group size. This grouping

is determined based on the DF-sorting mentioned in Chapter 2 . The

details of the grouping algorithm are as follows.

S1) At the beginning, gates with all inputs connected to primary inputs

 or register outputs are included in set S.

S2) Repeat S3) and S4) until S becomes empty.

3.4 Vectorization of Sequential Circuit Simulation 53

54 4 I

,5-,1
 5

 M

31 13 i 4

r--

6 6 6

 1 1 I1 1 i r

1
12) 2

1^ ^ ^

 Fig. 3.13 Grouping of gates (2).

S3) Choose one gate type. Get gates of that type out of S, and construct

 a new group with them.

S4) If available gates are newly produced as a result of evaluation of the

 group determined in the previous step, include them in S.

S5) Group all the registers.

 The average group size depends on the choice in S3). It is a very

difficult (NP-hard) problem to make the optimum choice. In order to

find a near optimum solution by a brief computation, we have developed

the following three heuristic algorithms.

 1) Greedy Strategy

 Count the number of available gates for each gate type. Choose the

 gate type which has the largest number. This heuristic gives results

 as good as level sorting.

54 3. Fast Logic Simulation Using Vector Supercomputers

 2) Level+ Greedy Strategy

 Compute the smallest level number of available gates for each gate

 type. Choose the gate type which gives the minimum level number.

 If there are multiple candidates, apply the greedy strategy. Although

 this heuristic seems similar to the grouping based on level sorting

 there is a difference in that the gates which belong to the different

 levels can be grouped together only if they are available. Clearly

 this heuristic guarantees a solution no worse than the level sorting.

 3) Individual-Inverse-Level+ Greedy Strategy

 The Individual-Inverse-Level number of a gate g (denoted by IIL(g))

 is defined as follows. Here, for consistency, we treat a primary output

 as a gate with a single input and no output.

 for a primary output o:

 IIL(o) = 1,

 for a gate g:

 IIL(g) = maxh{ IIL(h) + 1 (if g and h are of the same function),

 IIL(h) (otherwise)},

 where gate h is the fan-out destination of the gate g. In this heuristic,

 the gate type which gives the maximum IIL for available gates is cho-

 sen. This heuristic gives a still better solution than the Level+Greedy

 Strategy.

 Table 3.7 shows the comparison of the solution obtained by the group-

ing algorithms stated here. The circuit (arithmetic circuit to compute

sum of products) consists of about 7,000 gates of four types and of depth

is 125.

 Another way to enlarge the group size is to do logic conversion . By

converting the original circuit to a circuit which consists of fewer types of

gates, the average group size will be larger than in the original circuits. If

3.4 Vectorization of Sequential Circuit Simulation 55

Table 3.7 Comparison of the grouping algorithms.

Algorithm
Number of

Groups
Average

Group Size
CPU Time

[sec]

Level Sorting 355 21.1 0.75

Heuristic (1) 366 20.5 0.60

Heuristic (2) 304 24.6 1.13

Heuristic (3) 235 31.9 2.10

we choose a gate which is functionally complete, such as NAND and NOR,

it is possible to convert any circuit to the one which consists of gates of

a type. Then the average group size is equal to the averaging number of

gates in each level. Although the number of operations for gate evaluation

may increase, the total simulation time will be reduced if the effect of the

improvement in the vector length is large. This conversion technique is

considered to be effective when a circuit consists of many types of gates or

when the vector length is short. Although the magnitude of the average

group size is not typical because the depth is extremely large, we can see

that the average group size is enlarged by a factor of about 1.5 by our

heuristics. The results in Section 4.4.3 are obtained by the IIL+Greedy

strategy.

3.4.3 Implementation and Performance Evaluation

We also implemented a sequential circuit simulator on the vector pro-

cessors. Although it is possible to adopt the code-generation method as

well as in the combinational circuit simulator, we took the table-driven

method in order to investigate the difference in execution efficiency and

preprocessing efficiency brought about by the different simulation con-

trol methods. Fig. 3.14 shows the system configuration. From a circuit

description, the gate evaluation scheduling is determined and gates are

divided into groups. Gates are renumbered so that the gates of each

56 3. Fast Logic Simulation Using Vector Supercomputers

 Circuit
Description

 1

1 %/
I Trai

I
1
1
1 FACOM
1 HITAC
1

M-382
M-240H

 1
 1
 1
1

 Pattern

Description

Fig. 3.14

 Pattern
Translator

FACOM

 HITAC

Pattern
 Data

VP-100
VP-200
5-810 -- v J

Simulation
 Result

System configuration of the sequential circuit.

group have contiguous numbers.

 Tables generated by the translator contain two kinds of information.

One is to give the connections and it corresponds to the vector XI men-

tioned in Section 4.4.1. The other table, called a group table, describes

the function, number of gates, the index to the XI table and the index

to the V table. Since entries of group table are ordered according to the

gate evaluation scheduling, simulation proceeds by interpreting the group

table from top to bottom. Gate evaluations are performed by executing

a routine corresponding to the function of the group.

 The average vector length, which is equal to the average group size,

depends on the circuit size and circuit structure as discussed in Section

4.4.1. Fig. 3.15 shows the relation between vector length and execution

speed of the simulator. From the figure we can see that the simulation

speed saturates at a larger vector length than in the combinational circuit

3.4 Vectorization of Sequential Circuit Simulation

Speed (x 106 gate evaluation /sec))

1200

8

Fig. 3.15

5-810/20 (Vector)

VP-200 (Vector)

VP-100 (Vector)

5-810/20 (Scalar)

VP-200 (Scalar)

16 32 64 128 256 512 1024 2048 4096

 Vector Length

 Relation between vector length and simulation speed.

 (the sequential circuit simulator)

57

58 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.8 Summary of the speed performance.

 (the sequential circuit simulator)

Computer

Execution Speed
 [X 106 gate / sec] Vector

c~ alar

Scalar Vector

VP-100 902

VP-200 92 1390 15.1

S-810 97 1386 14.3

simulator. This is because the overhead for table look-ups is dominant

when the vector length is small. Table 3.8 summarizes the maximum

performance of the simulator. By the vector execution, both the VP-200

and the S-810 yield the simulation speed of 1.4 x 109 gate-evaluations

per second, which is over ten times faster than by the scalar execution.

Compared with the combinational circuit simulator, it is several times

slower because the sequential circuit simulator executes input fetches

for the gate evaluation by indirectly addressed vector access, while the

combinational circuit simulator does this by contiguous vector access .

 In the case of the practical circuit referred to in Table 3.7, simulation

speed of 122.6 x 106 gate-evaluation per second is observed on the VP-

200 (average vector length is 31.9, see Table 3.7). This result is slower

than that shown in Table 3.8. But the efficiency in gate evaluation turns

to be higher if we consider that about 1.8 times as many operations are

necessary for evaluating a gate, on an average, through the use of gates

with three inputs and negative gates. This is because of the similar effects

of the load/store optimization technique mentioned in Section 4.3.5.

 The storage space is used for storing the group table , the connection

information vector XI and the state vector V . Let the total number

of input lines be i and the number of signal lines 1. Then the size of

3.4 Vectorization of Sequential Circuit Simulation 59

the XI and V are 4i bytes and 4l bytes, respectively. As for the group

table, 20 bytes are required for a group but it will be negligible when

the vector length is large enough. It follows that in the case of 2-input

gates the maximum capacity is more than 20M gates using the storage

of 256M bytes. This capacity is larger than that of the combinational

circuit simulator because we do not need to store many patterns for a

signal line.

3.4.4 Code-Generation Method vs. Table-Driven Method

As for the simulation control method, we adopted the code-generation

method for the combinational circuit simulator and the table-driven method

for the sequential circuit simulator, and we examined the difference in

execution efficiency and preprocessing efficiency. The code-generation

method has the following advantage over the table-driven method in ex-

ecution efficiency.

M1) In the code generation step, we can apply the load/store optimiza-
 tion technique mentioned in Section 4.3.5.

M2) There is no overhead for interpreting the table (Compare Fig. 3.7

 with Fig. 3.15).

 On the other hand, the code generation method has some disadvan-

tages in the preprocessing efficiency:

Dl) It takes a lot of computation time to generate FORTRAN programs

 because of the needs to process character strings.

D2) It also takes a lot of computation time to compile FORTRAN pro-

 grams because the FORTRAN77/VP compiler and FORTRAN77
 HAP compiler perform vectorization and other special optimiza-

 tions.

60 3. Fast Logic Simulation Using Vector Supercomputers

 In the simulation of small scale circuits, the effect of D1) and D2) are

negligible, but the preprocessing overhead will increase significantly in

accordance with the increase in circuit size. Moreover, the overhead for

interpreting the table will be negligible when a long enough vector length

is available. We think that the table driven method is better for large

scale simulation.

 The above discussion is based on the situation where FORTRAN is the

only available language for the programming on our vector processors.

If we can program in assembler or machine code, the code-generation

method will be more advantageous.

3.4.5 Modeling of Circuits

Although we have discussed only the simple sequential circuit model

shown in Fig. 3.10, our simulation techniques can also treat more compli-

cated ones, such as clock distribution logic and registers with reset/preset.

This is done by adding proper logic to a buffer representing a register.

The buffers, which we have used to represent registers, can also be re-

garded as unit delays. By adding buffers to every logic gate, unit delay
simulation is also possible; thus we can handle asynchronous circuits. In

this case we can easily obtain very large vector length because the depth

of the combinational circuit part is always just 1. With these capabilities

this simulation technique is considered to be flexible and can be put to

practical use.

3.5 Vectorization of Event-Driven Simulation

3.5.1 Vectorization of Event Processing

In Section 4.4.3 and 4.4.4, we have discussed the simulation techniques

based on the compiler-driven method. We now consider the vectorization

3.5 Vectorization of Event-Driven Simulation 61

of logic simulation based on the event-driven method. The basic algo-

rithm that we adopted is the conventional event-driven method with the

time mapping technique [Bre76]. An event is defined as a change of the

output state of a gate (for simplicity, we assume that a gate has a single

output). Events whose occurrence is definite are maintained using the

data structure called a time wheel. It consists of linear lists chained to

a circular list of headers each of which is associated with a time period.

Simulation is performed by advancing the time by a certain unit and

carrying out the following steps at each time period. Here, the time that

we are concerned with is referred to as current time.

El) Event fetch: Get current events, the events scheduled to occur at

 the current time, out of the time wheel.

E2) Event propagation: Retrieve gates affected by the current events.

E3) Gate evaluation: Compute new output states of the gates obtained
 in E2).

E4) Event registration: If there are changes in the output states, register

 this information into the time wheel as new events.

 As a method to avoid the duplication in evaluation and registration

for multiple input changes at a gate, the one-pass strategy and the two-

pass strategy are known [U1r69]. Although the one-pass strategy is, in
general, slightly more efficient in the gate-level simulation, we adopted

two-pass strategy because of restrictions of vector processing.

 The procedures for the above four steps are vectorized by processing

all the events together which are scheduled in the same time period.

No serious modifications are made to the algorithm itself, but the data

structures and the operations on events are redesigned to be suitable for

vector processing.

62 3. Fast Logic Simulation Using Vector Supercomputers

Event

Flag

 iliiillilia
Gate# State

liiiiiilim: ilililili=C minima

IIIi1111lIC liillllllla

lililllilla

111I1111i1C 11111iiuIIC 1111I11111a

Fig. 3.16 An array structured time wheel.

3.5.2 Event Fetch

Since the original structure of a time wheel does not have good affinity for

vector processing, we do not chain events one by one but collect certain

numbers of events together (128 events in our current system) and treat
them as a list of arrays (see Fig. 3.16). We call this data structure an

array structured time wheel. In this step, events are first fetched from the

time wheel and a current event vector is produced so as to vectorize the

subsequent event processing (see Fig. 3.17). This operation is a simple

duplication of arrays of events owing to the adoption of array structured

time wheel, and is easily vectorized. The information of an event consists

of a gate index, a new state and a validity flag. A validity flag indicates
whether the event are canceled or not (in the sophisticated delay mode

simulation) and we must exclude the events with `canceled' flags from

the event processing. We make this exclusion in the event propagation

step for reasons of efficiency, and here simply copy the events.

 Next, external events, the events for the primary inputs or the events

to change the state of the gate from outside, are given by an external

3.5 Vectorization of Event-Driven Simulation 63

I LI II

Flag I Gate# State

Fig. 3.17 A current event

I < f I 1 __

Time # of Events

vector.

___ ____ _______ .1
=1

(Gate# I State I
 Fig. 3.18 An external event vector.

event vector shown in Fig. 3.18. These events are taken out and are

appended to a current event vector at the point where the simulation

proceeds to the specified time. In the case where there is an event with

the same gate index as fetched from the time wheel, we cancel the one

from a time wheel.

 We next update the output states of gates according to the information

in the current event vector. This is done by storing new output states for

the gates in the current event vector. This is vectorized straightforwardly

using indirectly addressed vector access. At the same time, we must

record the events, as a result of simulation, for the gates that are specified

to be traced. This is carried out by the following operations:

 1) Test whether the gates, on which current events are occurring, are

 specified to be traced.

 2) Test whether the output states of the gates change. This is necessary

 because there are some cases where the states are not changed by

 events on account of the cancellation of events,

 3) Gather events which satisfy 1) and 2).

64 3. Fast Logic Simulation Using Vector Supercomputers

I I 1 L_ I I---D

Gate# I Input# I State I

 Fig. 3.19 An active gate vector.

 Operations 1) and 2) are processed by table look-ups and are vectoriz-

able using indirectly addressed vector access. Operation 3) is vectorized

by vector compress function.

3.5.3 Event Propagation

We call a gate an active gate if it is affected by current events. In the

event propagation step, we make an active gate vector from the current

event vector. As shown in Fig. 3.19, an element of the active gate vector

consists of indexes of a gate and input position, which are affected by

a current event, and a new state. First of all, the events whose flag

indicates `canceled' are dropped (by vector compress operation). Next
fan-out destinations are retrieved for all the gates in the current event

vector to get gate indexes for the active gate vector. If an output line

of a gate has large number of fan-out destinations (for example, a gate

to supply output to a clock line or a reset line), enough vector length

is available in searching the fan-out table. But since most signal lines

have a few fan-out destinations, maybe 1 to 4, the average vector length

will be very short if we search the table in the fan-out direction for each

line. We propose to search the table not in the fan-out direction but in

the gate index direction. First, we get gate indexes (and input position)

of the first fan-out destinations of all the current events. Next we get

gate indexes of the second fan-out destinations of current events which

have not less than two fan-out destination. Then the third, the fourth

and etc. Finally we have a new active gate vector. The operation to

gather current events, whose gates have i or more fan-out destinations,

 3.5 Vectorization of Event-Driven Simulation 65

Fan-out direction

Gate index direction

 1111111111111111
 Current event vector

 Fig. 3.20 Search of fan-out destinations.

are vectorizable using the vector compress function.

 There remains, however, the problem that the vector length will de-

crease as we come to a large fan-out number. We have the following ideas

as countermeasure for this problem:

1) As shown in Fig. 3.20, search the table in the fan-out direction for

 lines with large fan-out number and in the gate index direction for

 lines with small fan-out number.

2) If there are gates with many fan-out destinations, divide them into

 the lots with the adequate size.

3) Combine 1) and 2). Namely search table in the fan-out direction for

 gates with many fan-out destinations and divide fan-out destinations

 for gates with the medium number of fan-out destinations.

 In the current system only 1) is adopted. It is remained for future

research to examine which strategy is effective and at what vector length

the way of searching should be changed.

 66 3. Fast Logic Simulation Using Vector Supercomputers

 Gate# State Delay

Fig. 3.21 A new event vector.

Zoom Record

 I j I 11 I I

Fig.

 Gate
 Kind
 (6bit)

Activity
 Flag
(1 bit)

3.22

New
State
 (2bit)

1=7
 Input States

 (2bit
x 4in puts)

ffin
Previous
 State
(2bit)

Delay
(8bit)

j4 %\

~{y]
{\

•

•

•

•

•

•

]

Zoom Table

 Addressing

A data structure for gate evaluation.

3.5.4 Gate Evaluation

In this step we perform gate evaluation using the information of an active

gate vector and make a new event vector shown in Fig. 3.21, whose

element consists of a index of gate, a new state and a propagation delay.

 Among gate evaluation techniques devised for efficient logic simula-

tion, we consider zoom table look-up [U1r80b] is one of the most suitable
techniques for vector processing, because the output states of gates are

computed by uniform table look-up operations regardless of the func-

 33 Vectorization of Event-Driven Simulation 67

tions or the fan-in numbers of the gates. (In this case the bit vector
coding technique discussed in 3.3 is not so effective because parallel sim-

ulation technique is inherently impossible in the event-driven simulation.)

Fig. 3.22 illustrates an example of the data structure for gate evaluation.

The information necessary for gate evaluation, such as input states and

the types of gates, is described in a zoom record vector. Two bits are

used to express an input or output state so as to handle four-valued logic.

In this case, the maximum inputs for a gate, which is restricted by the

size of the zoom table, is 4. The previous output states are recorded in

a zoom record vector as well as (the current) input states in order to get

the delay values and presence of output state changes (in case of rise/fall
delay model) together with new output states. Using a zoom record vec-

tor as an index vector, a zoom table is looked up by indirectly addressed

vector access. The information of presence of an output state change, a

new output state and a delay value are stuffed into a word to reduce the

size of the table and the number of table look-ups. They are separated

using vector logical operations and vector shift operations.

 Prior to the zoom table look-up, we must update input states in the

zoom record vector from the information of the active gate vector. (This

operation is also vectorized by logical and shift operations). Here, the

handling of multiple changes on gate inputs is somewhat troublesome. As

shown in Fig. 3.23, if the both inputs of the gate 7 change, the element of

a zoom record vector concerning with gate 7 must be updated from the

information of two elements of an active gate vector. In the case of scalar

processing no problem occurs because a state of the first and the second

input states are updated separately. But in the case of vector processing,

(which means that if we vectorize this procedure by compulsion), the re-
sult on the zoom record of gate 7 can be erroneous because of the conflict

of the store operations. Moreover, the check and the cancellation of such

duplicated events are very difficult. In order to avoid these problems, we

68 3. Fast Logic Simulation Using Vector Supercomputers

Active Gate Vector

,
,

 :::=]

7 I7 2

Gate
In-State

1

Mutual Updating ,1
•

 7

I--I II I I I i ___L]
 Zoom Record Vector

Fig. 3.23 A write conflict for simultaneous input changes.

update the zoom records for each input position. Namely, zoom records

are first updated only with the information of active gates whose input

position is 1. Subsequently the same operations are carried out for input

position 2, 3 and 4. By this dividing strategy, we can avoid the conflict

and vectorize the procedure. In addition, we can exclude the duplica-

tion of events by checking whether there has been updating for the same

gates, at every updating associated with input position 2, 3 and 4. One

demerit of this strategy is that vector length becomes shorter than that

of an active even vector.

3.5.5 Event Registration

In the event registration step we register events, whose occurrences are

newly known in current time, into a time wheel mentioned in 5 .2. Gate

indexes and new states in the new event vector are written into a list

of arrays corresponding to the occurrence time. If the positions for new

events to be inserted are determined, they can be written into by in-

3.5 Vectorization of Event-Driven Simulation 69

New event vector

 Gate
Delay # State

 1 10 0

3 31 1

3 24 1

1 99 0

4 47 X

1 22 X

4 90 1

E>

Sequence

Number

 1

 1

2

2

1

3

2

Fig. 3.24 Counting of the same delay values.

directly addressed vector access. The operation required to determine

the position is, in essence, to number the elements of a new event vec-

tor for each delay value (see Fig. 3.24). Unfortunately, this operation is

unvectorizable in the current architecture of our vector processors and

is carried out by scalar execution. But in the case of zero-delay and

unit-delay simulation, it can be vectorized in quite a simple manner.

 When we use the sophisticated delay models such as rise/fall delay,

inertia delay and minimum/maximum delay, the operation of event can-

cellation is necessary. This operation is to cancel all the events associated

with a certain gate which are already registered and maintained in the

time wheel. Let dr and c/1 be the rise-delay and fall-delay, respectively,

of a gate. Assume c/1 < dr for example. Let el be an input event which

occurs at time t1 and causes a signal rise on the output, and let e2 be an

input event which occurs at time t2 (t1 < t2) and causes a signal fall on

the output. Then event of the signal rise scheduled at time t1 + dr must

be canceled at time t2 if

t2 + df <t1+dr.

70 3. Fast Logic Simulation Using Vector Supercomputers

Table 3.9 Summary of the speed performance.

(the event-driven simulator)

Delay
Model

Scalar Coding Vector Coding

Scalar
Exec. (A)

Vector
Exec. (B)

Scalar
Exec. (C)

Vector
Exec. (D)

Zero
106

89
83
92

44
34

277
335

Unit
87
77

85
90

38
29

 296 ,
342

Rise/Fall 65
61

75
78

36
28

206
229

[X 103 event/sec]
 Upper: VP-200
 Lower: S-810/20

Recording the occurrence time of the previous events for every gate and

checking the condition denoted as the above expression, we can easily

judge whether to cancel the previous event or not. We can also cancel
the events by chaining all the events associated with a gate and write
`canceled' into the flag of the events . These operations are vectorizable

using indirectly addressed vector access, vector add and vector compare

operation.

3.5.6 Implementation and Performance Evaluation

Based on the above consideration, we implemented a gate-level (four-

inputs and a single output gates) four-valued simulator with three delay

modes (zero-delay, unit-delay and assignable rise/fall delay) . In order
to evaluate the effect of the vector coding , we also prepared a simula-

tor of conventional scalar coding. Table 3.9 shows the simulation speed

obtained by experiments. The circuit simulated is a 16-bit multiplier

(combinational circuit) of 1700 gates. The average length of current event
vectors was 108, 221 and 206 for zero-delay, unit-delay and rise/fall delay

simulation respectively. (A) and (C) in the table indicate the execution

3.5 Vectorization of Event-Driven Simulation 71

speed of the scalar execution, and (B) and (D) of the vector execution.

Maximum performance (by the vector execution of our vector coding) of

rise/fall delay simulation is about 230 x 103 event per second, or 440 x 103

active gate evaluation per second on the HITAC S-810/20. This is slower
than that in zero-delay or unit-delay simulation mode because the proce-

dures for event registration are not vectorized. In the case of our vector

coding, simulation speed is accelerated by 8 to 11 times by vector execu-

tion (compare (C) with (D)), while very little improvements are observed

in the case of conventional scalar coding (compare (A) with (B)). But
the overhead for the vectorization is large (compare (A) with (C)), total

performance improvements are no more than 4 times (compare (D) with

(A)).

3.5.7 Compiler-Driven Method vs. Event-Driven Method

As stated in Chapter 2, the event-driven method has the merits over the

compiler-driven method that the gate evaluation count is fewer because

only active gates are evaluated. Owing to this merit, event-driven method

has a possibility to be advantageous also in the case of zero-delay or unit-

delay simulation mode. But our experiments tell us:

 1) The overhead of event scheduling and event propagation is compar-

 atively large and the procedures are not easy to be vectorized.

 2) On the other hand, the gate evaluation procedures in the compiler-
 driven simulation have very good affinity for the vector processing.

 Since our event-driven simulator is primarily designed for assignable

delay simulation, it employs only time mapping technique. If we tune it

up for zero-delay simulation and combines level mapping technique, the

performance may be improved. But the compiler-driven method is still

considered to be advantageous in the zero-delay or unit-delay simulation,

so long as the ratio of event occurrences is not so low.

72 3. Fast Logic Simulation Using Vector Supercomputers

3.6 Remarks and Discussions

High-speed logic simulation techniques suitable for vector processors have

been proposed. They are vector parallel simulation technique, gate group-

ing technique and vectorized event processing technique. As well as the

algorithms for simulation, the algorithms for preprocessing are also very

important for efficient simulation. In order to reduce the storage require-

ments or to extend the vector length , we have proposed some heuristic

algorithms based on the data flow sorting. We have achieved very high

performance through vectorization especially in the compiler-driven sim-

ulation of combinational and sequential circuits . The performance of our

simulators is comparable to that of hardware simulation engines such

as YSE [Den83]. As for the event-driven simulation it was difficult to

achieve as much acceleration ratio as the compiler-driven simulation
, the

final performance of the simulators are significantly high . The reason for

that is that the event-driven simulation algorithms is originally not suit -

able for vector processing. As shown in the experimental results
, simple

vector coding [Kro81] results in almost no acceleration . There are opera-
tions which are essentially unvectorizable or which are vectorizable onl

y
at the cost of large increase in computation cost . Addition of new vector

instruction for logic simulation, which is employed in VELVET [Nag86],
may be a good solution for this problem .

 Presently, logic simulators on general purpose scalar compute
rs are

still prevalent. In the gate-level simulation
, it seems to be difficult to

achieve significant acceleration in simulation speed through th
e improve-

ments of the algorithms . Considering the increase in the size of the circuit

(and the size of test patterns) to be simulated, soon it will be indispens -
able to enlist the aids of hardware simulation engine or parallel

or vector
computers. In view of the CAD/DA system configuration

, logic simu-
lators on a vector processor will be more attractive by the re

adiness of

 3.6 Remarks and Discussions 73

interconnecting with other CAD/DA tools and the economical efficiency

brought about when we share the vector processor with other tools such

as a device simulator.

