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MULTIPLE MYELOMA

Multiple myeloma (MM) is a malignant plasma cell disorder in the bone mar-
row. Plasma cells are antibody producing cells. In the majority of MM patients a
monoclonal protein is detected, the so-called M-protein that is produced by the
clonal plasma cells. This disease accounts for 13% of all hematologic malignan-
cies. MM had a crude incidence rate of 6.6 out of 100.000 individuals in 2015,
corresponding to 1100 new patients a year in the Netherlands.! The incidence
is age dependent with 80% of patients being older than 60 years.! MM is a ge-
netically heterogeneous disease, characterized by various recurrent aberrations.
Patients demonstrate a large variation in response to treatment, survival and ad-

verse treatment effects.

Diagnosis

The diagnosis of MM is based on the presence of either more than 10% abnormal
plasma cells in the bone marrow or plasmacytoma proven by biopsy. In addi-
tion, either end organ damage that can be attributed to the underlying plasma cell
proliferative disorder must be present or at least one of three myeloma defining
events (MDE). End organ damage is defined by the CRAB criteria: c) increased lev-
els of calcium (>= 11.5 mg/100 ml); r) renal insufficiency indicated by increased
serum creatinine (> 1.73 mmol/L); a) anemia (hemoglobin < 6.2 mmol/L) and
b) bone lesions (21 by X-ray, CT or PET-CT). MDE consists of 1) 260% clonal
plasma cells on bone marrow examination; 2) a free light chain ratio of 2100; 3)
more than one focal lesion on magnetic resonance imaging (MRI) that is 25 mm
in size.? These MDEs were recently included in the myeloma defining criteria to

allow early diagnosis and initiation of therapy before end-organ damage.

Disease stages

Most MM cases are thought to develop from the precursor stages monoclonal
gammopathy of undetermined significance (MGUS) and smoldering MM (Figure
1).3* MGUS is estimated to occur in approximately 1-3% of the population above
50 years.>® These patients have detectable mono-clonal protein (M-protein, see

also below, MGUS: < 3g/dL M-protein) without clinical symptoms and without
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Germinal centre — Bone marrow Peripheral blood
Post-germinal Smoldering Plasma cell
e e —_— Myeloma —_— R
centre B cell myeloma leukemia
Figure 1. Disease stages in MM. (Source: Morgan et al. 2012)3 1

MDE (Table 1). MGUS evolves into myeloma at a rate of approximately 1% per
year.” Smoldering myeloma (SMM) is characterized by higher levels of M-protein
(>3g/dL, comparable to symptomatic myeloma) however, these patients do not
demonstrate end-organ damage or MDE. The rate of progression from smolder-
ing MM to clinical MM is 10% in the first 5 years after diagnosis, decreasing to
3% per year over the following 5 years, and 1.5% per year thereafter.>® Some
patients with MM may progress to plasma cell leukemia (PCL). PCL cells are no
longer restricted to the bone marrow and are able to survive in the peripheral
blood. Diagnostic criteria for PCL are > 20% circulating plasma cells and an ab-
solute count > 2 x 10° plasma cells/L in peripheral blood in addition to the MM

diagnostic criteria.’

Table 1. Clinical staging of multiple myeloma (as reported by Rajkumar et al. (2016)).2

Stage Serum M-protein (g/dl) BM plasma cells(%) End-organ damage (CRAB)

MGUS Increased but <3 <10 No
SMM >3 10-60 No
MM No criteria >60 No

No criteria >10 Yes
Treatments

Newly diagnosed patients are split into two groups based on being eligible
for high-dose Melphalan combined with autologous stem cell transplantation
(HDM/ASCT). This distinction is based on age and fitness of the patient, with
an age cut-off of either 65 years or 70 years old used routinely.3* Patients be-
low this age limit are considered to be sufficiently fit to undergo the combined
HDM/ASCT procedure. For transplantation eligible patients, treatment consists
of a sequence of variable phases, including induction, HDM/ASCT (1x or 2x),

consolidation and maintenance. 3>



Table 2. Drugs in MM

brug " Giass Ref.

Melphalan Alkylating agents 10
Cyclophosphamide

Dexamethasone Corticosteroids "2
Prednisone

Bortezomib (Velcade) Proteasome inhibitors (PI) 13

Carfilzomib (Kyprolis) 14

Ixazomib (Ninlaro) 15

Oprozomib 16
Thalidomide Immunomodulatory (IMiD) / CRBN interaction "1
Lenalidomide (Revlimid) 1719
Pomalidomide (Pomalyst) 20,21
Daratumumab (Darzalex) |CD38 antibody 22-24
Isatuximab CD38 antibody %
Elotuzumab SLAMF7 (CD319) antibody 26-28
Pembrolizumab (Keytruda) | PD-1 antibody 2129
Venetoclax Bcl2 inhibitor 0
Panabinostat (Farydak) HDAC inhibitor 31
CAR-T-BCMA Chimeric antigen T cell receptor against BCMA 233

In recent years a large number of new drugs have become available (see Ta-
ble 2).36738 Three important classes of drugs are proteasome inhibitors (PI) (e.g.,
Bortezomib), immunomodulatory drugs (Imid) (e.g, Thalidomide) and mon-
oclonal antibodies (e.g., daratumumab). For transplantation eligible patients,
induction treatment includes combinations such as Bortezomib, Dexamethasone
and Thalidomide (VTD) and Bortezomib, Cyclophosphamide and Dexametha-
sone (VCD). Transplant ineligible patients are now often treated with the doublet
Lenalidomide with Dexamethasone (Rd).3° Treatment choice depends on vari-
ous considerations including reported efficacy, tolerance, patient condition and
performance, cost effectiveness and availability. These factors are reviewed and
summarized in the local guidelines. Side effects of treatment such as peripheral
neuropathy, myelosuppression, thrombosis or cardiac toxicity frequently occur,
and may lead to dose reduction or even treatment discontinuation. Peripheral
neuropathy (PNP) associated with Bortezomib and Thalidomide treatment is
discussed in this thesis.*?® PNP was shown to be reduced by changing the mode

of Bortezomib administration from intravenous to subcutaneous.*! Newer Pls
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were reported to cause much less PNP, compared to Bortezomib. In a study which
compared Bortezomib to Carfilzomib containing treatment, PNP was found in
32% of Bortezomib treated patients compared to only 6% of Carfilzomib treated

patients. 4243

Prognostic factors

Use of new drugs as outlined above has resulted in a vast improvement in sur-
vival of MM patients. Improvement in 5-year relative survival rates (1993-97 vs
2008-12) are seen among patients of all age and race/ethnicity groups (Figure 2).
Among patients <65 years of age RSR increased from 38% to 62%, for 65 to 74
years of age from 29% to 48%, and 275 years of age from 21% to 34%.** How-
ever, MM is still considered an incurable disease.*> Although the median overall
survival (OS) is 6.1 years, there is a large variation ranging from less than two
years to over twenty years.*¢"4 An estimation of the risk for individual patients
can be made using prognostic factors. These are clinical or biological characteris-
tics that are objectively measurable in an untreated individual or that are intrin-
sic to the host (e.g., age, comorbidities, fitness) and that provide information on
the likely outcome of the disease.>° In the following sections the most important

prognostic factors are discussed.

A <65 years B 65-74 years C 75+years
100% 100% o 100% o
90% A 90% - 90%
80% 4 &' 80% 80% -
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Figure 2. Relative surival rates (RSR) in MM. Changes in the RSRs of patients diagnosed
with MM in the United States grouped by age: A) diagnosed at age <65 years, B) diagnosed
at age 65 to 74 years or C) diagnosed at age =75 years.(Source: Costa et al. 2017)*




Serum markers

Serum markers are easily obtained and thus minimally invasive. Important
serum proteins for MM include M-protein, serum free light chains, beta-2-micro-
globulin (B2m), creatinine, albumin and lactate dehydrogenase (LDH). MM is
characterized by an increase in monoclonal plasma cells which all produce an
immunoglobulin (Monoclonal protein, M-protein). An elevated M-protein level
measured in serum or urine is therefore a marker of tumor load and indicator
for MM. Immunoglobulins are made up of two light and two heavy chains. Each
myeloma clone produces either a kappa or a lambda light chain. As a result, in
the serum of MM patients the ratio of free light chains is affected, with either
kappa or lambda highly overrepresented. B2m is a subunit of the MHC class-I
molecule which is present on all nucleated cells. The normal level in serum is less
than 2mg/L but B2m is often elevated in diseases associated with increased cell
turnover, such as MM. Creatinine is a byproduct of muscle metabolism, which is
excreted by the kidneys. In case of renal failure, creatinine levels will rise and
are used as an indirect measure of renal function. Typically, creatinine levels are
0.5-1.0 mg/dL for women and 0.7-1.2 mg/dL for men. Albumin reflects systemic
dysregulation. Lower levels have shown to be correlated to increased levels of
interleukin 6 (IL6) - activating the growth of MM cells.>! The normal range of
albumin is 3.5-5 g/dL. Finally, cancer cells often have an increased energy re-
quirement which is met by an elevated glycolysis. LDH is an enzyme involved in
glycolysis, and can therefore be correlated to tumor growth. The normal range is
135-225 U/L.

Table 3. The International Staging System criteria and median survival as reported by
Greipp et al. (2005).%2

Stage Criteria Median Survival

| Serum B2m < 3.5 mg/L and serum albumin = 3.5 g/dL 62 months
A. Serum B2m < 3.5 mg/L and serum albumin < 3.5 g/dL 44 months
Il B. or serum B2m 3.5 to < 5.5 mg/L irrespective of the
serum albumin level
Il Serum B2m = 5.5 mg/L 29 months
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Table 4. Recurrent cytogenetic aberrations in MM and their prognosis.

Aberration Incidence by FISH Oncogene Prognosis Ref.
t(4;14)(p16;932) 14 to 16% FGFR3 and MMSET Unfavorable %57
t(6;14)(p21;932) 31t04% CCND3 Uncertain 56,57
t(8;14)(q24;932) 3% MYC Unknown 57,58
t(11;14)(q13;932) 15 to 16% CCND1 Uncertain %
t(14;16)(932;923) 310 5% c-MAF Uncertain 56,57
t(14;20)(932;912) 2% MAFB Uncertain %7
del(13q) 50% RB Unfavorable %
del(17)(p13) 10% TP53 Unfavorable %
del(1p) 30% Unknown Unfavorable %°
gain(1q) 30% Unknown Unfavorable ~57:59.60
Hyperdiploidy 50% Unknown Favorable %7

International Staging System

The International Staging System (ISS) is currently widely accepted as a mea-
sure reflecting tumor burden, renal function and fitness.>>°3 ISS classifies pa-
tients into three grades, based on the serum levels of B2Zm and albumin (Table 3).
Higher ISS stages are associated with increased risk, also in patients treated with

current treatment modalities.

Cytogenetics

In addition to aberrant serum markers, tumor specific recurrent cytogenetic
aberrations can be observed in MM.* Important for MM development, as for
other cancer types, are defects in the mechanisms that control cell division.®? A
number of cytogenetic aberrations directly or indirectly reflect this pathway, e.g.,
upregulation of cyclin-D1 (Figure 3).

Some aberrations are present at diagnosis in a substantial number of patients
such as translocations involving the IgH-locus on chromosome 14q32 (Table 4)
or a hyperdiploid karyotype of many of the odd numbered chromosomes. These
are considered to be primary events in contrast to the secondary events - such
as deletion of the p53 locus, gain of chromosome 1q or a loss of chromosome
13q - which are usually seen during disease progression. Characteristic for MM
are the primary translocating events affecting the IgH-locus.*®3 Being the high-

est expressed locus in antibody producing plasma cells, juxtaposition of proto-




oncogenes to the IgH enhancer results in strong overexpression of the IgH gene,
leading to M-protein production.*®* Recurrent translocations include t(4;14)
and t(11;14), observed in approximately 14% and 16% of newly diagnosed MM
patients respectively.#>-67 The translocation t(4;14) 8 is an important prognos-

B Deleted
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M Qained @slWe | [ANP3ZE
[ Inherited / P
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Figure 3. Circos plot showing key genetic events encountered in MM. Each chromosome
is depicted on a circle starting on the top with chromosome 1 and ending with 22, X and Y. The
length of a chromosome corresponds to the number of nucleotides it contains. Translocations
of the immunoglobulin heavy chain locus (IGH@) on chromosome 14 are shown as lines to
their chromosomal binding partner. Copy-number alterations are color-coded inside the circle
as red (deletion), black (normal copy-number) and blue (gain). The target genes are on the
outside of the circle. (Source: Morgan et al. 2012)°
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Proportion of Patients
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Figure 4. Overall survival in the MRC Myeloma IX Trial. OS for some adverse FISH lesions
when they occur in isolation compared with samples lacking any adverse lesions. (Source:
Boyd et al. 2012)62

tic factor, associated with a poor outcome (Figure 4). It causes an upregulation
of the histone methyltransferase myeloma SET domain protein (MMSET) and in
70% of the cases the fibroblast growth factor receptor 3 (FGFR3) is also affected.
Recently, a newly discovered small RNA gene SCARNA22 was found to be co-
expressed with MMSET; this gene is localized in MMSET intron 20. SCARNA22
knockdown experiments demonstrated impaired cell proliferation and dereg-
ulated oxidative stress response, raising the question whether SCARNA22 may
play a role in t(4;14) patients.®®7° The translocation t(11;14) fuses the cyclin-D1
gene (CCND1) to the IgH-locus thereby possibly disrupting the G1-S cell-cycle
boundary; t(11;14) patients are reported to have a relatively favorable progno-
sis.®* Recently it was shown that the Bcl-2 targeting drug Venetoclax was excep-
tionally effective in this patient group.’! This creates the possibility of precision
medicine.

Other less common recurrent translocations in MM are t(6;14), t(8;14),
t(14;16) and t(14;20).°%%7 In addition to translocations, other aberrations like

9




gains and deletions are frequently observed. MM patients with a deletion of the
short arm of chromosome 17 locus (del(17p13)), containing the TP53 gene, have
worse survival than patients without this deletion (Figure 4). P53 is a multi-
faceted transcription factor affecting many key cellular processes such as apop-
tosis, proliferation, DNA repair, metabolism, cell migration and autophagy.’%73
It is recognized as the most frequently inactivated tumor suppressor in human
cancers. In MM approximately 8% of patients have this deletion at the time of
diagnosis and this frequency increases during progression of the disease with
increasing number of cases with bi-allelic inactivation.”’* More frequently iden-
tified aberrations include deletion of chromosome 13 del(13) seen in 50% of
newly diagnosed myeloma, gain(1q)( 30%) and deletion of chromosome 1p
( 30%). These are usually associated with a poor outcome. A favorable aber-
ration is hyperdiploid myeloma ( 50%) in which many of the odd numbered
chromosomes (3, 5, 7,9, 11, 15, 19 and 21) have an additional copy. Initially it
was thought that a hyperdiploid genotype and IGH translocations were mutually
exclusive.®* However, recent research showed that hyperdiploidy may precede
IGH translocation in a proportion of patients such that both coexist.”> The effect
of coexisting hyperdiploidy and translocations on prognosis is not entirely clear,
but may depend on the nature of the hyperdiploidy, with trisomies 3 and 5 con-
ferring a reduction of the poor risk commonly associated with t(4;14) whereas

trisomy 21 has the opposite effect.>*

Gene expression

Gene expression arrays provide a widely accepted method to determine the ex-
pression of most known genes simultaneously. The resulting data has been ana-
lyzed in the context of various clinical and biological features resulting in unsu-

pervised molecular subtyping and supervised classifiers.

Molecular classifications

MM is biologically variable, and is likely to have distinct subtypes, including
those described by gene expression profiling. Activation of cyclin D genes is
common in MM, and the rationale behind the translocation/Cyclin D (TC) clas-
sification.5*7¢ Based on CCND1, CCND2, CCND3, FGFR3, MMSET, MAF, ITGB7

10
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and CX3XR1 expression, tumors were classified in eight subgroups. Using an
unsupervised hierarchical clustering approach of gene expression profiles, novel
putative subgroups were identified by Zhan et al. (2006) and Broijl et al. (2010)
denoted as the UAMS and EMC clustering respectively. The UAMS clustering
resulted in seven clusters (CD1, CD2, MS, MF, HY, PR and LB). Just as the TC
classification most groups were strongly influenced by known genetic lesions,
such as c-MAF/MAFB (MF cluster), Cyclin genes (primarily CD1 and -2 clusters),
MMSET-activating translocations (MS cluster) and hyperdiploidy (HY cluster;
Table 5).77 Other clusters with less clear gene associations were found to be
enriched with a low incidence of focal bone disease (LB group) and increased ex-
pression of proliferation-associated genes (PR) group. The EMC clustering found
three additional clusters in addition to the seven UAMS clusters. These showed
an increased expression in the nuclear factor kappa light-chain-enhancer of acti-
vated B cells pathway (NFxB group), cancer testis antigens without over expres-
sion of proliferation genes (CTA group) and up-regulation of protein tyrosine
phosphatases PRL-3 and PTPRZ1 as well as SOCS3 (PRL3 group), respectively.
Kuehlet al. (2012) published a comparison of these three classifications in terms

of cytogenetic characteristics.”®

Table 5. Comparison of different molecular classifications in MM according to Kuehl et
al. (2012)78

Group Gene TC® UAMS”” EMC™
11913 CD1,CD2 CD1,CD2

Cyclin D transl. CCND1
6p21 CD1,CD2 CD1,CD2

MMSET transl. MMSET 4p16 MS MS
MAF transl. MAF, MAFA, MAFB MAF  MF MF
CCND1+CCND2 D1+D2 PR PR, CTA
L CCND1 D1 HY HY, CD1, NFxB, CTA, PRL3
Hyperdiploid
CCND1+CCND2 D1+D2 PR PR, CTA
Other no CCND1 None PR PR, CTA
CCND2 D2 PR,LB LB, CTA, PRL3

Some of these subgroups have been linked to treatment outcome and progno-
sis. Bergsagel et al. reported a median overall survival of 26 months for TC 4p16
(t(4;14)) patients versus 33 months for patients with a non-TC 4p16 subgroup
designation. This was confirmed in independent studies.?? The MMSET (MS;
t(4;14)), MAF (MF; t(14;16)/t(14;20)) and proliferation (PR) groups have been

11




reported to have shorter survival relative to the other subgroups in two inde-
pendent reports.’”81 These reports further describe a survival benefit of the MS

subgroup when treated with novel drugs as compared to conventional drugs. 181

Gene expression based prognosis

Gene expression profiling of tumor cells can be used for the development of al-
gorithms specifically intended to estimate prognosis in cancer patients, as ini-
tially demonstrated for breast cancer patients and later in acute lymphoblastic
leukaemia.??-8* As described in more detail below, the development of prognos-
tic algorithms, or prognostic classifiers, consists of two phases: a training phase
and a validation phase. In the training phase a classifier is generated by finding
genes which combined have a strong link to survival of the patients within that
set. The validation set is then used to evaluate whether the identified combina-
tion of genes has value in independent data. The UAMS70-gene classifier was the
first of such prognostic classifiers described for MM. Prognostic value was de-
rived by combining 70 genes, or even a reduced set of 17 genes.? Selected MM

classifiers are shown in Table 6.

Table 6. Prognostic gene classifiers in multiple myeloma.

Classifier #Groups Risk proportion (%) Platform Ref.
GPI50 2 51/39/10 Affymetrix U1332.0 887
HM19 3 44/48/8 Affymetrix U1332.0 %
IFM15 2 75/25 Custom design 8
MILLENNIUM100 2 50/50 Affymetrix U133 A+B  %°
MRCIX6 2 95/5 Affymetrix U1332.0 ¢
UAMS17 2 88/12 Affymetrix U1332.0 %
UAMS70 2 91/9 Affymetrix U1332.0 %
UAMSS80 2 92/8 Affymetrix U1332.0 %2

Risk stratification using prognostic markers

To achieve more accurate prognostication, individual markers are often com-
bined. The ISS (see Table 3) is an example in which combining two serum markers
resulted in improved prognostic strength.>? In addition, improved prognostica-

tion can be achieved by grouping patients with different high-risk cytogenetic

12
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Table 7. Updated mSmart risk stratification. These criteria are continuously updated. The
definition in this table is from Mikhael et al.(2013).% PCLI = Plasma cell labeling index.

Risk group Criteria Proportion Median OS

t(11;14)

Standard-risk t(6;14) 60 % 8-10 yrs
No intermediate- or high-risk
t(4;14)
del(13)
Hypodiploidy
PCLI =2 3%
del(17p)
t(14;16)
t(14;20)
High-risk gene expression profile
*In the presence of concurrent trisomies, patients with high-risk cytogenetics should
be considered standard-risk

Intermediate-risk 20% 4-5yrs

High-risk* 20% 3yrs

Table 8. Prognostic ISS + cytogenetics risk stratification according to Avet-Loiseau et al.
(2013)%

Risk group Criteria Proportion OS at 4yr
Low-risk ISS < 3 and not del(17p) and not t(4;14) 54% 71%
ISS < 3 and [ del(17p) or t(4;14) ]
Intermediate-risk or 28% 45%
ISS = 3 and not del(17p) and not t(4;14)
High-risk del(17p) 18% 33%

Table 9. Prognostic revised ISS (R-ISS) according to Palumbo et al. (2015)%

Risk group Criteria Proportion OS at 5yr
R-ISS:-I ISS = I and not del(17p) and not t(4;14) 28% 82%
(Low-risk) and not t(14;16) and normal LDH

RASSI N6 RiISS- and no ReISS-Il 62% 62%
(Intermediate-risk)

R-ISS:1I ISS =3 and

(High-risk) [ del(17p) or t(4;14) or 10% 40%

t(14;16) or High LDH]

13



markers, for instance having any of the following markers: del(17p), t(4;14)
and/or t(14;16).9%%7 Alternatively, patients with only 1 high-risk marker were
shown to have a favorable prognosis compared to patients positive for 2 or more
high-risk marker.®® The Mayo Clinic has introduced the Mayo stratification for
myeloma and risk-adapted therapy classification (Table 7).93 Based on cyto-
genetics, gene expression and a plasma cell labeling index (i.e., a measure of
proliferating cells), patients are stratified into three risk groups. The composi-
tion of this stratification is based on expert opinion and regularly updated but
so far not independently validated.®3 Other risk stratification methods include
the combination of ISS together with cytogenetics (Table 8) and the revised ISS
(R-ISS) which combines ISS, cytogenetics and LDH (Table 9).°4%% In the R-ISS, a
subset of the ISS-1 or ISS-III patients is reclassified as R-ISS-Il resulting in a higher
proportion of these intermediate-risk patients.

14
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Bioinformatics

Organisms can be reduced to large networks of interacting molecules. Analysis
of resulting data structures requires bioinformatics.’® Here we will focus very

briefly on bioinformatic topics relevant to this thesis.

Introduction to microarrays

In our studies we mostly made use of the gene expression profiling and genome
wide genotyping; for both techniques microarrays were used. To characterize
the mRNA which is expressed by a cell at a specific point in time or under spe-
cific conditions, microarrays were developed for transcriptome analysis. % Mi-
croarrays allow measurements of large amounts of many short RNA sequences
simultaneously. They are glass or silica slides that have large number of oligonu-
cleotides probes (i.e., short stretches of (c)DNA) with known sequences bound to
their surface. Here, microarrays with cDNA probes for specific RNAs were used,
and microarrays with DNA probes specific for detection of single nucleotide poly-
morphisms (SNPs). In both cases, the probes are organized in spots such that
each position on the array corresponds to a unique sequence. Hybridization of
RNA obtained from the MM cells of a patient to the cDNA probes gives an estima-
tion of the quantity of a specific RNA in the MM cells of that patient. Alternatively,
hybridization of DNA obtained from peripheral blood samples to sequence spe-
cific probes gives an estimation of the SNPs specific for that patient (and alterna-
tively can be used for copy number analyses). The focus of this thesis is on the
Affymetrix Human Genome U133 arrays used for gene expression profiling. The
U133 plus 2.0 is the most widely applied Affymetrix human gene chip. It contains
54675 probe-sets of which 44754 overlap with the probe sets used onthe U133 A
and B chips combined. After a sample has been hybridized to a microarray (Fig-
ure 5), a high resolution image file (DAT file) is obtained by scanning it. In the
image, each probe is identified and assigned an expression value proportional to
the corresponding spot intensities. Subsequent processing prior to bioinformatic
analyses usually involve normalization and correction for batch effects to allow

comparisons between array and between batches respectively.
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Normalization

In general, three basic normalization steps are distinguished: 1) background-
correction, 2) summarization and 3) normalization (Table 10). Several meth-
ods exists such as the normalization used by the Affymetrix microarray suite
5.0 (MAS5), model-based expression intensities (MBEI) or robust multi-array av-
eraging (RMA) and its extensions involving adjustment for non-specific binding
(GCRMA) and a multi-array approach using a frozen reference set (FRMA).101-108
In this thesis MAS5 was used as a standard because of its simplicity and applica-

bility to single arrays.

Table 10. Normalization steps, their aim and a brief description on the MAS5 method. '%2

Background Correcting for technical noise | The lowest 2% of probe intensity
correction values represent background noise.
Summarization Combining intensities of probes | Tukey’s Bi-Weight
that map to the same transcript
Normalization Reducing inter-array variance | Scaling the intensities of each array
(note: single array)

Batch effect correction

Due to many causes (e.g., changes in RNA extraction, temperature differences, la-
beling, handling by technician), differences between series of microarray exper-
iments may occur.193199 [f left uncorrected, batches rather than biological dif-
ferences can be the greatest source of differential expression in high throughput
RNA analyses. 1% This may lead to false or confusing conclusions. A review with
examples and consequences is given by Leek et al. 1% Avoiding batch effects is
usually not possible but appropriately designing the experiment by randomizing
cases and controls over dates and sites, may allow batch correction. It turns out
that a simple mean centering and scaling to unit variance for each batch sepa-
rately, often removes most of the batch effect. More complex and computation-
ally intensive algorithms were developed based on higher dimensional analysis

techniques, making use of singular value decompositions 11112

and weighted
discrimination analysis.!'3 The batch effect correction method Combat!'* was

developed to overcome some major disadvantage of the above methods, and is
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thought to be more robust against outliers and applicable in the context of smaller
sample sizes (n>6).11% It uses a Bayesian model to estimate the batch parame-
ters which can be used to adjust the data, by pooling information across genes
to shrink magnitude of estimates toward their overall mean. Instead of shrink-
ing towards the mean, a modified combat (M-Combat) has been published which
shrinks toward a reference batch instead of averaging over multiple batches. 16
This is desirable in case of a classification setting where a training set can be used

as the reference batch.

Model building

To extract data for model building, machine learning tools have been devel-
oped.''” These tools are aimed at finding ways to predict phenotypical charac-
teristics by associating them to gene expression data. A model is a representa-
tion which approximates a variable of interest (e.g., risk-group) in terms of other,
more easily observable, variables. A patients’ survival is unknown at diagnosis
but may be found to correlate to the expression of certain genes at diagnosis. This
way single genes or combinations of genes can be found with predictive ability
(Figure 6).

