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 Summary 

 Invariant  object  recognition—the  ability  to  recognize  objects  across  size,  rotation,  or  context—is  fundamental  for 
 making  sense  of  a  dynamic  visual  world.  Although  initially  believed  to  be  unique  to  primates  due  to  its  complexity, 
 emerging  evidence  suggests  rodents,  too,  can  recognize  objects  across  a  range  of  identity-preserving 
 transformations.  Here,  we  describe  a  comprehensive  pipeline  for  investigating  visual  behavior  in  rats,  from 
 high-throughput  training  to  cellular  resolution  imaging  in  awake,  head-fixed  animals.  Using  this  suite  of  tools,  we 
 demonstrate  that  rats  excel  in  visual  object  recognition  and  explore  potential  neural  pathways  which  may  support 
 this  capacity.  We  leverage  our  optical  approach  to  systematically  profile  multiple  visual  areas  with  responses  to  a 
 range  of  stimulus  types  recorded  in  the  same  neurons.  Primary  and  higher-order  areas  of  rat  visual  cortex  exhibit  a 
 hierarchical  organization  consistent  with  a  role  in  visual  object  recognition.  However,  marked  deviations  from  the 
 functional  organization  of  primate  visual  cortex  suggest  species-specific  differences  in  the  neural  circuits  underlying 
 visual  object  recognition.  This  work  reinforces  the  notion  that  rats  possess  sophisticated  visual  abilities  and  offers 
 the technical foundation for their use as a powerful model to link neuronal responses to perception and behavior. 

 Keywords:  rodent  vision,  object  recognition,  visual  cortex,  two-photon  imaging,  extrastriate  cortex,  rat,  visual 
 perception, high-throughput behavior, ventral stream 

 Introduction 

 Generalizing  across  contexts  is  crucial  for  operating  in  a 
 dynamic  world,  and  for  many  species,  vision  is  a  critical 
 modality  for  identifying  perceptual  regularities  in  the 
 environment.  There  is  tremendous  variation  in  the  vast  number 
 of  unique  retinal  images  a  given  object  can  cast–yet,  we  rapidly 
 recognize  thousands  of  distinct  object  classes  with  an  ease  that 
 belies  the  computational  complexity  of  this  feat  1,2  .  In  primates,  a 
 series  of  hierarchically  organized  cortical  areas,  called  the 
 ventral  visual  pathway,  is  thought  to  achieve  this  by  integrating 
 feature-selective  receptive  fields  of  lower-level  areas  to  form 
 neural  representations  in  higher-level  areas  that  are  increasingly 
 selective  for  complex  shapes  and  tolerant  to  identity-preserving 
 changes  in  scale,  position,  or  view  1–5  .  Despite  significant 
 progress  in  engineering  machine  vision  systems  that  solve 
 recognition  tasks  at  human-comparable  levels  6–8  ,  mechanistic 
 insight  into  how  the  brain  achieves  robust  and  “invariant”  object 
 recognition  remains  elusive  due  to  the  limited  number  of  animal 
 models  where  this  capacity  can  be  dissected  with  genetic  and 
 spatial  precision.  Rats  have  been  shown  to  perform  tasks  that 
 require  them  to  visually  recognize  objects  across  a  range  of 

 contexts  9–17  ,  suggesting  they  may  serve  as  a  paradigm  of 
 complex  visual  behavior  in  which  neural  circuits  are  both 
 genetically  and  optically  accessible.  However,  the  lack  of 
 methods  for  targeted  access  to  neural  populations  in  rats  has 
 limited the ability to link visual circuits to perceptual behavior. 

 Investigations  of  visual  circuitry  in  mice  18–30  ,  rats  31–35  ,  and 
 squirrels  36,37  suggest  that  rodents  have  far  more  sophisticated 
 visual  systems  than  previously  appreciated.  The  development  of 
 genetic  tools  and  optical  methods  in  rodents  38–41  ,  primarily  in 
 mice,  has  propelled  our  understanding  of  rodent  visual 
 physiology.  As  in  primates,  rodent  visual  cortex  exhibits 
 feature-selective  receptive  fields  25,42  and  a  broadly  hierarchical 
 organization  22,23,26–28,43  .  However,  disparities  exist  between 
 primates  and  rodents,  such  as  the  absence  of  orientation 
 preference  maps  44,45  ,  non-canonical  collicular  pathways  to 
 extrastriate  areas  46  ,  and  a  shallower  hierarchy  23,47  in  rodent  visual 
 cortex,  possibly  reflecting  distinct  ecological  niches  and  inherent 
 differences  in  the  statistics  and  requirements  of  visual  perception 
 between  species.  Elucidating  common  and  divergent  principles 
 of  visual  processing  across  species  requires  a  comparison  of  both 
 the visual circuits and the behaviors they may subserve. 
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 Studies  spanning  decades  9–14,16,48–51  have  highlighted  the  visual 
 behaviors  and  shape  recognition  abilities  of  rats.  Compared  to 
 mice,  rats  have  long  been  preferred  in  experimental  settings  that 
 demand  the  ability  to  learn  complex  behaviors  ,  spanning 
 vision  9–11,13,52  ,  spatial  navigation  53–56  ,  decision-making  57–60  , 
 working  memory  61–63  ,  and  motor  skill  learning  64–66  ,  spurring 
 developments  of  advanced  systems  to  train  large  animal  cohorts 
 in  parallel  58,63–67  .  Due  to  the  inherent  variability  of  animal 
 behavior,  well-controlled  and  scalable  assays  are  key  to 
 understanding  mechanisms  of  perception  and  cognition  that  are 
 shared  across  species.  Modular,  high-throughput  behavior 
 systems  thus  facilitate  systematic  investigations  of  core 
 computations  underlying  complex  behaviors  such  as  visual 
 object  recognition.  However,  such  systems  have  yet  to  be  scaled 
 up for visual tasks in rats. 

 At  the  neural  level,  tracing  34,35,68–70  and  electrophysiology  71,72 

 results  from  early  studies  revealed  rat  visual  cortex  to  be 
 composed  of  primary  sensory  and  putative  higher-order  areas  . 
 More  recent  multi-  and  single-unit  recordings  have  described 
 select  areas  of  rat  temporolateral  cortex  that  may  be 
 hierarchically  organized,  with  lateral  extrastriate  areas  exhibiting 
 larger  receptive  fields  and  greater  tolerance  to 
 identity-preserving  transformations  31–33,73  .  Still,  studies  of  rat 
 visual  circuits  lag  behind  those  in  mice  ,  particularly  in  the 
 exploration  of  o  ptical  methods,  despite  increasingly  available 
 genetic  tools  that  make  these  methods  easier  to  apply  74–79  .  Except 
 for  V1  45,76,80–84  ,  optical  imaging  in  awake  rats  has  proven 
 challenging.  Their  larger  size  and  strength  places  technical 
 limitations  on  leveraging  the  advantages  of  visual  experiments  in 
 rats  that  are  awake  under  head-fixation.  Moreover,  it  remains 
 hard  to  access  the  temporolateral-most  regions  of  rodent  cortex 
 with  standard  imaging  approaches,  and  thus,  higher-order  visual 
 areas  proposed  to  play  a  role  in  visual  object  recognition,  such  as 
 areas  LI  and  LL,  as  well  as  parahippocampal  areas  implicated  in 
 visual and spatial memory  85  , remain understudied. 

 Here,  we  describe  advancements  in  behavior  and  optical  imaging 
 techniques  for  rats  that  we  have  developed  to  study  visual 
 perception  and  neural  circuits  in  awake  animals.  We  devised  a 
 modular  platform  to  automatically  train  large  cohorts  of  rats  on 
 visual  tasks,  demonstrating  their  robust  object  recognition 
 capacities  across  changes  in  object  identity  and  view.  We  then 
 designed  a  tilting  two-photon  microscope  for  imaging  in  awake, 
 head-fixed  rats  to  access  the  neural  representations  underlying 
 these  behavioral  capacities.  Characterizing  multiple  areas  of 
 temporolateral  visual  cortex  with  a  range  of  stimulus  types  in  the 
 same  neurons  revealed  a  primate-like  hierarchical  organization 
 in  the  rat  consistent  with  a  role  in  visual  object  recognition,  but 
 also  non-hierarchical  features  better  resembling  mouse  visual 
 cortex.  By  developing  methods  for  chronic,  cellular  resolution 
 imaging  in  awake,  head-fixed  rats,  our  work  offers  insights  into 
 primary  and  higher-order  rat  visual  cortex  that  pave  the  way  for 
 mechanistic studies of perception and behavior in the rat. 

 Results 

 High-throughput training shows robust visual object recognition 

 Distinct  visual  objects  and  different  views  of  the  same  object  can 
 both  appear  as  dramatic  morphological  differences  at  the  retinal 
 level.  We  sought  to  understand  how  animals  distinguish  between 
 feature  differences  that  indicate  common  object  identity  from 
 those  that  indicate  the  presence  of  a  different  object  altogether. 
 One  caveat  to  studying  complex  behaviors  like  invariant  visual 
 object  recognition  is  that  they  can  take  many  weeks  of 
 training  58,67  ,  which,  when  coupled  to  neural  imaging,  may  lead  to 
 prohibitively  high  attrition  rates.  A  high-throughput  approach  to 
 train  large  cohorts  (>30  animals)  can  overcome  this  challenge,  as 
 demonstrated  with  decision-making  58,59,86  ,  working  memory  67  , 
 and  motor  tasks  64–66  ,  but  standard  rat  vision  studies  often  employ 
 only  ~4-6  animals  per  experiment  12,14,16,87  .  Thus,  our  goal  was  to 
 take  existing  visual  paradigms  11–14,16  ,  and  adapt  them  for  a 
 high-throughput behavior platform. 

 We  developed  a  modular  system,  OpenRatBox  (  Figure  1A-D  , 
 S1  A  ),  that  allowed  us  to  run  many  visual  behavior  experiments 
 automatically  and  in  parallel.  Using  this  system,  we  trained  rats 
 on  a  standard  two-choice  paradigm  11  ,  where  they  were  required 
 to  discriminate  between  two  target  objects  (objects  A  and  B), 
 and  subsequently  tested  on  novel  images  that  represented  either 
 different  views  of  the  target  objects  or  morphed  versions  of  the 
 objects  presented  at  familiar  views  (  Figure  1A  ).  Water-restricted 
 rats  were  trained  to  initiate  a  trial  by  licking  a  central  sensor, 
 wait  for  a  stimulus  to  appear  on  a  screen,  then  report  the  object’s 
 identity  by  licking  a  left  or  right  response  port  (  Figure  1B  ). 
 Correct  choices  were  rewarded,  and  incorrect  choices  were 
 punished  (see  Methods).  Rats  successfully  performed  several 
 hundred  trials  per  day  (  Figure  S1  B  ),  and  results  were  highly 
 reproducible  across  many  animals  and  boxes  (  Figure  1E-F  , 
 n=48/56  reached  criterion  performance  of  >70%  correct  across 
 12.6  ±  7.6  sessions).  Once  rats  reached  criterion  performance  of 
 70%  accuracy  (see  Methods),  we  tested  them  with  new  images 
 that  corresponded  to  either  identity-changing  (  Figure  1G-H  )  or 
 identity-preserving transformations (  Figure 1I-K  ). 

 The  identity-changing  transformations  assessed  how  well  rats 
 discriminated  between  the  two  target  objects.  Morphs,  spanning 
 morphological  variations  in  identity  from  level  0  (0%  B  and 
 100%  A)  to  1  (100%  B  and  0%  A),  were  presented  on  a  small 
 fraction  of  probe  trials  (<15%)  on  which  no  feedback  was 
 provided,  and  the  category  boundary  between  the  targets  was 
 determined  with  a  psychometric  curve  88  relating  the  animal’s 
 choices  to  morph  levels  (see  Methods).  Rats’  perceptual  choices 
 were  well-aligned  with  the  stimulus  space  (  Figure  1G  ).  As 
 morphs  became  more  "B"-like,  rats  increasingly  reported  object 
 B,  and  vice  versa,  with  the  point  of  subjective  equality  (PSE, 
 where  reports  of  A  and  B  were  equally  likely)  slightly  closer  to 
 B than A (  Figure 1H  , 0.65±0.16, mean±s.d. across n=10  rats). 
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 Figure  1  —  Automated,  high-throughput  training  of  visual  behavior  in  rats.  A  ,  Rats  were  first  trained  to  recognize  two  target  objects,  A  and 
 B  (red  and  blue  boxes).  Rats  that  passed  criterion  (see  Methods)  were  then  tested  on  novel  images  that  changed  object  identity  (“ID-changing 
 transformations”)  or  object  view  (“ID-preserving”;  only  size  shown,  but  rotation  also  tested  as  in  (I)).  B  ,  Schematic  of  trial  structure  (adapted  from 
 Zoccolan  et  al.  11  ).  C  ,  Schematic  of  OpenRatBox.  Four  training  boxes  are  stacked  on  the  right,  with  a  zoomed-in  view  of  one  box  on  the  left.  D  , 
 Control  logic  of  OpenRatBox  (experiments  run  with  MWorks).  Each  box  runs  a  server  for  a  specified  experiment,  and  one  primary  computer 
 connects  via  a  client  that  controls  independent  boxes  in  parallel.  E  ,  Training  time  course  for  an  example  rat.  Red,  accuracy  for  object  A.  Blue, 
 accuracy  for  object  B.  F  ,  Average  accuracy  by  session  for  a  cohort  of  rats  (n=36  rats).  Each  square  represents  accuracy  in  one  session  per  animal. 
 G  ,  Psychometric  curve  for  an  example  rat  on  identity-changing  transformations.  Circles,  data.  Line,  Gaussian  fit  (see  Methods).  Vertical  bar,  fit 
 point  of  subjective  equality  (PSE).  H  ,  Psychometric  curves  for  a  subset  of  trained  rats  tested  on  identity-changing  transformations  (n=10  rats). 
 Gray,  individual  rats.  Black,  average  across  rats.  Vertical  bars,  points  of  subjective  equality  (PSE).  I  ,  Identity-preserving  transformations  for  each 
 target  object  (red  and  blue  boxes).  Gray,  training  views  (see  Methods).  Purple,  example  test  views  for  which  feedback  was  never  provided.  Green, 
 size-matched  views  of  the  test  views,  but  for  which  feedback  was  provided.  J  ,  Average  accuracy  on  identity-preserving  transformations  for 
 training  (gray),  no-feedback  (purple),  and  acuity-matched  with  feedback  (green)  views.  Each  dot  represents  one  animal  (n=13  rats).  K  ,  Average 
 accuracy  on  identity-preserving  transformations  as  a  function  of  the  N-th  presentation  of  a  given  view  for  no-feedback  (purple)  and 
 acuity-matched feedback conditions (green). Shading, standard deviation, s.d. 

 How  precisely  rats  differentiated  between  the  objects  was 
 captured  by  the  difference  threshold,  or  the  minimum  morph 
 difference  perceived  50%  of  the  time  (just-noticeable  difference, 
 JND,  half  the  morph  level  spanning  25%  and  75%  "B"  choices), 

 where  larger  values  reflect  flatter,  less  discriminative  curves  and 
 smaller  values  correspond  to  steeper  curves  and  sharper  category 
 boundaries.  Rats  perceived  differences  of  ~20%  between  morphs 
 (0.21±0.09  morph  levels,  mean±s.d.,  n=10  rats),  underscoring 
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 their  robust  discriminatory  capacity,  which  we  later  leveraged  to 
 compare  to  the  discriminatory  capacity  present  in  the  activity  of 
 neural populations (see below). 

 We  then  assessed  how  well  rats  recognized  the  target  objects 
 across  identity-preserving  transformations.  Each  object  was 
 presented  at  different  scales  and  rotations  (  Figure  1I  ),  yielding 
 greater  pixel-level,  and  corresponding  retinal  level,  differences 
 between  two  views  of  the  same  object  than  two  objects  shown  in 
 the  same  view  (see  Methods).  Since  rats  could,  in  theory,  use 
 feedback  to  memorize  the  correct  response  for  each  image,  we 
 withheld  feedback  from  a  subset  of  views  to  test  spontaneous 
 generalization  (purple,  Figure  1I  ).  However,  low  accuracy  on 
 these  no-feedback  views  could  reflect  poor  generalization  or 
 acuity  limits,  especially  for  small  stimulus  sizes,  so  we  also 
 compared  performance  on  corresponding  size-matched  views  for 
 which  feedback  was  provided  (green,  Figure  1I  ).  All  trained  rats 
 generalized  to  novel  views,  maintaining  high  accuracy  across  all 
 conditions  (  Figure  1J  ;  default:  0.78±0.07,  no-feedback: 
 0.74±0.06,  size-matched:  0.74±0.08,  mean±  s.d.,  n=13  rats), 
 consistent  with  previous  studies  11  .  Importantly,  accuracy  was  not 
 influenced  by  the  number  of  exposures  to  a  given  view  (  Figure 
 1K  ),  demonstrating  that  generalization  did  not  depend  on  trial 
 history,  but  could  be  an  intrinsic  feature  of  the  underlying  neural 
 representations rather than emerging only with learning. 

