Industry-scale CO, Flow Simulations with
Model-Parallel Fourier Neural Operators

Philipp A. Witte Russell J. Hewett Ranveer Chandra
Microsoft Microsoft Microsoft
Redmond, WA Redmond, WA Redmond, WA
pwitte@microsoft.com rhewett@microsoft.com ranveer@microsoft.com
Abstract

Carbon capture and storage (CCS) is one of the most promising technologies for
reducing greenhouse gas emissions and relies on numerical reservoir simulations
for identifying and monitoring CO5 storage sites. In many commercial settings
however, numerical reservoir simulations are too computationally expensive for im-
portant downstream application such as optimization or uncertainty quantification.
Deep learning-based surrogate models offer the possibility to solve PDEs many
orders of magnitudes faster than conventional simulators, but they are difficult
to scale to industrial-scale problem settings. Using model-parallel deep learning,
we train the largest CO, surrogate model to date on a 3D simulation grid with
two million grid points. To train the 3D simulator, we generate a new training
dataset based on a real-world CCS simulation benchmark. Once trained, each
simulation with the network is five orders of magnitude faster than a numerical
reservoir simulator and 4,500 times cheaper. This paves the way to applications
that require thousands of (sequential) simulations, such as optimizing the location
of CO; injection wells to maximize storage capacity and minimize risk of leakage.

1 Introduction

Numerical reservoir simulations play a critical role in Carbon Capture and Storage (CCS) and are
used to answer important key questions throughout the lifetime of a CCS project [[L]:

* Planning: Where are potential CO storage sites?
* Operation: How much CO can safely be injected and stored in a given location?
* Monitoring: How does the CO- behave after injection and does it remain in the storage site?

Conventionally, numerical reservoir simulators such as GEOSX [2], Open Porous Media (OPM) [3]
or Eclipse [4] are used for modeling subsurface CO, flow and for answering the above questions.
Most reservoir simulators use the finite volume (FV) or finite element (FEM) method for solving
the underlying multi-phase flow equations in porous media. Running numerical simulations for a
production-scale storage site is computationally expensive, as it involves solving large-scale linear
systems with iterative methods and it thus requires techniques from high-performance computing
(HPC) for running simulators on distributed memory architectures. Simulations typically take multiple
hours to run at the relevant scales, which is prohibitive for downstream applications that require
thousands of simulations in sequence, such as inverse problems or uncertainty quantification (UQ).

Due to the high computational cost of conventional reservoir simulations, data-driven approaches
based on deep learning (Scientific AI/ML) are increasingly being adopted for numerical CO2 modeling
[5H9]. The promise of deep-learning based reservoir simulations are speedups of multiple orders
of magnitudes over conventional simulators, as well as the ability to compute sensitivities and

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.

3D FFT + Tensor 1D FFT +
3D Truncation Repartitioning 1D Truncation

/\ /\ /\ Spectral
Convolution

3D Padding + Tensor 1D Padding +
iFFT Repartitioning 1DIFFT

Figure 1: Parallel FNO block based on tensor/domain decomposition. The hidden states of the
network are distributed across four GPUs (represented by different colors) along one of the spatial
data dimensions. Each FNO block consists of a (distributed) forward FFT, multiplication with the
complex network weights and and inverse FFT.

gradients with automatic differentiation (AD) - a feature that is currently not supported by most
reservoir simulation packages [10]. However, one of the major road blocks in applying deep learning
to industry-scale CO4 projects is the size of the input and output data. Reservoir simulations in
commercial settings involve geological models with millions (or billions) of grid points that describe
physical properties of the subsurface (e.g., porosity, permeability) and they predict CO4 saturation
and/or pressure as a function of both space and time. Existing deep neural networks for CO5 flow
are either two-dimensional [[7]] or small-scale three-dimensional simulators [6} 3 [8] that operate on
significantly smaller mesh sizes than required for commercial settings [2]].