Overtraining

Over-interpretation of the training-data can result in a model that fits the training
data, but has no applicability on unseen, independent data. This phenomenon is
termed overtraining and is often evident when a model is too complex.'® E.g.,
when a linear classifier is applied to a training set with two patients, one high-
risk, one low-risk, it is clear that a model can be found, based on a single gene
only, which perfectly separates the two risk groups. However, due to the scarce
evidence provided by the data, this model is likely to fail to separate risk groups
when applied to other patient samples (test data). Similarly, two genes are able
to perfectly separate the two risk groups in case of three patients (one from one
class and two from the other). In general, n patients can be perfectly separated
into two risk groups by a (n-1) dimensional linear boundary.'!? The larger the
number of variables included in a model relative to the number of patients avail-

able to fit the model, the easier it becomes to find a (likely false) separation in
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the data. A classifier based on a single variable is more likely to correctly clas-
sify future samples if it correctly classified 100 training patients as compared to
a training set of only 2 patients. Overtraining is recognized when the prediction
error of a model is low in the training-data but high when applied to other data,

i.e, has a low generalizability (Figure 7).117

Cross-validation

Cross-validation is a common procedure in model building to prevent overtrain-
ing. It estimates the performance of a model in unseen data based on its train-
ing set. In a cross-validation the training-data is randomly split into a number
of fold of approximately equal size. The model is built on all but one fold and
subsequently tested on the fold that was left out. This procedure is repeated

until all folds were excluded once. Summarization of each folds’ performance
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Figure 6. Example of model building on hypothetical data. The expression of two genes
are measured at diagnosis for ten training patients which belong to either one of two classes:
alive (white diamonds) or dead (black triangles) within 2 years. A) The individual genes
themselves are poor class separators. B) Combining both genes, however, results in a perfect
class separation, indicated by the dotted line. C) Generation of a simple linear model (high-risk
if [gene1+gene2] > 18.3). D) Validation of the model in independent data, i.e., patients who
were not part of the training set (prediction error: 1 out of 10).
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Figure 7. Generalization error. The complexity of a model (e.g., number of variables) is
related to the performance in the training-data and test-data (or unseen data). Adapted from a
figure in Hastie et al.(2009) """

into an overall estimate is then used as a rough estimate of the expected per-
formance on unseen data using a given model-building approach. Often model-
building incorporates feature selection (e.g., which and how-many probe-sets to
include) and/or setting of hyper-parameters (e.g., the regularization parameter
in lasso/ridge regression) 120121 that tune the model. These parameters deter-
mine the complexity of the model, and consequentially these will affect the gen-
eralizability of the model. A nested cross-validation is often used in which these
parameters are optimized within the inner-loop and performance is estimated in
an outer-loop. Despite termed validation, cross-validation estimates model per-

formance, but true validation (i.e., replication) to unseen data is still required.
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Scope and outline of this thesis

The work in this thesis focuses on multiple myeloma patients. A main question
was whether it is possible to find patterns in biological data sets, which can be
used for the prognosis of MM patients. Despite continuous development of novel
treatments, a large variety in survival is observed in MM patients. Are these dif-
ferences related to tumor biology such that prognostic information can be ob-
tained from plasma cells? Further, many prognostic factors have been described
but their optimal use is unknown. Given the current set of prognostic factors,
can we define a strong prognostic classifier by combining them in one of many
ways? Side effects, such as peripheral neuropathy during Bortezomib treatment
seriously affects quality of life of a patient. Being able to identify susceptibility
to side effects would be useful. Can we recognize susceptible patients prior to
treatment by genetic predisposition?

Chapter 2 describes the development and validation of a prognostic gene ex-
pression classifier. By gene expression profiling of 290 MM patients included in
the HOVON-65/GMMG-HD4 clinical trial, a 92 gene classifier (EMC92) was de-
veloped, enabling the classification of patients into high- or standard risk. This
classifier was validated in four external patient cohorts (newly diagnosed and
relapsed) in which its performance was shown to be independent of other prog-
nostic factors. Chapter 3 discusses the ability of combining prognostic factors and
ranking these in terms of performance. By exploiting the value of twenty known
prognostic factors, which were systematically combined pair-wisely, we selected
those combinations that improved prognostication. Among the most promising
was the EMC(C92-ISS combination, enabling the classification of patients into four
risk groups. The combinations that were found in the discovery phase were then
validated in a similar group of patients that were left out of the discovery phase
prior to the analysis. In Chapter 4 the EMC92 classifier was evaluated in elderly
patients. Although approximately 65% of newly diagnosed MM patients are older
than 65 years and thus likely non-transplant eligible, the EMC92-gene classifier
has been validated using mainly newly diagnosed transplant eligible or relapsed
patients. Only in a subset of the MRC-IX, newly diagnosed non-transplant eli-

gible patients were included. Therefore, we applied the EMC92-gene classifier
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to 178 patients included in the HOVON-87 trial with a median age of 73 years.
Also in this setting the classifier has a strong performance, independent of other
prognostic factors. Chapter 5 focuses on an important aspect of classifiers, i.e.,
concordance. Upon repeatedly classifying a patient under similar conditions, the
resulting outcome should remain the same. We have described a method to quan-
tify the concordance between repeated measurements and a test for equal con-
cordances. In Chapter 6, the relation between expression of the protein cere-
blon (CRBN) with clinical outcome was evaluated. CRBN was found to be essen-
tial for the activity of the immune modulatory drugs, including Thalidomide and
Lenalidomide. Using 96 Thalidomide treated patients of the HOVON-65/GMMG-
HD4 trial, we showed that higher levels CRBN gene expression were significantly
associated with longer progression-free survival. In contrast, no association be-
tween CRBN expression and survival was observed in the arm with Bortezomib
maintenance. Chapters 7 and 8 deal with the putative genetic predisposition to
the side effect peripheral neuropathy (PNP). Patients with high grades of PNP
require dose-reduction or even discontinuation of the treatment (in this case
Bortezomib). Identification of patients with an increased risk of developing PNP
could help treatment decisions. Therefore we tested in Chapter 7 the associa-
tion between germline single nucleotide polymorphisms (SNPs) and the occur-
rence of PNP during Bortezomib treatment in the IFM-2015-01 clinical trial. In
Chapter 8, the Bortezomib treated patients of the HOVON65/GMMG-HD4 were
re-genotyped using a more recent type of SNP array with unbiased design (more
than 900.000 SNPs). A SNP mapping to the 3° UTR of PKNOX1 was among the
highest associations in the IFM discovery cohort that could be validated in the
HOVON-65/GMMG-HD4 validation data.
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ABSTRACT

There is a strong need to better predict survival of patients with newly diagnosed
multiple myeloma (MM). As gene expression profiles (GEPs) reflect the biology of
MM in individual patients, we built a prognostic signature based on GEPs.

GEPs obtained from newly diagnosed MM patients included in the HOVON-
65/GMMG-HD4 trial (n = 290) were used as training data. Using this set, a prog-
nostic signature of 92 genes (EMC92-gene signature) was generated by super-
vised principal components analysis combined with simulated annealing.

Performance of the EMC92-gene signature was confirmed in independent val-
idation sets of newly diagnosed (TT2, n = 351; TT3, n = 142; MRC-IX, n = 247)
and relapsed patients (APEX, n = 264). In all sets, patients defined as high-risk by
the EMC92-gene signature show a clearly reduced overall survival with hazard-
ratios (HR) of 3.4 (95%CI: [2.2 — 5.3]) for the TT2 study, HR: 5.2 [2.5 — 11] for the
TT3 study, HR: 2.4 [1.7 — 3.4] for the MRC-IX study and HR: 3.0 [2.1 — 4.4] for the
APEX study (p < 1 x 10~%in all studies). In multivariate analyses this signature
was proven independent of currently used prognostic factors.

The EMC92-gene signature is better or comparable to previously published
signatures. This signature contributes to risk assessment in clinical trials and

could provide a tool for treatment choices in high-risk multiple myeloma patients.

32



EMC92: Arisk classifier for multiple myeloma

INTRODUCTION

Multiple myeloma (MM) is characterized by accumulation of malignant mono-
clonal plasma cells in the bone marrow. The median overall survival (OS) for
newly diagnosed patients treated with high dose therapy varies from 4 to 10
years. 2

The International Staging System (ISS), based on serum [32-microglobulin and
albumin, is widely used as a prognostic system for patients with newly diagnosed
MM. ISS has been confirmed as a solid prognostic factor in clinical trials.! Addi-
tional clinical factors to define high-risk disease have not been consistently re-
produced, with the exception of extensive disease represented by renal failure
and plasma cell leukemia.?3 In addition to ISS, cytogenetic aberrations such as
deletion of 17p (del(17p)), translocations t(4;14) and t(14;16) were shown to be
associated with an adverse prognosis. The combination of prognostic markers
t(4;14), del(17p) and ISS enabled further delineation of patients into prognostic
subgroups.*

A strategy to include genetic characteristics of MM is the translocation and
cyclin D (TC) classification, which distinguishes eight subgroups based on genes
which are deregulated by primary immunoglobulin H translocations and tran-
scriptional activation of cyclin D genes.® Subsequently, the University of Arkan-
sas for Medical Sciences (UAMS) generated a molecular classification of myeloma
based on gene expression profiles of patients included in their local trials. The
UAMS molecular classification of myeloma identifies seven distinct gene expres-
sion clusters, including the translocation clusters MS, ME, CD-1, CD-2, a hyper-
diploid cluster (HY), a cluster with proliferation-associated genes (PR), and a
cluster characterized by low percentage of bone disease (LB).® More recently,
we extended this classification based on the HOVON-65/GMMG-HD4 prospec-
tive clinical trial and identified additional molecular clusters, i.e. NFkB, CTA and
PRL3.7 Because these clusters were discriminated based on disease specific gene
expression profiles (GEP), we and others hypothesized that they may be relevant
for therapy outcome. Indeed, the UAMS defined clusters MF, MS and PR were
found to identify high-risk disease in the Total Therapy 2 trial.®

Several survival signatures were developed based on samples from clini-
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cal trials, such as the UAMS70, the related UAMS17 and the recently published
UAMSS80 signature which have value in prognostication of MM.8-10 Other signa-
tures include the Medical Research Council (MRC) gene signature based on the
MRC-IX trial, the French Intergroupe Francophone du Myélome (IFM) signature
and the Millennium signature based on relapse patients.!’13 Recently, a GEP
based proliferation index was reported.'* So far, none of these signatures have
been introduced in general clinical practice.

The additional and independent prognostic significance of a prognosticator
based on gene expression has been acknowledged in mSMART (Mayo Stratifica-
tion for Myeloma And Risk-adapted Therapy). Hereby, a high-risk MM population
can be defined for which alternative treatment is proposed although this has not
been validated in prospective clinical trials. >

The aim of the present study was to develop a prognostic signature for over-
all survival in MM patients. This investigation was prospectively included as a
secondary analysis of a randomized clinical trial for newly diagnosed, transplant-
eligible patients with multiple myeloma (HOVON-65/GMMG-HD4).
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MATERIALS AND METHODS

Patients

As training set the HOVON-65/GMMG-HD4 study (ISRCTN64455289) was used.
Details of the training set are given in the online supplemental document A.®
Informed consent to treatment protocols and sample procurement was obtained
for all cases included in this study, in accordance with the Declaration of Helsinki.
Use of diagnostic tumor material was approved by the institutional review board
of the Erasmus Medical Center. Arrays used for analysis passed extensive quality
controls, as described previously.” Of the 328 gene arrays deposited at the NCBI-
GEO repository, clinical outcome data was available for 290 patients (accession
number: GSE19784).

Four independent datasets were used as validation of which both survival
data were available as well as GEPs of purified plasma cells obtained from bone
marrow aspirates of myeloma patients. The datasets Total Therapy 2 (UAMS-
TT2, n = 351, GSE2658, NCT00573391), Total Therapy 3 (UAMS-TT3, n = 142,
E-TABM-1138, NCT00081939) and MRC-IX (n = 247, GSE15695, ISRCTN6845-
4111) were obtained from newly diagnosed patients. The APEX dataset (n =
264, GSE9782, registered under M34100-024, M34100-025 and NCT00049478
/ NCT00048230) consisted of relapsed myeloma cases (see online supplemental

document A). 111723

Gene expression pre-processing

To allow gene expression analysis in the HOVON-65/GMMG-HD4, plasma cells
were purified from bone marrow aspirates obtained at diagnosis, using immune-
magnetic beads. Only samples with a plasma cell purity of > 80% were used.
Gene expression was determined on an Affymetrix GeneChip® Human Genome
U133 Plus2.0 Array (Affymetrix, Santa Clara, CA, USA).

To allow for validation across different studies, only probe sets present on
both the U133 Plus2.0 and the U133 A/B platforms were included (n = 44754).
Probe sets having an expression value below the lowest 1% bioB hybridization

control in more than 95% of the samples are excluded. This resulted in 27680
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probe sets to be analyzed. All data were MAS5 normalized, logs transformed and
mean-variance scaled, using default settings in the Affy package in Bioconduc-
tor. 24

The normalized validation gene expression data sets were downloaded from
the repositories NCBI-GEO (APEX, MRC-IX and UAMS-TT2) and ArrayExpress
(UAMS-TT3). Datasets UAMS-TT2, UAMS-TT3 and MRC-IX were generated using
the U133 Plus2.0 (Affymetrix, Santa Clara, CA, USA) platform whereas the Affy-
metrix HG U133 A/B platform was used in the APEX study. The IFM dataset was
not included in our analysis due to an incompatible, custom platform.

The strong batch effect that exists between these GEPs studies was success-
fully removed by ComBat using the non-parametric correction option.?> APEX
was run on a different array platform with an incomplete overlap in probe sets
with the other datasets, and as a result ComBat correction was applied in two
separate runs with one run for all analyses involving the APEX data set and an

additional run for all other analyses.

Survival signature

The HOVON-65/GMMG-HD4 data were used as a training set. GEP and PFS data
were combined for building a GEP based survival classifier. PFS was used for
generating a classifier for OS since PFS was the primary endpoint of the HOVON-
65/GMMG-HD4 study and PFS demonstrated a higher number of events com-
pared to OS (179 PFS vs. 99 OS events in total in the HOVON-65/GMMG-HD4).
All evaluations of the signature are based on OS data in training and validation
sets. Analyses were performed using R with the survival package for survival
analyses.?® Out of 27680 probe sets tested, 1093 probe sets were associated to
PFS in univariate Cox regression analyses (false discovery rate (FDR) < 10%; for
probe sets and survival data see online supplemental document B). Subsequently,
this set was used as input into a supervised principal component analysis (SPCA)
framework in combination with simulated annealing (online supplemental doc-
uments A and B).?” This analysis yielded a model of 92 probe sets, termed the
EMC92 signature. The survival signature is a continuous score, i.e. the sum of
standardized expression values multiplied by the probe set specific weighting

coefficient (online Table S1, R-script and supplemental document C). High-risk
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disease was defined as the proportion of patients with an overall survival of less

than two years in the training set.

Validation of the EMC92 signature

A multivariate Cox regression analysis was performed for patients with available
covariates. Covariates with < 10% of the data missing were used as input in a
backward stepwise selection procedure (p< 0.05).

The EMC92 signature together with seven previously described, external sig-
natures for OS in multiple myeloma have been analyzed in a pair-wise comparison
using a multivariate Cox regression analysis. This analysis was performed for all
pair-wise comparisons on the pooled datasets excluding the training sets for the
signatures being tested. The models were stratified for study.

Pathway analysis was performed using the 92 genes corresponding to the
EMC92 signature as well as the 1093 genes generated by univariate PFS analy-
sis (FDR< 10%) with the probe sets used as input for the analysis as a refer-
ence set (n = 27680, Ingenuity Systems, www.ingenuity.com). p-values were
derived from right-tailed Fisher exact tests and corrected for multiple testing by

a Benjamini-Hochberg correction.?®
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RESULTS

The EMC92 signature

GEPs obtained from newly diagnosed MM patients were analyzed in relation
to survival data, in order to generate a classifier to distinguish high-risk from
standard-risk disease. We used the HOVON-65/GMMG-HD4 data as a training
set.” After filtering for probe set intensity, using internal Affymetrix control
probe sets, 27680 probe sets were analyzed in a univariate Cox regression anal-
ysis with progression free survival (PFS) as survival endpoint. This resulted in
1093 probe sets associated with PFS with a false discovery rate of < 10% (online
supplemental document B). Based on these 1093 probe sets, a supervised prin-
cipal components analysis based model was built in which simulated annealing
was applied to generate the optimal model settings in a 20-fold cross-validation.
The final predictive model consisted of 92 probe sets with specific weighting co-
efficients. The sum of normalized intensity values multiplied by this weighting
is the output of the signature. This model was termed the EMC92 signature. A
positive weighting coefficient indicates that increased expression contributes to
a higher value for the EMC92 signature value and thus a higher risk for poor sur-
vival. The majority of the probe sets are annotated genes (n = 85, with one of the
genes represented by two probe sets). The remaining probe sets are open read-
ing frames (n = 3), expressed sequence tags (n = 2) and one additional probe
set without annotation. Several known cancer genes are among these genes, of
which FGFR3 (weighting coefficient= 0.06), STAT1 (weighting coefficient = 0.05)
and BIRC5 (weighting coefficient = 0.02) were described in detail in relation
to myeloma (online Table S1).29-31 To define a high-risk population, the cut-off
threshold for the continuous signature score was set to a value of 0.827 based on
the proportion of patients in the training set that had an overall survival of less
than two years (63 out of 290 patients (21.7%); online Figure S2).

Four independent validation datasets were available: UAMS-TT2, UAMS-TT3,
MRC-IX and APEX. Gene expression datasets UAMS-TT2 and TT3 consisted of 351
and 142 transplant-eligible patients whereas the MRC-IX dataset contained both
transplant-eligible and non-transplant-eligible MM patients (n = 247). In the
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APEX dataset, GEPs of 264 relapse patients were collected. The results of the
EMC92 signature in the validation sets are shown in Figure 1 and online Table S2.
In the UAMS-TT2 dataset, the EMC92 signature identified a high-risk population
0f 19.4% with a hazard-ratio of 3.4, 95% confidence interval (95%C1)=[2.2 — 5.3]
(p= 5.7 x 1078). In the UAMS-TT3, 16.2% of patients were identified as high-risk
with a hazard-ratio of 5.2, 95%C1T [2.5 — 11], (p= 1.8 x 1075). In the MRC-IX
dataset, 20.2% of patients were identified as high-risk with a hazard-ratio of 2.4,
95%C1 [1.7 — 3.4], (p= 3.6 x 107%). The high-risk signature was able to iden-
tify patients with significantly shorter survival in both the transplant-eligible and
non-transplant-eligible patients included in the MRC-IX study. In non-transplant-
eligible patients, 23.9% high-risk patients were identified with a hazard-ratio of
2.4,95%C1 [1.5 — 3.9], (p= 4.3 x 10~%), whereas 16.8% of transplant-eligible pa-
tients were high-risk with a hazard-ratio of 2.5, 95%C1 [1.4 — 4.5], (p= 1.5 x
10~3; Figures 1d and e). The signature was not restricted to newly diagnosed
patients as 16.3% of patients included in the APEX relapse dataset were desig-
nated high-risk with a hazard-ratio of 3.0, 95%C1T [2.1 — 4.4], (p= 1.26 x 10~5;
Figures 1f and 2e).

To assess the relation between EMC92 signature outcome and treatment, we
evaluated whether there is evidence for differences in survival between treat-
ment arms in the high-risk group or standard-risk group. Within the high-risk
patients of the HOVON-65/GMMG-HD4 trial, the survival of bortezomib treated
patients was longer than patients treated with conventional chemotherapy (VAD)
(30 months compared to 19 months), albeit not significant (p= 0.06; number
of bortezomib treated patients: 26 vs. 37 in the VAD arm). Within the high-
risk patients of MRC-IX, no difference was observed between the treatment arms
(p= 0.5: MRC-IX non-transplant eligible: CTDAn = 14 vs. MPn = 12) and p= 1.0
(MRC-IX transplant eligible; CTD n = 16 vs. CVAD n = 7). For the standard-risk
patients no differences in survival between treatment arms were found in either
trial.

Multivariate analysis was performed in the training set and in the APEX and
MRC-IX validation sets, for which information on a large number of variables
were available. This showed that in addition to the EMC92 signature, del(17p)
was an independent predictor in HOVON-65/GMMG-HD4. Furthermore, in both
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Figure 1. Kaplan-Meier overall survival curves for EMC92 signature defined high-risk
patients versus standard-risk patients in five validation sets. The cut-off value is fixed at
0.827 based on the proportion of patients with OS< 2 years in the HOVON-65/GMMG-HD4
set. In the MRC-IX one patient had an unknown treatment status and was disregarded in
Figures d and e. a) UAMS Total Therapy 2. b) UAMS Total Therapy 3. ¢) MRC-IX. d)
MRC-IX transplant-eligible patients. e) MRC-IX non-transplant-eligible. f) APEX. N, number
of patients; Events, number of events; HR, hazard ratio; p-value for equality to standard-risk
group; Median, median survival time; n.r. median not reached.

40



EMC92: Arisk classifier for multiple myeloma

HOVON-65/GMMG-HD4 and in the APEX multivariate analysis, a component of
the ISS was an additional independent prognostic predictor ($2-microglobulin
for the HOVON65/GMMG-HD4 set and serum albumin for the APEX data set).
Trial specific covariates were seen in each multivariate analysis such as sub-study
in the APEX dataset and the MP treatment arm in the MRC-IX set. In conclusion,
in all three datasets of newly diagnosed and relapse MM patients the EMC92 sig-
nature performed as the strongest predictor for survival after inclusion of avail-
able covariates (Table 1). For univariate associations to survival see online Tables
S$3.1-S3.3.

Using the nearest neighbor classification method, all patients in the valida-
tion sets were classified into molecular clusters based on the HOVON-65/GMMG-
HD4 classification.” A clear enrichment of the MF, MS, PR clusters and decreased
proportion of the HY cluster was found in the pooled high-risk populations of all
validation sets (online Table S4).

To define the biological relevance of the EMC92 signature and the 1093 probe
sets found by initial univariate ranking, pathway analysis of the 92 and the 1093
probe sets was performed. Significant functions for the EMC92 signature in-
cluded multiple ‘cell cycle’ pathways (p= 1.8 x 1073 - 4.9 x 1072; online Table
S5), including genes such as BIRC5, TOP2A and CENPE. The 1093 probe sets indi-
cated functions such as ‘protein synthesis’ (p= 9.5 x 1073! - 1.5 x 10~'2), "cancer’
(p=4.8 x 10712-4.9 x 1072) and ‘cell cycle’ (p= 3.7 x 1079 - 4.9 x 10~2; online
Table S6). Next, we compared the chromosomal locations of the probe sets within
the EMC92 signature to the expected proportion represented on the Affymetrix
chip (online Table S7). None of the chromosomes demonstrated a significant
enrichment in the EMC92 signature, while all somatic chromosomes are repre-
sented. Within the set of 1093 probe sets, which formed the basis of the EMC92
signature and were identified by univariate survival analyses, chromosomes 1
and 4 were found to be significantly overrepresented. Further analysis of chro-
mosome 1 demonstrated a clear enrichment of the long arm of chromosome 1 in

this set of genes (online Table S8).
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Table 1. Multivariate analysis. Shown are the EMC92 with a cut-off value of 0.827 in a) the
HOVON-65/GMMG-HD4, b) APEX and ¢) MRC-IX. Covariates that were non-missing in more
than 90% of the patients were included. Variants were selected into the model by a backward
stepwise approach (p< 0.05).

a. HOVON65/GMMG-HD4 (n=290)

HR [ 95%Cl ] P
EMC92[1/0] 3.4[2.2 —5.4] 51x1078
B2m [23.5mg/L] 2.4 [1.5 — 3.4] 4.1x107*
del(17p) [1/0] 2.2 [1.4 —3.7] 1.6x1073
WHO [>=1] 2.1 [1.3 — 3.3] 2.1x1073

Likelihood ratio test: 95.8 on 4 df, p<2x10~16, n = 257, number of events= 93; 33 observations
deleted due to missing data.

Available covariates: del(17p)[1/0], del(13p)[1/0], gain(1q)[1/0], age[yr], age[ =60 yr], borte-
zomib treated[1/0], ISS=2[1/0], ISS=3[1/0], female[1/0], creatinine[mg/dL], creatinine[< 20 mg/dL],
B2m[mg/L], B2m[=3.5mg/L], B2m[=5.5mg/L], serum albumin[g/L], serum albumin[< 3.5 g/L],
LDH[>ULN], IgA[1/0], IgG[1/0], light chain disease[1/0], k light chain[1/0], diffuse osteoporosis[1/0],
hemoglobin[mmol/L], hemoglobin[<6.5 mmol/L], hemoglobin[<5.3 mmol/L], calcium[mmol/L], cal-
cium[>2.65mmol/L], WHO[>=1], WHO[>=2], WHO[>=3], WHO[=4]

b. APEX (n=264)

HR [ 95%Cl] p
EMC92-gene [1/0] 2.4 [1.6 — 3.6] 1.5x107°
serum albumin [g/L] 0.95[0.93 —0.98] 1.2x10~*
age[260yr] 1.7 [1.2—24] 1.6x1073
IgG [1/0] 0.64 [0.46 — 0.90] 1.0x1072
studyAPEX [1/0] 0.58 [0.41 — 0.82] 1.8x1073

Likelihood ratio test: 64.5 on 5 df, p=1.43x10~12,n = 250, number of events=150; 14 observa-
tions deleted due to missing data

Available covariates: age [yr], age [=60 yr], age [265 yr], bortezomib treated [1/0], female [1/0],
black [1/0], white [1/0], IgA [1/0], IgG [1/0], light chain [1/0], studyCREST [1/0], studySUMMIT
[1/0], studyAPEX [1/0], studyAPEXprogressive [1/0], serum albumin [g/L], serum albumin [<3.5
g/L], priorlines

c. MRC-IX (n=247)

HR [95%CI] p
EMC92-gene [1/0] 2.5 [1.7 — 3.6] 3.4x107°
age[yr] 1.0 [1.0-1.1] 3.0x107°
hemoglobin [mg/L] 0.86 [0.79 — 0.95] 1.8x1073
MP treatment [1/0] 1.6 [1.1 — 2.4] 1.8x1072

Likelihood ratio test: 74.8 on 4 df, p=2.1 x 10~ 15,n = 246, number of events=145; 1 observation
deleted due to missing data.

Available covariates: del(13q)[1/0], IgH split[1/0], hyperdiploid[1/0], t(4;14)[1/0], t(11;14)[1/0],
t(14;16)[1/0], 1(14;12)[1/0], t(6;14)[1/0], del(17p)[1/0], gain(1q) [1/0], female[1/0], bone
disease[1/0], albumin[g/L], albumin[<3.5g/L], hemoglobin[mg/L], hemoglobin[<8.5 mg/L],
hemoglobin[<10.5 mg/L], calcium[mmol/L], calcium[>2.65mmol/L], creatinine[mg/dL], creatinine[<
20 mg/dL], WHO[>=1], WHO[>=2], WHO[>=3], WHO[=4], age[yr], age[=60 yr], age[=65yr],
intensive treatment[1/0], CVAD treatment[1/0], CTD treatment[1/0], MP treatment[1/0], CTDA
treatment[1/0]
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Comparison to published gene signatures

We set out to evaluate the performance of the EMC92 signature in relation
to available GEP based prognostic signatures for OS in multiple myeloma. To
this end, the following signatures were evaluated: UAMS70, UAMS17, UAMSS80,
IFM15, gene proliferation index (GP150), MRCIX6 and, MILLENNIUM100.%-14

These signatures were evaluated as continuous variables as well as using the
cut-off values as published (Figures 2a-e, online Figure S2 and supplemental doc-
uments A and B). Overall, the performance of the EMC92 signature is robust, con-
sistent and compares favorably to previously published signatures. Specifically,
the EM(C92, UAMS, IFM15, MRC-IX and GPI50 signatures demonstrated signifi-
cance in all validation sets tested both for the dichotomized and the continuous
values of the signatures. The MILLENNIUM100 signature had significant perfor-
mance in the dichotomized model in one out of four independent studies. Thus,
performance was less robust for the MILLENNIUM100 signature. Although the
proliferation index GP150 was found to be significant in all validation sets tested,
the proportion of high-risk patients was much lower compared to the propor-
tion found using either the EMC92 or the UAMS80 signatures. Ranked, weighted
high-risk proportions are GPI: 10.0%, UAMS17: 12.4%, UAMS70: 13.0%, MRCIX6:
13.3%, EMC92: 19.1% and UAMS80: 23.4%. To determine which signature best
explained the observed survival, pair-wise comparisons were performed. For ev-
ery comparison the EMC92 is the strongest predictor for OS tested in an indepen-
dent environment (Figure 3 and online Table S9).