74 3. Fast Logic S imu lation Using Vector Supercomputers

Chapter 4

Fast Fault Simulation Using Vector

Super Computers

4.1 Introduction

Fault simulation is to simulate the behavior of a logic circuit which has

a fault in it. While logic simulation is used for logic design verification,

fault simulation is used for analysis of the behavior of faulty circuits, test

set generation or quality evaluation of test sets for logic circuits. Fault

simulation requires much more computation cost than logic simulation,

because simulation must be carried out for each of the faults derived from

a certain fault model. For example, the computation cost of fault simula-

tion for a given test vector under single stuck-at fault model, which is the

most commonly used one, is 0(n2), where n is the number of the gates

constructing the circuit [Har87] . In the practical field of testing, there is

a growing interest in extensive use of random patterns and in a built-in

self test approach [Wai89] which cover faults that can not be modeled

by the single stuck-at fault model and exempt us from the high compu-

tation cost for algorithmic test generation [Fuj85]. This leads, in turn,
to very high computation costs for fault simulation to evaluate the qual-

ity of the random patterns. Various research projects have been carried

out in order to accelerate fault simulation by improving the algorithms

 75

76 4. Fast Fault Simulation Using Vector Supercomputers

[Arm72, Ulr80a, Wai85, Nis85, Ant87, and etc.], or to develop alterna-
tive techniques to fault simulation [Abr83, Jai84, Brg85, and etc.]. There

have been also researches to develop special purpose hardware which ac-

celerates fault simulation [Cha86] including whole the test generation

process [Hir88], or to develop test generation system on parallel comput-
ers [Mot86]. In this chapter, we propose a new technique to accelerate

fault simulation using vector supercomputers [Ish90i].

 We discuss the zero-delay two-valued fault simulation of gate-level

combinational circuits. Parallel, deductive, and concurrent fault simula-

tion are known as the typical methods of fault simulation [Fuj85]. Al-
though many of the recent fault simulators employ the concurrent simula-

tion technique which is an extension of the event-driven logic simulation

technique to fault simulation, we considered it advantageous to base our

vector algorithm on the parallel simulation technique because of its suit-

ability for vector processing. We propose a dynamic two-dimensional

parallel fault simulation technique as a vector processor oriented fault
simulation technique.

 Parallel simulation utilizes bit-oriented logic operations to perform a

lot of gate evaluations simultaneously . We can classify parallel simulation

into fault-parallel simulation and pattern-parallel simulation according to

the parallelism factors. In each method , by simply extending the unit of

gate evaluation from a word to a vector consisting of multiple words , as
is in the case of logic simulation , we can execute fault simulation very
much efficiently using vector instructions when the vector length obtained

is large enough. However we cannot obtain enough vector length or the

computation cost increases if we attempt to get enough vector length
,

because fault dropping is performed when we use fault simulation for

test quality evaluation in practice .

 In order to meet this problem , we combine a two-dimensional parallel
fault simulation technique and a technique of dynamic adjustment of the

4.2 Dynamic Two-Dimensional Parallel Simulation Technique 77

parallelism factors. In our method,

 1) we obtain large vector length by utilizing both fault and pattern

 parallelism, and

 2) efficiently achieve fault dropping by adjusting the two parallelism
 factors complementarily form pass to pass.

We further reduce the computation time by combining this technique

with selective tracing under the notion of multiple fault propagation. We

implemented a fault simulator based on our new technique on the Fujitsu

FACOM VP-200 vector processor and made some experiments. The sim-

ulation speed is accelerated by 10-15 times through vectorization. It is

particularly efficient in simulating large circuits with many patterns.

 After we show the notion of the dynamic two-dimensional parallel

simulation technique in section 4.2, we describe implementation methods

of selective tracing under the notion of the multiple fault propagation in

section 4.3. In section 4.4, we examine the performance of our simulator

under the experimental results. The last section concludes this chapter

with some comments.

4.2 Dynamic Two-Dimensional Parallel Simulation

 Technique

4.2.1 Fault Simulation

A fault simulator computes an output pattern of a logic circuit for each

given input pattern under each given fault occurrence. We will use a
word pattern instead of vector in order to avoid confusion between a test

vector and an operand vector for a vector processor. Fault simulators are

used for

 1) distinguishing faults as detectable (or undetectable) by given input

patterns,

78 4. Fast Fault Simulation Using Vector Supercomputers

 2) computing the percentage of fault coverage of given input patterns,

 3) generating a test set by selecting effective patterns from given input

 patterns, and

 4) generating a fault dictionary, etc.

In this paper, we focus on gate-level combinational circuits and zero-

delay two-valued simulation, and assume a single stuck-at fault model

 [Bre76]. We are interested in using fault simulation to perform 1)s.3) for

given enormous patterns such as random patterns. If we only intend to
determine if a fault is detected or not by given patterns , we can delete
faults from the undetected fault list as soon as they are detected by some

patterns, and we can dispense with simulation for other patterns. This
technique which drastically reduces the computation cost is called fault

dropping.

 As for fault simulation techniques , parallel, deductive and concurrent
fault simulation are well known [Bre76, Arm72, Ulr80a] . Among them,
we considered it advantageous to base our technique on the parallel sim -

ulation technique for the following reasons:

 1) Parallel simulators have been proved to be as efficient as concurrent

 simulators by the modifications such as the parallel-pattern single

 fault propagation (PPSFP) [Wai85]. We considered that there is
 much more room for further improvement in the computation effi -

 ciency of parallel simulation.

 2) Simplicity in the data structure and the operations of a parallel

 simulator is considered to have good affinity for vector processing
.
 Also in logic simulation , it is shown that the acceleration ratio from

 vectorization in the event-driven technique is larger than that in the

 compiler-driven techniques [Ish87].

4.2 Dynamic Two-Dimensional Parallel Simulation Technique 79

one word=b bits

I I
w words = v bits= wx b bits

fault 1---b fault b+ 1---2b fault v— b--v

(a) Extended fault-parallel simulation

pattern 1—b pattern b + 1-2b pattern v—b--v

 (b) Extended pattern-parallel simulation

 Fig. 4.1 Data structure for extended parallel simulation.

As a vector processor oriented fault simulation technique, we propose

a dynamic two-dimensional parallel fault simulation technique, which is

based on parallel simulation technique.

4.2.2 Two-Dimensional Parallel Simulation

Parallel simulation attempts to reduce the computation time by utilizing

bit-oriented logical operations of the computer, and if one word of the

computer consists of w bits, w gate evaluations can be performed at a

time. Parallel simulation is classified into fault-parallel simulation and

pattern-parallel simulation. The former simulates w fault cases for one

pattern at a time by assigning each fault case to one bit. The latter, on
the other hand, simulates w patterns for one fault at a time assigning

each pattern case to one bit.

 In either of the two, we can simulate w x v fault or pattern cases

simultaneously by simply extending the simulation unit from a word to

a vector consisting of v words. This simulation technique is referred to

as the extended fault-parallel simulation or the extended pattern-parallel

simulation. Fig. 4.1 shows the data structure for extended parallel simula-

80 4. Fast Fault Simulation Using Vector Supercomputers

Acceleration ratio

24

20

16

12

8

4

 —r-

 0 128 256 384 512 640 768 896

 Vector length

 Fig. 4.2 Acceleration ratio in the extended parallel simulation.

tion. Vectorization of the simulation procedure brings about considerable

improvement in simulation speed even on a scalar processor [Kro81]. On
a vector processor, into the bargain, we can achieve much larger acceler-

ation through the use of vector instructions. Fig. 4.2 shows the relation

between vector length and acceleration ratio through vectorization on the

Fujitsu FACOM VP-200 in extended pattern-parallel simulation. Simu-

lation speed is accelerated by over 20 times provided that a large vector

length (more than 700 words) is obtained.

 Let w be the number of bits in a word, and f and p, respectively

referred to as the fault-parallelism factor and the pattern-parallelism fac-

tor, be the number of faults and patterns simulated at a time. Since the
vector length in extended pattern-parallel simulation is Iplwl (where (xl
is the smallest integer not smaller than x), we can change it arbitrary by
changing p. However, we must store p fault-free values for all internal

lines and the value p is limited by the storage size if we perform selec-

tive tracing which will be described in the next section, . In extended

fault-parallel simulation, on the other hand, the vector length [f /w] is

restricted by the number of undetected faults. (We assume that the states
for the good machine is stored separately.) The number of undetected

faults decreases as simulation proceeds, which shorten the vector length.

4.2 Dynamic Two-Dimensional Parallel Simulation Technique 81

 fault 1 fault 2fault f

`pattern 1—p (pattern 1—p I `pattern 1—p I

 Fig. 4.3 Data Structure for two-dimensional parallel simulation.

Since the desirable vector length is considerably large, neither extended

fault- nor pattern-parallel simulation may not be capable of achieving

large acceleration. In such a case, we further enlarge the vector length

by utilizing both fault- and pattern-parallelism. Namely, we simulate

multiple faults for multiple patterns at a time. We call this technique

two-dimensional parallel simulation. In this technique, the vector length

is (f x p/wl , which is much larger than that in simple extended parallel

simulation. Fig. 4.3 shows the data structure of two-dimensional parallel

simulation. We refer [p/wi words of p patterns as a packet. A signal
value vector of each line contains f packets corresponding to f faults.

4.2.3 Dynamic Adjustment of the Parallelism Factors

Though fault simulation can be accelerated 20 times faster by extended

or two-dimensional parallel simulation, these are the results in the case

where a large vector length is obtained. In applying fault simulation

to test generation and coverage estimation in practice, we must con-
sider fault dropping. Fault dropping drastically reduces the computation

time, but it limits the fault-parallelism factor f and pattern-parallelism

factor p (i.e. the vector length) in two-dimensional parallel simulation.
Fig. 4.4 shows the relation between the number of undetected faults and

the number of simulated patterns. The area of each box represents the

vector length, or the computation cost in each pass (where a pass is a

process of performing good simulation on p patterns and fault simula-

tion for f faults on the p patterns). As is shown in Fig. 4.4 (a), a lot

of undetected faults exist in the early passes, and large vector length is

82 4. Fast Fault Simulation Using Vector Supercomputers

obtainable. However because the number of undetected faults decreases

as simulation proceeds, the fault-parallelism factor f becomes extremely

small in the later passes, and enough vector length may not be obtained.

However, if we attempt to simulate with a large pattern-parallelism fac-

tor p in order to get a large vector length in the later passes, as shown in

Fig. 4.4 (b), we are obliged to perform wasteful simulation in the early

passes for the faults which might have been dropped if simulated with a
smaller p.

 Therefore, it is very hard to reduce the computation time by sim-

ple two-dimensional parallel simulation when we take account of fault
dropping, because enough vector length cannot be obtained, or the com-

putation cost increases if we intend to get a large vector length. As a
solution for these problems, we propose a dynamic adjustment of the two

parallelism factors f and p instead of fixing their values. We change the
two parallelism factors complementarily from pass to pass according to

the following strategies (as shown in Fig. 4.4 (c)).

1) We set the pattern-parallelism factor small and the fault-parallelism

 factor large in the early passes. This is possible because there are

 many undetected faults in the early passes.

2) We set the pattern-parallelism factor large and the fault-parallelism

 factor small in the later passes.

We call this technique the dynamic two-dimensional parallel fault simula-

tion technique. In this technique, we can efficiently handle fault dropping

and yet keep large vector length.

4.2 Dynamic Two-Dimensional Parallel Simulation Technique

Fig.

Number of detected faults

 fault

paralellism f
actor

 pattern

paralellism f
actor

 Number of simulated patterns

 (a) Extended fault-parallel simulation.

Number of undetected faults

 Number of simulated patterns

 (b) Extended pattern-parallel simulation.

Number of undetected faults

4.4

 fault
paralellism f

actor

 pattern

paralellism f
actor

 Number of simulated patterns

(c) Dynamic two-dimensional parallel simulation.

Fault dropping and the two parallelism factors.

83

84 4. Fast Fault Simulation Using Vector Supercomputers

(BegirD 3. Determine
 f and p

1. Read
information
of the circuit and
faults

4. Read or

generate p
patterns

7. Propagate the effect
of the faults
(ffaults x p patterns)5. Simulate fault-

free circuits (for
the p patterns)

2. Until the
conditions for
coverage or test
size hold 9. Record

information6. Take ffaults
out of the set of
undetected
faults and for
these faults do

8. Faults
detectable ?CEnd-D 10. Fault

dropping

 Fig. 4.5 Simulation procedure.

4.3 Multiple Fault Propagation

4.3.1 Selective Tracing

Selective tracing is a well-known technique to reduce the computation

time of logic and fault simulation [Bre76] . There are several ways of
combining parallel fault simulation with selective tracing. Among them

we choose the following strategy which is similar to PPSFP [Wai85].

 1) Simulate the fault-free circuit (good simulation) and store the values

 of all the signal lines.

 2) Compute the effect of the faults by propagating the faulty values
 from the fault sources to primary outputs. Since the fault-free values

 of all the lines have been computed at step 1, we can avoid the waste

 of simulating the gates whose faulty input values are the same as the

 fault-free ones.

 In PPSFP, faults are processed one by one at step 2 (single fault

propagation) by pattern-parallel simulation. In our approach, we pro-

4.3 Multiple Fault Propagation 85

cess multiple faults at a time (multiple faults doesn't mean simultaneous

multiple faults but multiple single faults). We call this method multiple

fault propagation by the analogy of single fault propagation. The details
of the simulation procedure are shown in Fig. 4.5. At step 5, we perform

good simulation for p patterns by the extended pattern-parallel simula-
tion technique, and store the values of all the signal lines. At step 7, the

effect of the f faults selected at step 6 for the p patterns are propagated
by the dynamic two-dimensional parallel fault simulation technique.

4.3.2 Implementation of Selective Tracing

Our selective tracing consists of the following two concepts:

LIM: limit the gates for fault simulation to the gates in the fault effect

 cones, and

 DISC: discontinue fault propagation when the effect of faults disappear.

A fault effect cone of a fault is defined as a set of gates on the paths

from the faulty line to primary outputs. It is determined by connectivity

information only. The shaded region in Fig. 4.6 (a) shows the union of
the fault effect cones of some faults. All we have to simulate are only

the gates in this region. On the other hand, DISC attempts to reduce

the computation cost using the dynamic information of faulty values.

The disappearance of the effect of faults can not be found before the

simulation. In Fig. 4.6 (b), since faults do not effect on a set of gates in

the region A, we avoid wasteful simulation on them.

Implementation of LIM

LIM is easily realized by adopting the event-driven simulation with level

mapping technique (we assume the gates in the circuit are levelized in

the preprocessing stage). We prepare a evaluation gate list for each level

86 4 Fast Fault Simulation Using Vector Supercomputers

(a) LIM.

Fig.

 (b) DISC.

4.6 Selective tracing.

4.3 Multiple Fault Propagation 87

of the circuit, which is initially empty. Fault propagation is performed

by the following procedure.

 1) Register the gates that have faults on their input or output lines to

 a evaluation gate list of the corresponding level.

 2) Repeat 3)N5) until all the evaluation gate lists become empty.

 3) Take a gate g out of a evaluation gate list in the ascending order of

 the level number.

 4) Evaluate the faulty value of g.

 5) Register the successor gates of g to evaluation gate lists of their

 corresponding levels. If the successor gate is a primary output, we

 don't register it.

 In the multiple fault propagation, we have to take care of the overlap of

fault effect cones (the shaded region of Fig. 4.6 (a)). When all fault effect

cones of all faults are equivalent, the gate evaluation count is equal to that

in the single fault propagation. However we are forced to evaluate more

gates wastefully when the intersection of all cones is small. Therefore,
it is desirable to select f faults whose effect cones overlap each other

at step 6 in Fig. 4.5. In order to avoid overhead during simulation, we

simply take f faults successively out of the undetected fault list. Instead,

we place the neighboring faults close in the undetected fault list at the

preprocessing stage. It is considered to be effective to group faults in
a fanout-free region in this preprocessing stage. However, currently, we

have not implemented the idea but we simply order faults by traversing

signal lines in depth first manner starting from primary inputs.

Implementation of DISC

In the case of single fault propagation, DISC means to discontinue the

fault propagation when signal values of a particular line in the assumed

88 4. Fast Fault Simulation Using Vector Supercomputers

correct values 100 011
faulty
values

00 00 00

fault f1 f2 f3 01 i

11 00 01

01 I 00 01 10 I I 01 11 10 Iml

 Fig. 4.7 DISCpATH and DISCFAULT•

fault case are identical to those in the fault-free case for all patterns. In

multiple fault propagation, this notion is further divided into the follow-

ing two.

DISCpATH: We discontinue the fault propagation for a path when signal

 values of a particular line for all the fault cases are identical to those

 for the fault-free case for all patterns. This discontinuance is called

 the discontinuance of propagation for a path.

DISCFAULT: We discontinue the fault propagation for a fault when signal

 values of all propagation paths for a particular fault case are identical

 to those for the fault-free case for all patterns. This discontinuance

 is called the discontinuance of propagation for a fault.

Fig. 4.7 shows an example. Fault-free values are enclosed in doubly lined

boxes and faulty values in single lined boxes. Each box represents a

packet. The values in the first box of faulty values are the faulty values

caused by a fault f1, the second f2, and the third f3 . At line A, since all

faulty packets are the same as the correct packet, we do not have to sim-

ulate the successors of line A. This type of discontinuance is DISCpATH .

4.3 Multiple Fault Propagation 89

p patterns

correct
values 1011•••

p patterns x ffaults

faulty
values

flag th 0 b 0 1

 new
faulty values

 '
_1Q00 `. _;:1.l ..34.7. Iiuoit

Fig. 4.8 Realization of DISCFAULT.

On the other hand, since the effects of fault f2 disappear at both line A

and B, if f2 does not affect the other lines, we can conclude that all the

effects of f2disappear. Therefore, we do not have to propagate the effect

of f2 any more. This type of discontinuance is DISCFAULT.

DISCPATH can be easily realized by avoiding the registration of the suc-

cessor gates to the evaluation gate list when the gate output values for all

fault cases are identical to those in the fault-free case. Implementation

of DISCFAULT is somewhat complicated. In order to find the disappear-

ance of all the effects of a fault on all its propagation paths, we store the

largest level number on which the fault affects, and compare the number

and the current level number. If the number is less than the current level

number, we can find the disappearance of the fault effects. When the

all effects of a fault disappeared, we eliminate the packet which corre-

spond to the fault from all signal vectors. This elimination is performed

as shown in Fig. 4.8. In Fig. 4.8, shaded packets still have the effects

of faults and the information is shown by flag. We can vectorize the

elimination by vector compress operation and can perform it extremely

fast. However assume that 100 faults are simulated currently, and the

90 4. Fast Fault Simulation Using Vector Supercomputers

correct
values 1011•••

faulty
values

flag

0011••• 1000••• 1011••• 1111••• 1011••• 1001•••

correct
values

a li 0
 (a) Pattern-oriented vectorization.

r1(71—.171 ••

 faulty `0011 " ' 11000— 11011... 1 1111. " 1 1011 • " 11001 • • • 1
 values

 flag 110101

 (b) Fault-oriented vectorization.

 Fig. 4.9 Complimentary Vectorization.

effects of only one of them have disappeared. Then we are obliged to

make copies of 99 packets for each signal vector. Since this manipulation

can be an overhead, we eliminate the packets only when the effects of

over 30% of the faults under simulation have disappeared.

Complementary Vectorization

In order to realize DISCPATH and DISCFAULT, we have to compare the

fault-free signal values with the faulty signal values at each signal line

and have to set the flag in Fig. 4.8 if they are different. The process of

the comparison can be vectorized in the following two ways according to

vectorization parameters.

 T.....

+ +
0011-•- 11000••• I1011••• 11111••• 11011-•• 11001--•

4.3 Multiple Fault Propagation 91

pattern-oriented vectorization: We compare the packet of fault-free
 values with each of the f packets of faulty values, one faulty packet

 at a time, as shown in Fig. 4.9 (a). The comparison is a vector

 operation with vector length [pl w] and is repeated f times. Since

 the vector length depends on the number of patterns p, this method

 is called pattern-oriented vectorization.

fault-oriented vectorization: We compare each of the [p/w] words in
 the packet of fault-free values with the f corresponding words from

 all the faulty packets, one word at a time, as shown in Fig. 4.9

 (b). The comparison is a vector operation with vector length f
 and is repeated [pl w] times. Since the vector length depends on the

 number of faults f , this method is called fault-oriented vectorization.

Since the maximum vector length [f x pl w] is limited by the available
storage, if f is large, p should be small, and vice versa. Therefore, the

two methods described above have a complementary relation, that is, if

one is effective, the other is not. We choose the more effective of the two
methods according to the values of f and p at that time.

 Also in the elimination of packets in DISCFAULT,similar two comple-

mentary methods can be considered, and we choose the more effective
one according to f and p.

4.3.3 Determination of Parallelism Factors

It is a very important process in the dynamic two-dimensional parallel

fault simulation to determine the parallelism factors f and p at each pass

(step 3 in Fig. 4.5). We must take the following facts into consideration.

 1) Small p makes the effects of fault dropping large.

 2) Small p saves the memory area to store p fault-free values of all the

 signal lines.

92 4. Fast Fault Simulation Using Vector Supercomputers

 3) Small p makes the condition of discontinuance of propagation easy

 to satisfy.

 4) Large p makes the good simulation efficient since the vector length

 is p.

 5) Small f reduces the wasteful simulation when we limit the gates for

 fault simulation to the gates in the fault effect cones.

Although it is desirable to determine the optimum f and p taking all

these conditions into account, it is difficult to measure these conditions

completely. We, therefore, measure the decreasing ratio d of the number

of undetected faults at the previous path, and determine p as double,

same, or a half of Pprev according to d, where pprev is the pattern paral-

lelism factor in the previous pass. Namely,

 d _the number of undetected faults after the previous pass
 the number of undetected faults before the previous pass

and

p=

min(2 X Pprev, b x maxp) if d2 < d

Pprevif d1 < d < dz

max(pprev/2, 1)if d < d1

f =wx max fp/p,

where w is the number of bits in a word, maxp and max f p are constants

determined by the available storage size. d1 and d2 in the above formulas
are

z
 rPprev d

1 = preyand d2 = r-, where r = 0.1.
 r•Pprev2wr • Pprev + w

These bounds are obtained by minimizing P = C x T , where C is the

total count of operations for fault simulation at the next pass under the

assumption that the number of faults will decrease by d times for every

Pprev patterns, and T is the computation time per operation on the vector

processor, approximated by

4.4 Implementation and Experiments 93

 T = a(plw)+10,

p where a and 13 are constants characterizing the performance of the pipeline.

 We briefly show the derivation of the d2. If we increase the parallelism

factor to 2pp7ev, the total count of operations C2, computation time per

operation T2i and the total computation time P2 at the next pass are

computed as follows.

 C2 = 2Pprev • d,

 7,a(2pprev/w) + Q 2_ 2P
prev

 P2 = C2 X T2 = d(2apprevl w + 0).

On the other hand, if we do not change the parallelism factor, the total

computation time P1 at the next 2 passes becomes as follows.

 C1 = pprev(d + d2),

 7,_a(pprevl w) + a 1,
 pprev

Pi = C1 x Ti = d(apprev/w + j3)•

By solving P2 < P1, we have

apprev/ w
< d.

apprev/ w + a

By replacing al / 3 by r, we get
r • pprev

< d.
r'Pprev+W

The bound d1 is derived in the same way. As for the value 1.0 of r, we

decided it by experiments.

4.4 Implementation and Experiments

4.4.1 Simulation Speed

We have implemented a fault simulator based on the dynamic two-dimensional

parallel simulation technique on the Fujitsu FACOM VP-200 vector pro-

94 4. Fast Fault Simulation Using Vector Supercomputers

Table 4.1 Versions of the selective trancing and execution mode.

Vector Vector+ Vector+ + Scalar+ +

LIM 0 0 0

DISC ^ 0 0

Execution

mode

vector

execution

vector

execution

vector

execution

scalar

execution

cessor in Fortran77 to create some experiments for its performance eval-

uation. We simulated the ten benchmark circuits [Brg85f] and measured

the CPU time required for simulating 512K (16K words) random pat-
terns. Almost all of the main loops of our simulator were vectorized.

Henceforth we refer to this vectorized version as Vector++. In order to

evaluate the effect of vectorization, we also performed simulation with-

out vector instructions. We call this execution mode scalar execution and

denote it by Scalar++. Also for the purpose of evaluating the effect of

selective tracing, we also performed simulation with no selective tracing

and simulation only with LIM. The former is denoted by Vector, and the

latter is denoted by Vector+. The versions of selective tracing and the

execution modes are summarized in Table 4.1.

