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A B S T R A C T

This study aims at assessing the predictive performance of the Amontons–Coulomb law to reliably predict
the cyclic response, inclusive of stick–slip, of a single degree of freedom system in contact with the ground
through two versions (steady-state and rate-and-state) of a regularized Dieterich–Ruina law. The assessment
is carried out by defining a cost function and a physics-based constraint that enable the identification of
the corresponding optimal coefficients of the Amontons–Coulomb law through a multi-start constrained non-
linear optimization. The comparative study starts with a sensitivity analysis, aimed at first identifying the
most meaningful model parameters for the Dieterich–Ruina law. Subsequently, the cyclic dynamic responses
provided by both friction laws are analysed for varying model parameters, and characteristic features are
observed within the dynamic forcing–displacement graph and the friction force–velocity plot, that could be
directly linked to one friction model or the other. The sensitivity analysis led to the definition of a cost function
expressed in terms of the displacement and velocity response differences and a constraint based on the phase
difference. The optimization study identified areas of the Dieterich–Ruina’s parameter space for which the
Amontons–Coulomb law can reliably be used to predict a cyclic stick–slip response. The relevance of these
results with respect to problems of modelling and identification of friction are discussed.
1. Introduction

Structural joints and interfaces characterized by moving surfaces
are present in many mechanical and natural systems, encompassing
a large spectrum of applications including aerospace, civil engineer-
ing, geomechanics and biology. Regardless the field of application,
the common goal concerning sliding systems is the development of
efficient predictive tools for their fundamental understanding, design
and maintenance. What makes this goal challenging is the multidisci-
plinary nature that characterizes problems in which sliding systems are
involved, since their mechanical behaviour depends on the coupling
between the surface properties (that changes over different length- and
time-scales) and the bulk mechanics of the systems in contact. The
multi-scale nature and the complex interconnectivity between these
interface mechanisms make the modelling and especially the experi-
mental characterization of interface mechanics and properties two of
the most challenging tasks in engineering research, as highlighted in
three review studies (Vanossi et al., 2013; Vakis et al., 2018; Meng
et al., 2020). In all these studies, the modelling strategy tends towards
the development of complex and high-fidelity models, encompassing
aspects such as the accurate rough surface representation, the physics
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of lubrication and wear. However, it may often be more convenient
to adopt phenomenological interface models, able to mimic the most
significant sliding features occurring at an interface level. The latter
models exhibit a good trade-off between simplicity and complexity, and
are particularly powerful for engineering design purposes. Nonetheless,
models of such kind need to be constantly validated.

Phenomenological or empirical interface laws are often derived
through tailored and specific experiments, and are meant to encapsu-
late friction-related interface behaviour in an empirical and simplified
fashion, in order to avoid the development of highly complex numerical
models of the surfaces in contact. For the latter ones, the reader may re-
fer to classical textbooks on computational contact mechanics (Laursen,
1998; Wriggers, 1998). The computational cost for highly complex
numerical models becomes especially high for transient and periodic
dynamic simulations relevant for energy dissipation, fretting fatigue
and friction-induced vibration analysis. The Amontons–Coulomb law
can be considered the first empirical friction law. It was originally
deduced by observing the initiation of sliding of objects in station-
ary contact (Pitenis et al., 2014), and still is the one used in most
studies concerning the analytical and computational aspect of dynamic
vailable online 13 July 2022
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systems affected by friction. For example, it has been employed for
evaluating analytical solutions for sliding regimes and thresholds for
the stick conditions of the steady-state behaviour of idealized dynamic
systems (Den Hartog, 1931; Shaw, 1986; Hong and Liu, 2001; Marino
and Cicirello, 2021), for developing numerical strategies for multi-
ple stick conditions (Hong and Liu, 2000), for investigating stability
analysis (Sorge, 2007) and chaotic predictions (Csernak and Licsko,
2021).

The widely used Amontons–Coulomb law is not able to capture a se-
ries of phenomena observed in laboratory experiments such as, among
others, ageing of the contact area (Blau, 2009; Dieterich, 1979; Bureau
et al., 2002), velocity dependence (Blau, 2009; Marone, 1998; Bar-
Sinai et al., 2015; Cabboi et al., 2016; Cabboi and Woodhouse, 2018),
time lag effect during a sliding regime (Cabboi et al., 2016; Cabboi
and Woodhouse, 2018; Hess and Soom, 1990; Heslot et al., 1994; Van
De Velde and De Baets, 1998; Wiercigroch et al., 1999), breakaway
friction force dependence on the applied tangential force rate (Lam-
paert et al., 2004; Sun et al., 2015), and frequency dependence of the
friction force due to dynamic perturbations (Cabboi et al., 2016; Cabboi
and Woodhouse, 2018). To account of such effects at a macroscale
level, phenomenological friction laws were developed over time, which
are of paramount importance for the design and control of mechanical
systems. Among these laws, the rate-and-state models (developed in
the 70’s within the geomechanic community (Dieterich, 1979; Ruina,
1983; Rice and Ben-Zion, 1996) and the LuGre model (Canudas de Wit
et al., 1995) (proposed in the 90’s by the control community) proved
to be the most successful ones within their domain of application. Both
models were gradually enhanced in time to cope with new experimental
observations aiming to extend their domain of applicability. Examples
for such enhanced models can be found in Bar-Sinai et al. (2015),
Cabboi et al. (2016), Putelat and Dawes (2015), Gonthier et al. (2004),
Jankowski et al. (2016), Al-Bender et al. (2005) and Marques et al.
(2021).

The progressive enhancement of friction laws is a direct conse-
quence of the absence of a general phenomenological law of friction.
As a result, the level of complexity of the friction law employed is
currently dependent on the type of problem and application. This
implies that there is a continuous need to validate the friction laws
for each type of applications, keeping in mind that friction models
developed and validated for one application may not perform well
for other ones (Woodhouse et al., 2015). However, for the above
mentioned friction laws, neither regulated protocols or codes nor ho-
mologated tribometers do exist for validation purposes. To check out
some examples of prototype tribometers capable of testing the multiple
friction features mentioned above (except of the frequency dependence
of the friction force) the reader may refer to Lampaert et al. (2004)
and Sun et al. (2015). Given the large spectrum of friction models
available, practitioners should be equipped with guidelines on which
friction model to use for a given application, nevertheless, current engi-
neering handbooks are still limited by referring to Amontons–Coulomb
coefficients for different material combinations. On this regard, despite
few studies (Sun et al., 2015; Woodhouse et al., 2015; Berger, 2002;
Pennestrì et al., 2016; Marques et al., 2016) aiming at comparing
different friction models in a systematic manner, the literature shows
very little recognition about this key issue, especially if compared to
the multitude of modelling problems encountered in engineering when
friction needs to be taken into account.

It is worth mentioning Ref. (Pennestrì et al., 2016), in which eight
well-known friction models used in engineering were reviewed and
compared. The friction models were classified based on the Amontons–
Coulomb viewpoint and the bristle analogy, accounting for the interface
compliance. Three different test-cases were investigated: the spring–
mass system on a moving belt (Rabinowicz test case), a three degrees
of freedom system with multiple contacts and a pre-sliding test case
constituted by a moving mass (for the latter see Dupont et al. (2002)
2

as well for more details). The results of such study seem to favour the
LuGre friction model (Canudas de Wit et al., 1995) (in combination
with the Gonthier friction model (Gonthier et al., 2004), an extension
of the LuGre model), that exhibited a good trade-off between simulating
meaningful friction features and the computational cost. A conclusion
along the same line was also drawn in Sun et al. (2015). For further
and more challenging applications, such as transients predictions and
stability analysis of friction-induced vibration phenomena, converging
towards a reliable friction model is still an elusive task (Woodhouse
et al., 2015). For example, in Cabboi and Woodhouse (2018) it was
shown that the fluctuating friction force component between specific
surfaces in contact exhibits a systematic frequency dependence that can
be captured by a compliant rate-and-state friction model. Further at-
tempts to reproduce the fluctuating friction force component consisted
in adding an evolving perturbation term of the friction coefficient (Lac-
erra et al., 2018). This short overview highlights that to fairly assess the
friction models and to understand under which operational conditions
certain friction laws are more indicated then others, quantities and
response features that are representative enough of the main friction-
related effects characterizing the case at hand are needed. On such
regard, the comparison of friction models has been carried out by inves-
tigating limit cycles (Liu and Wu, 2014), since the stability boundaries
are highly sensitive to a change of the friction law. Nyquist plots of
the frictional impedance function (Cabboi et al., 2016) were also used
to discriminate among friction laws suitable for a complex eigenvalue
analysis. Free dynamic decays (Rigaud et al., 2010; Le Bot et al., 2019)
were used to evaluate the dependence or independence of friction
from velocity, and quantities accounting for the energy dissipation
per cycle (Lopez and Nijmeijer, 2009). When considering quasi-static
loading, quantities such as the breakaway force, the friction lag and
the pre-sliding behaviour (Sun et al., 2015) are usually investigated.