There is a varying degree of overlapping probe sets between all signatures.
Overlapping genes are shown in online Figure S3. Seven out of fifty probe sets
present in the GPI50 overlap with the EMC92 signature (BIRC5, FANCI, ESPL1,
MCM6, NCAPG, SPAGS5 and ZWINT). One of the six MRC-IX genes (ITM2B) is also
seen in the EMC92. Overlap between EMC92 and the remaining signatures is lim-
ited (EMC92 vs. UAMS17/70: BIRC5 and LTBP1; EMC92 vs. MILLENNIUM100:
MAGEA6 and TMEM97 and EMC92 vs. IFM15: FAM494).
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Figure 2. Performance per signature in available datasets. For every signature the hazard
ratio (high-risk versus standard-risk) is shown with 95% confidence interval. Grey lines
indicate results on training set. a) HOVON-65/GMMG-HD4, b) UAMS-TT2, ¢) UAMS-TT3, d)
MRC-IX, e) APEX. p: p-value for equal survival in high and standard-risk groups; percentage:
proportion of high-risk defined patients.
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UAMS70 1.8 [1.2 - 2.5] 2.1x10° 5.8x10™

Figure 3. Pair-wise comparison for all signatures. To find the signature best fitting the
underlying datasets, Cox regression models (high-risk versus standard-risk) were made for all
pair-wise signatures. These models are based on pooled independent datasets (i.e. excluding
training sets) and stratified for study. The two paired hazard ratios associated with the
signatures derived per model are shown in the two cells within the square panels. Only hazard
ratios within one panel can be compared because these are based on the same dataset. Blue
cells indicate significant hazard ratios (Bonferroni-Holm corrected p-value); red cells denote
non-significant findings. For the bottom right panel (i.e. UAMS70 vs. EMC92 signatures) the
underlying model is given. All other models can be found in online Table S9.

Combined risk classifiers

The performance of the EMC92 signature was in line with the UAMS signatures,

although they were derived from quite different patient populations. The inter-
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section of high-risk patients between the EMC92 and UAMS70 signatures was
approximately 8% of the total population on the pooled datasets that were in-
dependent of both our training set and the UAMS70 training set (i.e. MRC-IX,
TT3 and APEX; online Table S11). Approximately 13% of patients were classi-
fied as high-risk by either one of these signatures. The intersecting high-risk
group had the highest hazard-ratio as compared to the intersecting standard-
risk group (HR=3.9, 95%C1 [2.8 — 5.4], p= 3.6 x 107'%). Patients classified as
high-risk by either signature, showed an intermediate risk, i.e. with an HR of
2.4, 95%CT [1.8 — 3.3], for the EMC92 signature (p= 5.1 x 107®) and an HR of
2.2, 95%CT [1.2 — 4.1], for the UAMS70 signature (p= 1.1 x 10~2; online Table
S12). To test whether there is evidence for better performance if outcomes of two
dichotomous predictors are merged, we took the models made in the pair-wise
comparison (online Table S9) and tested these in a likelihood-ratio test against
a single signature outcome model. Merging the EMC92 with UAMS80 (p= 2.2 x
1073), UAMS17 (p= 9.4 x 10~2), GPI50 (p= 3.0 x 10~2), MRCIX6 (p= 1.6 x 1072)
and UAMS70 (p= 4.0 x 10~2) demonstrated a better fit to the data than any of
the single models (online Table S10).

EMC92 signature and FISH

To compare the high-risk populations composition as defined by the EMC92 and
the UAMS70 signatures, cytogenetic aberration frequencies in both populations
were determined using an independent set for which cytogenetic variables were
known, i.e. MRC-IX (Figure 4 and online Table S13). As expected, poor prog-
nostic cytogenetic aberrations gain(1q), del(17p), t(4;14), t(14;16), t(14;20) and
del(13q) were enriched in the high-risk populations (Figure 5), whereas the
standard-risk cytogenetic aberrations such as t(11;14) were diminished in the
high-risk populations. In contrast, only 15% (6 out of 39) of MRC-IX cases with
high-risk status as determined by the EMC92 signature showed absence of any
poor prognostic cytogenetic aberrations, as opposed to 44% (74 out of 168) in
standard-risk cases (p= 1.8 x 10~3). Similarly, of the UAMS70 defined high-risk
patients 4% (1 out of 23) did not have any poor prognostic cytogenetics, whereas
of the UAMS70 defined standard-risk patients this proportion was 43% (79 out
of 183) (p= 5.3 x 1073).
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Figure 4. Distributions of high-risk and standard-risk patients per FISH marker in
the MRC-IX dataset. Distribution of FISH markers within the high-risk (top panels) and
standard-risk (bottom panels) groups for the EMC92 and UAMS70 signatures. The EMC92
and UAMSY70 identified 50 and 42 patients out of 247 as high-risk, respectively. OR, Odds
ratio; p, Fisher exact p-value; red, presence of an aberration; blue, absence of an aberration;
white, missing data. Details are given in online Table S13.
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Figure 5. Poor prognostic cytogenetic aberrations in comparison to the EMC92
signature in MRC-IX patients. Each horizontal line represents one patient. The first column
denotes the distinction between high-risk (in red, n = 50) and standard-risk (in blue, n = 197).
Columns 2 to 7 represent cytogenetic aberrations as shown. Red, presence of an aberration;
blue, absence and white, missing data. More than half of the EMC92 standard-risk patients
are affected by one or more poor FISH markers.
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DISCUSSION

Here we report on the generation and validation of the EMC92 signature, which
was based on the HOVON65/GMMG-HD4 clinical trial. Conventional prognostic
markers such as ISS stage and adverse cytogenetics have been augmented by sig-
natures based on gene expression in order to increase accuracy in outcome pre-
diction in MM. More accurate prognosis may lead to the development of treat-
ment schedules which are specifically aimed at improving survival of high-risk
MM patients. Prognostic signatures for MM include the UAMS70, the UAMS17,
the UAMS80, the IFM15, the gene proliferation index (GPI50), the MRCIX6 and
the MILLENNIUM100 signatures.

For clinical relevance, a signature must have both the ability to separate risk
groups as clearly as possible and to predict stable groups of relevant size. The
EMC92 signature meets both criteria. In all validation sets a high-risk group of pa-
tients can be significantly determined and the proportion of high-risk patients is
stable across the validation sets. The validation sets represent different drug reg-
imens, including thalidomide (MRC-IX, TT2) and bortezomib (APEX, TT3). Also
the signature is relevant to both transplant eligible (e.g. TT3) and non-transplant
eligible patients (subset of MRC-IX) as well as newly diagnosed (e.g. TT2) and
relapsed patients (APEX).

In contrast, the predictions of the MRCIX6, GPI50, IFM15 and MILLENNIUM-
100 were not as convincing as those of the EMC92 and UAMS signatures. Espe-
cially the predictions of the MILLENNIUM100 signature in the validation sets fail
to reach significance in independent data sets such as MRC-1X, TT2 and TT3. The
differences in gene expression platform may have contributed to this in part. In-
deed, the IFM signature is based on a custom cDNA-based gene expression plat-
form, rather than the Affymetrix GeneChips, which have become common for MM
GEP studies.3? The cDNA platforms have been reported to be difficult to compare
with the Affymetrix oligonucleotide platform.'? Although the MILLENNIUM100
signature was generated using Affymetrix GeneChips, the use of an earlier ver-
sion of this platform may have contributed to the limited performance of this sig-
nature.'! The performance of the EMC92 signature is comparable to the UAMS
derived signatures, MRCIX6 and the GPI50, as measured by the significance of
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prediction in validation sets. For the UAMS70 and GPI50 the proportion high-
risk patients appears more variable, which may hinder clinical interpretation, es-
pecially when the high-risk proportion is less than 10%. Importantly, pair-wise
comparisons of all the signatures evaluated in this paper demonstrated that the
EMC92 has the best fit to the observed survival times in independent sets. Strik-
ingly, we found that performance can be improved by simply combining signa-
tures (e.g. EMC92 with UAMS80). However, this analysis is only an indication of
the possibilities of combining signatures, and future work involving more com-
plex combined signatures is in progress.

Itis important to note that the genes within the signature reflect optimal per-
formance of the signature rather than a biological definition of survival in MM.
The initially selected 1093 probe sets which were found to be associated with
PFS in univariate testing, are more likely to give a good representation of mye-
loma biology, as indicated for instance by the protein synthesis related pathways.
Although an extended biological discussion is outside the scope of this paper, a
number of interesting genes are included in the signature. BIRC5 was found in
4 signatures evaluated in this paper: EM(C92, UAMS17, UAMS70 and the GPI50.
This gene is a member of the inhibitor of apoptosis gene family, which encodes
negative regulatory proteins that prevent apoptotic cell death, and up-regulation
has been described to be associated with lower EFS and OS in newly diagnosed
MM patients. 1231 Other important myeloma genes include FGFR3 and STAT1.
FGFR3 is deregulated as a result of translocation t(4;14), which is an adverse
prognostic cytogenetic event.3? FGFR3 - a transmembrane receptor tyrosine ki-
nase - is involved in the regulation of cell growth and proliferation.33 STAT1 - an
important component of the JAK/STAT signaling - is involved in multiple path-
ways including apoptosis induced by interferon signaling. 2

A clear enrichment of the long arm of chromosome 1 was observed in the
1093 probe sets in this study. Previously the importance of chromosome 1 was
reported for the UAMS70 signature. Genes on 1q in the UAMS70 signature in-
clude CKS1B and PSMD4, both of which were not in the EMC92 signature, al-
though CKS1B was found to be associated with PFS in our set and thus in the
1093 set.>1% The EMC92 signature did contain 9 genes on 1q of which S10046

has been described in relation to 1q21 amplification in MM and other cancer
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types.3* This may also be part of the explanation why, despite the use of the same
GEP platform, the overlap between different signatures is limited. Indeed, mul-
tiple genes are found within the 1921 amplicon with downstream factors pos-
sibly over-expressed as a result of this. Which gene will be linked most signifi-
cantly to survival in a specific set is most likely due to factors such as variability in
datasets, to which population differences and differences in used techniques may
contribute. Other reasons may be found in the difference in treatment strategies
used, in which other genes could be responsible for adverse prognosis.

To characterize the high-risk group in depth, we have demonstrated that in
the MRC-IX study, high-risk patients are enriched for poor cytogenetic aberra-
tions gain(1q), del(17p), t(4;14), t(14;16), t(14;20) and del(13q). Still more than
half of the patients in the standard-risk group showed one or more poor prog-
nostic cytogenetic markers indicating that the occurrence of a single poor-risk
marker does not have very strong prognostic value.

Clinical use of a gene signature (UAMS70) has recently been incorporated in
the mSMART risk stratification, which additionally includes FISH, metaphase cy-
togenetics, and plasma cell labeling index. The mSMART risk stratification is the
firstrisk stratification system adjusting treatment regimens according to risk sta-
tus, although this has not been validated in prospective clinical trials.>3> Ulti-
mately, clinical use of any signature must be proven to be of use in prospective
clinical trials, which allow treatment choice based on risk assessment. This will
result in clinical guidelines to improve treatment of patients with a poor PFS and
OS on novel therapies. For practical application of the EMC92 signature it is es-
sential to stress that this signature has not been designed for classification of a
single patient. However, collection of a set of more than ~25 patients will result
in reliable prediction, and each additional patient can be predicted as soon as it
is tested.

In conclusion, we developed a risk signature highly discriminative for patients
with high-risk versus standard-risk MM, irrespective of treatment regime, age
and relapse setting. Use of this signature in the clinical setting may lead to a more

informed treatment choice and potentially better outcome for the patient.
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ABSTRACT

Patients with multiple myeloma have variable survival, and require reliable prog-
nostic and predictive scoring systems. Currently, clinical and biological risk
markers are used independently. Here, ISS, FISH markers and gene expression
(GEP) classifiers were combined to identify novel risk classifications in a discov-
ery/validation setting.

We used the datasets of HOVON-65/GMMG-HD4, UAMS-TT2, UAMS-TT3,
MRC-IX, APEX and Intergroupe Francophone du Myelome (IFM-G) (total number
of patients: 4750). A total of 20 risk markers were evaluated including t(4;14)
and deletion of 17p (FISH), EMC92 and UAMS70 (GEP classifiers) and ISS.

The novel risk classifications demonstrated that ISS is a valuable partner to
GEP classifiers and FISH. Ranking all novel as well as existing risk classifications
showed that the EMC92-ISS combination is the strongest predictor for overall
survival, resulting in a four group risk classification. The median survival was 24
months for the highest risk group, 47 and 61 months for the intermediate risk
groups and median not reached after 96 months for the lowest risk group.

The EMC92-ISS classification is a novel prognostic tool, based on biological
and clinical parameters, which is superior to current markers and offers a robust

clinically relevant 4-group model.
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INTRODUCTION

In multiple myeloma (MM) patients, malignant plasma cells accumulate in the
bone marrow, leading to a wide range of clinical symptoms which include bone
disease, hypercalcemia, renal impairment and anemia.! The prognosis is vari-
able, with survival for newly diagnosed patients ranging from less than two to
more than twenty years.? Adequate prognostication of disease outcome is impor-
tantin order to make treatment choices and to allocate high-risk patients to alter-
native treatment options. Clinical trials that address specific treatment of high-
risk patients include TT4, TT5 and MUK9 (TT4: Total Therapy 4, NCT00734877;
TT5: Total Therapy 5, NCT02128230; MUK9, OPTIMUM trial, Myeloma UK Clini-
cal Trial Network).

Heterogeneous treatment outcome can in part be explained by different bi-
ological subgroups in MM, which are characterized by primary translocations
involving genes such as MMSET (t(4;14)), and c-MAF (t(14;16)).3* These sub-
groups can be identified using gene expression profiling.>® In addition, gene ex-
pression profiling has been utilized to establish classifiers for prognostication.
The EMC92 is a robust risk marker for the identification of high-risk MM, and was
validated in independent clinical trials showing a solid and independent perfor-
mance in comparison to other MM GEP classifiers such as UAMS70.7-13 Clinical
prognostic systems for MM, are primarily based on beta2-microglobulin (B2m),
albumin, lactate dehydrogenase, C-reactive protein, calcium and creatinine. 14,15
The International Staging System (ISS) is based on BZm and albumin, with stage
[ representing limited disease, stage Il intermediate and stage III the most unfa-
vorable disease.'® Today it is used as the standard clinical risk classification for
MM.

FISH based cytogenetics and gene expression profiling are biology based
prognostic markers.!” ISS was combined with high-risk cytogenetic markers
t(4;14) and deletion of 17p (del(17p)) to establish novel prognostic risk classi-
fications as proposed by Neben and Avet-Loiseau.'®'° Recently, serum lactate
dehydrogenase (LDH) was added as a component to this marker combination.?°
Other prognostic systems include combinations of cytogenetic markers, such as

the combination of del(17p), translocation t(4;14) and gain of 1q (gain(1q)).?!
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The goal of this study was to evaluate all published risk markers used in MM
and to compare combinations of FISH, ISS and GEP based prognostic systems.
By applying a study design with independent discovery and validation sets, we
demonstrated that ISS can be combined with gene expression signatures into
powerful classifiers for MM.
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MATERIALS AND METHODS

Clinical data

The clinical data from the the Dutch-Belgium Hemato-Oncology Group (HOVON)
and German-speaking Myeloma Multicenter Group (GMMG) (HO65/HD4), Medi-
cal Research Council-IX (MRC-IX), University of Arkansas for Medical Sciences
Total Therapy (UAMS-TT2 and TT3), Intergroupe Francophone du Myelome
(IFM-G; all newly diagnosed patients) and APEX (relapse patients) trials were
used.”~9192223 The IFM-G cohort is a clinical database of patients not separately
published and was included in the ISS development.'® Treatment regimens of
the trials from which these datasets were derived are summarized in Table 1.
Overall survival (OS) or progression-free survival (PFS) and at least one prog-
nostic marker were available for all patients (Table 1; Figure S1). All patients
signed an informed consent in accordance with the Declaration of Helsinki and

all protocols were approved by institutional review boards.

Gene expression profiling (GEP)

All GEP data are Affymetrix HG U133 Plus 2.0 platform based, except for the
APEX study (Affymetrix U133 A/B platform). HO65/HD4 GEP was performed
in our lab as described previously (n = 327; GEO series GSE19784).%71 Other
GEP sets were: TT2 (n = 345; GSE24080) 8 TT3 (n = 238; E-TABM-1138 and
GSE24080) %%, MRC-IX (n = 247; GSE15695) %2 and APEX (n = 264; GSE9782).23
Due to unavailable survival data, the Heidelberg-Montpellier (HM) dataset (n =
206; E-MTAB-362), was used only to determine the probe set means and vari-

ances for the training set of the HM19 classifier. 12

Standard prognostic markers

Availability of risk markers and patients per dataset is shown in Table 1 and
Figure S1. The International staging system (ISS) was determined by combin-
ing serum levels of B2M and albumin.'® Cytogenetics by Fluorescence in situ
hybridization (FISH) was used with a 10% cut-off level except for a 20% cut-off

used for numerical abnormalities in the MRC-IX trial.1%%5-%27 Gain of chromo-
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Table 1. Distribution of risk markers and treatments per dataset. The numbers of patients
per data set are given with in brackets the number or percentage of positive patients according
to the markers’ risk classification.

Intensive Non-intensive

N 827 701 491
" median age [IQR]lyrs] ¢ 57(51-61)  58(54-63) i 74 (70-77y
 Treatment[n]  F PAD 413)  CTD(351) CTDa(257)
" Control  VAD(414)  CVAD(350) | MP(234)
" High-dose alkylator ~ YES ~ YES 1 Nno

EMC92 [n (% high)] * 138 (17%) 109 (24%)
S UAMS17 327 (12%) 138 (9%) - 109 (16%)
"~ UAMS7TO ¢ 327 (9%)  138(7%) - 109 (10%)
"~ UAMS80 ¢ 327 (8%)  138(8%) - 109 (9%)
" MRCIX6 G 327 (5%) ok
CIFRM15 327 (25%)  138(25%) - 109 (28%)
 HM19 (low/medium/high%) 327 (34/51/15%) 138 (45/48/7%) 109 (39/53/8)
S GPISO 327 (34/51/15%) 138 (52/41/7%) 109 (52/38/10)

ISS [n (1/2/3%)] 756 (38/37/25) 636 (25/39/36) 449 (13/41/45)

t(4;14) [n (% positive)] 429 (12%) 619 (12%) 434 (10%)
CyM114) 437 (16%) 617 (15%) ¢ 434 (12%)
S t(1416) o 360 (2%)  612(3%) ¢ 434 (3%)
S t(14200 255 (0%)  612(2%) ¢ 429 1%)
CIgHsplit 327 (48%) 609 (44%) < 429 (40%)
~gainlq 344 (32%) 531 (37%) < 37t (%)
S del(13q) ¢ 686 (41%) 612 (46%) < 428 (43%)
S del(l7p) ¢ 351 (11%) 591 (8%) ¢ 423 (9%)
S gain9  454(57%) 480 (60%) ¢ 351 (66%)

HR.FISH.A [n(%)] 354 (46%) 535 (48%) 368 (48%)

HR.FISH.B/ISS [n(1/2/3%)] 334 (60/22/18) *

*, training set for these markers. Only the proportion and number that are not used for building the marker,
if any, are shown.

**, intersection of patients with available data between datasets is shown in Figure S1.

*** the HR.FISH.A compound risk classification is based on a patient having either del(17p), t(4;14) or gain
of 1q. If only gain of 1q is known (in TT2 patients), these are the only patients classified with certainty as
high-risk. The remaining patients cannot be classified, since the status of t(4;14) and del(17p) are unknown.
If the missing bias is strong enough (see methods), that marker is excluded from the combination analyses.
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TT2 TT3 APEX IFM-G POOLED

351 238 264 1878 4750*
""""""" 57 (49-64)  60(53-66)  61(54-67)  57(51-61)  57(51-62)
""""""" TD(175)  VTD(238)  BOR(188)  VD(740)  BOR(1579)/THAL(783)
""""""" MD(176) Nocontrols  DEX(76)  VAD(1138)  BOR(1628)/THAL(760)
""""""" YES  Yes " YEs  Yes

345 (19%) 238 (15%) 264 (16%) 1094 (18%)
""""""" < 238(14%) 264 (12%) 1076 (12%)
""""""" < 238(12%) 0 264(8%) 1076 (9%)
""""""" 345 (9%)  * 284 (1%) 1183 (8%)
""""""" 345 (7%) 238 (5%) = 264(3%) M4 (%)
""""""" 345 (24%) 238 (24%) 157 (28%)
""""""" 345 (50/47/8) 238 (47/47/7) 264 (41/50/8) 1420 (44/48/8)
""""""" 345 (63/31/7) 238 (58/34/8) 1159 (51/39/10)

208 (50/28/21) 202 (34/33/33) 1475 (34/39/28) 4074 (34/37/30)

1635 (14%) 3180 (13%)
""""""""""""""""""""""""""""""" 1488 (15%)
"""""""""""""""""""""""" 456 (4%) 1862 (3%)
""""""""""""""""""""""""""""""" 1296 (1%)
""""""""""""""""""""""""""""""" 1410 (44%)
T a8 (%) 891 (37%) 2385 (38%)
"""""""""""""""""""""""" 1807 (48%) 3522 (46%)
"""""""""""""""""""""""" 1651 (15%) 3016 (12%)
""""""""""""""""""""""""""""""" 1285 (60%)

116 (100%)*** 1022 (64%) 2395 (57%)

516 (55/29/17) 850 (57/26/17)
PAD: bortezomib, doxorubicin, dexamethasone; VAD: vincristine, doxorubicin, dexamethasone;
CVAD: cyclophosphamide, vincristine, doxorubicin, dexamethasone; MP: melphalan, prednisone;
CTD(a): (attenuated) cyclophosphamide, thalidomide, dexamethasone; VTD: bortezomib, thalido-
mide, dexamethasone; (V)MD: (bortezomib,) melphalan, dexamethasone;VD: vincristine, dexam-
ethasone; BOR: bortezomib; THAL.: thalidomide.
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some 9 (gain(9)) - one of the hyperdiploid chromosomes and most frequently
available marker for this purpose - was used as a proxy for hyperdiploidy.?®
FISH probes used in MRC-IX and HO65/HD4 were described before.?>?° Cytoge-
netic data obtained by methods other than FISH were excluded. High risk FISH
was defined as having either del(17p) or t(4;14) or gain(1q), denoted here as
HR.FISH.A.?! The risk classification described by Avet-Loiseau et al. is denoted
here as HR.FISH.B/ISS.'? This risk classification distinguishes grade-I (ISS=1 or
2 with FISH markers t(4;14) and del(17p) both negative), grade-1I (not grade-I
or III) and grade-III (ISS=2 or 3 with FISH markers t(4;14) or del(17p) positive).
In case of an arbitrary situation due to missing data for one of the markers, the

observation was excluded.

Gene expression classifiers

The following MM gene expression classifiers were used: EMC927, UAMS178,
UAMS708, UAMS80°?, IFM151%, MRCIX6'3 (all two risk group classifiers) and
HM1912, GPI50!! (both three risk group classifiers). Normalization and cut-offs
were calculated as described previously (see online supplemental methods for a

brief description).

Statistical analyses

In Figure 1, a flowchart of the analyses is given. The association of risk markers
with survival was assessed using a Cox survival model (R ‘survival’ package, ver-
sion 2.38-1).39-32 To account for heterogeneous survival between studies, mod-
els were stratified per trial cohort. The trial cohorts were HO65/HD4, MRC-IX in-
tensive, MRC-IX non-intensive, UAMS-TT2, UAMS-TT3, IFM-G and APEX. Datasets
used for generating risk markers were systematically excluded in validation anal-
yses in order to avoid training bias. For instance, HO65/HD4 patients were ex-
cluded in analyses involving the EMC92 classifier (Table 1). The method for find-
ing novel combination markers (compound markers) is illustrated in online Fig-
ure S2b and extensively described in the online supplemental methods. Briefly,
since missing data may confound the analyses, combinations with increased risk
for confounding were excluded (Table S1; online supplemental methods). Sub-

sequently, the data were randomly split into a discovery and validation set. The
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discovery set was used for finding meaningful combinations of markers as well as
the most optimal way to split patients into subgroups, using these combinations.
Stringent validation was performed in the designated validation set to confirm
their prognostic strength. Finally, all new combinations and existing markers

were ranked, with a low rank score indicating a high performing risk marker.

@ CONFIRM EXISTING MARKERS

Confirm 20 existing risk-markers

Not significant: n=4

gain 9; t(11;14),

Passed; n =16 t(14;16) and t(14;20)
J DISCOVER NOVEL MARKERS

Perform a likelihood ratio test for all 120 possible pair-wise
combinations of confirmed existing risk-markers

Not significant or
not enough data:
Passed n = 20 n = 100 out of 120
Determine optimal risk-classification for all 20 passed
combinations
(See online Figure S2B for details)

@ VALIDATE NOVEL MARKERS

Apply the 20 novel risk-markers to the validation set.

Not passed n = 4

Passed n = 16

@ RANK NOVEL AND EXISITNG MARKERS

_____ Rank order 16 novel and 16 existing risk-markers by
performance. (See online Figure S2C for details)

Figure 1. Flowchart of analyses. The analyses are organized as follows: 1) confirmation of
existing risk markers, 2) systematically finding novel risk markers with improved prognostic
strength by combining existing risk markers and 3) validating them; 4) ranking of confirmed
existing- and validated novel risk markers. See Figure S2a-c for more details.

63

3



RESULTS

Confirmation of existing risk markers

The value of 20 existing risk markers was evaluated in a data set of 4750 pa-
tients. The markers and used cohorts are given in Table 1. The prognostic value
was evaluated correcting for the differences in survival between cohorts (Fig-
ure 2, online Figures S3-S5 and Table S2). For all markers at least 2 cohorts
were available. All gene expression (GEP) classifiers demonstrated a highly sig-
nificant performance for OS. Hazard ratios for GEP classifiers ranged from 2.0
(95%C1 [1.6 — 2.4]; IFM15) up to 3.3 (2.6 — 4.3] (UAMS70). Furthermore, haz-
ard ratios for GEP classifiers were consistently higher than any of the other risk
markers, including all FISH markers and ISS. This suggests better risk separa-
tion for GEP classifiers compared to FISH markers. GEP classifiers generally per-
formed better for OS than for PFS (Figures S3A-B, S4 and S5; Table S2) with PFS
hazard ratios between 1.8 [1.5 — 2.1] (IFM15) up to 2.3 [1.9 — 2.7] (EMC92). The
percentage of high-risk patients varied between classifiers: 18% (EMC92), 12%
(UAMS17), 10% (GPI50), 9% (UAMS70), 8% (UAMS80 and HM19; Table 1).

FISH markers with prognostic strength can be distinguished from mark-
ers with no or disputable value. For OS, markers t(4;14), del(17p), gain(1q)
and del(13q) performed well with hazard ratios ranging between 1.7, 95%C'I
[1.5 — 1.8] for del(13q) up to 2.3 [2.0 — 2.6] for del(17p). The markers gain9,
t(11;14), t(14;16) and t(14;20) were clearly not significant or had high variance
due to lack of predictive value or small number of positive cases. These markers
were excluded from further analyses. A similar pattern was found for PFS, but
the strength of the markers was generally lower with PFS hazard ratios ranging
from 1.4 [1.3 — 1.5] (del(13q)) up to 1.8 [1.6 — 2.0](t(4;14)).

ISS was confirmed as a valuable and highly significant prognostic marker. A
hazard ratio of 1.6 95%C'I [1.4 — 1.8] (ISS = 2) and 2.3 [2.1 — 2.6] (ISS = 3) was
found for OSand 1.4 [1.3 — 1.6] (ISS=2) and 1.7 [1.6 — 1.9] (ISS = 3) for PFS.Other
previously published compound risk markers, denoted here as HR.FISH.A?! (ei-
thert(4;14) ordel(17p) or gain(1q)) and a combined FISH/ISS marker (HR.FISH.B-
/15S) 19 showed good performance. The hazard ratio was 2.3 [2.0 — 2.5] (HR.FISH.A).
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For the three group HR.FISH.B/ISS risk classification, hazard ratios of 1.8 [1.4 — 2.4]
(intermediate risk) and 3.6 [2.7 — 4.7] (high-risk) were found.

To correct for heterogeneity between studies, all analyses were corrected for
the survival differences between trials as a result of differences in treatment, dis-
ease stage and patient populations. To evaluate the effect of this correction, all
analyses were repeated per cohort and highly similar results were obtained, sug-
gesting that these risk markers perform similarly across different cohorts (online

supplemental results).