 Table 4.2 shows the results. The maximum vector length max f p is a

parameter which the user gives and was set to 1024 in every mode in our
experiments. The maximum pattern-parallelism factor maxp is another

parameter and was set to 256 except for Vector. Since selective tracing

is not performed in Vector, we can get a larger maxp with the same

storage size, and maxp was set to 1024. Table 4.2 gives the following

conclusions.

 1) The comparison between Scalar and Vector++ tells us the effect of
 vectorization. From this comparison, we can see that the simulation

 speed is accelerated by 10 to 15 times through vectorization. We can

4.4 Implementation and Experiments 95

Table 4.2 Results of the simulation on 512K random patterns.

Circuit
Number

of

gates

Number
of

faults

Final
coverage

 1%I

Number of
undetected

faults

Simulation CPU [sec]

Vector Vector+ Vector Scalar++

C432 203 524 99.24 4 .176 .280 .275 2.560

C499 275 758 98.94 8 .461 .791 .571 6.236

C880 469 942 100.0 0 .179* .462 .490 4.651

C1355 619 1574 99.49 8 .930 1.355 .871 10.979

C1908 938 1879 99.52 9 1.930 1.381 1.387 16.026

C2670 1566 2447 91.37 237 57.695 10.318 8.330 99.474

C3540 1741 3428 96.00 137 19.037 15.440 3.935 48.463

C5315 2608 5350 98.89 59 17.864 6.962 3.489 41.818

C6288 2480 7744 99.56 34 15.605 22.388 2.604 38.194

C7552 3827 7550 96.89 235 114.868 19.939 11.518 154.885

*Simulation was stopped as soon as all the faults are detected.

conclude that the performance of the vector processor is thoroughly

brought out in large scale simulation.

2) The comparison between Vector and Vector+ tells us the effect of

 LIM. Also the comparison between Vector+ and Vector++ tells us

 the effect of DISC. From these comparisons, we can conclude that

 the two techniques have a complementary effect, i. e. when one has

 little effect, the other has large effect, and vice versa.

3) The comparison between Vector and Vector++ tells us the effect of

 selective tracing. Although the speed is slowed down a little in some

 small circuits, the speed is accelerated about 10 times, in circuits

 conventionally requiring large computation cost.

 Compared with the result in [Wai85], in which PPSFP is implemented

on the IBM 3081, our simulator is 7 to 19 times faster. Furthermore, our

simulator is portable since it is implemented using only the basic facilities

of recent vector processors. The simulator implemented on the VP-200 is

executable also on the Hitachi HITAC S-810/20 vector processor without

96 4. Fast Fault Simulation Using Vector Supercomputers

modifying the program. The Hitachi HITAC S-810/20 has about the

same potential performance and our simulator achieved almost the same

performance as on the VP-200.

4.4.2 Required Storage Size

The storage requirements are mainly for the vectors containing fault-free

and faulty values of internal lines. They increase with the vector length

at step 5 and step 7 in Fig. 4.5. At step 5, p fault-free values of all gates

must be stored in order to perform selective tracing at step 7. Let n be

the number of gates in a circuit, then required storage size is n x maxp

[word]. Since we simulate f faults on p patterns at step 7, we need a
vector of max f p [word] per gate. However because we don't have to

store vectors of all gates at step 7, we can reduce the required storage
by reusing storages for the vectors. The required storage is M„ x max f p

[word], where M„ is the maximum number of signal vectors which we
must store at some time in fault propagation and where M„ is much

smaller than n. The above experiment required 10 MB for the largest

circuit C7552.

4.5 Remarks and Discussions

As a vector processor oriented fault simulation algorithm, we proposed

a dynamic two-dimensional parallel simulation technique. We succeeded

in obtaining a large vector length without reducing the computation effi-

ciency by introducing a selective tracing method based on multiple fault

propagation. Experimental results tell us that fault simulation is accel-

erated by 10,15 times through vectorization and that our simulator is

extremely fast in simulating large circuits on many patterns . Since the

critical path tracing for fanout-free region is also vectorizable, we can

combine our simulation method with the concept in [Ant87] so as to

4.5 Remarks and Discussions 97

further enhance the performance. When we use our fault simulator in

combination with algorithmic test generation, we can not expect large

acceleration because the pattern parallelism is limited. However, we can

make the most of our simulator in test generation using random patterns,

coverage estimation of a large set of random patterns or a built-in self

test design, where large pattern parallelism is available.

 Vector processors seem to have great potential for not only numerical

computation but also for combinational problems in the area of CAD for

digital systems. There will be a lot of earnest researches to develop vector

processor oriented algorithms for variety of combinational problems. In

converse, it is also important to improve architecture of vector processors

suitable to process combinational problems.

98 4. Fast Fault S imu lation Using Vector Supercomputers

Chapter 5

Computational Complexity of Logic

Simulation Problems

5.1 Introduction

Design verification is one of the most laborious processes in hardware

development. As is discussed in the preceding chapters the computation

cost due to the size of the circuit under verification has been and will be

one of the primary problems in design verification. On the other hand,

accuracy of the simulation is also an important issue. Especially in design

verification of asynchronous circuits which operate based on subtle timing

relations, much more laborious modeling of delay and time and also much

more computation cost are required than in that of synchronous circuits.

 In the verification concerned with timing there are close relations

among models of delay and time, accuracy of verification results and

required computation cost. In a simple modeling which require smaller

computation cost, design errors may be overlooked or possibilities of de-

sign errors may be indicated even for correct designs. One example is

the handling of delay whose actual value is unknown and is specified with

minimum and maximum values. In logic simulation the min/max delay
model is employed to handle such uncertainty. The model allows rela-

tively fast verification but it is well known that the verification results

 99

100 5. Computational Complexity of Logic Simulation Problems

are often too pessimistic [Bre76]. Although there are a lot of attempts to

overcome this problems, few discussions have been made on what is the

essence of the difficulty and how difficult or how much computation cost

is required to solve the problem completely. Another important issue is

modeling of time. Many of the existing verification systems are based

on a discrete time model [Cer89, Hir89, Nak87, Kim88]. There are also

few discussions on the point if the discrete time model provides accurate

result as compared with a continuous time model or if there is a difference

in the computation cost for verification between the two models .

 In this chapter we take hazard detection problems as an example so

as to discuss the relation among models of delay and time , accuracy of

verification result and computation cost for the verification [Ish88]. Es-
pecially we focus on delay model in which the actual delay values are

uncertain and are specified with their minimum and maximum values .

We also discuss the difference of a discrete time model and a continuous

time model. We show that the problem of detecting hazards on com -

binational circuits under uncertain delay assumption is computationally

intractable (NP-hard) and hence that it is difficult to solve the problem

by a simple extension of the min/max delay simulation technique [Bre76].
We also show that there is an essential difference in the verification re -

sults obtained based on the discrete time model and the continuous time

model. The verification result can be more optimistic in the discrete time

model than in the continuous time model . However we prove that the

discrete time model will provides the same accuracy of the continuous

time model with respect to the hazard detection problem by making the

time unit small . We clarify to what extent we must make the unit time

small. We further discuss the computation cost that we have to pay in

order to make the two models equivalent .

 In section 5.2 we define models of delay and time and formalize the

hazard detection problems. In section 5 .3 we discuss computational com-

5.2 Hazard Detection Problem and Modeling of Delay and Time 101

plexity of the problem of the uncertain delay and discrete time model.

We examine the relation between the discrete time model and the contin-

uous time model in section 5.4 and discuss the computational complexity

of the continuous time model.

5.2 Hazard Detection Problem and Modeling of De-

lay and Time

5.2.1 Hazard Detection Problem

In this chapter we discuss hazard detection problems for combinational

circuits. In the following discussions, we refer to a combinational circuit

simply as a circuit. The number of fan-in's and fan-out's in circuit C is

bounded by a constant which is independent of the number of gates in

C. Let ex and vy be input assignments to C. A hazard is an occurrence

of more than one change of signal values on some of the primary outputs

of C for the change of input assignment ex —> vy.

Def 5.1 A Hazard detection problem for a specific input change is defined

as follows.

Instance: Circuit C and two input assignments ex and vy.

Question: Are there possibilities of hazards for a change of input assign-

 ment ex —> vy?U

 In discussing the specific input change, we can assume input without

loss of generality that a circuit has only one primary. We also assume,

for simplicity, that a circuit has only one primary output, which does not

affect the results in this chapter. Thus we denote the set of gates which

construct circuit C as Gc = {go, gl, • • , gn} where go is the primary input
1 and g

n is the gate whose output is connected with the primary output.

1 We treat the primary input as a gate with no inputs and a single output , for simplicity

102 5. Computational Complexity of Logic Simulation Problems

5.2.2 Modeling of Delay and Time

Modeling of Uncertainty of Delay

In actual logic circuits, delay values of gates vary depending on the dif-

ference of process conditions or usage conditions. In order to express

this uncertainty we describe the delay value of gi by its minimum and

maximum values dmini and dmaxi, respectively, where dmini and dmaxi are

non-negative integers which satisfies dmini < dm" i. We do not allow real

numbers for the delay bounds because it is impossible to describe them

within finite length. We define the following three delay models according

to the constraints on dmini and dm" i.

Exact delay model : For each gate gi, dmini = dmaxi holds . Namely this

 is an ideal model where each gate takes the exact delay values as

 specified.

Uncertain delay model : Each gate takes an arbitrary delay value di

 which satisfies dmini < di < dmaxi. There are no constraints on

dmini and dm" i.

Restricted uncertain delay model : This is an uncertain delay model where

dmini and dmaxi satisfies the following constraints for non-negative

 constants cmin and cmax.

dmax — dmax
 cmin < 2t < Cmax — dmax + dmax —

 This inequality expresses that the ratio of width of delay uncertainty

 to the magnitude of the delay value is not extremely large nor small
,
 which is a more realistic assumption than the simple uncertain delay

 model.

 One important assumption in this chapter is that the variation of delay

values is static. Namely the delay value of each gate may be uncertain

5.2 Hazard Detection Problem and Modeling of Delay and Time 103

but the value is constant and do not change with the progress of time .

We do not consider inertia delay either in this chapter.

(2) Modeling of Time

We discuss the following two models of time.

Discrete time model : We assume that the domain of the time is the set

 of integers. Namely, the delay value of each gate di is an integer

 within the bounds dmini and dm"i.

Continuous time model : We assume that the domain of the time is the

 set of real numbers. The delay value of each gate di can be a real

 number.

 In the exact delay model there is no difference between the two time

models because the bounds dmini and dm"i (namely the delay value di)

are specified as integers. On the other hand in the bounded delay models

there can be differences because there are infinite time points between

dmini and dm' i in the continuous time model while there are only finite

time points in the discrete time model.

(3) Modeling of Magnitude of Delay Values

We discuss the following two models as for the magnitude of delay values.

Constant delay model : For each gate gi, dmini and dmaxi are specified by

 binary integers of c bits, where c is a constant which is independent

 of the number of the gates in the given circuit. Namely dmaxi = 0(1).

Exponential delay model : For each gate gi, dmini and dmaxi are specified

 by p(n) bit binary integers, where p(n) is an arbitrary polynomial
 of n, the number of the gates in the given circuit. Namely dmaxi

O(2P(n)).

104 5. Computational Complexity of Logic Simulation Problems

 The delay values of gates in actual integrated circuits are proportional

to CR in the first order approximation where capacitance C and resis-

tance R are approximately proportional to the area on the chip. There-

fore it is not appropriate to discuss the extremely large delay value as

in the exponential delay model. However we introduce the delay model

as a mathematical model, which is necessary in discussing the difference

between the discrete time model and the continuous time model.

5.2.3 Notation

We can consider hazard detection problems for the twelve models which

are the combinations of the two time models, the tree uncertainty models

and the two magnitude models. In the following discussion we abbreviate

the name of the problems as follows:

 Cnst SHD

 Exp

Exct

 Unc

Rst

 Dscr Cont 1 '
where,

Cnst/Exp are the abbreviations of the constant time model and the ex-

 ponential time model, respectively,

Exct/Unc/Rst are the abbreviations of the exact delay model, the uncer-
 tain delay model and the restricted uncertain delay model , respec-

 tively, and

Dscr/Cont are the abbreviations of the discrete time model and the con-

 tinuous time model.

For example SHDCnstUncDscr means the hazard detection

the constant and uncertain delay and discrete time model .

problem of

5.3 Hazard Detection Problems of the Discrete Time Model
105

5.3 Hazard Detection Problems of the Discrete Time

Model

In this section we discuss the computational complexity of the hazard

detection problems for the constant delay model and discrete time model .

We consider the variation of delay uncertainty under this assumption . It

is shown that the problems for the exact delay model (SHDCnstExctDscr)
can be solved within feasible time but the problems for the uncertain

delay model and the restricted uncertain delay model (SHDCnst UncDscr,
SHDCnstRstDscr) are NP-complete.

Th 5.1 SHDCnstExctDscr belongs to P (deterministic polynomial time).

[Proof] Execute logic simulation and examine the signal changes on the
output. Let dmax the largest one of dm" l, dmax2, , , dmaxn Then the

signal value on the primary output will be stable in n x dmax unit times

after the input change, where n is the number of gates in the circuit. Since

simulation for a unit time is carried out in 0(n) time, total computation

time is 0(n2).^

 Logic simulation using 5-valued logic [Bre76] is used for timing veri-

fication taking the delay uncertainty into account. However it is known

that accurate result is not obtained by this simulation algorithm as will

be discussed in detail in the next chapter. We first show an upper bound

of the computation time to obtain accurate result and then show a lower

bound. Even if the delay values have uncertainty, we can get an accurate

result by simulating all the possible combinations of delay values. In the

discrete time model this is possible because we can enumerate all the

delay values of gates.

Lem 5.1 SHDCnst UncDscr, SHDCnstRstDscr are in NP (nondetermin-
istic polynomial time).

106 5. Computational Complexity of Logic Simulation Problems

 input[0 ,0]11
11"OP" [0

.1] ̂ X,
 output Z[0,0]^

 fanout [0,1]X computa-^ circuit^tion of F• •[0,0] •Y
[0,0][0,0] •[0

,0]

 •

 [0,0] [0,1]X 00."-1• (b) Th
e fanout circuit.

 (a) Circuit configuration.

 Fig. 5.1 The circuit for SAT of F.

 (The uncertain delay model)

[Proof] Guess a combination of delay values which causes a hazard on
the primary output and verify the existence of hazards. Since the haz-

ard detection problems for exact delay values are solvable in polynomial

time, the problems are solvable in polynomial time by a nondeterministic

Turing machine.^

 As for a lower bound we have obtained the result that the problems

are computationally difficult.

Lem 5.2 SHDCnst UncDscr and SHDCnstRstDscr are NP-hard.

[Proof] We first show the proof for the uncertain delay model. We show
that satisfiability problem of Boolean formulas in conjunctive normal

form (CNF-SAT) is reducible into SHDCnst UncDscr. Namely, for a given

CNF formula F, we construct a circuit which has a delay combination

to cause hazard if and only if F is satisfiable. The circuit is shown in

Fig. 5.1. On line Xo, X1i • • • , Xn_1 all the combinations in {0,1}n can be

generated at the time when the input changes from 0 to 1. The output Z

stays 0 if F is not satisfiable. On the other hand, there is a possibility of

1-hazard on Z if F is satisfiable. Also note that the circuit is constructed

5.3 Hazard Detection Problems of the Discrete Time Model 107

 _L
input 4----

fan-
Out
cir-
cuit

Xo

computa-
tion of F'
(monoto-
ne circuit)

out-

put
—0

pulse
genera-

tor
Xo

X1
pulse

genera-
tor

71

•

•

•

Xn-1

•

•

•

pulse
genera-

tor
Xn -1

1.__f [c:c+1]—l."-
 [c:c+ 1]

(b) The fanout circuit.

 [ig2a±1:a]

 pattern ------- formura Ig1[a v1:a+1] L.<G 3
 generationcomputation

 partpart(>13----------------C gs
g3[a:a + 1] [b — 1:b]

 (a) Circuit configuration. (c) The pulse generator .

 Fig. 5.2 The circuit for SAT of F.

 (The restricted uncertain delay model)

 from F in polynomial time.

 We take the same approach as for the restricted uncertain delay model.

 We construct the circuit shown in Fig. 5.2. The circuit consists of an

 input generation part and a formula computation part. The input gener-

 ation part consists of n pulse generators. The both outputs of the pulse

 generators are 0 in stable state. When the input changes from 0 to 1,

 a 1-pulse can be generated on either of the two outputs; a 1-pulse can

 be generated on X if the delay of g1 is smaller than a and on X if the

 delay of g1 is larger than a. The formula computation part is a monotone

 combinational circuit which computes the 2n input logic function f' that

 satisfies

f'(x0, xl, ... , xn-1, x(i, Xi, ... , xn-1) = f (x0, xi, ... xn-1),

 where f is the logic function expressed by Boolean formula F. The com-

 binational circuit for f' is easily obtained by replacing literal xa with the

 [b:b +1]

108 5. Computational Complexity of Logic Simulation Problems

(n -{- i + 1)-th variable of f'. We assume that the combinational circuit is
constructed only with AND and OR gates only and that its inside is ap-

propriately synchronized; that is, the pulses given on inputs at the same

time reach the same level of the gates in the circuit. In the stable state

the output of the circuit is 0 in the stable state. Suppose f is satisfiable.

Then a hazard occurs on the output when the pulses corresponding to an

assignment that satisfies f are generated. On the other hand, the output

of the circuit stays 0 if f is not satisfiable. Thus the satisfiability problem

of F is reduced into the hazard detection problem of the circuit. Also

note that this circuit can be constructed from F in polynomial time . ^

 From Lem 5.1 and Lem 5.2 we can lead the following theorem .

Th 5.2 SHDCnstUncDscr and SHDCnstRstDscr are NP-complete .^

5.4 Relation between the Continuous Time Model

 and the Discrete Time Model

In order to clarify the computational complexity of hazard detection

problems for the continuous time model, we discuss relation between

the continuous time model and discrete time model in this section .

5.4.1 Difference between the Continuous Time Model and the

 Discrete Time Model

In the exact delay model there is no difference between the continuous

and discrete time models because the delay bounds (namely the delay

values) are specified by integers . However, in the uncertain delay models
there can be differences. As for the lower bounds , we can obtain the same

results as in the discrete time model by the same proof as in Lem 5 .2.

Lem 5.3 SHDCnstUncCont and SHDCnstRstCont are NP-hard . ^

 5.4 Relation between the Continuous Time Model and the Discrete Time Model 109

 On the other hand, as for upper bounds, we can not apply the same

proof as in Lem 5.1 because there are infinite time points between the

bounds in the continuous time model and it is impossible to enumerate

the possible of delay values directly. Another problem is that more than

0(2n) signal changes can occur on a single line in the continuous time

model while only dm" x n signal changes can occur on a single line in

the discrete time model.

 The first problem can be solved by enumerating the possible inequality

relations among the linear combinations of the delay values, instead of

making vain attempt to enumerate the delay values. However, due to the

second problem, it takes more than 0(2n) computation time to examine
each cases, even if we can enumerate the possible cases. This leads to

the following proposition on a upper bound of the computation time of

hazard detection problems of the continuous time model, which will be

improved in the later section.

Prop 5.4 SHDCnstUncCont and SHDCnstRst Cont are in nondetermin-

istic exponential time.^

 Then a question is if there is actually difference between the discrete

time model and the continuous time model. The answer to the question

is yes. Fig. 5.3 shows such an example. In this example, a hazard can

occur in the continuous time model while a hazard never occurs in the

discrete time model.

 Note that the hazard can occur in the discrete time model if we set the

minimum unit time as half of that in the example. Thus the discrete time

model is considered to have the same ability of that of the continuous

time model if we make the unit time fine enough. Namely the discrete

time model can be regarded as an approximation of the continuous time

model. From the standpoint of the trade-offs between computation cost

and accuracy of timing verification, it is an important issue to clarify

110 5. Computational Complexity of Logic Simulation Problems

 discrfetecontinuous
 time modeltime model

[o,i]A-------------f1
A A

BB

 [0,1]C
 ^[0,0] C ' IC

 D ,D

Fig. 5.3 Difference between the discrete and continuous time models.

the computational complexity of the hazard detection problems of the

continuous time model. In this chapter we try to clarify relation between

the two models by investigating to what extent we must make the unit

time fine in order to make the two time models equivalent.

 In the example in Fig. 5.3, we can observe the same hazard by mak-

ing the magnitude of delay values the twice with keeping the unit time

unchanged, instead of making the unit time the half. Namely, to make

the unit time fine has the same effect as to make the magnitude of delay

large with keeping the unit time unchanged. This is the reason why we

introduced the exponential delay model. In this section we show the fol-

lowing two are equivalent and thus we can reduce the hazard detection

problems of the continuous delay model into those of the discrete time

model.

 1) A hazard can occur on a circuit in the continuous time model.

 2) For some integer m, a hazard can occur on the circuit in the discrete

 time model whose all delay bounds are multiplied by m, and m is

 not more than 2nn .

For this purpose we first show that the feasibility problem of a certain

linear inequality system is equivalent to a hazard detection problem of

the uncertain delay models.

 I

 [0,1] Q A

[0,1] B k)
[0,1] D Q A

5.4 Relation between the Continuous Time Model and the Discrete Time Model 111

5.4.2 The Linear Inequality System Equivalent to a Hazard

 Detection Problem

Def 5.2 Let x1i x2, • • • , xn be variables which represent the delay value

of gates g1, g2, • • • , gn, respectively, and let x = (x1i x2, • • , xn). Each

xi takes integer value in the case of the discrete time model and a real

value in the case of the continuous time model. The variables satisfy the

following constraints R.

 R = / \ ((dmin < xi) A (xi < dmazi)).
 i=1

Def 5.3 We define sets of linear combinations of the n variables, T and

T', whose coefficients are in {0,1} and in {0, +1}, respectively. We also

define D as set of constants.

 T = {blxl + b2x2 + • • + bnxn I bi E {0,1}},

T' = {n1x1+12x2+•••+mnxn I ii E {0,+1}},

 D = {±drain, +dmax I i = 1,2,• • ,n}.

 If we assume the input change occurs at time 0, the time of an event

which occur in the circuit is represented by the sum gate delays. Then

all the expressions which represent time of events are in set T. Obviously

T C T'. T' is also definable as T' = {M. — tY2 I yl, Y2 E T}. Now we

show that the necessary and sufficient condition for the delay variables

to make a hazard on the output. The proof is given in the appendix of

this chapter.

Lem 5.5 The necessary and sufficient condition where hazards occur on

the output of a circuit is expressed by a linear inequality system of the

112 5. Computational Complexity of Logic Simulation Problems

following form.

 RA (

 (//ttt

 (t1,1 A1,2A ... AStt1)V (52,1 A2,2A ... AS2,P2) v

(G,1 A G,2 A • .. A ek,Pk)

where

Si,j E {t < O, t < O t E T'} and pi, p2, • • • , pk < 3n

 0

 The lemma tells that the condition is expressed by a sum of products

of linear inequalities whose coefficients are in {0,*1} and the constants
are in0dmindax„draindmax {~lim1~ ~ ~n~ n}.

Cor 5.6 The necessary and sufficient condition where the hazard occur

on the output of a circuit is expressed by an linear inequality system of

the following form.

 (A1xil)V(A2x4b2)V•••V (AO db3),(5.1)

where Ai is the (n,pi)-matrix whose elements are in {O,±1}, bi is a vector
in Dn, and d represents that < or < relation holds for each row of the

vectors.^

 Consequently, hazards can occur in the discrete time model if and only

if (5.1) has an integer solution and hazards can occur in the continuous

time model if and only if the inequality system has a real number solution.

5.4 Relation between the Continuous Time Model and the Discrete Time Model 113

5.4.3 Reduction of Continuous Time Model into Discrete Time

 Model

 Def 4.3 We define sets of absolute values of determinants of (n, n)-matrix
as follows.

 M = { det(A)I I A is a (n, n)-matrix whose elements are

 in {0, ±1}},

 M2 = {xxyIx,yEMl,

 2M2 = {2x I x E M2}.

 Now we prove an important lemma.

Lem 5.7 The following 1) and 2) are equivalent.

 1) A Hazard can occur on circuit C in the continuous time model.

 2) For a proper m where m E 2M2, a hazard can occur in the discrete

 time model on circuit C', which is obtained by multiplying each

 delay bounds by m.

[Proof] From Cor 5.6 we only have to prove that the following 1') and
2') are equivalent.

 1') Linear inequality system (5.1) has a real number solution.

2') Linear inequality system (5.1) obtained by multiplying vector bi by

 m has an integer solution.

[Proof of 1')-->2')] If the linear inequality system in 2') has an integer
solution v, then (1/m)i is a solution of (1).

