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ABSTRACT

Kinetic rate parameters were fitted successfully, for a dynamic mechanistic model
describing ethylene homopolymerization in a laboratory-scale semi-batch reactor, using
data sets with missing data structure. The response-variable data consisted of reactor
operating data, collected at regular time intervals throughout each experimental run, and
product property data, measured only at the end of each experimental run. Hence, the
resulting response-variable data structure for 16 experimental runs was block rectangular.
There were a total of 1920 polymerization rate observations (operating data) in the first
block and 16 observations of both weight and number average molecular weight (product
property data) in the second block. This type of data was available at each of the three

different operating temperatures.

The three-response model that was fitted described non-isothermal polymerization
using a Ziegler-Natta catalyst with two types of sites. Successful parameter estimation
was achieved using the parameter estimation subroutine GREG, assuming a known
diagonal covariance matrix for the response measurements. The estimated
polydispersities, ranging from 3 to 5, were consistently lower than the corresponding
observed polydispersities. Assessment of the validity of the model revealed that
predictions of the polymerization rates and weight average molecular weights were
satisfactory, while the number average molecular weights were consistently

overpredicted.
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Chapter 1: Introduction

In some experimental situations observations of the response variables are not
always available at the same frequency. This creates a missing data structure. Semibatch
polymerization experiments fall into this category when the reactor is not fitted with
equipment to remove polymer samples throughout the experiment. Professor Stewart and
his coworkers at the University of Wisconsin-Madison have developed GREG, a
FORTRAN subroutine for general regression analysis (Stewart, 1995), which can
estimate parameters in systems with missing data. GREG has many options that gives
the user the flexibility to properly define the type of missing data structure and the status
of the covariance matrix for the response variables, which in turn determine the objective

function to be minimized for parameter estimation.

The objectives of the current study are as follows:
e to estimate rate constants in an ordinary differential equation model from a missing
data structure;
e to make use of combined reactor operating data and product property data in
parameter estimation; and

® to assess the validity of the fitted model.

The proposed kinetic model of interest involved three responses describing the
non-isothermal behavior of a Ziegler-Natta catalyst with two types of sites and monomer
diffusion. The proposed model for the parameter estimation consisted of a set of ordinary

differential equations along with three algebraic equations (one for each response



variable: polymerization rate, weight average molecular weight, and number average
molecular weight). As a starting point for estimating parameters in the proposed model, a
simplified model involving fewer parameters was fitted first. The simplified model,
involving only a single response (polymerization rate) describing the isothermal behavior
of a one type of site Ziegler-Natta catalyst and no monomer diffusion, contained three

parameters (rate constants).

The reactor operating data and product property data were collected from
experimental homopolymerization reactions of ethylene over a multi-sited Ziegler-Natta
catalyst. Polymerization rate data (operating data) were available at regular time
intervals during the one-hour experimental runs, while molecular weight properties
(product property data) were available only at the end of each experimental run.
Combining the polymerization rate data with the molecular weight properties data (three-
response model) for parameter estimation resulted in a missing data structure. For each
experimental run the missing data structure had 120 polymerization rate observations,
one number average molecular weight observation, and one weight average molecular

weight observation.

Parameter estimates from the simplified single response model were used as
initial values for the parameters in a simplified three-response model. The simplified
three-response model, involving the polymerization rate and the molecular weight
response variables, described the isothermal behavior of a one type of Ziegler-Natta

catalyst site with no monomer diffusion limitation. Since the kinetic model must include



at least two types of catalyst sites in order to properly predict the observed broad
molecular weight distribution, the estimates from the simplified three-response model

were used as initial values for the parameters in the model with two types of sites.

The validity of the proposed kinetic model was assessed by fitting it to 30
experimental runs and using that fitted model to predict the values of the three responses

for the remaining 18 experimental runs.

Chapter 2 contains a literature review of some of the relevant published
polymerization research involving different approaches used to deal with full or missing
data structures, the number of parameters estimated, and the objective function used to fit
the empirical model. The problems of determining the initial number of potential catalyst
sites, parameter transformations, and missing data outside the polymerization field are
also addressed. Chapter 3 briefly describes the FORTRAN subroutine GREG used for
parameter estimation. Parameter estimation results from the models that assume a one
type of Ziegler-Natta catalyst site are presented in Chapter 4, while Chapter 5 deals with
both isothermal and non-isothermal two types of Ziegler-Natta catalyst sites models.
Conclusions and recommendations regarding the model and parameter estimation results

are presented in Chapter 6.



Chapter 2: Literature Review
2.1 Introduction

The most common types of data collected for kinetic modeling of polymerization
reactions are polymer quantity (polymerization rate data) and polymer quality (molecular
weight data). The former are usually recorded frequently throughout the reaction. To
obtain molecular weight data, a sample must be removed from the reactor and analyzed.
If it is not possible to remove samples throughout an experimental run, a sample is taken
at the end of the run. Ideally, polymerization reactions could be run for various lengths
of time to characterize the polymer quality with respect to time, but that procedure is
impractical in many cases due to the cost and time involved. The parameter estimation
problem is then how to combine data collected over time with measured values obtained
only at the end point of the reaction. Since no papers in the polymerization literature deal
directly with ways to combine on-line and off-line data, published techniques for

handling missing data are presented in Section 2.6.

Kinetic modeling in the current study was performed using experimental data
collected from a 0.5 L semi-batch reactor by Shariati (1996). The semi-batch ethylene
slurry  homopolymerization experiments used a polymer-supported heterogeneous
Ziegler-Natta catalyst. Polymerization rate data were available throughout the reaction;
however, it was impossible to remove polymer samples from the apparatus during an
experimental run. Polymer samples collected at the end of each experimental run were

analyzed using gel permeation chromatography (GPC) to determine their molecular



weight distributions (MWDs), from which the number and weight average molecular

weights (M. and M., respectively) were obtained.

The following two sections contain brief reviews of approaches to kinetic
modeling and parameter estimation for polymerization reactions. Section 2.2 deals with
free radical polymerization, while Ziegler-Natta and metallocene catalyst reactions are
considered in Section 2.3. Free radical and Ziegler-Natta polymerizations are discussed
separately, because it is considerably more difficult to determine kinetic parameters for
Ziegler-Natta polymerizations than it is for free radical polymerizations. In the
propagation step of free radical polymerization, the polymer grows away from the
initiator. Once propagation has started, the initiator does not affect the reaction rate and
it is therefore possible to determine kinetic parameters without considering the type of
initiator used. As such, values of kinetic parameters for free radical polymerization
reactions are tabulated in the literature. In Ziegler-Natta and metallocene
polymerizations, however, the catalyst site is coordinated to the propagating end of the
polymer chain. The rates of propagation and other reactions then depend on the type of
catalyst site employed for polymerization. Since there are many types of active catalyst
sites that can be used for Ziegler-Natta polymerization, and each catalyst can contain
multiple types of sites, determining appropriate rate constants for use in kinetic models of
Ziegler-Natta catalyzed polymerizations can be very difficult. Methods for determining
the number of potential catelyst sites and the use of parameter transformations in kinetic

modeling are discussed in Sections 2.4 and 2.5, respectively.



2.2 Free Radical Polymerization
2.2.1 Methyl Methacrylate Polymerization

Ponnuswamy and Penlidis (1988) performed batch solution polymerization of
methyl methacrylate in a 5.0 L pilot plant reactor. The experiments were conducted at

various temperatures (65 — 75°C) and initiator concentrations (0.05 — 0.1 mol/L). Three

response variables, conversion, M. and M., were measured throughout the

polymerization.

Ponnuswamy and Penlidis used kinetic constants from the literature to obtain
predictions with their kinetic model. After comparison of model predictions with their
experimental data, they decided that two parameters should be re-estimated. Both
parameters were expressed in Arrhenius form using a centering transformation about the
mean temperature (Pritchard and Bacon, 1978). Weighted least squares estimation of the
parameters was done using the Levenberg-Marquardt method (Bard, 1974) with the
ordinary differential equations being solved by a subroutine based on Gear’s approach
(1971). The entries in the diagonal weighting matrix, W, in the objective function

(equation 2.1) were the reciprocals of the measurement variances.

The objective function which was minimized to obtain estimates of the

parameters 0, was:

s@)= Z e] We] (2.1)
=l

. . .th . .
where e; = ;P — Y;™, with Y;? is the i experimental value of the response variable Y

and Y;™ is the corresponding fitted value of the same response variable, i=1, 2, ..., n.



Since it was possible to get simultaneous measurements of polymer quantity and quality
throughout a polymerization run, traditional multiresponse estimation procedures (Bard,

1974) could be used to obtain the parameter estimates.

2.2.2 Free Radical Ethylene Polymerization

Lorenzini et al. (1992) studied high temperature (180 — 280°C) and high pressure
(1500 — 1950 bar) free radical ethylene polymerization in a 0.9 L bench-scale
continuously-stirred-tank reactor (CSTR). After measuring the quantity of polymer
produced at the end of an experimental run, a sample was analyzed to determine the

structural properties of the polymer. MWD, M., M., z-average molecular weight

(M :), and long chain branching index were determined by GPC and viscosity, while

other indices for branching and double bonds were analyzed by infrared spectroscopy

(IR).

Although all of the data were collected at the end of each experiinental run,
parameter estimation was performed in two steps: first using polymer quantity data, and
then using polymer quality data. The two parameters that were required to predict the

polymer production rate varied with temperature and pressure according to equation 2.2:

E. + PAv,
0 =0%exp| -2 7% 22

where 6; represents a temperature and pressure-dependent kinetic parameter, 6; is the

frequency factor, E; is the activation energy of 6;, and Av, is the activation volume of 6.

Consequently, six parameters (8°, £,, and, Av.,i=l, 2) were estimated.



The ten parameters used in modeling the polymer property data also varied with
temperature and pressure according to equation 2.2, giving a total of 30 parameters to be
estimated. The objective function used by Lorenzini et al. (1992) to estimate the
parameters for the structural characteristics listed above was:

F= Z ZS (chpycfmj +Z(ZSWM( W (k) - m“(k))i] @3)

k=1

where n is the number of experimental runs and N. is the number of structural
characteristics, Yj, that were measured. The superscript ‘exp’ denotes an experimental
value while ‘mod’ refers to a model prediction. Np; is the number of points used in the
MWD for run i, w(k) is the weight fraction of polymer in the k'™ fraction of the MWD,
and §; and Sumwp are weighting coefficients. Weighting factors in the objective function
were chosen to emphasize the peak of the MWD rather than its tails. The optimization
routines used were Box’s Complex method (Box, 1965) and Comet’s method (Staha,

1973).

Brandolin et al. (1988) used a plug flow reactor at high pressure for free radical
ethylene polymerization with an oxygen initiator. One of the proposed model’s
assumptions was that the reaction mixture’s physical properties changed along the length
of the reactor. Consequently, the temperature profile was recorded and temperatures
were used as response variables. At the end of each experimental run, samples from the

outlet of the reactor were analyzed by GPC and intrinsic viscosity to determine MWD.



The authors used values of kinetic constants from the literature to determine
which rate constants most affected the response variables. It was found that the rate
constants for initiation, propagation, and termination determined temperature whereas
those for thermal degradation, transfer to solvent, and transfer to polymer strongly
affected properties of the MWD. Therefore, estimation of the seven parameters was

carried out In two steps.