Pair-wise combinations of risk markers

The next analysis was performed to explore combinations of risk markers. As in-
dicated above, 16 of 20 evaluated markers had significant associations with 0OS
and/or PFS. Based on these 16, all possible pair-wise combinations were gen-
erated. Twenty combinations were significant in the discovery set of which 16
remained significant in the independent validation set (Figure 2, online Figure
S8a-b and Table S2-S3). In 10 of 16 combinations, ISS was combined with either
GEP classifiers (n = 5) or FISH markers (n = 5), illustrating the strong additive
power of ISS to these markers. Combinations of GEP (n = 3) and FISH markers
were observed (n = 3), but no combinations of FISH with GEP. Two combinations

divided patients in 3 groups, ten in 4 groups and four into 5 groups.

Ranking of existing and novel markers

The markers described above, i.e. 16 existing plus 16 validated new risk mark-
ers, were ranked on the basis of performance, as described in the Supplemental
methods. ISS-GEP combinations consistently ranked at the top with the EMC92-
ISS compound risk marker having the best median rank score (R.S) (Figure 3;
RS = 0.05). Other high scoring markers included ISS-UAMS17 (RS = 0.11), ISS-
HM19 (RS = 0.13) and ISS-UAMS70 (RS = 0.19). The HR.FISH.B/ISS compound
marker ranked in 5" place (RS = 0.20) and ISS ranked in 23" place (out of 32;
RS = 0.61). In general, compound markers tended to score better than single
markers. The best single marker was EMC92 in 7" position (RS = 0.26).
EMC92-ISS classifies patients into four groups with proportions of 38%, 24%,
22% and 17% for the lowest to the highest risk group, respectively (Figure 4A-B).
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Marker

EMC92
UAMS17
UAMS70
UAMSS80

MRCIX6
IFM15
HM19
GPI50

ISS
3 t(4;14)

t(11;14)

t(14;16)

t(14;20)

IGH split

gain 1q

del(13q)

del(17p)

gain 9

HR.FISH.A

HR.FISH.B/ISS
EMC92 - UAMS70 *
UAMS17 - UAMS80 *
ISS - t(4;14) *
del(13q) - ISS *
EMC92 - ISS *
UAMS17 - ISS *
UAMS70 - ISS *
HM19 - ISS *
del(13q) - t(4;14) *
del(13q) - gain 1q *
del(17p) - gain 1q *
HM19 - UAMS80 *
gain 1q - ISS *
del(17p) - ISS *
GPI50 - ISS *
HR.FISH.A - ISS *
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Figure 2. Risk markers in relation to overall survival. Both existing markers and validated
novel combinations are shown. For novel combinations, the results shown represent the
validation. For confirmation of existing markers no discovery/validation split is required and
results shown are based on all available data. In the left panel, existing markers and novel
combinations (denoted by an asterisk) are listed. For each marker, the number of risk groups
(#groups) and number of available patients is given (# patients). Markers are sorted by the
number of risk groups. In the center panel, the hazard ratios are shown (open circle), with
Bonferroni adjusted 95% confidence intervals (indicated by two lines and closed circles).
For coherent notation, hazard ratios are expressed relative to the lowest risk group. Every
additional risk group results in an extra hazard ratio. For instance, for the novel combination
EMC92 — ISS, 4 risk groups result in 3 hazard ratios, as indicated in the text and Table S2A
(intermediate low risk relative to low risk: hazard ratio (HR) 2.6, 95%CI [1.6 - 4.5] intermediate
high-risk relative to low risk: HR: 3.2, 95%CI [1.9 - 5.4] and high-risk relative to low risk: HR
6.9, 95%CI [4.1 - 12]. In the right panel, a plus sign indicates whether a data set could be used
for the analysis of a specific marker or combination (for details of available data, see Table
1 and Figure S1). For the EMC92-ISS combination, the following datasets could be used:
APEX, MRC-IX, TT2 and TT3.

The hazard ratios relative to the lowest risk group were 2.6 [1.6 — 4.5] (interme-
diate low), 3.2 [1.9 — 5.4] (intermediate high) and 6.9 [4.1 — 11.7] (high). Median
survival times were 24 months (high), 47 (intermediate high) and 61 months
(intermediate low) for the three highest risk groups, with median survival not
reached after 96 months for the lowest risk group. To gain insight into the per-
formance of this marker over time, we determined the proportions of surviving
patients in each risk group and analyzed the EMC92-ISS at different time points.
This marker is clearly applicable to younger as well as older and relapsed pa-
tients, and holds its value during follow up (Table 2 and online Figure S10).

The composition of the four groups in terms of ISS, EMC92 and FISH markers
is shown in Table 3. Interestingly, within the EMC92-ISS lowest risk group, 75%
of patients - with truly favorable prognosis (Table S4) - were positive for either
t(4;14), del(17p) or gain(1q). In the other risk categories 32%, 42% and 86% of
patients were positive (intermediate low-, intermediate high- and high-risk, re-
spectively) indicating that EMC92-ISS and FISH only partly represent overlapping

patient sets.
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Table 2. Proportion of surviving patients at multiple time points per EMC92-ISS
risk group in a Kaplan Meier analysis on the validation data (from top to bottom:
6, 12, 24 and 72 months respectively). In the left column patient groups are pooled
(n = 328). Subsequent columns show percentages for newly diagnosed patients younger
than 65 years (n = 174), newly diagnosed older than 65 years (n = 90) and relapsed pa-
tients (n = 64) respectively. For the relapse category the 72 months’ time point is not available.

6 months Pooled <65yr. 265yr. Relapse
Low-risk 98% 97% 96% 95%
Intermediate low-risk 96% 95% 91% 85%
Intermediate high-risk 86% 93% 73% 79%
High-risk 84% 88% 56% 57%
Total survival 92% 94% 81% 83%
12 months Pooled <65yr. 265yr. Relapse
Low-risk 97% 97% 96% 89%
Intermediate low-risk 87% 93% 91% 54%
Intermediate high-risk 74% 93% 73% 42%
High-risk 67% 2% 56% 57%
Total survival 84% 91% 81% 60%
24 months Pooled <65yr. 265yr. Relapse
Low-risk 92% 97% 92% 55%
Intermediate low-risk 76% 88% 73% 23%
Intermediate high-risk 57% % 58% 24%
High-risk 46% 56% 31% 0%
Total survival 2% 84% 67% 30%
72 months Pooled <65yr. 265yr. Relapse
Low-risk % 86% 96% -
Intermediate low-risk 43% 59% 32% -
Intermediate high-risk 27% 39% 28% —
High-risk 22% 33% 0% —
Total survival 48% 62% 36% —

Table 3. Distribution of markers in each of the four EMC92-ISS based risk groups. Shown
are the numbers in the data for which the EMC92-ISS risk classification could be determined.
n, number of patients in the EMC92-ISS based risk group for which the specified marker
was available. Positive, the percentage of patients positive for the specified marker; HR,
the percentage of patients indicated as high-risk according to the specified marker. For the
classifications based on del(13q), 1q gain and HR.FISH.A, a clear correlation was found to the
EMC92-ISS classifications. For instance, 93% of EMC92-ISS high-risk patients are positive
for HR.FISH.A compared to 44% - 55% of the intermediates and 75% of the low-risk patients.

EMC92 ISS del(17p) del(13q) gain 1q HR.FISH.A
EMC92-1SS HR n 1 2 3 n pos. n pos. n pos. n HR n

Low 0% 365 100% 0% 0% 365 8% 39 44% 39 34% 154 T5% 76
Interm. low 0% 231 0% 100% 0% 231 5% 60 37% 60 34% 92 44% 70
Interm. high 0% 211 0% 0% 100% 211 8% 66 44% 66 41% 101  55% 84

High 100% 166 30% 32% 39% 166 16% 38 74% 39  76% 90 93% 76
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IGH split 4 —]
del(13q) - —{ T}
MRCIX6 — T 1
del(17p) - —{ T +—
t(4;14) — T }—
IFM15 - —{T—
gain 1q - —f{ [
GPI50 - —T 1
HR.FISH.A — —{T}+—
ISS —{Tt+—
UAMS80 —{ T}
UAMS70 - —{T T
del(17p) - gain 1q — —{ T 1+
del(17p) - 1SS — T
HM19 - —{ 1
UAMS17 —{ T }—
del(13q) - gain 1q L I B )
HM19 - UAMS80 — — T
EMC92 - UAMS70 — . 11 .
gain 1q - ISS — —] [
t(4;14) - ISS —{ T }+——
UAMS17 - UAMS80 — —{ T
GPI50 - ISS — —{ T+
del(13q) - ISS —{ T
del(13q) - t(4;14) — T
EMC92 — T
HR.FISH.A - ISS — —{ T 1
HR.FISH.B / ISS — — T 1
UAMS70 - ISS — — T}
HM19-1SS 4 +——T +
UAMS17-1SS o4 [T }+—

EMC92 - 1SS - o+ }——

[ [ [ I [ I T I [ I 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 10
Rank score

Figure 3. Ranking of confirmed existing risk markers and validated novel risk markers,
in relation to overall survival on the validation data. The markers are vertically ordered by
rank score, which reflects the observed proportion of risk markers with a better performance.
Each box shows the interquartile range of the rank score per marker.
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Figure 4. Survival analysis of EMC92-ISS, FISH and ISS. Given are Kaplan-Meier curves
(not stratified) and Cox models (stratified; i.e. corrected for differences in survival in different
cohorts). a) EMC92-ISS in the discovery set; b) EMC92-ISS in the validation set; ¢) EMC92 in
all data; d) ISS in all data; e) HR.FISH.A in all data; f) HR.FISH.B/ISS in all data. In order of
increasing risk: low-risk (blue); intermediate low-risk (purple); intermediate high-risk (orange);
high-risk (red); SR = standard-risk; HR = high-risk. Below the Kaplan-Meier curves, results
of the stratified Cox model are found. prop. = proportion of patients within the specified risk
group. HR [95%CI] = hazard ratio relative to the lowest risk group with 95% confidence inter-
val; p-value= p-value relative to the lowest risk group; The bottom line shows the result of the
likelihood ratio goodness of fit test.

Biological relevance of GEP classifiers

Genes within GEP classifiers are selected based on association with survival,
rather than a direct link to biology. Still, a gene ontology enrichment analysis 33
can highlight biological processes important for a poor outcome (online Tables
S5a-h). All GEP classifiers had enrichment of cell-cycle related genes. When all
probe-sets in all classifiers were pooled 191 biological processes were found to
be enriched (FDR< 0.05). Top processes included ‘nuclear division, ‘mitosis’
and ‘cell division, processes sharing the genes BIRC5, BUB1 and UBEZ2C. Other
prominent processes included ‘DNA metabolic process’, ‘DNA packaging’ and
‘DNA replication’ (genes such as TOP2A and MCM?2).
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DISCUSSION

Important prognostic markers in MM are based on ISS, FISH markers and GEP
classifiers.”-131617 Previously, we showed that combining various GEP classifiers
resulted in a stronger prediction of the high-risk population.” Here we systemat-
ically evaluated additional, new combinations of prognostic markers. We limited
the search for new compound risk markers to pair-wise combinations of existing
markers. This choice is mainly driven by the lack of complete data sets which
contain all risk markers (online Figure S1), which hinders the analyses of more
complex risk models. The number of patients positive for specific markers was
remarkably stable between cohorts, irrespective of the type of marker. This adds
strength to the belief that these markers, and thus decisions based on them can
be reliably replicated.

Three findings are of particular interest: first, ISS has a clear and independent
value in combination with either GEP classifiers or FISH markers. GEP classifiers
combined with ISS are the strongest risk classifications found here. By combin-
ing the EMC92 gene classifier with ISS, patients are effectively stratified into four
risk groups including a distinctive low risk group of 38% and a high-risk group
of 17%. This strong additive strength of ISS to GEP has been recognized before
in a previous smaller study.3* Also ISS was integrated with GEP and other fac-
tors, but this risk score did not take into account correlations between markers,
and was generated without using a solid discovery/validation design.3> In con-
trast, we have opted for a study design in which part of the data was reserved for
validation.

Secondly, our study confirmed that FISH markers can be divided into those
consistently associated with shorter OS as opposed to inconsistent markers. Con-
sistent FISH markers included t(4;14), gain(1q), del(17p) and del(13q). Combi-
nations of any of these markers with ISS constituted solid prognostic predictors
reported previously, t(4;14) and del(17p) are currently regarded as the most im-
portant high-risk FISH markers.!” Thirdly, by combining these FISH markers into
the previously defined risk classifications HR.FISH.A and HR.FISH.B/ISS, a major
improvement of prognostic strength is achieved. Interestingly, patients classified
as high-risk according to the HR.FISH.A marker but that actually had favorable
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survival, were correctly identified as low risk patients by the EMC92-ISS com-
pound marker. In addition to validating EMC92-ISS, we have now also validated
the HR.FISH.B/ISS risk classification for the first time in independent data by ex-
cluding training data from the analyses. Combining FISH and ISS is thus a valid
choice for routine clinical practice, including the existing HR-FISH.B/ISS, as pro-
posed by Avet-Loiseau et al.1° Incorporating LDH and bone imaging was outside
the scope of this study because these markers were not consistently available. 2%

Combining GEP with ISS may become an attractive option for prognostication.
The EMC92-ISS classification is independent from therapy choice: the EMC92
was shown to function in bortezomib clinical trials as well as in thalidomide and
more conventional regimens.’ In contrast, bortezomib and other novel agents
may abrogate the unfavourable impact of some FISH markers on PFS.2° EMC92-
ISS is useful since it can identify both high-risk and low risk MM. This is an advan-
tage over FISH markers which only seem to identify high-risk patients. Moreover,
the technical applicability of GEP and its costs are thought to be comparable to
FISH.3° The agreement between GEP classifiers in terms of pathways is of inter-
est. Although the primary force for classifier discovery is association with sur-
vival, the genes within classifiers appear to converge on the cell cycle pathways.
Indeed, proliferative capacity, assessed as the plasma cell labeling index or by Ki-
67 staining, has long been recognized to be an important prognostic factor.37-38

The clinical applicability of stratification into four risk groups will be increas-
ingly relevant in the era of novel treatment modalities being available. First, in-
creased accuracy of prognosis can improve patient counseling.!” Secondly, and
more important, risk stratification may lead to adaptation of treatment according
to risk status. This composite risk marker opens the way to better risk stratifi-
cation in clinical trials and explore novel drugs in different risk groups.3%4° This
could effectively be a first step towards a more individual treatment, using patient
specific markers as a directional key.

Based on the current study we conclude that the combination of EMC92 with
ISS is a strong disease based prognosticator for survival in MM. This risk classi-
fication is a good candidate to stratify patients for treatment options in a clinical

trial.
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ABSTRACT

The SKY92 prognostic classifier (published as the EMC92 classifier) is based
on gene expression profiles of younger, transplant eligible multiple myeloma
(MM) patients who were included in the HOVON-65/GMMG-HD4 trial. Here,
this classifier is validated in elderly, non-transplant eligible patients of the
HOVON-87/NMSG-18 trial (EudraCT number 2007-004007-34; median age=73;
n = 178).

In this trial melphalan, prednisone, thalidomide plus thalidomide mainte-
nance (MPT-T) was compared with MPR-R (R: lenalidomide). Patients were risk
stratified using the SKY92 gene classifier, FISH markers and revised ISS.

At the time of analysis, the median follow up was 34 months. Twenty-five
out of 178 patients were SKY92 high-risk (14%) and demonstrated a significantly
shorter progression free survival (PFS) compared to SKY92 standard-risk pa-
tients (median PFS: 12 months vs 23 months with a hazard ratio of 2.3, 95%C I =
[1.5 — 3.7], p < .001). Similarly, overall survival (0S) was inferior in SKY92 high-
risk patients compared to SKY92 standard-risk (21 months vs 53 months with
a hazard ratio of 3.0,95%C1 = [1.7 — 5.3], p < .001). The 3-year OS rates were
27% (SKY92 high-risk), 47% (high-risk FISH) and 33% (revised-ISS-III). The mul-
tivariate Cox regression analysis included SKY92, revised-ISS, deletion of 13q,
gain of 1q, t(11;14) and age. SKY92, revised-ISS, deletion of 13q and t(11;14)
were found to be independently associated with PFS, and SKY92, revised-ISS and
deletion of 13q remained independently associated with OS.

These data validate the SKY92 classifier as a robust and independent marker
to identify high-risk patients in non-transplant eligible MM patients, and under-

line the value of cytogenetic prognostic markers.
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INTRODUCTION

Multiple myeloma (MM) is a cancer of plasma cells which mostly affects elderly
people. The median age is 69 years at diagnosis, with 35-40% of patients older
than 75.173 From randomized clinical trials as well as from population based reg-
istries it is clear that elderly patients also benefit from novel agents such as pro-
teasome inhibitors and immunomodulatory agents (IMiDs). However, the out-
come is heterogeneous, being explained by both disease characteristics, such as
high-risk cytogenetic disease, as well as side effects being more pronounced in a
population that is characterized by a higher incidence of comorbidities. There-
fore also in the elderly patients, upfront identification of high-risk disease is of
utmost importance.

The International Staging System (ISS), based on serum levels of albumin and
B2-microglobulin, represents the most widely used method of identifying high-
risk MM patients, so far.# Clinical variables such as frailty and renal impairment
also identify subsets of patients with worse outcome.>® Other prognostic fac-
tors include cytogenetic aberrations and gene expression classifiers. Transloca-
tions t(4;14)(p16;932) and t(14;16)(q32;923) and copy number changes such as
deletion of 17p (del(17p13)) are associated with a poor prognosis.”’ 11 Of these,
translocations such as t(4;14) were reported to be less common in elderly pa-
tients. 1?13 The value of high-risk cytogenetic markers is confirmed by the revised
ISS (R-ISS), which combines serum levels of albumin and 2-microglobulin (i.e.
[SS) with serum levels of lactate dehydrogenase levels (LDH) and the cytogenetic
markers del(17p), t(4;14) and t(14;16).*

Gene expression classifiers include the EMC92 prognostic classifier, which
was developed in our group.'>-17 Based on 290 gene expression profiles obtained
from patients included in the HOVON-65/GMMG-HD4 trial, a prognostic model
of 92 probe sets was generated. This model performed well in an initial round
of validation sets (including UAMS Total Therapy cohorts 2 and 3 and Myeloma
Research Council IX (MRC-1X)).'8-21 Subsequently, the model was validated in
several sets including UAMS Total Therapy 6 trial and the Multiple Myeloma Ge-

) 22,23
)

nomics Initiative (MMGI after which it was standardized for use in the clini-

cal practice as the SKY92 classifier. The EMC92 /SKY92 model identifies on aver-
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age 18% of patients as high-risk. Importantly, none of these cohorts were aimed
specifically at the treatment of elderly MM patients; in the entire population of
discovery and validation patients the median age was 62 years old with less than
16% of patients older than 70.

Therefore, the aim of this study was to assess the prognostic value of the
SKY92 gene classifier in a homogeneous patient cohort of elderly, newly diag-
nosed MM patients. For this purpose, we used a subset of the HOVON-87 /NMSG-
18 trial for which purified bone marrow plasma cells were available (HOVON:
Dutch-Belgium Cooperative Trial Group for Hematology Oncology; NMSG: the
Nordic Myeloma Study Group).?* The median age of patients included in this
trial was 73 years. In addition, the value of other markers such as cytogenetic
markers and R-ISS were available for comparison to the value of the SKY92. In
this dataset of elderly MM patients, the SKY92 had a clear value as a prognostic

marker, additional to other prognostic markers in a multivariate analysis.
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MATERIALS AND METHODS

Patient characteristics

This analysis concerned patients who were included in the HOVON-87 /NMSG-18
trial (HO87 /NM18; online Figure S1) which was registered atwww.trialregister.
nl as NTR1630 (EudraCT number 2007-004007-34).%* The trial was conducted
in accordance with the declaration of Helsinki. It was approved by the institu-
tional review board of all participating hospitals and written informed consent
was obtained from all patients. Patient eligibility for the HO87 /NM18 study was
reported previously.?* In brief, the HO87/NM18 was a randomized prospective
phase Il trial including patients with previously untreated symptomatic MM that

were older than 65 years of age or younger than 65 years but not eligible for high-

dose chemotherapy and peripheral stem cell transplantation (median age 73
years; total number of eligible patients in the trial: 637; with 3% of patients 65 or
younger). Patients were randomized upfront for treatment (randomly assigned
1:1, stratified for hospital and ISS stage) with nine 4-weekly cycles of 28 days of
either melphalan-prednisone-thalidomide followed by thalidomide maintenance
(MPT-T; n = 318), or melphalan-prednisone-lenalidomide followed by mainte-
nance with lenalidomide (MPR-R; n = 319) (online Figure S1). Bone marrow
aspirates were obtained for the purpose of biobanking as part of the clinical pro-
tocol (protocol of HO87 /NM18 on www.hovon.nl). For 178 out of 637 patients (of
which only 1 was younger than 65 yrs.), gene expression analysis was performed
(online Figure S2). The main factors resulting in exclusion of patients were: no
bone marrow sent to the biobank (42% of HOVON patients) and insufficient en-
richment of plasma cells (19% of HOVON patients). 29% of HOVON patients were

usable, compared to 28% overall (see online Supplemental data).

SKY92 gene classification

The MMprofiler™CE IVD assay (SkylineDx, Rotterdam, The Netherlands) was
used to obtain SKY92 scores, classifying a patient as high-risk or standard-
risk. The SKY92 was originally published as the EMC92 classifier. 1> RNA sample
workup was performed according to the MMprofiler’s instructions for use at the
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SkylineDx reference lab, Rotterdam, The Netherlands (online Figure S2). The re-
sulting Affymetrix HG-U133 Plus2 gene expression profiles have been submitted
to GEO under accession GSE87900.

Interphase fluorescent in situ hybridization

Interphase fluorescent in situ hybridization (FISH) was performed on CD138+
enriched plasma cells using standard techniques according to the European Mye-
loma Network guidelines, with positive cut-off levels at 10% for fusion or break-
apart probes and 20% for numerical abnormalities.? The standard analysis in-
cluded loss of the TP53 locus on chromosome 17, chromosome 13q14, gain of
chromosome 1q and translocations t(4;14), t(11;14) and t(14;16). For details
see online Supplemental data.

International staging system, LDH, high-risk FISH, revised ISS and
SKY92-1SS

The risk stratification according to the ISS was determined by combining serum
levels of albumin and B2m (ISS-I: B2m < 3.5 mg/L and albumin > 3.5g/dL; ISS-
II: not I or III; ISS-III: B2m > 5.5 mg/L).* Lactate dehydrogenase (LDH) was
measured in serum and was considered elevated if the concentration exceeded
the upper limit of normal range as defined per lab. Three different risk classi-
fication models were applied and combinations thereof; high risk FISH, R-ISS,
SKY92-ISS. The definition of high-risk FISH was detection of del(17p13), t(4;14)
or t(14;16).* R-ISS combines ISS with LDH and high-risk FISH resulting in 3 risk
groups: R-ISS-I if ISS-I and no elevated LDH, del(17p), t(4;14) and t(14;16); R-
[SS-IIT if ISS-III and either elevated LDH, del(17p), t(4;14) or t(14;16); R-ISS-II
if not R-ISS-I or not R-ISS-III. SKY92-ISS combines SKY92 with ISS resulting in 4
risk groups: high-riskif SKY92 HR; intermediate high-risk if SKY92 SR and ISS-I1I;
intermediate low-risk if SKY92 SR and ISS-II; low-risk if SKY92 SR and ISS-I.2¢
The R-ISS was not mandated by the HO87/NM18 study protocol. However,
data were available for most patients and retrospectively analyzed. The R-ISS
status is set to missing in 14% of analyzed patients for which the status could not

be determined unequivocally.
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Statistical analyses

All statistics have been performed in R (v3.3.1).2” The association between sur-
vival and the SKY92 classifier was evaluated by Cox regression analysis using the
survival package (v2.40-1).2829 Deviations from the proportionality assumption
were checked using the cox.zph function. All models satisfied the proportional-
ity assumption (p > .05). Kaplan-Meier curves were generated for visualization.
A Cox regression multivariate analysis was performed by bidirectional stepwise
selection using a criterion of p < .05 for the likelihood ratio test. Enrichment of
FISH markers within the SKY92 standard- or high-risk group was tested by the
two-sided Fisher exact test using the exact2x2 package (v1.4.1).3°
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RESULTS

At the time of analysis the median follow up was 34 months. Age, ISS and occur-
rence of cytogenetic aberrations were not different in the patient groups with and
without gene expression profiling (Table 1). The SKY92 classifier identified 25
high-risk patients (25/178 = 14%). The median progression-free survival (PFS)
of high-risk patients was 12 months compared to 23 months for standard-risk
patients with a hazard ratio of (HRp¢ = 2.3; p < .001; Figure 1a). Similarly, the
median overall survival (OS) of high-risk patients was inferior; 21 months com-
pared to 53 months for standard-risk patients (HRys = 3.0; p < .001; Figure 1b).
Previously we identified the combination of SKY92 and ISS as the most con-

sistent prognostic tool based on an extensive computational analysis.?® This

combination defines patients as low-risk (SKY92 SR + ISS-I), intermediate low-
risk (SKY92 SR + ISS-II), intermediate high-risk (SKY92 SR + ISS-III) or high-risk
(SKY92 HR). Median PFS is comparable for the three lower risk groups (Fig-
ure 1c). In contrast, SKY92 combined with ISS-I identifies a patient group with
superior OS, i.e. 86% of patients are alive after 36 months (Figure 1d).

Next, SKY92 was compared to the revised ISS and high-risk FISH. The avail-
ability of data between different markers and distribution of high-risk vs standard-
risk patients is shown in Figure 2. This figure demonstrates that SKY92, FISH and
R-ISS identify in part different patients as high-risk (see also below). Only 12 out
of 155 patients with R-ISS-1II (8%) were identified, compared to 121 patients with
R-ISS-1I (78%) and 22 patients with R-ISS-1 (14%; Figures 1e-f). High-risk FISH,
i.e. (t(4;14) and/or t(14;16) and/or del(17p)), was identified in 30 out of 137
patients (22%; Figures 1g-h). The median PFS for high-risk patients was found
to be comparable between different risk classifiers, SKY92: 12 months, R-ISS-III:
13 months and high-risk FISH: 14 months (Figures 1a,e,g). The median OS for
these patient groups is more diverse, SKY92: 21 months, R-ISS-III: 25 months
and high-risk FISH: 31 months (Figures 1b,fh; online Tables S1 and 2 for survival
rates).

In the multivariate analysis, SKY92, R-ISS, del(13q) and t(11;14) were inde-
pendently associated with PFS. SKY92, R-ISS and del(13q) were independently

associated with OS (Tables 2b and c). High-risk FISH markers were also asso-

84



SKY92 risk in elderly newly diagnosed multiple myeloma

Table 1. Comparison between the HO87/NM18 study population and the gene expression
subset analyzed in this project.
Not in analysis In analysis Total

N % N % N %
Age p=.21(a)
Median 73 72 73
Q1 69 69 69
Q3 77 76 77
Range  60-91 60-84 60-91
Number 459 178 637
Sex p = .63(b)
Male 252 55% 94 53% 346 54%
Female 207 45% 84 47% 291 46%
ISS stage p = .94(b)
ISS-I 115 25% 42 24% 157 25%
ISS-II 219 48% 8548% 304 48%
ISS-lII 118 25% 47 26% 165 26%
Not available 7 2% 4 2% 11 2%
FISH performed p =< .001(c)
No 142 31% 14 8% 156 24%
Yes 316 69% 164 92% 480 75%
Not done 1<1% 0 0% 1<1%
gain 1q p =< .36(c)
No 147 65% 77 60% 224 63%
Yes 79 35% 52 40% 131 37%
del(13q) p =< .31(c)
No 162 58% 8253% 244 56%
Yes 117 42% 73 47% 190 44%
del(17p) p =< .87(c)
No 257 90% 134 91% 391 90%
Yes 30 10% 14 9% 44 10%
t(4;14)) p =< .61(c)
No 282 92% 143 91% 425 91%
Yes 25 8% 15 9% 40 9%

(a) Kruskal-Wallis test; (b) x~ test; (c) Fisher exact test
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Figure 1. Survival for the SKY92 PFS (a) and OS (b), SKY92-ISS PFS (c) and OS (d)
R-ISS PFS (e) and OS (f) and high-risk FISH PFS (g) and OS (h). Colors indicate the
risk groups: low- or standard-risk (blue), intermediate-high-risk (orange), intermediate-risk
(green), intermediate-low-risk (purple) and high-risk (red). Tables show the results of the Cox
regression analysis with: n (%) = number and proportion of patients, events = number of
events, HR [95%CI] = hazard ratio relative to lowest risk group of patients with 95% confidence
interval, p-value = probability of observing the hazard ratio, median = median survival in
months with n.r. = median not reached. In the last row, the likelihood ratio test for the model is
given.
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ciated with OS (see Table 2a), but did not have an independent effect in the final
multivariate model, since high-risk FISH is incorporated in the R-ISS. As indicated
by these results, SKY92, R-ISS and FISH markers can all be used independently for
prognostication.