Within this context, it is the aim of the current paper to shed
light on when the Amontons–Coulomb coefficients can be used as
an equivalent friction law to reliably predict a stick–slip response,
with reference to a specific model setup and an underlining assumed
interface law, such as the Dieterich–Ruina friction law. The dynamic
response of sliding systems is of paramount importance to assess the
energy transmission and dissipation, relevant for applications such as
friction dampers (Marino and Cicirello, 2021; Gastaldi and Gola, 2016;
Gagnon et al., 2020). In a previous study, focused on quantifying
the energy dissipation (Lopez and Nijmeijer, 2009) of a single degree
of freedom (1-DOF) system (representing an idealized version of a
friction damper) it was briefly concluded that friction models that
differ from the Amontons–Coulomb law would not have a significant
effect on the estimated dissipated energy. The following work is meant
to systematically assess up to which extent the Amontons–Coulomb
coefficients could be used, provided that the actual friction force is
characterized by a more complex friction law. The present comparative
study is focused on the cyclic response of a 1-DOF system influenced
by frictional contact with the ground, including two stops and more
than two stops during one cycle of motion as well. The reason of
limiting the analysis to a 1-DOF system is merely due to the fact that
eventual mismatches between the responses obtained by the assumed
friction laws will only increase in case more degrees of freedoms are
assumed (e.g. normal and tangential direction of motion). Specifically,
the forced mass–spring system is assumed to be governed either by
an Amontons–Coulomb law or by the Dieterich–Ruina law (Dieterich,
1979; Rice and Ben-Zion, 1996). The analysis of the dynamic responses
allowed the identification of characteristic features observable within
a representative response cycle and referable to the adopted friction
laws. Concerning the Dieterich–Ruina law, its steady-state and rate-
and-state version were assumed. The Dieterich–Ruina law is assumed
as the predefined underlining constitutive law of friction, and an op-
timization study was then performed throughout a chosen parameter
space of the Dieterich–Ruina model, to identify the optimal pair of
Amontons–Coulomb friction coefficients able to accurately predict the

cyclic response, inclusive of stick–slip. The Dieterich–Ruina law is
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Fig. 1. Harmonically excited mass–spring system.

commonly used within the geomechanics community and has been
only recently introduced for mechanical engineering applications such
as the prediction of squeal phenomenon (Cabboi and Woodhouse,
2020). Besides the comparative analysis, this study also proposed a
regularized version of the Dieterich–Ruina friction law, by eliminating
the singularity at zero velocity and enabling its use for cases of velocity
reversals. Throughout this study, it is shown that, for specific sets of
model parameters of the Dieterich–Ruina law, the corresponding cyclic
stick–slip response of 1-DOF oscillator characterized by a two-stop
motion can be well represented by simply using a set of Amontons–
Coulomb coefficients, namely the static one 𝜇𝑠 in combination with the
kinetic one 𝜇𝑘. The obtained results are of interest both for the interface
characterization of sliding systems through tribological experiments,
and also for the preliminary design phase of a sliding system subject to
a vibratory force, for which idealized 1-DOF models may be justified
(i.e., systems with well-separated modes and force spectrum localized
around a single mode of vibration). As a final note, throughout the
paper, we refer to expressions such as steady-state and cyclic dy-
namic responses. Steady-state refers to the dynamic friction law of the
Dieterich–Ruina type for which the state variable is neglected, while
cyclic response refers to a periodic cycle of a stick–slip motion.

2. Friction models and sensitivity analyses

To elucidate the effects on the dynamic response triggered by
three different friction laws, a harmonically excited sliding mass–spring
system is used. In Fig. 1, the single degree of freedom is represented by
the displacement along the 𝑥 direction, the spring stiffness is defined
by 𝑘, the mass by 𝑚, while 𝑃 and 𝜔 stand for the amplitude and
requency of the applied harmonic load. Two different constitutive
aws for the friction force 𝐹 are investigated: the Amontons–Coulomb
aw (Section 2.1), and a particular realization of a rate-and-state fric-
ion model (Section 2.2) provided by the Dieterich–Ruina law. For
he latter friction law, a steady-state version was also used exhibit-
ng only a friction force–velocity dependence. All friction laws are
ualitatively illustrated in Fig. 2. The Amontons–Coulomb law can
ither be defined by assuming a single value friction coefficient or
distinction can be made between a static, 𝜇𝑠, and a kinetic, 𝜇𝑘,

oefficient of friction independent of the velocity 𝑣 (Fig. 2a). Fig. 2b
hows the steady-state version of the Dieterich–Ruina friction law,
ighlighting the non-monotonic velocity dependence, while Fig. 2c
hows the hysteresis effect of the chosen rate-and-state friction law due
o the presence of the state variable. The hysteresis takes place during
ticking and prolongs its effect within the velocity-weakening regime
hat occurs at low velocities.

The results for the frictional systems are obtained by means of a
umerical integration scheme based on the detection of both stick and
lip event conditions and using 𝑜𝑑𝑒45 and 𝑜𝑑𝑒23𝑠 (see also Marino and
icirello, 2020 for further details). For the sake of clarity, the main
teps of the algorithms are illustrated in Appendix, where Algorithm
refers to the Amontons–Coulomb case and the steady-state version of

he Dieterich–Ruina law, while Algorithm 2 describes the case of using
rate-and-state friction law.

For all cases, a comparative sensitivity analysis is carried out by
ndependently varying each friction model parameter. The comparison
3

f

is performed within a single period of the cyclic responses, focusing on
a time segment contained between two zeros. For the response cycle of
reference, different quantities are investigated: time vs. displacement,
time vs. velocity and harmonic load vs. displacement response.

2.1. Amontons-Coulomb law

The dimensional equation of motion containing the Amontons–
Coulomb law reads as follows:

𝑚�̈� + 𝑘𝑥 + 𝐹 (𝑣) = 𝑃 cos(𝜔𝑡) (1)

where the origin of the coordinate 𝑥 refers to the untensioned state of
he spring. The friction force is characterized as a function of the slip
tate (𝑣 ≠ 0) and the stick state in the following way:

(𝑣) =

{

− 𝜇𝑘𝑁sgn(𝑣) if 𝑣 ≠ 0

[−𝜇𝑠𝑁,𝜇𝑠𝑁] otherwise
(2)

n which 𝑁 identifies the normal load exerted by the sliding mass 𝑚 on
he ground. To allow a comparative study, Eq. (1) is transformed into
ts non-dimensional form, which reads as
2�̄�′′ + �̄� + �̄�(�̄�) = cos 𝜏 (3)

here

= 𝜔𝑡 and �̄� = 𝑥
𝑃∕𝑘

(4)

are the dimensionless time and spatial coordinates, respectively, and
the operator (′) stands for the derivative with respect to 𝜏. The fre-
quency ratio 𝑟 is the ratio between the excitation and natural frequency
of the system, defined as

𝑟 = 𝜔
√

𝑘∕𝑚
. (5)

The friction force is adimensionalized with respect to the harmonic load
amplitude 𝑃 , complying the same conditions as in Eq. (2)

̄(�̄�) =

{

− �̄�𝑘sgn(�̄�) if �̄� ≠ 0

[−�̄�𝑠, �̄�𝑠] otherwise
(6)

where the non-dimensional velocity has been denoted with �̄�. The
tatic, �̄�𝑠, and kinetic, �̄�𝑘, friction ratios are therefore defined as

̄𝑠 = 𝜇𝑠
𝑁
𝑃

and �̄�𝑘 = 𝜇𝑘
𝑁
𝑃
. (7)

Note that throughout the paper we indistinguishably refer to Eq. (7)
as friction coefficients or friction ratios.

2.1.1. Sensitivity analysis for the Amontons-Coulomb law
Two cases are explored to assess the impact of the static and kinetic

friction coefficients variation on the different chosen quantities. For
both cases, the simulation results refer to a two-stop stick–slip motion.
For the first case, see Fig. 3, a single friction coefficient is assumed such
that �̄�𝑠 = �̄�𝑘. A frequency ratio 𝑟 = 0.3 was chosen and �̄�𝑘 was varied
etween 0.3 and 0.5, with steps of 0.05. By inspecting Fig. 3a,b, it can
e deduced that if a single friction coefficient is assumed, its variation
as a very moderate influence on the shape of both displacement and
elocity responses. In general, it can be observed that for higher kinetic
riction ratios, the stick event initiates for a slightly lower absolute
isplacement of the mass. Fig. 3c relates the dynamic excitation to the
ynamic displacements, and as far as the sliding phases concerns, dif-
erent values of the kinetic friction ratio �̄�𝑘 tend to enlarge these curves
orizontally, while keeping the various sliding traits almost parallel
etween each other. This is an expected result, since a higher kinetic
riction leads to a higher energy dissipation during the sliding phase,
hich is directly proportional to the area enclosed in the excitation–
isplacement curves, and to a general increase of the time during which
he mass sticks. It is worth underlying that, if the parameter �̄�𝑠 = �̄�𝑘 is
urther increased, the system would eventually get permanently stuck
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Fig. 2. Qualitative behaviour of the chosen friction laws. Concerning the Dieterich–Ruina friction law, the reference model parameters are indicated in Table 1.
Fig. 3. Cyclic response of a 1-DOF system with Amontons–Coulomb friction for 𝑟 = 0.3, varying �̄�𝑘 and �̄�𝑠 = �̄�𝑘.
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when �̄�𝑠 = 1, i.e. when the static friction force equates the amplitude
of the harmonic forcing.

Fig. 4 refers to the second case, for which two different coefficients
of friction were chosen, such that �̄�𝑠 ≠ �̄�𝑘. For the displayed simula-
tions, the kinetic friction ratio was kept at 0.4, while the static friction
ratio was varied between 0.4 and 0.8. As expected, an increase of the
static coefficient leads to an increased spring displacement amplitude
since the mass will start slipping at a higher excitation force. This
will cause a general increase of the mass velocity, first observed by
means of a clockwise rotation and consequent increase of slope of
the sliding curve around zero at 𝜏 = 𝜋 in the dynamic displacement
vs. time plot (Fig. 4a). The same effect is clearly visible in Fig. 4b
where the absolute values of velocities increase with �̄�𝑠. Concerning the
excitation–displacement plot in Fig. 4c, it can be seen that in contrary
to the curve expansion shown in Fig. 3c, there is an anti-clockwise
rotation around the zero mass displacement of the sliding trait for
increasing values of the static friction ratio. Since the kinetic friction
is not changing, the corresponding variation of the dissipated energy
will not show significant variations.

The role played by varying the static or kinetic friction ratio within
the excitation-dynamic response graphs shown in Figs. 3c and 4c, can
also be elucidated by inspecting the time lag, or phase difference, gener-
ated between the dynamic excitation and the corresponding response,
as illustrated in Fig. 5a. The continuous blue and red curves refer to
the dynamic displacement obtained by assuming a single coefficient
of friction such as �̄�𝑠 = �̄�𝑘, being �̄�𝑘 equal to 0.3 (case 1) and 0.5
(case 2), for the respective curves, while the corresponding excitation
is indicated by the dashed lines characterized by 𝑟 = 0.3. Note that
while the dynamic responses do not exhibit any significant variation
for an increase of �̄�𝑘, the time-lag between the excitation and the
4

response increases accordingly, due to an increase of dissipation during
the sliding phases (traits 6–2 and 3–5 in Fig. 5(a),(b)). To complete
the picture, the continuous and dashed green lines in Fig. 5a represent
the dynamic displacement and the corresponding excitation for a case
in which a difference between �̄�𝑠 and �̄�𝑘 is assumed (case 3). To
highlight the effect of varying �̄�𝑠, the value of �̄�𝑘 was chosen equal
to 0.3, therefore comparable to case 1 represented by the blue line,
while �̄�𝑠 is 0.7. Due to the same value of �̄�𝑘, the time-lag between
he dynamic excitation and the corresponding response between case

and case 3 remains unaltered, while the presence of a different
alue of �̄�𝑠 increases the maximum dynamic displacement during the
ticking phase (traits 2–3 and 5–6). The invariance of the time-lag
nd the increase of the maximum displacement, translates into an
nti-clockwise rotation of the sliding traits around the point of zero
isplacement shown in Fig. 5b.