[Proof of 2')--4')] Let Aix d bi be a subsystem of (1) which has a real
number solution. The set of solutions of the subsystem conforms the

114 5. Computational Complexity of Logic Simulation Problems

region which consists of the inside and a part of the surface of an n-
dimensional convex polyhedron. Let vl and v2 be two of the vertices of

the polyhedron. Then the middle point v of v1 and v2 is located inside of
the polyhedron, and hence is a solution of the subsystem. Let us consider

the magnitude of m which makes my an integer vector.

vl and v2 are the solution of Elx = ql and E2x = 6, respectively.
Note that E1 and E2, 6 and 6 are obtained by choosing n rows from

matrix Ai, bi, respectively. Therefore all the elements of E1 and E2 are

in {0, +1}. Let

 Ol = det(E1), t 2 = det(E2).

Then the solution of the equations vi and v2 are expressed as follows
according to the Cramer's formula.

v1 = (1/A1)(vi ,i, v1,2, ... , vl, n), v2 = (1/A2)(v2,1, v2,2, ... v2, n),

where vi,i is an integer. The middle point of vi v2 is expressed as

 = (1/2)(vi + v2)

_ (1/20102)(A2v1 ,1 + 01v2,1, A2v1,2 + O1v2,2, ... , 02v1 + 01v2,n)

If we set m = 21L\1A21, all the elements of my are integers because Ai ,
A2 and vi,j are integers. It follows that Aix < mbi has an integer solution.
Since 1011, IA2I E M, m/2 E M2.^

Cor 5.8 Let u be the least common multiple of M and m = 2,u2 . Then

the following two are equivalent.

 1) A hazard can occur on circuit C in the continuous time model .

 2) A hazard can occur in the discrete time model on circuit C' , which
 is obtained by multiplying each delay bounds by m .^

Lem 5.9 m < nn holds for m E M2.

5.5 Hazard Detection Problems of the Continuous Time Model 115

[Proof] The absolute value of the determinant of a matrix is less than or
equal to the product of the norms of the column vectors of the matrix.

If all the elements in a matrix are in {0,+1}, the norms of the column
vectors are less than or equal to n1/2. Then the absolute value of the

determinant of the matrix is less than or equal to (n1/2)n = nn/2. Hence

m < 2(nn/2)2 = 2nn.^

Th 5.3 The following two are equivalent.

 1) A hazard can occur on circuit C in the continuous time model.

 2) A hazard can occur in the discrete time model on circuit C', which

 is obtained by multiplying each delay bounds by a proper constant

 m, where m < 2nn.^

5.5 Hazard Detection Problems of the Continuous

 Time Model

We have shown so far that the hazard detection problems of the con-

tinuous time model are reducible into those of the discrete time model

by multiplying the magnitude of delay bounds by integer m which is

bounded by 20. The reduced problems belong to what we defined as

hazard detection problems of the exponential delay model. In this chapter

we clarify the computational complexity of the problems of the contin-

uous time model by discussing that of the problems of the exponential

delay model.

5.5.1 Exponential Delay and Discrete Time Model

We begin with the exact delay model (SHDExpExctDscr). In the case

of the constant delay model, we can solve the problem in deterministic

polynomial time by means of logic simulation as is stated in. In the case

 116 5. Computational Complexity of Logic Simulation Problems

1-------- r-

----------J

I
 I

output synchronization part

_r^.L [0] [o]

input

[2"-h]

I [2V 1]
[1]

1----------

[2"-z]

00

 0]1~
xo

compu-
tation

of F

[0]

•

x,

Q1

J

oi

0]

Xn -1

Q_:

Qn-1

 [0]

[2"-1]

[0]

[2n-2]

[2°]

output

AND (q , =V)
OR (q

[0]

[2°]

= 3)

of the exponential

in polynomial time by the same method because it may take 0(2P(n))

unit times for the

cost increases markedly even in the exact delay model as shown in the

following lemma.

Lem 5.10 SHDExpExctDscr is PSPACE-hard .

[Proof] We show the satisfiability problem of quantified Boolean formulas
(QBF-SAT) is reducible into SHDExpExctDscr.

-. pattern -'-- formula ---`- quantifi - •-'

 genera- computa- cation
 taion tion check

 part part part

 Fig. 5.4 The circuit for QBF-SAT.

Ltial delay model, however, we can not solve the problem

time by the same method because it may take 0(2P(n))

;he output signal to be stable. Actually the computational

markedly even in the exact delay model as shown in the

 5.5 Hazard Detection Problems of the Continuous Time Model 117

 Let a given QBF be

(qoxo)(qixi) • • • (q, _1xn-1)F(x0, xl, . • •

where qi is a universal quantifier (V) or a existential quantifier (3). We
construct a circuit shown in Fig. 5.4 for this QBF, whose hazard detec-

tion problem is equivalent to the satisfiability problem of the QBF. The

circuit consists of a pattern generation part, a formula computation part,

a quantification check part and an output synchronization part. The pat-
tern generation part generates all the patterns in {0,1}n on signal lines

X0, Xi, • • • , Xn_1 using delay gates and EXOR gates. Each pattern has

a duration of 1 unit time. They are generated in the descending order

of the magnitude when they regarded as binary numbers. The formula

computation part computes the value of F(xo, xl, • • , x, _l) for the gen-
erated patterns. The circuit to compute F is the direct implementation

of F. The output of the formula computation part is a sequence of the

result values of F for all the possible input patterns. The quantification

check part receives the sequence and checks quantification for each vari-

able beginning with xn_1 using a delay gate and an AND or an OR gate.

Since the result values of F are aligned in the descending order of the

magnitude of input patterns as they regarded as binary numbers, we can

compute the satisfiability of universal (existential) quantification for xi
by computing AND (oR, respectively) of pairs of values whose distance

is 2n-i-1. In the final step, the value at the time frame which contains

the final result of the quantification check is taken out at the output syn-

chronization part. The output of the whole circuit is 0 in the stable state

and becomes 1 transiently if and only if the QBF is satisfiable. Thus

satisfiability of the QBF is reduce into the hazard detection problem of

this circuit. The computation time required for the transformation from

a QBF to the circuit is bounded by a polynomial of the formula size. 0.

Since the exact delay model is a special case of the uncertain delay

118 5. Computational Complexity of Logic Simulation Problems

model, the same lower bound applies for the uncertain delay model.

Lem 5.11 SHDExp UncDscr is PSPACE-hard.0

 As for the bounded uncertain delay model, we have not obtained the

lower bound, which is not important for the discussions in the rest of this

chapter.

 On the other hand, as for an upper bound, we have obtained the

following results that the hazard detection problems of the exponential

time and the discrete time model are all solvable using polynomial space.

Lem 5.12 SHDExpExctDscr is in PSAPCE.

[Proof] We use backward logic simulation, in which we investigate exis-
tence of a hazard by checking the signal value backwards starting from

the primary output, instead of the usual logic simulation. We assume

that the input pattern changes from vx to vy at time 0. We denote the

output value of the circuit for input pattern v as f(v). We show an al-
ternating algorithm (an algorithm executable on an alternating Turing

machine). We separately consider the two cases where a static hazard
can occur and where a dynamic hazard can occur. In the both cases , we

use the recursive function checkVal(g, t, v) which examines if the output

of gate g is v at time t.

Static hazard: In this case f (vx) = f (vy) holds. We examine if the output
 value becomes f (vx) of not due to the input change. Guess a path

 from the primary input to the primary output . Let dp be the delay

 of the path (the sum of the delay values of the gates on the path) .
 Examine if the output value (namely the output of gate gn,) is f (vx)

 at time dp by calling checkVal(gn, dp, f (vx)). A static hazard occurs
 if the answer is yes. Otherwise a static hazard does not occur for

 the guess.

 5.5 Hazard Detection Problems of the Continuous Time Model 119

Dynamic hazard: In this case f (vs) f (vy) holds. We examine if the
 output value changes as f (vx) —> f (vx) --> f (vx) —* f (vx). Guess

 two paths from the input to the output. Let dp1 and dp2 be the de-

 lay of the paths (assume dp1 < dp2). Examine if the output value

 of the circuit is f (vx) at time dp1 and f (vx) at time dp2 by calling
checkVal(gn, dp1, f (vx)) and cheekVal(gn, f (v,)). A dynamic haz-

 ard occurs if the both answers are yes. Otherwise a dynamic hazard

 does not occur for the guess.

function checkVal(g, t, v)

 Trivial case: If g = go (the primary input of the circuit) then return

 the following answer; if t < 0 A v = vx or t > 0 A v = vv then

 return yes, otherwise return no.

 Recursive case: If g go then guess a Boolean vector (v1, v2, • • • , vm)
 for the inputs of gate g which makes the output of the gate v.

 For each input of g, examine if the value becomes vi at time t — d,

 where d is the delay of gate g, by calling checkVal(ga, t — d, v1),
 where gz is the gate which feeds the i-th input of gate g. If all

 the answers are yes then return yes. Otherwise return no.

 Since the depth of the circuit is at most n, so is the number of calls of

check Val. We can judge existence of a hazard in polynomial time on an

alternating Turing machine and the problem belongs to PSPACE.^

 Upper bounds for the uncertain delay models are immediately derived

from this lemma.

Lem 5.13 SHDExp UncDscr and SHDExpRstDscr are in PSPACE.

[Proof] We can reduce the problem of the uncertain delay models by
guessing the combination of the delay values which causes a hazard. Since

120 5. Computational Complexity of Logic Simulation Problems

the delay combinations can be coded using polynomial space, the prob-

lems belong to PSPACE.^

 The following theorem concludes this subsection.

Th 5.4 SHDExpExctDscr and SHDExpUnbDscr are both PSPACE-

complete.^

5.5.2 An Upper Bound of the Computational Complexity of

 Hazard Detection Problem of the Continuous Time Model

From the discussion so far, we can improve the upper bound of the prob-

lem of the constant magnitude, uncertain delay and continuous time

model in Prop 5.4.

Th 5.5 SHDCnstUnc Cont and SHDCnstRst Cont are in PSPACE.

[Proof] Guess a number from {2, 3, • • • , 2nn} as m in Th 5.3 and solve the
problem obtained by multiplying the delay bounds by m in the discrete

time model. The problems are of the exponential magnitude and the

discrete time model (SHDExpExctDscr and SHDExpUnbDscr) and from

Lem 5.13 they are in PSPACE.^

5.6 Remarks and Discussions

We have discussed the computational complexity of the hazard detection

problem of the various delay and time models. Table 5.1 summarizes the
result.

 We have shown that the problem of detecting hazards on combina-

tional circuits under uncertain delay assumption is computationally in-

tractable (NP-hard). This follows that it is difficult to solve the problem

by a simple extension of the min/max delay simulation technique and

5.6 Remarks and Discussions 121

 Table 5.1 Summary of the results.

(a) Results for the constant magnitude delay model.
Exact

(Exct)

Uncertain

(Unc)

Restricted

(Rst)

Discrete time

 (Dscr)

 in P NP-complete NP-complete

Continuous time

 (Cont)

NP-hard &

in PSPACE

NP-hard &

in PSPACE

(b) Results for the exponential magnitude delay model.
Exact

(Exct)

Uncertain

 (Unc)

Restricted

 (Rst)

Discrete time

(Dscr)

PSPACE-

complete

PSPACE-

complete

NP-hard &

in PSPACE

122 5. Computational Complexity of Logic Simulation Problems

that we must develop different algorithms to achieve accurate timing

verification, which will require big computation cost.

 We have also discussed the relation between the continuous time model

and discrete time model. The verification result can be optimistic in the

discrete time model. We showed an concrete example for this. We also

showed that the discrete time model will have the same ability of the

continuous time model by making the time unit small with respect to

the hazard detection problem, and clarify to what extent we must make

the unit time small.

 In Table 5.1 there still remains a gap between the lower bound and

upper bound of the computation cost of the problem of the bounded delay

and continuous time model (NP-hard and in PSPACE). It is considered to

be an important research theme to clarify the computational complexity

of this model, because it is closely related to the essential difference of

the ability between the continuous time model and discrete time model .

 The high computational complexity of the continuous time model or of

the exponential delay model is due to the existence of signal lines which

have more than O(2n) times of signal changes. In the actual circuit ,
however, we can not observe such a phenomenon because of inertia delay .

It is also an important research issue to define feasible model for the

inertia delay and to discuss the hazard detection problem based on the

model.

5.A Appendix: Proof of Lem 5.5

Def 5.4 We call triple (g, t, v) where g E G, t E T and v E {0,1, d}}
(signal value d is a don't care), a time-value requirement for a gate g. We
call a set a obtained by the following 1) N 3) a time-value requirement
for a circuit.

5.A. Proof of Lem 5.5 123

1) Initially a consists of time-value requirements of gate gn, namely the

 primary output of the circuit.

2) If (gi, t, v) e a and v d then include (gil, t — x27 v1), (g22, t — xi, v2),
• • • , (gig"', t — xi, vm) which satisfy v = fi(vl, v2, • • • , vm), where gib is

 the gate which feeds the j-th input of gate gi.

3) If (g, t, 0), (g, t,1) and (g, t, d) are in a simultaneously (for the same

 g and t), a is not a time-value assignment.^

Intuitively (g, t, v) represents that the output of gate g is v at time t. a

consists of the consistent tuples.

Def 5.5 Let a be a time-value requirement of a circuit. Let ao =
{(go,t,v) (go,t,v) E a} = {(go, ti, v1), (go, t2, v2), ... , (go, tk, vk)}. Let
vx —} vy be the given input signal change. Then we define the realization

condition of a, denoted as Sa, as follows.

 SA - alncr2A• •AOk,

vj - (ti < 0) if vi = vx,

(ti > 0) if vi = vy.

 0

 Intuitively, Sa represents the condition where time-value requirement

a takes place. We can express the condition where static or dynamic

hazards occurs.

Lem 5.14 The necessary and sufficient condition where a static hazard

occur (in the case of f (vx) = f (vy)) is

RA V Sa
aEA

124 5. Computational Complexity of Logic Simulation Problems

where

 A = {a 1 a is a time-value requirement of circuit C,

(g„, t, f (vx)) E a, t E T'}.

[Proof] a E A expresses a time-value requirement where the output of
the circuit becomes f (vs), namely a static hazard occurs. ^

Lem 5.15 The necessary and sufficient condition where a dynamic hazard

occur (in the case of f (vs) � f (vy)) is

R A V (So, A (t,1 < ta2)),
 aEA

where

 A = {a 1 a is a time-value requirement of circuit C,

 (gn,ta1,f(vx)) E a,

 (gn, ta27 f (vx)) E a,
tat E T', tae E T'}.

[Proof] a E A expresses a time-value requirement where the output of
the circuit changes its value as f (vx) —p f (vx) —+ f (vs) —* f (vs), namely
a dynamic hazard occurs.^

Now we show the proof of the Lem 5.5 .

[Proof of Lem 5.5] All the inequalities in Sa have the form of t < 0 or
t < 0 where t E T'. ta t < ta2 in Lem 3.14 can be transformed into the

form of t < 0 where t C T' because ta
i — ta2 E T'. All the inequalities in

R have the form of t < d where t E T' and d E D . Thus if we expand

the condition in Lem 3.10 or Lem 3 .11 into the sum-of-product form, we

have the condition expressed in the form of the lemma .^

Chapter 6

Time-Symbolic Simulation for

Accurate Timing Verification

6.1 Introduction

In design of asynchronous circuits, timing becomes the most important

issue. We must examine designs so that they do not fall into erroneous

behavior caused by critical races, hazards and oscillations. When the

behavior of a circuit depends on subtle timing relations, we must con-

sider the change of delay values which may be caused by variations of

process conditions and differences of usage environments. In logic simu-

lation, which is currently one of the most effective methods of dynamic

timing analysis, we treat the uncertainty of the delay value by using the

 min/max delay model [Bre76]. Although the model enables relatively
fast simulation, it has been pointed out that simulation results are often

too pessimistic if the circuit contains reconvergent fanouts [Bre76]. The

simulation results contain so many unknown signal values or report so

many possibilities of timing errors that it is very difficult to know if the

circuit under test really has design errors. It has, therefore, come to be

an important research theme to find effective methods for timing veri-

fication taking the delay uncertainty into account and many researches

are undertaken on this issue [Yon89, Cer89]. In this chapter we propose

 125

 126 6. Time-Symbolic Simulation for Accurate Timing Verification

a new approach based on symbolic execution of logic simulation.

 In the conventional symbolic simulation [Car79, Cor81], they introduce

variables to represent signal values and execute simulation treating signal

values as Boolean expressions. In our approach we execute simulation by

representing a gate delay or time of input change by a variable. This idea

of time-symbolic simulation makes it possible to compute the accurate

effect of the uncertainty of actual delays. It also enables us to get useful

information for identifying the error location and for finding the way to

correct design errors by analyzing the symbolic results. One difficulty in

time-symbolic simulation is in the algorithm to carry out simulation. The

conventional algorithms are not straightforwardly applicable because the

times are not constants any more. In this chapter we show two efficient

algorithms for time-symbolic simulation and discuss their application to

design verification of asynchronous circuits.

 The first algorithm is based on the T-algorithm [Ish84, Ish85yy] and
is dedicated for combinational circuits. Symbolic manipulation of time

is relatively easy in T-algorithm because the time is advanced indepen-

dently at each gate in a circuit. Since the simulation result depends on

relations among occurrence times of events, we represent the signal his-

tory on each signal line using a data structure named an event tree instead

of a linear list. It is necessary to simplify algebraic expressions and to

judge the feasibility of inequalities during the simulation . We solve these

problems by reducing them into linear programming. Although this time-

symbolic simulator can directly deal with combinational circuits only , it
is possible to verify the behavior of asynchronous sequential circuits by

examining the behavior of their combinational parts . Time-symbolic sim-
ulation also enables us to obtain conditions for correct behavior of the

circuit, which is of good use for design error correction and design im -

provements. Since it requires good skill to obtain the conditions from a
result of time-symbolic simulation by hand , we also developed a result

 6.1 Introduction 127

analysis system for time-symbolic simulation.

 In this chapter we propose another algorithm for time-symbolic sim-

ulation which can directly deal with circuits containing feedback loops .

In this algorithm we assume time to be discrete. A key point of this al-

gorithm is that we can reduce time-symbolic simulation into usual value-

symbolic simulation by encoding the time variables. Namely, instead

of using time variables, we encode the cases of possible delay values of

an uncertain delay unit and represent the delay variation by Boolean

variables. Then the time-symbolic simulation is reduced into usual sym-

bolic simulation and we can simulate all kinds of logic circuits based on

the conventional S-algorithm. We refer to this new technique as coded

time-symbolic simulation (CTSS). In the CTSS all the computational dif-
ficulties are condensed into Boolean function manipulation. We use an

efficient Boolean function manipulator using shared binary decision di-

agrams (SBDD's) [Min90, Min91] as internal representation of Boolean
functions. The use of SBDD's in the CTSS drastically reduces storage

requirements and enables efficient simulation execution. It is also impor-

tant to provide aids for analyzing simulation results, for the simulation

results of the CTSS are given in the form of Boolean expressions with

coded time variables. In this chapter we propose a novel technique of

comparing simulation results obtained by the CTSS with desirable be-

havior based on symbolic simulation of automata.

 In the following section we discuss the modeling of delay uncertainty

using time variables. In section 6.3 we show an algorithm for time-

symbolic simulation based on T-algorithm and in section 6.4 discuss

applications of time-symbolic simulation to timing verification of logic

circuits. In section 6.5 and 6.6, we describe an idea, an efficient algo-

rithm and applications of the coded time-symbolic simulation. Some

further discussions will be made in section 6.7.

128 6. Time-Symbolic Simulation for Accurate Timing Verification

6.2 Problems of Conventional Min/Max Delay

ulation

Sim-

An actual delay value of a logic gate is affected by process conditions or

usage conditions. In logic simulation we treat the uncertainty by using

the min/max (ambiguity) delay model [Bre76]. It has been pointed out ,
however, that this model has serious shortcomings such that simulation

results are often too pessimistic due to reconvergent fanouts [Bre76] . For
example, a timing chart in Fig. 6.1 (b) is the result of the min/max delay

simulation for a circuit in Fig. 6.1 (a). The unknown states on the output

of D indicate the possibility of a static hazard, which never occurs in an

actual circuit because the rising edge on the output of C never precedes

the falling edge on the output ofB. The overpessimism comes from loss

of information that the uncertainty in the time of the rising edge on the

output of C is partly due to that of the falling edge on the output of

B. We are actually simulating the circuit shown in Fig . 6.1 (c) instead
of that in Fig. 6.1 (a). Since the unknown states produced in this way

propagate around the circuit polluting correct signal states,it becomes
impossible to judge if the circuit really has design errors .

 There are some simulators which detect reconvergences and avoid the

overpessimism to some extent. However , as is shown in chapter 5, the
hazard detection problem of a combinational circuit under the uncertain

delay model is NP-hard and it is therefore considered to be impossi -
ble to compute an accurate simulation result by a simple extension of

the min/max delay simulation algorithm . Fig. 6.2 shows some difficult
examplesl. Two circuits and expected accurate waveforms for the circuits

are illustrated. Although the circuits are very small
, the twofold recon-

vergence make the accurate simulation difficult . Especially it is difficult

to predict the absence of hazards at (3). In this chapter, we attempt

 1These examples are devised by Mr
. Hiroaki KANEHARA at Kyoto University .

6.2 Problems of Conventional Min /Max Delay Simulation 129

A
B [0:3]

Fig.

C [1:4] D [0:0]

(a) A circuit with a reconvergence.
 I.

AI I-------------------------

B %7/

• D1 I 1 1

(b) Min/max delay simulation.

A _B [0:3]

 B'[0:3] C [1:4] D [0:0]

 (c) The circuit actually simulated.

6.1 Overpessimism in min/max delay simulation.

130 6. Time-Symbolic Simulation for Accurate Timing Verification

[1:4]

 [1:4]

 [1:4]

 A -1-----

Ey_ Y ' L~
 [0:0] (1) possibly (2) always

 hazard hazard

(a) Circuit Kanehara-A.

A -1

 Y

 Fig. 6.2 Difficult examples fc

to solve this problem by expressii

which can take an arbitrary value

 — [0
:0] [2

:2] (3) no (4) possibly h
azard hazard

 (b) Circuit Kanehara-O.

examples for the min/max delay simulation.

by expressing delay variation using time varia

)itrary value within the bounds.

bles

6.3 Time-Symbolic Simulation Based on T-Algorithm

6.3.1 Modeling of Uncertain Delay Using Time Variables

The overpessimism of the min/max delay simulation at reconvergent

gates is due to the loss of the information that the uncertainty of time of

signal changes propagated through different paths has a common source.

In our approach we identify the common source of the uncertainty by

expressing each uncertain delay value by a variable over the real number

domain. We refer to the variable as a time variable. Minimum and maxi-

mum delay values may be specified for an uncertain delay unit. In such a

case, we express them by a set of inequalities such as {3 < d, d < 5}. We
call the set of inequalities variable constraints. We assume the inequal-

ities in a variable constraints are linear inequalities in general forms. It

is therefor possible to express the relation between delay values such as

{d1 < 2d2}. We can model the various kinds of uncertainty of a delay

6.3 Time-Symbolic Simulation Based on T-Algorithm 131

value using the time variables. In this section, we consider the following

three models.

Static nominal delay model We assign one time variable to one delay

 unit. Namely, we assume the delay value is uncertain but constant.

Static rise/fall delay model We assign two time variables which rep-
 resent rise delay and fall delay of the delay unit.

Dynamic delay model We assign a time variable for each signal change.

 Namely, we assume the delay value can be different at each signal

 change.

6.3.2 Algorithm Based on S-Algorithm

It is possible to adapt the conventional S-algorithm to the time-symbolic

simulation, if efficiency of execution is not critical. The following is the al-

gorithm, in which events scheduled to occur in the future are maintained
in set Q.

 1) Repeat 2)r.4) until Q becomes empty.

 2) Get an event e out of Q whose occurrence time is judged to be the
 smallest. When there are more than one candidate, investigate all

 the possibilities by branching.

 3) Compute the effect of e.

 4) If there are new events as the result of 3) put them into Q.

In step 3), we do not have to investigate all the possibilities if the order

of occurrences of events does not affect the entire behavior of the circuit.

However, we are forced to investigate almost all the possibilities as long

as we are not allowed to cancel and recompute the simulation results,

because it is almost impossible to know the possibility of inconsistency

132 6. Time-Symbolic Simulation for Accurate Timing Verification

event node

1

condition node

ti ++,.l<+

 ti + d2 0 0
 \`.. -----~{1

 - 00 0 t1 t2

 initial event node 'I t2 + d1 + d3 1 1 I—fI final event node
 (a) An event tree

t1t2 A t1+d1--t3: _ItiIti+d2
t1;st2 A t1+d1>t3:It1
t1>t2:It2+di+d3

 (b) Waveforms represented by the event tree

 Fig. 6.3 An event tree.

in advance. As a result, the simulation speed becomes so slow that

we can not simulate even a small circuit within feasible time. One of

the breakthroughs to this problem is an optimistic strategy such as in

[Yon89], which in turn makes the simulation control complicated.
 On the other hand, symbolic manipulation of time is relatively easy

in the T-algorithm because the time is advanced independently at each

gate in a circuit. We propose in this section an efficient algorithm of

time-symbolic simulation dedicated for combinational circuits based on

the T-algorithm.