 Although  both  identity-preserving  and  identity-varying 
 transformations  involve  large  changes  in  the  images  falling  on 
 the  retina,  our  behavioral  results  demonstrate  that  rats  accurately 
 distinguish  between  changes  that  alter  object  identity  and  those 
 that  preserve  it.  Importantly,  despite  that  moving  visual  objects 
 provide  higher  salience  to  rodents  32,89  ,  our  trained  rats  exhibited 
 robust  generalization  and  discrimination  performance  even  with 
 static  images,  similar  to  paradigms  used  in  primate  studies  of 
 visual  object  recognition.  Having  empirically  determined  both 
 the  discriminability  and  generalizability  of  our  object  stimuli  at 
 the  behavioral  level,  we  next  sought  to  probe  the  neural 
 representations that might support these behaviors in rats. 

 A complete pipeline for neural imaging in awake, head-fixed rats 

 Imaging  in  rats  has  been  challenging  due  to  their  larger  brain 
 size—requiring  a  bigger  field-of-view  (FOV)—and  significant 
 strength  from  their  larger  body  size  90  ,  which  can  lead  to 
 motion-induced  image  distortions  or  even  implant  detachment 
 from  the  skull.  To  further  complicate  matters,  higher-order  visual 
 areas  in  the  rat  proposed  to  be  analogous  to  the  primate  ventral 
 visual  stream  31,32,91,92  ,  including  areas  LI  and  LL,  are  positioned 
 on  the  side  of  the  animal’s  head.  These  areas  are  difficult  to 
 access  using  standard,  upright  microscopes  or  head-mounted 
 mini-scopes  83,90,93,94  ,  and  thus,  little  is  known  about  their 
 functional  properties.  To  overcome  these  hurdles,  we  developed 
 a  pipeline  for  chronic  access  to  lateral  visual  cortex  in  awake, 
 head-fixed rats (  Figure 2A  ,  S2A  ). 

 To  keep  the  rat’s  body  in  a  natural,  resting  position  and  simplify 
 the  presentation  of  visual  stimuli,  we  rotated  the  microscope 
 objective  relative  to  the  animal  via  a  tilting,  dual-channel 
 two-photon  microscope  that  allowed  access  to  virtually  any 
 imaging  plane  around  the  animal’s  head,  while  maintaining  over 
 180º  of  unobstructed  viewing  angle  (  Figure2B,  Figure  S2E-F  ). 
 Two  optical  paths  provided  FOV  sizes  of  ~500x500-1000  µm  2  to 
 1x1-2  mm  2  (  Figure  2B  ,  top  and  bottom  insets),  each  capable  of 
 cellular  resolution  imaging  of  neural  responses  (  Figure  2C  ). 
 Dual-channel  epifluorescence  paths  facilitated  vasculature  and 
 retinotopic mapping of targeted sites (  Figure S2E,G  ). 

 A  key  challenge  was  optimizing  surgical  and  habituation 
 procedures  for  extended  head-fixation  with  angled  head  plates  in 
 awake  rats  and  clear  windows  lasting  several  weeks  (see 
 Methods,  Figure  S2A  ).  Our  methods  enabled  robust  implants 
 and  stable  imaging  at  >4  weeks  post-surgery  (  Figure  S2A  ). 
 Custom  titanium  head  plates  were  implanted  to  align  the  cranial 
 window  to  the  imaging  plane  (30  degrees,  see  Methods),  and 
 mated  with  a  custom  kinematic  mount  (  Figure  S2  C-D  )  that 
 provided  sufficient  spatial  precision  for  returning  to  the  same 
 cells  across  days  (  Figure  S2H  ).  These  methods  thus  enabled  us 
 to  characterize  populations  across  multiple  visual  areas  to  shed 
 light  on  the  network  of  neural  circuitry  that  supports  complex 
 visual behavior. 

 Optical mapping of rat visual cortex 

 To  optically  map  rat  visual  areas,  we  relied  on  multi-site 
 injections  of  a  genetically-encoded  calcium  indicator  95  and  a 
 large  (5  mm  diameter)  window  placed  over  the 
 posterior-temporal  edge  of  rat  cortex,  targeting  areas  V1,  LM, 
 and  LI  (see  Methods).  We  developed  a  tilting  tandem-lens 
 epifluorescence  macroscope  96  and  performed  widefield  mapping 
 of  the  entire  window  (  Figure  3A  )  with  a  standard,  cycling  bar 
 paradigm  presented  on  a  large  monitor  centered  on  the  eye 
 contralateral  to  the  window  18,20,97–99  (see  Methods).  Rat  visual 
 cortex  exhibited  smooth  retinotopic  maps  delineating  primary 
 and  higher-order  visual  areas  (  Figure  3B-C  ),  as  observed  in 
 other  species  mapped  with  optical  imaging  18,20,98,100,101  ,  and 
 optical  maps  were  qualitatively  similar  to  electrophysiological 
 estimates  of  areas  in  rat  visual  cortex  71,72,102  .  Fast  optical 
 mapping  of  the  entire  cranial  window  thus  allowed  us  to  reliably 
 target V1, LM, and LI for two-photon imaging. 

 With  the  same  stimulus  paradigm  as  used  for  widefield  mapping, 
 we  measured  retinotopy  in  two-photon  FOVs  (  Figure  3D-E  ). 
 Cortical  magnification,  or  the  extent  of  cortex  representing  a 
 given  portion  of  the  visual  field,  decreased  along  V1,  LM,  and 
 LI  (  Figure  3F  ),  consistent  with  their  decreasing  surface 
 areas  71,102  .  In  contrast  to  the  radial  anisotropy  of  primate  visual 
 cortex,  where  cortical  magnification  decreases  with 
 eccentricity  103,104  ,  rat  visual  cortex  exhibited  anisotropy  in 
 azimuth  and  elevation,  with  a  two-fold  greater  cortical 
 magnification  along  elevation  (  Figure  3F  ),  similar  to  the 
 anisotropic expansion seen in mouse visual cortex  44,98,99,105,106  . 
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 Figure  2  ─  A  standardized  pipeline  for  optical  imaging  in  awake,  head-fixed  rats.  A  ,  Schematic  of  the  workflow  for  each  rat  in  our  imaging 
 pipeline.  B  ,  Schematic  of  the  tiltable  imaging  system  with  dual-channel  two-photon  microscopy.  Two-photon  beam  paths  provide  either  a 
 standard-scale  (cyan)  or  a  large-scale  (orange)  FOV  half  the  zoom  of  the  standard  mode.  Both  modes  provide  cellular  resolution  at  the  same 
 acquisition  rate.  Top  :  Example  standard  FOV  (500  μm  x  500  μm)  showing  neurons  labeled  with  GCaMP7f.  Bottom  :  Example  large  FOV  (1  mm  x 
 1  mm).  Scale  bars,  100  μm.  C  ,  Left  :  Example  two-photon  large  FOV  of  GCaMP7f  fluorescence  in  V1.  Right  :  Example  time  courses  in  response  to 
 drifting  gratings  for  the  8  neurons  circled  with  corresponding  colors  on  the  left.  Traces  are  stimulus-aligned  responses  for  8  directions  of  gratings 
 presented  at  the  spatial  frequency,  speed,  and  size  combination  that  elicited  the  cell’s  maximum  response.  Thin  lines,  individual  trials.  Thick  lines, 
 mean response. Gray bars, stimulus period (1 sec). 

 Single  neuron  response  profiles  distinguish  primary  and 
 higher-order visual areas 

 In  primate  ventral  visual  cortex,  decades  of  studies  probing 
 many  stimulus  types  and  transformations  have  established  a  rich 
 view  of  area-specific  characterizations,  where  the  change  in 
 response  profiles  from  one  area  to  the  next  are  thought  to 

 support  a  progression  of  increasing  selectivity  for  complex 
 objects  and  greater  tolerance  across  views.  For  example,  bigger 
 receptive  fields  provide  access  to  larger  portions  of  the  visual 
 field,  which  may  facilitate  scale  and  position  tolerance  3,107,108  , 
 while  reduced  responsiveness  to  simple  edges  in  favor  of  more 
 complex  feature  conjunctions  may  support  greater  object 
 selectivity  2,109–113  . In contrast, most studies of  rodent visual 
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 Figure  3  —  Retinotopic  organization  of  rat  visual  cortex  .  A  ,  Schematic  of  the  tilting  tandem-lens  macroscope  setup  for  widefield  mapping.  B  , 
 Widefield  maps.  Left  :  Epifluorescence  image  of  the  cranial  window.  Outlined  box  corresponds  to  a  V1  two-photon  imaging  site.  Pseudo-colored 
 images  from  phase-encoded  mapping  of  retinotopic  preference  along  azimuth  (middle)  and  elevation  (right)  (see  Methods).  T=temporal  side  of 
 visual  field,  N=nasal  side,  L=lower  visual  field,  U=upper  visual  field.  Scale  bar,  1  mm.  C  ,  Visual  field  sign  maps  calculated  from  the  azimuth  and 
 elevation  maps  shown  in  B  .  D  ,  Schematic  of  the  two-photon  imaging  platform.  An  IR  camera  captured  high-resolution  video  of  the  animal’s  face 
 synced  with  neural  data  acquisition.  E  ,  Two-photon  maps.  Max-projection  of  GCaMP  fluorescence  for  the  site  outlined  in  B  (left)  and 
 pseudo-colored  retinotopic  maps  for  azimuth  (middle)  and  elevation  (right).  Circles,  cell  body  locations  colored  by  retinotopic  preference 
 (Methods).  Scale  bar,  100  μm.  F  ,  Left  :  Average  cortical  magnification  for  FOVs  in  V1,  LM  and  LI.  Right  :  Ratio  of  cortical  magnification  along 
 elevation  (EL)  versus  azimuth  (AZ).  Inset,  visual  areas  targeted  in  this  study  (adapted  from  Olavarria  et  al.  34  and  Sereno  et  al.  102  ).  Bars,  mean 
 across imaging sites. Circles, average for each FOV. Colors correspond to areas shown in the brain inset. See Methods for statistical comparisons. 

 cortex  have  relied  on  limited  stimulus  sets  (though  see  21,114  ), 
 uneven  coverage  or  biased  sampling  of  neurons,  or  both,  making 
 direct  comparisons  across  areas  and  stimulus  types  challenging. 
 A  key  advantage  of  our  experimental  setup  is  that  it  allowed  us 
 to  systematically  profile  multiple  visual  areas  with  a  broad  range 
 of  stimulus  types  in  the  same  neurons  (  Figure  4  ).  Specifically, 
 we  estimated  receptive  fields  by  flashing  small  gratings  across 
 the  visual  field  (Figure  4A-C  ),  and  measured  axis  and  direction 
 tuning  with  drifting  square-wave  gratings  (  Figure  4D-F  ). 
 Finally,  to  see  how  changes  in  tuning  across  visual  areas  from 
 simple  features  to  complex  shapes  might  support  the  object 
 recognition  capacities  observed  in  our  trained  animals,  we 
 characterized  responses  to  the  same  object  stimuli  tested  in  our 
 behavior task (  Figure 4G-J  ). 

 Rat  ventral  visual  areas  exhibited  a  broad,  primate-like 
 hierarchical  organization.  From  primary  to  higher-order  visual 
 areas,  receptive  field  sizes  increased  (  Figure  4B  ),  as  previously 
 observed  in  rodent  extrastriate  areas  22,23,31,32,42,115  ,  while 
 orientation  selectivity  decreased,  direction  tuning  curves 
 broadened  18,32  (  Figure  4D-E  ),  and  fewer  cells  had  well-fit 
 direction  tuning  curves  (though  direction  selectivity  was  higher 
 among  LI  cells  that  were  direction-tuned;  fraction  of  well-fit 
 cells,  V1:  0.50±0.10,  n=8  FOVs,  LM:  0.50±0.13,  n=7  FOVs,  LI: 
 0.27±0.06,  n=4  FOVs).  These  results  are  consistent  with 
 evidence  from  primates  2,3,111,116  that  visual  areas  form  a 
 hierarchical  network  characterized  by  features  such  as  increasing 

 receptive  field  sizes  and  decreasing  preference  for  simple 
 features. 

 However,  we  also  observed  marked  deviations  from  the  primate 
 visual  system  in  all  three  areas  that  resembled  observations  of 
 mouse  V1,  including  fine-scale  retinotopic  scatter  at  the  level  of 
 single  neurons  44,105  despite  smooth  widefield  maps  (  Figure 
 S3A-C  ,  and  see  Figure  3E  ),  salt-and-pepper  feature  maps 
 without  strong  spatial  correlations  44,45,117  (  Figure  S3D  ),  and 
 consistent  with  widefield  measurements,  anisotropic  receptive 
 fields  with  cortical  magnification  expanded  in  elevation  98,105,106 

 (  Figure  4C  ,  mean±s.d.  ratio  of  major  to  minor  axis,  V1: 
 1.43±0.21,  n=9  sites,  LM:  1.49±0.08,  n=7  sites,  LI:  1.59±0.19, 
 n=9  sites).  The  observed  anisotropy  could  not  be  explained  by 
 spherical  distortions  from  a  flat  monitor:  applying  the  inverse 
 transformation  of  the  spherical  correction  to  measured  receptive 
 field  maps  (see  Methods)  resulted  in  quantitatively  similar 
 receptive  field  metrics  (  Figure  S4  ).  Rather,  each  cell’s  receptive 
 field  appeared  to  correspond  to  a  smaller  portion  of  the  visual 
 field  along  elevation  relative  to  azimuth,  suggesting  that  rodents 
 may have enhanced resolution along the vertical axis of view. 

 Despite  that  some  properties  of  rat  extrastriate  areas  resembled 
 features  of  mouse  visual  cortex,  our  behaving  rats  nevertheless 
 showed  robust  invariant  object  recognition  performance  at  levels 
 higher  than  mice  trained  on  moving  stimuli  28  ,  suggesting  the 
 existence of neural representations supporting these behaviors. 
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 We  thus  probed  neural  responses  to  a  subset  of  the  same  stimuli 
 used  in  our  behavioral  paradigm,  to  link  single  neuron  metrics  of 
 selectivity  and  tolerance  to  stimuli  with  known  perceptual 
 responses (  Figure 4G-J  ). 

 In  nonhuman  primates,  both  selectivity  for  complex  shapes  and 
 tolerance  to  identity-preserving  transformations  increase  in  a 
 balanced  manner  such  that  lifetime  sparseness,  or  the  specificity 
 of  neural  responses  to  object  stimuli,  is  preserved  across  the 
 ventral  stream  4,118  .  This  is  thought  to  occur  as  a  trade-off  at  the 
 level  of  single-units  exhibiting  a  negative  correlation  between 
 selectivity  and  tolerance,  as  seen  in  the  latest  stage  of  the  primate 
 ventral  pathway,  inferotemporal  cortex,  where  units  more 
 selective  to  specific  objects  are  less  tolerant  to  transformations, 
 while  highly  tolerant  units  are  less  selective  119  .  We  therefore 
 estimated  similar  metrics  across  rat  visual  cortex.  Lifetime 
 sparseness  120,121  (see  Methods),  was  comparable  across  visual 
 areas  for  the  object  stimuli  tested,  though  slightly  lower  in  LI 
 (  Figure  4H  ;  V1:  0.22±0.02  across  n=9  FOVs,  LM:  0.23±0.0 
 across  n=8  FOVs,  LI:  0.18±0.02  across  n=6  FOVs,  mean±s.d.). 
 This  difference  could  be  due  to  lower  selectivity  for  morphs, 
 greater tolerance to changes in scale, or a combination of both. 

 To  further  examine  the  interplay  between  selectivity  and 
 tolerance  in  rat  extrastriate  areas,  we  calculated  a  morph 
 selectivity  index  and  size  tolerance  index  for  each  neuron,  and 
 estimated  the  trade-off  between  the  two  119  .  Morph  selectivity 
 captures  how  much  a  neuron  responds  to  the  various  morphs 
 presented  at  the  neuron’s  preferred  stimulus  size,  while  size 
 tolerance  measures  how  much  a  neuron’s  response  to  its 
 preferred  morph  changes  across  scale.  In  contrast  to  the  primate 
 ventral  pathway,  we  did  not  observe  significant  differences 
 between  areas  in  single  neuron  metrics  of  morph  selectivity  or 
 size  tolerance  (  Figure  4I  ),  and  although  LI  sites  tended  to 
 exhibit  more  negative  correlation  coefficients  between 
 selectivity  and  tolerance  (  Figure  4J  ),  areal  differences  were  not 
 statistically significant. 