Existing deep learning-based simulators are not able to scale to industry-scale problem sizes, as
they are implemented with data parallelism and are thus limited to network and data sizes that are
supported by the available memory of a single GPU (i.e., up to 80 GB on the Nvidia A100). In data
parallelism, samples of a (mini-)batch are distributed across multiple GPUs, but each GPU must at
least fit a single data sample (including its hidden states) and the corresponding network weights
into memory [I1]. In this paper, we overcome the memory limitations of a single GPU through
model-parallel deep learning [11]], in which we distributed both the data (input-, output- and hidden
states), as well as the network weights across multiple GPUs. Using a model-parallel version of the
Fourier Neural Operator architecture [12} [13], we train the largest Al-driven simulator to date for
simulating multi-phase CO5 flow on a 3D simulation grid with two million grid points and we create
a new training dataset based on the Sleipner CO; model, a real-world reservoir simulation benchmark
from the world’s first off-shore commercial CCS project [14].

2 Model-parallel Fourier Neural Operators

We base our network architecture for simulating 3D CO5 flow on Fourier Neural Operators (FNOs)
[12], which have shown very promising performance on a variety of challenging PDEs, including
the Navier-Stokes equation and 2D multi-phase flow equations [7]]. As discussed in the introduction,
we use the model-parallel implementation of FNOs introduced in [13]]. The implementation is based
on domain (or tensor) decomposition, in which all tensors of the network (including weights and
hidden states) are distributed across multiple GPUs. The input to our FNO is a three-dimensional
binary map that indicates the location of the CO4 injection wells. Even though we only vary the
number and locations of CO, wells, we also supply the geological permeability and topography as
additional input channels, as we find it improves convergence during training. The network output is
a four-dimensional tensor of the predicted COs saturation (three spatial dimensions and time). As
FNOs require that the input and output have the same number of dimensions, we repeat the input data
along the time axis.

The network architecture closely follows the original serial FNO implementation [12] and uses
an encoder-decoder structure with multiple FNO blocks. Each FNO block performs a spectral

convolution by computing a 4D Fourier transform (FFT) of the hidden state variable, followed by
an element-wise multiplication with a set of complex-valued learnable weights and an inverse FFT
(iFFT). As in the original paper, we only keep approximately 20% of the lowest frequencies, while
truncating high frequencies to reduce the number of network weights.

For the parallel implementation, we partition (i.e., distribute) data along one the the three spatial data
dimensions [13]]. The encoder and decoder only act along the (non-partitioned) channel dimensions,
S0 no communication, other than broadcasting the weights, is required in the forward pass. Inside
each parallel FNO block (Figure [T)), we first perform a 3D FFT and frequency truncation along
the non-partitioned data dimensions and then re-partition the data along one of the other spatial
dimensions. The re-partition and broadcasting operations are implemented with DistDL [15]], a
Python package that provides parallel communication primitives for Pytorch based on message
passing and implemented through MPI [16] and NCCL [17]. After re-partitioning the data (i.e.,
changing the dimension along which data are distributed), we compute a 1D FFT and frequency
truncation along the final dimension and compute the spectral convolution. As convolutions in Fourier
space are element-wise multiplications, we initialize and update network weights of each FNO block
on their respective worker, so no communication is required for the spectral convolution itself. To
return to the original data dimension in the spatial-temporal domain, we repeat the same steps from
the forward FFT in reverse order, using zero padding instead of truncation and inverse FFTs.

3 Sleipner dataset

As the model-parallel FNO enables us to scale to larger grid sizes for simulating CO; flow than
previously possible, we generate a new training dataset for supervised learning based on the Sleipner
2019 benchmark model [18]]. The Sleipner field is the world’s first commercial off-shore CCS project,
where approximately 16 mega tonnes of CO, were injected into a geological formation in the North
Sea for permanent geological storage [[14]]. The 2019 Sleipner benchmark is a reservoir simulation
model (i.e., not an Al benchmark dataset) for simulating the CO5 plume behavior as observed during
the project with a conventional reservoir simulator such as OPM. As in the original project, the
benchmark simulates CO4 flow for a single COs injection well.