6.3.3 Representation of a Signal History by an Event Tree

In the case of usual simulation where times are constants, a signal history

of each signal line is represented by a linear list of events. In the case

of time-symbolic simulation the simulation results depends on relations

among occurrence times of events. We use a data structure named an

event tree as shown in Fig. 6.3 (a) in order to represent such a signal

history.

'~
t2+di+d3 I 1 I—^

6.3 Time-Symbolic Simulation Based on T-Algorithm 133

 An event tree is a directed tree. Nodes are classified into event nodes

and condition nodes. An event node is labeled by an event, a tuple of

time and a signal value. The time is expressed by a linear combination

of time variables. A condition node is labeled by a linear inequality. We

will refer an event node and a condition node simply as an event and a
condition, respectively, for simplicity. Direct edges represent the order

of event occurrences. The root node of an event tree is an event node

whose occurrence time is —oo and is called the initial event node. All

the leaf nodes are event nodes and are called final event nodes which
represent that there are no more events after the events. Each of the

event nodes except for final event nodes has just one successor and each

of the condition nodes has two successors. The first (the upper, in the
figure) edge represents the case where the the linear inequality 'y of the

node holds, and the second (the lower) edge represents the case where
-y does not hold . We refer to -y and --y as branching conditions of the

first edge and the second edge, respectively. The path condition of a node

is the product of the branching conditions of the edges constructing the

path from the root node to the node. The event tree in Fig. 6.3 (a)
represents three event sequences in Fig. 6.3 (b).

6.3.4 Algorithm of Gate Evaluation

The algorithms of gate evaluation in time-symbolic simulation is basi-

cally the same as that of the usual logic simulation but for the following

exceptions.

 1) Since there can be more than one candidate for the next event at
 each input line of a gate, we must investigate all the possible cases.

 For example in Fig. 6.4, input A has two candidates ((1) and (2))

 and B has also two candidates ((3) and (4)) for the next event. We
 must investigate the four cases for the combination (1)(3), (1)(4),

 (2)(3) and (2)(4).

134 6. Time-Symbolic Simulation for Accurate Timing Verification

2)

--- _Art di +ti 11 --> (1) Al -co I 0 d1<d) 1^n (2)
 „Jr, d3 + t2 I 0-----------Hi! (3)

 B -co 1 d3<d4 •l d4 + ti I 0 1_011 (4)
---- J^ (1)(3)

d3<d4
y (1)(4) YI-c0I0 4<d)

 J^ (2)(3)
 d3<d4 (
2)(4)

 Fig. 6.4 Computation of the output event tree.

Even if each input line has a unique candidate for the next event,

there are cases where we cannot decide which input has the event of

the minimum occurrence time. In such cases we must also investigate

all the possibilities. For example, suppose we are investigating the

combination (1)(4) in Fig. 6.4. We have to examine the two cases if
we can not decide which of d1 and d4 is the smaller.

 _ co 0 d1 <dz
ti

 _ co 1 d3<dd

 _ co 0 CC<dz:

 In both 1) and 2), new condition nodes are appended to the output

event tree to make branching. Note that there are cases where branching

does not occur depending on the path conditions and variable constraints.

In the example in 2), we can decide the next event if the variable con-
straints includes {d1 < 3, 5 < d4} because d1 t1 is always smaller than

d4 ~ti.

 Fig. 6.5 shows an algorithm of computing the output event tree of a

2-input gate from the given input event trees, for the static nominal delay
model. The followings are the explanation of the algorithm.

 1) Function gateEval receives root nodes a and b of the event trees of
 the inputs and returns the root node of the resulting output event

 tree.

6.3 Time-Symbolic Simulation Based on T-Algorithm 135

function gateEval(node a, node b) return(node)
begin op(a, b, variable _constraints, unknown, unknown, unknown) end gateEval;

function op(node a, node b, inequality _set s, sig_val vy, sig_val va, sig_val vb)
 return(node)

begin
 if a is a condition node then

 begin

pc+: = pcU{a.cond};
pc-:=pcU{-'a.cond};
 if sat(pc+)A-'sat(pc-) then return op(a.upper, b, pc, vy, va, vb)

 else if -isat(pc+)Asat(pc-) then return op(a.lower, b, pc, vy, va, vb)
 else if sat(pc+)Asat(pc-) then

 return cnode(a.cond, op(a.upper, b, pc*, vy, va, vb),
 op(a.lower, b, pc-, vy, va, vb))
 end

 else if b is a condition node then similar to the case where a is a condition node
 else if both a and b are event nodes then

 begin

pc+: = pcU{a.time b.time};
pc-:= pcU{a.time> b.time};

 if sat(pc+)A-'sat(pc-) then return evalA(a, b, pc, vy, va, vb)
 else if -'sat(pc+)Asat(pc-) then return evalB(a, b, pc, vy, va, vb)
 else if sat(pc+)Asat(pc-) then

 return cnode(a.time b.time, evalA(a, b, pc+, vy, va, vb),
 evalB(a, b, pc-, vy, va, vb))
 end

end op;

function evalA(node a, node b, inequality_set s, sig_val vy, sig_val va, sig_val vb)
 return(node)

begin
vy':=FUNC(a.val, vb);
next:=op(a.next, b, pc, vy', a.val, vb);
if(vy'#vy) then return enode(a.time+DELAY, vy', next)

 else return next
end evalA;

function evalB is similar to evalA;

Fig. 6.5 An algorithm of computing output event trees.

136 6. Time-Symbolic Simulation for Accurate Timing Verification

 2) Function op receives root nodes a and b of the subtrees of the input

 event trees, set of inequalities s representing variable constraints

 and path conditions, and the current signal values of the output

 line and the input lines vy, va,vb. It computes the sub- event tree

 corresponding to the sub - event trees rooted by a and b, and returns

 the root node of the sub- event tree.

 3) Function evalA and evalB receive the same arguments as op except

 that root nodes a and b are event nodes. They computes output

 sub- event trees obtained when a and b occur earlier, respectively.

 4) The occurrence time, the signal value and the next node of event

 node e are denoted as e . time, e . val and e . next, respectively. The

 event node whose occurrence time, signal value and next node are

 t, v and n, respectively, is denoted as enode (t , v , n) .

 5) The inequality of a condition node c is denoted as c. cond. The nodes

 which are pointed by the upper and the lower edges of condition node

 c is denoted as c.upper and c.lower, respectively. The condition

 node which satisfies c . cond=i, c .upper=u and c . lower=l is denoted

 as cnode(i,u,1).

 6) FUNC is the Boolean function of the gate and DELAY is the delay

 variable of the gate.

 7) Function sat judges whether a given set of linear inequalities is fea-

 sible (whether there is an assignment to the time variables which

 satisfies all the inequalities in the set) or not . Details of the compu-
 tation procedure is described in section 6.3.5 .

 In the case of the static rise/fall delay model , we must change the
delay variable according to the new output value . Furthermore we need

the event cancellation operation as is the case of the conventional logic

simulation [Bre76]. Let dr and d f be the time-variables representing rise

6.3 Time-Symbolic Simulation Based on T-Algorithm 137

A

B

C

D

Fig. 6.6

 A B

Do
d, ~

dd3

 (a) The circuit in Fig. 6.1.

- 00 0 -* 0 1 --^{1
-00 I 1 F d 1 0 ---^
- 00 0 J-• di + d2 1 I--^ J
- CO 01--1.d1+id 0 d1+dd3 0--^

 (b) The simulation result

An example of the time-symbolic simulation (1)

d,+ -'I di +d3 0 fi

delay and fall delay, respectively, er and ef be the expression representing

the time of input events which cause the 0 --> 1 event and 1 - 0 event

at the output of a gate, respectively. We assume that e,. < ef absolutely

holds. In the case of er + dr > ef + df, we have to cancel events at time

ef + df. We judge the feasibility of the inequalities and make branching

if necessary.

 Time-symbolic simulation of the dynamic delay model is realized by

introducing as many time-variables as output events. We also need event

cancellation. In many cases, difference of the delays is not so large.

We can express this by the variable constraints. Although we need much

more variables than static delay model, we can expect more precise timing

analysis.

 Fig. 6.6 shows the result of time-symbolic simulation on the same

circuit and the same input pattern as in Fig. 6.1. In the computation on

gate D, we do not make branching because we can tell that the event on
the output of B occurs earlier than that on the output of C by algebraic

comparison. As the result, we can conclude that there is no possibility

138 6. Time-Symbolic Simulation for Accurate Timing Verification

of the hazard on the output of D.

6.3.5 Manipulation of Algebraic Expressions

In order to execute the procedure described in the previous section, it

is necessary to treat algebraic expressions which include time variables.

The required operations are as follows.

 1) Addition of simulation time and gate delays.

 2) Simplification of inequalities such as d3 + d2 < d1 -F d2 —> d3 < dl.

 3) Judgment of feasibility of a set of linear inequalities.

 Since all the algebraic expressions appearing in our time-symbolic sim-

ulation are linear combinations of time variables, these operations are

easily realized. 1) is achieved by addition of each coefficients. 2) is also
trivial if we use the normal form representations of inequalities such as

>2aidi c < 0. As for 3), we solve the feasibility problem by linear
i=1
programming.

6.4 Timing Verification by Time-Symbolic Simula-

 tion

We have implemented a time-symbolic simulator based on the above al -

gorithm, on the SUN 3/60 workstation in C language. We use the simplex
method for linear programming.

6.4.1 Hazard Detection

We can tell the possibility of hazards directly from the result obtained

by time-symbolic simulation. Fig . 6.7 shows the result of the simulation

on the circuit in Fig. 6.2 (a). A falling edge is given to the input . From
the result we can tell the possibility of a static hazard on output E .

6.4 Timing Verification by Time-Symbolic Simulation 139

 A -00 1 --0 0-*

B - 00 1 --^ di 0 —^J
C -00 1 H. d2 0I— I

D

d

 dI—' 2-

(a) The circuit in Fig. 6.2 (a).

 E

 d, +d3 1

-CO 0 11.Q1 < d
-41

2+d3 1yl d

 —Co 0 d, <d2

d2>
d, +d3

d1 +d3
+ d4

d2+d4 0

 (b) The simulation result.

 Fig. 6.7 An example of the time-symbolic simulation (2).

Furthermore we can tell that the condition where the hazard occurs is

d1 < d2 A d1 + d3 < d2 (namely d1 + d3 < d2) and that we can avoid the

hazard by increasing the delay value of d1.

6.4.2 Verification of Asynchronous Sequential Circuits

Although our simulator is applicable only to combinational circuits, we

can verify the behavior of asynchronous sequential circuits by examining

the behavior of the combinational part [Kim88].

 We assume that the followings are given as an instance for the verifi-

cation.

 1) The state transition table of basic mode asynchronous sequential

 machine M.

 2) Gate level implementation C of M.

140 6. Time-Symbolic Simulation for Accurate Timing Verification

 XZ Zexp

 I _ru combina- tional L —_••'compare YT.circuit exp — • Ysim

-ill
l • ~ disconnect I I

 guess I _~I
(sufficient condition) compare• • •LJ

 Fig. 6.8 Verification of an asynchronous sequential circuit.

3) The state assignment and the correspondence between state vari-
 ables and feedback lines in C.

 The algorithm of the verification is as follows (see Fig. 6.8):

1) Get a combinational circuit C' by disconnecting the feedback lines
 corresponding to the state variables.

2) For each state transition, verify the correctness by 3)r 5).

3) Let X, Zexp, and Yexp be event sequences to appear at the primary

 inputs, the primary outputs and the feedback loops
, respectively,

 when the transition occurs. X and Zerp are derived directly from

 the state transition table. As for Yexp, we can guess a proper pattern

 since the signal values of the feedback lines before and after the

 transition are specified in the state transition table . If the occurrence

 time of an event is unknown, represent the time by a time variable .

4) Perform time-symbolic simulation on C' giving X and Yesp to the
 primary inputs and the disconnected lines, respectively, and get the

 output Zsim and Ysim, on the primary outputs and the disconnected

 lines, respectively.

Zexp

6.4 Timing Verification by Time-Symbolic Simulation 141

5) Compare Zsir,,, with Zexp, and Ysim, with Yexp. If they are consistent,

 we can conclude that the correct state transition takes place regard-

 less of the delay variations. Otherwise we can get the condition

 where the correct transition occurs.

 Note that the condition obtained in 5) is a sufficient condition because

there is a possibility that the correct transition takes place with the event

sequences different from Yey, which we chose in 3).

 We show an example of verification of a T-flipflop. The state transition

table and a gate level implementation are shown in Fig. 6.9 (a) and

(b). We get four input and desirable patterns for the four transitions

(Fig. 6.9 (c)) from the state transition table. Here we expect that there
are no hazards also on the feedback lines. (This assumption is considered
to be a feasible one). We introduce time-variables ti, t2, t3 and t4 to

represent delay times for the transitions because they are unknown.

 By executing time-symbolic simulation and comparing the simulation

results, we obtain the condition shown in Fig. 6.9 (d). The four equations

express the value of t 1.•t4, namely the time necessary for each transition.

We can tell the critical path for each transition from these equations. The

two inequalities the condition where the circuit correctly works as a T-

flipflop. The inequalities do not contain time variables u1 and u2 which

represents the delay values of the feedback lines. From this fact, we can

conclude that the circuit may fall into an erroneous behavior depending

on the variations of the delay values in the combinational part and that

it is impossible to avoid the timing error by adjusting the delay values of

the feedback lines.

 Fig. 6.10 (a) is an alternative design whose combinational part has

hazard detection gates. The verification result is shown in Fig. 6.10 (b).
In this case, the inequalities contain time variable t2. This tells us that

there is no danger of combinational hazards but that there is, in turn, the

possibility of sequential hazards. We also conclude that we can satisfy

142 6. Time-Symbolic Simulation for Accurate Timing Verification

 Y1 Y2
Y1' Y2'

Z

X=0 X=1

0 0 00 0 1 0

0 1 1 1 0 1 1

1 1 Op 1 0 1

1 0 0 0 1 0 0

 dx T

d6 Y1'

Y2' Z

d4
7

d 1.i2 p d7
a 5

u=i1).
(a) State transition diagram. (b) A gate-level implementation .

 1002 0O

X--------i
Y1 ---------------------------I-------------------------I

Z ---------------

 t1 0 t2 0 t30 t4

 (c) Expected timing charts.

t1 =d4+d7

t2=d1+d5+d6
t3=d1 +d5+d7

 t4=d3+d6

 dl +d5<d4

 dl +d5>d3

 (d) Result.

 Fig. 6.9 Verification of a T-flipflop .

6.4 Timing Verification by Time-Symbolic Simulation 143

Fig

 ti =d4+d7

 t2=d1+d5+d6

t3=d1 +d5+d7

t4=d3+d6

d3<u2+d8+d1 +d5+d7

d1<u2+d4+d7

(a) A gate-level implementation.(b) Result.

. 6.10 Verification of a T-ffipflop with hazard detection gates.

the condition by increasing the

critical paths for the transitions

the hazard detection gates.

delay of the feedback line

are the same in spite of th

and that the

e addition of

6.4.3 Result-Analysis System

Time-symbolic simulation makes it possible not only to confirm the cir-

cuit's correct behavior but to obtain the conditions for correct behavior

of the circuit. In order to obtain conditions for correct behavior of cir-

cuits, it is necessary to compare event trees with correct event sequences.

This comparison process is hard by hand when event trees become large.

In order to solve this problem, we have also developed a result analysis

system for the time-symbolic simulation.

 It compares multiple pairs of an event tree and an expected event

sequence and outputs the condition which matches the all pairs. The

condition is shown as a sum of products of linear inequalities. It also

reduces the duplicated and redundant conditions. For example, the con-

144 6. Time-Symbolic Simulation for Accurate Timing Verification

dition

 d2+d3+d6 < d4 A d4+d5

is reduced into

d2 + d3 + ds < d4 A d4 + d5

because the third inequality

and is redundant. We judge

programming.

<d1+d3Ad2<d1

<d1+d3

can be derived from the other conditions

the redundancy also by means of linear

6.4.4 Performance of the Simulator

The CPU time required for the verification of the T-flipflops is less than

0.1 seconds in total and the simulation speed in this case is about 100

 300 event/second. This speed is considered to be enough for verifying
small scale circuits. However, the computation cost of time-symbolic sim-

ulation is at least proportional to the exponential of the number of gates

in the worst case. Although this is inevitable if we consider the com-

plexity of the problem, it is difficult to apply time-symbolic simulation

to large scale circuits. In this case combination use of the time-symbolic

simulation and the conventional min/max delay simulation will be effec-
tive.

 As for the memory requirement, the size of the event trees grow being

proportional to the number of gates and will be dominant. However, in

the small scale circuit we can not neglect the size of the tableau for the

linear programming, which is proportional to the product of the number

of time variables and the number of inequalities . Our current simulator

can deal with circuits of about 100 gates within the storage of 8MB .

6.5 Coded Time-Symbolic Simulation - CTSS

In the T-algorithm based approach , we can not directly deal with cir-

cuits with feedback loops. On the other hand , in the S-algorithm based

6.5 Coded Time-Symbolic Simulation - CTSS 145

approach described in section 6.3.2, impractical computation time is re-

quired to simulate even a small scale circuits. In this section we propose
an alternative algorithm for time-symbolic simulation which can deal

with circuits with feedback loops. It is based on Boolean function ma-

nipulation and can simulate circuits with feedback loops almost in the

same speed as circuits without feedback loops.

6.5.1 Modeling of Uncertain Delay by Boolean Variables

The most important assumption in this section is that the time is discrete

as is in the conventional logic simulation. Namely the simulation time and

the delay values take integer values. Under the discrete time assumption

we can enumerate the possibilities of actual values of a bounded static

uncertain delay. Let us take the circuit in Fig. 6.1 (a) as an example.

Each of two inverters B and C, whose delay is specified as [0,3], will
take one of four delay values {0,1,2,3}. If we investigate the 16 cases,

namely the 4 cases for B multiplied by the 4 cases for C, we can get

a completely accurate simulation result. The total number of the cases

to be examined will be exponential to the number of uncertain delay

components in a circuit. This is inevitable because of the complexity of

the problem that we discussed earlier. We focus our attention on how we

can make the simulation process efficient.

 Again in the example above, 16 possible signal values are associated

with a signal line at a time period. If we code the delay of B and C

using Boolean variables, such as delayB = (b1, b0) and delays = (ci, co),

the 16 signal values can be seen as a Boolean function of the 4 input

variables. Then the simulation with the uncertain delays is reduced into

usual symbolic simulation. This is a basic idea of our coded time-symbolic
simulation.

 For the convenience of explanation, we assume without loss of gener-

ality that a gate in a circuit is either a pure functional gate with delay

146 6. Time-Symbolic Simulation for Accurate Timing Verification

B [0:3]

 [0]

[1]

[2]

[3]

b1 bo

 Fig. 6.11 An interpretation of the coding of delay variation.

0 or a pure delay gate with a single input and a single output. Let us

denote a signal value on line s at time t as s [t] . Then the signal value on
output line y of functional gate g is computed by the following equation:

y[t] = f9 (xi [t], x2[t], ... , xk[t])(6.1)

where f9 is the Boolean function of g, and xi, x2, • • , xk are the signal
lines which feed g.

 As for a delay gate, we can interpret a coding of delay as shown in

Fig. 6.11. Time variables b1 and bo are selection inputs to choose one
of the four delay possibilities. If we relate (b1, bo) with the binary rep-

resentation of delayB, we can compute the output y of the delay unit

according to the following formula:

y[t] = bi bo x[t]

 + bi - bo • x [t — 1]

+ bi•bo-x[t-2]

+ bi•bo•x[t-3]

 The definition of delay gate g in general is as follows . Let y and

x be the output line and the input line of g , min9 and max9 be the

minimum and maximum delay value of g , and go, gi, • • • , gi (where 1 =
[log2(max9 — ming + 1)1 — 1) be the time variables coding the possibility
of delay values of g. Let us also define g2 k> and G<k> as follows.

6.5 Coded Time-Symbolic Simulation - CTSS 147

 <k> 9
z

 G<k> = g

The output value of delay gate g is computed according to the equation:

y[t] = G<o> x[t — mint']

+ G<1> x[t —ming-1]

+ G<maxg—ming> x[t — max9].(6.2)

 Fig. 6.12 is an example of simulation on the circuit in Fig. 6.1 (a).

Fig. 6.12 (a) shows a coding of delay variation. Fig. 6.12 (b) shows the
simulation result, namely the signal values of each signal line at each

time. A rising edge at time 0 is given to A. The Boolean function

b1 + bo + ci + co appearing on line C at time 0, for example, indicates

that the value is 1 when b1 = bo = c1 = co = 0, namely delayB = 0

and delays = 1, and otherwise the value is 0. The signal value on D is

always 0, which is the accurate result that we expected. In the CTSS,

the variables of a delay unit do not appear in the formula to represent

the signal value on line s at time t, as long as the delay does not affect

s at time t. So we can automatically avoid the useless comparison and

branching.

6.5.2 Representation of Boolean Functions by a Shared Bi-

 nary Decision Diagram

Good representation of Boolean function is a key to efficient symbolic

simulation. In our implementation we use a shared binary decision di-

agram (SBDD) [Min90, Min91], which is an improvement of the binary

gi if i-th bit of the binary

 representation of k is 0,

gi otherwise.

148 6. Time-Symbolic Simulation for Accurate Timing Verification

 bl bo I delayB II c1 co delay

 0 01 0 110 0 1

0 1 I 1 11 0 1 2

1 0 I 2 II 1 0 3

1 1 I 3 II 1 1 4

(a) Coding of the delay values.

 t ll A[i] B [t] C[t] D[t]
 -1

1J 1 0 0

0
I

bi + bo 0 0

1 1 bi b1 + bo + cl + co 0

2 1 bi • bo bl + cl • bo • co 0

3 1 0 bi+cl+bo+co•b1•c1 0

4 1 0 0bi+cl+bl+bo+cl+ca

+bo + co • bi • c1

5 1 0 bl+c1+b1•c1 0

6 1 0 b1•bo•C1•Co 0

7 1 0 1 0

Fig. 6.12

 (b) The simulation result.

An example of coded time-symbolic simulation.

6.5 Coded Time-Symbolic Simulation - CTSS 149

 a•--b aeb —b a+--b

a a a

0 1 uu uu
(a) Binary decision diagrams.

a---b aeb a + ---b

0 1

 (b) A shared binary decision diagram.

 Fig. 6.13 A shared binary decision diagram (SBDD).

decision diagram [Bry86]. In the SBDD all possible subgraphs are shared

among multiple functions, as shown in Fig. 6.13.

 The SBDD has the following advantages besides those of the BDD.

 1) Many functions can be efficiently expressed simultaneously.

 2) Many of the operations can be done much faster than those of the

 BDD. Especially, equivalence of two functions are checked by simply

 comparing the pointers while, in the BDD isomorphism should be

 examined.

 These two advantages are very much suitable for our purpose. Since in

the CTSS we need to represent many Boolean functions to express signal

values on signal lines, the property 1) is very favorable. Fig. 6.14 shows
the representation of the signal values in the simulation of delay units

connected in cascade. We can see how well the subgraphs are shared. The

150 6. Time-Symbolic Simulation for Accurate Timing Verification

 X
 A B

 [0:3] [0:3]

delayA = (al,ao)
delayB = (b1,bo)

B[6] B[5] B[4] B[3] B[2] B[1] B[0]

X[6] X[5] X[4] X[3] X[2] X[1] X[0]

0]

Fig. 6.14 Representation of signal values by SBDD.

property 2) is also favorable for detecting the changes of signal values in
symbolic simulation. The Boolean functions appearing in the CTSS are

produced by the logical operations for gate evaluations and the delay

operations which correspond to addition and comparison of the integers

in binary representation. We can expect efficient simulation because

BDD's are known to have good affinity for these operations [Ish90y]

6.6 Timing Verification by Coded Time-Symbolic Simulation 151

6.6 Timing Verification by Coded Time-Symbolic

Simulation

6.6.1 Result Analysis of the CTSS

Although CTSS offers accurate simulation results, they are represented

by Boolean functions and it is often difficult to understand the meaning

of the Boolean functions and to tell if there exist errors. For example, in

Fig. 6.12 the signal values on C satisfies the following relation.

 0 = C[0] c C[1] c C[2] c • • • c C[6] = 1,

where x C y is defined as x -{- y. From this relation, we can conclude that

there is always a single rising edge on C regardless of the combination of

delay values. However, it seems difficult to derive the fact only by looking

at the expressions. It is therefore important to prepare a mechanism

to analyze simulation results and tell if the simulation results match

desirable behavior of the circuit under test. In this section, we will discuss

methods of analyzing results. We propose a novel technique of comparing

the simulation results with desirable ones.

6.6.2 Analysis of Simulation Results Based on Symbolic Sim-

 ulation of Finite Automata

In section 7.4 we compared simulation results with desirable results by

expressing the desirable waveforms using the same data structure as sim-

ulation results. Although we can also apply this strategy to the CTSS,

it is difficult to derive Boolean expressions to represent the specifications

in general. In this paper we propose a novel technique of comparing

simulation results with desirable waveforms on the basis of symbolic sim-

ulation of finite automata. This technique is a generalization of the edge

detection technique shown above.