 Altogether,  though  single  neuron  response  profiles  across  lateral 
 visual  cortex  were  broadly  consistent  with  a  primate-like 
 hierarchical  pathway,  many  features,  not  only  of  rat  V1,  but  also 
 LM  and  LI,  were  not,  with  some  resembling  mouse  V1, 
 suggesting  both  shared  and  species-specific  features  of  visual 
 processing in rodents and primates. 

 Population  representations  support  increased  generalization  in 
 higher-order visual cortex 

 Though  single-neuron  metrics  of  object  selectivity  and  tolerance 
 revealed  far  more  subtle  area  differences  than  the  dramatic 
 specializations  seen  across  the  primate  ventral  stream,  certain 
 feature-selectivities  in  rat  higher-order  areas,  such  as  reduced 
 preference  for  simple  gratings  stimuli  and  increasing  receptive 
 field  sizes,  suggested  that  population-level  representations  might 
 nonetheless  support  the  recognition  capacities  observed  in  our 
 behavior  paradigm.  Importantly,  rats  performing  the  visual 
 object  recognition  task  accurately  classified  novel 
 transformations  in  the  absence  of  feedback  (  Figure  1  ), 
 suggesting  that  neural  representations  supporting  generalization 
 are inherent to the circuitry of their visual systems. 

 One  biologically  plausible  scheme  for  how  neural  populations 
 perform  computations  enabling  visual  object  recognition  is  a 
 thresholded  sum  taken  over  weighted  synapses  to  transform 
 representations  4,122  .  We  thus  explored  neural  population  activity 
 with  linear  classification  models  (linear  support  vector 
 machines)  and  estimated  discriminability  and  generalization  in 
 primary  and  higher-order  visual  areas.  We  first  trained  linear 
 classifiers  to  discriminate  between  target  objects  A  and  B  using 
 population  responses  to  the  same  stimuli  as  used  for  behavior. 
 We  then  tested  these  classifiers  on  identity-changing  morphs  or 
 identity-preserving  changes  in  stimulus  scale,  matching  the  tests 
 performed  by  our  trained  animals  (  Figure  1A  ).  If 
 discriminability  between  objects  is  high,  the  classifier  should 
 report  object  A  when  A  is  shown,  and  vice  versa  for  object  B 
 (  Figure  5A  ),  and  likewise,  if  neural  responses  to  morphs  reflect 
 both the stimulus space and animals’ perception, classifiers 
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 Figure  4  —  Single  neuron  responses  across  primary  and  higher-order  visual  areas.  A  ,  Receptive  fields  of  example  neurons  from  V1  (left), 
 LM  (middle),  and  LI  (right).  Traces,  mean  time  courses  1  sec  from  stimulus  onset  for  the  small  gratings  tilling  the  visual  field,  flashed  for  0.5  s  at 
 each  stimulated  location.  Heat  map,  mean  response.  Ellipse,  fit  receptive  field  at  full-width-half-maximum  (FWHM).  B  ,  Left  :  Average  receptive 
 field  sizes.  Right  :  Population  receptive  field  sizes.  Each  dot  represents  one  FOV.  Bars,  mean  across  sites.  C  ,  Distribution  of  receptive  field  angle 
 and  anisotropy  by  visual  area.  Each  dot  represents  one  cell.  Theta  axis,  receptive  field  angle  (0°  is  parallel  to  the  horizontal  plane).  Radial  axis, 
 anisotropy  index,  defined  as  the  difference  between  the  major  and  minor  axes  of  the  fit  ellipse,  divided  by  their  sum  (0  is  perfectly  isotropic,  or  a 
 circle,  1  is  perfectly  anisotropic,  or  a  line).  D  ,  Responses  to  drifting  gratings  from  an  example  cell  in  each  visual  area.  Thin  lines,  individual  trials. 
 Thick  lines,  trial  means.  Colors,  distinct  combinations  of  spatial  frequency,  size,  and  speed  (Ap=apertured,  FF=full-field).  Columns  represent 
 drifting  direction.  Polar  plot  insets  at  the  upper  right  for  each  cell  show  corresponding  direction  tuning  curves  that  pass  goodness-of-fit  criteria 
 (see  Methods).  E  ,  Axis-selectivity  index  (ASI,  left),  direction-selectivity  index  (DSI,  middle),  and  tuning  width  (sigma  σ,  right)  estimated  from  fit 
 direction  tuning  curves  (see  Methods).  Each  dot  represents  the  median  across  cells  for  one  imaging  site.  Bars,  mean  across  sites.  F  ,  Polar  plots 
 showing  normalized  distributions  (fraction  of  fit  cells)  of  preferred  direction  of  motion  for  each  visual  area.  G  ,  Responses  to  objects  for  example 
 neurons  from  V1  (left),  LM  (middle),  and  LI  (right).  5  stimulus  sizes  (identity-preserving)  and  9  morph  levels  (identity-changing)  were  tested,  in 
 addition  to  5  full-field,  grayscale  stimuli  matched  in  overall  luminance  to  each  stimulus  size  (see  Methods).  Traces,  mean±s.e.  time  courses  1  sec 
 before  and  after  the  1  sec  stimulus  presentation.  H  ,  Lifetime  sparseness  of  non-luminance-preferring  cells  (see  Methods).  Dots,  median  across 
 cells  for  one  imaging  site.  I  ,  Morph  selectivity  (left)  and  size  tolerance  (right)  calculated  at  each  cell’s  best  size  or  best  morph,  respectively.  J  , 
 Pearson’s correlation coefficient between morph selectivity and size tolerance for each site. 
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 Figure  5  —  Linear  separability  and  generalization  of  neural  representations.  A  ,  Schematic  (adapted  from  Rust  et  al.  4  )  illustrating 
 discriminability  measured  with  linear  classifiers  (see  Methods).  For  each  object,  the  optimal  linear  hyperplane  (line)  separates  responses  to  one 
 object  from  responses  to  all  others.  Each  dot  represents  the  neural  population  vector  for  one  trial.  A  subset  of  trials  are  used  to  find  each 
 hyperplane  (left),  then  discriminability  is  measured  using  the  remaining  trials  (right).  The  percent  of  response  vectors  falling  on  the  correct  side  of 
 the  hyperplane  (left  side,  if  A  is  shown)  as  opposed  to  the  incorrect  side  (encircled  dot)  estimates  the  similarity  between  a  given  response  and 
 other  responses  to  a  given  object.  B  ,  Population  neurometric  curves.  Linear  classifiers  were  first  trained  on  the  target  objects,  then  tested  on  the 
 intermediate  morphs.  Probabilities  of  choosing  “B”  at  morph  levels  0  and  1  reflect  discrimination  accuracy  for  the  target  objects.  Circles  and  bars, 
 mean±s.d.,  n=500  bootstrap  iterations.  C  ,  Schematic  illustrating  linear  separability  and  generalization  (adapted  from  Rust  et  al.  4  ).  Training  on  one 
 stimulus  condition  (left)  may  fail  to  separate  response  vectors  correctly  (solid  red  line),  i.e.  ,  fail  to  generalize  to  novel  conditions,  while  training  on 
 all  transformations  simultaneously  may  identify  a  better  boundary  (red  dashed  line).  In  contrast,  training  on  a  single  view  might  be  sufficient  for 
 populations  to  generalize  to  novel  conditions  (right).  D  ,  Classifier  accuracy  when  trained  and  tested  on  all  stimulus  sizes  as  a  function  of 
 population  size.  E  ,  Classifier  accuracy  for  trained  (solid)  and  novel  (dotted)  test  conditions.  Gray,  accuracy  when  object  labels  were  shuffled.  F  , 
 Generalization  capacity,  defined  as  the  difference  between  accuracy  on  trained  versus  novel  conditions.  Gray,  generalization  capacity  when 
 “trained” and “novel” labels were shuffled. 

 should  categorize  neural  representations  as  object  B  more  often 
 for morphs closer to B than to A, and vice versa. 

 Classifier  performance  indicated  good  discrimination,  with  high 
 decoding  accuracy  for  each  object  (  Figure  5B  ).  Similar  to  the 
 psychometric  curves  fit  from  behavioral  responses  (  Figure 
 1G-H  ),  we  fit  neurometric  curves  for  each  visual  area  from 
 classifier  responses  to  test  trials  (  Figure  5B  ),  and  estimated  a 
 “neural  PSE”  (point  of  subjective  equality)  as  the  morph  level  at 
 which  objects  A  and  B  were  equally  likely  to  be  selected.  V1 
 and  LM  classifiers  were  biased  toward  object  A,  while  LI 

 classifiers  exhibited  a  bias  toward  object  B  (V1:  0.14±0.04,  LM: 
 0.08±0.04,  LI:  0.83±0.05,  mean±s.d.,  i=500  iterations),  the  same 
 direction  as  the  slight  behavioral  biases  we  observed  (  Figure 
 1H  ).  The  biases  in  neurometric  curves  were  not  simply  due  to  a 
 lack  of  cells  preferring  one  of  the  objects  in  a  given  visual  area, 
 since  all  three  areas  contained  both  cells  that  strongly  preferred 
 object  A  and  cells  that  strongly  preferred  object  B  (  Figure  S5  , 
 see  Methods),  and  may  instead  reflect  nonuniform  feature 
 selectivity across visual areas. 
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 LI’s  larger  receptive  fields  might  impair  discriminability  such 
 that  LI  classifiers  require  a  greater  difference  in  morph  level  to 
 achieve  a  given  level  of  discriminability,  compared  to  V1  or  LM 
 classifiers.  To  explore  this  idea,  we  estimated  a  neural  difference 
 threshold,  analogous  to  our  behaviorally-derived  difference 
 thresholds,  which  estimated  that  rats  perceive  morph  differences 
 of  about  20%  (  Figure  1G-H  ).  The  neural  threshold  was  about 
 half  the  behaviorally-perceived  threshold  in  all  visual  areas 
 (just-noticeable  difference,  JND,  in  V1:  12±7%,  LM:  13±7%, 
 LI:  13±8%,  mean±s.d.,  i=500  iterations),  suggesting  these 
 modestly-sized  neural  populations  can,  at  least  in  theory, 
 discriminate finer differences than indicated by behavior output. 

 Our  trained  rats  also  showed  robust  generalization  across 
 morphological  changes  that  preserved  rather  than  altered  each 
 object’s  identity  (  Figure  1I-K  ).  To  test  how  this  may  be 
 implemented  in  rat  visual  cortex,  we  compared  the  ability  of 
 neural  populations  in  each  area  to  generalize  across  changes  in 
 scale  by  testing  linear  classifiers  in  two  different  ways  4  .  Under 
 the  first  regime,  simultaneously  training  discrimination  at  all 
 scales  and  testing  on  trials  excluded  from  training  estimates 
 linear  separability  in  a  way  that  does  not  rely  on  which  reference 
 image  was  used  for  training.  However,  linear  separability  does 
 not  necessarily  mean  good  generalization  4,31  (left,  Figure  5C  ). 
 Thus,  in  the  second  regime,  training  on  a  single  reference  (  i.e  .,  at 
 a  one  size)  and  testing  novel  conditions  may  reveal  linearly 
 separable  populations  that  fail  to  generalize  (left,  Figure  5C  ), 
 while  successful  generalization  suggests  representations  based 
 on scale-invariant features (right,  Figure 5C  ). 

 When  we  trained  classifiers  to  categorize  the  target  objects  using 
 all  stimulus  scales,  decoding  accuracy  was  comparable  between 
 V1,  LM,  and  LI  (  Figure  5D  ).  In  contrast  to  the  primate  ventral 
 stream  4,118  ,  where  the  ability  to  discriminate  between  objects  is 
 thought  to  be  supported  by  an  increasing  linear  separability  of 
 the  neural  representations  corresponding  to  each  object  across 
 the  visual  hierarchy  2,4,123  ,  under  our  conditions,  linear 
 separability  of  object  representations  in  the  rat  may  be  relatively 
 comparable between primary and higher-order visual areas. 

 To  test  generalization  across  changes  in  scale,  we  trained 
 classifiers  with  images  at  a  single  stimulus  size,  then  tested 
 decoding  accuracy  at  the  remaining  stimulus  sizes  excluded  from 
 training.  V1  and  LM  classifiers  performed  significantly  better  on 
 trained  than  novel  stimulus  sizes,  while  LI  classifiers  performed 
 well  on  both  (  Figure  5E  ,  accuracy  on  trained  minus  novel, 
 V1:14.6±4.8%,  LM:  14.5±5.2%,  Li:  8.0±6.0%,  mean±s.d.  across 
 i=500  iterations  for  population  sizes  of  n=128  cells),  suggesting 
 that  higher-order  areas  may  be  more  robust  to  changes  in  scale. 
 We  computed  a  generalization  index  as  the  difference  between 
 test  scores  on  trained  and  novel  conditions:  small  values  indicate 
 good  generalization,  while  large  values  represent  poor 
 generalization.  We  observed  a  trend  towards  larger 
 generalization  values  in  LI  relative  to  LM  and  V1,  but  it  was  not 
 statistically  significant  (  Figure  5F  ,  permutation  test  shuffling 
 area labels). 

 Area  LI’s  unique  robustness  to  changes  in  scale  could  be  due  to 
 receptive  field  size,  where  larger  receptive  fields  confer 
 tolerance  across  scale  by  accessing  more  of  the  visual  field 
 (  Figure  4B  ).  To  test  this  idea,  we  subsampled  cells  by  matching 
 their  receptive  field  sizes  one-to-one  across  the  three  areas,  such 
 that  every  cell  with  a  given  receptive  field  size  in  one  area  had  a 
 corresponding  cell  matched  in  receptive  field  size  in  the  other 
 areas  (  Figure  S6C  ).  For  LM  decoders,  test  accuracies  on  novel 
 and  trained  stimulus  sizes  became  statistically  indistinguishable 
 (  Figure  S6D  ,  bottom),  suggesting  a  partial  role  for  receptive 
 fields  in  supporting  scale  tolerance.  However,  matching 
 receptive  field  sizes  had  no  effect  for  V1  or  LI  decoders  (  Figure 
 S6D-E  ;  permutation,  p<0.05;  mean  difference  in  accuracy  ±s.d. 
 for  matched  vs.  non-matched  populations,  V1:  14±4.4%  vs. 
 13.6±5.3%,  LM:  6.5±5.5%  vs.  12.9±5.4%,  LI:  6.5±5.7%  vs. 
 6.5±6.4%,  i=500  iterations,  n=96  cells),  suggesting  that 
 receptive  field  size  alone  does  not  account  for  generalization, 
 consistent  with  previous  studies  that  did  not  find  tolerance 
 capacity  to  depend  on  receptive  field  size  31,32,73  .  Rather,  the 
 format  of  object  representations,  as  indicated  by  their  linear 
 separability,  appears  to  confer  view  tolerance  to  areas  V1,  LM, 
 and LI. 

 Our  results  suggest  that  rat  lateral  extrastriate  areas  can  support 
 generalization  in  the  absence  of  learning  or  prior  familiarity, 
 consistent  with  findings  in  anesthetized  113,124,125  or  passively 
 viewing  monkeys  4,118,126–128  and  anesthetized  rats  31  .  Under  our 
 stimulus  conditions,  behavioral  stimulus  tolerances  are  likely  not 
 coded  at  the  level  of  a  single  cell,  but  rather,  appear  distributed 
 across  a  network  of  cells  with  differing  degrees  of  response 
 selectivity and generalization. 

 Discussion 

 Robust  object  recognition  maintains  object  cohesion  amidst 
 changing  contexts,  yet  understanding  its  neural  basis  remains  a 
 challenge.  Rodents  are  valuable  models  due  to  their  genetic 
 accessibility  and  experimental  tractability,  offering  an  inroad  to 
 link  neural  response  properties  to  behaviors.  Rats,  in  particular, 
 are  a  powerful  system  to  explore  perceptual  mechanisms:  like 
 primates,  rats  display  sophisticated  visual  behaviors—both 
 trained  and  untrained—but  like  mice,  they  are  amenable  to 
 genetic  circuit  dissection  and  optical  imaging  approaches.  Until 
 now,  methods  for  cellular  resolution  imaging  in  awake, 
 head-fixed  rats  have  been  limited,  relying  on  trained  voluntary 
 head-fixation  81  or  single-photon  imaging  in  freely-moving 
 animals  76,93,129–131  .  We  created  a  high-throughput  visual  behavior 
 platform  and  a  pipeline  for  cellular  resolution  imaging  in  awake, 
 head-fixed  rats  to  investigate  neural  correlates  of  invariant  object 
 recognition in rats. 