The first step involved minimizing an objective function, F, to fit the temperature

profile changes along the reactor:

L, T (z )\’
where n is the number of experimental runs, z; is the axial position for temperature
measurement i, Tj‘“"d(zi) is the predicted temperature at z = z; for run j, and ‘exp’ denotes
an experimental value. The parameters (order of the oxygen initiation reaction, rate

constants for initiation, propagation, and termination) required to produce the calculated

temperatures in equation 2.4 were estimated using Powell’s method (1964).

A second objective function, G, involving the polymer quality data was then

minimized:

n | Ne yexp _ ymod :
G=2. Z[———-—’ = ) @.5)
= ; )

J=l

where n is the number of experimental runs, Y; represents the remaining response

variables: number and weight average degrees of polymerization and weight-average



branch point number. The parameters in this case were the rate constants for chain
transfer to polymer, chain transfer to solvent, and thermal degradation. G was minimized
using the Levenberg-Marquardt algorithm. It should be noted that G is the first term on
the right hand side of equation 2.3 used by Lorenzini et al. (1992), with equal weighting
coefficients. Also, the objective function of Brandolin et al. involved three structural

characteristics of the polymer, whereas the objective function of Lorenzini et al. involved

eight.

2.3 Ziegler-Natta and Metallocene Catalyzed Polymerization

Although Ziegler-Natta catalysts were developed in the 1950°s (Kim et al., 1991;
Lorenzini et al., 1991) many aspects of their kinetic behavior are still not well understood
(deCarvalho et al., 1989; Rincon-Rubio et al., 1990; Vela Estrada and Hamielec, 1994).
The polymerization models reviewed in this chapter result from kinetic mechanisms that
include initiation, propagation, and deactivation reactions (Kim et al., 1991) as well as
chain transfer and site transformation reactions (deCarvalho et al., 1989; Rincon-Rubio et
al., 1990; McAuley et al., 1990; Lorenzini et al., 1991; Vela Estrada and Hamielec, 1994;

Shariati, 1996).

In polymerization reactions involving heterogeneous catalysts, monomers adsorb
onto the catalyst and the reaction occurs at the catalyst’s surface. Since different
catalysts have different properties, including the number and type of potential catalyst
sites (discussed in Section 2.4), finding appropriate values for kinetic parameters in the

literature for specific Ziegler-Natta catalysts can be extremely difficult.

10



2.3.1 Propylene Polymerization

Rincon-Rubio et al. (1990) investigated the slurry polymerization of propylene
over a TiCly/MgCl, catalyst, with triethylaluminum (TEA) as a cocatalyst, in a 2.0 L
stirred autoclave at a constant temperature of 70°C. Propylene pressure was kept at 4 atm

by continuously feeding propylene into the reactor.

Polymerization rates were determined from the rate of monomer consumption,

whereas the MW and polydispersities (A—l w / M., ) were determined by GPC at various
times during the course of the reaction. The polymerization rates did not exhibit an
acceleration period in the initial stage of the reaction, but simply decayed throughout the

reaction.

The proposed model accounted for two types of active catalyst sites, and two
arbitrary assumptions were made regarding these sites:
1. half of the most active sites (type 1) were transformed to type 2 sites while the rest of

the type 1 sites deactivated; and

2. the propagation rate constant for type 1 sites was ten times that for type 2 sites.
Although the authors did not give explicit details about their parameter estimation
techniques, they did outline the procedure they followed. As a starting point, orders of
magnitude for the concentrations of active sites and propagation and chain transfer rate
constants were taken from the literature and then the model was fitted to the experimental

data. The site transformation and deactivation rate constants for the two sites were also

11



estimated (applying the assumptions above), giving a total of 18 kinetic parameters. The
fit showed good agreement between observed and fitted polymerization rates and

molecular weight distribution curves.

The model’s ordinary differential equations, developed from mass balances and
the method of moments, were solved numerically with the LSODE solver (Hindmarsh,
1982). Although the model fitted the instantaneous rates and average molecular weights

well, the assumptions made were specific to the catalyst used in the experimental study.

2.3.2 Ethylene Ziegler-Natta and Metallocene (Co)Polymerization

Lorenzini et al. (1991) studied the gas-phase copolymerization of ethylene and 1-
butene in a 0.9 L CSTR under high pressure (800 bar) and in a high temperature range
(200 — 260°C). A suspended catalyst (TiCls, '13AICl5, MgCl,, Al(Et);) was used for the

seventeen experimental runs.

Polymer samples were weighed only at the end of the reaction. They were
analyzed by GPC to determine their MWDs and average molecular weights (M ny Mo,

and A—/[_:) and by IR to determine short-chain branching indices and double bond indices.
Those quantities, along with the polymer mass flow rate and the concentrations of
ethylene, butene-1, and hydrogen, were the response variables (Y;) involved in the

objective function:

a | N yep _ ymed : a (N,
F=2 ZS(—Y——] +Z(ZS,W.VD.k(w°“’(k)—wf““(k))i] (2.6)
S| 7= p )

12



§; and Sqwp were weighting parameters. This objective function, minimized using
Comet’s method, involved only quantities measured at the end of each experimental run.
Since the model accounted for three types of catalyst sites and the rate constants were
assumed to follow Arrhenius relationships, a sensitivity analysis was carried out on
predictions of each response variable, Yj, to determine whether certain elementary
reactions were negligible (in an attempt to reduce the number of parameters). For the
three-site model this resulted in the number of chemical mechanisms considered in the
model being reduced from 28 to 14, giving 28 parameters for estimation. The authors

concluded that three types of sites were necessary and sufficient to fit the data.

Kim et al. (1991) used a 1.0 L semi-batch reactor at constant high pressure to
study slurry polymerization of ethylene over TiClyMgCly/SiO; catalyst. Experiments
were performed by varying three factors: temperature (50 — 80°C) and concentrations of
ethylene (128 — 428 mmol/L) and aluminum alkyl (0.92 — 4.35 mmol/L). For each one-
hour experiment, the instantaneous polymerization rates were determined from the
measured monomer mass flowrate. The rate of monomer consumption decreased with
time, most likely due to catalyst deactivation. No analyses were performed on the

polymer to determine its properties.

The chain transfer reaction rate constants and the deactivation rate constant were

estimated using a method described by Kim and Woo (1990b). During the first twenty

minutes of the experimental run the polymerization rate increased quickly to a maximum

13



before it decreased. For that initial period, Kim et al. (1991) assumed that deactivation
and termination were negligible compared to activation and propagation. Consequently,
the pseudo-rate constant of active center formation (k;, s') and the propagation rate
constant (k,, L/mol s)) were estimated by Powell’s method (1964) with data from the

initial stage of the polymerization using the following polymerization rate model:
R, =k, [M](1—exp(- k1) s (3.6)[S, )/ Ti) Q.7
where [So}/Ti = 0.019 from (Kim et al., 1990a), MW is the ethylene molecular weight,

and [M] is the monomer concentration.

Values of four kinetic rate constants for deactivation and termination were taken
from the literature. Using the two previously estimated parameters and the rate constants
taken from the literature, the nonlinear ordinary differential equations in the model

describing the polymerization rate were solved using Gear’s method (1971).

Sensitivities of the two estimated parameters to each of the three factors
(temperature, concentration of ethylene, and concentration of aluminum alkyl) were
determined. It was found that k, depended only on temperature. ki was dependent not
only on temperature, but also on the concentrations of monomer and aluminum alkyl
when either of these concentrations was at a high setting. Kim et al. (1991) concluded
that the latter two dependencies were most likely due to the fact that catalyst deactivation

was neglected during the estimation of k, and k; .

14



Vela Estrada and Hamielec (1994) also used a 1.0 L semi-batch reactor for the
polymerization of ethylene over a soluble metallocene catalyst (Cp2ZrCl/MAO). The
three operating variables of interest were: temperature (50 and 71°C), concentration of
zirconocene dichloride (6.54E-3 and 13.08E-3 mmol/L), and concentration of
methylaluminoxane (13.18 and 21.08 mmol/L). During the one-hour experimental runs
ethylene polymerization rates were rezorded with a mass flowmeter. The rate decrease
with time was attributed to the catalyst deactivation. At the end of the polymerization,

the molecular weights were measured by GPC.

This experimental situation, like the one considered 1n this thesis, involved reactor
data collected throughout the reaction and polymer property data determined only at the
end of the reaction. However, Vela Estrada and Hamielec did not attempt to estimate all

the parameters in one step. The polymerization rate was modeled as:

R, = [9 Lexp(—k&,¢)+ k—kf%i—— (exp(= ko) —exp(- kct))ij (2.8a)
¢ Maa

8, = k%lNl'(: (2.8b)

0 2 = kpZNIO

where k'pi, i=1, 2, are the pseudo rate constants for species of types | and 2 (min'l psi'l),

kq4o 1s the deactivation constant of species 2 (rnin'l), k. is the transformation rate constant
(from site type 1 to site type 2, min™), P is the ethylene pressure (psi), and N, is the

initial molar mass of active species of type 1.
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The parameters 0; (mol/min psi), 62 (mol/min psi), k., and k4> were estimated by a

least squares with an objective function of the form:

F= Z (rate“" —rate™™ )2 (2.9)
where superscripts ‘exp’ and ‘mod’ correspond to experimental rate values and fitted rate

values, respectively.

The estimated parameters, él and 9}, were substituted into a set of model
equations used to predict M, and M .. The system of ordinary differential equations
and algebraic equations was solved using LSODAR (Petzold, 1980). Parameter N, and
the chain transfer rate constants for site types | and 2 were adjusted until the calculated
M. and M. values were in good agreement with the corresponding experimental
values. Consequently, parameter N, and the chain transfer rate constants for site types 1

and 2 are not statistical estimates. Then, using the relationships in equation 2.8b, k'pl and

k'pz were calculated.

The MWD was found to be bimodal. From further analyses of the molecular
weights it was postulated that two types of sites were present. The ratio of 8, to 6, was
found to be dependent on the three operating variables and all of their pairwise
interactions. k., the rate constant for the transformation of site type 1 to site type 2, was
affected only by temperature, whereas ky», the rate constant for the deactivation of site

type 2, was independent of all factors and interactions. The authors used the rate data to
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estimate a set of parameters, then empirically adjusted a second set of parameters until

the calculated polymer properties agreed with the experimental values.

Shariati (1996) also used a two-stage approach to estimate the kinetic parameters
in his model. As mentioned in the introduction of this chapter, the experiments involved
a slurry ethylene polymerization with a polymer-supported Ziegler-Natta catalyst in a

semi-batch reactor. Rate data were recorded throughout one-hour experimental runs and

M. and M. were measured by GPC from samples obtained at the end of each run.

Shariati considered two models, a rate model and a molecular weight model.
Three parameters appeared only in the molecular weight model and the remaining sixteen
parameters were common to both models. Shariati’s approach was to estimate the

common parameters using the rate data alone, using a nonlinear least squares analysis.
After fixing those estimates in the molecular weight model, the M . data were fitted to

get estimates of the other three parameters. The predicted values of M. were then

calculated using the estimated values of all nineteen parameters. The same procedure
was applied using only the M . data to obtain the three parameters. No convergence was

reached when estimating the three parameters with M. and M. data simultaneously.