152 6. Time-Symbolic Simulation for Accurate Timing Verification

0 1 0 1 0 0,1

1 1 0 1

A B C D E F

 Fig. 6.15 Finite Automaton My.

 At first we represent desirable behavior of a circuit by regular expres-

sion 77. We construct deterministic finite automaton Ay which accepts

the same set of sequences as 77. We design sequential circuit Mn which

inputs a sequence and outputs 1 if and only if Ay accepts the sequence.

We simulate My along with the circuit under test. When the final output

of the My, is 1, we can conclude that the circuit satisfies the specification

77 regardless of the delay values. When the final output is a Boolean ex-

pression containing delay variables, the expression indicates the possible

combinations of actual delay values for the correct behavior of the circuit.

 For example, when we want to verify that not more than two 1-pulses

are allowed on the output line x of the circuit C, the specification is

written as:

77 = 00* + 00*11*00* + 00*11*00*11*00*.

From this regular expression we can construct deterministic automaton

Ay as shown in Fig. 6.15.

 By state assignment A = (1,0,0),B = (0,0 ,0),C = (1, 0, 1), D =
(0, 0, 1), E = (1,1,1), F = (0,1,1), we get sequential machine My ex-
pressed by the following equation, where yl, y2 and y3 are state variables

and ok is the output of My:

 yi = x•y2+x•yl•y3,

ya = Y2•Y3-I-x•yi•Y3,

ys = Y3+x•yi,
 ok = yi •

6.6 Timing Verification by Coded Time-Symbolic Simulation 153

By simulating Mn along with the circuit C, we know if C satisfies the

specification 1].

6.6.3 Extraction of Algebraic Expressions

As a result of the comparison discussed in the previous subsection, we

get a Boolean expression indicating delay conditions for correct behavior.

We are able to obtain a set of combinations of delay values immediately

from this expression. However, it is much more helpful if we obtain

algebraic relations between the delay values. Suppose the following ex-

pression is obtained, where delayA and delayB are coded by (a2, al, ao)
and (b2, bl, bo), respectively.

 ok = b2•a2+b2 bl •al+b2•bl b0•a0

+ b2 al b0•a0 a2•b1•al

 ^a2•bl •b0•a0+a2•a1 b0 a0.

It is difficult to realize by what condition the circuit behaves correctly.

If we extract the following algebraic expression of delayA and delayB, we

can understand the condition very well.

 delayA < delayB.

 Extraction of an algebraic expression from a Boolean function repre-

sented by a BDD is discussed in [Ohm90]. Currently we have an efficient

algorithm to extract a single linear inequality. There is room for a fur-

ther study to extract delay conditions in general, which are expressed as

logical combinations of linear inequalities.

6.6.4 Implementation Issues

In order to enhance the performance of simulators, we usually adopt

event driven simulation mechanism. In this implementation, however,

we decided to adopt the compiler driven simulation mechanism. It is

154 6. Time-Symbolic Simulation for Accurate Timing Verification

because we considered that the event driven simulation is not necessarily

advantageous for the following reasons:

 1) Since an event on the input line of delay gate g at time t affects the
 output line of g at time t + ming, t + mint' +1, • • • ,t + maxg, we have

 to handle much more events than in usual logic simulation.

 2) In order to accelerate symbolic operations in a SBDD, we keep re-

 cent results of symbolic operations in a hash table [Min90], and we
 can execute the same symbolic operations as we executed recently

 by just looking up the table. Since the cost of the table look-ups is

 much smaller than that of the symbolic operations, we can not ex-

 pect a drastic reduction of computation time by omitting the same

 operations according to the event driven simulation strategy.

On the other hand, in the compiler driven simulation, we must pay atten-

tion to the order of gate evaluation, because we are required to evaluate

a gate for many times until the circuit becomes stable. This requirement

brings a considerable drawback to computation time. We classify gates

into the following two categories.

 1) Delay gates whose minimum delay value is not 0.

 2) Functional gates (whose delay value is 0) and delay gates whose

 minimum delay value is 0.

Since the output value of a gate in Category 1) at time t does not depend

on the input value at time t, we can evaluate the gate without waiting for

the evaluations of the other gates. However we need to be careful about

the order of the evaluations of gates in Category 2). In our implementa-

tion, we evaluate all gates in Category 1) first and then evaluate gates in
Category 2) in the order of the level number. We exclude a circuit which

contains loops consisting of gates in Category 2) in the preprocessing

stage.

6.6 Timing Verification by Coded Time-Symbolic Simulation
155

Table 6.1 Performance of the coded time-symbolic simulator .

Circuit

 # of

gates

Simulated

time

units

CPU

time

[sec]

of
nodes

Speed

[event
/sec]

adderl

adder2

adder,

adder 8

adder 16

6

12

24

48

96

10

26

34

66

130

0.2

0.8

2.7

15.0

350.4

29

121

653

4,285

31,229

105.0

97.5

111.1

78.4

13.3

mult,2

mul t.4

16

88

22 1.3 438 126.2

dec8

enc8

17

22

18

10

3.0

4.4

6,489

10,424

47.3

52.5

tff (1)
tff (2)

7

7

29

29

2.4

0.9

2,758

75

84.4

108.8

 We implemented a coded time-symbolic simulator based on the meth-

ods described so far. The simulator is written in language C and runs on

a Sun3/60 workstation.

6.6.5 Experimental Results

The simulator successfully computed the accurate results of the difficult

examples in Fig. 6.2. Table 6.1 shows performance figures on some cir-

cuits. The column circuit shows the names of circuits simulated. Here,

addern is an n-bit ripple carry adder, multn an n-bit array multiplier,

dec8 an 8-bit decoder, enc8 an 8-bit priority encoder, and tff a T flip-

flop presented in [Ish89]. Bounded uncertain delays of [1,4], minimum 1

and maximum 4, were assigned to all the gates in the circuits, except for

tff(2). At first each circuit was initialized with an arbitrary input pattern,

and then all the input signal values were inverted all at once at time 0.

Simulation was executed until there remain no events except for tff(1).

156 6. Time-Symbolic Simulation for Accurate Timing Verification

The T flip-flop contained feedback loops and began oscillation when all

the gates had delays of [1,4]. We stopped the simulation at time 29. Row

tff(1) shows the result of this simulation. In the simulation of tff(2), the

delays were adjusted so that oscillation might not occur (delay of each

gate had width of 4). The maximum SBDD size was limited to 100,000
nodes. Simulation was stopped when there was the larger requirement

(indicated as '-' in the table).
 We counted the number of events occurred during the simulation by

a separate program. Simulation speed was computed by dividing the

number of events by CPU time for simulation. The simulation speed

is about 10 to 100 events per second, which decreased with the growth

of circuit size. We conclude that our simulator is much slower than

conventional min/max delay simulators, but it is amazingly fast because

it simulated 496 cases in about 6 minutes as is shown in the result of
adder/6. The circuit with feedback loops was also simulated at the speed

as fast as combinational circuits, though it took a lot of time if the circuit

oscillated. Since we have not attempted to order the variables, these
figures (the number of nodes and simulation speed) should improve, if
the variables are appropriately ordered.

6.7 Remarks and Discussions

New notions of time-symbolic simulation and coded time-symbolic sim-

ulation have been proposed as a new approach for accurate timing ver-

ification of logic circuits, and its implementation and application have

been described. Our simulation techniques make it possible to simulate

logic circuits with uncertain delay units precisely . Furthermore they en-
able us to derive the conditions in which the circuits behave correctly .
It is also possible to compute the probability where the circuit under

test falls into the erroneous behavior by extending the coding scheme of

6.7 Remarks and Discussions 157

CTSS [Deg90]. These by-products are very useful for design correction
and design improvements.

 Both of the methods are considered to be effective to handle the static

variation of the delay value. Although the dynamic variation of a de-

lay value can be also modeled by introducing many variables, we can

not expect efficient simulation. There is much room for a study on the

simulation methods for dynamic delay variation.

 As for simulation speed, we succeeded in simulating small scale circuits

within feasible CPU time. In the CTSS the circuit with feedback loops

can be simulated in as much time as combinational circuits unless it

oscillates. The simulators run fast enough to simulate small scale circuits

and are considered to be effective for the verification and redesign of small

asynchronous blocks such as flipflops.

 It is considered to be difficult to simulate a large scale circuit of more

than 10,000 gates by time-symbolic simulation because of the complex-

ity of the problem. As a solution we are now developing an approxi-

mated symbolic evaluation technique and the method of combining time-

symbolic simulation with the conventional min/max delay simulation.

158 6. Time-Symbolic Simulation for Accurate Timing Verification

Chapter 7

NES: A Nondeterministic Behavior

Model for Hardware Description

Languages

7.1 Introduction

Hardware description languages (HDL's) are kernels of CAD systems for

integrated circuits which work as inputs to various CAD tools, design doc-

uments and vehicles for design interchange among different CAD systems.

Although a lot of research projects have been carried out on hardware

description languages, we are now confronted with a big turning point

due to two trends; standardization and extension of the applications of

HDL's.

 Standardization of a hardware description language (HDL) has an in-

estimable impact on the development of hardware design, including CAD

tool development and design education. There are several activities for

standardization in the U. S., Europe, and Japan [Kar89, Pi183, Coe89,
Har86]. Since a standard HDL is used by many users, including IC man-

ufactures and tool developers working in various kinds of design culture,

we should provide them with a method of sharing a detailed idea on the

HDL. It is therefore essential to define rigid syntax and semantics of the

 159

160 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

language. Although almost all the HDL's are designed on the basis of

the formal definition of syntax by a meta language like BNF, there are

very few HDL's, especially among the practical ones, which has clear

definition of semantics. The task of defining the formal semantics of an

HDL can be broken into the following two subtasks.

 1) Defining a basic model of explaining hardware behavior.

 2) Defining the relation between syntax and semantics based on the

 behavioral model.

 There have been a lot of researches on the method of 2) in the area of

programming languages [Bjo78]. There have been, however, few studies
in the area of HDL's other than [Pi183] . Especially there have been no

established models which explain the behavior of the hardware described

in HDL's. In view of the trend of standardization, it is considered to

be an urgent research theme to develop good behavior models for HDL's

and to establish formal methods for defining semantics of HDL's.

 Extension of the applications of HDL's is also changing the situation.

For many years logic simulation has been the most important applica-

tion of HDL's. Actually semantics of HDL's is closely related to efficient

simulation algorithms and how to build behavior models which enable ef-

ficient simulation has been one of the most important issues. In practical

situations semantics of an HDL is defined by means of the simulator for

the HDL. However, recent researches in the area of CAD for integrated

circuits have brought about outstanding development of techniques for

various design support by computers. Especially logic synthesis come to

become a practical technique and there are strong demands for HDL's to

support logic synthesis. However, the simulation based semantics often

causes inconsistency. On example is the handling of don't cares . In logic

synthesis, we assume all the possible values for don't care specifications
,

but in logic simulation don't care values are dealt with as unknown values .

7.1 Introduction 161

This is inevitable if we consider efficiency of simulation execution but it

often brings about unnatural results as is discussed in Chapter 6. The

same inconvenience arise also in applying HDL's to formal verification.

Furthermore the techniques of logic simulation are also changing. Many

simulators attempt efforts to avoid unnatural results at the computation

cost as small as possible. Now we need a behavior model for HDL's which

is disengaged from the conventional simulation techniques and can sup-

port various applications such as logic synthesis, formal verification and
advanced simulation techniques.

 In this chapter we propose a new behavioral model of hardware, named

NES (Nondeterministic Event Sequences) model [Ish90y]. The NES model

is a generalization of the event-driven simulation mechanism. The most

important feature of the NES model is that it models uncertainty of

hardware behavior by means of nondeterminism. Uncertain behavior

of hardware is associated with signal values which are not specified or

specified as don't cares, delays whose values are specified only by their

minimum and maximum values, and so on. The uncertainty often makes

the semantics of HDL's unclear and ambiguous. We mean by the term
"nondeterminism" to take all the possible behavior derived from the de-

scription into account. The nondeterministic semantics forms a rigid

basis for logic synthesis and formal verification, and also can be a final

goal of logic simulation [Yas89, Yas901.

 In the following section, we describe basic concepts of the NES model.

We show how waveforms and the behavior of a hardware module are

modeled and described in section 7.3, and show the modeling of connected

modules in section 7.4. We also discuss applications of the NES model

in section 7.5.

162 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

A

B

C

D

E

 B[1:4] 'H—

C 1:4] D [2:2]E [0:0]

(a) Uncertain delay values.

 Fig.

7.2

7.1 Problems in the

Basic Concepts

 (b) Uncertain signal values.

deterministic modeling of the behavior.

of the NES Model

7.2.1 Modeling of Uncertainty by Nondeterminism

When we attempt to model hardware, we often face with uncertainty of

hardware behavior, such as a signal value whose value is unknown a delay

time whose only minimum and maximum values are known . There are

two reasons that explain such uncertainty. One is that we can not specify

the exact behavior of hardware in an actual condition. For example , as we
mentioned in Chap 6, it is impossible to specify the actual delay time in

advance. We refer to this kind of uncertainty as don't know uncertainty .

Another kind of uncertainty is what we call don't care uncertainty . If we

do not mind, or do not want to mind, all the details of a design
, we do

not describe the complete specification but leave a signal value as don't

care or specify the delay of combinational circuits by a pair of minimum

and maximum values.

 Traditionally, such kinds of uncertainty has been modeled by intro-

ducing a special signal value denoting unknown; behavior of hardware

7.2 Basic Concepts of the NES Model 163

has been explained based on a calculus such as unknown + 1 = 1 but

unknown + unknown = unknown. This is considered to be a simula-

tion oriented calculus because it enables fast computation. It has been

pointed out, however, that this poor calculus often leads to pessimistic

and unnatural semantics, as is discussed in Chapter 6. For example, in

Fig. 7.1 (a), the unknown value on the line E indicates a possibility of a
hazard, which never occurs in an actual circuit. Fig. 7.1 (b) shows an-

other example which explains the pessimism in signal values. The input

values on A and B are 1 while the value on S is x which specifies don't

care or unknown. According to the deterministic calculus the output

value on Y is x. However, in actual circuits, the output value on Y is

always 1 regardless of the value on S because this circuit is a gate-level

implementation of a selector.

 Such a deterministic modeling of uncertainty has been a natural con-

sequence when simulation is by far the most important application of

HDL's. The semantics of HDL's has been directly connected with simu-

lation techniques. Nowadays, however, simulation is not the only impor-

tant application of HDL's. We should take account of synthesis, verifica-

tion, and other various applications, where simulation technique oriented

semantics will cause many inconsistencies. Especially in synthesis and

verification we need to deal with the uncertainty of hardware behavior

in a strict sense.

 In the NES model, we attempt to express the uncertainty by means

of nondeterminism. We describe the possible behaviors of hardware as-

sociated with the uncertainty using a set. This concept is similar to that

of the coded time-symbolic simulation in Chapter 6. For example, we

treat an uncertain delay between 1 and 4 in Figure 1(a) as a set of delays

{1,2,3,4}. The behavior of the circuit is explained with all the possible
combinations of delay values. Similarly, unknown value on line S of the

circuit in Figure 1(b) is treated as a set of values {0,1}, which brings

164 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

about signal value 1 on line Y. Thus we can define natural and strict

semantics for uncertain hardware behavior. This feature is also desirable

for creating strict discussions on formal verification and synthesis. We

will discuss this issue in section 7.5.

7.2.2 Modeling of a Zero Delay

In designing hardware, timing relations among events are very important.

HDL's must have a framework of specification of timing relations. Thus

one of the most important issues in developing a behavioral model of

hardware is how to model time.

 Probably one of the simplest way of modeling time is to represent a

waveform by a sequence of symbols, each of which is associated with a

minimum unit of the discrete time. Then the behavior of a hardware

component is represented by a sequential machine over the set of the

symbols. Although this modeling realizes simple mathematical handling,

it lacks the ability to express the occurrence of multiple events at the same

place within a unit time. So it is very difficult to explain the behavior
of the circuits that contain loops consisting of zero delay components.

Here, zero delay means the delay less than the unit time. It is a product

of the quantitization of time. If the delay time of a component is less

than the minimum unit of the time, it is specified as 0. The zero delay

also comes up when we take a clock cycle as a unit time. In such a case,

delay of gates is treated as zero delay because it is not measured by the

unit time. The zero delay expresses before-after relationship or causality

whose delay time is 0 measured by the unit time,

 In order to deal with the zero delay, the time models of bcl (Conlan)

[Pi183] and VHDL [Coe89] are designed on the basis of a sub-unit time
named a step and a 0-delay, respectively. The signal value at a unit time

is the final result of the infinite repetition of the computation in a step or

a L -delay. Since these models are invented to compute the final result at

7.3 Modeling and Description of Behavior of a Hardware Module
165

J~CK
 B

 Fig. 7.2 Results dependent on the order of computation .

a unit time, no attention is paid to the order of the computation within

a unit time. Actually, a step or a 0-delay is associated with simulation

under the unit delay model. There are cases where the final result de-

pends on the order of the computation. For example, in Fig. 7.2, while

the circuit is impractical, there may be a hazard on D which changes the

signal value on Q. By using the models of bcl and VHDL, we will never

get this result. This is again because these languages are based on the
deterministic computation model.

7.3 Modeling and Description of Behavior of a Hard-

 ware Module

7.3.1 Modeling of Waveforms

In the NES model, we model waveforms on signal lines by a set of event

sequences. An event is a tuple of a place and a signal value. A place

is associated with a signal line. An intuitive meaning of event (p, v) is

that the value of place p becomes v. An event is considered to have no

duration. The order of the events in a sequence represents the before-

after relationship between events. Namely, the events are totally ordered

and there is no concept of simultaneous occurrence. Generally, causality

between events is modeled by a partial order between events. In our

model, as shown in Fig. 7.3, we represent a partial order by a set of all

the possible event sequences that are consistent with the partial order.

 Time is modeled by special events that indicate the progress of the

166 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

Fig.

ab d •4 {abed, acbd}

7.3 Representation of a partial order by a set of sequences.

A

Y

0 1 2 3 4

(a) Timing chart.

{(A,
(A,
 (A,

0)(Y,1)(@T
0)(Y,1)(@T
0)(Y,1)(@T

ns)(A
ns) (A
ns)(A

1) (@T
1) (@T
1) (@T

,ns)(Y,0)(@T,ns)(A,0)(@T,ns)
,ns)(@T,ns)(Y,0)(A,0)(@T,ns)
,ns)(@T,ns)(A,0)(Y,0)(@T,ns)•••}

 (b) Representation by a set of event sequences.

 Fig. 7.4 Modeling of waveforms.

time. This framework is essential to represent a causality relationship

independent of the time. It is also possible to express more than one

notion of time in the framework, such as nano-second and clock-cycle ,
simultaneously. Fig. 7.4 is an example of the representation of waveforms .

The waveforms in timing chart (a) is represented by a set of three event

sequences. (@t ,ns) is an event that expresses a progress of the time in

nano second. Uncertainty of the time of the falling edge on Y is expressed
by the three possible event sequences.

X ={ (CK,0)(D,1)(CK,1)(D,0)•••
(D,1)(CK,0)(CK,1)(D,0)•••}

Y ={ (CK,0)(D,1)(CK,1)
(D,1)(C K,0)(C K,1)

1 (D,0)•••
Q, (D,0) •}

Fig. 7.5 Behavior of a hardware module .

7.3 Modeling and Description of Behavior of a Hardware Module 167

event sequence

(q', Q)ESM(q, e)

 Fig. 7.6 Operation of the abstract machine.

7.3.2 Modeling of Behavior of a Module

The behavior of a hardware module can be regarded as a process which

computes, from a set of event sequences on its inputs, the set of event

sequences on its inputs and outputs (see Fig. 7.5). We model this process

on the basis of the behavior of an abstract machine. Intuitively, the

machine scans each of given event sequences with a pointer and inserts

output events into proper positions. The abstract machine M over a set

of event E is a triple M = (QM, IM, SM), where QM is a set of states,

IM C QM is a set of initial states, and SM : QM x E _+ 2QM xE* is a

partial function which defines the state transition of M. bM(q, e) is a set
of possible actions of M in state q and reading event e. An action is

specified by a pair of the next state and an output event sequence. The

machine chooses one of the actions (q', ci) in SM(q, e). An important point

is that this choice is nondeterministic; that is, all the possible cases are

considered. It inserts the output event sequence ci right after the pointer,

advances the pointer by one and changes its state to state q', as shown

in Fig. 7.6.

 The formal definition of the behavior of the abstract machine is as

follows. Let us define function "M : Q x E* --* 2E` for M = (QM, IM, bM).

(q, x) is a set of event sequences which is obtained from x by repeating
the possible actions starting from q.

11,1(q, E) = {e},

M(q, e • x) = {e • y I (q , oi) E M(q, e),

168 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

y E M(q a x)}.

 The formal semantics of the abstract machine M is defined a function

EM : 2E. --> 2E`. E-EM(X) is a set of event sequences obtained from set of
event sequences X given as an input stimulus to M.

EM(X)={y yE M(s,x),sEIM,xEX}.

7.3.3 Description of Behavior of Modules

We can consider many ways of describing the set of states, the set of

initial states and state transition function of the abstract machine. In

this paper, we use prolog for this purpose. In the following discussion,

event (p, v) is described as term p (v) . An event sequence and a set of

event sequences are described as a list of events and a list of lists of

events, respectively. For example, event sequence (a, 0)(y, 1) is described

as [a(0) ,y(1)], and set of event sequences {(a, 0)(y,1), (a, 0)(y, 0)} is
described as [[a(0) ;y(1)] , [a(0) ,y(0)]].

 In order to specify M = (QM, IM, EM), we describe IM and bM by

the predicates init and delta, respectively. Q is described implicitly.
Predicate init (M , q) declares q E IM, and delta(M , q , e , q' ,
s) declares (q', s) E bM(q, e).

 We show a description of the behavior of a D-flipflop (dff) as a simple

example. dff has three places; data input d, clock input ck, and output

q. Two state variables are used to describe the states of dff; the first

one represents the current value of d and the second one represents the

previous value of ck.

init(dff, [0,0]) .(1)

init(dff , [0,1]) .(2)

init(dff, [1,0]) .(3)

init(dff , [1,1]) .(4)

delta(dff, [M,P] ,d(D) , [D,P] , []) .(5)

7.3 Modeling and Description of Behavior of a Hardware Module 169

 delta(dff, [M, 0] , ck(1) , [M,1] , [q(M)]) .(6)
delta(dff , [M,1] , ck(0) , [M, 0] , []) .(7)

delta(dff, [M,P] , ck(P) , [M,P] , []) .(8)

delta(dff, [M,P] , E , [M,P] , []) : - E\=d(D) , E\=ck(C) . (9)

 (1) N (4) declare that there are four possible initial states, which
are the formal interpretation of the unknown initial state of dff. (5) is

interpreted as "when the current state of dff is [M,P] and there happens
an event d (D) , the next state is ED, P] and there are no output events".

Namely, the new value D on the data input d is taken into the first state

variable. (6) describes the behavior of dff at a rising edge of ck. The
current state [M, 0] (the previous value on ck is 0) and an input event

ck (1) mean a rising edge on ck. On this event, there will be an output

event q (M) . The event E in (9) is an event which occurs neither on d nor
ck. In response to the event, dff keeps the current state and outputs no

events.

 Now, we show how dff behaves. Suppose an event sequence

[d(1) , ck(0) , ck(1) , d(0)] is given to dff. The behavior of the abstract

machine of dff is as follows:

1) Chooses one of the initial states declared by an init predicate. Here,

 as an example, we will trace the case where [0,0] is chosen. The

 pointer is set to point the first event of the sequence.

2) Reads the first event d(1). According to the clause (5) above,
 changes the state to [1,0]. Advances the pointer by 1.

3) Reads the next event ck(0), changes the state to [1,0] according

 to the clause (8), and advances the pointer by 1.

4) Reads ck(1). According to the clause (6), changes the state to

[1,1] and inserts event q(1) after ck(1). As a result, the event

170 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

 sequence becomes [d(1) , ck(0) , ck(1) ,q(1) , d(0)] . The pointer is

 advanced by 1, and it points to q(1).

 5) Reads q(1). Stay at state [1, 1] and outputs no events according
 to the clause (9). Advances the pointer by 1.

 6) Reads d(0). Changes the state to [1,0] and halts.

Asa result, we get the final sequence [d(1) , ck (0) , ck (1) , q(1) ,d(0)] .
Although there are four possibilities for the initial state, all of them lead

to the same result. In this example, there are no nondeterministic choices
of actions because only one action is specified for each pair of the current

state and the input event.