 Most  rodent  vision  studies  have  focused  on  early  processing 
 stages,  from  retina  to  primary  visual  cortex.  Our  study 
 contributes  to  a  growing  body  of  work  dissecting  the  functional 
 logic  of  rodent  extrastriate  cortex  18,21,22,27–29,31–33,114,132–144  .  In 
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 particular,  neural  correlates  in  lateral  areas  LI  and  LL  have 
 remained  elusive  .  Given  the  impressive  visual  behaviors  of  rats, 
 electrophysiology  studies  have  targeted  these  areas  for 
 single-unit  characterizations  of  object  responses  31,32  ,  identifying 
 a  candidate  network  analogous  to  the  primate  ventral  pathway. 
 Our  recordings  confirm  and  expand  on  these  studies  with  optical 
 imaging  in  awake  rats,  providing  an  important  path  toward 
 spatiotemporal  investigations  of  genetically  identifiable  neural 
 populations  in  rats.  We  find  that  rat  primary  and  lateral  visual 
 areas  exhibit  a  functional  hierarchy,  broadly  consistent  with 
 previous  single-unit  observations,  with  increasing  receptive  field 
 sizes,  decreasing  selectivity  for  simple  gratings,  and  robust 
 generalization  in  higher-order  areas,  suggesting  shared  principles 
 of visual object recognition between rodents and primates. 

 Still,  rat  visual  cortex  exhibited  properties  dramatically  distinct 
 from  primate  visual  cortex.  Our  approach  allowed  us  to  explore 
 the  fine-scale  retinotopy  and  spatial  organization  of  neural 
 populations,  revealing  mouse-like  anisotropies  in  visual  field 
 representation  18,20,24,44,97–99,105,145  and  salt-and-pepper  feature 
 maps  45,117,146,147  across  primary  and  higher-order  areas.  While  we 
 observed  robust  generalization  in  LI  populations,  differences  in 
 object  response  metrics  were  otherwise  subtle,  consistent  with 
 prior  descriptions  of  this  area  31,32  ,  suggesting  a  loose,  rather  than 
 one-to-one,  mapping  to  the  primate  ventral  stream.  While 
 training  could  pronounce  object  tuning  differences  in  rat  lateral 
 cortex,  specializations  across  the  primate  ventral  stream  have 
 been  described  in  anesthetized  113,124,125  or  passively 
 viewing  4,118,126–128  monkeys,  and  direct  comparisons  of 
 inferotemporal  cortex  responses  in  trained  and  naive  monkeys 
 did  not  find  differences  4,118,122,148  .  Nevertheless,  neural  responses 
 can  be  shaped  by  familiarity  149–156  ,  and  future  studies  tracking 
 neural  activity  during  learning  with  methods  developed  here  may 
 uncover  experience-dependent  tuning  in  rats.  The  differences  we 
 observe  between  rat  and  primate  visual  systems  likely  reflect 
 species-specific  specializations  in  pathways  supporting  visual 
 object  recognition  43–46,98,105,145  ,  underscoring  how  cross-species 
 comparisons  of  naive  responses  offer  insight  into  shared  and 
 divergent properties of potentially analogous brain regions. 

 Rodent models of invariant object recognition 

 Robust  perceptual  generalization,  observed  in  our  behavior 
 results  and  other  studies  11,13,14,16  ,  suggests  primate-like  ventral 
 stream  computations  in  the  rodent  visual  system.  In  response  to 
 morphological  transformations  corresponding  to  identity 
 changes,  LI  classifiers  resembled  animals'  behavior  biases 
 toward  the  same  object,  while  V1  and  LM  classifiers  displayed  a 
 bias  toward  the  other  object.  Since  recordings  were  from  naive 
 rats,  the  observed  biases  in  neural  representations  may  reflect 
 intrinsic  differences  in  feature  selectivities  between  lower-  and 
 higher-order areas. 

 Across  identity-preserving  transformations,  classification 
 performance  of  LI  populations  also  mirrored  that  of  trained  rats, 
 performing  well  on  both  trained  and  novel  conditions,  unlike  V1 

 and  LM  populations  which  showed  significant  performance 
 drops.  Our  results  using  optical  methods  are  consistent  with 
 single-  and  multi-unit  electrophysiological  studies  in  rats  31,32,73  , 
 which  observed  better  generalization  capacity  in  higher-order 
 areas,  particularly  areas  LI  and  LL.  Interestingly,  a  recent  study 
 in  mice  using  moving  stimuli  found  that,  in  contrast  to  rats,  areas 
 LM  and  AL  exhibit  the  strongest  generalization  28  .  These  results 
 suggest  there  may  be  subtle  yet  consequential  differences  in  how 
 the  visual  systems  of  rats  and  mice  support  object  perception. 
 Importantly,  optical  imaging  in  rats–a  viable  alternative 
 behavioral  model  to  nonhuman  primates–provides  access  to  the 
 fine-scale  physical  relationships  between  single  cells  within  and 
 across  areas,  ultimately  allowing  a  better  understanding  of  how 
 spatial organization supports neural function for visual behavior. 

 The  platform  and  methodology  we  developed  here  for  rats  offers 
 a  powerful  inroad  for  comparative  rodent  vision  studies,  which 
 until  now  have  been  dominated  by  studies  of  visual  physiology 
 in  mice  26,27,157  .  Despite  their  capacity  for  genetic  manipulation, 
 mice  possess  relatively  poor  visual  acuity  49  and  exhibit  inferior 
 performance  on  many  behavioral  tasks  28,54,158–162  compared  to 
 rats,  suggesting  potential  limitations  in  their  utility  as  a  singular 
 model  for  the  mechanistic  study  of  visual  perception.  While 
 performance  differences  between  mice  and  rats  in  visual  tasks 
 could  be  methodological,  they  likely  also  reflect  species-specific 
 differences.  Rats  are  crepuscular  163  ,  are  well-established  to  act  as 
 predators  (including  of  mice  164–166  ),  have  double  the  visual  acuity 
 of  mice  49  ,  and  have  divergent  extrastriate  area 
 organization  54,99,102,161,167,168  .  Other,  arboreal  rodents,  such  as 
 squirrels,  are  diurnal  species  that  also  display  keen  visual  senses, 
 though  even  less  is  known  about  their  visual  cortex  beyond 
 V1  37,169,170  .  Future  studies  may  reveal  how  visual  systems  reflect 
 distinct  sensory  requirements  and  adaptations  to  specific 
 ecological  niches,  which  is  important  to  consider  in  the  context 
 of both laboratory and naturalistic behaviors. 

 Historically,  the  study  of  perception  has  been  restricted  to 
 nonhuman  primates,  due  to  the  similarity  of  their  visual  systems 
 to  our  own,  as  well  as  their  impressive  behavioral  capacities. 
 Compared  to  mice  and  other  rodents,  rats  have  been  the 
 exception,  as  many  laboratory  tasks  of  vision  have  been 
 optimized  in  rats  for  over  a  hundred  years  51,52  .  Our  study 
 represents  a  fundamental  step  toward  bridging  the  gap  between 
 the  rich  behavioral  history  of  rats  and  a  more  mechanistic 
 understanding of their visual physiology. 

 Methods 

 Behavior 

 Subjects 
 All  experimental  procedures  were  reviewed  and  approved  by  the 
 Harvard  Institutional  Animal  Care  and  Use  Committee 
 (IACUC),  under  protocol  27-22.  All  experiments  were 
 performed  at  Harvard  University.  Animals  in  this  study  were 
 female  Long  Evans  rats,  3  months  or  older,  weighing  250-350g 
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 (Charles  River  Laboratories).  Rats  were  housed  on  a  ventilated 
 rack  under  a  reverse  12  hour  light:dark  cycle  with  food  and 
 water  ad  libitum  ,  except  when  water-restricted  for  behavior 
 training.  A  total  of  N=56  rats  were  trained  on  the  basic 
 three-port  task,  out  of  which  48  passed  criterion.  A  subset  of 
 these  rats  are  part  of  a  previously  published  dataset  17  .  36  rats 
 were  separately  trained  on  the  basic  two-choice  task  to  test  the 
 reliability  of  the  behavior  box  and  paradigm.  For 
 identity-preserving  transformations  or  identity-changing 
 transformations,  a  subset  of  13  trained  rats  each  were  tested  on 
 novel  images.  Rats  were  kept  on  a  water  schedule  in  which  they 
 received  the  majority  of  their  water  during  behavior  training 
 sessions.  Rats  were  given  ad  libitum  water  for  1  hour  if  few 
 (<100) trials were performed. 

 OpenRatBox 
 All  animals  were  trained  using  a  custom  low-cost, 
 high-throughput,  modular  training  system,  OpenRatBox.  The 
 frame  of  the  box  was  composed  of  custom-cut  aluminum 
 extrusions  (80/20,  Inc.).  For  the  present  study,  four  training 
 boxes  were  vertically  stacked  per  tower,  for  a  total  of  four 
 towers.  A  clear,  plastic  housing  cage  snapped  and  locked  into  the 
 same  position  in  the  behavior  box  across  sessions.  A  small  hole 
 (~30cm  diameter)  at  one  end  of  the  cage  allowed  the  animal  to 
 access  the  monitor  and  response  ports.  A  custom  acrylic  mount 
 held  three  feeding  tubes,  ~1  cm  apart,  (Cadence  7909,  14G 
 Straight  Feeding  Tube  w/  4mm  diameter  ball)  on  an  aluminum 
 frame  (MicroRax)  positioned  directly  in  front  of  the  front  access 
 hole  of  the  cage.  Each  port  was  coupled  to  a  capacitive  sensor. 
 The  capacitive  sensors  (Phidget  Touch  Sensor  1129,  Calgary, 
 Alberta,  Canada)  were  controlled  by  a  USB  microcontroller 
 (Phidget  Interface  Kit  1018).  The  two  flanking  ports,  which 
 served  as  the  reward  ports,  were  connected  to  a  syringe  pump 
 system  (NE-500,  New  Era  Pump  Systems,  Inc.,  Farmingdale, 
 NY).  The  syringe  pumps  were  connected  via  an  RS232  adapter 
 (Startech  RS-232/422/485  Serial  over  IP  Ethernet  Device  Server, 
 Lockbourne,  OH).  Settings  for  the  syringe  port  were  tested  for 
 precise  and  consistent  reward  delivery  of  ~0.02-0.06  mL  per 
 trial, at 0.02 mL increments. 

 Each  box  was  illuminated  with  red  LEDs  and  monitored  via  a 
 USB  webcam.  Each  behavior  box  was  equipped  with  a  monitor 
 (Dell  P190S,  Round  Rock,  TX;  Samsung  943-BT,  Seoul,  South 
 Korea),  positioned  ~30cm  from  the  animal's  head,  and  a 
 computer  (MacMini  6,  OSX  10.9.5  or  MacMini  7,  OSX  El 
 Capitan  10.11.13,  Apple,  Cupertino,  CA)  mounted  above  the 
 main  vestibule.  Training  box  computers  ran  an  MWorks  server 
 and  I/O  applications  for  reward  delivery  (Arduino,  Phidget), 
 while  the  main  control  computer  ran  the  corresponding  MWorks 
 client  to  control  each  box  (MWorks  0.5.dev  [d7c9069]  or  0.6 
 [c186e7], The MWorks Project https://mworks.github.io/). 

 Visual stimuli 
 Stimuli  were  produced  following  Zoccolan  et  al.  11  .  Visual 
 objects  were  renderings  of  three-dimensional  models  built  using 

 a  ray  tracer  package,  POV-Ray  (http://www.povray.org).  Each 
 object  was  defined  as  a  particular  configuration  and  blend  of 
 three  starting  spheres.  Objects  were  rendered  with  the  same  light 
 source  location  and  matched  to  have  approximately  equal  height, 
 width,  and  area,  as  defined  by  a  bounding  box  surrounding  each 
 object  rendering.  Object  transformations  (  e.g  .,  size,  in-depth 
 rotation)  were  generated  using  custom  Python  wrappers  and  the 
 POV-Ray  API.  Morphs  were  generated  by  gradually  adjusting 
 the  relative  proportions  of  each  object:  the  composite  spheres 
 defining  one  object  were  parametrically  shifted  into  the  spheres 
 defining  the  other.  We  used  the  Euclidean  distance  in  pixel  space 
 to  quantify  the  difference  between  each  neighboring  pair  of 
 images.  In  total,  2,000  morphs  were  generated,  from  which  22 
 morphs  were  sub-sampled  such  that  the  Euclidean  distance 
 between successive morphs were equal. 

 Training procedure 
 The  basic  task  was  designed  according  to  Zoccolan  et  al.  11  . 
 Animals  were  trained  to  initiate  a  trial  by  licking  a  center  port 
 (feeding  tube  wired  to  a  capacitive  sensor),  which  triggered  the 
 appearance  of  one  stimulus.  Animals  indicated  which  of  the  two 
 objects was present by licking the left or the right port. 

 Handling  and  habituation.  Long  Evans  female  rats  (Charles 
 River  Laboratories,  Wilmington,  MA)  of  about  250  g  were 
 allowed  to  acclimate  to  the  colony  environment  for  about  a  week 
 after  arriving.  Rats  were  habituated  to  human  interaction  for  1-2 
 days,  then  introduced  to  the  training  cages  and  acoustic  signals 
 generated  by  the  behavior  rigs.  Water-deprived  rats  were 
 encouraged  to  poke  their  heads  out  of  the  access  hole  by 
 manually  offering  water  with  syringes  connected  to  a  feeding 
 needle identical to the ones used in the behavior rigs. 

 Phase  0.  On  the  first  1-2  days  in  the  training  boxes,  a  glob  of 
 peanut  butter  or  Nutella  was  placed  on  each  of  the  3  ports  to 
 entice  water-deprived  animals  to  poke  their  heads  out  of  the 
 access  hole  and  engage  with  the  lick  ports.  The  reward  ports 
 were  triggered  to  always  dispense  a  small  water  reward  (0.02 
 mL)  anytime  the  animal  licked  the  feeding  tubes.  Correct  trials 
 were  rewarded  with  additional  water,  but  negative  feedback  was 
 withheld.  This  period  typically  lasted  1  session  or  less,  as 
 animals readily licked the reward ports dispensing water. 

 Phase  1.  Animals  were  trained  on  a  single,  default  training  view 
 of  object  A  and  object  B  (40°  of  visual  angle,  0°  in-depth 
 rotation).  Animals  triggered  a  trial  by  licking  the  center  port, 
 after  which  a  stimulus  appeared  on  the  screen.  Animals  had  350 
 ms  to  3.5  s  to  indicate  whether  object  A  or  object  B  was  on  the 
 screen  by  licking  one  of  the  two  flanking  ports.  To  prevent 
 spurious  licking,  trials  were  aborted  if  the  animal  licked  <350  ms 
 from  stimulus  onset.  Correct  responses  were  rewarded  with 
 water,  and  the  stimulus  was  left  on  the  screen  for  an  additional  4 
 s  while  the  animal  licked  the  reward.  Incorrect  responses  were 
 punished  with  a  1-3  s  negative  feedback  sequence  and  time-out 
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 period.  Negative  feedback  consisted  of  a  short,  high-frequency 
 tone and a black-to-middle gray flicker at 5Hz. 

 To  address  response  bias,  the  training  protocol  tracked  whether 
 animals  licked  the  same  reward  port  too  many  times  incorrectly, 
 independent  of  the  stimulus  shown.  In  addition,  to  prevent 
 response  bias  due  to  stimulus  presentation  order,  a  limit  was  set 
 on  the  number  of  times  the  same  stimulus  could  appear  in  a  row 
 (N=5  back-to-back  presentations  of  the  same  stimulus).  If  either 
 bias  was  flagged,  the  other  stimulus  was  shown  until  the  animal 
 correctly  responded,  at  which  point  the  bias  counts  restarted. 
 Rats  usually  took  about  3-10  days  to  achieve  criterion 
 performance (70% accuracy). 

 Phases  2-4.  For  testing  identity-preserving  transformations,  an 
 intermediate  set  of  phases  was  introduced  in  which  feedback  was 
 provided  for  a  subset  of  new  views.  In  a  given  session,  either 
 changes  in  size  or  changes  in  depth-rotation  were  introduced,  but 
 not  both  (Phases  2  and  3).  A  staircase  procedure  was  used  to 
 slowly  introduce  increasingly  different  views  (difference  from  0° 
 rotation  or  difference  from  40°  size).  Rats  took  about  2-7  days 
 total  (1-3  days  for  size,  1-4  days  for  rotation,  of  which  there 
 were  more  levels  than  size)  for  the  staircase  to  reach  the  most 
 extreme  views  for  each  transformation  axis,  while  maintaining 
 criterion  levels  of  70%  overall  accuracy.  After  each 
 transformation  axis  was  tested  separately,  rats  that  maintained 
 criterion  performance  were  tested  for  one  session  on  both  size 
 and  rotation  training  views  (Phase  4,  see  gray  cross  in  Figure 
 1I  ). 

 Testing 
 In  the  last  phase  of  the  paradigm,  animals  were  tested  on  either 
 identity-preserving  transformations  or  identity-changing 
 transformations. 