.2. Dieterich-Ruina law

A regularized and non-monotonic version of the Dieterich–Ruina
odel (Dieterich, 1979; Ruina, 1983) is used, which defines 𝜇 as a
ependent variable by the following relation

(𝑣, 𝜃) = 𝜇∗ + 𝑎 ln
(

𝑣
𝑉∗

)

+ 𝑏 ln
(

𝑐 + 𝜃
𝜃∗

)

(8)

where 𝑣 is the sliding velocity of the mass, 𝜃 is an internal state variable,
the subscript ‘‘∗’’ defines steady-state reference values of 𝜇 and 𝜃 for a
chosen sliding velocity 𝑉∗, 𝑎 and 𝑏 are dimensionless model parameters.
The introduction of the parameter 𝑐 was originally proposed in Putelat
et al. (2007) and subsequently tested against experimental results
in Cabboi et al. (2016). Such parameter confers a residual strength
to the friction force at high sliding velocities, during which the state
variable 𝜃, that governs the interfacial state behaviour, is supposed to
have no influence on the friction force. Therefore, the consequence
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Fig. 5. (a) Dynamic displacement vs. time graphs. The continuous lines define the dynamic displacement response, with the following system parameters: blue line 𝑟 = 0.3,
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f introducing 𝑐 is to generate two friction force regimes, as shown
n Fig. 2b: a velocity-weakening regime, during which the slope of
he friction–velocity curve is negative and a velocity-strengthening
egime, during which the coefficient of friction increases with velocity.
he need of such non-monotonic curve agrees well with experimental
indings for various material combinations illustrated in Bureau et al.
2002), Cabboi et al. (2016), Heslot et al. (1994), Weeks (1993) and
hroff and de Boer (2016).

To complete Eq. (8), the state variable 𝜃 needs an evolutionary law
iven by the standard Dieterich ageing law (Dieterich, 1979) that reads
s follows
d𝜃
d𝑡

= 1 −
|𝑣|𝜃
𝐿

(9)

here the parameter 𝐿 is a length-scale parameter characterizing an
bserved transient behaviour in velocity jump and slide-hold-slide fric-
ion tests (Marone, 1998). In the numerator of Eq. (9), the absolute
alue is used to preserve the ageing law for negative values of the
liding velocity. As mentioned earlier, the ageing law defined by Eq. (9)
as added to reproduce a transient relaxation phenomenon that char-
cterizes the friction force if subject to a sudden sliding velocity jump,
rom 𝑣1 to 𝑣2 (in which 𝑣2 tends to be an order of magnitude higher or
maller than 𝑣1, see Marone (1998) for further details and the annotated
ig. 6a for a graphical illustration of the transient phenomenon). The
riction force is assumed to be in a steady-state condition (d𝜃∕d𝑡 = 0)
t the two reference sliding velocities 𝑣1 and 𝑣2.

The effect of the state variable on the friction force, can also be
5

isualized by applying a small oscillatory perturbation �̃�(𝑡) around a
chosen sliding velocity 𝑣, where �̃�(𝑡) ≪ 𝑣. This line of reasoning was
illustrated in three previous studies (Cabboi et al., 2016; Cabboi and
Woodhouse, 2018, 2020), leading to a linearized version of the rate-
and-state friction law around an arbitrary sliding velocity. By taking
the Fourier transform of the linearized friction law, it is possible to
formulate an expression of a frictional frequency response function
𝛽(𝜔). Such function represents the slope of the friction curve around an
rbitrary chosen sliding velocity, and due to the presence of the state
ariable it is a complex number. The derivation of the expression of
(𝜔) for the chosen friction law, Eq. (8), can be found in Cabboi et al.
2016), and the final expression reads as follows

(𝜔) =
�̃�(𝜔)𝑁
�̃�(𝜔)

= 𝑁
(𝜇𝑠𝑠,𝑣 + 𝜔2𝑡2𝜃𝜇𝑣) + i𝜔𝑡𝜃(𝜇𝑣 − 𝜇𝑠𝑠,𝑣)

1 + 𝜔2𝑡2𝜃
(10)

where i is the imaginary number defined as i2 = -1, �̃� represents the
linearized term of the friction force expression. Parameters 𝜇𝑣 and 𝜇𝑠𝑠,𝑣
are partial derivatives of the rate-and-state law with respect to velocity,
note that the subscript ‘‘𝑠𝑠’’ stands for the steady-state version of the
rate-and-state friction law that will be described later. Parameter 𝑡𝜃
defines the inverse of the partial derivative of the state evolution law
with respect to 𝜃. By assuming the Dieterich–Ruina law as a realization
of the rate-and-state expression, the partial derivatives read as follows
(see also Cabboi et al. (2016) for further details)

𝜇𝑠𝑠,𝑣 = 𝑎
𝑣
−

𝑏𝑉∗
𝑣(𝑉∗ + 𝑣𝑐)

; 𝜇𝑣 = 𝑎
𝑣
; 𝑡𝜃 = 𝐿

𝑣
. (11)

It is important to note that Eq. (10) differs by an initial minus sign from
the expression shown in Eq. (30) in Cabboi et al. (2016). The minus sign
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Fig. 6. (a) Dieterich–Ruina law applied to a sliding velocity jump from 𝑣1 (0.1 mm/s) to 𝑣2 (1 mm/s). The model parameters for this example are: 𝑎 = 0.01, 𝑏 = 0.02, 𝑉∗ =
1 mm/s, 𝐿 = 1e−6 m, 𝑐 = 0.01 and 𝜖 = 0; (b) Frequency response of dynamic friction, 𝛽(𝜔). The model parameters for Eq. (10) are listed in Table 1, and an arbitrary normal
load of 10 N was assumed. The frequency range spans between 0 and 5 kHz, and three different velocities 𝑣 were chosen: 0.003 m/s (blue line), 0.01 m/s (red line) and 0.03 m/s
yellow line. Markers (a), (b) and (c) refer to frequency values of 47, 159 and 477 Hz, respectively, while markers (d), (e) and (f) are chosen to be 10 times lower then the previous
ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was needed to fit the sign convention of the measured forces during
the experiments described in Cabboi et al. (2016). The expression of
𝛽(𝜔) is visualized in Fig. 6b for increasing values of velocities (0.003–
0.01–0.03 [m/s]) and for a frequency range between 0–5 kHz. The
values of reference for the Dieterich–Ruina law are indicated in Table 1.
Fig. 6b highlights that the 𝛽(𝜔) curves tend to shrink for increasing
values of sliding velocities. At zero frequency, regardless of the velocity,
Eq. (10) simplifies into the 𝜇𝑠𝑠,𝑣, representing the slope of the steady-
state version of the Dieterich–Ruina law. For frequencies higher than
zero, it can be observed that the initial segment of the 𝛽(𝜔) curves
shows a negligible dependence between frequency and real part and the
imaginary part has a lower amplitude compared to the real part. This
region encapsulates the forcing condition for which the state variable
can be neglected. To better quantify this region, we may seek for
conditions to reduce the imaginary part of Eq. (10) to zero. For a
finite difference between 𝜇𝑣 − 𝜇𝑠𝑠,𝑣, it can be deduced that in order
to decrease the imaginary part, there is an interplay between two
time-scales defined by the product 𝜔𝑡𝜃 . An eventual decrease of such
product allows the imaginary component to vanish. In general, the
following inequality between the time-scale of the forcing defined by
𝜔 and the time-scale of the interfacial asperity dynamics represented
by 𝑡𝜃 , characterizes the condition for which the state variable becomes
negligible during a perturbed sliding regime

𝜔 ≪ 𝑣
𝐿
. (12)

Eq. (12) suggests that for a fixed 𝜔, any kinetic (or rate-dependent)
friction law would be justified provided the ratio between sliding
velocity and asperity-related length-scale is high enough. Note that a
similar condition was already proposed in a previous work, see Elmer
(1997), independently of the assumed rate-and-state friction law. The
ratio 𝑣∕𝐿 is highlighted in Fig. 6b through circled markers (see points
(a), (b) and (c)), while a threshold region defined by frequencies 10
times lower than the 𝑣∕𝐿 values, start to define the area in which the
effect of the state variable on sliding can be neglected.

Besides the described effects on a perturbed sliding regime, be it
through a velocity jump or by means of a small oscillatory perturba-
tion, the assumed state evolution law (ageing law) exhibits the most
predominant effect during a sticking regime when 𝑣 = 0. As it can
be deduced by Eq. (9), during a stationary contact the parameter 𝜃
increases linearly with time. The latter property is often called as
time-dependent healing (Dieterich, 1979; Bureau et al., 2002; Marone,
1998). However, the Dieterich–Ruina law cannot be straightforwardly
used for the case of stationary contact, since the functional form of
Eq. (8) still poses a problem in case of zero velocity due to the first
logarithmic dependence on velocity. A regularization was proposed
in Rice and Ben-Zion (1996) and Putelat et al. (2007), forcing the
coefficient of friction to rapidly decrease towards zero as soon as the
6

d

velocity approaches the zero value. However, the physical justification
of such a rapid and steep decrease of the friction coefficient within a
friction vs. velocity graph is highly questionable. To eliminate such
singularity, we propose a simpler approach, by introducing a small
parameter 𝜖 (𝜖 ≪ 1) that acts as a cut-off or residual velocity, allowing

realization of the static coefficient of friction at 𝑣 = 0. The regularized
expression of the friction coefficient reads as

𝜇(𝑣, 𝜃) = 𝜇∗ + 𝑎 ln
(

|𝑣| + 𝜖
𝑉∗

)

+ 𝑏 ln
(

𝑐 + 𝜃
𝜃∗

)

. (13)

Therefore, according to Eq. (13), during a stationary contact (𝑣 = 0)
an increase of 𝜃 results in a logarithmic increase of the static friction
coefficient, described by

𝜇𝑠(𝜃0, 𝛥𝑡) = 𝜇∗ + 𝑎 ln
(

𝜖
𝑉∗

)

+ 𝑏 ln
(

𝑐 +
𝜃0 + 𝛥𝑡

𝜃∗

)

where 𝜃∗ = 𝐿
𝑉∗

(14)

and 𝛥𝑡 = 𝑡−𝑡0, being 𝑡0 and 𝜃0 the initial time instant and internal state,
respectively, at the onset of the sticking phase. Based on Eq. (14), it can
be deduced that the increase of the static friction coefficient during a
stationary contact is directly proportional to the weighting factor 𝑏 and
to the value of 𝐿, a characteristic property of the surfaces in contact.