7.3.4 Description of a Zero-Delay Unit

Another example, rather sophisticated but demonstrating the expressive-

ness of the NES model, is concerned with the description of a zero-delay

unit zd. zd transmits only the value on its input q to its output y be-

fore an occurrence of event t (ns) , which means that time progresses by

1 nano second. When there occur more than one event on the input,

events corresponding the input occur on the output in arbitrary timing

but the events preserve the order of the occurrence. This machine has in

mind a queue that keeps the order of the events, and outputs the events

from the queue before the event to advance time comes.

init (zd, []) .(1)

delta(zd, [] ,q(Q) , [Q] , []) .(2)

delta(zd, [] , q(Q) , [] , [y (Q)]) . (3)

delta(zd, [] , t (ns) , [] , []) . (4)

delta(zd, [] ,E,0, []):-

 E\=t(ns) ,E\=q(Q).(5)

delta(zd, [HIT],q(Q),HTQ, []):-

7.3 Modeling and Description of Behavior of a Hardware Module 171

 append([HIT] , [Q] ,HTQ) .(6)

delta(zd, [HIT] ,q(Q) ,TQ, [y(H)]) : -

 append(T,[Q],TQ).(7)

delta(zd, [HIT] ,E, [HIT], ^):-

 E\=t(ns) ,E\=q(Q).(8)

delta(zd, [HIT] ,E,T, [y(H)]) :-

 E \=t(ns),E\=q(Q).(9)

 In this case, the machine shows nondeterministic behavior. For ex-

ample, in (2) and (3), two possible actions are specified for current state

[] and an input event q(Q); to take the value Q into the queue (clause

(2)), or to output the value Q immediately (clause (3)). As a result of the
state transitions, more than one sequence can be computed for a given

sequence. For example, in response to a sequence

[t(ns),q(1),d(0),q(0),t(ns)]

the abstract machine computes a set consisting of three event sequences:

[t(ns),q(1),d(0),q(0),y(1),y(0),t(ns)]

[t(ns),q(1),d(0),y(1),q(0),y(0),t(ns)]

[t(ns),q(1),y(1),d(0),q(0),y(0),t(ns)]

 Addition of the next lines will make the zd a zero-delay unit with

arbitrary inertia.

delta(zd,[HIT],q(Q),[Q],C]). (10)

delta(zd,[HIT],q(Q),C] ,Cy (QM . (11)

7.3.5 Simulation of the Abstract Machine

The semantics of description of abstract machines can be also described

as a prolog program. It is possible, therefore, to simulate the abstract

machine described in prolog. The program is shown below. Predicate

172 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

xi (M, q, x, y) means that M computes event sequence y from event se-

quence x by repeating transitions starting from state q. This is a straight-

forward translation of the definition of y = "M(q, x).

xi(M,Q,[],^).

xi(M,Q, [EIX] , [EIY]) :-

 delta(M,Q,E,NQ,Z), append(Z,X,ZX), xi(M,NQ,ZX,Y).

 The above program works as a prototype simulator of the NES model.

For example, in response to the query

xi(zd,Q,[t(ns),q(1),d(0),q(0),t(ns)],Y) :- init(zd,Q).

there will be the following solutions:

Y = [t(ns),q(1),d(0),q(0),y(1),y(0),t(ns)];

Y = [t(ns),q(1),d(0),y(1),q(0),y(0),t(ns)];
Y = [t(ns) ,q(1) ,y(1),d(0) ,q(0) ,y(0),t(ns)]

7.4 Modeling and Descriptions of Connected Mod-

 ules

7.4.1 Modeling of Connected Modules

Let M1 and M2 be abstract machines. We model the parallel opera-
tion of M1 and M2 by the behavior of a new abstract machine that is

constructed from M1 and M2. We denote the new machine as WW2 .
. The places that have an identical name are to be connected . For ex-

ample, dff 11 zd corresponds to the circuit consisting of dff and zd
where the output q of dff and the input q of zd are connected with

each other. Let M1 = (QMI, IMI, bMl) and M2 = (QM2, IM2, 6M2). The
state of M1MM2 is defined as a composite of the states of M1 and M2.
When Ml iM2 is in a state (qi, q2) and reads event e, 6M, (qi, e) and

7.4 Modeling and Descriptions of Connected Modules 173

SM2(g2i e) are computed. The machine chooses (qi, al) E SMl (ql, e) and

(q' , a1) E SMl (ql, e). This choice is also nondeterministic. The next state
of the machine is (qi, q'2). An output event sequence to be inserted after

the pointer is chosen from a set shuffle(a1i 0-2), which is a set of event se-

quences obtained by shuffling al and a2. For example, shufe(abc, xy) =

{abcxy, abxcy, abxyc, axbcy, axbyc, axybc, xabcy, xabyc, xaybc, xyabe}.
 The formal definition of M1IIM2 is as follows.

1VI1~~NIz= (QM1 X QM2, IMi X IM2, SM1IIM2),

where

SM,IIM2((g1, g2), e) =

{((q , q2), a)

(q , a1) E SM1(g1, e),

(q2, 0-2) E bM2(g2, e),
 a E shuffle(al, a2)},

and

shuffle(x, y) =

{xi •yl•x2.y2...xk•ykI xi, yiEE,
x = xi • X2 ... Xis, y = y1 ' y2 ... Yk}.

 When feedback loops are constructed by connecting modules, a new

abstract machine that represents the behavior of the connected modules

must read events which it outputs. That is the reason why the abstract

machine inserts an output event sequence right after the pointer. There

is a possibility of infinite looping of computation. This is the semantics of

the description because the described circuit in this case oscillates within

a unit time.

174 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

7.4.2 Description of Connected Modules

Let us describe the set of initial states and the state transition function

of the machine Mill M211 • • 1 l Mn as

init ([M1,M2,...,Mn], q).

delta([M1,M2,...,Mn], q,e,nq,^).

 These predicates are automatically derived from the description for

M1, M2, • • , Mn by the following programs. These programs are also

straightforward interpretations of the definition in the previous subsec-

tion.

init([],[]).;

init([MIMS],[QI QS]) :- init(M,Q), init(MS,QS).

delta([], [],E, [], []).

delta([M I MS] , [Q I QS] ,E, [NQ I NQS] , SHUFFLE) :-

 delta(M, Q, E, NQ, Z),

 delta(MS,QS,E, NQS,ZS),

 shuffle(Z, ZS, SHUFFLE).

shuffle([] ,Y,Y) .

shuffle(X, [] ,X) .

shuffle([HIT],Y, [HIZ]) :- Y _ [], shuffle(T ,Y,Z).
shuffle(X, [HIT] , [HIZ]) :- X \= [] , shuffle (X,T ,Z) -

 The following query enables the simulation of the connection of the

dff and the zd.

xi([dff,zd],Q, [d(1),ck(0),ck(1),d(0)] ,Y) init([dff,zd],Q).

 In this case, the description of zd in the previous subsection is not

enough. The complete version is as follows.

7.5 Applications of the NES Model
175

 init (zd, [[] , 0]) .

delta(zd, [[],N],q(Q), [[Q],N], []).

delta(zd,[[I,O],q(Q), [[],1], [y(Q)]).

delta(zd,[[],N],t(ns),[[],N], []).

delta(zd, [[],N],y(Y), [[],NN], []):

 NN is N-1.

delta(zd, [[],N],E, [[],N], []):-

 E\=t(ns) ,E\=q(Q) ,E\=y(Y) .

delta(zd, [[HIT] ,N] ,q(Q) , [HTQ,N] , []) : -

 append ([H 1 T] , [Q] ,HTQ)

delta(zd, [[HIT] ,0] ,q(Q) , [TQ,1] , Cy (H))

 append(T, [Q] ,TQ) .

delta(zd, [CHIT] , 0] ,q(Q) , C^,1], Cy(Q)l)

delta(zd, [[HIT] ,N] ,E, [[HIT] ,N] , []):-

 E\=t(ns) ,E\=q(Q) ,E\=y(Y).

delta(zd, [CHI , 0] ,E, [T,1] , [y (H)]) :-

 E\=t (ns) ,E\=q(Q),E\=y(Y).

delta(zd, [[HIT], 1],y(Y), [T, 1], Cy(H)])

7.5 Applications of the NES Model

7.5.1 Definition of Semantics of UDL/I

In the standardization project of a hardware design language UDL/I, we

attempted to define semantics of the language based on the NES model

[Kar89, Yas89]. This is done by means of defining rules of translating a
description in UDL/I into a description of an abstract machine of the NES

model. Since UDL/I has rich syntax and is based on sophisticated default
interpretation, it is not a prospective method to reduce a description in

UDL/I directly into a description of the abstract machine. We therefore
took the following three steps.

176 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

1) Reduce a description in UDL/I into a description in a very small

 subset of UDL/I, named core subset.

2) Resolve conflict of multiple outputs in the description obtained in

 1) by inserting conflict resolution logic.

3) Define an abstract machine for a conflict free description in the core
 subset.

 In this method, the core subset works as an interface to the behavioral

model. This small interface is also useful in comparing the expressive

power of UDL/I with that of other HDL's or in discussing the correctness
of the interlanguage translation.

 The nondeterministic interpretation takes place, for example, in the

following cases.

 1) Variety of a delay value: When a delay value is specified only by its

 minimum and maximum values, the value of the delay is decided by

 a nondeterministic choice at every event occurrence.

 2) Order of event evaluation whose before-after relationship is unknown:

 All the possible orders are taken into account unless there are no

 before-after relationships, as discussed in 7 .2.2.

 3) Unspecified signal values: A logic value is decided by a nondetermin -
 istic choice from all the possible logic values when the signal value

 is unknown for the lack of specification or a don't care specification .

 4) Unknown value caused by signal conflict: When different signal val-
 ues are assigned from different sources at the same time

, we have
 to resolve the conflict according to the resolution rules . Nondeter-

 ministic choice of conflicting signal values is prepared as one of for

 conflict resolution rules.

7.5 Applications of the NES Model 177

Although the semantics of the final version of UDL/I ver1.0 is determined
based on the deterministic semantics, the discussion on the nondetermin-

istic semantics have enabled us to identify the statements to which we

must pay attention in defining semantics.

7.5.2 Nondeterministic Semantics and CAD Tools

The most important feature of the NES model is that we can explain

the behavior of designs including uncertain factors without ambiguity as

mentioned in 2.1. This feature is desirable for creating strict discussions

on formal verification and synthesis. In the NES model, the behavior of

an abstract machine for a given stimulus is dealt with as a set of possible

behaviors. We can define the specification-implementation relationship

between two descriptions of designs in terms of the inclusion relationship

between the behaviors of abstract machines for the descriptions. For

example, suppose S is a register transfer level description of a circuit

which computes function f with delay between lOns and 20ns, and I is

a gate level description of a circuit which also computes f with delay

between 14ns and 15ns. Then the behavior of I is included by S and we

can say I is an implementation of S. This relationship is mathematically

described as follows:

VX EE*: Em, (X)C:Ms(X),

where MI and Ms are abstract machines for I and S, respectively. For-

mal design verification is defined as to prove this relation. Synthesis is

also defined as to generate an implementation I for S which satisfies the

relation. In this way, we can define what is the implementation of a speci-

fication without ambiguity, which will be a guideline for the development

of verifiers and synthesizers.

 On the other hand, nondeterministic semantics may be undesirable

for simulator designers. It is very difficult, or almost impossible, to im-

178 7. NES: A Nondeterministic Behavior Model for Hardware Description Languages

plement an efficient simulator which guarantees, for all kinds of circuits,

results consistent with the nondeterministic semantics. However, deter-

ministic simulators which approximate the nondeterministic semantics

can be valid under certain design constraints. An usual zero-delay simu-

lator, which runs quite fast, can compute exactly the same results as the

nondeterministic semantics if the circuit under test follows the strict syn-

chronous design methodology, while the simulation result is far from the

ideal semantics if the circuit is an asynchronous circuit. We consider that

simulation is an approximation of the ideal semantics and many simula-

tors of various accuracy and efficiency levels should be chosen according

to design styles.

 When we attempt to define deterministic semantics of an HDL of the

gate level, we must fix very details of the simulation mechanism for the

items 1) N 3) in the previous subsection. Simulation efficiency is closely

related to 2). Accuracy largely depends on 1) and 3). There have been
and will be numerous efforts to develop simulation techniques to enhance

the efficiency and accuracy of simulation. Especially, symbolic simu-

lation techniques [Car89, Ish90d] will enable accurate and yet efficient

simulation. It is not an appropriate approach to define the deterministic

semantics that fixes the accuracy and may stop improvements on simu-

lation techniques. We should rather consider to provide ideal semantics

that has a good affinity for formal verification and synthesis and can be

a final goal for simulation techniques.

7.6 Remarks and Considerations

We have shown basic concepts, formal definition and a description method

of the NES model. We have also described the role of the nondetermin -

istic semantics in the applications of HDL's
, especially in logic synthesis,

formal verification and advanced logic simulation . We believe that the

7.6 Remarks and Considerations 179

nondeterministic semantics will be an essential feature for HDL's of the

next generation.

 One weakness of the NES model is that its mathematical handling

is difficult despite that it is formal and mathematically defined. It is

therefore difficult to develop tools based on formal methods that directly

employ the NES model. This difficulty is due to the ability of the NES

model to handle infinite behavior within a unit time. In order to find a

new possibility of extending the formal application of HDL's, we are also

working on a behavioral model whose mathematical handling is easier

and more efficient [Kou90] .

180 7. N ES: A Nondeterministic Behavior Model for Hardware Description Languages

Chapter 8

Conclusions

In this thesis, acceleration of logic simulation speed, accuracy of tim-

ing verification, and a hardware model for formal semantics of hardware

description languages are discussed.

 As a new approach to accelerating execution speed of logic simulation

and fault simulation, efficient use of vector supercomputers were proposed.

 In chapter 3, three types of simulation algorithms were proposed which

are dedicated for 1) zero-delay simulation of combinational circuits, 2)

zero-delay simulation of synchronous sequential circuits, and 3) simula-
tion with delay consideration. As well as the algorithms for simulation,

the algorithms for preprocessing are also very important for efficient sim-

ulation. In order to reduce the storage requirements or to extend the

vector length, we proposed some heuristic algorithms based on the data

flow sorting. The simulators implemented based on the simulation tech-

niques were shown to have high performance especially in large scale

simulation. The performance of our simulators is comparable to that of

hardware simulation engines.

 In chapter 4, a dynamic 2-dimensional parallel fault simulation tech-

nique was proposed as a vector supercomputer oriented fault simulation

algorithm which is dedicated for the zero-delay two-valued fault simula-

tion of gate-level combinational circuits with single stuck-at faults. Large

vector length is obtained by processing many faults for many patterns at

 181

182 8. Conclusions

a time and fault dropping is efficiently performed by dynamic adjustment

of the two parallelism factors. Computation cost was further reduced by

combining the algorithm with selective tracing. Experimental results

told us that the fault simulator implemented on the FACOM VP-200 su-

percomputer achieved acceleration ratio of 15 through vectorization and

that the simulator is effective for test generation using random patterns,

coverage estimation of a large set of random patterns or a built-in self

test design.

 Vector processors seem to have great potential for not only numerical

computation but also for combinational problems in the area of CAD for

digital systems. There will be a lot of earnest researches to develop vector

processor oriented algorithms for variety of combinational problems. In
converse, it is also considered to be important to improve architecture of

vector processors suitable to process combinational problems.

 In Chapter 5 accuracy of logic simulation was discussed from theoreti-

cal point of view, focusing on a hazard detection problem of combinational

circuits with uncertain delay units. It was shown that the problem of de-

tecting hazards under uncertain delay assumption is NP-hard both in the

discrete time model and the continuous time model and that it is hence

difficult to solve the problem by a simple extension of the min/max delay

simulation technique. It was also shown that there is an essential differ-

ence between the discrete time model and the continuous time model

and a lower bound of the width between ticks were shown that make the

discrete time model equivalent to the continuous time model .

 In chapter 6, a new simulation technique named time-symbolic simula-

tion and two efficient algorithms for it were presented . The time-symbolic

simulation enables us to get conditions where the circuit under test be-

haves as expected, as well as accurate simulation result event under ex-

istence of uncertainty delay. The two algorithms , which are based on
the linear programming and Boolean function manipulation respectively ,

183

were shown to be able to verify small scale circuits up to 100 gates within

feasible computation time. With the ability to derive delay conditions for

correct behavior and the ability to identify critical paths, time-symbolic

simulation is considered to be effective for design error correction and

design improvements.

 In chapter 7, an NES model was proposed as a model of hardware

that can express uncertain behavior of hardware by means of nondeter-

minism. Discussions were created on the role of the nondeterministic

semantics in various new applications of HDL's such as logic synthesis,

formal verification and sophisticated logic simulation.

 As alternatives to logic simulators on general purpose computers, spe-

cial purpose hardware for logic simulation (logic simulation engines) have

been developed, which achieves very high performance by parallel com-

putation scheme. However, there are trade-offs between simulation speed

and flexibility, or affinity for existing CAD systems on general purpose

computers. The new approach of developing logic simulators and fault

simulators on general purpose vector supercomputer is expected to be

the one that fills the gap between the two approaches.

 A part of the growth of the computation time and required storage

for logic simulation due to circuit size itself will be compensated by the

growth of the performance of computers on which logic simulators run.

However, the growth of circuit size and circuit complexity cause incidental

increase in test pattern size which leads to additional increase in the

computation cost. This is the very part of the growth of simulation cost

that we must try to reduce with continual efforts to improve simulation

efficiency. It is considered to be difficult to encounter this problem only

by enhancing the performance of the simulator. Improvements in the

way of simulation or the design for easier verification must be taken into

account.

 The symbolic approach discussed in chapter 6 may be a good sugges-

184 8. Conclusions

tion on how to carry out verification efficiently. Although the symbolic

simulation is much slower than the simulation for a specific pattern, it is

incredibly faster than simulating the same number of the cases separately.

Symbolic simulators based on BDD's can verify the logical equivalence

of combinational circuits faster than the logic simulator on a vector pro-

cessor in many cases [Fuj88, Min90]. These are the examples where we

can reduce computation cost for verification by efficiently investigating

multiple cases at a time. Formal verification [Hir89] is considered to be

an ultimate way of examining all the possible cases efficiently. However,

there seems to be still a large distance from logic simulation to formal

verification in spite of earnest researches on this area, because complete

verification without a guide of design knowledge is still too expensive

in large scale design. In near future, verification using symbolic simu-

lation is considered to play an important role as a semi-automatic and

semi-exhaustive verification method.

 Another way of reducing the complexity of design verification problem

is utilizing the information of design hierarchy. The existence of a certain

design hierarchy implies design constraints on the lower level implemen-

tation. The computation cost for verification can be drastically reduced

by exploiting the information. Also the combination of verification in

higher-level and logic synthesis will be a promising approach . In either

case, how to describe hardware in various design levels become an im-

portant issue. As is discussed in chapter 7, nondeterministic semantics

is an important concept in order to express the relations between two

circuits of different design levels. This will be a good base for logic syn-

thesis and formal verification. In order to perform formal verification ,
however, mathematical handling of the basic model must be easy . This

was not achieved in the NES model, but is very important in introducing

formal ways into the various applications of HDL's . The author believes

that the nondeterministic semantics and a formal model which allows

185

mathematical handling

generation.

are indispensable factors of HDL's of the next

References

 [Ant87] K. J. Antreich and M. H. Schulz: "Accelerated Fault Simula-
 tion and Fault Grading in Combinational Circuits", IEEE Trans.

 on Computer-Aided Design of Integrated Circuits and Systems,

 vol. CAD-6, no. 5, pp. 704-712 (Sep. 1987).

[Abr83] M. Abramovici, P. R. Menon and D. T. Miller: "Criti-
 cal Path Tracing An Alternative to Fault Fault Simulation",

 Proc. ACM/IEEE 20th Design Automation Conference, pp. 214-220

 (Jun. 1983).

[Arm72] D. B. Armstrong: "A Deductive Method for Simulating Faults
 in Logic Circuits", IEEE Trans. on Computers, vol. c-21, no. 5,

 pp. 464-471 (May 1972).

[Bar87] Z. Barzilai, J. L. Carter, B. K. Rosen and J. D. Rutledge: "HSS
 A High-Speed Simulator", IEEE Trans. Computer-Aided Design

 of Integrated. Circuits and Systems, vol. 6, no. 4, (Jul. 1987).

[Bjo78] D. Bjorner and C. B. Jones: The Vienna Development Method:
 The Meta Language, Lecture Notes in Computer Science, vol. 61,

 Springer-Verlag (1978).

[B1a84] T. Blank: "A Survey of Hardware Accelerators Used in
 Computer-Aided Design", IEEE Design 4 Test of Computers,

 pp. 21-39 (Aug. 1984).
 187

188 References

[Bre76] M. A. Breuer and A. D. Friedman:
 of Digital Systems, Computer Science

Diagnosis ei Reliable Design

Press (1976).

[Brg85] F. Brglez: "A Fast Fault Grader: Analysis and Applications",
 Proc. International Test Conference 1985, pp. 785-794 (Aug. 1985).

[Brg85f] F. Brglez and H. Fujiwara: "A Neutral Netlist of 10 Combina-
 tional Benchmark Circuits and a Target Translator in FORTRAN",

 International Symposium of Circuits and Systems (ISCAS '85), Spe-

 cial Session on ATPG and Fault Simulation (Jun. 1985).

[Bry86] R. Bryant: "Graph-Based Algorithms for Boolean Function Ma-
 nipulation", IEEE Trans. Computers, vol. C-35, no. 8, pp. 677-691

 (Aug. 1986).

[Bry90] R. E. Bryant: "On the Complexity of VLSI Implementations
 and Graph Representations of Boolean Functions with Application

 to Integer Multiplication", private communication (1990), (to appear
 in IEEE Transactions on Computers).

[Car79] W. C. Carter, W. H. Joyner, Jr. and D. Brand: "Symbolic Sim-
 ulator for Correct Machine Design", Proc. ACM/IEEE 16th Design

 Automation Conference, pp. 280-286 (Jun. 1979).

[Car89] J. L. Carter, B. K. Rosen, G. L. Smith and V. Pichumani:
 "Restricted Symbolic Evaluation is Fast and Useful"

, Proc. IEEE

 International Conference on Computer-Aided Design (ICCAD-89),

 pp. 38-41 (Nov. 1989).

[Cer89] E. Cerny, P. Rioux and C. Berthet: "Comparison of Specification
 and Implementation for Asynchronous Circuits with Arbitrary De-

 lays", Proc. IFIP International Workshop on Applied Formal Meth-

 ods for Correct VLSI Design, pp. 704-720 (Nov. 1989).

References 189

 [Cha86] T. Chan and E. Law: "MegaFAULT: A Mixed-Mode Hardware
 Accelerated Concurrent Fault Simulator", Proc. IEEE International

 Conference on Computer-Aided Design (ICCAD-86), pp. 394-397

 (Nov. 1986).

[Coe89] D. R. Coelho: The VHDL Handbook, Kluwer Academic Publish-
 ers (1989).

[Cor81] W. E. Cory: "Symbolic Simulation for Functional Verification
 with ADLIB and SDL", Proc. ACM/IEEE 18th Design Automation

 Conference, pp. 82-89 (Jun. 1981).

[Deg90] Y. Deguchi, N. Ishiura and S. Yajima: "Coded Time-Symbolic
 Simulation: Simulation of Logic Circuits with Nondeterministic De-

 lays", Proc. Synthesis and Simulation Meeting and International In-

 terchange, pp. 149-156 (Oct. 1990) .

[Den83] M. Denneau, E. Kronstadt and G. Pfister: "Design and Imple-
 mentation of a Software Simulation Engine", CAD, vol. 15, no. 3,

 pp. 123-130 (Mar. 1983).

[Fuj85] H. Fujiwara: Logic Testing and Design for Testability, MIT Press
 Series in Computer Systems, The MIT Press, Cambridge, Mas-

 sachusetts, London, England (1985).

[Fuj88] M. Fujita, H. Fujisawa and N. Kawato: "Evaluations and Im-
 provements of a Boolean Comparison Method Based on Binary Deci-

 sion Diagrams", Proc. IEEE International Conference on Computer-
 Aided Design (ICCAD-88), pp. 2-5 (Nov. 1988).

[Gar79] M. R. Garey and D. S. Johnson: Computers and Intractability
 - A Guide to the Theory of NP-Completeness, W. H. Freeman and

 Company (1979).

190 References

[Har86] R. W. Hartenstein, R. Hauck, K. Lemmert and A. Wodtko:
 KARL-III Manual, report AG Hartenstein, Kaiserslautern Univer-

 sity (1986).

[Har87] D. Harel: "Is There Hope for Linear Time Fault Simulation?",
 Proc. IEEE 17th International Symposium on Fault Tolerant Com-

 puting (FTCS-17), pp. 28-33 (Jun. 1987).

[Hir87] F. Hirose, M. Ishii, J. Niitsuma, T. Shindo, N. Kawato, H. Hama-
 mura, K. Uchida and H. Yamada: "Simulation Processor "SP" ",

 Proc. IEEE International Conference on Computer-Aided Design

 (ICCAD-87), pp. 484-487 (Nov. 1987).