 Identity-Preserving  Transformations.  Rats  were  tested  on  the 
 same  objects  presented  at  various  combinations  of  size  and 
 in-depth  rotation.  No  feedback  was  provided  for  a  subset  of 
 views  (test  views)  in  order  to  assess  the  extent  to  which 
 generalization  occurred  spontaneously.  With  feedback,  animals 
 could  learn  each  stimulus-response  mapping  for  all  tested  views, 
 whereas  true  generalization  refers  to  recognition  of  the  object 
 presented  at  novel,  untrained  views  (as  in  real-world  scenarios). 
 Different  animals  were  assigned  different  views  for  the 
 no-feedback  condition.  Poor  performance  on  test  views  could  be 
 due  to  poor  generalization,  or  more  difficult  views,  such  as 
 smaller  sizes.  To  control  for  this,  an  additional  subset  of  views 
 that  were  matched  in  size  (acuity-matched  views)  were  assigned 
 to each corresponding set of test views. 

 Identity-Changing  Transformations.  Rats  were  tested  on 
 objects  that  changed  identity  across  a  parametrically-varying 
 morph  axis  between  the  two  original  objects.  Morphs  were 
 presented  at  the  default  view  (size  0°  of  visual  angle,  0°  in-depth 
 rotation).  No  feedback  was  provided  on  morph  probe  trials, 
 which  were  interleaved  among  the  regular  trials  (<15%  of  trials). 

 Responses  to  morph  trials  were  fit  with  a  logistic  function  via 
 maximum  likelihood  estimation  171  using  a  Python 
 implementation  of  psignifit  88,172,173  .  We  estimated  a  point  of 
 subjective  equality  (PSE),  defined  as  the  morph  level  at  which 
 rats  were  equally  likely  to  report  object  A  or  B.  We  also 
 estimated  a  “just-noticeable-difference”  (JND)  for  each  animal, 
 defined  as  half  the  difference  in  morph  levels  when  “B”  is 
 selected 25% and 75% of the time. 

 Surgery 

 Head plate implantation 
 Aseptic  surgical  technique  was  followed  during  all  survival 
 surgeries.  A  head  plate  and  cranial  window  were  implanted  in 
 the  same  surgery  as  viral  injections  using  methods  modified 
 from  mouse  cranial  window  procedures  174  .  Rats  were 
 administered  dexamethasone  (2  mg/kg)  ~3  hours  prior  to  surgery 
 in  order  to  reduce  brain  swelling.  Rats  were  anesthetized  using 
 isofluorane  in  100%  O2  (induction,  3-5%;  maintenance, 
 1.5-2%),  and  placed  in  a  stereotaxic  apparatus  (Knopf 
 Instruments,  Angle  Two,  Leica).  Eyes  were  protected  from 
 drying  out  with  an  ophthalmic  ointment  (Puralube),  and  then 
 covered  with  surgical  drape  that  had  a  hole  cut  to  expose  only 
 the  top  of  the  animal’s  head.  Heart  rate,  breathing  rate,  oxygen 
 saturation,  and  body  temperature  were  measured  with  a  pulse 
 oximeter  and  commercially  available  software  (PulseOx, 
 Mouseox).  Body  temperature  was  maintained  at  38°C  with  a 
 feedback-controlled heating pad. 

 The  top  of  the  head  was  shaved  above  the  incision  site,  followed 
 by  1  application  of  Nair  (Church  &  Dwight  Co.)  applied  against 
 the  grain  for  better  penetration  to  clear  the  site  of  hair  prior  to 
 incision.  The  exposed  scalp  was  cleaned  with  saline,  then  wiped 
 with  three  rounds  of  alternating  Povidone-Iodine  and  alcohol 
 swabs  (Medline)  wiped  in  a  center-out  fashion  over  the  skin.  A 
 small  lidocaine  block  (<0.5  cc)  was  administered  along  the 
 incision  site,  which  spanned  from  just  behind  the  ears  to  the  back 
 of  the  head.  Using  a  sterile  scalpel,  an  incision  was  made  down 
 the  top  of  the  animal’s  head,  starting  from  just  behind  the  eyes  to 
 the  ears,  along  the  lidocaine  block.  Using  forceps  and  the  scalpel 
 edge,  tissue  covering  the  skull  was  carefully  scraped  off  and 
 toward  the  wound  margin  to  clear  the  skull  on  top  of  the  head, 
 with Bregma and Lambda marks clearly accessible. 

 Once  the  skull  was  exposed,  a  sequence  of  steps  was  taken  to 
 treat  the  skull  surface  for  strong  adhesion  that  would  prevent  rats 
 from  ripping  off  implants.  First,  a  series  of  small  indentations 
 were  placed  using  a  small  drill  all  across  the  cleaned  skull  to 
 increase  surface  area  and  texturize  the  skull  in  preparation  for 
 adhesives.  Next,  an  extremely  thorough  cleaning  was  done  of  the 
 bone  surface  with  2-3  rounds  of  hydrogen  peroxide  (Swan)  and 
 saline  washes,  followed  by  1  round  of  10%  citric  acid  and  3% 
 ferric  chloride  (Dentin  Activator,  Parkell  S393)  for  30  sec  that 
 was  then  thoroughly  rinsed  with  sterile  saline).  The  skull  surface 
 was  completely  dried  off  with  highly  absorbent,  sterile 
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 eye-spears  (Medline).  The  tissue  around  the  wound  margin  was 
 sealed  with  Vetbond  (3M)  to  ensure  no  moisture  would  leak  into 
 any part of the exposed skull where the glue would be applied. 

 After  cleaning  the  skull,  the  center  of  the  craniotomy  was 
 marked  at  -7.0  to  -8.5  mm  AP,  4.5  to  6.5  mm  ML,  depending  on 
 the  areas  being  targeted  for  each  animal.  Then,  the  first  layer  of 
 adhesive  was  a  thin  layer  of  dental  glue,  evenly  applied  in  one 
 layer  across  the  exposed  skull  (Quick  Base,  S398,  Catalyst, 
 S371,  and  Powder,  S396,  part  of  C&B  Metabond  kit,  Parkell 
 S380,  all  mixed  on  top  of  an  ice  tray).  The  head  plate  was  placed 
 at  30-40  degrees  relative  to  Bregma,  which  matched  the 
 orientation  of  the  imaging  plane  and  captured  most  of  the 
 targeted areas of visual cortex. 

 The  custom  titanium  head  plate  was  attached  to  the  skull  over 
 the  right  hemisphere.  An  adaptor  mounted  to  the  stereotax  frame 
 held  the  head  plate  in  place,  while  the  dental  glue  was  carefully 
 applied,  being  careful  to  leave  the  craniotomy  site  clear.  This 
 initial  gluing  was  followed  by  a  bulk  gluing  of  a  thicker  dental 
 glue  (Dentsply  Integrity  Caulk)  that  provided  structural  filling 
 and  additional  support  for  the  angled  head  plate.  Finally,  all 
 remaining  gaps  around  the  implant  were  filled  with  C&B 
 Metabond  dental  glue.  The  implant  procedure  did  not  require 
 any  bone  screws  or  additional  supplements  to  keep  the  implant 
 stable across months. 

 Cranial window 
 Since  the  head  plate  was  attached  at  a  steep  angle,  drilling  the 
 craniotomy  and  the  remainder  of  the  window  surgery  could  be 
 done  on  a  flat  surface  by  affixing  the  animal  by  the  head  plate.  A 
 4-5mm  diameter  craniotomy  was  performed  at  the  marked  site 
 by  careful  thinning  of  the  bone  with  a  dental  drill  within  the 
 circular  area  (Aseptico).  Care  was  taken  throughout  the  drilling 
 process  to  keep  the  thinned  region  within  the  circular  boundaries 
 using  a  pair  of  surgical  calipers  (Fine  Surgical  Tools).  Skull 
 thinning  was  complete  once  the  entire  circular  region  was 
 semi-transparent  and  blood  vessels  were  clearly  visible  through 
 the thinned skull. 

 Once  the  skull  was  thinned  down,  the  region  was  kept  immersed 
 in  sterile  saline  for  the  remainder  of  the  surgery.  The  remaining 
 thinned  bone  was  removed  with  laminectomy  forceps  (Fine 
 Science  Tools)  by  gently  detaching  the  thinned  bone  from  the 
 rest  of  the  skull  along  the  circular  edge,  then  lifting  off  the  disc 
 of  thinned  bone.  The  dura  was  cut  open  using  a  beveled  36G 
 needle  tip  that  was  bent  such  that  the  beveled  tip  slightly  curved 
 away  from  the  needle  hole.  This  was  effective  for  hooking  the 
 dura  with  the  curved  tip  pointing  upward  to  gently  lift  up  the 
 dura  enough  away  from  the  cortical  surface  in  order  to  create  a 
 small  incision  point,  without  risking  pressure  or  punctures  to  the 
 cortical  surface  beneath  the  dura.  Flaps  of  dura  were  then  peeled 
 back  with  fine  forceps  or  spring  scissors  to  expose  the  brain 
 surface,  and  tucked  away  around  the  edges  of  the  craniotomy. 
 Intracortical  injections  were  performed  after  the  duratomy  while 

 the  entire  area  was  submerged  in  sterile  saline  (see  “Viral 
 Injections”). 

 A  window  composed  of  stacked  glass  coverslips  (four  to  five 
 4mm,  plus  one  5mm,  Warner  Instruments)  bound  with  optical 
 adhesive  (Norland  No.71)  was  then  placed  over  the  brain 
 surface.  Care  was  taken  to  ensure  that  no  pieces  of  the  attached 
 dura  flaps  were  underneath  the  window,  but  rather  held  back  and 
 away  from  the  exposed  brain  surface  by  the  stacked  glass 
 cylinder.  The  remaining  saline  was  partially  absorbed  out  with 
 sterile  eye-spears,  and  the  craniotomy  was  sealed  with 
 cyanoacrylate  glue  (Vetbond,  3M)  over  a  thin  layer  of  sterile 
 saline.  Post-operative  animals  were  administered  buprenorphine 
 (0.01-0.05  mg/kg)  and  carprofen  (5  mg/kg)  daily  for  5-7  days 
 following the surgery. 

 Viral injections 
 Intracortical  injections  were  made  at  multiple  sites  (~5-9  sites 
 per  cranial  window,  spaced  0.5-1  mm  apart)  using  a 
 microinjector  (NanoFil,  World  Precision  Instruments)  fit  with  a 
 36G  beveled  needle  (NF36BV-2,  WPI).  A  high-titre  solution  of 
 viral  vector  (AAV9-syn-jGCaMP7f-WPRE)  was  diluted  to  a 
 final  ratio  of  2:1  with  a  20%  mannitol  solution  (Sigma-Aldrich) 
 to  promote  diffusion.  pGP-AAV-syn-jGCaMP7f-WPRE  was  a 
 gift  from  Douglas  Kim  &  GENIE  Project  (Addgene  viral  prep 
 #104488-AAV9).  Trace  amounts  of  Fast-Green  (Sigma-Aldrich) 
 were  added  for  visual  confirmation  of  injected  solution  in  the 
 brain  (  Figure  S2B  )  .  A  total  of  ~500-750nl  was  injected  per  site 
 at  a  constant  rate  of  10-25nl/min  at  a  depth  of  750µm  below  the 
 surface.  The  exposed  brain  surface  remained  submerged  in 
 sterile saline throughout the injections. 

 Widefield mapping 

 Animal preparation 
 Animals  with  broad  fluorescence  across  the  whole  window 
 underwent  retinotopic  mapping.  Typically,  ~4  weeks  was 
 sufficient  time  for  expression  throughout  the  window.  About  20 
 minutes  prior  to  the  mapping  session,  animals  were  anesthetized 
 with  isoflurane  (5%  induction,  1-1.5%  maintenance)  and 
 administered  a  subcutaneous  dose  of  chlorprothixene  (2  mg/kg, 
 Sigma-Aldrich).  During  the  mapping  session,  animals  remained 
 lightly  anesthetized  with  minimal  isoflurane  (0.5%).  Anesthesia 
 levels  were  tested  with  the  paw-pinch  reflex  and  breathing  rate. 
 The  left  eye  facing  the  monitor  was  checked  between  trials  to 
 ensure it remained open and clear. 

 Tandem-lens macroscope 
 We  created  a  tiltable,  tandem-lens  macroscope  96,97  ,  composed  of 
 a  USB  3.0  CCD  camera  (MantaG033-B,  Allied  Vision)  and  2 
 Nikon  lenses  (Nikon,  105-mm  and  55-mm).  Images  were 
 acquired  at  25  Hz  with  3x3  pixel  binning  (256x492  pixels,  ½” 
 sensor)  using  custom  Python  scripts.  Epifluorescence 
 illumination  was  achieved  with  a  470  nm  LED  (Thorlabs)  that 
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 was  filtered  and  reflected  through  a  filter  cube  that  housed  an 
 excitation  filter,  dichroic  mirror,  and  emission  filter  (Thorlabs). 
 Green  fluorescence  or  reflected  light  was  collected  and  passed 
 through the filter cube then focused on the CCD detector. 

 Visual stimuli 
 Visual  stimuli  were  presented  using  custom  Python  scripts  on  a 
 large  LCD  monitor  (LG,  72”  diagonal).  The  monitor  was 
 centered  ~60  cm  in  front  of  the  left  eye,  spanning  109  degrees  of 
 visual  field  along  azimuth,  67  degrees  along  elevation.  A 
 periodic  stimulus  of  a  bar  cycling  across  the  screen  18,97  was 
 presented  to  the  (left)  eye  contralateral  to  the  cranial  window. 
 The  bar  subtended  5  degrees  of  visual  angle,  and  was  presented 
 as  a  white  bar  sweeping  across  a  black  background  or  an 
 apertured  bar  containing  a  sequence  of  natural  scene  images, 
 drifting  over  a  gray  background.  Maps  acquired  with  both  bar 
 types  were  comparable.  The  bar  was  presented  at  0.13  Hz  along 
 the  azimuth  and  elevation  axes,  for  a  total  of  2  (downward, 
 rightward)  or  4  (downward,  rightward,  leftward,  upward) 
 conditions.  The  selected  stimulation  frequency  was  one  of  a 
 subset  tested  that  avoided  frequency  ranges  of  known, 
 non-stimulus-driven,  physiological  signals  (  e.g.  ,  heart  rate  or 
 breathing  rate)  in  the  ranges  of  0.1  to  0.3  Hz.  One  trial  consisted 
 of  10  cycles  of  the  bar  drifting  in  a  given  direction,  and  a  total  of 
 4-5  such  trials  were  acquired  for  each  direction.  To  preserve  the 
 speed  of  the  bar  between  azimuth  and  elevation  conditions,  the 
 bar  traversed  up  and  down  the  full  extent  of  the  monitor's  width 
 centered  along  the  monitor's  vertical  extent  for  the  horizontal 
 condition (bar started and ended off screen). 

 Image processing 
 Raw  fluorescence  signals  were  corrected  for  slow  drift  by 
 removing  the  rolling  average  of  each  pixel’s  time  course.  The 
 width  of  the  rolling  window  was  set  to  2.5  times  the  length  of 
 the  stimulation  period  to  remove  slow  linear  and  non-linear 
 trends.  For  each  pixel,  the  time  courses  for  each  trial  (10  cycles 
 of  the  stimulus  moving  along  a  given  direction)  were  aligned  and 
 averaged  for  each  condition  (1  of  4  possible  directions).  We  then 
 performed  a  Fourier  spectral  analysis  on  the  averaged  time  series 
 to  get  a  magnitude  and  phase  value  for  each  pixel  at  each 
 frequency.  The  strength  of  the  response  to  the  stimulus  was 
 calculated  as  the  ratio  of  the  Fourier  magnitude  at  the  frequency 
 of  stimulation  to  the  sum  of  the  magnitudes  at  all  other 
 frequencies  18,97,98  . 

 Area segmentation 
 Retinotopic  maps  were  created  by  taking  the  phase  values  for  all 
 pixels  in  the  image  and  converting  them  to  Cartesian  coordinates 
 that  matched  the  linear  position  of  the  bar  on  the  monitor  to  the 
 phase  of  the  stimulus  cycle  that  corresponded  to  that  position. 
 Phase  maps  were  thresholded  using  an  empirically  defined 
 magnitude  ratio,  which  was  the  magnitude  ratio  value  when  no 
 bar  was  present  (blank  condition),  which  was  high  enough  to 
 exclude  regions  of  the  image  outside  of  the  brain.  To  identify  the 

 borders  between  visual  areas,  maps  of  vertical  and  horizontal 
 retinotopy  were  combined  to  calculate  a  visual  field  sign 
 map  98,99  .  The  visual  field  sign  was  computed  by  taking  the  sine 
 of  the  difference  between  the  vertical  and  horizontal  retinotopic 
 gradients  at  each  pixel.  Sign  maps  were  then  filtered  and 
 thresholded  to  reveal  key  visual  areas:  areas  with  mirror 
 representations  map  to  1  and  areas  with  nonmirror 
 representations map to -1. 