For the comparative analysis of this study, a steady-state version
of the rate-and-state friction law was also used. A steady-state of the
dynamic friction law implies that d𝜃∕d𝑡 ≈ 0. Under this condition,
parameters 𝐿 and 𝜃 can be neglected within the Dieterich–Ruina law.
By imposing the latter condition on Eq. (9), we deduce that

d𝜃
d𝑡

= 1 −
|𝑣|𝜃
𝐿

= 0 → 𝜃𝑠𝑠 =
𝐿
|𝑣|

≈ 𝜃𝑠𝑠 =
𝐿

|𝑣| + 𝜖
. (15)

t is worth noting that the parameter 𝜖 is introduced also in this equa-
ion in order to eliminate the singularity in the steady-state expression
f the Dieterich–Ruina law. Taking into account the expressions for 𝜃𝑠𝑠
nd 𝜃∗, we can eliminate parameters 𝐿 and 𝜃 from the friction law,
btaining the following relation

(𝑣) = 𝜇∗ + 𝑎 ln
(

|𝑣| + 𝜖
𝑉∗

)

+ 𝑏 ln
(

𝑐 +
𝑉∗

|𝑣| + 𝜖

)

. (16)

Eq. (16) enables us to make few considerations concerning the be-
haviour of the friction force–velocity relation. The non-monotonicity
of Eq. (16) implies the presence of a minimum velocity, that marks
the transition point between the velocity-weakening and the velocity
strengthening regime, and is given by

𝑣𝑚𝑖𝑛 ≈
𝑉∗
𝑐

×
(𝑏 − 𝑎)

𝑎
(17)

for which the parameters containing 𝜖 were neglected (since assumed
o be very small, 𝜖 ≪ 1). Eq. (17) was derived by taking the partial
erivative of Eq. (16) with respect to the sliding velocity 𝑣, and setting
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the zero condition for such derivative. Positive values of 𝑣𝑚𝑖𝑛 are
rovided only if the term (𝑏 − 𝑎) is positive.

As mentioned before, the introduction of 𝜖, enables the quantifica-
ion of a possible value of the static coefficient of friction as soon as 𝑣
ends to zero. Setting 𝑣 to zero in Eq. (16), the expression of the static
oefficient of friction is defined as

𝑠 = 𝜇∗ + 𝑎 ln
(

𝜖
𝑉∗

)

+ 𝑏 ln
(

𝑐 +
𝑉∗
𝜖

)

. (18)

Eq. (18) can be reduced to a simpler form. Given that 𝜖 ≪ 1, and
rovided that 𝜖 ≪ 𝑉∗, the ratio 𝑉∗∕𝜖 contained in the second parenthesis
ecomes dominant, leading to the following approximate expression

𝑠 ≈ 𝜇∗ − (𝑏 − 𝑎) ln
(

𝜖
𝑉∗

)

(19)

Since 𝜖 can be assumed always smaller than 𝑉∗, Eq. (19) ensures
that 𝜇𝑠 > 𝜇∗ for positive values of (𝑏 − 𝑎). The expression of the
static friction coefficient will later be used to provide initial guesses
for the optimization runs illustrated in Section 3. With reference to
the optimization, it is worth mentioning that negative values of 𝜇(𝑣)
need to be avoided. Since specific combinations of model parameters
may generate negative values of the friction coefficients estimated by
the Dieterich–Ruina law, only the model parameters that comply the
following inequality of 𝜇(𝑣𝑚𝑖𝑛) are investigated:

𝜇(𝑣𝑚𝑖𝑛) ≈ 𝜇∗ + 𝑎 ln
( 𝑏 − 𝑎

𝑐𝑎

)

+ 𝑏 ln
( 𝑐𝑏
𝑏 − 𝑎

)

> 0. (20)

So far, we used the Dieterich–Ruina law as a possible realization of a
rate-and-state friction law able to quantify the dependence of the coeffi-
cient of friction on variables such as the sliding velocity and an internal
state variable. To define a friction force 𝐹 (as depicted in Fig. 2), in
the original formulation (see Dieterich, 1979), the Amontons–Coulomb
proportionality between the normal force and the friction force was
used. For the sake of simplicity, the same proportionality was assumed
in this study to define the friction force. It is worth mentioning that
a non-trivial dependence on the normal load will inevitably call for
an extra state variable as suggested in previous studies (Linker and
Dieterich, 1992; Prakash, 1998; Tal et al., 2020), leading to a 2-
DOF system with a bi-directional friction law, which investigation falls
outside the scope of this study.

To summarize the assumed laws in this section and following the
nondimensionalization adopted in Section 2.1, the adimensionalized
equations for the steady-state version of the friction force 𝐹 formulated
by means of the Dieterich–Ruina law, that leads to a rate-dependent
model, reads as

̄(�̄�) =

⎧

⎪

⎨

⎪

⎩

−
[

�̄�∗ + �̄� ln
(

|�̄�| + 𝜖
𝑉∗

)

+ �̄� ln
(

𝑐 +
𝑉∗

|�̄�| + 𝜖

)]

sgn(�̄�) if �̄� ≠ 0

[−�̄�𝑠, �̄�𝑠] otherwise

(21)

hile the adimensionalized expressions of the friction force 𝐹 following
he rate-and-state law are defined by

̄(�̄�, �̄�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
[

�̄�∗ + �̄� ln
(

|�̄�|+𝜖
𝑉∗

)

+ �̄� ln
(

𝑐 + �̄�𝑉∗
�̄�

)]

sgn(�̄�) and
d�̄�
d𝜏 = 1 − |�̄�|�̄�

�̄� if �̄� ≠ 0

[−�̄�𝑠(�̄�0, 𝛥𝜏), �̄�𝑠(�̄�0, 𝛥𝜏)] otherwise

(22)

here:

�̄� = 𝑎𝑁
𝑃
, �̄� = 𝑏𝑁

𝑃
, 𝑉∗ =

𝑉∗
𝜔𝑃∕𝑘

, 𝜖 = 𝜖
𝜔𝑃∕𝑘

, �̄� = 𝜔𝜃

nd �̄� = 𝐿
𝑃∕𝑘

. (23)
7

The adimensionalization also enables us to further simplify the condi-
tion formulated in Eq. (12) into

�̄� ≪ �̄�. (24)

Eq. (24) is independent of the forcing frequency, and suggests that for
high sliding velocities, the state variable can be neglected. This was
qualitatively deduced by inspecting the general decrease of the 𝛽(𝜔)
curves for increasing values of sliding velocities.

2.2.1. Sensitivity analysis for the Dieterich-Ruina law
Ranges and reference values for the Dieterich–Ruina friction model

parameters were assumed and listed in Table 1. The values of 𝑎, 𝑏 and
𝐿 are indicatively taken from previous studies (Cabboi et al., 2016;
Cabboi and Woodhouse, 2018) showing ranges of fitted rate-and-state
model parameters for different material combinations (e.g. polymer-
glass, polymer-steel), while 𝑐, 𝜇∗, 𝑉∗ and 𝜖 were chosen in order to

imic friction curves that could most likely match a realistic friction
orce dependence with velocity. The same ranges and values were also
sed for their corresponding parameterized versions, �̄�, �̄�, �̄�, 𝑉∗, �̄�∗ and
̄∗. The latter ones were adopted for the sensitivity study concerning the
cyclic response and the optimization process described in Section 3.
Constant parameters are also listed in Table 1 as reference values.
Before assessing the influence of each model parameter on the dynamic
response of the 1-DOF oscillator, it is worth highlighting the role each
model parameter plays for the prediction of the friction coefficient–
velocity curve. Parameters 𝑎, 𝑏, 𝐿, 𝑐, 𝜇∗ and 𝜖 were varied separately
within the ranges indicated in Table 1, while reference values were cho-
sen for the fixed parameters. For almost all the above mentioned model
parameters, Eq. (16) was used to highlight their sensitivity on the
Dieterich–Ruina law, while for parameter 𝐿 the complete rate-and-state
law was adopted (see Eqs. (9) and (13)).

The influence of parameter 𝐿 on the friction curve is shown in
Fig. 7a. Eqs. (9) and (13) were used in combination with an assumed
sinusoidal varying velocity between −1 and 1 m/s, and a frequency 𝜔 of
10 rad/s. For the simulated continuous sliding motion, the acceleration
(upper line) and deceleration traits (lower line) for positive velocities
are shown for each curve. The main effects of the state variable is
to generate a slight shift of the maximum value of the coefficient
of friction at low velocities, that occurs at a 𝑣 ≠ 0, and to induce
an hysteresis behaviour, leading to lower values of the coefficient of
friction for the deceleration traits with respect to the acceleration part.
It can be deduced from Eq. (12), that for a fixed 𝜔, a decrease of 𝐿
may allow to neglect the state variable for a larger velocity range. This
outcome can be observed by comparing the dash-dotted yellow curve
and the continuous blue line in Fig. 7a, generated for a low and a
high value of 𝐿, respectively. The yellow curve highlights an influence
of the state variable within the mm/s domain of velocity, while its
effect ceases for higher velocities, during which the acceleration and
deceleration traits perfectly overlap. Lower values of 𝐿 (for instance
0.001 m), tend to prolong the effect of the state variable within the
cm/s velocity domain. For further simulations, 𝐿 was kept fixed at
10−5 m. It is worth clarifying that the friction reduction effect at low
velocities, visible in Fig. 7a, is due to the logarithm argument (𝑐+𝜃∕𝜃∗)
in Eq. (13) that tends to be lower than 1, depending on the ratio defined
by 𝜃∗ and on the evolution of 𝜃. Note that in case of stick–slip motion,
he time spent in stationary contact during the stick regime allows an
ncrease of 𝜃, which leads to an increase of the static friction coefficient;
herefore, a friction reduction of the type shown in Fig. 7a will be hard
o observe.

As described earlier, the Dieterich–Ruina law was modified for the
ase of velocities approaching zero values. The introduction of the
arameter 𝜖 enables an estimation of the static coefficient of friction.