From this review it is apparent that when polymer quantity and product property
data were available in past investigations, the tendency has been to separate the rate
constants to be estimated into two groups (Lorenzini et al., 1992; Vela Estrada and

Hamielec, 1994; Shariati, 1996). If the data collected contained gaps, resulting in a
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missing data structure (described in Chapter 3), the set of rate constants describing the
polymer quantity was estimated first, and then those estimates were used in the
molecular-weight model to obtain estimates of the remaining parameters. The
investigation in the current thesis is focused on finding a way to use both rate data and
polymer property data simultaneously to estimate all the parameters in kinetic models

that describe Ziegler-Natta polymerizations.

2.4 Ziegler-Natta Catalyst Properties

Many different types of Ziegler-Natta catalysts have been used for olefin
polymerization (Xie et al., 1994). Even similar Ziegler-Natta catalysts can have different
properties, such as the number of catalyst site types and the number of potential catalyst
sites of each type per unit mass of catalyst, that allow them to behave differently from
one another. Each type of catalyst site is characterized by its initiation, propagation,

deactivation, and chain transfer rate constants.

2.4.1 Broad Molecular Weight Distribution

The causes of broad MWDs produced by Ziegler-Natta catalysts have been
debated for many years. The two proposed theoretical explanations are diffusion effects
and multiple active catalyst site types. Hoel et al. (1994) developed a model in which
diffusion was responsible for the broad MWD. To confirm their model, they used data
obtained from a copolymerization over a single-site metallocene catalyst. However, most
researchers agree that diffusion alone cannot explain the occurrence of the broad MWDs

observed in Ziegler-Natta catalyzed olefin polymerizations (Galvan and Tirrell, 1986;
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Floyd et al., 1987; deCarvalho et al., 1989; Rincon-Rubio et al., 1990; Hoel et al., 1994)

but diffusional limitations could be a contributing factor.

Most models encountered in this literature review used multiple catalyst sites to
describe the MWDs found in experimental Ziegler-Natta polymerization data
(deCarvalho et al., 1989; McAuley et al., 1990; Rincon-Rubio et al., 1990; Lorenzini et
al., 1991; Vela Estrada and Hamielec, 1994). Since a single type of active site cannot
predict the broad MWD seen in this study (described in Chapter 4), the final proposed
model includes two types of active catalyst sites and a monomer concentration gradient,

based on Shariati’s proposal (1996).

2.4.2 Number of Potential Catalyst Sites

A common method used to determine the number of active sites on a catalyst is a
radioactive quenching technique using carbon monoxide or carbon dioxide as the
quenching agent (Bukatov et al., 1982; Chien and Hsieh, 1976; Marques et al., 1988;
Zakharov et al., 1983). Marques et al. (1988) found great disagreement between active
site concentrations obtained from a radioactive technique and those obtained from a
kinetic method. If radioactive quenching experiments are not performed, it is difficult to
simultaneously estimate the initial number of potential active sites and the propagation
rate constant from polymerization data, since the two parameters are highly correlated
and, together, control the maximum height of the polymerization rate curve. Shariatt
(1996) did not measure the number of potential active catalyst site on his catalyst, and so

this number will need to be estimated from kinetic data in the current study.
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2.5 Parameter Transformations

Parameter transformations are used to ensure that the kinetic rate constants are
positive (to make physical sense). The natural logarithms of the rate constants, rather than
the rate constants themselves, are more likely, a priori, to have uniform local
distributions (Box and Draper, 1965; Box and Draper, 1972) and consequently to satisfy
the assumptions in the parameter estimation subroutine GREG (Stewart, 1995) used in
this thesis. Furthermore, logarithmic transformations ensure that the estimated

parameters have similar orders of magnitude (Biegler et al., 1986).

Kinetic rate constants are known to be temperature dependent; this dependence is
usually described using Arrhenius relationships (Pritchard and Bacon, 1978; Bates and
Watts, 1988; Watts, 1994; Shariati, 1996). Pritchard and Bacon (1978) suggested
centering temperatures in an Arrhenius relationship about a reference temperature to

improve the convergence in parameter estimation.

Watts (1994) suggested that the best approach to estimating nonlinear kinetic rate
constants is to perform a logarithmic transformation on a centered Arrhenius relationship.
Such transformations can improve the convergence of the optimized parameters
(Bilardello et al., 1993) and can also ensure linear dependence of the transformed rate
constants on the inverse temperatures (Bates and Watts, 1988). This procedure is as

follows:
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o (5] 52

8 =In(k)

(2.10)

where kj is the rate constant at the centering temperature, Tj.

2.6 Missing Data

When collecting and analyzing experimental data it is not unusual that an
observation, Y;, is not measured or not available at the same time as observations of the
other response variables. In such cases, Y; is called a missing observation. Two
structures for missing data are illustrated in Tables 3.1b and 3.1c. Table 3.1b represents a
block rectangular data structure where response variables Y, and Y, form one block of
measured values during the time interval from observation | to observation 3 and
response variable Y; forms another block of measured values for the time span from
observations 4 to 6. The missing observations for the response variables in Table 3.1c

form a random pattern through time.

Box et al. (1970) dealt with missing data by treating them as additional
parameters to be estimated. The response vector is represented by Y’ = (Y<P'T ; Y™sT)
where superscripts ‘exp’ and ‘mis’ denote an experimental observation and a missing
data point, respectively. The probability density function for the total number of

observations (observed and missing) is:

(271: )—-nm/Z Z-[

" exp(—%iio%,jJ @.11)

=l j=l



where v; = Zn:(Yui ~ filx, .0 ))(Y:q - fj(x" ,0 )) are the sums of squares and cross products
u=l

of errors, x, are the values of the independent variables for the 't experimental run (total
of n experimental runs), m is the number of response variables, o' are the elements of the
inverse of the covariance matrix £ of the response variables, and 0 is the vector of

unknown parameters to be estimated.

Box and Draper (1965) used Bayes’ theorem to obtain a posterior density
function, p(0,Z[Y), for the parameters 6 and the unknown covariance matrix % for the
responses. The posterior density function is the product of the prior density function for
0 and Z, p(0,X), and the likelihood function, £(8,Z]Y). The prior density function can be
separated into two parts, a uniform prior density for € (that describes the anticipated
behaviour of unknown 0 before collecting data) and a non-informative prior density for
the m(m+1)/2 elements of £ (Box and Draper, 1965; Box and Tiao, 1973; Stewart, 1995):
p®.2)= p6)r(E) (2.12)
with

(m+1)
p® ) o constant and  p(Z)e [Z"i /2

Box et al. (1970) applied Bayes’ theorem, following the work of Box and Draper
(1965), to obtain the joint posterior distribution, which results in the following marginal

distribution of 8 and Y™ when the o/ are integrated out:

p(e Yy Y°"P)oc M’ (2.13)
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where }U al represents the determinant of the error matrix. Point estimates can be found
by maximizing the marginal posterior distribution (expression 2.13) or by minimizing the
determinant with respect to © and Y™. Box et al. showed, using an example with one

parameter and one missing data point, that these two approaches are equivalent.

However, if the number of missing data points is large, it becomes impractical to
treat all missing values as additional parameters. One example presented by Stewart and
Serensen (1981) deals specifically with a large number of missing observations. The first
response variable had 25 missing observations from a total of 41 observation points,
whereas response variables two and three each had 16 missing observations. Response

variable four had no missing values.

The approach taken to solve this problem was to modify the likelihood function
used in Bayes’ theorem to account for the missing data. The methodology, which is
applied in the parameter estimation subroutine GREG (Stewart, 1995), can handle
problems that range from complete sets of data to those with many missing observations.

Chapter 3 is dedicated to a description of this subroutine that is used in this thesis.

The posterior density function used by Stewart and Serensen (1981) to deal with

missing data is:

plB.6]1)ec o] " [fl

u=l

cnl—uz]exp{—%iiicfuij} (2.14)

w=l i=l j=I
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where n is the number of experiments and the matrix o, is formed by substituting the
corresponding elements of the unit matrix into corresponding positions in the full-order
covariance matrix where there is a missing observation, while a zero is inserted into the
corresponding position in the vector of errors. Point estimates of 8 and ¢ can be found

by maximizing expression 2.14 or by minimizing:

(m+1)1n|0']+1n|0"|+iii0‘fuﬁ (2.15)

u=l i=l j=I
Stewart and Serensen (1981) successfully estimated thirteen parameters and seven
elements of the covariance matrix using the data from example 2 of Fuguitt and Hawkins
(1945) involving four response variables by fixing a fourteenth parameter at a given

value and setting three other elements of the covariance matrix at zero.



Chapter 3: Parameter Estimation

GREG, a FORTRAN 77 subroutine for generalized regression analysis developed
by Stewart (1995), can solve nonlinear parameter estimation problems for three types of
data structures (Table 3.1): complete, block rectangular, and irregular data. In the GREG
subroutine, the variable /evel identifies the data structure that will be employed, the form
of the objective function to be minimized, and whether analytical expressions or
numerical approximations for the derivatives in the proposed kinetic model are to be
used.

Table 3.1. Complete, block rectangular, and irregular data structures. An observation for
a response Y, is indicated by a ‘+’, whereas a missing observation is left blank.

a) b) c)

Time Y[ Y- Y3 Time Y[ Y, | Y3 Time Y. Yz Y;
1 + + + L + + 1 + +

2 + + + 2 + + 2 + + +
3 + + + 3 + + 3 + +
4 + + + 4 + 4 +

5 + + + 5 + 5 F

6 + + + 6 -+ 6 + +

3.1 Data Structure

Three values of the variable level were used in this study. Level /0 is used when
dealing with a single response model and a full data structure (for example, data
represented by Y, alone in Table 3.1a); level 22 deals with a multiresponse model with
block rectangular data (Table 3.1b) and a known diagonal covariance matrix for the
responses; /evel 32 solves a multiresponse model with irregular block data (Table 3.1c)
and an unknown diagonal covariance matrix for the responses. Minor changes to the

GREG subroutine were required to solve the ordinary differential equations numerically
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using a differential-algebraic equation solver (DDASAC) at level 22 (see Appendix A for

details).

3.1.1 Homopolymerization Data

During the homopolymerization of ethylene, Sharniati (1996) recorded
polymerization rate data at half-minute intervals throughout the one-hour experimental
runs, whereas molecular weight data were obtained only at the end of each run. Table 3.2
illustrates this data structure; a plus sign indicates an observation, whereas a blank space

implies a missing data point. The data structure in Table 3.2 is block rectangular.

Table 3.2. Schematic representation of the ethylene homopolymerization data structure

Time Rate Weight average Number average

(min) (mol/min) molecular weight molecular weight
(g/mol) (g/mol)

0.25 +

0.75 +

59.75 +

60.00 + +

3.2 Objective Functions
3.2.1 Single Response
When estimating parameters in Shariati’s (1996) polymerization model using the

rate data alone (level 10), the following objective function was minimized:

5(9)=i (Y. - f(xu, 8))° (3.1)

u=t

where Y, is a measured value of the response variable at time u, X, are the independent

variables (temperature, monomer partial pressure, hydrogen-to-monomer ratio, catalyst



loading, cocatalyst loading, and catalyst particle size), and @ is the model parameter
vector. Since the values of Y, and x, are known, S(8) is a function of the parameter

vector O only (Draper and Smith, 1981).

3.2.2 Multiresponse (i responses)
Bayes’ theorem, as described in Section 2.6, 1s used to obtain the posterior density
function for 6 and X. When the data structure is complete (Table 3.1a), the likelihood

function can be expressed as follows.