 Animals  with  ambiguous  retinotopic  maps  (due  to  patchy  viral 
 expression  or  unclear  reference  areas)  were  excluded  from 
 further  study.  Given  the  significant  size  of  V1  and  consistent 
 targeting  of  a  large  portion  of  V1  from  Bregma  coordinates  (see 
 “Surgery”),  V1  was  the  most  reliable  reference  area  to  use  for 
 identifying  areas  LM  and  LI  based  on  known 
 electrophysiological  maps  of  rat  visual  areas  71  .  We  identified  a 
 given  visual  area  by  a  combination  of  metrics  98  :  it’s  relative 
 location  to  other  identified  areas,  it’s  relative  size,  its  visual  field 
 sign,  and  averaged  movies  of  the  neural  responses,  in  which  the 
 representation  of  the  drifting  bar  can  be  seen  traveling  across  the 
 cortical  surface  (see  Supplemental  Video  1  and  2  ).  For 
 visualization,  phase  and  power  maps  were  smoothed  with  a 
 Gaussian  window  (FWHM=50µm)  and  masked  by  applying  a 
 threshold to the magnitude ratio. 

 Habituation to head-fixation 

 We  developed  a  shaping  procedure  to  habituate  rats  for 
 multi-hour  head-fixed  sessions  (the  longest  sessions  were  ~5 
 hours).  After  recovering  from  surgery  (see  “Surgery”),  rats 
 began  habituation  sessions.  Rats  were  placed  in  a  transparent  red 
 cylinder  with  an  angled  cut  on  one  end  to  make  room  for  the 
 head  plate  attached  to  a  custom  steel  arm  (see  Figure  S2D  ).  The 
 cylinder  was  also  used  as  enrichment  in  their  home  cages.  Over 
 the  course  of  2-4  sessions,  animals  were  given  decreasing  doses 
 of  sedative  (Midazolam,  starting  at  1mg/kg)  and  increasingly 
 long  habituation  sessions  (~30  minutes  to  ~3  hours).  Prior  to 
 each  habituation  session,  rats  were  briefly  anesthetized  with 
 isofluorane  (induction,  3-5%;  maintenance,  1.5-2%),  then  placed 
 in  the  head-fixing  apparatus.  Rats  often  struggled  in  several 
 bouts  within  the  first  15-20  minutes  of  waking  up,  but  then 
 remained  quiescent  for  increasing  periods  of  time  for  the  rest  of 
 the  session.  Although  we  did  not  train  animals  on  a  task, 
 observable  signs  indicated  that  the  animals  were  relatively  calm 
 (for  example,  they  groomed  periodically  throughout  the  session, 
 accepted water, and ate treats while head-fixed). 

 Tilting two-photon microscope 

 To  access  posterior-lateral  areas  of  cortex  while  keeping  the 
 animal  in  a  natural  position,  we  tilted  the  microscope  around  the 
 animal  to  the  angle  matching  that  of  the  implanted  head  plate 
 (  Figure  S2C  ).  The  microscope  pivoted  about  the  focal  point  of 
 the  objective  to  virtually  any  orientation,  and  the  microscope 
 body  allowed  ample  space  for  the  animal  platform,  while 
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 maintaining  >180º  of  unobstructed  viewing  angle  (  Figure 
 S2E-F  )  .  We  designed  two  light  paths  for  two  zoom  modes:  a 
 standard-scale  mode  imaged  a  500x500µm  2  area,  with  an 
 estimated  point  spread  function  of  ~1x1x2  µm  (FWHM,  920 
 nm)  measured  with  a  16x/0.8NA  Nikon  objective,  while  the 
 large-scale  mode  imaged  a  1x1mm  2  area  also  at  single-cell, 
 resolution  with  an  estimated  point  spread  function  of  ~2x2x12 
 µm.  The  large-scale  mode  captured  the  majority  of  a  given 
 visual  area  in  the  rat  brain,  and  in  some  cases,  multiple  areas  at 
 the  same  time.  Both  the  standard-  and  large-scale  modes  could 
 be  enlarged  to  500x1000  µm  and  1x2  mm,  respectively,  by 
 increasing  the  scan  angle  in  software  (ScanImage  175  ).  In  all 
 modes,  the  microscope  supported  simultaneous  two-channel 
 imaging.  We  also  attached  two  epifluorescence  paths:  a  green 
 channel  that  was  useful  for  visualizing  dye-filled  blood  vessels 
 (see  “Two-photon  imaging,  Data  acquisition”)  to  find  targeted 
 regions  in  a  larger  FOV  before  switching  to  two-photon  mode, 
 and  a  blue  channel  that  could  be  used  for  retinotopic  mapping  of 
 a  portion  of  the  window  that  was  intermediate  in  size  between 
 the  full  widefield  maps  of  the  whole  window  and  the  two-photon 
 FOV. 

 To  hold  the  animal,  we  used  a  custom-designed  C-shaped 
 bracket  (  Figure  S2D  ).  The  bracket  was  formed  with  a  steel  arm 
 mounted  to  a  platform  on  one  end,  and  on  the  other  end,  a  steel 
 adapter  piece  cut  at  an  angle  matched  to  the  angle  of  the  animal’s 
 head  plate,  typically  30  degrees  from  vertical.  We  designed  the 
 steel  arm  to  withstand  forces  applied  by  rats  during  experiments, 
 and  to  avoid  obstructing  the  animal’s  visual  field.  The  arm 
 reached  over  the  animal’s  head  from  behind,  and  attached  to  the 
 angled  adapter,  which  in  turn,  connected  to  the  animal’s  head 
 plate.  The  angled  adapter  held  three  stainless  steel  ball  bearings 
 that  mated  with  half-sphere  grooves  on  the  animal’s  head  plate, 
 which  allowed  precise  kinematic  re-positioning  in  order  to 
 access  the  same  cells  across  days.  The  steel  arm  and  head  plate 
 were  designed  to  be  modular,  allowing  the  same  components  to 
 be  reproduced  across  two-photon,  widefield,  and  habituation 
 setups. 

 Light  shielding  around  the  objective  was  used  to  block  light 
 emitted  from  the  LCD  monitor.  A  stack  of  O-rings 
 (McMaster-Carr,  Buna-N  O  rings  016-018)  glued  over  the  head 
 plate  created  a  dish-like  receptacle  above  the  cranial  window  174  , 
 and  mated  with  another  O-ring  attached  to  a  black  shroud  around 
 the  objective.  This  created  both  a  light-  and  water-tight  seal  for 
 the water immersion objective during visual stimulation. 

 Two-photon calcium imaging 

 Overview 
 A  battery  of  stimuli  were  used  to  characterize  responses  in 
 primary  and  lateral  extrastriate  areas  of  rat  visual  cortex.  Briefly, 
 a  moving  bar  stimulus  was  used  to  map  two-photon  retinotopic 
 preferences  and  register  two-photon  fields-of-view  to  widefield 
 maps  identified  with  the  same  stimulus  paradigm.  To  measure 

 more  fine-scaled  receptive  field  properties,  a  tiling  paradigm  was 
 used  to  estimate  the  position,  extent,  and  shape  of  receptive 
 fields.  To  estimate  responses  to  features  such  as  edge  orientation 
 or  direction  of  motion,  a  set  of  square-wave  drifting  gratings 
 were  used.  Finally,  to  characterize  more  complex  object 
 representation,  as  tested  in  the  behavioral  choices  of  trained  rats, 
 a  subset  of  the  same  object  stimuli  were  used  to  measure 
 neuronal responses in naive rats. 

 Visual stimuli 
 Head-fixed  animals  passively  viewed  visual  stimuli  presented  on 
 an  LCD  monitor  (LG  72”  diagonal,  1920x1080  resolution,  60  Hz 
 refresh  rate)  positioned  ~60  cm  in  front  of  the  left  eye, 
 subtending  109°  of  visual  angle  along  azimuth  and  67°  degrees 
 along  elevation  axes  of  the  visual  field  contralateral  to  the 
 cranial  window.  Stimulus  presentation  was  synced  to  neural  data 
 acquisition  for  each  trial  using  custom  software  (MWorks, 
 Python). 

 Drifting  bar  for  coarse  retinotopy.  A  white  bar  subtending  2° 
 or  5°  degrees  of  visual  angle  cycled  across  a  black  screen  at  a 
 stimulation  frequency  of  0.24  Hz  or  0.13  Hz  (similar  maps  were 
 acquired  with  either  stimulus  combination).  Four  cardinal 
 directions  were  tested  (downward,  upward,  leftward,  rightward). 
 Each  trial  consisted  of  12  cycles  of  the  stimulus,  and  4-6  trials 
 were  presented  for  each  of  the  four  conditions,  totalling  16-24 
 trials  total.  Blank  trials  were  also  included  to  measure  baseline 
 fluctuations  in  spontaneous  activity,  and  provided  baseline 
 values  for  thresholding  magnitude  levels  for  phase  maps  (see 
 “Area identification and validation”). 

 Tiled  gratings  for  receptive  field  mapping.  To  estimate 
 receptive  field  size  and  positions,  we  adopted  a  standard 
 mapping  protocol  106  .  The  monitor  was  subdivided  into  square 
 tiles,  and  each  position  was  stimulated  for  500ms,  followed  by  a 
 1s  inter-trial  interval  (ITI).  On  each  trial,  a  square-wave  drifting 
 grating  (spatial  frequency  of  0.25  cycles/deg,  and  drifting  speed 
 of  10  cycles/sec)  randomly  switched  direction  every  125ms 
 between  the  4  cardinal  directions.  Since  the  receptive  field 
 mapping  used  a  shorter  ITI,  we  restricted  the  stimulated  position 
 of  a  given  trial  to  be  a  minimum  of  30  degrees  of  visual  angle 
 away  from  the  position  of  the  previous  trial.  The  size  of  the 
 square  tile  was  either  5°  of  visual  angle  or  10°  of  visual  angle. 
 For  the  small  tile  (5  degrees),  this  resulted  in  21  positions  along 
 azimuth  and  11  positions  along  elevation,  totalling  231  positions. 
 Each  position  was  stimulated  a  minimum  of  10  times  total  across 
 5  blocks,  with  2  repetitions  of  each  of  231  positions  per  block. 
 For  the  larger  tile  (10  degrees),  this  resulted  in  11  azimuth 
 positions  and  6  elevation  positions,  totalling  66  positions.  Each 
 position  was  stimulated  a  minimum  of  10-20  times  total  across 
 2-4  blocks,  with  5  repetitions  of  each  of  66  positions  per  block. 
 In  general,  the  larger  tile  was  better  for  getting  more  responses 
 from  LI  FOVs.  For  direct  comparisons  of  receptive  field 
 properties  between  areas,  only  responses  measured  with  the 
 smaller  tile  was  used.  In  a  subset  of  sessions,  both  the  small  and 

 16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.17.555183doi: bioRxiv preprint 

https://docs.google.com/document/d/1LcJ3T_mzbM78kmFHKAJ5yFDZoCK3MJkgSjXMzwNG1D0/edit#heading=h.p9avefev4303
https://docs.google.com/document/d/1LcJ3T_mzbM78kmFHKAJ5yFDZoCK3MJkgSjXMzwNG1D0/edit#heading=h.p9avefev4303
https://www.zotero.org/google-docs/?RCfSDO
https://docs.google.com/document/d/1LcJ3T_mzbM78kmFHKAJ5yFDZoCK3MJkgSjXMzwNG1D0/edit#heading=h.p9avefev4303
https://www.zotero.org/google-docs/?eYNIr6
https://www.zotero.org/google-docs/?6huPjS
https://doi.org/10.1101/2023.09.17.555183
http://creativecommons.org/licenses/by-nc-nd/4.0/


 large  tiles  were  tested  in  the  same  cells,  and  aggregate  metrics 
 were qualitatively similar (data not shown). 

 Drifting  gratings.  To  measure  visual  feature  tuning,  we 
 presented  square-wave  drifting  gratings  at  8  directions  (0°  to 
 315°,  steps  of  45°).  Gratings  were  presented  at  either  full  screen 
 or  within  a  circular  aperture  whose  size  was  determined  by  the 
 average  receptive  field  size  of  the  population  recorded  in 
 previous  localizer  sessions.  All  gratings  were  also  presented  at 
 two  spatial  frequencies  (0.5  and  0.1  cycles/deg)  to  target  the  low 
 and  high  end  of  known  visual  acuity  levels  49  ,  and  at  two  speeds 
 (10  deg/s  and  20  deg/s).  This  set  of  stimulus  configurations 
 resulted  in  64  unique  grating  stimuli,  which  were  repeated  ~20 
 times  in  pseudo-random  order  across  4  blocks,  such  that  each 
 block  contained  5  repetitions  of  each  of  the  64  conditions. 
 Gratings  were  presented  on  a  gray  background 
 (luminance-matched)  for  500ms,  followed  by  2s  inter-trial 
 intervals of blank gray screens. 

 Objects.  A  subset  of  the  object  stimuli  tested  on  the  trained  rats 
 were  used  for  two-photon  imaging  experiments.  Each  morph  (7 
 intermediate  morphs,  plus  the  2  target  objects)  was  presented  at 
 5  different  sizes  (10-50°  of  visual  angle,  in  10°  steps).  For  each 
 stimulus  size,  mean  luminance  was  measured  with  a  photometer 
 placed  at  approximately  the  same  position  as  the  rat's  eye  to 
 determine  the  gray-scale  values  needed  to  create  full-screen 
 stimuli  matched  in  luminance  for  each  stimulus  size  and  morph. 
 Luminance  differences  between  morphs  at  a  given  size  were 
 negligible,  so  one  luminance  control  was  assigned  for  each  of 
 the  5  object  sizes  tested.  This  resulted  in  50  unique  conditions, 
 each  presented  a  minimum  of  30  times  across  6  blocks,  with  5 
 repetitions  of  each  of  the  50  conditions  per  block.  Stimuli  were 
 presented for 1s, followed by a 2s inter-trial interval. 

 Data acquisition 

 Neural  imaging  data  was  collected  using  a  custom-built 
 galvo-resonant  scanning  two-photon  microscope  (20  kHz; 
 Cambridge  Technologies)  and  a  0.8  WD/16x  water-immersion 
 objective  (Nikon,  CF  175).  A  mode-locked  Ti:Sapphire  laser  (80 
 Mhz,  MaiTai-eHP  DeepSee,  pre-chirped,  Spectra-Physics) 
 provided  920  nm  excitation  for  both  channels.  Emission  was 
 collected  using  green  (535/50  nm)  and  red  (610/75  nm)  filters 
 (Chroma)  simultaneously  on  two  photomultiplier  tubes 
 (Hamamatsu, H10770PA-40). 

 Laser  power  was  controlled  by  an  electro-optic  modulator 
 (Pockels  cell,  Model  350-80-LA,  ConOptics,  Inc.).  Power 
 measured  at  the  object  ranged  between  30-80  mW,  likely  an 
 overestimate  of  actual  power  reaching  the  tissue  through  the 
 cranial  window.  The  beam  was  first  expanded  3x  with  a 
 telescope  configuration  of  50  mm  and  150  mm  lenses 
 (Thorlabs).  The  expanded  beam  could  then  proceed  through  one 
 of  two  paths.  The  first  led  to  a  standard,  high-resolution  imaging 
 mode  (minimum  500x500  µm)  in  which  the  spot  size  was 
 expanded  an  additional  4x  to  fill  the  back  aperture  of  the 

 objective.  The  second  path  allowed  for  a  larger  FOV  (minimum 
 1x1mm),  with  a  2x  beam  expansion  that  slightly  under-filled  the 
 back aperture. 

 For  functional  datasets,  single  plane  images  were  collected  at  a 
 rate  of  44.65  Hz  (512x512  pixels;  1mm  x  1mm  FOV)  using 
 ScanImage  175  (ScanImage  2016,  Vidrio  Technologies).  For 
 anatomical  volumes,  a  200  µm  z-stack  was  taken  in  steps  of  20 
 µm  simultaneously  for  both  channels.  A  total  of  100  volumes 
 were  taken  and  averaged  for  anatomical  images.  Depth  was 
 controlled  with  a  Piezo  controller/amplifier  (Physik  Instrumente, 
 PI  E-665-CR).  For  localizer  and  functional  runs  (see  below),  the 
 FOV  was  placed  150-300  µm  below  the  bottom  layer  of  cranial 
 window or the surface blood vessels. 

 Two-photon  FOVs  were  registered  to  wide-field  vasculature 
 maps  offline  by  aligning  blood  vessels  present  in  both  images 
 (see  “Area  identification  and  validation”).  Matching  points 
 between  the  two  views  were  manually  selected  based  on 
 uniquely  identifiable  junctures,  and  a  transformation  matrix 
 warped  one  image  onto  the  other.  A  set  of  target  candidate  FOVs 
 were  identified  in  each  animal  with  a  viable  window  (clear 
 cellular resolution, identified visual areas). 