Fig. 7b shows the influence of the parameter 𝜖 on the friction–velocity
curves obtained with Eq. (16). The choice of 𝜖 has a direct effect
limited to the value of the static friction coefficient and to the friction
coefficients close to the zero velocity point, whereas no relevance of 𝜖
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Table 1
Chosen ranges and reference values for the Dieterich–Ruina law. The ranges and reference values were taken from previous
studies (Cabboi et al., 2016; Cabboi and Woodhouse, 2018).
Parameters 𝑎 𝑏 𝐿 [m] c 𝑉∗ [m/s] 𝜇∗ 𝜖

Reference values 0.038 0.065 10−5 0.022 0.003 0.4 10−6

Range 0.01–0.09 0.01–0.16 10−3–10−7 0.01–0.1 – 0.3–0.5 10−4–10−8
Fig. 7. (a) Rate-and-state version of the Dieterich–Ruina law, (see Eqs. (13) and (9)), for a case of continuous sliding motion characterized by a maximum velocity of 1 m/s and
a frequency 𝜔 of 10 rad/s; (b) Steady-state version of the Dieterich–Ruina law. The static coefficient of friction, 𝜇𝑠 was estimated by Eq. (19) and is defined by a black cross in
raph (b). Note that graph (b) was truncated along the 𝑥-axis, highlighting two different regimes of sliding velocity at a smaller and higher order of magnitude. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Steady-state version of the Dieterich–Ruina law for the case of continuous sliding motion for varying values of: (a) 𝜇∗ and (b) 𝑐. Ranges and reference values are listed in
Table 1.
c

was detected for velocities higher than zero, as displayed by the right
part of Fig. 7b. The values of the static coefficients were also estimated
by means of the approximated Eq. (19), defined by a black cross in
Fig. 7b, showing an excellent match with the starting point of the
friction–velocity curves. For the upcoming analysis, 𝜖 was kept fixed
at 10−6 m∕s.

Fig. 8a shows five different curves obtained by varying 𝜇∗. The
effect of such parameter, linked to the chosen sliding velocity 𝑉∗,
consists in translating the curve upwards or downwards for increasing
or decreasing values of 𝜇∗, respectively. If compared to the Amontons–
Coulomb law, this would reflect to a change of 𝜇𝑘 and 𝜇𝑠. The effect
of parameter 𝑐 is displayed in Fig. 8b and can be also be appreciated
by inspecting Eq. (17). An increase of 𝑐 leads to higher value of the
minimum transition velocity, 𝑣𝑚𝑖𝑛, and to a corresponding decreasing
value of 𝜇𝑚𝑖𝑛 marked by a black cross in Fig. 8b. Note that parameter
𝑐 could be used to match the Stribeck effect typically observed in
sliding friction experiments. In fact, smaller values of 𝑐 lead to a
shift of the minimum of the friction curves towards higher velocities,
thus extending the velocity range where the velocity-weakening takes
place. Moreover, when small values of 𝑐 are assumed, the branch of
the friction curve following this minimum presents a low dependence
on the velocity, therefore also resembling an Amontons–Coulomb law
8

characterized by different static and kinetic friction coefficients. a
Fig. 9 shows the influence of parameter 𝑎 and 𝑏 on the friction
curve. Note that as soon 𝑎 is higher than 𝑏 (see the purple (𝑎 =
0.07) and green (𝑎 = 0.09) curve in Fig. 9a and the continuous blue
curve (𝑏 = 0.01) in Fig. 9b), the friction curve exhibits a monotonic
increasing trend starting from 𝜇𝑠. A monotonic increase of such kind
is counter-intuitive, however it is worth highlighting that experimen-
tal evidence do exist highlighting the non-reversibility of the friction
force–velocity curve relation, in which the deceleration traits exhibit
kinetic friction coefficients higher than the static ones (Wiercigroch
et al., 1999; Wojewoda et al., 2008; Saha et al., 2016). In the current
study, we assumed a perfect reversibility of the steady-state version of
friction force - velocity curve. Eq. (17) also suggests that for a positive
transition velocity to exist, (𝑏−𝑎) has to be positive. This condition will
be enforced for the optimization runs in Section 3. For completeness,
it is worth adding that the above described increasing trend of the
friction coefficient estimated by means of a steady-state version of the
Dieterich–Ruina law, can still occur for low positive values of (𝑏 − 𝑎)
combined with high values of 𝑎. Such parameter space was eventually
kept within the optimization runs described in Section 3.

Overall, the variation of 𝑎 and 𝑏 exhibited the most significant
hanges for the friction curve: it affects both the velocity-weakening
nd strengthening sliding regimes and the position of the minimum
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Fig. 9. Steady-state version of the Dieterich–Ruina law for the case of continuous sliding motion for varying values of: (a) 𝑎 and (b) 𝑏. Ranges and reference values are listed in
Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Comparison between the cyclic responses of a 1-DOF system with rate-dependent (blue lines) and rate-and-state (red lines) friction for 𝑟 = 0.3. In (a), the dashed lines
ndicate the corresponding dynamic excitation. Reference values for the simulations are listed in Table 1. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)
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ransition velocity. In combination with parameter 𝑐, these model
arameters enable to fit an eventual Stribeck effect observed during
liding friction tests. In addition, parameters 𝑎 and 𝑏 also allow to tune
he static friction coefficient. With reference to the latter observation,
n increase of positive values for (𝑏 − 𝑎), leads to a slight increase of
he static friction coefficient and a decrease of the friction coefficients
or velocities higher than zero, minimizing the velocity dependency of
he friction curve for velocities nearby and higher than 𝑣𝑚𝑖𝑛.

Similarly to what shown in Section 2.1.1, the sensitivity analysis to
assess the influence of the Dieterich–Ruina law on the chosen quantities
is performed for a two-stop motion. The analysis is carried out by first
assessing the influence of the rate-and-state friction law on the cyclic
two-stop motion, followed by runs in which the steady-state version
of the Dieterich–Ruina law is used. To facilitate the comparison with
the results presented in Section 2.1.1, the non-dimensional equations
presented in Eqs. (21) and (22) were adopted.

The results presented in Fig. 10 showcase the influence of the state
variable during a two-stop motion, for which a frequency ratio of 𝑟 =
0.3 was used. As mentioned in Section 2.2, see Eq. (14), the presence of
the state variable leads to an increase of the static coefficient of friction.
Such increase is clearly visible in Fig. 10a–b, where the red curve
refers to the rate-and-state friction law, while the blue curve depicts
the steady-state version of the Dieterich–Ruina law. In fact, it can be
observed that the rate-and-state responses are characterized by larger
absolute displacements during the sticking phases and slightly higher
velocities during the sliding phases. As explained in Section 2.1.1 and
shown in Figs. 4a and 5a, these effects are consistent with an increase
of the static friction coefficient. Moreover, it can be noted that the
9

transition from sticking to sliding is slightly delayed and smoother s
when the variation of 𝜃 is accounted for. This can be explained by
ooking at Fig. 10c, where the evolution of the state variable during
he two-stop motion is displayed, highlighting a significant difference
etween the values assumed by 𝜃 during sliding and sticking. The
tationary contact is characterized by a linear increase of 𝜃, while at
he onset of sliding 𝜃 tends to rapidly decrease. It is precisely the
atter short time interval, during which 𝜃 still exhibits high values
nd while the velocity starts to gradually build up, that leads to the
light shift of the maximum coefficient of friction observed at low
elocities, already shown in Fig. 7a. The same shift can also be observed
y inspecting the red curve in Fig. 11a, representing the rate-and-
tate dependent friction force recorded during an arbitrary cycle of a
wo-stop motion. At low velocities, the presence of the state variable
auses a clear separation between the acceleration and deceleration
hases during stick–slip, while for the rate-dependent friction force
oth phases perfectly overlap. However, differently from the friction
urves shown Fig. 7a, which have been obtained by using a sinusoidal
arying velocity, the red curve in Fig. 11a also exhibits different values
f the friction force at �̄� = 0 for the acceleration and deceleration
raits; this is clearly due to the already mentioned increase of the static
riction coefficient during the sticking phases. Figs. 11b–c highlight the
volution in time of both recorded friction forces. In Fig. 11b, it can be
bserved that during the sliding phase, the underlining friction force is
lways symmetric and the static coefficient of friction at the onset of
ticking and sliding remains constant. On the contrary, the rate-and-
tate dependent friction force during sliding loses its symmetry (see
ig. 11c), showing higher values during the initial acceleration phase
t the onset of sliding and lower values at the onset of sticking. The
ashed red lines in Fig. 11c represent the logarithmic increase of the
tatic friction force during the sticking phase.
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Fig. 11. Comparison between the rate-dependent and rate-and-state dependent friction forces for the 1-DOF system, recorded during a cyclic motion. In (b) and (c), the red curves
represent the evolution of the static friction force during the sticking phases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 12. Cyclic stick–slip response of a 1-DOF system with rate-and-state friction for 𝑟 = 0.3 and varying �̄�. Reference values are listed in Table 1.
Fig. 13. Two-stop motion of a 1-DOF system with a rate-dependent friction law for 𝑟 = 0.3 and varying 𝑎. Reference values are listed in Table 1.
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The influence of a varying model parameter �̄� during an arbitrary
ycle of stick–slip is shown in Fig. 12. As already shown in Fig. 7, low
alues of �̄� tend to reduce the friction force at low velocities, and this
eflects into lower displacement values and shorter sticking phases (see
ig. 12a), resulting therefore in lower velocities (see Fig. 12b). Since
he effect of parameter �̄� is more pronounced at velocities approaching
ero, the hysteresis curves in Fig. 12c seem to mimic the excitation
s displacement graphs shown in Fig. 4, where the static friction
oefficient of the Amontons–Coulomb law was varied.