Finally, the combination of SKY92 with R-ISS and SKY92 with high-risk FISH
was evaluated. Patients can be divided into four groups: double negative, i.e.
standard-risk for both markers, positive-negative, negative-positive and double
positive, i.e. high-risk for both markers. The results of these combinations are
shown in Figure 3. For PFS and for OS, double negative patients demonstrated
a favorable survival in both comparisons, whereas double positive patients had
the poorest survival. Patients with a discordant risk classification for both mark-
ers showed an intermediate survival. Interestingly, the SKY92/R-ISS combina-
tion identifies a small subset of patients with extremely poor survival: only 2.6%
were SKY92 high-risk and R-ISS III (Figure 3a-b). In this small group of double
positive patients, the median PFS was only 1 month (HR = 5.1, p < 0.01) with a
median OS of 2 months (HR =13, p < 0.0001).
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Table 2. Univariate (a) and multivariate PFS (b) and OS (c) associations in the HOVON-
87/NMSG-18 trial. For the multivariate analyses a bidirectional stepwise selection procedure
was applied excluding covariates with the highest p-values until all are significant. Initially
included covariates were SKY92, R-ISS, gainiq, del(13q), t(11;14) and age. High-risk FISH,
LDH and ISS were not included as they were already part of the R-ISS. SKY92-ISS could not
be included because of collinearity. In bold: p<.05, pos: positive, neg: negative and NA: not
available, HR: hazard ratios relative to the lowest risk category with 95% confidence inter-
vals (Cl), p: likelihood ratio p-value indicating the association of each covariate with OS or PFS.

ai Univariate
pos neg [95%CI] P [95%CI] P

SKY92 high-risk 25 1530 247537 1.0x107° 3.04.753 5.6x107*
| 42 1324 1.0 1.0
ISS I 85 89 4 1.3;98020 |0-26 1.2(0.61-2.3) [6-9 X 1073
I 47 1274 1519225 2.501.3-4.9]
Low-risk 36 1423 1.0 1.0
SKY92-Iss|Interm-low 77 1013  1.3(0.5021) 5.8 x 1073 L4j0.67-3.1] [2.0 x 1072
Interm-high 37 1413 1. 5[0 85-2.6] .8[1_3_6‘2]
High-risk 25 1533  2.9(;.4.5.3 4.912.1-11.1)
| 22 13323 1.0 1.0
R-ISS I 12134 23 1.60.59.2.9 |0-024 1.7/0.74-4.1] |9-8 X 1072
I” 12 143 23 3 2 [1.4-7.3] 5.0[1,7_14,1]
LDH 13 14124 1306325 53 1.5(0.70-3.4] -32
High-risk FISH 30 10741 274743 5.4X107° 2573445 5.4x 1073
gain1q 52 77 49 1. 4[0 90-2.1] 0.15 2.1[1_2_3‘3] 0.015
del(17p) 14 13430 253345 94x107° 33p466¢ 3.1X 1073
del(13q) 73 82 23 181224 20x107° 1.699627 .07
t(4,14) 15 14320 2. 3[1 3-4.0] 7.1 X% 10_3 1'4[0.62—3.0] .46
t(11;14) 16 115 47 0.89.42.1.7 61 1.2(0.46.31] -73
t(14,16) 3 133 42 3 3[1 0-10. 5] 088 4.6[1_1_19.1] 091
Age 178 0 0 1. 0[0 96-1.04] 1.0 1.0[0_97_1.07] .53

b) Multivariate PFS

pos neg NA HR (9506c17 P

SKY92 high-risk 13 1030  2.3;3.245  .031
| 18 98 0 1.0
R'ISS 1l 89 27 0 1'7[0.85—3.3] .024
If 9 1070 4005105
de|(13q) 56 60 0 2.0[1_3_31] 3.6 X 10_3
t(11;14) 11 1050  0.331p.12.0.03 015

n = 116; number of events = 81; 5 degrees of freedom; p = 3.1 x 10~*

ci Multivariate OS
pos neg [95%CI] P

SKY92 high-risk 17 122 0

2901459 8.6x 1073

| 20 1190 1.0 .

R-ISS|II 10732 0 1.7(.67-4.4|7-8 X 107
Il 12 1270 5545170

del(13q) 67 72 0 1.9,,34 .024

n = 139; number of events = 53; 4 degrees of freedom; p = 3.6 x 10~*
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DISCUSSION

In this study the SKY92 gene expression classifier was retrospectively validated
in a group of homogeneously treated, elderly MM patients. The SKY92 classi-
fier was previously validated in several cohorts comprising both newly diagnosed
and relapsed patients, treated with a variety of therapies, including bortezomib
and thalidomide.'>?231.32 Here we demonstrate that the SKY92 classifier with or
without ISS, is also of prognostic value in elderly MM patients treated with IMiDs.

The incidence of high-risk patients in this population of elderly newly di-
agnosed MM patients as defined by SKY92 (14%) is comparable to what we
found previously in other MM cohorts (15 — 20%). In contrast, the UAMS70,
an alternative gene expression classifier, consistently identifies a smaller high-
risk proportion compared to SKY92 (on average 12% vs 18%, respectively).1833
In the HO87/NM18 patients, the proportion of high-risk UAMS70 patients was
only 3%, suggesting that the UAMS70 classifier would have limited value in the
HO087/NM18 patient group.3*

In a previous report from our group the SKY92 classifier was combined with
ISS staging, resulting in a powerful classifier which distinguishes a low- and two
intermediate-risk groups in addition to the SKY92 high-risk group.?® In that re-
port the lowest risk patients - defined by SKY92 standard-risk and ISS-I - had
a median OS of more than 8 years. Strikingly, in the HO87 /NM18 study, 86%
of patients in this lowest risk group is still alive after 3 years which is higher
than observed for any other marker. The relatively short median follow up of
less than three years means that the current study does not offer full insight into
the lower risk groups. Still, this result confirms previously identified potential
of this marker. In the multivariate analysis SKY92 was shown to be an indepen-
dent prognostic factor, together with both clinical and cytogenetic markers. Also
del(13q) is independently associated with both OS and PFS. This marker is cur-
rently not considered to be an important prognostic factor.3>3® However, also in
aprevious analysis we performed, del(13q) was found to be a strong independent
marker which may be of complementary value to prognostication. 2

It must be noted that the multivariate analysis reported here consisted of
t(4;14), t(11;14), t(14;16), gainlq, del(17p) and del(13q), which incorporated
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additional FISH markers that were not included in the analysis on the total
HO87/NM18 cohort by Zweegman et al.?* Translocations t(11;14), t(14;16) and
del(13q) were unique to the analysis reported here. Univariate hazard ratios for
the overlapping markers had the same direction and magnitude in both studies,
e.g. t(4;14) HRpg = 2.3 [1.3-4.0] in our study compared to HRpg = 2.2 [1.6-3.1] in
the study of the entire trial population.

A potentially interesting but small group of patients (2.6%) was identified
both R-ISS-III and SKY92 high-risk: out of four patients, three died within 5
months. Data from other cohorts is required to assess the value of this obser-
vation. Future analyses of the HOVON-123 (EudraCT:2013-000320-33) and
HOVON-126 (EudraCT:2013-003266-14) may be of interest in this context.
HOVON-123 and HOVON-126 are aimed at elderly MM patients, evaluating borte-
zomib and ixazomib in this patient population, respectively.

In a previous study, the SKY92 classifier was investigated in mostly el-
derly patients included in the non-intensive treatment arm of the MRC-IX trial,
treated with either melphalan-prednisone or cyclophosphamide-thalidomide-
dexamethasone. 37 Also in that cohort, SKY92 was able to identify high-risk
MM patients. Comparable median OS values for the high-risk groups were found
(high-risk MRC-IX: 19 months; high-risk HO87/NM18: 21 months), whereas the
OS of the entire group (i.e. high- and standard-risk) was very different (MRC-
IX: 29 months; HO87/NM18: 49 months).?® In that study, a higher proportion
of SKY92 high-risk patients was found (24%) compared to the proportion in
the HO87/NM18 cohort (14%). The difference in proportion may be attributed
to the proportion of ISS-III patients which is almost twice as high in the non-
intensive MRC-IX cohort compared to the HO87/NM18 cohort (51% in MRC-IX
and 27% in HO87/NM18), which in turn is likely caused by a difference in ex-
clusion criteria between the studies. Surprisingly, within the SKY92 high-risk
patients, the difference between the proportions of patients with ISS-III was less
distinct in the MRC-IX and HO87/NM18 trial; 57 and 42% respectively. SKY92
high-risk groups demonstrate some additional similarities across these studies,
including OS (19 months, high-risk MRC-IX non-intensive cohort and 21 months
in high-risk HO87 /NM18 patients) and the occurrence of FISH aberrations (FISH

comparison: online Table S3). The similarity in OS is reminiscent of the similarity
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in the median OS in three trials of transplant eligible newly diagnosed patients
published previously, with median OS of 34, 40, and 33 months (MRC-IX, TT2 and
TT3, respectively; see Kaplan Meier curves in Kuiper et al.1®

Finally, it is evident that SKY92 defined high-risk patients are not the same
as high-risk patients defined by FISH; there are high-risk FISH patients out-
side the SKY92 high-risk group and vice versa. Both the FISH high-risk only
and SKY92 high-risk only patients have a poor OS with the patients positive for
both having the highest risk. Studies aimed at incorporating risk stratification
into trial design, whether this is by FISH or by gene classifier (e.g. MRC-XI or
SWO0G-51211),3138 will ultimately result in evidence based recommendations
for high-risk patients.

In conclusion, in addition to R-ISS and HR-FISH analysis, SKY92 is a robust
classifier to identify high-risk patients in elderly MM patients. Combining SKY92
with R-ISS may resultin a definition of a small group of patients with dismal prog-
nosis; conversely, combining SKY92 with ISS results in identification of a group

of patients of substantial size with favorable outlook.
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ABSTRACT

No method currently exists to test for differences between two coefficients of con-
cordance. Especially if they are based on non-similar underlying distributions.
Here we have extended previous work on concordance coefficients, resulting in
a non-parametric concordance coefficient (nopaco), applicable to real valued re-
peated measurements. Importantly, a coefficient can be determined for unbal-
anced data (i.e. data in which there are an unequal number of measurements
between subjects) and may include tied values. Subsequently we have developed
a method to compare the coefficients found. First we show how to determine
the coefficient and its sampling properties. Next we describe methods to test
whether true concordance is found, i.e. is the concordance better than random -
including an algorithm to obtain exact p-values - and whether two concordance
coefficients are significantly different from each other. These tests are demon-
strated in two real life examples in which i) the concordances and differences
between concordances are assessed for three gene models in an unbalanced set
of gene expression profiles and ii) two state of the art models for risk assess-
ment in multiple myeloma are compared based on concordance between repli-
cate measurements. The concordance tests are available via the CRAN repository

https://CRAN.R-project.org/package=nopaco as the nopaco R package.
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INTRODUCTION

Gene expression profiling (GEP) involves the genome-wide, parallel detection of
mRNA levels, for instance in patient samples. GEP based classification models -
aimed to predict the disease course of a specific patient and even to guide treat-
ment choice - were developed for various cancer types. Our work focuses on mul-
tiple myeloma, a type of cancer in which malignant plasma cells accumulate in the
bone marrow. Like any other laboratory measurement, GEP based classification
models should report the same outcome if repeated under the same conditions.
Due to the variability in observing, measuring and testing, this can be difficult to
achieve.

For multiple myeloma patients several prognostic GEP classification models
were developed, and were demonstrated to have a clear correlation to survival
in independent datasets. Still, there is no absolute agreement between these
models, i.e. different models predict partly overlapping, partly different pa-
tients with high-risk disease. The best performing models include EMC92 and
UAMS70.1? These models have comparable performance in terms of association
to overall survival and as a result, consensus on the best model to use has not
been reached. Whether these models with good performance report the same
results in repeated measurements under unchanged conditions has not yet been
assessed. This can be expressed in terms of concordance.

Several characteristics are used to categorize coefficients of concordance.?
These include the number of measurements that can be simultaneously com-
pared, sampling theory (e.g. parametric or non-parametric), exchangeability of
measurements, and whether replicate measurements are considered to be ran-
dom or fixed. In case of normally distributed continuous data, a suitable paramet-
ric method is the intra class correlation coefficient (ICC).# The ICC is an analysis
of variance (ANOVA) approach to measure concordance between any number of
replicate measurements. This can be a one way random effect model - in which no
structural bias between measurements is assumed such that measurements are
exchangeable - or a two way random effect model with possible structural bias
between measurements. The two way model is largely equivalent to the paramet-

ric concordance correlation coefficient.>® This coefficient was originally applica-
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Figure 1. Methodology visualized for a microarray setting. Gene expression profiles
of multiple subjects are obtained by microarray measurements. Although in this case two
replicates for each subject are shown, any number of replicates or an unequal number of
replicate measurements between subjects is allowed. Even subjects with single measure-
ments contribute. These measurements serve as input for two different models (A and B) that
estimate a quantity of interest (e.g. survival prediction). Concordances between the replicate
outputs within both models are determined, and the presence of a difference between the two
concordances is assessed.
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ble to two replicate measurements only, but it was extended to allow for more
replicates, the addition of confounding variables, categorical data, and distance
functions that are more robust than the mean squared difference.”

The non-parametric analogue of the one way ICC - which is applicable to bal-
anced designs - has been described by Rothery.Because non-parametric meth-
ods protect against inconsistencies arising from incompatible distributions, we
have used this method as the basis for quantifying the difference between con-
cordance coefficients. We have extended the coefficient for use in unbalanced or
incomplete data with or without tied values, and described its sampling proper-
ties. Our non-parametric coefficient - termed nopaco - is particularly suitable for
GEP for which it is difficult to obtain complete series of repeated measurements,
due to cost and scarcity of the biological material. Because balanced design is not
required,nopaco can integrate data with single measurements with series of re-
peated measurements. Furthermore, the hypothesis of random concordance can
be tested in an exact test as well as the hypothesis of absence of differences be-
tween two concordance coefficients. nopaco is available as an R package 'nopaco’
(see CRAN; https://CRAN.R-project.org/package=nopaco).
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Non-parametric concordance coefficient for

multi-observer continuous measurements

We will start below by describing the non-parametric concordance coefficient re-
ported by Rothery for repeated measurements in balanced and unbalanced data.

Non-parametric concordance is defined in terms of triplets of measurements:
a pair of measurements drawn from the same subject and a third measurement
from an unrelated subject is discordant if the third measurement falls between
the paired measurements. The concordance coefficient ¢ is then defined as the
complement of the ratio between the number of discordant triplets A in the data

and the total number of triplets w:

b=1-

=

(5.1)

Balanced data

In the following example, the concordance coefficient is calculated for a hypo-
thetical balanced scenario of b = 3 repeated measurements on n = 4 subjects de-
scribed by matrix Y. The input measurements in Y are transformed to ordered

rank space in R, such that the distance between subsequently ranked measure-
50.2 45.1 12.3

542.2 19391.1 120.6
ments within each subject can be determinedin Q: Y =
84.6 74.3 48.8

169.0 1368.7 126.0

1 2 4 0 1
7 10 12 2 1
R = Q = . Q contains the information required to
3 5 6 10
8 9 11 0 1

determine the number of discordant triplets A = 17Q¢py = (1 11 1) X
0 1

2 1 4
L o X <4> = 24. The total number of possible tripletsw = nb? (b — 1) (n — 1)
01

216 resultinginy =1 -2 =1 24 =&,
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To explain the above algorithm, consider an experiment in which the gene
expression profile of n > 1 independent subjects are determined repeatedly in
b > 1 replicate measurements (Figure 1). The number of replicate profiles is
assumed to be equal for all subjects (i.e. balanced) such that there are nb mea-
sured profiles. Each profile is used as input for a model which yields an output
yij € Y € R™ for subjecti = (1, ...,n) in replicate j = (1,...,b).

The concordance coefficient between the replicate model outcomes in ma-
trix Y depends on the number of discordant triplets A. Whether a triplet is
concordant or discordant (as defined above) only depends on the relative val-
ues within the triplet and is not affected by the ordering of the replicate mea-
surements within a subject. Therefore Y can be represented by an ordered rank
matrix R. Let1 < 1,1 < r2 < ... < 71 < nb, in which element r;; € R
reflects the rank of the j’th lowest measurement within subject ¢, relative to all
measurementsin Y.

Note that the difference between the ranks in the columns minus one, cor-
responds to the number of occurrences g; j, that satisfy r; 1, < ry, < 74541 for

u # 1. So we define the matrix

Q1 Qp-1) (r2—r1—1) o (rp—rie-1—1)

Ing - o (b—1) (rn2 —rn1—1) oo (Pnp = Tnp-1) — 1)
(5.2)

If r,,,, falls between the k’th and (k + 1)’th smallest values in a subject with
b measurements, there are f(k,b) = 2k (b — k) possible ways to permute the
order of measurements within the subject. The number of discordant triplets is
then given by A = 17 Q¢; in which 1 is a vector of ones, and vector ¢, = f(k,b)
fork = (1,...,(b—1)).

In the balanced case, the total number of triplets w is derived from the fact that
there are b(b — 1) unique paired measurements within each of the n subjects (i.e.
nb(b — 1)) which are combined with b(n — 1) measurements from other subjects
to form triplets. This gives the total number of triplets w = nb? (b — 1) (n — 1).

The maximum value of 1) = 1 occurs when the values within each subject are

ranked consecutively. Following Rothery, the minimum value evaluates to % — %
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and occurs when rankings within subjects are a distance of n apart.

Unbalanced data

Here we generalize the concordance coefficient to apply it to unbalanced data,
which can be a result of taking an unequal number of replicate measurements or
of randomly missing data. A step-by-step example is given in online Appendix A.

Note that the definition of concordance easily extends toward unbalanced sit-
uations. In case of an unequal number of measurements between subjects, let B
be the set of all observed number of measurements per subject. Instead of a sin-
gle matrix @, all subjects with b € B measurements will now be assigned to the
matrix Q. Each of these matrices have their own column vector ¢ that has been

fully defined above. The number of discordant triplets thenis: A = Y 17Qdy
vbe B
To find the total number of triplets, let b; be the number of measurements

n
within subject i and ¢ = )_ b; be the total number of measurements. Then
i=1
subject ¢ has b;(b; — 1) number of unique pairwise measurements. Each pair of
measurements is compared against all £ — b; measurements not part of sub-

ject i. Therefore, the general formulation of the total number of triplets is
w= 3" by (b — 1) (¢ = by).

NZ(:)tle that in the unbalanced case even subjects with single measurements
contribute to the concordance coefficient, provided there is at least a single sub-

ject with more than one measurement.

Handling ties

The concordance coefficient is determined by comparing all measurements
based on their rank. If all measurements differ, the ranks are well defined. Tied
values by definition result in ranks of the same value. Although values randomly
drawn from a continuous distribution are theoretically impossible, in practice
they are likely to occur, for example due to alow measurement resolution, round-
ing numbers or winsorization. This type of tied values - which are intrinsically
continuous in nature - can be resolved by considering that either measurement

in a set of tied values is smaller or larger than the other with equal probability.
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3 3 3 3
Consider the following input matrix¥ = [0 2 2 3|, containinga limited
0 011

set of measurement values y; ; € {0,1,2,3} such that ties must occur. Due to
ties there are 3! x 2! x 2! x 5! = 2880 different but equally likely possible ways
to rank the values in this matrix. The average rank of a measurement x € Y is
determined as E [r,;] = 1 > I (yij <)+ 3 1(yi; <)|. However, in order
to determine matrix @, the r;ilks are to be orczivéred within each subject such that
instead of replacing tied values by their average rank, we have to consider the
possible configurations of the ranked values when ordered into the ordered rank
matrix.

As an example, consider the subject in the top row of Y which contains k = 4
tied values x = 3 with v = 1 tied value not in the subject. The average rank
of these elements evaluates to E[r,—3] = 10. However, after sorting the ranks
within each subject, the last element has an ordered rank of 71 4 = 12 in four out
of five configurations, and one in which it evaluates to 1 4 = 11 resulting in an

expected order rank of E[ry 4] = 212Hxl — 1

13. In general, the ordered rank
of measurement y; ; evaluates to E[r;j|k,v] = E[r;;] + (m — E£1) (1 + #1)
for m = (1,..., k) being the m!" tied value in subject i. This gives the ordered

1 2 3 4
8t 92 108 11

rank matrix F[R] = |2 6 7 10 | with corresponding matrix F[Q] =
1 52
122 4 5
11 1
5 5 5 .
3 0 2| resultingin a concordance coefficient of ¢ = %_
11
3 3 0

Sampling properties

Mean and variance of 1) under random sampling conditions

The mean and variance of 1) under random sampling conditions for the balanced

case were described by Rothery as E [¢] = 2 and Var(y) = 44—5%—1). The

mean also holds for the unbalanced case but the variance expands to Var(y) =
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i=1j=1

I;;;IZ [(ébl (bi - 1) (bi+3) (t_bi)> - (f: i (bi - 1) b; (bj — 1) bj)], for

1 # j as is derived in online Appendix B.

Asymptotic normality

The coefficient 1) can be written as the average over subject specific concor-

n
dances: > % A subject specific concordance coefficient expresses the probabil-

ity that azrandomly drawn measurement not from that subject will fit between a
randomly drawn pair of measurements from that subject. Therefore, by defini-
tion there is a dependency between subjects such that Cov(1);,1);) # 0 for any
1 <i # j < n. However lim Couv(v;,1;) = 0. According to the central limit
theorem, independent samgﬁeozjverages will asymptotically converge to a normal
distribution irrespective of their original distributions such that the distribution

of 1 is asymptotically normal.

Inference

Testing the difference between two concordance coefficients

The hypothesis Hy : ¥ (R1) — ¢ (R2) = 0 which expresses equal concordance
for the two equally sized rank matrices R; and R», is compared against the alter-
native H, : | (R1) —  (Rz)| > 0. Let X = [Xl Xz} ~ N(u = 0,%0) with
Y110 Y12

Y21 222
R; and R, were generated from X3 and X5 - in order for the null hypothesis

standard normal marginal distributions and 3¢ = ( ) . By assuming

to hold - each non diagonal element in 3, ; and X5 > is expected to have similar
Pearson correlation values p; while all others including the elements within 34 >
and X 1 are pa.

In general, however, it cannot be assumed that a multivariate normal dis-
tribution underlies the rank matrices. Using the relationship between the pop-
ulation estimate of the Pearson correlation p and the concordance coefficient
¢ = 1 — Larccos (3 (1+ p)) an unbiased sample correlation matrix 3 can be

obtained.®
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The covariance matrix of a multivariate standard normal distribution is
known to have a Wishart distribution®: (n —1)% ~ W;,(2g,n — 1) such that
3o is obtained by finding the values for p; and p, that maximize the likeli-
hood of the Wishart distribution given the observed 3. As shown in online

Appendix C, this evaluates to the average correlation over the correspond-

. b b
ing elements in 3, such that p1 = Wl—l) >3 (c}m- + 5(¢+b),(j+b)) and p2 =
N

b b
57 2222 (G0 2b—j+1) T F(2b—i41),(j+b))- Having set the value of 3¢ by its maxi-
i j

mum likelihood estimate, many random instances of X can be generated thereby
obtaining an estimate of the joint distribution under the null hypothesis
P(1(X1),¥(X2)) such that the p-value corresponding to Hy is reported as
p(|(X1) — ¥(X2)| > |1 —ts|). As the distribution for + is asymptotically
normal, 1y — 15 is asymptotically normal. We approximate the distribution
of Hy as Hy ~ N (p=0,0% = s?)) with s* being the observed variance for

1¥(X1) — ¥ (X3). Confidence intervals are obtained by the above sampling ap-

proach using 3 instead of .

Testing the hypothesis of a random concordance coefficient

If repeated measurement values are randomly paired, random concordance re-
sulting in E [¢)] = 2 will be observed. The appropriate test for absence of con-
cordance has a null hypothesis Hy : 1) < % which is compared against the alter-
native H, : 1 > 2. Although the distribution of 1 has been described previously
as a recursive expression which is applicable in the case of balanced data with
two replicate measurements'?, in general there is no simple expression. As a
solution, we designed an algorithm which traces every possible path through a
directed graph to obtain the exact probability mass function of the concordance
coefficient under Hy. The algorithm is given in online Appendix D. The imple-
mentation in the nopaco package runs within 30 seconds on an Intel(R) Core™i7-
4712HQ 2.3GHz CPU in case of a sample sizes of n < 150 withb = 2, n < 50
withb = 3, n < 25 withb = 4 orn < 11 with b = 7. Still, for larger data sets
approximations are probably more convenient. As the statistic is asymptotically
normal, an option is to use the normal or the beta approximations as described

by Rothery. However, these approximations tend to be anti-conservative (Figure
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2). In contrast, an approximation referred to as the revised beta approximation
(online Appendix E) gives p-value estimates which are close to exact for larger
number of subjects and in contrast to the normal and beta approximations are

mostly conservative (Figure 2).

Power estimation

The power to accept the alternative one sided hypothesis for the nopaco coef-
ficient (H, : ¢ > %) and the intraclass correlation (H, : p > 0) have been
estimated in a multivariate normal and multivariate log normal setting for vari-
ous values of b and n. (Figure 3 and Supplemental Tables). In case the data has
a normal distribution the ICC has the largest power. However, after a log normal
transformation of the data this power drops below the power of nopaco, which
is invariant to monotonic non-linear transformations. For increasing values of n

and b, the power increases in both settings for both methods.

Real life examples

The main aim of model building is to accurately model a variable of interest
such that it is applicable to unseen data. As stated above, generating concor-
dant results is important for the application of a model in real life, an aspect
which is often overlooked in model building. Indeed, some models may be more
robust against sources of variation, e.g. in the pre-processing of samples, and
these models are consequentially likely to demonstrate a higher concordance
coefficient than others. In the examples below, data is obtained using MAS5.0
normalized gene expression (default settings; R Bioconductor "affy’ package ver-

sion 1.50.0;1712), measured using Affymetrix gene arrays.

Comparison of models based on low, medium and high expression

First we will show an example of GEP profiles obtained from 264 multiple mye-
loma patients. Replicate gene expression measurements were available for
most patients (range: 1-12; single measurement: n=10; 3 replicates per patient

(n=160); 6 replicates per patient (n=59) or other (n=35)). Each measurement
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Figure 2. Differences A (p) in p-values between approximations and the exact approach
over the complete range of all possible values of ©). Approximations are by the beta distri-
bution (left), normal distribution (center) and Revised-beta method (right). The plots in show the
comparisons for a data set of size A) b =2;n =8,B)b=3;n =50and C) b = 4;n = 25. Blue
segments indicate conservative estimates (i.e. A(p) > 0), red segments are anti-conservative
p-value estimates (i.e. A(p) < 0). The left vertical dashed lines indicate i) = % the two right-
most vertical dashed lines indicate the value of ¢ at which p = 0.05 and p = 0.005 respectively
according to the exact approach.
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Figure 3. Power analaysis Power for nopaco and the ICC in a multivariate normal and a
multivariate log normal setting at b = 2 for varying values of concordance (i), correlation (p)
and numbers of samples (n).

was performed using an Affymetrix Human Genome U133A Array (22283 probe
sets).

We define three models, in each case a score was generated by taking the sum
of the expression values of 20 probe sets. These 20 probe sets are randomly se-
lected and differ between the three models based on their average expression;
either < 32 (i.e. low expression), between 32 and 1024 (intermediate expres-
sion) or >1024 (high expression). These three models produce a score for each
patients’ replicate expression data. The concordance between the replicates are

shown in Table 1.
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Table 1. Concordance i) between replicates for the models based on low, intermediate
and highly expressed genes and the differences between their concordances ¢ in 264
patients .