To train our FNO-based numerical simulator, we generate a training dataset in which we vary the
number and locations of the COs injection wells, while keeping the geological model (permeability,
porosity) fixed. This experimental configuration is relevant for tasks such as well location opti-
mization, in which we want to identify the number and locations of injection wells that maximize
the amount of CO- that can be stored without exceeding pressure limits or causing CO4 to leak
from the storage site [19]. Such optimizations are typically not possible in practice, as algorithms
for derivative-free global optimization (e.g., simulated annealing or genetic optimization) require
hundreds of sequential objective function evaluations [20], each of which involve running multiple
hours-long simulations.

We simulate CO, flow for 1,600 different well locations with OPM, an open-source reservoir
simulator written in C++ and based on the finite volume method. We use the permeability model
and OPM configuration from the original Sleipner benchmark, including the 3D simulation grid of
size 262 x 118 x 64 grid points (close to two million grid points). We simulate the CO3 saturation
history for 15 years and store the results at 84 equally spaced time intervals, so the total data size per
input/output sample is 262 x 118 x 64 x 86 (a total of 167 million input and output variables per
training sample). Each training sample has a size of 648 MB and the total dataset is 1.04 TB. (For
future use and because we want to make the dataset publicly available, we also store the pressure
history, even though it is not used in this paper.)

4 Training and results

We train our model-parallel FNO on a single node with eight NVidia A100 GPUs with 80 GB memory
each. The total of 640 GB of GPU memory allows us to train the FNO on the full spatial-temporal
grid of size 262 x 118 x 64 x 86. We use a batch size of two during training (across eight GPUs),
which is the largest possible batch size before running out of memory. Note that we are not able to
use data parallelism for this configuration, which requires a minimum batch size of eight (on eight
GPUs) and exceeds the available memory by a factor of four.

Sample 3 Sample 4 Sample 1 Sample 2 Sample 3 Sample 4

0
56
' 12

1 o 1

075 075

05 8 56 05

5

' 025 025
' 12

0 0
0
56
12

4 32 64 0 32 640 32 64

0 32 64

Sample 1 Sample 2
0

Saturation
Saturation

0 56 112 0 56 112 0 56 112 0 56 112

Figure 2: Two-dimensional vertical and horizontal slices through the three-dimensional COs satura-
tion at the final time step. The top row is the FNO result, the center row is the ground truth simulated
with OPM and the bottom row shows the (absolute) difference. All four well location combinations
are drawn from the test dataset. Each OPM simulation takes around 6.5 hours, while each FNO
simulation takes 0.12 seconds.

We use 1,400 of our data samples for training, 176 for validation and 24 for testing and we train
our distributed model for 50 epochs. Each training sample has three input channels (well location,
topography and permeability), one output channel (CO; saturation) and 10 hidden channels. We
minimize the relative /5 loss [[12] between the predicted and true spatial-temporal saturation using the
Adam optimizer with a learning rate of 10~3. Additional training and network parameters are listed
in the Appendix. Each training epoch takes around 20 minutes and total training time is 17 hours.

After training, our network generalizes to new locations and combinations of COs injection wells
(Figure[2). The average time to simulate a training example with OPM on 8 CPU cores is 6.5 hours,
whereas prediction time with the FNO on eight A100s is 0.12 seconds. Taking into account the price
differences of the respective hardware on Azure, we arrive at a price of $3.4 per simulation with OPM
and 0.08 cents per simulation with the FNO — a factor of 4,500. If we take the cost for generating
the 1,600 data samples and training into account (Appendix A), the FNO amortizes the cost after
1,855 simulations. As all possible combinations to place up to four injection wells in our model
is much higher than the number of simulated training samples (over 12 billion combinations), the
FNO provides a cheap, fast and accurate (Table|l)) surrogate model that can be used in downstream
applications that require thousands of simulations such as well location optimization or uncertainty
quantification. Our example also shows that, using model parallelism for deep learing, we are able to
scale scientific Al to industry-scale problem settings, even with a moderate amount of eight GPUs for
training.

Table 1: Network performance on the validation and test dataset.