>

w  {amom ‘
72 expL—%ZZZG”eﬁew_) (3.2)

u=l i=l j=I

Y)e ‘Z"

where n is the number of experimental runs and the errors e, = Y, — fi(xy, 0) are random
variables assumed to have a multivariate normal distribution with expected value 0 and
covariance matrix X, and {O'ij} are the elements of X' (Stewart and Serensen, 1981).
Using the prior density function for 6 and X describea in Section 2.6, the posterior

density function is:
(n+m+1) nom m
p,3r) ’Z"‘| % exp(——% » Zc’jeu,.e“j) (3.3)

and the values of 6 and X that maximize this expression are called highest posterior

density estimates.

However, if the data structure is irregular (Table 3.1c), additional terms are

required in the likelihood function. When there is a missing observation, a zero Is



inserted into the vector of errors [ey;,..., eum]T and the element from the unit matrix, &, is

placed in the full-order covariance matrix to form the missing data covariance matrix %,.

The Jeffreys prior density function for £ ([S(le ), where 3 denotes Fisher’s

Information Matrix (Box and Tiao, 1973), has been modified by Stewart (1995) so that
GREG can deal with missing data. Combining the likelihood function (equation 3.2)
with the Jeffreys prior, and assuming an unknown diagonal covariance matrix
(uncorrelated responses), gives the objective function to be minimized for level 32:

n 2. @)
Sty )= |(n +2)logo ++1—— (3.4)

=1 G
where {o;} are the diagonal elements of the unknown covariance matrix. The parameter

vector y is comprised of the p parameters in the proposed model plus the m diagonal

elements in Z.

When the data structure is block rectangular (Table 3.1b) and the variances of the
response measurements are known, the objective function essentially reduces to the sum
of weighted sums of squares for the blocks (level 22):

ol 2.0)
se)=> | =t—ro (3.5)
; c

i=1 i



GREG requires a subroutine called MODEL to calculate the model predictions
given a candidate set of values for the model parameters. The MODEL subroutine
required, however, is different when using level 22 with a block rectangular data
structure. In this situation the matrix F = {f(x,,9)} holds the residuals rather than the
predictions, and the user must specify the block to which each response belongs. An IF

statement is used to set a residual to zero if the corresponding observation is missing.

To summarize, /levels 22 and 32 are used for multiresponse analyses with missing
data, assuming diagonal covariance matrices for the responses. Level/ 22 only estimates
the model parameter vector (0), whereas leve!/ 32 estimates both the model parameter
vector and the diagonal covariance matrix (Z) for the responses. Level 32 is only used in
the initial stage of estimation to see how efficiently GREG can estimate the response

variances.

3.2.3 Maximum-density Algorithm for Parameter Estimation

The maximum-density algorithm combines successive quadratic programming
and line searches to minimize the objective function, S(0) or S(y). A feasible region for
the model parameter vector is defined as the intersection of a trust region (defined by the
maximum allowable change at every iteration for each parameter (CHMAX)) and the
upper and lower bounds for each parameter (BNDUP and BNDLW, respectively). If
there are no restrictions on the parameters, the boundaries are set at +1E30. However, if
the user does not wish to set boundaries, but a parameter has a physical restriction (such

as that it needs to be positive), a parameter transformation may be applied (e.g. k =



exp(0), as described in Section 2.5). This allows the estimated parameter, 0, to take any

real value as well as satisfying GREG’s assumption of a constant prior density.

The objective function is approximated by a quadratic expression that is
minimized over the feasible region (Stewart and Serensen, 1981; Stewart, 1995).
Assuming that 0g is the initial parameter vector, the minimum of the quadratic expression
is found at O; using a negative directional derivative (to ensure a reduction in the
objective function). Then a line search between 8y and 0, is performed to find a value of
the relaxation factor, A, that produces a positive definite covariance matrix and minimizes
S(8) according to the Armijo criterion (1966):

SO, +100)<50.)+arVSP, ) a0 (3.6)
where 0. represents the current parameter vector and a is the Armijo constant (0,1].

The halving mechanism is chosen for the line search:

1
A ==X
new 2 old (3-7)

with A €(0,1]

GREG allows accelerated searches to be performed (when the endpoint satisfies
the Ammijo criterion) by expanding the feasible region and increasing 7. by a factor of
two. The acceleration, repeated until the criterion is not satisfied, allows the objective

function to decrease more quickly without having to solve a new quadratic expression.
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Grippo et al. (1986) developed a non-monotone line search that can accelerate the
convergence by allowing longer steps to be taken. The concept, which is programmed in
GREG, is that the objective function is not forced to decrease at every point, but rather at
every o step (in GREG n=MGLL is selected by the user). If MGLL=4, then the
objective function at a search point must be less than the maximum of the objective

functions at the previous four search points (Zhou and Tits, 1993; Stewart, 1995).

Minimization of the objective function continues until one or both convergence
criteria are met at iteration k. The first convergence criterion is based on the step size
becoming sufficiently small:

stopif |A8;| < max(RPTOL-p,|,10%), (3.8)

while the second is based on convergence of the objective function using the quadratic
approximation:

stopif |ASE™|< RSTOL. (3.9)

Both the tolerance for the step size (RPTOL) and the tolerance for the objective function
(RSTOL) can be specified, giving the user discretion as to which criterion, if either, is

more important.

3.3 Differential and Algebraic Equation Solver

DDASAC, Double precision Differential-Algebraic Sensitivity Analysis Code, an
extension of the implicit integrator DDASSL (Brenan et al., 1989) modified by Stewart et
al. (1994), is designed to perform sensitivity analyses and solve nonlinear initial value

problems using a backward difference formula. Also, the implicit integrator can deal



with stiff, coupled ordinary differential equation systems; it uses a variable-order,

variable-step predictor-corrector approach developed by Gear (1971).

For the three levels used in this study, the ordinary differential equations were
solved numerically with DDASAC by setting the problem identification variable,
IDPROB, to 2 in the main program, informing GREG that the system of differential
equations is to be solved by DDASAC. Since there are also algebraic equations to be
solved, the variable INFO(13) is set to —1, which implies that the equation system is a
combination of algebraic and differential equations. The subroutine ESUB is used to
specify which equations are algebraic and which are differential. To avoid scaling
problems, DDASAC is designed to use tolerance arrays for the state variables by setting
the variable INFO(2) to 1. Further details on the choices of tolerances and their effects

on performance are given in Section 4.2.3.

At level 22 parametric sensitivities are required for the response variables. These
are calculated by DDASAC when the variable INFO(12) is set equal to the parameter
NSPAR (in this case NSPAR is equal to the number of parameters). Also, the choice of
method for calculating the Jacobian is controlled by the variables INFO(5) and INFO(6).

In this study, all Jacobians were approximated by finite differences.

3.4 General Application to Case Studies
Parameter estimation for this research began with a simplified model, which

describes homopolymerization of ethylene with a one type of Ziegler-Natta catalyst site



and no monomer diffusion limitation (see Section 4.3), to obtain reasonable initial
guesses for the parameters to be estimated in a more complicated and realistic model. The
approach taken was to start with a single response variable (level 10) to find reasonable
initial estimates of some of the parameters, which could then be used as initial guesses in

the multiresponse model (level 22).



Chapter 4: Development of a One Type of Site Model for
Homopolymerization of Ethylene

The experimental design used to obtain the response data analyzed in this study is
discussed in Section 4.1. Section 4.2 describes simplifications made to the kinetic model
and defines the system of ordinary differential equations used in the initial stage of the
parameter estimation. In Section 4.3 the results from fitting the single and three-response

models are presented.

4.1 Experimental Design

The ethylene homopolymerization experiments conducted by Shariati (1996) will
only be briefly described. Complete description of the catalyst preparations and
experimental procedures can be found in Shariati’s thesis. Semibatch slurry ethylene
polymerization was carried out in a 500 mL stirred stainless steel reactor. The
experimental design, which was based on a central composite design, involved six
polymerization variables (presented in Table 4.1 along with their actual settings) and

three response variables: rate of polymerization (R,), weight average molecular weight

(./—Vf_ w ), and number average molecular weight (A—/[ »). For the present analysis, data
collected at three temperature settings (62, 70, and 78°C) are used. There are sixteen runs
in each of the three temperature groups, including six replicate runs at the center point

conditions for all variables.
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Table 4.1. Experimental design factors and actual settings for ethylene
homopolymerization experiments (Shariati, 1996)

Temperature (°C) 50.0 62.0 70.0 78.0 90.0
Monomer partial pressure (atm) 1.0 1.6 2.0 2.4 3.0
Hydrogen to monomer ratio 0.05 0.09 0.12 0.16 0.20
Catalyst loading (mg) 5.0 8.0 10.0 12.0 15.0
Cocatalyst loading (mL) 0.4 0.9 1.2 L.5 2.0
Catalyst particle size (pm) 125.0 177.0 250.0 325.0 420.0

A heterogencous Ziegler-Natta catalyst was used with a triisobutylaluminum

cocatalyst. The reaction temperature was controlled by passing cooling water through an
internal coil. A pressure regulator on the ethylene cylinder maintained the total pressure
at the desired setting, by allowing fresh ethylene to flow into the reactor to make up for
ethylene consumed by reaction. The ethylene flow rate (a direct indication of
polymerization rate) was measured with a mass flow meter (reported by Shariati in moles
of ethylene per mole titanium per minute, every 30 seconds during each one-hour

reaction). Upon completion of the experimental runs, polymer samples were analyzed by

gel permeation chromatography (GPC) to determine their molecular weight distributions,

and consequently M. and M ., which were reported by Shariati (1996).

For each particle size the catalyst composition was measured; the results are
summarized in Table 4.2. The titanium content is required to convert the polymerization

rate from (mol C»/mol Ti/min) to (mol C2/min).

Table 4.2. Catalyst composition

Catalyst Particle Size (um) Ti (%) Mg (%) Al (%)
125 3.6 6.4 22.9
177 3.5 6.6 24.0
250 3.6 €2 23.0
325 3.4 6.4 222
420 3.6 6.8 23.8




4.2 Kinetic Model for Ziegler-Natta Catalyst with One Type of Site

When dealing with a complex mechanistic model, it is often wise to simplify the
model first to reduce the number of parameters to be estimated (Stewart, 1995). Once a
simplified model has been fitted, the estimated parameter values can be used as initial
guesses in a more complex model. In this case, the simplified model consists of a
homopolymerization model with one type of site Ziegler-Natta catalyst and no monomer

diffusion. The reactions involved in this simplified kinetic model are summarized in

Table 4.3.
Table 4.3 Kinetics for a single type of site model
Reaction Description Reaction Mechanism
Type
Activation Cocatalyst activates potential active k, .
sites C+[a]——C; (1)
Initiation Monomer initiates active sites ] k )
CG+Ml—=[F] @
Propagation | Propagation of polymer chains [P] [M] k, [P' ] 3
n + — n+l
Deactivation | Hydrogen deactivates polymer chains [P' ]+ [H] k, c o+ [D ] @
n ? d n
Chain Hydrogen causes chain transfer . k, .
Transfer [Pn ]“" [tH}——cC;+[D,]

The model includes: activation of potential active sites (C) by the cocatalyst (A);
initiation of active sites (C'o) and propagation of growing polymer chains of length n
(P",) with the monomer (M); deactivation of polymer chains by hydrogen (H); and chain
transfer to hydrogen. D, represents a dead polymer chain and Cg4 refers to a deactivated
catalyst site. The rate constants are named for the reaction type (k, is for activation, Kq
for deactivation, etc.). Bohm (1978a) recommended that the number of catalyst sites be

expressed in moles rather than in moles per liter. Furthermore, it is assumed that the




initiation of active sites occurs at the same rate as the propagation (kp); the rate constant

assigned to those steps is the propagation rate constant.