[Hir88] F. Hirose, K. Takayama and N. Kawato: "A Method to Gener-
 ate Tests for Combinational Logic Circuits using an Ultrahigh-speed

 Logic Simulator", Proc. IEEE International Test Conference 1988,

 pp. 102-107 (Sep. 1988) .

[Hir89] H. Hiraishi: "Design Verification of Sequential Machines Based
 on e-Free Regular Temporal Logic", Proc. IFIP 9th International

 Symposium on Computer Hardware Description Languages and their

 Applications (CHDL 89), pp. 249-264 (Jun. 1989).

[Ish84] N. Ishiura, H. Yasuura and S. Yajima: "Time First Evaluation
 Algorithm for High-Speed Logic Simulation", Proc. IEEE Interna-

 tional Conference on Computer-Aided Design (ICCAD-84), pp. 197-
 199 (Nov. 1984).

[Ish85yy] N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Sim-
 ulation by Time First Evaluation Algorithm" (in Japanese), Trans.

 IPS Japan, vol. 26, no. 3, pp. 459-468 (May 1985).

 Refere nces 191

[Ish85ykv] N. Ishiura, H. Yasuura, T. Kawata and S. Yajima: "High-
 Speed Logic Simulation Using a Vector Processor", Proc. IFIP In-

 ternational Workshop on VLSI (VLSI 85), pp. 67-76 (Aug. 1985).

[Ish85yki] N. Ishiura, H. Yasuura, T. Kawata and S. Yajima: "High-
 Speed Logic Simulation on a Vector Processor", Proc. IEEE Interna-

 tional Conference on Computer-Aided Design (ICCAD-85), pp. 119-

 121 (Nov. 1985).

[Ish86] N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Sim-
 ulation Using a Vector Processor" (in Japanese), Trans. IPS Japan,

 vol. 27; no. 5, pp. 510-517 (May 1986).

[Ish87] N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Sim-
 ulation Using a Vector Processor", IEEE Trans. on Computer-

 Aided Design of Integrated Circuits and Systems, vol. CAD-6, no. 3,

 pp. 305-321 (May 1987).

[Ish88] N. Ishiura and H. Yasuura: "On a Relation between Time-
 Models and Computation Time of Hazard Detection Problems" (in

 Japanese), Report of Technical Group on Foundation of Computa-

 tion, IEICE, COMP88-21 (Jun. 1988).

[Ish89] N. Ishiura, M. Takahashi and S. Yajima: "Time-Symbolic Sim-
 ulation for Accurate Timing Verification of Asynchronous Behavior

 of Logic Circuits", Proc. ACM/IEEE 26th Design Automation Con-

 ference, pp. 497-502 (Jun. 1989) .

[Ish90y] N. Ishiura, H. Yasuura and S. Yajima: "NES: The Behavioral
 Model for the Formal Semantics of a Hardware Design Language

 UDL/I", Proc. ACM/IEEE 27th Design Automation Conference,

 pp. 8-13, (Jun. 1990).

192 References

 [Ish90d] N. Ishiura, Y. Deguchi and S. Yajima: "Coded Time-
 Symbolic Simulation Using Shared Binary Decision Diagram",

 Proc. ACM/IEEE 27th Design Automation Conference, pp. 130-135

 (Jun. 1990).

[Ish90i] N. Ishiura, M. Ito, and S. Yajima: "Dynamic Two-Dimensional
 Parallel Simulation Technique for High-Speed Fault Simulation on

 a Vector Processor", IEEE Trans. Computer-Aided Design of In-

 tegrated Circuits and Systems, vol. CAD-9, no. 8, pp. 868-875

 (Aug. 1990).

[Ish90tm] N. Ishiura, M. Takahashi and S. Yajima: "Time-Symbolic
 Simulation for Accurate Timing Verification of Logic Circuits" (in

 Japanese), Trans. IPS Japan, vol. 31, no. 12 (Dec. 1990, to appear).

[Ish90y] N. Ishiura and S. Yajima: "A Class of Logic Functions Express-
 ible by Polynomial-Size Binary Decision Diagrams", Proc. Synthesis

 and Simulation Meeting and International Interchange, pp. 48-54

 (Oct. 1990).

[Jai84] S. K. Jain and V. D. Agrawal: "STAFAN: An Alternative to Fault
 Simulation", Proc. ACM/IEEE 21st Design Automation Conference,

 pp. 18-23 (Jun. 1984).

[Kar89] O. Karatsu:
 in Japan", Proc.

 pp. 50-55 (Jun.

 "VLSI Design Language Standardization Effort

ACM/IEEE 26th Design Automation Conference,

1989).

[Kim88] S. Kimura, H. Haneda and S. Yajima: "Verification of Asyn-
 chronous Sequential Circuits Based on Regular Expression Logic

 Simulation Method" (in Japanese), Trans. IEICE, vol. J71-D, no. 9,

 pp. 1-10 (Sep. 1988).

References 193

 [Koe86] S. Koeppe: "Modeling and simulation of delay faults in CMOS
 logic circuits", Proc. IEEE International Test Conference 1986,

 pp. 530-536, (Sep. 1986) .

[Kou90] Y. Koumura: "Formal Semantics of Hardware Description Lan-
 guages Based on Nondeterministic Sequential Machines", Master

 thesis, Department of Information Science, Faculty of Engineering,

 Kyoto University, Japan (Feb. 1990).

[Kro81] H. E. Krohn. "Vector coding techniques for high speed digital
 simulation". Proc. ACM/IEEE 18th Design Automation Conference,

 pp. 525-528 (Jun. 1981) .

[Lub85] O. Lubeck, J. Moore and R. Mendez: "A Benchmark Compari-
 son of Three Supercomputers: Fujitsu VP-200, Hitachi S-810/20 and

 Cray X-MP/2", Computer, vol. 18, no. 12, pp. 10-24 (Dec. 1985).

[Min90] S. Minato, N. Ishiura and S. Yajima: "Shared Binary Decision
 Diagram with Attributed Edges for Efficient Boolean Function Ma-

 nipulation", Proc. ACM/IEEE 27th Design Automation Conference,

 pp. 52-57 (Jun. 1990).

[Min91] S. Minato, N. Ishiura and S. Yajima: "Share Binary Decision Di-
 agrams for Efficient Boolean Function Manipulation" (in Japanese),

 Trans. IPS Japan, vol. 32, no. 1 (Jan. 1991, to appear).

[Mot86] A. Motohara, K. Nishimura, H. Fujiwara and I. Shirakawa: "A
 Parallel Scheme for Test-Pattern Generation", Proc. IEEE Interna-

 tional Conference on Computer-Aided Design (ICCAD-86), pp. 156-

 159 (Nov. 1986).

[Mur72] S. Muroga and T. Ibaraki: "Design of Optimal Switching Net-
 works by Integer Programming", IEEE Trans. Computers, vol. C-21,

 no. 6 (1972).

194 References

 [Nag86] S. Nagashima, T. Nakagawa, K. Omota, S. Miyamoto: "Hard-
 ware Implementation of VELVET on the Hitachi S-810 Supercom-

 puter", Proc. IEEE International Conference on Computer-Aided
 Design (ICCAD-86), pp. 390-393 (Nov. 1986).

[Nak86] T. Nakata and N. Koike: "Functional Simulation Engine of
 MAN-YO: a Special Purpose Parallel Machine for Logic Design Au-

 tomation", Proc. IEEE 13th Annual International Symposium on

 Computer Architecture, pp. 191-197 (Jun. 1986).

[Nak87] H. Nakamura, M. Fujita, S. Kono and H. Tanaka: "Tempo-
 ral Logic Based Fast Verification System Using Cover Expressions" ,

 Proc. IFIP International Workshop on Very Large Scale Integration

 (VLSI 87) (Aug. 1987).

[Nis85] T. Nishida, S. Miyamoto, T. Kozawa and K. Sato: "RFSIM:
 Reduced Fault Simulator", Proc. IEEE International Conference on

 Computer-Aided Design (ICCAD-85), pp. 13-15 (Nov. 1985).

[Ohm90] M. Ohmura: "Extraction of Logic and Arithmetic Functions
 from Combinational Circuits", Master thesis, Department of Elec-

 tronics, Faculty of Engineering, Kyoto University (Feb. 1990).

[Pi183] R. Piloty, M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill and
P.'Skelly, CONLAN Report, Lecture Notes in Computer Science

,
 vol. 151, Springer-Verlag (1983).

[Sak82] T. Sakai, Y. Tsuchida, H. Yasuura, Y. Ooi, Y. Ono, H. Kano,
 S. Kimura and S. Yajima : "An Interactive Simulation System for

 Structured Logic Design — ISS" , Proc. ACM/IEEE 19th Design Au-
 tomation Conference, pp. 747-755 (Jun . 1982).

References 195

 [Sas83] T. Sasaki, N. Koike, K. Ohmori and K. Tomita: "HAL: A Block
 Level Hardware Logic Simulator", Proc. ACM/IEEE 20th Design

 Automation Conference, pp. 150-156 (Jun. 1983).

[Seg83] M. T. M. Segers: "Testability in a VLSI Environment", VLSI ar-
 chitecture, pp. 175-195, Prentice Hall International Inc., NJ. U. S. A

 (1983).

[Smi86] R. J. Smith: "Fundamentals of Parallel Logic Simulation",
 Proc. ACM/IEEE 23rd Design Automation Conference, pp. 2-12

 (Jun. 1986).

[Sta85] J. Staples and V. L. Nguyen: "A fixed point semantics for nonde-
 terministic data flow", Journal of ACM, vol. 23, no. 4, pp. 733-742

 (Oct. 1976).

[Tes87] S. Teshima, H. Hiraishi and S. Yajima: "Algebraic Specification
 of Parallel Systems Based on Binary Relations between Events",

 Trans. IEICE, vol. J70-D, no. 1, pp. 19-29 (Jan. 1987).

[U1r69] E. Ulrich: "Exclusive Simulation of Activity in Digital Net-
 works", Communications ACM, vol. 13, pp. 102-110 (Feb. 1969).

[Ulr80a] E. Ulrich et. al: "High-Speed Concurrent Fault Simulation with
 Vectors and Scalars", Proc. ACM/IEEE 17th Design Automation

 Conference, pp. 374-380 (Jun. 1980) .

[Ulr80b] E. Ulrich: "Table Look-Up Techniques for Fast and Flexible
 Digital Logic Simulation", Proc. ACM/IEEE 17th Design Automa-

 tion Conference, pp. 560-563 (Jun. 1980).

[U1r83] E. Ulrich: "A Design Verification Methodology Based on Con-
 current Simulation and Clock Suppression", Proc. ACM/IEEE 20th
 Design Automation Conference, pp. 709-712 (Jun. 1983).

196 References

 [Yas89] H. Yasuura and N. Ishiura: "Semantics of a Hardware Design
 Language for Japanese Standardization", Proc. ACM/IEEE 26th

 Design Automation Conference, pp. 836-839 (Jun. 1989).

[Yas90] H. Yasuura and N. Ishiura: "Formal Semantics of UDL/I and Its
 Applications to CAD/DA tools", Proc. IEEE International Confer-

 ence on Computer Design (ICCD '90), pp. 90-94 (Sep. 1990).

[Yon89] T. Yoneda, K. Nakade and Y. Tohma: "A Fast Timing Verifica-
 tion Method Based on the Independence of Units", Proc. IEEE 19th

 International Symposium on Fault Tolerant Computing (FTCS-19),

 pp. 134-141 (Jun. 1989).

[Wai85] J. A. Waicukauski, E. B. Eichelberger, D. 0. Forlenza, E. Lind-
 bloom and T. McCarthy. "Fault Simulation for Structured VLSI",

 VLSI Systems Design, pp. 20-32 (Dec. 1985).

[Wai89] J. A. Waicukauski, E. Lindbloom, E. B. Eichelberger and D. 0.
 Forlenza "A Method for Generating Weighted Random Test Pat-

 terns", IBM Journal of Research and Development, vol. 33, no. 2,

 pp. 149-161 (Mar. 1989) .

Acknowledgment

I would like to express my sincere appreciation to Professor Shuzo Yajima

of Kyoto University for his continuous guidance, interesting suggestions,

accurate criticisms and encouragements during this research.

 I would also like to express my thanks to Associate Professor Hiroto

Yasuura of Kyoto University who introduced me to the research field of

computer-aided design and has been giving me invaluable suggestions,

accurate criticisms and encouragements throughout this research.

 I also acknowledge interesting comments that I have received from

Associate Prof. Hiromi Hiraishi, Dr. Naofumi Takagi of Kyoto University.

 I would like to thank Mr. Tetsuro Kawata, who was with Kyoto Univer-

sity, for his help in carrying out the experiments on the logic simulation

in chapter 3.

 I would also like to thank Mr. M. Kawai of the NEC Corporation

for his valuable comments on parallel fault simulation, Mr. Masaki Ito,

Mr. Masaki Kume, Mr. Tatsuya Ohnishi and Mr. Hideo Nakata for their

help in carrying out the experiments on the fault simulation in chapter

4.

 I would like to thank Dr. Hitoshi Nagamochi, who was with Kyoto

University, for his valuable comments on the resolution of the linear pro-

gramming and Mr. Yasuo Okabe for his comments on the computational
complexity theory, with respect to the results in chapter 5.

 I would like to thank Mr. Mizuki Takahashi and Mr. Yutaka Deguchi

for their help in carrying out experiments on time-symbolic simulation

 197

198 Acknowledgment

and coded time-symbolic simulation, respectively, in chapter 6. I would

like to thank Mr. Shin-ichi Minato who offered me the SBDD manipula-

tion program which is indispensable in the implementation of the coded

time-symbolic simulator. I would also like to thank Mr. Hiroaki Kanehara

for his discussions on timing simulation.

 I would like to thank all the members of the LSI Design Language

standardization committee of JEIDA (Japan Electronic Industry Devel-

opment Association) and Mr. Yasuhito Koumura for their intensive dis-
cussion on the NES model and semantics of hardware description lan-

guages.
 I would like to thank Mr. Noriyuki Takahashi who helped me printing

this thesis. Thanks are also due to all the members of the Professor

Yajima's Laboratory for their discussions and supports throughout this

research.

List of Publications by the Author

 Major P ulicat ions

1. H. Yasuura, H. Kano, Y. Ooi, S. Kimura, N. Ishiura and S . Yajima:
 "ISS: An Interactive Simulation with Input Constraints Monitoring

Facility" (in Japanese), Trans.

(Mar. 1984).

IPSJ, vol. 25, no. 2, pp. 285-292

2. N. Ishiura, H. Yasuura and S. Yajima: "Time First Evaluation Algo-

 rithm for High-Speed Logic Simulation", Proc. IEEE International

 Conference on Computer-Aided Design (ICCAD-84), pp. 197-199

 (Nov. 1984) .

3. N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Simu-

 lation by Time First Evaluation Algorithm" (in Japanese), Trans.

 IPSJ, vol. 26, no. 3, pp. 459-468 (May 1985).

4. N. Ishiura, H. Yasuura, T. Kawata and S. Yajima: "High-Speed

 Logic Simulation Using a Vecter Processer", Proc. IFIP Interna-

 tional Conference on Very Large Scale Integration (VLSI85), pp. 73-

 82 (Aug. 1985).

5. N. Ishiura, H. Yasuura, T. Kawata and S. Yajima: "High-Speed

 Logic Simulation on a Vector Processor", Proc. IEEE Internaltional

 Conference on Computer-Aided Design (ICCAD-85), pp. 119-121

 (Nov. 1985).
 199

200 List of Publications by the Author

6. N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Simula-

 tion Using a Vector Processor" (in Japanese), Trans. IPSJ, vol. 27,
 no. 5, pp. 510-517 (May 1986).

7. N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Simula-
 tion on Vector Processors", IEEE Trans. Computer-Aided Design

 of Integrated Circuits and Systems, vol. CAD-6, no. 3, pp. 305-321

 (May 1987).

8. N. Ishiura, M. Ito and S. Yajima: "High-Speed Fault Simulation
 Using a Vector Processor", Proc. IEEE International Conference on

 Computer-Aided Design (ICCAD-87), pp. 10-13 (Nov. 1987).

9. N. Ishiura, N. Takagi and S. Yajima: "Sorting on a Vector Processor"

 (in Japanese), Trans. IPSJ, vol. 29, no. 4, pp. 378-385 (Apr. 1988).

10. N. Ishiura, M. Ito and S. Yajima: "Dynamic Two-Dimensional Par-
 allel Simulation Technique for High-Speed Fault Simulation on a

 Vector Processor" (in Japanese), Trans. IPSJ, vol. 29, no. 5, pp. 522-
 528 (May 1988).

11. N. Ishiura, M. Takahashi and S. Yajima: "Time-Symbolic Simula-

 tion for Accurate Timing Verification of Asynchronous Behavior of

 Logic Circuits", Proc. ACM/IEEE 26th Design Automation Confer-
 ence, pp. 497-502 (Jun. 1989).

12. H. Yasuura and N. Ishiura: "Semantics of a Hardware Design Lan-

 guage for Japanese Standardization", Proc. ACM/IEEE 26th Design
 Automation Conference, pp. 836-839 (Jun. 1989).

13. S. Minato, N. Ishiura and S. Yajima: "Fast Tautology Checking Us-

 ing Shared Binary Decision Diagram - Benchmark Results -" , Proc.
 IFIP International Workshop on Applied Formal Methods for Cor-

 rect VLSI Design, vol. 2, pp. 580-584 (Nov. 1989).

Major Publications 201

14. N. Ishiura, H. Yasuura and S. Yajima: "NES: The Behavioral Model

 for the Formal Semantics of a Hardware Design Language UDL/I",

 Proc. ACM/IEEE 27th Design Automation Conference, pp. 8-13,

 (Jun. 1990).

15. S. Minato, N. Ishiura and S. Yajima: "Shared Binary Decision Dia-

 gram with Attributed Edges for Efficient Boolean Function Manip-
 ulation", Proc. ACM/IEEE 27th Design Automation Conference,

 pp. 52-57, (Jun. 1990).

16. N. Ishiura, Y. Deguchi and S. Yajima: "Coded Time-Symbolic Sim-

 ulation Using Shared Binary Decision Diagram", Proc. ACM/IEEE
 27th Design Automation Conference, pp. 130-135, (Jun. 1990).

17. N. Ishiura, M. Ito and S. Yajima: "Dynamic Two-Dimensional Par-

 allel Simulation Technique for High-Speed Fault Simulation on a
 Vector Processor", IEEE Trans. Computer-Aided Design of Inte-

 grated Circuits and Systems, vol. CAD-9, no. 8, pp. 868-875 (Aug.
 1990).

18. H. Yasuura and N. Ishiura: "Formal Semantics of UDL/I and Its Ap-

 plications to CAD/DA tools", Proc. IEEE International Conference
 on Computer Design (ICCD '90), pp. 90-94 (Sep. 1990).

19. N. Ishiura and S. Yajima: "A Class of Logic Functions Expressible
 by Polynomial-Size Binary Decision Diagrams", Proc. Synthesis and

 Simulation Meeting and International Interchange, pp. 48-54 (Oct.

 1990).

20. Y. Deguchi, N. Ishiura and S. Yajima: "Coded Time-Symbolic Simu-
 lation: Simulation of Logic Circuits with Nondeterministic Delays",

 Proc. Synthesis and Simulation Meeting and International Inter-

 change, pp. 149-156 (Oct. 1990) .

202 List of Publications by the Author

21. N. Takahashi, N. Ishiura and S. Yajima: "Fault Simulation for Multi-

 ple Faults Using Shared Binary Decision Diagrams", Proc. Synthesis
 and Simulation Meeting and International Interchange, pp. 157-164

 (Oct. 1990).

22. N. Ishiura, M. Takahashi and S. Yajima: "Time-Symbolic Simula-

 tion for Accurate Timing Verification of Logic Circuits" (in Japanese),
 Trans. IPSJ, vol. 31, no. 12 (Dec. 1990, to appear).

23. S. Minato, N. Ishiura and S. Yajima: "Share Binary Decision Dia-

 grams for Efficient Boolean Function Manipulation" (in Japanese),
 Trans. IPSJ, vol. 32, no. 1 (Jan. 1991, to appear).

Technical Reports

 1. H. Kano, Y. Ooi, S. Kimura, N. Ishiura, H. Yasuura and S. Yajima:
 "ISS: Interactive Logic Design and Verification Support System" (in

 Japanese), Report of Technical Group on Design Automation, IPS
 Japan, 15-1 (Dec. 1982).

 2. N. Ishiura, H. Yasuura and S. Yajima: "High-Speed Logic Simu-
 lation by Time First Evaluation Algorithm" (in Japanese), Report

 of Technical Group on Electric Computers, IECE, EC84-49 (Dec.
 1982).

 3. N. Ishiura, H. Yasuura, T. Kawata and S. Yajima: "High-Speed
 Logic Simulation Using a Vector Processor" (in Japanese), Report

 of Technical Group on Design Automation, IPS Japan, 25-2 (Feb.
 1985).

 4. N. Ishiura, M. Kume, H. Yasuura and S. Yajima: "Parallel Fault
 Simulation Using a Vector Processor" (in Japanese), Report of Tech-
 nical Group on Fault Tolerant Systems, IECE, FTS86-4 (May 1986).

Technical Reports
203

5. N. Ishiura, H. Yasuura and S. Yajima: "Performance Evaluation

 of Logic Simulator on Vector Processors" (in Japanese) , Report of
 Technical Group on Circuit and Systems, IECE, CAS86-82 (Sep.

 1986).

6. H. Yasuura and N. Ishiura: "On Computational Complexity of Haz-

 ard Detection Problems" (in Japanese), Report of Technical Group
 on Theoretical Foundations of Computing , IEICE, COMP86-64 (Jan.

 1987).

7. N. Ishiura, N. Takagi and S. Yajima: "Sorting on Vector Processors"

 (in Japanese), Report of Technical Group on Theoretical Founda-
 tions of Computing, IEICE, COMP86-88 (Mar. 1987).

8. N. Ishiura, M. Ito, H. Yasuura and S. Yajima: "On Dynamic 2-

 Dimensional Parallel Fault Simulation on a Vector Processor" (in
 Japanese), Report of Technical Group on VLSI Design Technology,

 IEICE, VLD87-2 (Apr. 1987).

9. N. Ishiura and S. Yajima: "On Time-Symbolic Simulation" (in Japanese),

 Report of Technical Group on VLSI Design Technology, IEICE,

 VLD87-112 (Dec. 1987).

10. N. Ishiura and H. Yasuura: "On a Relation between Time-Models

 and Computationa Time of Hazard Detection Problems" (in Japanese),

 Report of Technical Group on Theoretical Foundations of Comput-

 ing, IEICE, COMP88-21 (Jun. 1988).

11. M. Ito, N. Ishiura and S. Yajima: "Test Generation using a Fast
 Fault Simulator on a Vector Processor" (in Japanese), Report of

 Technical Group on VLSI Design Technology, IEICE, VLD88-27

 (Jul. 1988).

204 List of Publications by the Author

12. N. Ishiura and H. Yasuura: "On Computational Complexity of Haz-

 ard Detection Problems of Combinational Circuits" (in Japanese),
 RIMS Koukyuroku, vol. 666, pp. 51-60, Research Institute for Math-

 ematical Science, Kyoto University (Jul. 1988).

13. M. Takahashi, N. Ishiura and S. Yajima: "Result-Analysis System

 for Time-Symbolic Logic Simulation" (in Japanese), Report of Tech-
 nical Group on Design Automation, IPS Japan, 44-2 (Oct. 1988).

14. N. Ishiura and S. Yajima: "A Nondeterministic Behavior Model for

 Definition of Formal Semantics of Hardware Description Languages"

 (in Japanese), Report of Technical Group on VLSI Design Technol-
 ogy, IEICE, VLD89-3 (Apr. 1989).

15. Y. Koumura, N. Ishiura and S. Yajima: "Formal Semantics of Hard-

 ware Description Languages Based on Nondeterministic Sequential

 Machines" (in Japanese), Report of Technical Group on VLSI Design

 Technology, IEICE, VLD89-75 (Dec. 1989).

16. S. Minato, N. Ishiura and S. Yajima: "Shared Binary Decision Dia-

 gram for Efficient Boolean Function Manipulation" (in Japanese),
 Report of Technical Group on VLSI Design Technology, IEICE,

 VLD89-80 (Dec. 1989).

17. N. Ishiura, Y. Deguchi and S. Yajima: "Coded Time-Symbolic Simu-

 lation Using Shared Binary Decision Diagram", Report of Technical

 Group on VLSI Design Technology, IEICE, VLD89-81 (Dec. 1989).

18. Y. Deguchi, N. Ishiura and S. Yajima: "Analysis of Timing Error

 Probability Based. on Coded Time-Symbolic Simulation", Report

 of Technical Group on VLSI Design Technology, IEICE, VLD90-89

 (Dec. 1990).

Technical Reports 205

19. N. Takahashi, N. Ishiura and S. Yajima: "Fault Simulation for Multi-

 ple Faults Using Shared Binary Decision Diagrams", Report of Tech-
 nical Group on VLSI Design Technology, IEICE, VLD90-93 (Dec.

 1990).