 All  sessions  included  a  localizer  run.  Localizer  runs  consisted  of 
 the  moving  bar  and  tiled  gratings  stimuli,  and  identified  the 
 receptive  fields  of  cells  within  the  selected  FOV.  For  a  given 
 FOV,  the  stimulus  centroid  for  subsequent  functional  sessions 
 was  determined  by  taking  the  center  of  mass  across  all  fit 
 receptive  fields  (see  Figure  S6)  .  Stimuli  that  were  not  full-field 
 were  centered  at  this  position.  Only  FOVs  for  which  the 
 bounding  box  around  the  largest  sized  stimuli  would  be  fully 
 within  the  monitor's  bounds  were  accepted  for  functional  runs. 
 Functional  runs  consisted  of  the  full  range  of  stimulus  types  (see 
 “Visual Stimuli”). 

 High-resolution  images  of  the  animal's  behavior  state  were 
 acquired  in  sync  with  neural  data  acquisition  using  custom 
 Python  software.  A  CCD  camera  (Manta  G-033,  Allied  Vision, 
 SonyICX414  sensor)  with  a  zoom  lens  was  centered  on  the 
 animal's  face  on  the  side  facing  the  monitor,  illuminated  with  an 
 IR  LED.  Images  (492x656,  9.9  x  9.9  µm  pixels)  were  acquired  at 
 20Hz.  Image  frames  were  converted  to  mp4  videos  to  be 
 analyzed  using  DeepLabCut  v2.0  176–178  .  A  total  of  16  different 
 videos  (20  frames  per  video,  automated  K-means  clustering), 
 sampled  from  12  different  imaging  sessions  and  each  of  the 
 stimulus  experiment  types,  were  used  to  train  the  pre-trained 
 network (ResNet50, training size 0.95, batch size 8). 

 Image processing 

 Motion  correction,  ROI  selection,  neuropil  correction,  and  trace 
 extraction  were  done  with  a  custom  pipeline  written  in  Matlab 
 and  Python.  Motion  correction  used  rigid  transformations  within 
 each  FOV  using  custom  Matlab  code  (Chris  Harvey  lab,  Harvard 
 Medical School). 
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 Cell mask identification 
 For  ROI  selection,  an  activity  map  was  created  by  taking  the 
 standard  deviation  across  motion-corrected  frames  within  a 
 movie  file  for  each  block  of  trials,  and  then  taking  the  maximum 
 projection  across  all  blocks.  ROIs  were  selected  manually  with  a 
 circular  mask  using  a  custom  Matlab  GUI.  To  remove 
 background  calcium  signals,  we  estimated  neuropil  masks  as 
 circular  annuli  of  11  µm  width,  with  the  inner  edge  at  9  µm 
 beyond  the  outermost  edge  of  a  corresponding  cell  body  and  the 
 outer  edge  extending  to  20  µm  179  .  Pixels  from  adjacent  cell  body 
 masks were excluded from the neuropil masks. 

 Time course extraction and correction 
 To  get  raw  fluorescent  traces  for  a  given  mask,  the  fluorescence 
 intensity  of  a  cell  at  each  time  point  was  computed  as  the 
 average  fluorescence  across  pixels  within  the  mask.  To  correct 
 for  slow  drift  effects  due  to  long  imaging  sessions,  a  correction 
 procedure  was  applied.  First,  a  baseline  F  0  signal  was  extracted 
 with  a  sliding  filter  (20%  percentile  of  a  30  sec  sliding  window) 
 for  each  cell  in  each  movie.  For  each  trace,  this  drift  was 
 subtracted  from  the  raw  trace  before  adding  back  the  mean  of  the 
 baseline signal as an offset. 

 To  account  for  neuropil  signals  that  could  contaminate  the  soma 
 trace,  neuropil  correction  was  applied  as  follows: 
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 temporally-averaged  mean  of  the  neuropil  fluorescence  105,179  . 
 Fractional  change  in  fluorescence,  ΔF/F(t),  following  visual 
 stimulus  presentation  was  calculated  as:  ΔF/F(t)=(F(t)-F  0  )/F  0  , 
 where  F(t)  is  the  corrected  fluorescence  trace  during  the  stimulus 
 presentation,  and  F  0  is  the  1s  baseline  period  prior  to  stimulus 
 onset.  Single  response  values  for  a  given  trial  were  obtained  by 
 averaging  the  ΔF/F(t)  response  during  the  stimulus  presentation 
 window. 

 Area identification and validation 
 Each  two-photon  FOV  was  coregistered  to  widefield  retinotopic 
 maps  using  blood  vessel  markers.  All  two-photon  imaging 
 sessions  began  with  the  acquisition  of  an  anatomical  volume, 
 which  was  a  500µm  z-stack  taken  from  the  surface.  Prior  to  the 
 start  of  the  imaging  session,  rats  were  given  subcutaneous 
 injections  of  Sulforhodamine  101  (SR101,  Sigma-Aldrich, 
 S7635)  for  fluorescent  labeling  of  the  blood  vessels  visible  in  the 
 red  channel.  Two-photon  blood  vessel  images  were  matched  to 
 widefield  maps  offline.  Matching  points  between  the  two  images 
 were  selected  based  on  uniquely  identifiable  blood  vessels,  then 
 used  to  identify  a  transformation  matrix  to  warp  one  image  into 
 the other. 

 Assignments  of  two-photon  FOVs  to  visual  areas  were  validated 
 based  on  retinotopic  maps  measured  with  the  same  cycling  bar 

 paradigm  used  for  widefield  maps  of  azimuth  and  elevation.  We 
 applied  the  same  analysis  to  two-photon  FOVs  as  we  did  for 
 widefield  imaging  (see  “Widefield  mapping,  Area 
 segmentation”).  Phase  maps  were  thresholded  by  magnitude 
 ratio  levels  greater  than  measured  in  the  blank  condition  (see 
 “Two-photon  calcium  imaging,  Visual  stimuli,  Drifting  bar”). 
 Sign  maps  were  obtained  from  the  retinotopic  maps  with  a  series 
 of  morphological  filters  18,20,99  ,  which  were  then  used  to  identify 
 patches  representing  putative  visual  areas.  Two-photon  FOVs 
 were  segmented  based  on  the  visual  field  sign  maps.  Since  a 
 given  FOV  could  contain  more  than  one  visual  area,  cells  were 
 assigned  based  on  both  the  segmented  two-photon  sign  maps  and 
 the  wide-field  sign  maps.  Only  two-photon  FOVs  that  matched 
 corresponding  wide-field  maps  and  had  unambiguous  sign 
 reversals were included for subsequent analyses. 

 Analysis of single cell response properties 

 Estimation of cells with significant visual responses 
 For  each  cell,  stimulus  evoked  responses  were  determined  to  be 
 significant  using  a  receiver  operating  characteristic  (ROC) 
 analysis  from  signal  detection  theory  180–182  .  For  each  cell,  a 
 distribution  of  stimulus  responses  and  a  distribution  of  baseline 
 responses  were  obtained  for  each  stimulus  condition.  For  each 
 condition,  an  ROC  curve  was  obtained  across  a  range  of 
 criterion  levels  (50  levels,  linearly  sampled  between  the  cell's 
 minimum  and  maximum  stimulus  response  values)  by 
 calculating  the  proportion  of  times  the  stimulus  and  baseline 
 responses  exceeded  a  given  criterion  level.  The  area  under  the 
 ROC  curve  (AUC)  was  calculated  for  each  condition,  such  that  a 
 value  of  0.5  corresponds  to  fully  overlapping  stimulus  and 
 baseline  response  distributions,  while  increasingly  larger  values 
 indicate  better  separability  between  the  stimulus  and  baseline 
 distributions.  The  maximum  AUC  value  for  a  given  cell  thus 
 corresponded  to  the  stimulus  condition  for  which  the  cell's 
 responses  were  maximally  distinguishable  from  baseline 
 responses.  For  each  cell,  the  significance  of  its  maximum  AUC 
 value  was  evaluated  by  a  shuffle  test  of  the  baseline  and  stimulus 
 labels  (1000  iterations).  Only  cells  with  significant  AUCs 
 (  p  <0.05) were included as visually responsive. 

 For  the  cycling  bar  stimulus,  the  magnitude  ratio  for  each  of  the 
 4  conditions  was  calculated  as  the  ratio  of  the  magnitude  at  the 
 stimulation  frequency  to  the  sum  of  magnitudes  at  all  other 
 frequencies.  A  cell  was  determined  to  be  visually  responsive  if 
 its  average  magnitude  ratio  across  elevation  and  azimuth 
 conditions  was  greater  than  an  empirically  determined  threshold. 
 This  threshold  was  estimated  by  recording  neural  activity  during 
 blank  (black  screen)  trials  of  the  same  duration  as  a  stimulation 
 trial,  and  calculating  the  magnitude  ratio  at  the  stimulation 
 frequency. 

 Estimation of retinotopic preferences in cell bodies and neuropil 
 Retinotopic  preferences  of  background  neuropil.  The  center 
 of  each  neuropil  ring  was  first  assigned  a  value  corresponding  to 
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 the  preferred  retinotopic  location  of  the  neuropil  ring  (average 
 over  all  pixels  within  the  ring).  The  center  was  then  dilated  to  a 
 disk  of  20µm  radius,  averaging  the  preferred  retinotopy  for 
 overlapping  disks.  Pixel-wise  estimates  of  retinotopic  preference 
 were  obtained  by  smoothing  the  resulting  dilated  and  averaged 
 image  with  an  isotropic  two-dimensional  Gaussian  filter  with 
 standard deviation of 7µm. 

 For  each  FOV,  the  spatial  axis  corresponding  to  the  direction  of 
 maximal  retinotopic  change  for  a  given  retinotopic  axis 
 (elevation  or  azimuth)  was  identified  as  follows  105  .  First,  the 
 two-dimensional pixel-wise gradient was calculated as: 
 ∇  𝑅𝑒𝑡 ( 𝑥 ,     𝑦 )   =    (δ 𝑅𝑒𝑡 ( 𝑥 ,     𝑦 ) / δ 𝑥 )  𝑖    +    (δ 𝑅𝑒𝑡 ( 𝑥 ,     𝑦 ) / δ 𝑦 )  𝑗 .
 The  spatial  axis  was  then  computed  as  the  normalized  average 
 gradient  vector,  ,  across  all  pixels.  The  smoothed  ∇  𝑅𝑒𝑡  /|  ∇  𝑅𝑒𝑡  | 
 neuropil  map  was  then  projected  onto  this  mean  gradient  vector, 
 such  that  for  each  pixel,  its  projected  location  along  this  new 
 spatial  axis  was  defined  as:  .  The  𝑥  ̃    =    ( 𝑥 ,  𝑦 ) ·  ∇  𝑅𝑒𝑡  /|  ∇  𝑅𝑒𝑡  | 
 relationship  between  a  pixel's  preferred  retinotopic  location 
 (based  on  the  smoothed  neuropil  maps)  and  was  modeled  with  𝑥  ̃ 
 a  linear  function,  ,  where  is  the  fit  parameter  𝑅 

 𝑓𝑖𝑡 
=  𝑎𝑥  ̃ +  𝑏  𝑎 

 (in  visual  field  degrees/cortical  µm)  that  corresponds  to  the  rate 
 of  retinotopic  progression  along  the  map.  The  normalized  mean 
 gradient  and  linear  fit  were  computed  separately  for  azimuth  and 
 elevation. 

 Estimation  of  receptive  fields.  For  each  ROI,  responses  at  each 
 stimulated  location  were  baseline  subtracted  (0.5  s  before 
 stimulus  onset),  then  averaged  across  repetitions  106  .  An  MxN 
 stimulus  response  map  was  computed  by  averaging  the  response 
 1s  from  stimulus  onset.  The  response  map  ,  where  𝑅 ( 𝑎𝑧 ,  𝑒𝑙 )  𝑎𝑧 
 and  are  the  retinotopic  coordinates  in  azimuth  and  elevation,  𝑒𝑙 
 respectively,  was  then  fitted  with  a  two-dimensional  Gaussian 
 curve,  using  the  Python  implementation  of  the  least-squares 
 Levenberg-Marquardt algorithm  171,183  : 

 where  is  the  center  of  the  2D  Gaussian  in  azimuth  and ( 𝑎𝑧 
 0 
,     𝑒𝑙 

 0 
)

 elevation,  σ  1  and  σ  2  are  the  standard  deviations  along  the  two 
 axes  of  the  Gaussian,  𝜃  is  the  angle  of  the  Gaussian  relative  to 
 the  azimuth-elevation  coordinate  system,  and  a  and  b  are  offset 
 and amplitude parameters, respectively. 

 The  receptive  field  boundary  was  considered  to  be  the  ellipse 
 defined  by  the  center  and  standard  deviations  (σ  1  ,  σ  2  ) ( 𝑎𝑧 

 0 
,     𝑒𝑙 

 0 
)

 of the fitted Gaussian: 

 Only  fits  with  >0.5  and  σ  between  2.5°  and  55°  were  included  𝑅  2 

 for  further  analyses.  To  determine  whether  the  fitting  procedure 
 yielded  a  high-quality,  reliable  fit,  we  used  a  bootstrap  procedure 

 to  estimate  confidence  intervals  (95%  CI)  for  each  estimated 
 parameter.  Specifically,  trials  were  sampled  with  replacement, 
 averaged  by  condition,  and  fitted  according  to  the  procedure 
 described  above.  This  generated  a  distribution  of  estimates  for 
 each  fit  parameter,  which  were  then  used  to  determine  the  95% 
 CI  for  each  cell's  estimated  RF  parameters.  Only  cells  with  fits 
 lying within the 95% CI (  az  0  ,  el  0  , 𝜃, σ  1  , and  σ  2  )  were included. 

 Spherical  correction.  To  correct  distortions  in  measured  RFs 
 due  to  presenting  stimuli  on  a  flat  monitor  close  to  the  animal, 
 standard  approaches  for  spherical  correcting  stimuli  were 
 applied  in  reverse  184  (see  Figure  S4  ).  First,  monitor  coordinates 
 were  mapped  from  Cartesian  space  to  spherical  coordinates  from 
 the  rat's  point  of  view,  taking  into  account  the  distance,  size  of 
 the  monitor,  and  angle,  relative  to  the  rat's  eye.  Typically,  the 
 corrective  distortion  is  applied  to  a  visual  stimulus  to  cancel  out 
 the  distortion  caused  by  the  flat  monitor  covering  a  large  range 
 of  visual  angle:  based  on  the  known  measurements  between  the 
 rat's  eye  and  the  monitor,  a  3D  model  of  the  monitor  can  be 
 created,  and  pixel  locations  of  the  monitor  are  mapped  to  the 
 spherical  coordinates  of  the  monitor.  X-  and  Y-coordinates  are 
 treated  as  angles  of  azimuth  and  elevation,  and  the  distortion  is 
 applied  using  interpolation  to  map  horizontal  lines  to 
 isoelevation  lines,  and  vertical  lines  to  isoazimuth  lines.  If  the 
 stimuli  are  not  corrected  to  cancel  out  the  distortion,  the 
 otherwise  distorted  percept  of  the  animal  can  be  corrected  by 
 applying  the  corrective  distortion  directly  on  the  receptive  field 
 map.  To  correct  the  RF  maps,  each  map  was  upsampled  to  match 
 the  pixel  coordinates  of  the  monitor  (resolution  was 
 downsampled  by  a  factor  of  3  for  faster  computations).  Then,  the 
 upsampled  map  was  mapped  to  spherical  coordinates  using  the 
 3D  model  described  above  (monitor  angle=0°,  distance=30  cm, 
 monitor  width,  height,  and  center,  relative  to  the  eye).  Finally, 
 the  warped  image  was  trimmed  back  down  to  stimulus 
 coordinates  (degrees  of  visual  angle,  in  5°  of  10°  degree  tiles), 
 and  the  entire  RF  fitting  process  was  performed  on  the  corrected 
 RF map. 

 Estimation  of  fine-scale  retinotopic  scatter.  For  each  FOV, 
 retinotopic  scatter  was  estimated  as  the  deviation,  D  VF  ,  in 
 degrees  of  visual  field  space,  from  the  predicted  receptive  field 
 center based on its estimated cortical position: 

 where  denotes  the  cell's  measured  receptive  field  𝑅𝑒  𝑡 
 𝑝𝑟𝑒𝑓 

( 𝑥  ̃ )
 center,  and  denotes  its  predicted  retinotopic  preference  𝑅𝑒  𝑡 

 𝑓𝑖𝑡 
( 𝑥  ̃ )

 according  to  its  projected  location  along  the  mean  gradient  𝑥  ̃ 
 axis.  Cortical  scatter,  ,  in  microns,  was  calculated  as  the  𝐷 

 𝐶𝑋 
 absolute  deviation  from  the  predicted  cortical  position  based  on 
 the spatial progression defined by the gradient axis: 

 which  corresponds  to  the  distance  (along  the  spatial  gradient 
 axis)  a  given  cell  would  have  to  move  along  azimuth  or 
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 elevation  in  order  to  form  a  smoothly  progressing  retinotopic 
 map. 