To assess the effect of parameters �̄� and �̄� on the investigated
esponse features, the steady-state version of the Dieterich–Ruina law
10

as used, with a frequency ratio 𝑟 = 0.3. While varying parameters �̄� c
nd �̄�, the condition (�̄� − �̄�) ≥ 0 was complied. Figs. 13 and 14 display
he same set of figures shown in Fig. 3, highlighting the variation
f the displacement and velocity in time, subfigures (a,b), combined
ith the excitation vs displacement graph, subfigures (c), caused by a
arying value of �̄� and �̄�. The variation of parameters �̄� and �̄�, tend to
eproduce what has been observed for assuming two different coeffi-
ients of friction: a static and kinetic one, see Fig. 4a,b. To facilitate
he interpretation of the induced effect of the model parameters �̄� and
̄, it can be noted that for increasing values of the term (�̄� − �̄�), as
hown in Figs. 13b and 14b, there is an increase of the displacement
nd velocity amplitude. This resemblance with the case of two distinct

oefficients of friction can be expected, since the Dieterich–Ruina law
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Fig. 14. Two-stop motion of a 1-DOF system with a rate-dependent friction law for 𝑟 = 0.3 and varying 𝑏. Reference values are listed in Table 1.
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egularizes the sudden drop between a static and kinetic coefficient of
riction. In addition, as shown in Fig. 9, a larger difference between
�̄�− �̄�) implies a more significant difference between a static coefficient
f friction and the friction coefficients for velocities different than zero.
f the condition (�̄� − �̄�) ≥ 0 is complied, an increase of (�̄� − �̄�) leads
o a general decrease of the friction coefficients for velocities different
han zero and a slight increase of the static coefficient of friction. It is
he latter increase that leads to an increase of maximum displacements
nd velocities during the sticking and sliding phases, respectively. The
ain differences with the cases for which the Amontons–Coulomb static

nd/or kinetic coefficients of friction were adopted, are illustrated in
igs. 13c and 14c, where the relation between the dynamic response
nd the excitation is shown. Both dynamic forcing–displacement graphs
ighlight a somewhat similar pattern as observed in Fig. 4c, where
n increase of the static friction ratio led to an anti-clockwise rota-
ion around the zero mass displacement of the sliding trait. Figs. 13c
nd 14c, seem to reproduce a comparable anti-clockwise rotation by
ncreasing (�̄�− �̄�), that translates to an increase of the static coefficient
f friction, as shown in Eq. (19). However, the point around the rotation
ccurs differs from what observed in Fig. 4c due to the fact that a
hange of (�̄� − �̄�) not only affects the static friction coefficient but
lso the relation between the kinetic friction coefficient and the sliding
elocity. This observed feature seems to be traceable to the velocity
ependence of the friction force.

. Comparative study between the Amontons-Coulomb and
ieterich-Ruina friction laws

.1. Optimization procedure

As discussed in the introduction, current friction models are ap-
lication dependent, meaning that one friction model identified from
specific test setup or validated for a defined application, may not

e suitable for an application in which the contact and operational
onditions differ. A proof of concept of such claim was shown in
revious studies (Cabboi et al., 2016; Cabboi and Woodhouse, 2018,
020), where experimental results obtained from a novel test setup,
apable of highlighting the influence of a vibratory load on the friction
orce, led to the conclusion that a frequency dependent friction model
s needed for specific pairs of materials in contact. Specifically, a rate-
nd-state model of the Dieterich–Ruina type, enhanced by means of
contact stiffness parameter, was needed to match the experimental

esults. However, the parameter estimation of a rate-and-state fric-
ion model is still a tedious and non-homologated process, and the
eed of a rate-and-state model seems currently restricted to specific
perational conditions such as low velocities or perturbed states of
ontinuous sliding, or to cases in which significant variations of the
11

nterface property may lead to alterations of the friction force during g
he sliding or sticking regime. It was observed that during a cyclic
wo-stop motion, a state variable representative of an ageing law, will
ause friction variations during the sticking phase and for very short
raits at the onset of sliding characterized by low velocities. This raises
he question on whether or not a rate-and-state dependent friction
aw would be needed at all to accurately predict the cyclic stick–slip
esponse of a forced single degree of freedom oscillator. To answer this
uestion, first the rate-dependent law shown in Eq. (21) was assumed
s the reference constitutive law for the friction force. Subsequently,
redictions were carried out to obtain the cyclic response of the system
hown in Fig. 1. In parallel, two further 1-DOF models were set up,
n which the friction force follows the two versions of the Amontons–
oulomb model described earlier. For both models, the goal consists in

inding the optimal value of the static and kinetic friction coefficient
ble to mimic as accurate as possible the cyclic response obtained by
sing a rate-dependent friction law. As mentioned earlier, only the
arameter space for which (�̄�−�̄�) ≥ 0 was explored. For the optimization
oncerning the rate-dependent friction force, a two-stop motion and a
ase of more than two stops were investigated. Subsequently, a two-
top motion was simulated again for which the rate-and-state version
f the Dieterich–Ruina law was used.

To find the optimal coefficients of friction �̂� = [�̂�𝑠, �̂�𝑘] of the
montons–Coulomb model, based on the sensitivity results obtained

n the previous section, a cost function 𝐽 representative of the dif-
erences between the velocities and displacements within one period
f oscillation between the rate-dependent (or rate-and-state) and the
montons–Coulomb type friction oscillator is proposed. The optimal
oefficients �̂� are found as:

̂ = argmin
𝝁

𝐽 where

=

√

√

√

√

√

1
2𝑁𝑝

⎡

⎢

⎢

⎣

∑𝑁𝑝
𝑖=1(�̄�𝑟𝑖 − �̄�𝑐𝑖 )

2

max(�̄�2𝑟𝑖 )
+

∑𝑁𝑝
𝑖=1(�̄�𝑟𝑖 − �̄�𝑐𝑖 )

2

max(�̄�2𝑟𝑖 )

⎤

⎥

⎥

⎦

(25)

where the subscript 𝑟 refers to the dynamic response of the rate-
dependent (or rate-and-state) friction oscillator, assumed as reference
value, and the subscript 𝑐 stands for the Amontons–Coulomb type oscil-
lator. The parameter 𝑁𝑝 defines the number of data points within one
oscillation cycle. A constrained nonlinear optimization is carried out
by introducing a physics-based constraint. Such constraint enforces the
time lag between the dynamic forcing and the corresponding response
obtained with the two types of oscillators to be close to zero. This
constraint reads as follows

|𝜙𝑟 − 𝜙𝑐 | = 0 (26)

where 𝜙𝑟 and 𝜙𝑐 are the two phase angles (phase angle of the Dieterich–
uina and Amontons–Coulomb friction oscillator, respectively). For a
iven friction law, Eq. (26) is computed as the difference of the phase
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Fig. 15. Cost function obtained for optimal values of �̄�𝑘 of the Amontons–Coulomb friction (�̄�𝑠 = �̄�𝑘) model for 𝑟 = 0.3 and �̄�∗ = 0.4 (two-stop stick–slip motion with Dieterich–Ruina
law). Comparison of the dynamic forcing–dynamic displacement graph obtained with the Amontons–Coulomb law’s (�̄�𝑠 = �̄�𝑘) and Dieterich–Ruina law at the 4 corners of the
parameter space.
angles (obtained from a Fast Frequency Transform of the time domain
signal) of the excitation and of the cyclic response signals evaluated at
the excitation frequency.

The constrained nonlinear optimization was carried out with the
Matlab function 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 and selecting the Sequential Quadratic Pro-
gramming algorithm (MATLAB, 2020). 𝑁𝑝 is set to 6283 (given a period
of 2𝜋 and d𝜏 = 0.001). To avoid the identification of a local minimum
of the objective function, a multi-start approach was implemented. The
initial values of the nonlinear constrained optimizations were set to
̄𝑘 = �̄�∗ and with �̄�𝑠 as obtained with Eq. (19). Moreover, 5 randomly
generated pairs of �̄�𝑠 and �̄�𝑘 are considered. The optimal pair of values
selected is the one minimizing the objective function across the 6 initial
values. For the Amontons–Coulomb type oscillator for which one single
friction coefficient is considered, such as �̄�𝑠 = �̄�𝑘, the same nonlinear
constrained optimization is carried out, with the goal of identifying one
single friction coefficient that best represents the reference steady-state
response.

3.2. Predictive performance of the Amontons-Coulomb law

The predictive performance of the Amontons–Coulomb law is in-
vestigated for the cases of two-stop motion and more than two stops
motion obtained with the steady-state version of the Dieterich–Ruina
law. The parameter space explored is 0.01 ≤ �̄� ≤ 0.09 and 0 ≤ (�̄� − �̄�) ≤
0.07, while the other parameters are kept fixed at the reference values
indicated in Table 1.

3.2.1. Two-stop motion assuming the steady-state version of the Dieterich-
Ruina law

The cost function obtained for the optimal values of �̄�𝑘 (when �̄�𝑠 =
̄𝑘) attained over the parameter space for 𝑟 = 0.3 and �̄�∗ = 0.4 for a two-
stop stick–slip motion is shown in Fig. 15. To generate the cost function
results, the parameters �̄� and (�̄� − �̄�) were step-wisely incremented by
a factor of 0.0025.

To facilitate the interpretation of the contour plots, for each corner
of the investigated domain the corresponding dynamic hysteresis graph
12
is shown. It is possible to observe that when the cost function is nearly
zero (left-bottom corner), the optimal friction coefficient yields a very
good approximation of the hysteresis graph obtained with the steady-
state version of the Dieterich–Ruina law. This is an expected result,
since for values of �̄� and (�̄� − �̄�) tending towards zero, the dominant
term in the Dieterich–Ruina law is �̄�∗, which resembles the Amontons–
Coulomb law. On the contrary, higher values of the cost function can
be observed on the top part and on the bottom right corner, which also
correspond to mismatches between the dynamic hysteresis graphs. In
fact, in the bottom-right corner of the parameter space, corresponding
to large values of the parameter �̄� and small values of (�̄� − �̄�), the
optimal Amontons–Coulomb hysteresis curve exhibits an anti-clockwise
rotation with respect to the Dieterich–Ruina curve, with stops occurring
at a larger absolute value of the mass displacement. The opposite
behaviour is instead achieved for larger values of the parameter (�̄�− �̄�),
as shown by the top-right graph. The observed deviation is due to the
difference between the optimal parameter �̂�𝑘 = �̂�𝑠 and the value of �̄�𝑠
given by steady-state version of the Dieterich–Ruina law at �̄� = 0 (see
Eq. (19), with �̂�𝑠 resulting in a higher value in the bottom-right graph
and a lower value in the top-right case. It is important to note here that
the bottom-right corner of the contour plot defines a parameter space
for which the set of model parameters generates a friction–velocity
curve predicting values of �̄�(�̄�) higher than �̄�𝑠 for most values of the
velocity �̄�. This explains the higher identified value of �̂�𝑘, attempting to
fit the whole branch of the friction–velocity curve. Finally, small values
of �̄�, associated with large values of (�̄� − �̄�), can lead to asymmetric
cyclic responses, which cannot be reproduced using a single Amontons–
Coulomb friction coefficient, as depicted in the top-left graph. The
latter parameter space implies a significant drop between the static and
kinetic coefficients of friction predicted by the Dieterich–Ruina law, as
illustrated previously in Fig. 9a.