MSE MAPE R2
Validation 1.1104-10=% 1.0866 0.9453
Test 1.1603 - 10~* 1.0952 0.9487

Acknowledgments and Disclosure of Funding

We thank Erik Skjetne and his colleagues from the Northern Lights project for sharing their expertise
on reservoir simulations and CCS with us and for providing valuable feedback. We also thank
Thomas Grady from the Georgia Institute of Technology for his contributions to DistDL and the
initial development of the model-parallel FNO with his advisor Felix J. Herrmann. Many thanks
also to John Godlewski from SLB for the discussions and collaboration around AI for CO2 flow
simulations.

References

[1] P.Ringrose, How to Store CO2 underground: Insights from early-mover CCS Projects. Springer,
2020.

[2] H. Gross and A. Mazuyer, “GEOSX: A multiphysics, multilevel simulator designed for exascale
computing,” in SPE Reservoir Simulation Conference. OnePetro, 2021.

[3] A.F. Rasmussen, T. H. Sandve, K. Bao, A. Lauser, J. Hove, B. Skaflestad, R. Klofkorn, M. Blatt,
A. B. Rustad, O. Sevareid, K.-A. Lie, and A. Thune, “The open porous media flow reservoir
simulator,” Computers & Mathematics with Applications, vol. 81, pp. 159-185, 2021.

[4] B.J. Graupner, D. Li, and S. Bauer, “The coupled simulator Eclipse—OpenGeoSys for the
simulation of CO2 storage in saline formations,” Energy Procedia, vol. 4, pp. 3794-3800, 2011.

[5] Z. Jiang, P. Tahmasebi, and Z. Mao, “Deep residual U-net convolution neural networks with
autoregressive strategy for fluid flow predictions in large-scale geosystems,” Advances in Water
Resources, vol. 150, p. 103878, 2021.

[6] H. Tang, P. Fu, C. S. Sherman, J. Zhang, X. Ju, F. Hamon, N. A. Azzolina, M. Burton-Kelly,
and J. P. Morris, “A deep learning-accelerated data assimilation and forecasting workflow for
commercial-scale geologic carbon storage,” arXiv preprint arXiv:2105.09468, 2021.

[71 G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson, “U-FNO — An
enhanced Fourier Neural Operator-based deep-learning model for multiphase flow,” Advances
in Water Resources, vol. 163, p. 104180, 2022.

[8] B. Yan, B. Chen, D. R. Harp, W. Jia, and R. J. Pawar, “A robust deep learning workflow to predict
multiphase flow behavior during geological CO2 sequestration injection and post-injection
periods,” Journal of Hydrology, vol. 607, p. 127542, 2022.

[9] M. Tang, X. Ju, and L. J. Durlofsky, “Deep-learning-based coupled flow-geomechanics surrogate
model for CO2 sequestration,” International Journal of Greenhouse Gas Control, vol. 118, p.
103692, 2022.

[10] A. Lavin, H. Zenil, B. Paige, D. Krakauer, J. Gottschlich, T. Mattson, A. Anandkumar,
S. Choudry, K. Rocki, A. G. Baydin et al., “Simulation intelligence: Towards a new gen-
eration of scientific methods,” arXiv preprint arXiv:2112.03235, 2021.

[11] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth
concurrency analysis,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1-43, 2019.

[12] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar, “Fourier Neural Operator for parametric partial differential equations,” arXiv preprint
arXiv:2010.08895, 2020.

[13] T.J. Grady II, R. Khan, M. Louboutin, Z. Yin, P. A. Witte, R. Chandra, R. J. Hewett, and
F. J. Herrmann, “Towards large-scale learned solvers for parametric PDEs with model-parallel
Fourier neural operators,” arXiv preprint arXiv:2204.01205, 2022.

[14] A.-K. Furre, O. Eiken, H. Alnes, J. N. Vevatne, and A. F. Kier, “20 years of monitoring
CO2-injection at Sleipner,” Energy procedia, vol. 114, pp. 3916-3926, 2017.

[15] R. J. Hewett and T. J. Grady II, “A linear algebraic approach to model parallelism in deep
learning,” arXiv preprint arXiv:2006.03108, 2020.