Ordinary differential equations describing the material balances on the potential
and active catalyst sites are listed in Table 4.4. To model the molecular weights the
method of moments is applied. The i moments of the live and the dead polymer chains

are, respectively, (deCarvalho et al., 1989; Rincon-Rubio et al., 1990):

A =3 0B “.1)
n=1

A, = in"Dn (4.2)
n=2

Table 4.4. Material balances and initial conditions

Material Balances on Sites and Polymer Chains Initial conditions
(mol/min)
gi_C_ —k.C [A] ) Varies, see Appendix B
dt
- 2E-14
d) P .
2P cla-, 3P ] @
* 2E-14
ddct" =k,C[A]-k,C; [M]+k Ao [H] (3)
dA . 2E-10
dto =kpC0 [M]_kdko [H]—k:xo[H] C))
dn . 2E-12
P k(o )rlk ] )
2E-14
‘Z‘; =k, (C; +hg + 24, )M ]k 1 [H]- k2, [H] (6)
2E-10
d;\to =k, [H]+ kA [H] (7)
dA 2E-12
jzkd}\'l[H]_*-k:kl[H] (8)
dA., 2E-14
&=k [H ke [H] ©)
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Material balances are performed on the zeroth, first, and second moments of the
MWD for both live and dead polymer chains (Table 4.4, equations 4 through 9). R,
(equation 4.3) is computed as the product of the propagation rate constant, k;, the total
number of active sites, C", and the monomer concentration, [M]. It is assumed that C"

and [M] are of first order.
R, =k, C"[M] (4.3)
M., (equation 4.4) is proportional to the ratio of the first moment to the zeroth moment

(including live and dead chains), whereas M. (equation 4.5) is proportional to the ratio

of the second moment to the first moment; the proportionality constant is the monomer

molecular weight, MW.

Ma=pw it (4.4)
Ay +A,

Mo = s 2t 0 4.5)
A A

In the single response model (required to predict R;) there are two differential
equations (1 and 2 in Table 4.4) and one algebraic equation (4.3) to solve, involving three
parameters (k,, kg, kp). The polymerization rate data and molecular weight data can be
combined in a multiresponse model involving seven ordinary differential equations (1, 3
through 8 in Table 4.4) and three algebraic equations (4.3 through 4.5), containing four
parameters (K, kg, kp, ki). The initial conditions for the ordinary differential equations
are also given in Table 4.4; values of 2E-10 and smaller are effectively zero but are

chosen to be the values shown to avoid division by zero in the equation solver, DDASAC
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(Stewart et al., 1994). The initial conditions for the three algebraic equations are all 2E-

14, again effectively zero.

The initial condition for the number of potential active sites varies but is not
measured experimentally. The procedure to obtain this initial condition value is

described in Section 4.2.1.

4.2.1 Number of Potential Active Sites

The experiments performed by Shariati did not include the determination of the
initial number of potential active sites (C). Consequently, C must be estimated from the
polymerization rate data. As discussed in Section 2.4, estimates for C and k; are highly
negatively correlated and thus estimating both simultaneously would be difficult. To
overcome this barrier, it was assumed that C is proportional to the catalyst load (M),
which is the mass of catalyst used in a polymerization run:

C=C M, (4.6)

The proportionality constant, { (mol/mg-catalyst), was estimated (along with k,
and kg) by solving the simplified model (equations 1 and 2 in Table 4.4) with the
propagation rate constz;nt fixed at a reasonable value in equation 4.3. A survey of the
literature revealed that the propagation rate constant for ethylene polymerization with
Ziegler-Natta catalysts at 70°C is in the range of 6E4 to 6E5 L/mol/min (Bukatov et al.,
1982; Floyd et al., 1987; and Dusseault and Hsu, 1993). Therefore, k, was set

successively at values of 1.2E5, 1.8ES, and 3.0E5 L/mol/min to determine the effect of
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the assumed value of k, on the value of the objective function used for parameter

estimation and on the parameter estimates themselves.

The final value of the objective function (equation 3.1) was the same in all three
cases. Neither the estimate of the activation rate constant (135.0 L/mol/min) nor the
estimate of the deactivation rate constant (5.6 L/mol/min) was affected by varying the
propagation rate constant, k,, used to estimate { . Also, the correlation matrix for the
estimates of the parameters k,, kg, and C (Table 4.5) was unaffected. The proportionality
constant, { ,decreased from 1.06E-7 to 7.06E-8 to 4.24E-8 moles per mg-catalyst as the
propagation rate constant increased; the value of 7.06E-8 moles per mg-catalyst was

chosen for subsequent parameter estimation in all proposed models.

Table 4.5 Correlation matrix for parameter estimates for all three fixed values ofk;

ka kg C
ks 1.00
kg -0.40 1.00
C -0.44 0.86 1.00

4.2.2 Parameter Effects

In polymerization reactions involving Ziegler-Natta catalysts, the rate of
polymerization can follow different patterns over time. For a heterogeneous Ziegler-
Natta-catalyzed polymerization reaction, the initial rate of polymerization often shows an
acceleration period, followed by a decay period after the maximum rate has been
achieved (Kissin, 1985). Such was the behavior of the homopolymerization rate data

gathered by Shariati.
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The acceleration period is governed by activation of the catalyst sites, whereas the
rate decay is caused by the deactivation of the catalyst sites. A catalyst with a greater
activation rate constant will produce an acceleration pattern with a steeper slope and a
higher maximum rate than a catalyst with a lower activation rate constant. Similarly,

larger deactivation rate constants will produce faster decreases in the polymerization rate.

A simplified representation of the rate of polymerization, R,, is:

R =k,[M]C 4.7)

.
Naturally, any increase in the propagation rate constant (kp) would directly increase the
rate of polymerization. The same effect is observed in M. and M, since they are also

directly proportional to k.

The chain transfer rate constant, k;, only affects M. and M, and does so in an

inversely proportional manner. Since chain transfer to hydrogen is generally the

dominant mechanism for producing dead chains, any effect of ky on M. and M, will

generally be small.

4.2.3 Ordinary Differential Equation Tolerances

It is important to properly scale the DDASAC tolerances of the response variables
and the variables in the ordinary differential equations. By doing so, a response variable
having a small numerical value will not be deemed insignificant when compared to
another response variable having a much larger numerical value. The highest order of

magnitude for anticipated values of the variables (Table 4.6) is used to set the relative
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tolerance (RTOL) and absolute tolerance (ATOL) arrays (Stewart et al., 1994). A rule of
thumb, suggested by Brenan et al. (1989), is to denote m; as the number of significant
digits needed to describe a response variable Y;. Consequently, RTOL; equals 101™*"
and ATOL; is set to the order of magnitude at which the variable is essentially

insignificant.

Initially the system of differential equations for the single-site three-response
model (Section 4.3.5) using data collected during the one-hour experimental runs was
solved with scalar tolerances (RTOL = 1E-6 and ATOL = 1E-8) and took five minutes of
simulation time on a network. The same model was then solved using the tolerance

arrays in Table 4.6 and took two minutes since fewer calculations were required (as

shown in Table 4.7).

Table 4.6. Tolerance array for DDASAC with the one type of active site model
Variables RTOL ATOL
C (mol) 1E-10 1E-11
C (mol) 1E-14 1E-14
Ao (mol) 1E-10 1E-11
A1 (mol) 1E-7 1E-8
A2 (mol) 1E-2 1E-3
Ap (mol) 1E-8 1E-9
Ay (mol) 1E-4 1E-5
Az (mol) 1.0 1E-1
R, (mol/L) 1E-6 1E-7
M . (g/mol) 1E1 1.0
M . (g/mol) IE1 1.0




Table 4.7. Performance comparison

Scalar Array
tolerances [tolerances
Number of steps taken 412 153
Number of function calls 2960 1104
Number of Jacobian calls 424 159
Number of error test failures 7 3
Number of convergence failures [0 0

Array tolerances were used in DDASAC for all reported simulations.

4.3 Model with One Type of Catalyst Site and No Monomer Diffusion
In the single response problem (wherein only R, was predicted) for the simplified

model, three rate constants were estimated: activation, deactivation, and propagation. In

the multiresponse analysis (wherein Ry, M., and M. were predicted) for the simplified
model, there was one extra rate constant to estimate, the chain transfer rate constant. The
parameters were estimated with data from the sixteen experimental runs carried out at
70°C. There were 120 observations of the polymerization rate per experimental run,

spaced evenly over time, and only one observation for each of the molecular weight

responses (A_/[ . and M. ), available at the end of each experimental run.

At the beginning of the reaction, the polymerization rate increased rapidly to a
maximum, then slowly decreased for the remainder of the reaction. This initial increase
is attributed to the activation of potential sites, while the decrease is most likely due to
the deactivation of active sites (Kissin, 1985). For simplicity, no monomer diffusion

effects were included in the simplified model at this point.



4.3.1 Fitting a Single Response Model

The analysis began by using only the polymerization rate data to estimate the
three rate constants. GREG estimated the parameters while DDASAC solved the first two
ordinary differential equations in Table 4.4 and equation 4.3. The fitted polymerization
rates from the simplified single response model (GREG /level 10, see Section 3.2.1)
agreed well with the data (see Appendix C). The estimated parameters, along with their
95% highest posterior density (HPD) confidence intervals and correlation matrix are

given in Table 4.8.

Table 4.8. Parameter estimates from a single response model with one active site type
and no monomer diffusion (GREG /eve! 10)

Correlation matrix
Parameter Estimated 95% ka kq ky
(L/mol/min) value confidence
interval
ka 135.3 ell13 1.00
kg 5.62 +0.41 -0.455 1.00
kp 1.8ES +2.5E3 -0.462 0.869 1.00

As none of the confidence intervals includes zero and the pairwise correlations
among the parameter estimates are not too large, these estimated parameter values were

used as reasonable initial guesses for the multiresponse model.

4.3.2 Three-response Model with Unknown Diagonal Covariance Matrix

Shariati (1996) used a central composite experimental design to collect data for

three responses, Ry, M. , and M ... Parameter estimation was carried out assuming that
the covariance matrix for the measured responses was diagonal but unknown (GREG

level 32, see Section 3.2.2). The three-response model, described by equations | and 3
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through 9 of Table 4.4 and equations 4.3 through 4.5, was also fitted using GREG and

DDASAC. Since there were a total of 1920 polymerization rate observations and only

sixteen M, and sixteen M. observations, the capabilities of the parameter estimation

code to estimate variances can be evaluated in this extreme case of missing data.

As shown in Table 4.9, estimates for parameters k,, kg, and k, converged at
approximately the same values as in the single response model; consequently, the fitted
polymerization rates are similar to those from the previously fitted single response model.
The 95% confidence intervals and correlations among those parameters also remained

essentially unchanged.