To clarify the above points, the variation of �̄�(�̄�) (as defined in
Eq. (21)), is shown with reference to two arbitrary directions within
the explored parameter space. In Fig. 16, the horizontal and the vertical
line overlaying the contour plot define a set of parameters where either
(�̄� − �̄�) or �̄� are kept constant while varying the other one. Following
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Fig. 16. Cost function obtained for optimal values of �̄�𝑘 of the Amontons–Coulomb friction (�̄�𝑠 = �̄�𝑘) model for 𝑟 = 0.3 and �̄�∗ = 0.4 (two-stop stick–slip motion with steady-state
version of the Dieterich–Ruina law) and corresponding �̄�(�̄�) curves obtained by either fixing �̄� (vertical pink line) or (�̄� − �̄�) (horizontal pink line). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Cost function obtained for optimal values of �̄�𝑘 and �̄�𝑠 of the Amontons–Coulomb friction model for 𝑟 = 0.3 and �̄�∗ = 0.4 (two-stop motion with steady-state version of
the Dieterich–Ruina law), considering �̄�𝑠 = �̄�𝑘 (subfigure (a)) or �̄�𝑠 ≥ �̄�𝑘 (subfigure (b)). The difference between the optimal values of �̄�𝑘 and �̄�𝑠 is shown in (subfigure (c)). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the vertical line, it is possible to observe that for decreasing values
of (�̄� − �̄�), the slope of the friction–velocity curves tends to decrease,
gradually flattening the curve. As mentioned earlier, for low (�̄� − �̄�)
and for specific values of �̄�, Eq. (21) reproduces cases in which �̄�(�̄�)
tends to be higher than �̄�𝑠. With reference to the horizontal line, it is
possible to appreciate that the non-monotonicity of the friction curve
is emphasized for increasing values of �̄�.

It can be concluded that the Amontons–Coulomb model with �̄�𝑠 =
̄𝑘 is capable of reproducing the steady-state version of the Dieterich–
Ruina results for the cyclic response of 1-DOF oscillator only in a very
limited region of the parameter space, corresponding to low values of
both �̄� and (�̄� − �̄�). The latter set of model parameters define friction–
velocity curves that tend to be flat and scarcely velocity dependent,
characterized by a small drop between the static and kinetic friction
coefficients.

The cost function obtained for the optimal values of �̄�𝑘 and �̄�𝑠
(when �̄�𝑠 ≥ �̄�𝑘) attained over the parameter space for 𝑟 = 0.3 and
̄∗ = 0.4 for the same two-stop motion is shown in Fig. 17b. By direct
comparison with Fig. 17a (obtained for �̄�𝑠 = �̄�𝑘), it is possible to
observe that this type of Amontons–Coulomb friction model extends
by far the region of the cost function showing errors close to zero.
Therefore, this model would yield a much better approximation of
the dynamic forcing–displacement graph obtained with the steady-state
version of the Dieterich–Ruina law. In Fig. 17c, where the difference
13
between the optimal values of �̄�𝑘 and �̄�𝑠 is reported, it is confirmed
that this better approximation is indeed achieved in the region where
the difference between �̂�𝑘 and �̂�𝑠 is more pronounced and, in particular,
this difference gradually increases moving towards the top-left corner
of the parameter space. Recalling the effect of the static friction coef-
ficient on the dynamic forcing–displacement curves (see anticlockwise
rotations in Fig. 4), it can be deduced that larger values of �̄�𝑠 allow
to improve the mismatch between curves observed in the top-right
corner of Fig. 15. Even asymmetric behaviours as those shown in the
top-left corner of the same figure can be obtained using very different
values of �̄�𝑘 and �̄�𝑠, as also discussed in Csernak and Licsko (2021).
Nonetheless, even different values of the kinetic and static friction
coefficients cannot yield a good approximation of the Dieterich–Ruina
results for large values of �̄� and small (�̄� − �̄�). The reason of being that
was already explained with the reference to Fig. 16.

3.2.2. Two-stop motion assuming the rate-and-state version of the Dieterich-
Ruina law

To complete the comparative analysis for the two-stop motion, the
complete rate-and-state friction law was used, for which the predictive
performance of the Amontons–Coulomb is assessed. The corresponding
cost function is illustrated in Fig. 18, and was obtained for assuming
𝑟 = 0.3 and �̄�∗ = 0.4. The pattern displayed by the resulting cost
functions are clearly more complicated than those obtained for the
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Fig. 18. Cost function obtained for optimal values of �̄�𝑘 and �̄�𝑠 of the Amontons–Coulomb friction model for 𝑟 = 0.3 and �̄�∗ = 0.4 (two-stop motion with rate-and-state Dieterich–Ruina
law), considering 𝜇𝑠 ≥ 𝜇𝑘. Comparison of the dynamic forcing–dynamic displacement graph obtained with the Amontons–Coulomb law (�̄�𝑠 ≥ �̄�𝑘) and rate-and-state Dieterich–Ruina
law at 4 points of the parameter space.
same values of 𝑟 and �̄�∗ disregarding the effect of the state variable
𝜃, and shown in Fig. 17b. Nonetheless, the Amontons–Coulomb law
is still able to reproduce the cyclic two-stop motion obtained using
the Dieterich–Ruina law in a wide region of the parameter space.
Moreover, the presence of the state variable leads to a slightly better
agreement between the responses in the bottom-right region of the
parameter space, for which the Amontons–Coulomb law failed to re-
produce the responses obtained by means of the steady-state version
of the Dieterich–Ruina law. In fact, as discussed in Section 3.2.1, in
this region the steady-state version of the Dieterich–Ruina law produces
values of �̄�(�̄�) larger than �̄�𝑠 for higher sliding velocities. While the
Amontons–Coulomb law cannot reproduce such a behaviour, in the
presence of the state variable 𝜃 this effect is attenuated by the gradual
increase of the static friction coefficient during the sticking phases.
This explains the improved match between the two hysteresis graphs,
highlighted in the bottom-left and in the bottom-right of Fig. 18. Note
that the optimal values of �̄�𝑘 and �̄�𝑠 (with �̄�𝑠 ≥ �̄�𝑠) are represented as
well within each hysteresis graph. With reference to the hysteresis plot
displayed at the bottom right, �̄�𝑘 and �̄�𝑠 tend to be equal, highlighting
the profound effect of 𝜃 in increasing the value of the static friction
during the sticking phases.

Differently from what observed in Fig. 17b, the top-left region of
the parameter space presents a significant mismatch between the two
force–displacements graphs. As shown in the top-right hysteresis plot,
corresponding to the light blue region, the rate-and-state responses
become strongly asymmetric, exhibiting only one stop per cycle. Such
type of response cannot be reproduced by the Amontons–Coulomb law.
Slightly better agreements are obtained moving towards the top-left
corner, where the symmetry of the rate-and-state response is recovered.
However, these responses are still characterized by complicated pat-
terns which cannot be fully reproduced by the Amontons–Coulomb law.
In conclusion, the Amontons–Coulomb law can be used to reproduce
the two-stop motion results obtained by the Dieterich–Ruina law in
a wide region of the parameter space also when the state variable 𝜃
is taken into account. However, the mismatch between the responses
obtained using these two laws rapidly increases moving towards higher
14
values of (�̄�− �̄�), particularly for small values of �̄�. In fact, the effect of
the state variable becomes more and more significant as �̄� is increased,
leading to more complicated patterns in the cyclic responses.

3.2.3. More than two stops for the steady-state version of the Dieterich-
Ruina law

The performance of the Amontons–Coulomb law for describing
a stick–slip motion covering more than two stops within one cycle
obtained with the steady-state version of the Dieterich–Ruina law is
investigated in Fig. 19. The cost functions obtained for the optimal
values of �̄�𝑘 and �̄�𝑠 (when �̄�𝑠 = �̄�𝑘 (a) and when �̄�𝑠 ≥ �̄�𝑘 (b)) attained
over the parameter space for 𝑟 = 0.1 and �̄�∗ = 0.2, together with
the difference between the optimal values of �̄�𝑘 and �̄�𝑠 (Fig. 19c) are
investigated. Despite the larger complexity of the patterns displayed
by the values of the cost function, it is still possible to observe that,
while the Amontons–Coulomb friction model with �̄�𝑠 = �̄�𝑘 is mostly
unable to reproduce results obtained for a rate-dependent friction law,
an improved match is still achieved by different �̄�𝑘 and �̄�𝑠 in a confined
region located on the centre-left and top-right side of the parameter
space. It is worth mentioning that the top-left corner of the parameter
space investigated in Figs. 19 and 20 is not reported here since neg-
ative values �̄� from the rate-dependent friction law were obtained, in
accordance with the condition expressed in Eq. (20).

The comparison of the dynamic forcing–displacement graph ob-
tained with the Amontons–Coulomb law (�̄�𝑠 ≥ �̄�𝑘) and with the
steady-state version of the Dieterich–Ruina law is shown in Fig. 20
for four different pairs of (�̄� − �̄�) and �̄� selected from the parameter
space. Note that depending on �̄� and (�̄� − �̄�), different number of stops
will be observed with the Dieterich–Ruina law; this indeed explains the
more complicated patterns shown by the values of the cost function
with respect to the previously investigated two-stop case. Moreover,
an explanation is provided for the presence of two main regions of
the parameter space where it is possible or not possible, respectively,
to approximate the rate-dependent behaviour using the Amontons–
Coulomb model. It is shown that, below the boundary separating
these two regions, intermediate stops are no longer achieved by the
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Fig. 19. Cost function obtained for optimal values of �̄�𝑘 and �̄�𝑠 of the Amontons–Coulomb friction model for 𝑟 = 0.1 and �̄�∗ = 0.2 (more than two stops stick–slip motion with the
Dieterich–Ruina law), considering �̄�𝑠 = �̄�𝑘 (subfigure (a)) or �̄�𝑠 ≥ �̄�𝑘 (subfigure (b)). The difference between the optimal values of �̄�𝑘 and �̄�𝑠 is shown in (subfigure (c)).
Fig. 20. Cost function obtained for optimal values of �̄�𝑘 and �̄�𝑠 of the Amontons–Coulomb friction model for 𝑟 = 0.1 and �̄�∗ = 0.2 (more than two stops stick–slip motion with
Dieterich–Ruina law), considering 𝜇𝑠 ≥ 𝜇𝑘. Comparison of the dynamic forcing–dynamic displacement graph obtained with the Amontons–Coulomb law (�̄�𝑠 ≥ �̄�𝑘) and Dieterich–Ruina
law at 4 points of the parameter space.
Dieterich–Ruina law, leading to a smoothening effect which cannot be
reproduced by Amontons–Coulomb model. This effect becomes stronger
and stronger moving towards the bottom-right corner of the parameter
space. This behaviour is due to the trend observed in Fig. 16, showing
that for a set of model parameters it is possible to reproduce friction
curves for which �̄�(�̄�) tends to be higher than �̄�𝑠. As noted before, it
can be concluded that, also when more than two stops are present
within a response cycle, the Amontons–Coulomb law cannot be used
to approximate the Dieterich–Ruina results when �̄� is large and (�̄� − �̄�)
is small.