[16] W. Gropp, W. D. Gropp, E. Lusk, A. Skjellum, and A. D. F. E. E. Lusk, Using MPI: portable
parallel programming with the message-passing interface. MIT press, 1999, vol. 1.

[17] S. Jeaugey, “NCCL 2.0,” in GPU Technology Conference (GTC), vol. 2, 2017.

[18] “Sleipner 2019 benchmark model,” https://co2datashare.org/dataset/
sleipner-2019-benchmark-model, 2019, accessed: 2021-12-20.

[19] D. A. Cameron and L. J. Durlofsky, “Optimization of well placement, CO2 injection rates, and
brine cycling for geological carbon sequestration,” International Journal of Greenhouse Gas
Control, vol. 10, pp. 100-112, 2012.

[20] K. A. Dowsland and J. Thompson, “Simulated annealing,” Handbook of natural computing, pp.
1623-1655, 2012.

A Appendix

Figure[3|shows the training and validation loss history for the Sleipner example. The FNO architecture
and dimensions of the hidden data states for each layer are listed in Table[2] The input/output/hidden
data are 6-dimensional tensors with dimensions batch size, channel, spatial X, y, z dimensions and
time. The network weights are 6-dimensional as well (input channels, output channels, spatial
dimensions X, y, z and time). The weights of the FNO blocks have an additional block dimension
(which is 8 for the 4D FNO). Training parameters are listed in Table [3|and the cost for training data
simulation, training and cost per simulation are provided in Table[d]

0.6 1 —— Train loss

Validation loss

o
wn
L

o
'S
L

Relative L2 loss

o
[
L

0.2

T
0 20 40
Training epoch

Figure 3: Training and validation relative ¢ loss.

https://co2datashare.org/dataset/sleipner-2019-benchmark-model
https://co2datashare.org/dataset/sleipner-2019-benchmark-model

Table 2: Dimensions of the hidden network states and learnable FNO parameters. The dimension
along which each tensor is distributed is underlined. Encoder and decoder weights are not partitioned
as they have no spatial-temporal dimension and are broadcasted during the forward pass.

Layer Data shape [NCXYZT] Learnable weights

Input 2% 2x262x 118 x 64 x 86 -
Encoder 1 2 x5 x262x 118 x 64 x 86 2xhHhx1Ix1lx1lxleR
Encoder 2 2 x 10 x 262 x 118 x 64 x 86 H5x10x1x1x1x1eR
FNOLayer1 2x10x262x118x64x86 10x10x16x16x12x10x8¢€ C
FNOLayer2 2x10x262x 118 x64x86 10x10x16x16x12x10x8¢€C
FNO Layer3 2x10x262x 118 x64x86 10x10x16x16x12x10x8 € C
FNO Layer4 2 x10x262x 118 x64x86 10x10x16x16x12x10x8¢€C
Decoder 1 2 x 32 x 262 x 118 x 64 x 86 10x32x1x1x1x1eR
Decoder 2 2x1x262x 118 x 64 x 86 2x1Ix1IxlxlxleR

Total 15.31-10° € R 196.49 -10% € R

Table 3: Data and training parameters.

No. of training samples 1,400
No. of validation samples 276
No. of test samples 24
Batch size 2
No. of training epochs 50
Optimizer Adam
Learning rate (LR) 1073
LR scheduler type Reduce on plateau
LR min, patience, cool-down, factor 1079, 5,0,0.25

Azure VMs for data simulation
Azure VM for training

E8s v3 (8 x vCPU cores)
ND96asr (8 x Nvidia A100 80 GB)

Table 4: Cost for training data simulation, model training and running a single simulation with OPM
and the trained FNO. All prices are based on hourly prices of Linux virtual machines on the Azure

cloud.

Training data simulation (1,600 samples)

Training (50 epochs)
OPM simulator
Trained FNO

On demand: $5,487; Spot: $2,194
On demand: $462; Spot: $254
$3.4 per simulation
$0.0008 per simulation

	Introduction
	Model-parallel Fourier Neural Operators
	Sleipner dataset
	Training and results
	Appendix