Table 4.9. Parameter estimates from a three-response model (R, M., , and Hw) with
one type of active sites and no monomer diffusion, assuming an unknown diagonal
covariance matrix (GREG level 32)

Correlation matrix
Parameter | Estimated 95% ka kq kp ki | 6%mie | OMw | O Mn
value confidence
interval
Ka 135.3 £102 1.00
(L/mol/min)
kq 5.62 +0.41 -040 | 1.00
(L/mol/min)
kp 1.8E5 +24E3 | -044 | 0.86 1.00
(L/mol/min)
k: 9.4E3 +[.3E3 | -0.04 | 0.08 | 0.10 1.00
(L/mol/min)
O e 3.9E-6 +2.5E-7 | -7TE4 | -4E-4 | -3E-4 | 8E-5 1.00
(L/min)*
GZMW 6.1EI0 +4.1E10 2E-5 | -6E-5 | 8E-4 0.22 2E-S 1.00
(g/mol)
CSZM,, 4.0E8 + 2.7E8 -8E-5 | 2E-4 | -TE-4 | -0.22 | -2E-5 | -5E-2 1.00
(g/mol)”

45




Figure 4.1 shows that the fitted values of M ., determined using the parameter

estimates in Table 4.9, fall near the corresponding observations, whereas observed values

of M. are grossly underestimated. It is well known that a one type of site model, as

described in Table 4.4, can only result in a polydispersity (11—/[ w! M )of 2.

M,
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Figure 4.1 Fitted molecular weight values from the three-response model (R, M ., and
M ..) assuming an unknown diagonal covariance matrix (see Appendix B for operating

conditions)
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Consequently, in the simultaneous fit of M, and M., it was assumed that GREG had

concentrated much more on fitting M » since the estimate of GZMW was larger than the
estimate of c’u,. TO investigate this problem, two further fits were performed (see
Section 4.3.4) each assuming known measurement variances (GREG /evel 22, see Section
3.2.2) with two responses:

1) R, with M . and

2) R, with M, .

4.3.3 Sample Variances of Response Measurements
Sample variances, s>, for the measurements of each of the three response

variables were calculated from the six replicate runs contained within the sixteen

experimental runs at 70°C, according to:
, 1 & 2
¢ oL -7) “9)

where Y is the average of the 6 measured values Y; from the replicate runs for response

variable Y. The sample variances for R, M., , and M . each have 5 degrees of freedom.

For the polymerization rate data, equation (4.8) was applied at each time step,
resulting in 120 sample variances each having 5 degrees of freedom. Bartlett’s test
(Bartlett, 1937) was used to determine whether the variance of the measured rates was

constant through time. If so, the 120 sample variances can be pooled to form a more

reliable estimate, s; . Bartlett’s test statistic U can be expressed as:
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U= %[({7: n,}-kjlnsf, —Zk:(n, —1)1ns,2] (4.9)

o~ 1
=1 n[ ink
where C =1+ =L (4.10)
3k~-3

and k is the number of groups of measurements (120), n, is the number of measurements
in each group (6), n is the total number of measurements (720), and s, is the sample

variance for group t.

The data yield a value of 26.03 for U and, since the value of 3g¢s,,5 (145.46) is

greater than the test statistic U, the group variances can be assumed to be homogenous,
indicating that the replication variance is constant through time. 95% confidence
intervals are also calculated (equation 4.11) for the replication variances of the three
response variables, assuming that each of the samples is composed of random

observations from a normal distribution (Montgomery and Runger, 1994):

2 2
AVARY AVARY
<g’g

(4.11)

bl i
Av.0025 Av 0975

where v denotes the number of degrees of freedom associated with the sample variance

s> v =5for M. and M, and v = (120)(5) = 600 for the measured rate. Table 4.10

displays the sample variances and their 95% confidence intervals.
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Table 4.10. Sample variances of response measurements with their 95% confidence
intervals

Sample 95% confidence interval
Variance
G rate 2.98E-6 2.68E-6 3.36E-6
' Mn 6.54E7 2.55E7 3.94E8
O Mw 1.87E8 7.29E7 1.13E9

4.3 4 Fitting a Two-Response Model with Known Diagonal Covariance Matrix

Fitting a two-response model (rate data with one of the MW responses) will
determine whether acceptable fitted molecular weight values can be obtained using
sample variances calculated from replicate runs as “known” variances and assuming all
measured response values to be uncorrelated. In both cases 1) and 2) (defined at the end

of Section 4.3.2), the estimates of the parameters k., kg4, and kp converged at

approximately the same values as before (Table 4.9). When R, and M .. were used as the
two response variables, the converged estimate of k, decreased drastically from 9.4E3
(Table 4.9) to 3.6E3 and the fitted response values showed better agreement with the
observations (Figure 4.2). However, when M . was used as the second response variable
with Ry, the converged estimate of k; increased only slightly to 9.8E3 and the fitted
values of M, (Figure 4.3) were largely unchanged from those shown in Figure 4.1.
Therefore, the two-response models were capable of fitting the MW response variables to

the observations by adjusting the estimate of k.
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Figure 4.2 Fitted values from the two-response model (Rp and M w ) assuming a known
diagonal covariance matrix (see Appendix B for operating conditions)
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Figure 4.3 Fitted values from the two-response model (Rp and M) assuming a known
diagonal covariance matrix (see Appendix B for operating conditions)

4.3.5 Fitting a Three-Response Model with Known Diagonal Covariance Matrix

The three-response model described in Section 4.3.2 was refitted using the

response variance estimates calculated from the data as the elements of a known diagonal

covariance matrix (GREG /level 22, see Section 3.2.2).

The data structure is block

rectangular, as described in the introduction of Chapter 3 and illustrated here in Figure



4.4, Again, an observation is represented by a plus sign while a blank space implies a

missing data value. Results from this parameter estimation are reported in Table 4.11.

Event Rp (mol/min) M. (g/mol) M . (g/mol)
1 +
2 +
1920 +
1921 + +
1922 + +
1936 + *

Figure 4.4. Block rectangular data used in parameter estimation

Table 4.11. Parameter estimates from a three-response model (R, M », and M w) with
one type of active sites and no monomer diffusion, assuming a known diagonal
covariance matrix (GREG Jevel 22)

Correlation matrix
Parameter Estimated 95% ka kg kp k;
(L/mol/min) value confidence
interval
ka 135.3 +79 1.000
Kg 5.61 +0.19 -0.090 1.000
kp 1.8E5 +297.6 -0.173 0.249 1.000
ki 4.9E3 + 86.7 -0.016 | 0.023 0.093 1.000

Although the widths of all of the confidence intervals are smaller than the
corresponding intervals in Table 4.9, those for k, and k, are significantly reduced, by
+2100 L/mol/min and +1200 L/mol/min, respectively. Also, all of the off-diagonal
elements of the parameter correlation matrix are smaller, with no strong correlation
between any two parameter estimates. These results indicate that there is enough

information in the data to estimate all four parameters, so that they can be used as initial

guesses for parameter estimation in a more complex model.
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A comparison between the results obtained in Section 4.3.2 and the results of this
fit indicates that the estimated values for ka, kq, and k; are similar to those in Table 4.9,
whereas the value for k; decreases by almost one-half. This suggests that the polymer

chains propagate for a longer period before terminating, resulting in higher average
molecular weights. Figure 4.5 confirms the higher fitted values for M.and M., M.

being consistently underestimated while M. is consistently overestimated. Fitted rate
values for the six replicate runs are pictured in Figure 4.6. The fitted values are lower
than the observations for experimental runs A056 and A060 while good agreement is
achieved for the other four runs. The observed maximum polymerization rates for
experimental runs A056 and A060 are higher than those of the other four replicate runs.

A higher activation rate constant would be needed to reach the higher maxima.
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Figure 4.5 Fitted values from the three-response model (Rp, M., and M\..) assuming a
known diagonal covariance matrix (see Appendix B for operating conditions)
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Figure 4.6. Observed and fitted polymerization rate values for replicate runs at 70°C from the
three-response model (R, M,,, M,,) assuming a known diagonal covariance matrix (operating

condition: 10 mg-catalyst, 1.2 mL-cocatalyst, 2 atm monomer partial pressure, 0.24 atm
hydrogen partial pressure, 250 um particle size)
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The last elements to be verified are the polydispersities, which are the ratios of M. to
M.. Using the fitted values of molecular weights to calculate fitted values of
polydispersities yields values of 2, whereas the observed polydispersities range from 4 to
7. Approximate 95% confidence intervals for the observed polydispersity values can be
calculated according to the following expression:

observed PD £¢, (055 Spp (4.12)
where v is the number of degrees of freedom associated with the estimated standard
deviation of the observed polydispersity values, spp, and tsgo2s = 2.571. The degrees of
freedom are assumed to be the same as the degrees of freedom for the sample variances
of the measured values of M, and M.. An expression for the polydispersity variance

can be derived from a first order Taylor series expansion:

i i) {i)
PD=—A_J'.“—"O+(M»-—I_‘J—“-,O) ——" | +(A711 —Mn.o)_T”—" (413)
Mn.O aM w aMn
Muwo.Mao Moo Moo
2 1 2 el - —w ’ bl
Cpp =[_—-J Cy t ___—ﬂi_.;_ o3 (4.14)
Mn.O (Mn.O) "

where M .0 and M .o are point estimates of M. and M .. From Table 4.12 it can be
seen that none of the approximatz 95% confidence intervals for the observed
polydispersity values contain the fitted polydispersity values of 2, thereby confirming the

inadequacy of this model as a predictor of polydispersity.
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Table 4.12. Approximate 95% confidence intervals for the observed polydispersity values

from a three-response model (Rp, M., and M) with one type of active sites and no
monomer diffusion, assuming a known diagonal covariance matrix (GREG leve/ 22)

Run number Estimated PD Observed PD 95% confidence

interval
A023 2.00 4.74 +1.34
A024 2.00 5.56 +1.57
A035 2.00 4.95 +1.65
A036 2.00 545 +1.21
A038 2.00 5.67 +1.34
A039 2.00 4.67 +1.38
A045 2.00 432 +1.13
A048 2.00 5.65 + 1.59
A049 2.00 5.40 + 1.87
A056 2.00 4.42 +1.22
AQ057 2.00 6.40 +2.50
A059 2.00 5.81 +2.03
A060 2.00 5.08 + 1.69
A064 2.00 5.98 +1.31
A065 2.00 541 +1.84
A069 2.00 6.22 +2.23

In summary, an acceptable fit to this set of data containing a large number of

missing values could not be obtained with the three-response (R, M.,and M = ) model
assuming an unknown diagonal covariance matrix. With a known diagonal covariance
matrix there was enough information in the data to estimate four parameters, but the
fitted response values were still unsatisfactory. This was expected because the single-site
structure of the model given in Table 4.4 is known to give polydispersity predictions near
2.0, no matter what parameter values are used. To resolve this problem, a model with
two active site types was then considered. The results from this model are reported in

Chapter 5.



Chapter 5: Models for Ziegler-Natta Catalyst with Two Types of Sites

A similar approach to parameter estimation was taken to deal with the two-types-
of-sites model as was used with the one type of site model. Material balances and single-
and three-response models are described in Section 5.1. New parameters involved in the
proposed model are also introduced in Section 5.1. Parameter estimation results for the
single and three-response models are presented in Sections 5.2 and 5.3, respectively.
Temperature dependence of the rate constants is investigated in Section 5.4. The validity

of the model is assessed in Section 5.5.