4. Discussion and conclusions

4.1. Significance of the results

The relevance of the obtained results needs to be assessed with
reference to both the ‘‘forward’’ and ‘‘inverse’’ problem concerning
friction modelling and identification. As far as the forward problem
concerns, and in case the underlining friction law is constituted by
a rate-dependent friction law, the output of this study clearly shows
15
that to reliably predict the cyclic response of a two-stop motion of a
1-DOF system, a set of Amontons–Coulomb coefficients representing
the static and kinetic friction can be enough. The only region of the
explored parameter space for which the Amontons–Coulomb coeffi-
cients fail to reliably predict the cyclic response refers to cases for
which the steady-state version of the Dieterich–Ruina law reproduces
values of 𝜇(𝑣) higher than the static coefficient. Note that, even if
counter-intuitive, increasing trends of such kind were experimentally
identified (Wiercigroch et al., 1999; Wojewoda et al., 2008) and linked
to the non-reversibility of the friction–velocity curves. On top of that,
a recent study (Cabboi and Woodhouse, 2018) also reported significant
increases of the kinetic friction coefficients (from 0.4 to 0.7 for poly-
carbonate pins on steel disc) for increasing values of sliding velocities.
The true physical mechanisms behind such counter-intuitive trends are
still unclear, and any discussion on such matter falls outside the scope
of this study. When the underling friction law is constituted by the
described rate-and-state friction law, the use of a pair of Amontons–
Coulomb coefficients may only be justified for a confined region of
the parameter space formed by limited combinations of (�̄� − �̄�) and
�̄�. If more than two stops within a cyclic response are simulated by
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means of a rate-dependent friction law, the quality of the fit with a
pair of Amontons–Coulomb coefficients decreases. It is worth highlight-
ing here that the prediction performance of the Amontons–Coulomb
coefficients would decrease even more if the reference response would
be simulated by assuming a rate-and-state friction law. Note that to
increase the number of stops within one cycle, the parameters 𝑟 and
̄∗ were decreased. However, more than two stops could also be ob-
ained by assuming a dynamic variation of the normal force during
he cyclic response. Under such operational conditions, a rate-and-state
odel including an additional state variable that accounts for a non-

rivial dependence between the normal force and the friction force
hould be used (see Linker and Dieterich, 1992; Prakash, 1998; Tal
t al., 2020). For the latter case, in the authors’ opinion, a pair of
montons–Coulomb coefficients would not be enough to capture the
yclic response in a reliable way.

It is also worth mentioning that in the presented study, no tan-
ential contact stiffness was included, accounting for eventual micro-
lip (pre-sliding) phenomenon occurring during the transition from
tick to slip. In principle, the presence or not of the contact stiffness
hould not alter the presented conclusions, since for both friction laws
Amontons–Coulomb and Dieterich–Ruina), an equivalent formulation
epresentative of the contact stiffness can simply be added to mimic the
artial-slip cases.

Concerning the inverse problem, the obtained results have a pro-
ound implication for the correct identification of friction laws. Since
he explored parameter space shows regions for which the friction laws
re almost indistinguishable, it is counter-advised to use the cyclic
esponse to identify the underlining friction law of a sliding system.
ttempts of identifying friction laws, based only on the cyclic response,
ould lead to misleading conclusions concerning the characterization of
he inherent constitutive friction law. Note though that Figs. 3c, 4c, 13c
nd 14c show a clear feature, with reference to the rotation of the
ynamic forcing vs displacement curves, that seems unique to the
hosen friction law. The rotations observed in Figs. 13c and 14c seem to
e ascribable to a velocity dependence of the friction law. Nonetheless,
t is still unclear on how robust such a feature may be during actual
xperiment runs. In a similar fashion, a further discriminating feature
ay be given by the friction-force vs velocity graphs (see Fig. 11a), if
easurable during an experiment in which stick–slip is present. Any
iscrepancy between the acceleration and deceleration traits calls for
n additional state variable within the friction law.

A final note is devoted to the regularization of the Dieterich–Ruina
aw for velocity reversals. The modified version enables its use for
imulations and optimization runs in which velocity reversals and stick
vents are present. However, its capability of predicting the static
riction coefficient is undoubtedly questionable and no comparison was
erformed with experimental data.

.2. Conclusions

The comparative study started with a sensitivity analysis on the
tick–slip cyclic responses of a single degree of freedom system in
rictional contact to the ground. Three friction laws were compared, the
montons–Coulomb law and two versions of a regularized Dieterich–
uina friction law: the steady-state and rate-and-state version. Once

he most meaningful model parameters were identified, the results of
he sensitivity study highlighted three distinguished features occurring
uring one cycle for a two-stop motion: (a) variations of the maximum
mplitude of displacement and velocity; (b) an enlargement (or shrink-
ge) of the area defined by the dynamic forcing vs displacement curve;
c) a rotation of the dynamic forcing vs displacement curve. Feature (a)
as observed for all investigated cases, while feature (b) and (c) were

eparately observed for the case of using a single coefficient of friction
nd for the case characterized by a distinct pair of Amontons–Coulomb
oefficients, 𝜇𝑠 and 𝜇𝑘, respectively. Concerning the Dieterich–Ruina
16

aw, features (b) and (c) merged into a combined effect on the cyclic
response if a steady-state version of the Dieterich–Ruina law was used,
while case (c) was still observable if the rate-and-state friction law was
assumed.

The comparative analysis was finalized through an optimization
study, with the aim of identifying the parameter space for which the
Amontons–Coulomb law can reliably be used to predict a stick–slip
cyclic response. For this study, a cost function expressed in terms of
the displacement and velocity response differences and a constraint
based on the phase difference were introduced, and the Dieterich–Ruina
laws were assumed as the underlining constitutive laws of friction.
When a steady-state version of the Dieterich–Ruina law was used,
the optimization results showed that for a large region of the in-
vestigated parameter space, the predictive performance for stick–slip
response of the Amontons–Coulomb law (in case of two stops), is
fairly similar to the one obtained by using the Dieterich–Ruina law.
Significant mismatches between the two laws were observed for a
region in the Dieterich–Ruina parameter space that tends to gener-
ate friction–velocity curves with a pronounced velocity-strengthening
trend, leading to coefficients of kinetic friction higher than the static
one. When a rate-and-state version is used, the mismatch with the
responses generated by assuming a pair of Amontons–Coulomb coef-
ficients increases. Such mismatch increases even more, in case of more
than two stops during one stick–slip cycle.
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ppendix

Algorithm 1 Numerical integration approach for 1-DOF systems with
Coulomb/rate-dependent friction
1: �̄�0, �̄�′0, 𝑁𝑐𝑦𝑐 ← Initial position and velocity, number of excitation

periods
2: 𝜏0 ← 0, 𝜏𝑓 ← 2𝜋𝑁𝑐𝑦𝑐 ⊳ Set initial and final simulation time
3: 𝜏 ← 𝜏0, �̄� ← �̄�0, �̄�′ ← �̄�′0 ⊳ Initialize time, position and velocity

vectors
4: while 𝜏0 ≤ 𝜏𝑓 do
5: if | cos(𝜏0) − �̄�0| ≥ �̄�𝑠 then ⊳ Sliding phase
6: Integrate Eq.(3) with ode45 ⊳ �̄�(�̄�′) from Eq.(6)(a)

[Coulomb] or Eq.(21)(a) [rate-dependent]
7: Terminate integration when �̄�′ = 0 ⊳ Event condition
8: Update vectors 𝜏, �̄�, �̄�′ with integration results
9: else ⊳ Sticking phase

10: Find 𝜏1 ∶ | cos(𝜏1) − �̄�0| − �̄�𝑠 = 0 ⊳ Determine when the stop
terminates

11: Set �̄�1 = �̄�0, �̄�′1 = 0 ⊳ Position and velocity remain constant
during the stop

12: end if
13: Set 𝜏0, �̄�0, �̄�′0 to final time, position and velocity of the current

phase
14: end while
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Algorithm 2 Numerical integration approach for 1-DOF systems with
rate-and-state friction
1: �̄�0, �̄�′0, �̄�0, 𝑁𝑐𝑦𝑐 ← Initial position, velocity and state, number of

excitation periods
2: 𝜏0 ← 0, 𝜏𝑓 ← 2𝜋𝑁𝑐𝑦𝑐 ⊳ Set initial and final simulation time
3: 𝜏 ← 𝜏0, �̄� ← �̄�0, �̄�′ ← �̄�′0, �̄� ← �̄�0 ⊳ Initialize time, position, velocity

and state vectors
4: while 𝜏0 ≤ 𝜏𝑓 do
5: if | cos(𝜏0) − �̄�0| ≥ �̄�𝑠(�̄�0, 0) then ⊳ Sliding phase, �̄�𝑠(�̄�0, 𝛥𝜏) from

Eq.(14)
6: Integrate Eqs.(3) and (9) with ode23s ⊳ �̄�(�̄�′, �̄�) from

Eq.(22)(a)
7: Terminate integration when �̄�′ = 0 ⊳ Event condition
8: Update vectors 𝜏, �̄�, �̄�′, �̄� with integration results
9: else ⊳ Sticking phase

10: Find 𝜏1 ∶ | cos(𝜏1) − �̄�0| − �̄�𝑠(�̄�0, 𝜏1 − 𝜏0) = 0 ⊳ Determine
when the stop terminates

11: Set �̄�1 = �̄�0, �̄�′1 = 0, �̄�1 = �̄�0 + 𝜏1 − 𝜏0 ⊳ State increases
linearly during the stop

12: end if
13: Set 𝜏0, �̄�0, �̄�′0, �̄�0 to final time, position, velocity and state of the

current phase
14: end while
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