 Direction tuning curve fitting 
 We  tested  8  different  directions  of  motion,  and  two  levels  of 
 spatial  frequency,  speed,  and  size  at  each  direction  (a  total  of  64 
 distinct  drifting  gratings).  We  estimated  direction  tuning  curves 
 using  a  bootstrap  approach  combined  with  conservative  criteria 
 for evaluating the stability and goodness-of-fit  105  . 

 For  each  cell  that  exhibited  a  significant  response  at  a  given 
 combination  of  spatial  frequency,  size,  and  speed,  a  bootstrap 
 analysis  (1000  iterations  of  20  samples  each,  to  match  the 
 measured  sample  of  gratings  trials)  was  performed  to  compute  a 
 mean  direction  tuning  curve.  Direction  tuning  curves  were 
 originally  sampled  in  steps  of  45  °  .  To  obtain  a  more  precise 
 estimate  of  tuning  parameters  (preferred  orientation  and 
 direction),  tuning  curves  were  fit  with  a  two-peaked 
 Gaussian  105,185  : 

 where  R  𝜃  is  the  Δ  F  /  F  (  t  )  response  for  grating  direction  𝜃,  𝜃  pref  is 
 the  direction  evoking  the  strongest  Δ  F  /  F  (  t  )  response  R  1  ,  R  2  is  the 
 amplitude  of  the  second  peak  at  𝜃  pref  +  180  °  ,  and  R  offset  is  a 
 constant  amplitude  offset.  The  model  assumes  the  two  peaks  of 
 the  Gaussian  are  180  °  apart,  and  that  the  Gaussians  have  a 
 common  standard  deviation,  σ  .  Initial  parameters  were  set  as 
 follows:  σ  was  initialized  as  the  step  size  (45  °  ),  R  offset  was  the 
 mean  of  responses  to  the  null  directions  (all  directions  except  for 
 𝜃  pref  and 𝜃  pref  +180  °  ). 

 To  improve  the  reliability  of  the  fitting  and  the  accuracy  of 
 estimated  preferred  direction  and  orientation,  several  additional 
 steps  were  implemented  by  following  a  simplification  of  the 
 procedure  outlined  in  Liang  et  al.  105  .  First,  we  added  a  ninth 
 point  at  360  °  by  copying  the  point  at  0  °  to  wrap  the  input 
 values.  Then,  the  number  of  input  points  was  increased  from  9  to 
 25  by  linearly  interpolating  the  9-point  tuning  curve,  to  more 
 finely  sample  the  curve  for  the  fitting  procedure.  A  bootstrap 
 procedure  was  used  to  fit  the  tuning  curves.  On  each  iteration,  20 
 trials  were  randomly  sampled  (with  replacement)  for  each  of  the 
 64  conditions,  then  averaged,  interpolated,  and  fit  according  to 
 the  steps  outlined  above.  The  final  tuning  curves  for  each  cell 
 (one  for  each  unique  combination  of  spatial  frequency,  size,  and 
 speed  to  which  the  cell  was  significantly  responsive)  were 
 computed  from  the  mean  of  the  fitted  parameters  across  the 
 sampling iterations. 

 To  evaluate  the  quality  of  fits,  a  combination  of  criteria  were 
 used  105  .  For  each  iteration  of  the  fitting  procedure,  a  coefficient 
 of  determination,  r  2  ,  was  calculated  as  the  explained  variance 
 using  least-squares  regression  to  fit  the  data  171,183  .  A  combined 
 coefficient  of  determination,  ,  was  also  calculated  for  the  𝑟 

 𝑐𝑜𝑚𝑏 
 2 

 original  tuning  curve  versus  a  fitted  curve  derived  from  the 
 average  of  each  fit  parameter  (across  the  1000  iterations).  These 
 metrics were combined into goodness-of-fit heuristic,  G  fit  : 

 where  is  the  interquartile  range  (difference  between  the  𝐼𝑄  𝑅 
 𝑟  2 

 25  th  -  and  75  th  -percentiles  of  values  across  iterations.  A  cell  𝑟  2 

 was  considered  to  have  a  well-fit  tuning  curve  at  a  given 
 combination  of  spatial  frequency,  size,  and  speed  if  its  G  fit  was 
 greater than or equal to 0.5. 

 Axis  and  direction  selectivity.  For  each  cell  exhibiting 
 significant  responses  to  gratings  (see  “Estimation  of  cells  with 
 significant  visual  responses”),  a  vector  sum  axis  selectivity  index 
 (ASI)  was  computed  as  a  metric  for  selectivity  of  motion  along  a 
 given  axis  105,179  .  Axis  selectivity  is  distinguished  from  orientation 
 selectivity,  as  the  latter  is  typically  measured  with  static  gratings, 
 which  the  current  study  did  not  test.  To  calculate  the  ASI,  the 
 responses  for  each  of  the  directions  was  projected  onto  a  circle 
 with  2  i  progression  and  the  magnitude  of  the  normalized  vector 
 sum was estimated according to: 

 where  ASI  values  ranged  from  0  (no  selectivity)  to  1  (maximum 
 selectivity).  Opposite  directions  were  additive,  while  orthogonal 
 directions  canceled  each  other  out.  The  ASI  was  computed  for 
 1000  iterations  using  the  same  bootstrap  procedure  as  used  in 
 calculating  the  tuning  curves.  For  each  cell,  the  final  ASI  was 
 computed  as  the  mean  ASI  across  all  combinations  of  spatial 
 frequency,  size,  and  speed  for  which  the  cell  exhibited 
 significant evoked responses. 

 A  direction  selective  index  (DSI)  was  computed  in  a  similar 
 way,  the  responses  were  projected  onto  a  circle  with  1  i 
 progression: 

 DSI  computations  were  iterated  1000  times,  with  the  final  DSI 
 value  for  a  cell  taken  as  the  mean  DSI  across  stimulus 
 combinations  that  evoked  significant  responses.  A  cell  was 
 determined  to  be  direction-selective  if  a)  it  had  a  significant 
 response  to  the  grating  stimuli  (see  “Estimation  of  cells  with 
 significant  visual  responses”),  b)  it  had  a  well-fit  direction  tuning 
 curve  (see  “Direction  tuning  curve  fitting”),  and  c)  it  had  an 
 average  direction  selectivity  index  (DSI)  greater  than  or  equal  to 
 0.2  105  for  all  stimulus  combinations  to  which  it  had  a  significant 
 response.  Similarly,  a  cell  was  considered  to  be  axis-selective  if 
 a)  it  had  a  significant  response  to  the  grating  stimuli,  b)  it  had  a 
 well-fit  direction  tuning  curve,  and  c)  its  ASI  exceeded  0.15  and 
 its  DSI  was  less  than  0.2  for  all  stimulus  combinations  for  which 
 a  significant  response  was  observed.  For  direction-selective 
 cells,  preferred  direction  of  motion  was  determined  by  taking  the 
 circular  average  of  the  fitted  𝜃  pref  across  stimulus  combinations 
 (of  a  given  speed,  spatial  frequency,  and  size)  for  which  a 
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 significant  response  was  observed  and  direction  tuning  curves 
 passed goodness-of-fit thresholds. 

 Selectivity and tolerance metrics 
 Neuronal  selectivity  to  morphs  was  quantified  by  a  morph  tuning 

 index  119,186  ,  ,  where  is  a  𝑀𝑇 =  𝑛 − Σ 𝑅 
 𝑖 
 /  𝑅 

 𝑚𝑎𝑥 ( )⎡
⎢
⎣

⎤
⎥
⎦
 /  𝑛 −  1 ( )  𝑅 

 𝑖 

 neuron’s  response  to  the  i  th  morph,  is  the  maximum  𝑅 
 𝑚𝑎𝑥 

 response  amongst  the  morphs,  and  is  the  number  morphs.  As  a  𝑛 
 measure  of  response  sparseness,  MT  ranges  from  0  (no  shape 
 selectivity)  to  1  (maximally  shape  selective).  Size  tolerance  was 
 quantified  by  normalizing  size  tuning  curves  to  their  maximum 
 values,  then  averaging  those  resulting  values  that  were  <1,  that 
 is,  ,  where  is  the  mean  response  𝑆𝑇 =  𝑅 

 𝑡𝑒𝑠𝑡 
 /  𝑚𝑎𝑥  𝑅 

 𝑡𝑒𝑠𝑡 ( ){ }  𝑅 
 𝑡𝑒𝑠𝑡 

   
 to  a  given  test  size  of  a  neuron’s  most  preferred  object,  and { }
 denotes  the  average  across  tested  sizes  where 

 .  𝑅 
 𝑡𝑒𝑠𝑡 

<  𝑚𝑎𝑥  𝑅 
 𝑡𝑒𝑠𝑡 ( )

 Luminance correlations 
 Since  changes  in  size  also  change  luminance,  we  estimated  the 
 extent  to  which  a  cell's  tuning  for  size  could  be  explained  by  its 
 tuning  for  broad  luminance.  For  each  cell,  its  size  tuning  curve 
 was  calculated  at  its  reference  morph,  defined  as  the  morph 
 eliciting  the  cell's  maximum  response.  The  cell's  luminance 
 tuning  curve  was  calculated  as  the  cell's  response  to  each  of  the 
 size-matched  luminance  stimuli  (fullscreen,  grayscale  images). 
 The  correlation  coefficient  between  the  cell's  size  tuning  curve 
 and  luminance  tuning  curve  was  taken  as  a  measure  for  how 
 similar  the  cell's  responses  were  for  size  and  size-matched 
 luminance  levels.  Cells  were  considered  to  be 
 luminance-modulated  if  their  size  and  luminance  tuning  curves 
 were  significantly  correlated  or  anti-correlated  (Pearson's 
 correlation  coefficient,  p  <0.05),  and  were  excluded  from  single 
 neuron  characterizations  of  object  selectivity  and  view  tolerance 
 (  Figure S5F  ). 

 Single neuron discriminability 
 Since  the  animals  were  naive,  a  cell’s  preference  for  one  object 
 over  the  other  should  reflect  intrinsic,  as  opposed  to  learned, 
 feature  selectivities.  To  quantify  discriminability  for  cells  that 
 did  exhibit  a  preference,  selectivity  for  one  object  over  the  other 
 was  determined  with  a  Mann-Whitney  rank  test.  Only 
 object-selective  cells,  defined  as  cells  that  were  significantly 
 selective  (  p  <0.05)  for  one  or  the  other  object,  were  included  in 
 the single-neuron discriminability analysis (  Figure  S5A-E  ). 

 For  these  object-selective  cells,  a  receiver  operating 
 characteristic  (ROC)  analysis  was  used  to  determine  the  extent 
 to  which  the  two  objects  could  be  discriminated  4,181,182  .  Given 
 two  response  distributions  that  arise  from  the  two  different 
 alternatives  (object  A  or  object  B),  an  ROC  curve  was  generated 
 by  computing  the  proportion  of  trials  for  alternative  1  (object  A) 
 in  which  the  response  exceeded  criterion  versus  the  proportion 
 of  trials  for  alternative  2  (object  B)  in  which  the  responses 

 exceeded  criterion,  for  a  range  of  criterion  levels.  50  criterion 
 levels  were  used  that  linearly  spanned  the  range  of  the  cell's 
 minimum  and  maximum  responses.  The  area  under  the  ROC 
 curve  (AUC)  was  taken  as  a  measure  of  discriminability  between 
 the  two  distributions,  that  is,  how  well  the  neuron  could 
 discriminate  object  A  from  object  B.  Cells  that  passed 
 performance  criterion  of  70%  accuracy  on  classifying  object  A 
 and  B  were  subsequently  tested  on  intermediate  morphs  at  their 
 best  stimulus  size,  and  responses  were  fit  with  a  neurometric 
 curve  88  . 

 Analysis of population responses 

 Population discriminability 
 To  quantify  discriminability,  we  trained  linear  classifiers 
 (support  vector  machines,  SVMs)  to  discriminate  the  two  target 
 objects  from  the  neural  activity  in  each  area.  The  linear-readout 
 scheme  represents  a  biologically  plausible  processing  step  that 
 amounts  to  a  thresholded  sum  taken  over  weighted  synapses  4,122  . 
 Linear  support  vector  machines  (SVMs)  were  trained  to 
 discriminate  object  A  from  object  B  from  neural  responses.  Each 
 presentation  of  an  image  produces  a  population  response  vector 
 x  of  size  N  x1,  such  that  repeated  presentations  form  a  cluster  of 
 points  in  N  -  dimensional  space  (  Figure  5A  ,  left).  The  SVM 
 estimates  a  linear  hyperplane  that  best  separates  the  two  classes 
 of  responses  by  maximizing  the  normalized  margin  between  the 
 two  response  classes  while  minimizing  classification  errors 
 (neural  responses  are  placed  on  the  wrong  side  of  the 
 hyperplane).  For  a  dataset  of  N  neurons,  the  linear  readout 
 amounts  to:  ,  where  w  is  a  N  x1  vector  of  the  𝑓 ( 𝑥 ) =  𝑤  𝑇  𝑥    +     𝑏 
 linear  weights  applied  to  each  of  N  neurons  (defines  the 
 hyperplane’s  orientation),  and  b  is  a  scalar  bias  term  that  offsets 
 the  hyperplane  from  the  origin.  The  hyperplane  and  bias  for  each 
 classifier  was  determined  by  a  support  vector  machine  (SVM) 
 using  the  scikit-learn  machine  learning  library  (LinearSVC  187  ) 
 with a linear kernel, the SVC algorithm, and cost (C) set to 1.0. 

 To  classify  a  given  image  from  the  population  response,  a 
 response  vector  x  (population  response  to  one  image)  was 
 applied  to  the  classifier,  and  negative  values  of  f  (  x  )  indicated 
 object  A  and  positive  values  indicated  object  B.  The  data  were 
 split  into  train  and  test  sets  (20%)  after  balancing  numbers  of 
 samples  per  condition.  We  used  a  5-fold  cross-validation 
 procedure  on  the  training  set  to  fit  and  evaluate  each  model.  Test 
 performance  was  defined  as  the  proportion  of  correct  answers  on 
 the held-out test images never included in training. 

 Linear separability and generalization 
 To  test  linear  separability  (  Figure  5C  ),  80%  of  the  trials 
 corresponding  to  object  A  and  object  B  for  each  size  were 
 combined  to  train  and  evaluate  the  models,  while  the  remaining 
 20%  of  trials  was  used  to  measure  classifier  performance.  To  test 
 generalization,  each  classifier  was  trained  to  classify  object  A 
 and  B  at  one  of  the  5  sizes,  then  tested  on  each  of  the  remaining 
 4  untrained  sizes.  Each  training  set  (for  each  size)  included  80% 
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 of  the  trials  for  a  given  size,  while  the  test  sets  contained  either 
 the  remaining  20%  of  trials  of  the  same  size  (test  accuracy  on 
 “trained”  conditions)  or  100%  of  the  trials  at  one  of  the  other 
 sizes (test accuracy on “novel” conditions). 

 Population sampling 
 In  analyses  in  which  a  given  metric,  e.g  ,.  classifier  accuracy,  is 
 presented  as  a  function  of  the  number  of  neurons  in  a 
 pseudo-population,  we  applied  a  resampling  procedure  to 
 measure  the  variability  that  can  be  attributed  to  the  particular 
 subpopulation  of  neurons  or  subset  of  trials  used  for  training 
 versus  testing.  On  each  iteration,  we  sampled  a  new 
 subpopulation  of  neurons  that  were  randomly  selected  (without 
 replacement)  from  all  cells  aggregated  across  imaging  sites  and 
 animals,  for  a  given  visual  area,  and  trials  were  randomly 
 assigned  for  training  and  testing  (without  replacement).  Error 
 bars  were  calculated  as  the  standard  deviation  (s.d.)  of  classifier 
 performance  across  100  iterations.  Chance  performance  was 
 computed  by  randomly  assigning  objects  or  images  associated 
 with  each  response  vector  and  repeating  the  classification 
 analysis. 

 Signal and noise correlations 
 We  computed  signal  and  noise  correlations  in  population 
 responses  for  each  imaging  site.  Signal  correlations  were 
 computed  as  the  Pearson  correlation  between  the  trial-averaged 
 stimulus  responses  for  pairs  of  neurons.  Noise  correlations  were 
 computed  as  the  Pearson  correlation  of  single-trial  responses  of  a 
 given  stimulus  condition  for  a  pair  of  neurons,  then  averaged 
 over stimuli. 

 Quantification and statistical analysis 

 For  all  pairwise  tests,  Wilcoxon  signed-rank  tests  were  used, 
 unless  otherwise  specified.  Significance  values  were  set  to 
 p  <0.05(*)  or  p  <0.01(**).  For  comparisons  between  visual  areas, 
 Mann-Whitney  U-tests  were  used.  A 
 Benjamini-Hochberg/Yekutieli  procedure  was  used  to  control  the 
 false discovery rate for multiple comparisons  188  . 
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