5.1 Model with Two Types of Sites and Monomer Diffusion

The two-types-of-sites model is a natural extension of the one-type-of-site model
presented in Chapter 4. The research done by Shariati (1996) suggested the presence of
two types of catalyst sites: Ti** (hereafter referred as type 1) and Ti'* (hereafter referred
as type 2). Consequently, the potential sites were assumed to be activated by the

cocatalyst to form sites of type 1 or type 2.

The initiation and propagation steps were again assumed to have the same rate
constant. There is also a possibility of site transformation; a site of type | could react
with the cocatalyst in the initiation and propagation stages and reduce to a site of type 2,
and a site of type 2 could react with hydrogen after activation to form a site of type I.
The rate constants associated with the two site transformation reactions are denoted as kg,

and kg, respectively.
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Monomer diffusion limitations within a polymer particle can lead to a monomer

concentration gradient and contribute to a broad MWD. Therefore, the average monomer

concentration within a particle (equation 5.2) was used in the initiation and propagation

reaction and in the rate equation 5.3. Two types of site deactivation were considered: a

site could deactivate by itself (kyq) or by reacting with hydrogen (kq). Hydrogen is used

to control the molecular weight by chain transfer reactions.

The kinetic reactions

considered in the two types of sites model are presented in Table 5.1 while the material

Table 5.1 Kinetics for a two types of sites model

Hydrogen causes chain transfer at sites

Reaction Type | Description Reaction Mechanism
Activation Cocatalyst activates potential sites of k, .
type | C+[4al—2>c;,
Cocatalyst activates potential sites of k., .
type 2 C+[A] ==,
Initiation Monomer initiates active sites of type 1 . [E k,, [ .]
Co +IM|—— |8
Monomer initiates active sites of type 2 . —1 k., .
Co + [A’[_#’ [sz ]
Propagation Propagation of polymer chains at sites . —1 &, .
Ofty‘pe 1 [Plz.l ]+ Iiﬂl]___> [Pn+l.l]
Propagation of polymer chains at sites . 1 k,, .
of type 2 [‘Pn.l ] + [M ]—> [Pn+1,2]
Site Cocatalyst transforms type 1 to type 2 . k., .
Transformation Coi + [A]—> Co
Cocatalyst transforms type | to type 2 [P' ]+ [A] k., [ P ]
n.l —_— n.2
Hydrogen transforms type 2 to type | . [H] k,, c
02 E ot
Deactivation Hydrogen deactivates polymer chains . k,
at sites of type 1 [Rz.l]+[H —t>c, +[Dn]
Hydrogen deactivates polymer chains . k..
at sites of type 2 [Pn-2}+[H] *—C, +[D,]
Spontaneous deactivation at sites of . k.,
type 1 [ i ]_—> C, +[Dn]
Spontaneous deactivation at sites of . k.-
type 2 [Pn.z } 25, +[D,]
Chain Hydrogen causes chain transfer at sites . k,
Transfer of type | [Pn.l ]"' [H#}—t—c; +[D,]
] k.,

of type 2
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balances and their initial conditions are found in Table 5.2.

The growth of polymer particles (equation 2 of Table 5.2) was modeled according
to the work described in Shariati (1996). Again, the method of moments was applied to
determine the molecular weights. The ordinary differential equations (ODESs) solved for
the single response model (which predicts R, alone) were equations 1 through 4 of Table
5.2 along with equation 5.3, involving ten parameters (Kai, ka2, ka1, ka2, kpts kp2, ki, Kan,
ka1, and kegp). For the three-response model (which predicts R, M., and M n)
equations 1, 2, and 5 through 15 of Table 5.2 along with equations 5.3 through 5.5 were
solved simultaneously to estimate twelve parameters (the ten parameters from the single

response model plus k;; and k).

Shariati used the equation group 5.1 to simplify some of the ordinary differential

equations described in Table 5.2 and the average monomer concentration (equation 5.2).

e e Ky
C=C,-{-A—”'—C2

pl

C,=Cy, +15 (5.1)
k,C” ]
a = exp r,
\ m /!
(77 ] =[m], il 'lk — (5.2)
(a + [)rp rl
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Table 5.2 Material balances and initial conditions for the two types of sites model

Material Balances and Methods of Moments Initial Conditions
il 0| s
dr, _Mw M, Dm( k,C* ) a’+1 ”1] o ;;a;iséiieg
a Pply D, *a*-1

daC"t =k, C[A]-C} [k [A]+ky +h,[H]+k,,C [H] 5 SETa
d;z' =k,,C 4]+ k,C; [A]-C; (ko [H]+ b gy + k0 [H] @ E-14
dg& =k, C[A-C;, e [+ kM |+ ko [H]+ kAL [E] 5) 2E-14
dC;Jz = ko C [l + &, [4]-C3, feu [+ £, [M P+ k22[H] (6) 2E14
%—k S [ ] A [H)+k [4]+k [H] -k, } (7) 2E-10
%l——k (Cm+7k')[ ] Ak, [H]+k [H]+ K, [4]+ k) @) 2E-12
d;;l =k, (e +2d +2JU)[ ] 2 e [ ]+ ke [Tk [4] 2, ) ) 2E-14
d;:@ =k,,Cop [A—f]—ké o [H -k, [A]+ by [H )+ Ky ) (10) 2E-10
d;t. ko (Co +22) M |- 22 {e, [H ]+ ki [H ]k [A) 40} (1) 2E-12
(Zr;: =k, (o + 22 +202) [~ A2 {k o [H ]+ e [~k [4] + ) (12) 2E-14
dC/;; = (e hd + o A2 + AL + kA2 I H |+l AL+ g (13) 2E-10
d{/; = {eahd + kA2 kM kA M ] kg A kR 04 5E12
d;\[z = {lahh oAl +E AL kA2 A |4+ e MY kel (15) 7E-14

The equations describing the rate of polymerization, number average molecular

weight, and weight average molecular weight are:

R, =k, C [i]

(5.3)
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M — MW A AT +A,

(5.4)
Ay AL+ A,

— AL +A2+A
M.=Mw32T272 (5.5)
A +ALFA

The initial conditions for equations 3 through 15 in Table 5.2 were set at a small
number (effectively zero but chosen to avoid division by zero in DDASAC (Stewart et
al., 1994)), whereas the initial conditions for equations 1 and 2 had the values listed in
Appendix B. The polyethylene density (used to calculate the rate of change of the radius
of the growing polymer particle, equation 2 of Table 5.2), p,, was set at 960 g/L, which is
at the high end of the high-density polyethylene density range. The monomer diffusivity
constant D, was fixed at a mid-range value of 6E-5 cm”/min suggested by Floyd et al.

(1987).

5.1.1 Parameter Transformations

Parameter transformations were applied to all parameters for a number of reasons.
Transformations were used to prevent the parameters from taking on meaningless values
(such as a negative number) and also to provide appropriate scaling. When parameter
transformations were applied to only some of the parameters, convergence was not
always attained. Consequently, for the rest of the study all parameters were transformed
during the parameter estimation, but the parameter estimates are reported in their original
untransformed forms. The transformations applied to the rate constants were described in

Section 2.5. The logarithmic transformation given in equation 2.10 can be rewritten as:

k, =exp@®,) (5.6)
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Since it was assumed that the activation energy of ki» was the same as the
activation energy of k;;, a ratio of rate constants at the two site types (yi=kix/ki1, where 1
represents a, d, p, or t) was estimated. The transformation applied to the ratios, to ensure

positive values, was:

Y, =67 (5.7)
5.2 Single Response Model

The single and three-response models for a catalyst having two types of sites
(Sections 5.2 and 5.3, respectively) were fitted to the data from the 16 experimental runs
at 70°C (as was done with the one type of site catalyst in Chapter 4). Parameter
estimation was also performed using the data from the sets of 16 experimental runs at 62
and 78°C, respectively. Fitting the single response model (which predicts R, alone)
involved estimation of nine parameters in equations ! through 4 in Table 5.2 and
equation 5.3 since, at these three temperatures, it was impossible to obtain separate
estimates of both kg and ke». Whenever the parameter kyq> was included in the set of
parameters to be estimated no convergence was achieved, since GREG would oscillate
about an arbitrary parameter vector and not meet the convergence criteria after more than
100 iterations. Therefore, only one spontaneous deactivation rate constant, ks, was
estimated for both site types. Results at 78°C are not reported here since the estimated
value for kyg was 6.7E-24 with a 95% confidence interval of (exp(-3.4E4), exp(3.4E4)).

The results at 70 and 62°C can be found in Tables 5.3a and 5.3b, respectively.



Table 5.3a. Parameter estimates from a single response model at 70°C with two active
site types and monomer diffusion (GREG level 10)

Parameter Estimate 95% confidence interval
ka1 (L/mol/min) 114.54 105.96 123.79
Ya 1.2E-4 3.9E-5 7.9E-4
k41 (L/mol/min) 5.19 4.45 6.06
Yd 0.64 0.15 1.48
kp1 (L/mol/min) 4.7E5 4.61E5 4.78E5
Yo 1.5E-4 1.1E-4 1.25E-3
keq (min™") 9.5E-12 2.1E-17 4.2E-6
Kan (L/mol/min) 7.1E-4 1.5E-4 3.5E-3
kg (L/mol/min) 0.47 0.42 0.51

Table 5.3b. Parameter estimates from a single response model at 62°C with two active
site types and monomer diffusion (GREG /eve! 10)

Parameter Estimate 95% confidence interval
ka; (L/mol/min) 94.16 88.85 99.80
Ya 2.44 221 2.68
ka1 (L/mol/min) 4.76 442 5.13
Ya 20.66 20.13 21.19
kp1 (L/mol/min) 3.81E5 3.77E5 3.85E5
Yo [.5E3 2.1E-5 5.4E-3
ksq (min™) 6.4E-12 8.9E-15 4.6E-9
Kan (L/mol/min) 4 0E-4 1.3E-4 1.3E-3
ks (L/mol/min) 0.10 0.08 0.13

The estimated parameters were used as reasonable initial guesses in the
multiresponse model. Estimated parameters at 70°C were used as initial values for fitting
the multiresponse model to the data at 78°C. The parameter correlation matrices are in

Appendix D.

5.3 Multiresponse Model with Known Diagonal Covariance Matrix

The multiresponse model (which predicts Ry, ﬁ..», and M « ) simultaneously
solves the differential equations 1, 2, and 5 through 15 of Table 5.2 and the three

algebraic equations 5.3 through 5.5. Initially, eleven parameters (Kai, Ya. Kai. Ya» Kpis ¥p»
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Ket, ku, Y Kan, and keq) were included in the model. However, no convergence was
attained (iterations were oscillating in a small region) since the parameter estimates for
kan and kg were becoming extremely small (3E-7 and 4E-8, respectively). At 70°C the
orders of magnitude for the terms in the differential equations involving those two
parameters were compared to the other terms. Since the terms with kq, and ke were
always four to five orders of magnitude smaller than the other terms in equations I, 2,
and 5 through 15 of Table 5.2, those two parameters were set to zero and removed from
the model. Results for the three temperature groups are reported in Tables 5.4a-5.4c and
the respective correlation matrices for the parameters are presented in Tables 5.5a-5.5c.

The objective function tolerance (RSTOL) was set to 5 for all reported simulations.