17 95% lower bound p(v) exact & 95% ClI
Low 0.799 0.781 14X 107 6 0407 [-0.0521 - -0.0069] 5.7 x 10~°
Intermediate |0.840 0.819 2.8 %1077
High 0.889 0.866 3.0 x 10114 -0.0491 [-0.0754 - -0.0338] 2.9 x 10~¢

It is clear the models become more concordant when based on the higher ex-
pressed genes. This is in accordance with previous reports on microarray sta-
bility studies in which it was shown that lower expressed genes tended to have

lower signal-to-noise ratios than higher expressed genes.3

Precision and difference in precision between prognostic models

In multiple myeloma two alternative prognostic gene models have been de-
scribed with comparable performance in survival analyses. These are the EMC92-
score and the UAMS70-score which are based on 92 and 70 genes, respectively, of
which the genes LTBP1 and BIRC5 are present in both models.'? The prognostic
scores are calculated using the R Bioconductor ‘geneClassifiers’ package. Briefly,
CD138 enriched multiple myeloma samples were run on the Affymetrix HG-U133
Plus2 array, and resulting CEL files were normalized by MAS5.0 followed by log2
transformation. The score was calculated by taking the weighted summation of
the expression values of specific genes (R Bioconductor 'geneClassifiers’ pack-
age').

Seven biological samples (either myeloma cell lines or heart RNA) were pro-
filed 36 times under normal operational variations (e.g. varying reagent lots,
operator, scanner). From these profiles, model-scores were obtained for both
EMC92 and UAMS70 which are considered to reflect the full range of practically
possible outcome values.

As shown in Figure 4, there is a linear relation between the two models which
report their score on different scales. The concordance between the replicates
is the same for both models (¢ = 0.986). Clearly no significant difference in

concordance between the two models can be detected.
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Figure 4. Outcome of the EMC92 (horizontal) and UAMS70 (vertical) for each of the
seven biological samples. For each sample, 36 replicate measurements were performed as
indicated by the numbers.

Summary and discussion

In this study we describe nopaco, a method for calculating concordance by ex-
tending the concordance coefficient previously described by Rothery. This co-
efficient is defined as the complement of the probability that a randomly drawn
measurement fits between a pair of measurements from another subject in the
same population.Instead of balanced data - in which each subject has a similar
number of replicate measurements - nopaco is applicable to unbalanced data as
well, such that a failed replicate measurement does not automatically invalidate
the experiment. In addition, subjects for which only single measurements are

available, still contribute to the concordance estimate. This is an advantage par-
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ticularly for experiments which are performed on limited patient material (like
GEP).

In order to test the deviation from random sampling, Rothery recommended
the use of a null distribution based on a normal, or preferably a beta approxi-
mation. Instead we were able to define an exact approach, and noticed the rec-
ommended methods often resulted in anti-conservative estimates, especially the
beta variant. Therefore, for larger sized data - in which the exact approach be-
comes computationally infeasible - we described a more conservative revised
beta approximation.

Being non-parametric, the power to detect a deviation from random sam-
pling is slightly reduced compared to its parametric counterpart, the intra-class
correlation coefficient. However, by relying on a non-parametric coefficient, an
unbiased comparison can be made between any two coefficients, irrespective of
the distribution of their underlying data. Therefore, differences between concor-
dances as observed for any device or method which monitor similar phenomena
can be determined (e.g. different blood pressure monitors, psychological tests,
etc.).

In our case, the concordances for two gene models were determined and com-
pared in two scenarios: 1) to demonstrate that gene models based on genes that
are higher expressed produce more concordant results and 2) that the concor-
dance between replicate measurement for two risk stratification models in mul-
tiple myeloma were found to be high. Moreover, there was no evidence that one
of the two models was more concordant than the other.

In conclusion, nopaco is a non-parametric concordance coefficient that is ap-
plicable to unbalanced data with tied values that enables the unbiased assess-
ment of the difference between two coefficients. The concordance coefficient is
implemented in the R package nopaco which is publically available via the CRAN
repository https://CRAN.R-project.org/package=nopaco.
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ABSTRACT

Recently, cereblon (CRBN) expression was found to be essential for the activity
of Thalidomide and lenalidomide. In the present study, we investigated whether
the clinical efficacy of Thalidomide in multiple myeloma is associated with CRBN
expression in myeloma cells. Patients with newly diagnosed multiple myeloma
were included in the HOVON-65/GMMG-HD4 trial, in which postintensification
treatment in 1 arm consisted of daily Thalidomide (50mg) for 2 years. Gene-
expression profiling, determined at the start of the trial, was available for 96 pa-
tients who started Thalidomide maintenance. In this patient set, increase of CRBN
gene expression was significantly associated with longer progression-free sur-
vival (p =.005). In contrast, no association between CRBN expression and survival
was observed in the arm with Bortezomib maintenance. We conclude that CRBN
expression may be associated with the clinical efficacy of Thalidomide. This trial
has been registered at the Nederlands Trial Register (www.trialregister.nl)
as NTR213; at the European Union Drug Regulating Authorities Clinical Trials
(EudraCT) as 2004-000944-26; and at the International Standard Randomized
Controlled Trial Number (ISRCTN) as 64455289.
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INTRODUCTION

Introduction of Thalidomide, Bortezomib, and lenalidomide has greatly im-
proved induction treatment for multiple myeloma (MM).1™* Attention is now
shifting toward improving consolidation and maintenance therapy.® Thalido-
mide and lenalidomide represent immunomodulatory drugs (IMiDs) with vari-
able efficacy during maintenance after high-dose therapy and in the nontrans-
plantation setting.®=8 So far, there are no biomarkers for prediction of outcome
after Thalidomide and/or lenalidomide treatment. CRBN was recently identified
as the target gene responsible for the teratogenic effects of Thalidomide.® CRBN
levels were also shown to be critical for the antitumor activity of lenalidomide
and Thalidomide in both in vitro model systems and in lenalidomide-resistant
patients.'% In the present study, we report that CRBN expression is associated

with outcome of Thalidomide maintenance in newly diagnosed MM patients.
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MATERIALS AND METHODS

Patients and procedures

In the HOVON-65/GMMG-HD4 trial, patients with newly diagnosed MM were
randomly assigned to receive either VAD (Vincristine, Adriamycin, and Dex-
amethasone) induction, intensification with high-dose Melphalan (HDM), and
autologous stem cell transplantation (ASCT) followed by maintenance therapy
with Thalidomide or PAD (Bortezomib, Adriamycin, and Dexamethasone), HDM,
and ASCT followed by maintenance with Bortezomib. The maximum duration of
maintenance therapy in both arms was 2 years.!! Patients randomized to VAD
received maintenance with Thalidomide 50 mg daily for 2 years starting 4 weeks
after HDM. This study was approved by the ethics committees of the Erasmus
University MC, the University of Heidelberg, and the participating sites. All pa-
tients gave written informed consent and the trial was conducted according to

the European Clinical Trial Directive 2005 and the Declaration of Helsinki.

Response assessments and end points

Clinical characteristics were registered at diagnosis. Cytogenetic studies were
performed as described previously.!? For this subanalysis, progression-free sur-
vival (PFS) and overall survival (OS) were measured from start of the mainte-
nance treatment. For PFS, progression was used as the end point and for OS,
death from any cause. Patients alive at the date of last contact were censored.

Evaluation of response is described in detail in supplemental Table S4.

GEP and statistical analysis

The gene-expression profiling (GEP) dataset GSE19784 was used, which was
derived from patients included in the HOVON-65/GMMG-HD#4 trial.'»'3 CRBN
expression was assessed using the intensity values of the probe sets 218142_s_at
and 222533_at, combined using the method of Dai et al.1* Presence calls for
CRBN expression were determined with the PANP algorithm using standard
settings (see the PANP reference manual on the Bioconductor web site, http:

//bioconductor.org/packages/panp/).'® Details of the quantitative RT-PCR
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are given in online Figure S3. Multivariate Cox regression analysis was performed
to assess the value of CRBN as a prognostic factor in relation to the International

Staging System (ISS) and high-risk cytogenetics, as described previously.!?
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RESULTS AND DISCUSSION

Patients and response

A total of 833 patients were enrolled in the HOVON65/GMMG-HD4 trial. Of the
patients randomized to the VAD arm, 77 of 347 (22%) went off protocol after
HDM because of allo-SCT (n = 21, 6%), persisting toxicity (n = 11, 3%), or other
reasons (n = 45, 13%), whereas 270 (78%) patients started Thalidomide mainte-
nance treatment. Normal completion of Thalidomide maintenance was achieved
in 73 of 270 (27%) patients. Eleven of 270 Thalidomide maintenance patients
underwent allo-SCT and were not considered in this subanalysis. Of the remain-
ing 259 patients, GEP and survival data were available for 96. Baseline charac-
teristics between this subgroup (n = 96) and the remainder (n = 163) were
comparable (online Table S1). Present calls were found for both CRBN probe sets
in 95 of 96 Thalidomide maintenance cases, with one patient demonstrating a
borderline present call (“M”) for one probe set and a present call for the other.
A significant correlation was found between CRBN gene expression measured by
microarray (National Center for Biotechnology Gene Expression Omnibus [NCBI-
GEO] repository: GSE19784) and quantitative RT-PCR (Spearman p = 0.67, p
=.002, n = 18; online Figure S3). The EMC clustering represents our gene ex-
pression based classification of MM. 16 Of the clusters evaluated, the CTA cluster
demonstrated a significantly higher CRBN expression compared with the other
clusters (Bonferroni-Holm corrected p = .01, online Figure $2).1®

In univariate Cox regression analysis, CRBN expression was significantly as-
sociated with PFS (hazard ratio = 0.68; 95% confidence interval, [0.52 — 0.89]; p
=.005) and with OS (hazard ratio = 0.65; 95% confidence interval, [0.43 — 0.97];
p = .04; Table 1). Kaplan-Meier analysis was used solely for visualization with
CRBN expression split in 2 or 4 groups using median or quartile intensities: pa-
tients with CRBN expression above the median demonstrated longer PFS com-
pared with patients with CRBN levels below the median (p = .009; Figure 1a-b
quartile intensities and online Figure S4). In addition, an optimal CRBN cutoff was
calculated (online Table S2). For this calculation, the PFS data that prohibit use of

this cutoff in this dataset for any analyses related to PFS were used. In contrast,
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Table 1. Cox regression analyses. HR indicates hazard ratio; and 95%CI, 95% confidence
interval

a. Univariate PFS

Covariate HR [95%CI] P

CRBN 0.68 [0.52 — 0.89] 0.005
b. Univariate OS

Covariate HR [95%CI] P

CRBN 0.65 [0.43 — 0.97] 0.04
c. Multivariate PFS

Covariate HR [95%CI] p

CRBN 0.66 [0.45 — 0.96] 0.03

ISS=2 2.35[1.2 —4.8] 0.02

ISS=3 255[1.2 —5.4] 0.01

High-risk FISH* 2.82 [1.59 — 5.00] 0.0004

d. Multivariate OS

Covariate HR [95%CI] P

CRBN 0.75 [0.42 — 1.3] 0.32
ISS =2 4.66 [1.4 — 15.8] 0.01
ISS =3 5.49 [1.7 — 18.1] 0.005
High-risk FISH* 3.65 [1.5 — 8.7] 0.003

*High-risk FISH is defined as having del(17p) and/or 1q gain and/or t(4;14).

the median expression value was arbitrarily chosen and used for analysis in re-
lation to response upgrade. Multivariate Cox regression analysis was performed
on 81 patients for whom the following covariates were available: ISS, continu-
ous CRBN levels, and high-risk FISH [del(17p) and/or 1q gain and/or t(4;14)].
Higher CRBN levels remained significantly related to longer PFS, but not OS, with
a hazard ratio of 0.66 (p =.03) and 0.75 (p = .3), respectively (Table 1). No signifi-
cant correlation was found between any of these covariates and CRBN, but lower
CRBN expression was found in ISS=III compared with either ISS=I or ISS=II (Bon-
ferroni corrected p = .10 by Kruskal Wallis test). The CRBN gene is positioned on
chromosome 3. Chromosome 3 trisomies are frequently found in patients with
hyperdiploidy and, indeed, CRBN levels were significantly higher in hyperdiploid
patients compared with nonhyperdiploid patients (p = .005). However, in a mul-
tivariate Cox regression analysis, CRBN levels, but not hyperdiploidy, were found
to be related to PFS (p = .006 and p = .8, respectively; data not shown).

CRBN expression was not associated with an upgrade of response, considered

to be improvement of response during Thalidomide maintenance (p = .3, online
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Figure 1. CRBN expression in HOVON-65/GMMG-HD4 Shown is CRBN expression in
relation to PFS and OS Kaplan-Meier curves of CRBN expression in relation to survival in
Thalidomide treated patients (a-b) and in relation to Bortezomib treated patients (c-d). PFS
is shown at left; OS on the right. Log-rank p-values are shown in the right corner of each
panel. Broken lines indicate CRBN expression levels below the median and solid lines indicate
expression levels above the median. Remaining patients at risk are shown above the x-axis
(PFS at1, 2, 3,and 4 years and OS at 1, 2, 3, 4, and 5 years). The median CRBN expression
was determined on the combined data of both Thalidomide and Bortezomib treated patients:
45 of 96 patients were below the median in the Thalidomide subset, whereas 50 of 95 were
below the median in the Bortezomib subset.

Table S4). To determine whether CRBN expression was specifically relevant for
the outcome of Thalidomide treatment, we also examined the relationship be-
tween CRBN expression and survival in patients treated with Bortezomib mainte-
nance. No association was observed between CRBN expression and PFS/0S after
Bortezomib maintenance (Figure 1c-d). For validation of these results, the MRC-
IX study was evaluated.'” Only 30 patients with gene expression were available
who received Thalidomide during maintenance but not during induction. This
subset was too small to allow solid analysis of the relationship between CRBN ex-

pression and outcome after Thalidomide maintenance. Finally, CRBN forms an
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E3 ubiquitin ligase complex with the proteins DDB1 and CUL4A.° This complex
has been suggested to be involved in the regulation of B-catenin activity, which in
turn affects downstream targets such as CCND1 and C-MYC. CRBN was also found
to bind to AMPKa1 (PRKAA1) and to the large conductance Ca®*-activated potas-
sium channel KCNMA1.18 In a multivariate model with CRBN levels, only CCND1
and CRBN were found to be independently related to longer PFS (online Table S3).
A relationship with PFS was not found for either CCND1 or CRBN in the patients
treated with Bortezomib in the maintenance phase.

In conclusion, in the present study, we observed that higher expression of
CRBN was associated with increased PFS during maintenance treatment with
Thalidomide, but not in patients with Bortezomib maintenance. This corre-
sponds well to the report of reduced CRBN expression in > 85% of MM patients
who were lenalidomide resistant.'® Our observations warrant analysis of the
predictive effect of CRBN expression in newly diagnosed and relapsed/refractory

patients treated with IMiDs as part of induction and consolidation treatment.
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ABSTRACT

Bortezomib induced peripheral neuropathy is a dose-limiting side effect and a
major concern in the treatment of multiple myeloma. To identify genetic risk fac-
tors associated with the development of this side effect in Bortezomib treated
multiple myeloma patients, a pharmacogenetic association study was performed
using a discovery set (IFM 2005-01; n = 238) and a validation set (HOVON-
65/GMMG-HD4 and a Czech dataset; n = 231). After multiplicity correction,
none of the 2149 single nucleotide polymorphisms tested revealed any signifi-
cant association with Bortezomib induced peripheral neuropathy. However, 56
single nucleotide polymorphisms demonstrated an association with Bortezomib
induced peripheral neuropathy with pointwise, uncorrected significance. Path-
way analysis of these polymorphisms demonstrated involvement of neurological
disease (FDR< 20%). Also a clear enrichment of major Bortezomib metaboliz-
ing genes was found. Univariate evaluation of these 56 polymorphisms in the
validation set demonstrated one single nucleotide polymorphism with pointwise
significance: rs619824 in CYP17A1.
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INTRODUCTION

The introduction of Bortezomib (Millennium Pharmaceuticals, Cambridge, MA,
USA), an inhibitor of the 26S proteasome, has greatly improved the management
of multiple myeloma (MM).! The dose-limiting toxicity of Bortezomib is periph-
eral neuropathy, which frequently requires a dose reduction or treatment dis-
continuation.?* Bortezomib induced peripheral neuropathy (BiPN) differs from
pre-existing peripheral neuropathy associated with 10% of untreated MM pa-
tients. BiPN, described in detail by Delforge et al,* is predominantly sensory,
reversible in most cases, and characterized by distal paresthesias, numbness and
neuropathic pain.

A multifactorial pathogenesis for BiPN seems likely, with suggested mech-
anisms including blockade of nerve-growth-factor-mediated neuronal survival
through inhibition of the activation of nuclear factor kB (NFkB),> damage to mi-
tochondria and the endoplasmic reticulum through activation of apoptosis, ® dys-
regulation of mitochondrial calcium homoeostasis,” autoimmune factors, inter-
ference with mRNA processing, and translation® and inflammation. >1° A number
of studies, including a report by our own group, have looked at the pharmaco-
genetic characterization of BiPN.1112 In the study carried out by our group, the
comparison between early onset (within one treatment cycle) BiPN and late on-
set (after two or three treatment cycles) BiPN revealed that genes for apoptosis
contribute to early onset BiPN, whereas genes that have a role in inflammatory
pathways and DNA repair contribute to the development of late onset BiPN, indi-
cating that distinct genetic factors are involved in the development of early onset
and late onset forms of this side effect.!! Recently, Favis et al. reported on the
association between SNPs and the time to Bortezomib induced peripheral neu-
ropathy within the VISTA trial with associated SNPs including a SNP in the gene
CTLA4.1?

In this study, we further explore the genetic risk factors associated with the
development of BiPN in patients with MM who had not been previously treated
with Bortezomib. A large dataset from the [FM 2005-01 trial was used as discov-
ery set. In addition, a dataset based on the patients from the HOVON-65/GMMG-

HD4 trial were used as a validation set.!
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MATERIALS AND METHODS

Patients

The study was performed on patients who had been included in two randomized
clinical trials, i.e. the Institutional Review Board-approved HOVON-65/GMMG-
HD4 (ISRCTN64455289) trial for newly diagnosed patients with MM (n = 833),
and the IFM 2005-01 trial (NCT00200681; n = 493) approved by the ethics
committee of the University of Nantes, both of which compared standard in-
duction treatment (VAD) with a Bortezomib combination prior to high-dose
therapy (HDT) and stem cell transplantation (online Figure S1a). In addition,
as part of the cooperative program of the International Myeloma Foundation
(IMF) and International Myeloma Working Group (IMWG), a set of 56 patients
(i.e. 56 unique DNA samples), uniformly treated with Bortezomib and Dexam-
ethasone at relapse, were obtained. In addition, a prospectively collected set of
samples (n = 56) from the Babak Research Institute (Czech Republic) was in-
cluded as part of the cooperative program of the IMF and IMWG. All patients gave
written informed consent for this genetic study. Patients with amyloidosis or
monoclonal gammopathy of undetermined significance (MGUS) were excluded.
Adverse events (AEs) were prospectively assessed using standard National Can-
cer Institute Common Toxicity Criteria for Adverse Events, version 3.0 (CTCAE
3.0). To ensure homogeneity of allelic frequencies, 15 patients of non-European
descent were excluded from the study. In total, 238 of 246 patients from IFM
2005-01, 183 of 412 patients from HOVON-65/GMMG-HD4 and 48 of 56 from the
Czech Republic who were randomized for treatment with Bortezomib were in-
cluded in the analysis. Samples were divided into a discovery and validation set

(online Figure S1B and online Table S1).

Genotyping

DNA was extracted from peripheral blood nucleated cells or CD138 negative bone
marrow cells. Genotyping was performed using an Affymetrix targeted geno-
typing custom built panel, comprising 3404 SNPs. These were selected using a

hypothesis-driven strategy, targeting genes and SNPs with previously described
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associations or putative functional effects. '3

Statistical analysis

After imputation and applying SNP exclusion criteria (minor allele frequency
(MAF) < 0.05, Hardy Weinberg equilibrium < 1 x 10~%), a panel containing 2149
SNPs was analyzed by univariate association analysis using the software package
PLINK.!* Categorical comparisons with respect to frequencies were performed
with the x? or Fisher’s exact test, and continuous variables were analyzed using
the Mann-Whitney U test (online Table S1).

SNP association analysis comparing grade 1-4 BiPN with no BiPN patients in
the discovery set (IFM 2005-01) was performed as previously described. !

The associated gene sets were subjected to Ingenuity Pathway Analysis (In-
genuity System Inc., USA) using 2149 SNPs as a reference set. Only the top three
associated pathways with a FDR<20% are reported.

As validation, a Cochran Mantel-Haenszel stratified association test was
performed in an independent dataset comprised of patients from the HOVON-
65/GMMG-HD4 trial and patients from the Czech Republic to evaluate cross
validating SNP associations and odds ratios (ORs). Specifically, ORs from signifi-
cant SNPs (pointwise p< 0.05) in the discovery set were selected for validation.
A one-sided test for OR was performed to test whether the observed effects in
the validation set were associated with the same effect direction as observed in
the discovery set.

Based on the numbers of the discovery and validation set, a conservative
power calculation for both sets was performed. According to this calculation,
ORs need to be higher than 2.28 or lower than 0.44 to be found at a significance
level of o« = 0.05 for SNPs with a MAF of 0.5. These ORs diverge as the MAF de-
creases (online Figures S2 and S3, online Tables S1 and S2). Please note this is a
conservative analysis in which multiplicity correction is performed by Bonferroni

correction and no linkage is taken into account.
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RESULTS AND DISCUSSION

The BiPN rates and clinical characteristics of both the discovery set (n = 238) and
the validation set (n = 231) are shown in the online Table S1. In the discovery set,
27 patients developed BiPN grade 1, 57 grade 2, 11 grade 3, and 4 grade 4. Online
Figure S4 shows the time to BiPN for each grade separately in patients from the
HOVON-65/GMMG-HD4 trial, who are included in the validation set. The median
time to BiPN grade 1 was six weeks, and seven weeks to grade 2, 3 or 4. The
peripheral neuropathy rates in the VAD treatment arm (i.e. not Bortezomib) of
the HOVON-65/GMMG-HD4 trial, will not be discussed further here (online Table
S3).

After imputation and applying PLINK exclusion filters, a panel containing
2149 SNPs was analyzed for association by conducting a x? association analy-
sis. None of the SNPs were found to be significantly associated with BiPN us-
ing the permutated p-value correction for multiple testing in the discovery set
(IFM2005-01; Table 1). The highest ranking SNP, with corrected p-value of 0.3,
is in the locus of the cell cycle gene CDKN1B. This SNP, rs3759217, has been eval-
uated in a number of cancer studies, but was not reported to be significantly
associated with any cancer type.'® Using the pointwise, uncorrected p-value, 56
SNPs were found to be associated with BiPN in this set (Table 1).

The results of the analysis performed in the discovery set (IFM 2005-01 trial)
were validated using an independent dataset from the Czech Republic combined
with the dataset from the HOVON-65/GMMG-HD4 trial (online Figure S1). A
Cochran Mantel-Haenszel stratified association test was performed. Associated
SNPs (pointwise p < 0.05) in this validation set are shown in online Table S5. To
investigate whether associated SNPs (pointwise p < 0.05) in the discovery set
and available in the validation set (n = 51) had the same direction of effect, a
one-sided test for ORs was performed in the validation set. This resulted in one
pointwise significantly cross validating SNP; rs619824 in CYP17A1 (online Table
S6).

CYP17A1, cytochrome P-450c17aq, is involved in steroid hormone biosynthe-
sis, and has both steroid 17a-hydroxylase activity and 17,20-lyase activity.'®

Steroids have been shown to affect nerve cells, and have even been suggested for
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use as a therapeutic option to prevent the development of neuropathy.'” Treat-
ment with progesterone has been reported to increase the expression of myelin
protein zero in both rat sciatic nerve and Schwann cells.!” Due to the paucity of
cross validated SNPs, we have examined the SNPs with a significant pointwise
p-value in the discovery set (Table 1). Foremost, we have performed a pathway
analysis based on this set of SNPs. This analysis showed enrichment of genes
involved in cardiovascular disease (11 genes), genetic disorder (22 genes) and
neurological disease (21 genes). The latter include the genes NEFL, PON1, PTGS2
and ABCGZ2, which have been reported frequently in relation to neurological dis-
ease such as Alzheimer’s. Previous studies showed that Bortezomib is primarily
metabolized by cytochrome P450 isoforms CYP3A4, CYP2C19, CYP1A2, with a
minor contribution of CYP2D6 and CYP2C9.'® The results show an enrichment
of the major Bortezomib metabolizing genes within the top 56 SNPs (p= 0.0013).

Previously, genes involved in inflammation were found to be associated with
late onset BiPN.11 Indeed, one of the most associated SNPs, rs3136516 (point-
wise p= 0.008) was an intronic SNP located in prothrombin (coagulation factor
II; F2), which has been reported in relation to the neuro-toxic cascade leading
to neurodegenerative diseases.'® Two SNPs that lie within or in close proximity
to the TNFa gene (rs2857605 and rs2228088; online Figure S5) were associated
with BiPN. TNFa has been implicated in the pathogenesis of several neurodegen-
erative diseases, including multiple sclerosis, Alzheimer’s disease, and human
immunodeficiency virus-related encephalopathy.?? Additionally, the TNFa sys-
tem is activated in diabetic polyneuropathy, which leads to increased microvas-
cular permeability, hypercoagulability and even direct nerve damage. Improve-
ment of diabetic polyneuropathy following suppression of TNFa has been shown
in several animal models.?! Furthermore, neuropathic pain, one of the deter-
minants of the CTCAE-neuropathy score, and thus of BiPN severity, is mediated
through TNF-mediated induction of stress-activated kinasesap like p38 MAPK.??

The NFkB pathway is central to the immune response and two associated
SNPs are located in the IKBKAP gene; rs10979601 and rs10759326. This is a
particularly relevant association because hereditary sensory and autonomic neu-
ropathy type III, or familial dysautonomia (FD), can be caused by mutations in the

IKBKAP gene, leading to poor development, reduced survival, and progressive de-

135




uoauj LO1V4dN 3 0€0°0 §€'c— 01T 19L 1<9 8l GG066.1Sd

8075081 sS4 uonuj L ddvd 3 0€0°0 G6°0 — €€°0) 9G°0 o<l b €61200}s4

Z1.082zs ‘L0v5081s! uonu| lddvd 3 0€0°0 §6°0 — €€°0] 99°0 V<O 3 S0¥S081sd

d41N.S €41V 3 6¢0°0 80°C —96°0] Lv'L 1<0 3 9¢59¢l1s)
e Onuw XvE b 6200 ___109€—90°1]G6°L __1<D___ 6l __¥.0/18ESI.

uonuj ¢NNSN b 8200 ¥e'c —v0'1) ¢S V<9 S cey9.L.€84

Jeisnjo v dAD ‘dNSBeL ‘uonu| ¢V1dAD 3 12200 €6°0 —¢¥°0] €90 o<V Sl 1GGC9/sd

uonui ¢S9Old b 1200 L6°0 —9€°0] 6G°0 o<1 3 ¢€vQesd

1/0€9184 19LdAD :dNSBEL ‘uony| 191LdAD 3 9200 ¢6°0 — €7°0] €9°0 1<0 4 8,0€91 sS4
\\\\\\\\\\\\\\\\\\\\\\\\\\ snowAuouAsuou __y/Z0VYIM_ __ _L_____¥200 __ _[1z°€—80°1]98'L __O<l_ ___9___2l95886S .

Jojowold IVLdAD 3 ¢c00 ¢6°0 — ¢¥°0] 290 V<O Sl 66¢¢.Lyesd

d1ne OgHS 3 1200 98'0 —¢¢'0] €v'0 V<O Ll 9€G1Ly9lsi

snowAuouAsuou ¢AddS 3 8100 €6°0 — €70, €9°0 1<0 €l ¢cl0Ssi

snowiAuouAsuou 1LVdSH b 8100 88°0 — 0€°0] ¢5°0 o<l 9 966/.¢¢csd
e _____koau gHO_ _ L 2100 ___I60—7F0/€90___O<V____G___GL0EL6CS].

paje|suesiun ‘snoo EV1IVO 3 G100 S¥'c— L0°T] 29l 1<0 ol L0667 LS

aINXiwpy  anXIWpy b G100 6C°C—V0'T] ¥S°L V<O 3 10¢8.8s!

uosjuj 1491 3 7100 VLV — €T ev'e 1<0 ¢l 8/1€€0¢s!

9€¥9.6¢S4 Jojowold 143N 3 €100 LeC—€CT'1] €9°) o<V 8 LE¥9.6¢S4
uoayj QLadvd b ¢L00 U180 —€¢0]€¥0___V<O___<¢¢ _ _§9kS6cess .

1802128! 0602128/ snowAuouAs 1ooav L Z100 060 — 6£°0] 650 1<2 9l 0€££6€£22s!

YEVEPOLS psjeisuenun  Lv9LO1S L ZL0°0 6£°C—VI'T]G9'L o<l L 691/s!

uosu| 21d9S0 L 1100 e — 11T 191 O<v . LzZisi

snowAuouAs 1SZdAD L 1100 80°L —V&'1) 16T 0<9 6l 6658£€S!
““““““““““““““““ HINE _ _LVYLLHAD. - __L_____0L00 ___[e60—%F0l¥90___1<D___ 0} ___¥286L9SI .

9¥68Y LS peje|suenun €1SHO L 0100 88°0 — I¥°0] 09°0 1<0 oL 6681 LS

Jojowo.d H49N L 600°0 7€ —9T'1] 10 o<V Ll 68G18Gs!

uosuj z4 L 800°0 88°0 — ¥°0] 190 o<V L 9Lgoclesl

uosu| ZOLVAN  8666°0 800°0 98°0 — T¥°0] 650 1<9 (074 1G88zzs!
“““““““““““““ snowAuouAsuou _ LEMIS _ 66660 __ 2000 __ _[€§C—LTT/LLL_ __O<D____L___90€S¥69S]

snowAuouAsuou 1482 L 1000 060 — ¥€°0] G50 1<0 L 91GLzLELs!

ding 1144 99660 900°0 67— 61°T) 2L V<9 8 ¥81989¢s!

ANL:NSOVL ‘snowAuouis 4ANL L 900°0 18°0 — 9£°0] 960 1<9 9 8808z2¢Zs!

12098 'g109s! snowAuouksuou G4 £666°0 9000 767 — 02'T] €6°C o<V I €£09s!
snowAuouhs MAON_ _ ¥¥/6'Q __ _¥00°Q __ _[08'C ST 1] /8L __L<O __Lb__ GSL99YLLSI

Y8V — 8911 9.°¢C 1<D ¢l £126G/.€84

yum @i u adA] dNS [19%S6] HO SsaBllY ¥HD

‘10201 S! Y Jojoe} uonejul oiwousb syl Go'0 >d asimuiod yum suoneloosse X ale umoys "Ndig UM pajeloosse SdNS °| 3lgel

>~

136



Genetic predisposition to BiPN in MM

1096.601s1

urm @i u

LNOd ‘dNSBeL ‘uonuj
snowAuouAsuou
SNOWAUOUAS

snowAuouAsuou
dine

uoJu|
snowAuouAsuou
snowAuouAsuou
SnoWwAuUouUAsuou
snowAuouAsuou
snowAuouAsuou
snowAuouAsuou

Snoo0T
4N :dNSBel ‘uonu
INOd :dNSBeL ‘uoiu
uoJjul ‘snoo
snowAuouAsuou
INOd :dNSbBe]L ‘uonuj
INOd :dNSBel ‘uosuj
uoJjul ‘snoo
snowAuouAsuou
INOd :dNSBel ‘uosuj

adAl dNS

INOd
dvaMl
IZINEN

61L0¢dAD
1144a4d
SVYdN
yveeo1s

9¢°c — 10'T
8V'C — 660
86°0 —€V°0
96°0 — G770

L6V —CI'1
66°0 —¢¥'0
L6°0 —¥7°0
66°0 — L¥°0

1€V — 701
09°¢ —90°'T
86°0 — G770
CET— 90T
96°0 — S¥°0
¢6'0 —9¢°0
¥e'c—G0'T
26°0 — 6€°0
260 — S0
G6°0 — 770

¥2'C — S0'1]
[26'0 — 6£°0)]
[L60 — Qﬁ

[¢6'0 — ¥¥°0

L LGEY.L0CS4
6 9¢€66.01s!
14 €€¢8ccecesd
¥4 6Ghglesd

ol 18G8G/€S4
8 8¢096¢1 s
3 1€2200¢s4
S ¢510S0}s4
L £€990169S4

vl vGceleess
14 crlieeesd
4 G0LL08lLsd
S 068€€.LES!

6l G§G9S0vLsd

€ €6089.9s4
9 G09.G8¢s!
A GGG1G8ss
9 lcidiess
4 1€9¢601sd

9G6G1G8S4
GGG1G8sI
YSv0virSi
1€9¢S01sd
9GG1G8s4

NN © M~

[10%S6] YO saBIlY ¥HD

‘panunuod ‘| ajqeL

137



generation of the sensory and autonomic nervous system.23

Mutations in neurofilament light polypeptide (NEFL) cause Charcot-Marie-
Tooth Neuropathy Type 2E/1F, the most common inherited peripheral neuropa-
thy.2* Two promoter SNPs (rs2976437 and rs2976436) in NEFL were associated
with BiPN. Two SNPs were located in the nerve growth factor receptor (NGFR;
rs11466155 and rs584589), a gene particularly important with respect to neu-
rological functions. The NFGR signals via NFkB activation and binds neutrophin
precursors that stimulate neuronal cell survival and differentiation. These re-
sults support the finding in our previous study that late onset BiPN is associated
with genes involved in the development and function of the nervous system.!! In
a recent paper, the time to BiPN was found to be associated with the occurrence
of the SNP rs4553808 in the gene CTLA4.'? Comparison with that study is not fea-
sible, due to the fact that the SNP set tested had only minimal overlap with our
SNP set (2% overlap).

We evaluated genetic risk factors associated with BiPN in MM patients who
had not been previously treated with Bortezomib in the largest study to date us-
ing a hypothesis-driven approach. This method is limited by the possibility of
population heterogeneity. However, a limited set of patients with different ge-
netic backgrounds were selected out, as described in the Material and Methods
section and as reported previously.!! Further limitations are: i) the inability of
assessing SNPs outside the candidate panel; and ii) the possibility of finding false-
positive associations as a result of multiple testing. To address both issues, we are
currently performing a genome-wide scan that will clarify and possibly confirm
the associations reported in this study. The power analysis indicated in this study
has sufficient power to detect associations with an OR of less than 0.44 or an OR
of more than 2.28 and diverging with MAF. It is unlikely that smaller effects can
be found. Using the custom BOAC SNP array in a discovery set of 238 patients,
no SNP was found to be significantly associated to BiPN at the corrected p< 0.05
significance level. However, based on the highest-ranking SNPs found using the
uncorrected p-value in the discovery set, pathway analysis did demonstrate clear

enrichment of neurological disease SNPs.
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ABSTRACT

Painful peripheral neuropathy is a frequent toxicity associated with bortezomib
therapy. This study aimed to identify loci that affect susceptibility to this toxic-
ity. A genome-wide association study (GWAS) of 370605 SNPs was performed to
identify risk variants for developing severe bortezomib-induced peripheral neu-
ropathy (BiPN) in 469 patients with multiple myeloma who received bortezomib-
dexamethasone therapy prior to autologous stem cell in randomized clinical trials
of the Intergroupe Francophone du Myélome (IFM) and findings were replicated
in 114 patients with multiple myeloma of the HOVON-65/GMMG-HD4 clinical
trial. An SNP in the PKNOX1 gene was associated with BiPN in the exploratory
cohort (rs2839629; OR=1.9, 95% confidence interval: [1.5-2.4]; p= 7.6 x 1079)
and in the replication cohort (OR= 2.0[1.1-3.3]; p= 8.3 x 10~3). In addition,
rs2839629 is in strong linkage disequilibrium(r? = 0.87) with rs915854, lo-
cated in the intergenic region between PKNOX1 and cystathionine-f3-synthetase
(CBS). Expression quantitative trait loci mapping showed that both rs2839629
and rs915854 genotypes have an impact on PKNOX1 expression in nerve tissue,
whereas rs2839629 affects CBS expression in skin and blood. The use of GWAS in
multiple myeloma pharmacogenomics has identified a novel candidate genetic
locus mapping to PKNOX1 and in the immediate vicinity of CBS at 21q22.3 asso-
ciated with the severe bortezomib-induced toxicity. The proximity of these two
genes involved in neurologic pain whose tissue-specific expression is modified

by the two variants provides new targets for neuroprotective strategies.
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INTRODUCTION

Some patients with multiple myeloma have subclinical or even clinical peripheral
neuropathy at diagnosis. This peripheral neuropathy can be related to comor-
bidities, such as diabetes mellitus, or associated with the M-protein itself. In
the course of the disease, peripheral neuropathy is mostly induced by therapies,
especially thalidomide (thalidomide-induced peripheral neuropathy, TiPN) and
bortezomib (bortezomib-induced peripheral neuropathy, BiPN), which may be
considered as distinct clinical entities.? TiPN may arise after prolonged admin-
istration of thalidomide (in 30-55% of patients treated for 12 months, including
15-25% with grade 2 or higher peripheral neuropathy) and appears to be due
to a cumulative effect. Initial symptoms include sensory changes, such as pares-
thesia and hyperesthesia, later followed by motor symptoms and autonomic
dysfunction. BiPN is characterized by neuropathic pain and a length dependent
distal sensory neuropathy with suppression of reflexes. Motor neuropathy may
follow and infrequently results in mild to severe distal weakness in the lower
limbs. There may also be a significant autonomic component, which manifests as
dizziness, hypotension, diarrhea or constipation, and/or extreme fatigue. BiPN is
thought to occur at a certain threshold of treatment (within five cycles but rarely
beyond) in 40 — 60% of the patients, including 15 — 40% who will develop severe
peripheral neuropathy (grade 2 or higher). This drug-induced toxicity is well
known by physicians and nurses, and patients are now systematically informed
about these potential side effects. The use of subcutaneous bortezomib reduces
the incidence of BiPN but does not abrogate this toxicity.? As no effective prophy-
lactic treatment is available, prompt action in case of symptoms, including dose
reduction and weekly administration of bortezomib, is crucial to manage this
severe toxicity, which may dramatically affect the quality of life.3~> Therefore,
the identification of patients at risk of developing BiPN or TiPN is an important
issue. This is especially true because the triplet combination of bortezomib-
thalidomide-dexamethasone is considered one of the best induction regimens
prior to high-dose therapy and autologous stem cell transplantation for the treat-
ment of younger patients with de novo multiple myeloma.® The interindividual

differences in the onset of BiPN or TiPN is in agreement with an underlying
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genetic susceptibility to this toxicity. Rare variants in bortezomib or thalido-
mide target proteins could affect the patient’s sensitivity to these drugs. Among
the pharmacogenomic methods to discover genetic loci associated with drug-
induced toxicities, the candidate gene approach has shown a significant genetic
contribution to the risk of developing TiPN or BiPN.”-1° However, a genome-
wide association study (GWAS) has the capacity to identify new genetic variants
that will have a direct or indirect effect on drug sensitivity. Here we report the
results of a GWAS of 583 patients with multiple myeloma treated with bortezomib
to discover genetic variants associated with severe BiPN. This is the first GWA
pharmacogenomic study of bortezomib treatment toxicity and provides novel

insights into bortezomib-related pathways.
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MATERIALS AND METHODS

Clinical samples

Peripheral blood DNA samples were collected from 598 patients with newly
diagnosed multiple myeloma who received bortezomib-dexamethasone (VD)
induction therapy. Patients were treated in randomized clinical trials of the
Intergroupe Francophone du Myélome (IFM; IFM 2005-01, IFM2007-02) or
routine practice in France (n = 482) and in a randomized clinical trial of the
Dutch/Belgian Haemato-Oncology Foundation for Adults in du the Netherlands
(HOVON) and the German-Speaking Myeloma Multicenter Group (GMMG; HOVON-
65/GMMG-HD4; n = 116). The IFM VD treatment consisted of four 3-week cy-
cles of bortezomib 1.3 mg/m? administered intravenously on days 1, 4, 8, and 11
plus dexamethasone 40 mg on days 1 to 4 (all cycles) and days 9 to 12 (cycles 1
and 2). The HOVON-65/GMMG-HD4 VD treatment consisted of three cycles of
bortezomib 1.3 mg/m? administered intravenously on days 1, 4, 8, and 11 plus
dexamethasone 40 mg on days 1to4,9to 12,and 17 to 20 (patients enrolled in the
HOVON-65/GMMG-HD4 trial received doxorubicin 9 mg/m?/day on days 1 to 4,
in addition to VD according to the bortezomib, doxorubicin, and dexamethasone
(PAD) regimen. Adverse events including peripheral neuropathy were graded
by NCI Common Toxicity Criteria Version 3.0. All patients provided written in-

formed consent for both the treatment and companion protocols.

Genotyping

Data quality assessment and control steps carried out during GWAS are summa-
rized in online Figure S1. A total of 482 multiple myeloma samples in the ex-
ploratory IFM cohort and 116 multiple myeloma samples in the Dutch and Ger-
man replication cohort were genotyped using Affymetrix SNP6.0 Human DNA
chips. Affymetrix CEL files were analyzed either by using Affymetrix Genotyp-
ing Console software v4.0 (GTC 4.0), followed by application of the Affymetrix
Birdseed algorithm v2.0 to generate SNP genotype calls for the IFM exploratory
cohort (GEO accession GSE65777) or by application CRLMM v2 algorithm to gen-
erate SNP genotype calls for the replication cohort (GEO accession GSE66903).
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Samples quality control

Stringent quality control (QC) thresholds were applied to filter out poorly geno-
typed subjects: if contrast QC < 0.4, call rate < 97% and outlying heterozygos-
ity rate (het_rate > mean het_rate + 3SD), the individual was removed. Princi-
pal component analysis (PCA) was performed to visualize the genetic ancestry of
the [FM samples that passed the QC and assess whether population adjustment
should be made (online Figure S2). Random 60000 genotypes of IFM subjects
(IFM, n = 469) and unrelated individuals from three HapMap phase III popula-
tions representing Northwest European (CEU, n = 162), African (YRL, n = 163),
and Chinese (CHB, n = 82) ancestries were combined to calculate the PCA. This
method identified samples not clustering with the Northwestern European indi-
viduals (IFM outliers, n = 34), given that these patients were equally distributed
between the case and control groups (Fisher exact test p= 0.36), no adjustment
was needed, and therefore they were kept for the GWAS. Inspection of the ob-
served and expected distribution of the neuropathy association statistic showed
absence of hidden population substructure (Cochran-Armitage test of associa-

tion; genomic inflation factor A = 1.05).

Marker QC

SNP QC was conducted in four steps to remove suboptimal markers of the GWA
data (Figure S1). i) unannotated SNPs according to hg19 na32 SNP6.0 Affyme-
trix annotations (n = 130) along with SNPs from mitochondrial and sex chro-
mosomes (n = 37326) were not considered in the study, ii) SNPs with missing
genotype in more than 5% of the subjects (n = 16743), iii) SNPs of low minor
allele frequency (MAF) less than 5% (n = 483984), iv) SNPs showing extensive
deviation from Hardy-Weinberg equilibrium (HWE) with an HWE p< 1 x 107°
(n = 834).

Statistical analysis

Statistical analyses were performed using SNPTEST v2.5.11 First, we compared
370605 genotypes from 155 grade > 2 BiPN IFM patients to 314 control IFM pa-

tients defined as grade 1 BiPN or no BiPN. Second, we performed a validation us-
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ing the HOVON-65/GMMG-HD4 cohort for the highest associated SNPs ( prend<
1 x 1079) as identified in the exploratory cohort. We compared 41 bortezomib-
treated grade > 2 BiPN patients with 75 bortezomib-treated control patients. We
applied a one-sided logistic regression with 10000 label-swapping permutations
to correct for multiple testing to confirm BiPN association in this independent
cohort. The predictive value of the SNP validated in the external series was as-
sessed on the overall population (n = 583, i.e. 195 cases and 388 controls) with

1 x 107 label-swapping permutations.
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RESULTS

We conducted a pharmacogenomic GWA study to identify genetic variants asso-
ciated with bortezomib toxicity in newly diagnosed patients with multiple mye-
loma who received VD induction therapy. Using SNP6.0 Affymetrix arrays, we
genotyped 909622 tagging SNPs in 482 multiple myeloma cases. Of the 482 DNA
samples genotyped, 469 cases passed strict QC criteria (online Figure S1). We
considered only the 370605 autosomal SNPs with homozygosity in at least 5% of
patients, a genotype call in at least 95% of patients and with an HWE p> 1 x 1075,
We compared the genetic contribution of patients who developed BiPN of grade
> 2 (n = 155) with that of patients who did not develop severe BiPN or without
BiPN (n = 314). We separated grade 0 and 1 versus grade 2 or more based on the
clinical impact of such a toxicity. Grade 1 neuropathy requires a careful follow-
up, but doses of bortezomib are not modified. Doses of bortezomib in the routine
clinical practice must be adapted (from 1.3 mg/m? to 1.0 mg/m?, or from the bi-
weekly to the weekly schedule administration) according to the onset of grade 2
peripheral neuropathy, or stopped in case of grade 3 or more, and resumed in case
of recovery. The GWA study showed association for six SNPs with OR> 1.8 and
Purend< 1 x 107° (Table 1 and online Table S1; online Figure S3 and S4), although
none reached the actual significance in a GWA study (% = 1.35 x 1077).
To replicate these findings, a validation was performed using SNP6.0 Affyme-
trix arrays in 114 newly diagnosed patients with multiple myeloma enrolled in
the HOVON-65/GMMG-HD4 clinical trial who received VD induction therapy. A
significant association was seen for rs2839629 (OR = 2.04; 95%CI [1.11-3.33]
(p= 8.3 x 10~3; Table 2) which maps within the 3’'UTR of PKNOX1 (transcription
factor PBX/knotted 1 homeobox 1). The overall estimate for rs2839629 was an
OR 0f 1.89 [1.45-2.44]; p= 5x 10~ 7). Moreover, rs2839629 is in strong linkage dis-
equilibrium (LD) with rs76516641 (r?> = 0.94) and rs915854 (> = 0.86) which
map within the intergenic region of 19.5kb between PKNOX1 and cystathionine-
3-synthetase (CBS; Figure 1).

Both PKNOX1 and CBS appear to be strong candidates for BiPN susceptibil-
ity genes. PKNOX1 is known to modulate transcriptional activity of chemokine

monocyte chemoattractant protein-1 (MCP-1) gene.'?"1> Through interaction
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Table 1. Six highest associated SNPs. SNPTEST results for exploratory population for the
six highest associated SNPs

SNP CHR  BIPN22 BIPN<2 Odds ratio [95%Cl]  Prend |

A B #AA#AB#BB #AA#AB#BB  AB/AA BB/AA global

rs10862339 12 AC 40 79 36 147 135 32 22[14,34] 41[23,75] 2'1[1.672.7 5.47 x 107
11344016 12 AG 41 79 35 145135 34 2.1[1 550 3.62.0.0.5 1.91.5.2.6) 3.81 x 10°
(2414277 15 TC 21 70 64 86 155 73 1.901 5.0 362.0-0.5 191526 6-17 x 10°

rs4776196 15 TC 21 70 64 85 155 74 1.9, 554 3.52.0.6.3 1.91.4055 9-31 x 10°

]
]
]
rs2839629 21 GA 33 79 43 128 137 49 1.5[0_93,2'5] 35[20759] 19[15,25] 7.64 x 106
]
rs11145770 9 GA 46 72 37 141 144 29 26[15—46] 39[22_71] 19[14_25] 9.70 x 106

with its cognate receptor CCR2, MCP-1 contributes to paclitaxel CIPN through
changes in dorsal root ganglion neurons.'® MCP-1 is universally increased in
different models of neuropathic pain and may be considered as a biomarker of
chronic pain.!” MCP-1 is an important mediator of macrophage-related neu-
ral damage in different animal models of inherited neuropathies and acute in-
flammatory demyelinating neuropathy.'®1° CBS encodes the endogenous H2S-
producing enzyme CBS. CBS-H2S signaling pathway is implicated in the patho-
genesis of a variety of neurodegenerative and inflammatory disorders, diabetic
gastric hypersensitivity and plays a crucial role in inflammatory pain in temporo-
mandibular joint.?%-23 To explore the possibility that this association might be
mediated through differential expression of PKNOX1 or CBS or both, we examined
the correlations between rs2839629, rs76516641, and rs915854 genotypes and
tissue-specific gene expression levels by using the expression quantitative trait
locus analysis available on the SNiPA portal (www.snipa.org) that used GTEx
Portal v6 and MuTHER consortium as primary sources.?*"2¢ PKNOX1 expression
was significantly associated with rs2839629 and rs915854 genotypes in tibial
nerve tissue (p= 5.6 x 10~® and p= 1.9 x 1077, respectively; online Tables S2

and S3) with higher expression associated with rs2839629 risk alleles (Figure

Table 2. Logistic regression results One-sided logistic regression in the validation cohort
to test whether the direction of association found in the exploratory cohort can be confirmed.
ORygiobal, 0dds ratio estimate; p, uncorrected parametric p-value; ppointwise, Pointwise p-value as
determined by permutation; prwer, permuted p-value (familywise error rate correction).

SNP ORgjobal [95%Cl] P Phpointwise PFWER
rs10862339 1’02[0.58—1.79] 0.53 0.54 0.96
rs1344016 1’05[0.6071.85] 0.43 0.44 0.91
rs2414277 1'20[0.71*2.08] 0.24 0.22 0.66
rs2839629 2.041.11-3.33) 9.6 x 1073 8.3 x 1073 0.036
rs4776196 11900 712,08 40.24 0.27 0.70
rs11145770 14300 752,33 0.14 0.13 0.46
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Figure 1. SNP associations with BiPN on the 21922.3 locus. Showing genome-wide level
of evidence of BiPN in multiple myeloma. lllustration of the locus with the local LD and recom-
bination rate over 500kb centred on rs2839629 (blue triangle). Each diamond, triangle, circle,
or square represents an SNP found in this locus, rs76516641 and rs915854 are indicated (red
diamond). The figure was generated using the web-based tool SNiPA (www.snipa.org; ref. 24).

2), whereas CBS expression was significantly associated only with rs2839629 in
skin (p= 2.6 x 10~!%) and in blood (p= 3.1 x 10~%; online Table S2). rs915854
is annotated with a regulatory feature cluster characterized by histone marks
H3K27ac and H3K4mel enrichment in blood and cervix cells (online Table S3).
In addition, a rs915854 minor allele is predicted to disrupt the binding site for
the general pioneer factor FOXA1, this could render the enhancer less active for
target gene expression such as PKNOX1 (Figure 3). Conversely, the rs76516641
genotype has no significant effect on the gene expression of both PKNOX1 and
CBS (data not shown).

As we show that the risk allele A for rs2839629 is associated with higher lev-
els of PKNOX1 expression and previous report have demonstrated that PKNOX1
binds preferentially to the -2578G (rs1024611G) polymorphism leading to in-
crease MCP-1 levels,'* we analyzed the relationship between rs28396294 and
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Figure 2. PKNOX1 expression vs. rs2839629 genotype. Relationship between tibial nerve
PKNOX1 expression and rs2839629 genotype from the GTEx Portal v6 (www.gtexportal.org;
ref. 25).

rs1024611G in the IFM exploratory cohort. We found a significant association
between the rs2839629 A/A homozygous genotype and the rs1024611G-bearing
allele (Fisher exact-test p= 0.01) suggesting a possible epistatic interaction be-
tween rs2839629 and rs1024611 to regulate MCP-1 expression. The current phar-
macogenomic GWA study also confirmed the modest association of the rs619824
genotype with BiPN (p= 0.043) previously identified by Corthals et al.® Although
there has been no overlap with a previous study on late-onset of BiPN-associated
variants reported by Broyl et al.1® as shown in online Table S4. This lack of
overlap could reflect the potential complexity of predisposition to BiPN. More
importantly, the design of the custom SNP chip used previously only contained
3404 SNPs in 983 hypothesis-driven genes which were thought to be function-
ally relevant in abnormal cellular functions, inflammation and immunity, as well
as drug responses rather than adverse drug reactions which are less obvious

candidates.?’
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DISCUSSION

To date there are no established predictors of BiPN, it is impossible to predict
which patient will develop neuropathy. Previous studies performed by our group
and others using candidate gene approach have revealed significant association
between SNP and BiPN; however, the clinical relevance of these findings is not
clear.819 To increase our chance to discover variants that might provide new
insights in the mechanisms underlying gene phenotype, we used a hypothesis-
free approach. GWAS in cancer pharmacogenomics is challenging and few reports
have been published to date. This is mainly due to insufficient statistical power
in studies.?8 To partially overcome these limitations, we designed our analysis to
identify high-effect SNP (OR> 1.8) with MAFs greater than 0.05, in a large cohort
of IFM patients with multiple myeloma (n = 469) uniformly treated to achieve

29 and we verified our findings in an independent

convincing statistical power
cohort of Dutch and German patients with multiple myeloma. Furthermore, our
GWAS approach eliminates selection case-control bias as both case-control stud-
ies included patients in cohort studies, i.e. IFM or HOVON/GMMGQG clinical trials
cohorts. When evaluating toxicity, it is sometimes difficult to distinguish between
BiPN and neuropathic pain in general. It is also recognized that the sole use of
the NCI CTC for assessment of sensory peripheral neuropathy is suboptimal. It is
also recognized that detailed patient-reported symptom data and a quality-of-life
assessment more accurately describes this toxicity and that physician-reported
NCI-CTC grading underreports peripheral neuropathy. These systematic evalua-
tions are difficult to apply in a multicenter study in the context of pharmacoge-
nomics analyses. Of note, our study has enrolled patients without peripheral neu-
ropathy at baseline, and patients were treated with the doublet combination of
bortezomib and dexamethasone, and did not receive other neurotoxic agents.
Our analysis revealed a SNP associated with BiPN (rs2839629; OR= 1.89;
p= 7.6 x 1079) that was replicated in an independent cohort (OR= 2.04; p=
8.3 x1073) in high LD with SNP rs915854. Both variants are in noncoding regions;
rs2839629 is located in the 3’'UTR of PKNOX1, and rs915854 is in the intergenic
region between PKNOX1 and CBS. Expression quantitative trait loci showed that

these variants alter PKNOX1 and CBS expression presumably via cis-regulatory
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elements in the case of rs915854 as it falls within a regulatory region (Figure 3).
Finally, we found a significant association between rs2839629A and rs1024611G
that could have an impact on MCP-1 expression levels. Given that these genes
encode proteins, directly or indirectly, involved in neuropathic!® and inflamma-
tory?3 pain, the functional significance of these predictive SNPs is established.
This discovery opens the way to investigate novel pathways linked to PKNOX1
and CBS activities for a better understanding of mechanisms underlying this neu-
rotoxicity. This work generated a new hypothesis hypothesis regarding neuro-
toxicity mechanisms and provides new targets for neuroprotective strategies;
however, additional international collaborative efforts including non-European
countries are warranted to confirm or refute these findings and examine the im-
pact of differential expression of both PKNOX1 and CBS effects on bortezomib
exposure in cell model. Our results are preliminary and cannot be proposed yet
for a systematic use in the routine clinical practice. Nevertheless, our findings are
one of the first steps that may allow for the identification of patients at increased
risk of severe BiPN, and these patients may benefit from the use of alternative
drugs, such as carfilzomib, and/or a more focused clinical management of this

toxicity.
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CHAPTER

General discussion



This thesis focuses on gene expression profiling (GEP) to identify multiple
myeloma (MM) patients with high-risk disease. Currently, prognostication of
MM is based on the international staging system (ISS) and presence of selected
cytogenetic aberrations, either separately or combined into the revised ISS (R-
ISS). 12 We have shown the usefulness, solid performance and reproducibility of

GEP based prognostication.

Development of the EMC92 classifier

In Chapter 2 we described the development of the EMC92 risk classifier, which
classifies patients into high-risk or standard-risk. The HOVON65/GMMG-HD4
clinical trial was used as the training set. We were able to validate the EMC92
classifier in independent datasets obtained from the clinical trials MRC-IX, TT2,
TT3 and APEX.3° The risk of death at any time is three times higher for high-risk
patients compared to standard-risk patients. The proportion of EMC92 high-risk
patients was stable across validation sets with an average of 18%. The EMC92
classifier compared favorably to other GEP classifiers, with the UAMS70-gene
classifier demonstrating comparable performance in terms of effect size. How-
ever, the proportion of patients classified as high-risk was larger using the EMC92
classifier (15-20% vs. 3-15%).”8 The EMC92 classifier was shown to effectively
classify patients treated with different treatments, including Thalidomide (MRC-
IX, TT2) and Bortezomib (APEX, TT3). The validation sets also included patients
of different age categories and disease stage; newly diagnosed as well as relapsed
patients, suggesting the classifier is applicable to all MM patients.

Together with comorbidities, physical and cognitive condition, age is a major
factor in distinguishing fit from frail patients.” Patients aged 65 years and older
are often considered ineligible for intensive treatments such that they receive a
fundamentally different treatment than younger patients. The EMC92 classifier
was only validated in a limited group of elderly patients in Chapter 2. There-
fore, in Chapter 5 we addressed the value of the EMC92 classifier specifically in
a group of elderly patients. In this population the classifier also passed valida-
tion, confirming the general usefulness of the EMC92 classifier.!%!! Moreover,
we showed in a multivariate model that the EMC92 classifier was independent of

the revised ISS. This finding needs to be confirmed in future studies, with larger
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sample size. Four additional datasets confirmed the value of the EMC92 classifier
in: newly diagnosed patients in the UK NCRI Myeloma XI trial, relapse patients
treated within the total therapy regime of TT6, a cohort of patients included in
the multiple myeloma genomics initiative (MMGI) and a cohort of Czech MM pa-
tients.1%12 It is important to emphasize here that there must be a clearly defined
separation between the set of patients needed for identifying factors of prognos-
tic value (training set), and an independent set of patients needed to evaluate the
general applicability of the identified factors (validation set). For this reason, we
systematically excluded the training set when testing the performance of a clas-
sifier. When a classifier is not validated in independent data, no conclusions can
be drawn on the performance of that classifier, and results can and should only
be reported as an observed association. 31> Another shortcoming in some gene
classifier reports is an insufficient description of the algorithm, thereby prevent-
ing a correct use of that classifier. 118 Therefore, guidelines which stipulate ad-
equate validation and thorough description of classifiers must be met.1%2% Next,
we evaluated and extended a non-parametric measure of concordance aiming
to compare the stability of classifiers (Chapter 6). Samples were tested under
varying operational conditions (e.g., varying reagent lots, operator or scanner)
to determine reproducibility by comparing the concordance between risk scores.
The currently most widely accepted GEP classifiers UAMS70 and the EMC92 per-
formed equally well in this analysis, demonstrating that both classifiers can be
used in a clinical context, at least in terms of assay stability. The possible future

use and availability of the EMC92 classifier is discussed below.

Combining prognostic markers

Our next question was how the EMC92 classifier would perform in comparison
to and in combination with other markers. To this end, a series of GEP classi-
fiers, serum markers and FISH markers were structurally combined in a pairwise
manner, classifying patients into an a priori unspecified number of risk groups
(Chapter 3). Strikingly, high-risk patients are much better identified by molec-
ular markers while low-risk patients seemed to be ideally identified by the ISS
stage L. This suggests that disease promoting factors are driven by tumor intrinsic

factors while disease suppression is likely more systemic in nature; i.e., as aresult
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of a higher tumor load, immune cells are further depleted and the microenviron-
ment is increasingly altered.?!~2* The lowest ISS stage turned out to be highly
additive to many FISH and GEP markers. Combining EMC92 with ISS resulted in
the identification of a large subset of low-risk patients (38%) with a median over-
all survival (0OS) that was not reached at eight years of follow-up and a high-risk
group (17%) with a median OS of 24 months. The high-risk patients were 5 to 7
times more likely to die at any point in time than lowest-risk patients. In contrast
to ISS or EMC92 alone in which a 2 to 3 times higher chance is observed. The re-
maining patients (45%) were part of two intermediate-risk groups with a median
0S of 47 and 61 months. A disadvantage of this combined EMC92-ISS marker is
the identification of 4 risk groups, with unclear clinical consequences, especially
for the intermediate-risk patients. It would therefore be interesting to extend the

analyses to optimally identify the high-risk or low-risk patients specifically.

Practical use of GEP classifiers

Correct use of GEP classifiers - like most other markers - is dependent on a num-
ber of requirements. Most importantly, it is necessary to reduce differences be-
tween the samples to classify and the samples used to build the classifier (train-
ing set). Variation between labs, technicians, protocols and reagents are the main
sources of these differences.?> Naturally, sources of variation should be avoided
as much as possible, whilst adequate batch correction can be applied to remove
remaining differences. The training set should then be used as a reference.?® To
aid this process, and to generate gene classifier scores for the research setting,
we developed the geneClassifiers software package as part of the R Bioconduc-
tor project.?’ For use in clinical practice, however, thorough standardization of
procedures is required. This process is laborious and expensive, and may hinder
the translation of useful findings to the clinic.?®2?° GEP classifiers currently in use
are the MammaPrint (Breast cancer, Agendia) and MyPRS (MM, UAMS70, Signal-
Genetics). Also the SKY92 is currently offered as part of the MMprofilerTM assay
(SkylineDx).3%-33 The MMprofiler is a standard Affymetrix Plus 2.0 microarray,
with a standard algorithm to generate the risk score. In order to perform an MM-
profiler assay, enough plasma cell derived RNA must be obtained (= 100ng RNA

from >80% plasma cells after purification).
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Clinical utility and risk based treatment

GEP classifiers such as SKY92 and UAMS70 turn out to have a significant contri-
bution to prognosis for both high- and low-risk classifications. As a result GEP
based prognostics are now recommended in the guidelines.3*3° For many pa-
tients, prognostic markers may clarify important questions dealing with life ex-
pectancy, possibly resulting in an improved quality of life.3¢ As discussed below,
treatment decisions may be changed as a result of prognostic insight, and this
may ultimately lead to improved survival. Currently prognostic markers have
limited effect on clinical decision making. For now, the focus to reach improved
survival as well as improved quality of life is on the development of drugs, also
taking into account administration schemes and different options of transplan-
tation.3”3® New drugs are continuously under development and include mono-
clonal antibodies, novel proteasome inhibitors and targeted therapies directed
against specific mutated proteins. The role for the patients’ immune system will
become increasingly important, and it is thought that this may allow for treat-
ment of early disease. Examples of immune therapies include bispecific T-cell
engagers (BiTE), chimeric antigen receptor (CAR) T-cells and immune checkpoint
inhibitors. 3941

The effect of some aspects of drug administration in relation to risk status has
been investigated. Elderly newly diagnosed MM patients were treated with either
a sequential (i.e., all VMP cycles before all Rd cycles or vice versa) or an alter-
nating scheme in which VMP and Rd administration were combined within each
cycle. No difference in survival and response was observed.*? A preliminary anal-
ysis reported however that the sequential scheme overcame the poor survival of
patients with del(17p), t(4;14) or t(14;16).%3 The time of transplantation is an-
other option to consider. It has been proposed to maintain an early transplant
for high-risk patients and to postpone the transplantation for standard-risk pa-
tients as part of salvage therapy.** This idea is contradicted by recent data from
the EMNO2 trial, showing a benefit of early transplantation for all subgroups.*>
Confirmation of this data requires longer follow up.

In contrast to the retrospective associations above, some trials are specifi-
cally designed to use GEP based risk stratification. The total therapy 5 (TT5)
study only included UAMS70 based high-risk patients. A reduced drug dosing
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was given in one arm with shorter intervals between cycles with the aim of pre-
venting inter-cycle relapse. Although this regimen effectively reduced early mor-
tality and relapse, it failed to improve progression free survival (PFS) and OS due
to relapse early during maintenance.*® Standard-risk patients not included in the
TT5, were included in the TT4 which aimed to determine whether a reduction in
the intensity of Total Therapy reduces toxicity and maintains efficacy. Although
there was no difference in response and OS between the regimes after 4.5 years
of follow up in 289 patients, the less intense treatment had in fact a shorter dura-
tion of complete response than the standard treatment. The results further failed
to show a decrease in toxicities and treatment-related mortalities.*” The British
Institute of Cancer Research (ICR) has launched the Myeloma UK nine phase Il
trial (MUK9 OPTIMAL trial; ISRCTN16847817) in which MM and patients with
plasma cell leukemia will be stratified according to cytogenetics and SKY92 risk
status. Within the high-risk population - which are thought not to benefit fully
from current treatment approaches - combinations of multiple novel agents will
be evaluated and optimized. Another trial currently being designed is the SWOG
S1211 phase I/1I trial (NCT01668719) for RVd with or without the SLAMF7 an-
tibody elotuzumab in high-risk patients based on the SKY92 and other risk defi-
nitions.*® An important aspect of the clinical utility is the biological variability of
GEP classifiers over time, and at different tumor sites in the body of a given pa-
tient (longitudinal, spatial variation). Both aspects require further studies, par-
ticularly regarding the SKY92 classifier, as all current knowledge on these aspects
of variability is based on UAMS70 data.*%>°

Predictive markers

With increasing choice of treatment options for MM, markers which can iden-
tify the most optimal treatment for a specific patient are becoming increasingly
important.®! Examples of such predictive markers are known for other disease
entities. In patients with myelodysplastic syndrome, deletion of 5q has long been
recognized to be a predictive marker to select Lenalidomide treatment, for which
multiple mechanisms have been proposed including the recent findings involving
effects of Lenalidomide on the Cereblon-MCT1-CD147 axis.>?~>8 The treatment

of BCR-ABL-positive chronic myeloid leukemia patients with imatinib is another
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example of patient characteristics giving rise to a specific treatment.>° In non-
small-cell lung cancer, EGFR mutation status has emerged as an important pre-
dictor of response to the EGFR tyrosine kinase inhibitors such as erlotinib %61
and overexpression of the growth factor receptor gene HER2 is found in 20 to
30% of early stage breast cancer patients, responding well to treatment with an
antibody against HER2.%? In myeloma, there is currently no established predic-
tive marker. There is provisional evidence that response to venetoclax - a se-
lective inhibitor of the anti-apoptotic protein BCL-2 - is almost exclusively lim-
ited to those MM patients that have a t(11;14) translocation. Still, only half of
all t(11;14) patients respond. Instead, only patients with increased BCL-2 mRNA
expression - often absent in patients without t(11;14) - and low expression of
other anti-apoptotic molecules such as BCL2L1 or MCL-1, seem to be respon-
sive to venetoclax treatment.®3-%8 Responses were independent of cytogenetic
status as determined by interphase FISH. These findings were confirmed in a
phase II trial of venetoclax treatment in combination with Bortezomib (which
indirectly inhibits MCL-1) and Dexamethasone.®® In response to the identifica-
tion of CRBN as the target protein of Thalidomide and other immunomodulatory
drugs,’® we analyzed the effect of CRBN gene expression in MM tumor cells on
survival and response in HOVON-65 maintenance patients (Chapter 7). Inter-
estingly, a weak association was found for PFS in Thalidomide treated patients
while absent in Bortezomib treated patients. This corresponds well to the report
of reduced CRBN expression in > 85% of MM patients who were Lenalidomide
resistant.”! With the exception of treatments for which a clear biological cause
and effect relation is known, finding predictive markers is difficult. The number
of patients available for analysis is often small, considering that only a subgroup
of all patients receives the specific treatment, of which only a part will respond.
Small effect sizes of treatment benefits can be expected, and will make it difficult
to obtain adequately powered discovery and validation data. Recently, the al-
gorithm TOPSPIN has been developed which classifies patients as responders or
non-responders to treatment using a non-linear separation based on gene sets.”?
Although large numbers of patients in at least two treatments arms are required,
reported results look promising. As an alternative to predictive markers based

on tumor cell biology, the genetic predisposition of patients to specific toxicities
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may help to guide treatment choices. In Chapters 7 and 8 we described analyses
of common germ-line variants in relation to peripheral neuropathy especially af-
ter Bortezomib treatment (BiPN). Being the dose limiting toxicity, with grade 2-4
BiPN seen in 15-40% of patients treated with Bortezomib, it constitutes a seri-
ous adverse event. In Chapter 7, newly diagnosed MM patients were studied us-
ing an early custom design chip detecting 3400 single nucleotide polymorphisms
(SNPs). No association of BiPN with an individual SNP could be found. A vari-
ant in CYP17A1 was among highest associations in both the discovery and val-
idation set. A similar analysis was performed in the VISTA trial. An analysis of
2000 variants found the CTLA4 and PSMB1 genes - which are described in rela-
tion with immune function and drug binding - to be associated with time to onset
of BiPN.”3 As there was almost no overlap in the SNPs included in both studies, a
comparison between the two studies was not possible. As a result of evolving mi-
croarray technology, we were able to perform a genome wide association study
(Chapter 8). Despite a much larger number of variants that were genotyped, the
small sample size precluded solid conclusions. A SNP in the gene PKNOX1 that
was associated with BiPN was the most promising finding. However, a modest
association of the CYP17A1 genotype with BiPN was confirmed in Chapter 8. The
difficulty in finding a clear association underlines the need for collaboration in
consortia for performing this type of analyses, as well as a clear definition of the

trait studied.”4

Future of treatment decisions

In summary, today the patient specific factors used for treatment decisions are
primarily age, the presence of comorbidities, frailty and renal failure. As a re-
sult, almost all newly diagnosed MM patients receive similar treatment. This
treatment has been shown to be effective in the MM patient group as a whole.
However, some patients respond only minimally or do not respond at all requir-
ing treatment adjustments. This approach therefore fails to produce the best re-
sponse in each patient. Future molecular biomarkers are likely to guide treat-
ment decisions (Figure 1). The aim is to identify treatment specific markers for
both toxicities and response. In the absence of reliable predictions, treatments

can be adapted based on risk stratification. In this way, a most optimal treatment
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Figure 1. Future of treatment decisions. Tx: Treatment.

for each patient can be selected in order to achieve a better quality of life, deeper

responses and possibly even a cure.

Conclusion

In conclusion, we have shown that the EMC92-gene classifier is a valid prognostic
marker. It effectively identifies a high-risk group of 18% of patients with unfavor-
able median survival of 24 months, independent of other prognostic markers. In
combination with ISS, the EMC92 marker was able to identify 38% of patients
with a favorable median survival which was not reached after 96 months. This
thesis also highlights the power of routinely applied markers such as cytogenetics
and ISS. Risk adapted strategies, hopefully coupled to predictive markers, must

determine the best way to improve survival of this as yet incurable disease.
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Summaries



English summary

The studies in this thesis cover two main topics: development and comparison
of prognostic markers in Multiple Myeloma (MM) (chapters 2-6), and characteri-
zation of the genetic basis of peripheral neuropathy, an important toxicity of MM
treatment (chapters 7 and 8).

Chapter 2 (Kuiper et al. 2012): By gene expression profiling of 290 MM pa-
tients included in the HOVON-65/GMMG-HD4 clinical trial, a 92 gene classifier
(EMC92) was developed, enabling the classification of patients into high- or stan-
dard risk. This classifier was validated in four external patient cohorts (newly
diagnosed and relapsed) in which its performance was shown to be independent
of other prognostic factors.

Chapter 3 (Kuiper et al. 2015): By exploiting the value of twenty known
prognostic factors, which were systematically combined pair-wisely, we selected
those combinations that improved prognostication. Among the most promising
was the EM(C92-ISS combination, enabling the classification of patients into four
risk groups. The combinations that were found in the discovery phase were then
validated in a similar group of patients that were left out of the discovery phase
prior to the analysis.

Chapter 4 (submitted): Although approximately 65% of newly diagnosed
MM patients are older than 65 years and thus likely non-transplant eligible, the
EMC92-gene classifier has been validated using mainly newly diagnosed trans-
plant eligible or relapsed patients. Only in a subset of the MRC-IX, newly diag-
nosed non-transplant eligible patients were included. Therefore, we applied the
EMC92-gene classifier to 178 patients included in the HOVON-87 trial with a me-
dian age of 73 years. Also in this setting the classifier has a strong performance,
independent of other prognostic factors.

Chapter 5 (submitted): The most important aspect of a prognostic predictor
is its prognostic value. Precision is also important, i.e. upon repeatedly classi-
fying a patient under similar conditions, the resulting outcome should remain
the same. We have described a method to quantify the concordance between re-
peated measurements and a test for equal concordances.

Chapter 6 (Broyl et al. 2013): Recently, cereblon (CRBN) expression was
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found to be essential for the activity of the immune modulatory drugs, thalido-
mide and lenalidomide. Using 96 thalidomide treated patients of the HOVON-
65/GMMG-HD4 trial, we showed that higher levels CRBN expression were sig-
nificantly associated with longer progression-free survival. In contrast, no as-
sociation between CRBN expression and survival was observed in the arm with
bortezomib maintenance.

Chapter 7 (Corthals et al. 2011): Peripheral neuropathy (PNP) is the dose
limiting toxicity for bortezomib. Patients with higher grades of PNP require
dose-reduction or even discontinuation of the treatment. Identification of an
increased risk before start of the treatment could help treatment decisions.
Therefore we tested the association between germline single nucleotide poly-
morphisms (SNPs) and the occurrence of PNP during bortezomib treatment in
the IFM-2015-01 clinical trial. The SNPs were detected using an early SNP chip
(with hypothesis driven design) containing 3400 features of which 56 were found
to be univariately associated in the discovery set. However, neither in the discov-
ery set, nor in the HOVON-65/GMMG-HD4 validation set, any of these reached
significance after multiple testing correction. Based on the highest-ranking SNPs
found using the uncorrected p-value in the discovery set, pathway analysis did
demonstrate clear enrichment of neurological disease SNPs, possibly indicative
for a combination of many small effects.

Chapter 8 (Magrangeas et al. 2016): The bortezomib treated HOVON65/-
GMMG-HD4 patients have been re-genotyped using a more recent type of SNP ar-
ray (with unbiased design) containing more than 900.000 SNPs. Similar analyses
were performed with a slight alteration in the phenotype definition: PNP grades
0 and 1 versus grades >1. A SNP mapping to the 3’ UTR of PKNOX1 was among
the highest associations in the IFM discovery cohort that could be validated in
the HOVON-65/GMMG-HD4 validation data in which it reached significance after

multiple testing correction.
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Nederlandse samenvatting

De studies in dit proefschrift beschrijven twee hoofdlijnen, namelijk: de ont-
wikkeling en vergelijking van prognostische markers in multiple myeloma (MM;
hoofdstukken 2 tot en met 6), en onderzoek naar de genetische basis van perifere
neuropathie, wat een ernstige en veel geziene bijwerking is tijdens de behande-
ling van MM (hoofdstukken 7 en 8).

Hoofdstuk 2 (Kuiper et al. 2012): Een prognostische classifier op basis van
92 genen is ontwikkeld in gen expressie profielen van 290 MM patiénten die
waren geincludeerd in de HOVON-65/GMMG-HD4 klinische studie. De classifier
is gevalideerd in vier externe cohorten (zowel nieuw gediagnostiseerde als reci-
dief patiénten) waarin de onafhankelijke prognostische waarde ten opzichte van
bestaande prognostische markers aangetoond kon worden.

Hoofdstuk 3 (Kuiper et al. 2015): Door twintig bekende prognostische
markers systematisch paarsgewijs met elkaar te combineren is getracht die com-
binaties te selecteren die een verbeterde voorspelling gaven van de prognose.
De beste prestaties werden onder meer bereikt door de EMC92/ISS combinatie
die patiénten categoriseerde in een van vier risico groepen. Deze classifier is
gevalideerd in een onafhankelijke subset van de data.

Hoofdstuk 4 (submitted): Ondanks dat 65% van de nieuw gediagnostiseerde
patiénten ouder zijn dan 65 jaar en dus waarschijnlijk ongeschikt zijn om been-
merg transplantie te ondergaan, is de EMC92 classifier voornamelijk gevalideerd
op jongere nieuw gediagnosticeerde patiénten die wel een transplantatie on-
dergingen. Daarom is de EMC92 toegepast op 178 patiénten die zijn geincludeerd
in de HOVON87 studie. Deze patiénten hebben een mediane leeftijd van 73 jaar.
Ook in deze setting bleef de prognostische waarde van de EMC92 behouden.

Hoofdstuk 5 (submitted): Naast het onderscheidend vermogen is ook pre-
cisie een belangrijk aspect van een classifier. Dat wil zeggen, het herhaaldelijk
classificeren van een patiént zou tot consistente uitkomsten moeten leiden. Wij
hebben een algemene methode beschreven om de mate van overeenkomst tussen
herhaaldelijke metingen te kwantificeren en de mate van overeenkomst tussen
methodes te vergelijken.

Hoofdstuk 6 (Broyl et al. 2013): Onlangs bleek dat het tot expressie komen
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van cereblon (CRBN) essentieel is voor de effectiviteit van zogenaamde ‘im-
mune modulatory’ drugs zoals thalidomide en lenalidomide. Daarom hebben
we gekeken naar de overleving op thalidomide of bortezomib onderhoudsbe-
handeling in HOVON65 patiénten ten opzichte van de gemeten CRBN expressie
bij diagnose. Een toegenomen CRBN expressie was significant geassocieerd met
langere progressie vrije overleving bij thalidomide onderhoudsbehandeling. Bij
bortezomib was dit verband afwezig.

Hoofdstuk 7 (Corthals et al. 2011): Perifere neuropathie (PNP) is de do-
sisbeperkende toxiciteit voor bortezomib. Patiénten met ernstige neuropathie
moeten behandeld worden met lagere dosis of de behandeling zal zelfs beé€indigd
moeten worden. Het herkennen van een verhoogd risico op PNP voor de start
van de behandeling van belang zou gewenst zijn. Daarom hebben we gezocht
naar verbanden tussen het optreden van PNP en het hebben van specifieke geno-
types genaamd ‘single nucleotide polymorphisms’ (SNPs) bij patiénten in de [FM-
2015-01 klinische studie. Met behulp van een van de eerste SNP chips konden
we 3400 (hypothese gedreven) SNPs per patiént bepalen. Hiervan werden er 56
univariaat gelinkt aan PNP in de IFM data. Geen van deze was echter significant
na correctie voor multiple testing. De hoogst gerangschikte SNPs waren verrijkt
met SNPs die in eerdere studies in verband werden gebracht met neurologische
aandoeningen. Dit duidt mogelijk op het aanwezig zijn van vele SNPs die zwak
geassocieerd zijn met PNP en dus enkel gevonden kunnen worden in studies met
meer patiénten.

Hoofdstuk 8 (Magrangeas et al. 2016): Patiénten zijn opnieuw gegeno-
typeerd op een nieuwere SNP chip met meer dan 900.000 SNPs. Soortgelijke
analyses zijn gedaan met een kleine aanpassing in de definitie van het fenotype:
PNP grades 0 en 1 zijn vergelijken met grades >1. Een univariaat significant ver-
band tussen hogere graads PNP en een variantin het PKNOX1 gen werd gevonden
in de IFM data. Deze bevinding kon worden gevalideerd in de HOVONG65 validatie

data waarin de SNP significant was na correctie voor multiple testing.
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Abbreviations

Term Definition

95%CI 95% Confidence interval

AE Adverse event

ANOVA Analysis of variance

ASCT Autologous stem cell transplantation

B2m Beta-2-microglobulin

BiPN Bortezomib induced Peripheral Neuropathy

BiTE Bispecific T-cell Engagers

BOR Drug: Bortezomib

CAR Chimeric Antigen Receptor

CD1,CD2 Cluster: Cyclin D1 or D2 gene translocation

cDNA Complementary DNA

CE Conformité Européene

CEU Central European

CHB Han Chinese in Beijing

CHR Chromosome

CRAB Diagnostic criteria for MM: hyperCalcemia, Renal failure,
Anemia, or lytic Bone lesions

CTA Cluster: Cancer Testis Antigens

CTCAE Common Toxicity Criteria for Adverse Events

CTDa Treatment: attenuated Cyclophosphamide, Thalido-
mide, Dexamethasone

CVAD Treatment: Cyclophosphamide, Vincristine, Doxoru-
bicin, Dexamethasone

DNA Deoxyribonucleic acid

EFS Event free survival

EM(C92 Erasmus Medical Center 92-gene classifier

FDR False Discovery Rate



Term Definition

FISH Fluorescence in Situ Hybridization

FRMA Frozen Robust Multi-Array normalization

FWER Family-Wise Error Rate

GCRMA Guanine Cytosine adjusted Robust Multi-Array normal-
ization

GEO Gene Expression Omnibus

GEP Gene Expression Profiling

GMMG German-Speaking Myeloma Multicenter Group

GPI50 Gene Proliferation Index 50-gene classifier

GWAS Genome Wide Association Study

HDM High dose Melphalan

HM19 Heidelberg-Montpelier 19-gene classifier

HO-<xx> HOVON study with trial number <xx>

HOVON Haemato Oncology Foundation for Adults in the Nether-
lands

HR Hazard ratio or High-risk

HWE Hardy-Weinberg equilibrium

HY Cluster: Hyperdiploid

ICC Intra Class Correlation coefficient

[FM15 Intergroupe Francophone du Myélome 15-gene classifier

IgH, IgH Immunoglobulin-H or G

IMiD Immunomodulatory Drug

IMWG International Myeloma Working Group

Interm Intermediate

ISS International Staging System

IVD In Vitro Diagnostic

LB Cluster: Bone disease

LD Linkage disequilibrium

LDH Lactate dehydrogenase

MPR-R Treatment: Melphalan, Prednisone, Lenalidomide plus

Lenalidomide maintenance



Term Definition

M-protein Monoclonal protein

MAF Minor allele frequency or MAF gene

MAS5 Microarray suite 5.0 gene expression normalization
method

MDE Myeloma Defining Events

MF Cluster: MAF gene translocation cluster

MGUS Monoclonal Gammopathy of Undetermined Significance

MM Multiple Myeloma

MP Treatment: Melphalan Prednisone

MPT-T Treatment: Melphalan, Prednisone, Thalidomide plus
Thalidomide maintenance

MRCIX6 Medical Research Council IX 6-gene classifier

mRNA messenger RNA

MS Cluster: MMSET gene translocation cluster

mSMART Mayo Stratification for Myeloma And Risk-adapted Ther-
apy

n.r. Median not reached

NA Not Applicable or Not Available

NCBI National Center for Biotechnology

Neg Negative

NMSG Nordic Myeloma Study Group

Nopaco Non-parametric concordance coefficient

OR Odds Ratio

0S Overall Survival

PAD Treatment: Bortezomib, Adriamycin, Dexamethasone

PANP Presence-Absence Calls from Negative Strand Matching
Probesets

PCA Principal Component Analysis

PCL Plasma Cell Leukemia

PCLI Plasma Cell Labeling Index

PFS Progression Free Survival



Term Definition

PI Proteasome Inhibitor

PNP Peripheral Neuropathy

Pos Positive

PR Cluster: Proliferation cluster

Prop. Proportion

QC Quality Control

R-ISS Revised International Staging System

Rd Treatment: Lenalidomide, low dose Dexamethasone

RMA Robust Multi-array Averaging gene expression normal-
ization

RNA Ribonucleic acid

RS Rank Score

RT-PCR Real-Time Polymerase Chain Reaction

SD Standard Deviation

SKY92 Skyline 92-gene classifier

SMM Smoldering Multiple Myeloma

SNP Single Nucleotide Polymorphism

SR Standard-risk

SWOG Southwest Oncology Group

TC-classification Translocation and Cyclin-D classification system

Thal Thalidomide

TiPN Thalidomide induced Peripheral Neuropathy

TT2, TT3 Total therapy 2, Total therapy 3

Tx Treatment

UAMS17 -70 -80

UTR

VAD

VCD

VD

University of Arkansas for Medical Sciences 17, 70 or 80
gene classifiers

Untranslated Region

Treatment: Vincristine, Adriamycin, Dexamethasone
Treatment: Bortezomib, Cyclophosphamide and Dexam-
ethasone

Treatment: Vincristine, Dexamethasone



Term Definition

VMD Treatment: Bortezomib, Melphalan, Dexamethasone
VMP Treatment : Bortezomib, Melphalan, Prednisone

VTD Treatment: Bortezomib, Thalidomide, Dexamethasone
WHO World Health Organization

YRI

Yoruba from Ibadan