Table 5.4a. Parameter estimates from a three-response model (Rp, M.,and M. ) at 78°C
with two active site types and monomer diffusion (GREG level 22)

Parameter Estimated value 95% confidence interval
ka; (L/mol/min) 169.81 156.77 183.94
kq4) (L/mol/min) 1.88 1.39 2.55
ko1 (L/mol/min) 5.34E5 5.26E5 5.42E5

Yo 9.0E-3 5.7E-3 1.3E-2
ks (L/mol/min) 2.23 2.09 2.39
Yd 2.84 1.39 4.79
Ya 4.2E-2 3.8E-2 4.7E-2
k.1 (L/mol/min) 7.28E3 7.18E3 7.38E3
Tt 10.82 8.31 13.66

Table 5.4b. Parameter estimates from a three-response model (R,, M. ,and M .)at
70°C with two active site types and monomer diffusion (GREG leve!/ 22)

Parameter Estimated value 95% confidence interval
ka1 (L/mol/min) 112.29 105.24 119.81
k4 (L/mol/min) 5.29 4.67 6.00
kpi (L/mol/min) 491ES 4.85ES 4.98ES

Yp 7.3E-3 6.0E-3 8.7E-3
kg (L/mol/min) 0.48 0.36 0.64
Yd 1.28 0.68 2.06
Ya 4 4E-2 4.1E-2 4.7E-2
ki (L/mol/min) 6.98E3 6.89E3 7.07E3
Tt 19.42 15.21 24.14
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Table 5.4c. Parameter estimates from a three-response model (R,, M. , and M, ) at

62°C with two active site types and monomer diffusion (GREG level 22)

Parameter Estimated value 95% confidence interval
ka; (L/mol/min) 94.04 87.88 100.62
k4; (L/mol/min) 4.74 4.15 541
kp1 (L/mol/min) 3.95E5 3.89E5 401E5

o 7.0E-3 5.7E-3 8.3E-3
ke (L/mol/min) 0.14 0.06 0.32
Yd 1.12 0.54 1.91
Ya S5.1E-2 47E-2 5.5E-2
ke (L/mol/min) 5.48E3 5.40E3 5.55E3
Y 26.22 21.54 31.35

Table 5.5a. Correlation matrix for the parameter estimates at 78°C (corresponding to

Table 5.4a)
Parameter ka; kai Kot Yp ke Yd Ya ku Tt
Ka 1.00
ka1 -0.10 | 1.00
ko1 -0.36 0.22 1.00
Yo 0.03 | -0.06 | -0.26 | 1.00
ky -0.14 | -0.77 | 0.30 | 0.06 1.00
Yd -0.06 | -0.57 | 0.02 | 0.29 0.57 1.00
Ya -0.04 | 0.10 0.25 -0.93 | -0.13 | -0.08 1.00
ku -0.39 0.21 0.97 -0.29 0.32 0.02 0.25 1.00
Tt -1E-3| 002 | -0.01 | 0.02 | -0.03 | 0.09 | -8E-5 | -0.01 | 1.00

Table 5.5b. Correlation matrix for the parameter estimates at 70°C (corresponding to

Table 5.4b)
Parameter | ka Kai Kot Yp kg Yd Ya ka Tt

Kai 1.00
kar -0.14 1.00
Kpt -0.43 | 0.32 1.00
Yo -0.05 | -0.16 | -0.09 | 1.00
Ky -0.13 | -0.77 | 0.24 0.22 1.00
Yd -0.15 | -0.30 | O.16 0.34 0.42 1.00
Ya 0.02 0.20 0.09 | -0.91 | -0.28 | -0.04 1.00
ky -0.47 | 0.30 097 | -0.11 0.26 0.17 0.09 1.00
Yt 4E-3 0.02 | -5E-3 | 0.05 -0.02 | 0.12 1 -0.02 |{ -0.01 | 1.00
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Table 5.5c. Correlation matrix for the parameter estimates at 62°C (corresponding to
Table 5.4c)

Parameter | Kai kai K Yo kst Ve Ya kit Y
Kai 1.00
kai -0.16 | 1.00
P 044 | 034 | 1.00
” 20.02 | 0.14 | -0.19 | 1.00
kot -0.16 | -0.69 | 0.30 | 0.18 1.00
Yd -0.17 | -023 | 0.24 | 0.15 0.43 1.00
Ya 0.01 0.16 0.18 | -0.96 | -0.23 | 0.03 1.00
kq -0.47 | 033 098 | -0.20 | 032 | 0.25 0.19 1.00
Y -1E-3 { 0.02 § -0.01 | 0.03 | -0.02 | O.11 -0.01 | -0.01 | 1.00

The highest pairwise correlations are between parameters kp; and k; (0.97 and
0.98) and between parameters y, and y, (-0.91 and —0.96). The pairwise correlation
between k,; and k¢ is highly positive since increasing both k;, and k;; can lead to a
constant molecular weight. The pairwise correlation between y, and y, is strongly
negative since an increase in y, and a decrease in y, will maintain a constant
polymerization rate. Although these correlation values are high, no parameters were
eliminated from the model until the three temperature groups were combined, in hope
that the correlations would decrease. The estimated polydispersities (PD), calculated
from the fitted molecular weights, are presented in Table 5.6. Although most of the
estimated polydispersities are greater than 3, they are still consistently lower than the

observed values.
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Table 5.6. Observed and estimated polydispersities from the fitted models for individual
temperature groups

62°C 70°C 78°C
Estimated Observed Estimated Observed Estimated Observed
3.39 5.68 3.20 4.74 3.29 5.50
3.31 6.03 3.08 5.56 3.32 4.86
3.59 5.29 2.93 495 3.01 5.86
3.76 7.04 3.09 5.45 3.06 493
3.76 5.92 3.04 5.67 2.95 5.38
3.65 5.39 3.12 4.67 3.06 5.47
381 5.90 3.00 432 3.28 6.38
3.46 5.57 3.16 5.65 3.10 5.53
343 5.54 3.12 5.40 2.98 5.37
3.76 5.34 3.12 4.42 2.78 5.78
3.69 6.13 3.14 6.40 2.86 4.95
3.69 5.92 3.18 5.81 3.01 6.25
3.36 6.04 3.12 5.08 2.92 5.93
3.46 6.31 3.43 5.98 2.88 6.02
3.31 6.42 3.12 541 3.36 5.65
348 5.95 3.12 6.22 2.99 5.19

5.4 Non-isothermal Multiresponse Model

Figure 5.1, depicting In k (from Tables 5.4a-5.4c) versus 1/T, shows that
parameters kai, kpi, ki, and ke have a strong linear temperature dependency and so they
should be modeled with an Arrhenius relationship. There is no apparent linear
relationship between estimates of In kg, and 1/T, and so it was assumed that kg is
relatively insensitive to temperature effects over the range of interest. As discussed in
Section 2.5, to facilitate parameter estimation the Arrhenius relationships are centered

about a reference temperature To:

E (1 1 -
ki =k,-0 explj——RL(?-'?‘Jj’ (3.8)
0

In this case the reference temperature was chosen to be 70°C.
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Figure 5.1. Temperature dependence of rate constants for the three-response model (R, M, and M,
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Both types of sites were assumed to have the same activation energy for each
reaction type. No reasonable value could be obtained for the site transformation
activation energy (Es) with a model having thirteen parameters (kao, Ea, Ya, kpo, Ep. ¥p, Kai,
Yd, ks, Est, ki, Er, and y;) since the estimated transformed parameter value was —6E3
(Es=exp(-6E3)); therefore the Arrhenius relationship was removed for that parameter. In
an attempt to increase the estimated polydispersities, the assumption that the propagation
activation energy for sites of type 1 was the same as that for sites of type 2 was removed
and separate estimates were obtained for E;; and E;;.  With the transformation included,
the Arrhenius equation for the ratio of the propagation rate constants (the subscript ¢

refers to parameters at the centering temperature, 70°C) is:

E, —-E 1 1
Yo, =Ypo eXPl:(—M—R—i)[? - FJ:| (5.9)
0

The parameter estimation results are presented in Tables 5.7a and 5.7b. All model

fittings presented in this section converged with an RSTOL of 5.

Table 5.7a. Parameter estimates from the non-isothermal three-response model (R, M.,

and M, ) with two active site types and monomer diffusion, assuming a known diagonal
covariance matrix (GREG /level 22)

Parameter Estimated value 95% confidence interval

ki (L/mol/min) 1.17E2 1.12E2 1.22E2
E. (cal/mol) 1.69E4 1.57E4 1.83E4
Ya 7.7E-3 7.2E-3 8.3E-3
kyo (I/mol/min) 4.52E5 4.49E5 4.55E5
Ep1 (cal/mol) 1.74E3 1.59E3 1.91E3
Epa (cal/mol) 6.11E2 4.93E2 7.58E2

Yp0 0.89 0.86 0.92

k41 (L/mol/min) 5.53 5.28 5.79

Yd 2.69 2.59 2.80

ks (L/mol/min) 0.58 0.55 0.60
kio (L/mol/min) 6.84E3 6.79E3 6.89E3
E, (cal/mol) 2.64E3 2.49E3 2.80E3
Tt 5.2E-4 3.7E-4 7.0E-4
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Table 5.7b. Correlation matrix for the parameter estimates

kao Ea Ya pr Epl Ep?. Ypo
ka0 1.00
E. 0.48 1.00
v | -0.06 -0.05 1.00
ko | -0.37 -0.06 0.09 1.00
E, -0.06 -0.19 0.11 0.16 1.00
Ep» -0.07 -0.32 0.20 0.12 0.77 1.00
Ypo 0.06 0.05 -0.98 -0.17 -0.11 -0.18 1.00
ka4, -0.31 -0.08 0.14 0.71 0.17 0.11 -0.15
Y4 0.19 0.05 -0.20 -0.51 -0.14 0.01 0.26
Kst -0.03 0.03 -0.30 0.12 -0.06 -0.01 0.20
keo -0.42 -0.07 0.12 0.96 0.15 0.15 -0.17
E, -0.06 -0.27 0.14 0.12 0.91 0.88 -0.13
Yt -4E-3 3E-3 -1E-3 7E-3 -0.01 -0.01 -0.02
kdl Yd ka ko E Tt
kaO
E.
1a
koo
Ep
Ep
Yp0
kq 1.00
va | -0.83 1.00
K -0.37 0.47 1.00
ko 0.71 -0.47 0.09 1.00
E 0.15 -0.11 -0.07 0.15 1.00
” -0.03 -0.04 0.07 3E-3 -0.01 1.00

Since the confidence interval for E;; did not include the estimate for E;» and the
pairwise correlation between those two estimates was not too high, both parameters were
kept in the model. The greatest pairwise correlations are between estimates of parameters
Y2 and Ypo (-0.98) and between estimates of parameters kpo and kg (0.96). The former

correlation is strongly negative since a decrease in the activation rate constants would
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require an increase in the propagation rate constants to maintain the same polymerization
rate. As for the latter positive correlation, the molecular weight is maintained by
increasing both kpo and k. Almost all of the estimated polydispersity values (Table 5.8)
are larger than the corresponding values from the fitted models at individual temperatures
(Table 5.6). As in Section 4.3.5, the observed polydispersity sample variances were
calculated according to equation 4.14 while the approximate 95% confidence intervals for
the observed polydispersity values v;/ere calculated according to equation 4.12. The
results of these calculations are shown in Table 5.8.

Table 5.8. Observed polydispersity values along with their approximate 95% confidence
intervals and corresponding estimated polydispersity values from the fitted non-

isothermal three-response model (Rp, M., and M . ) with two active site types and
monomer diffusion, assuming a known diagonal covariance matrix

62°C 70°C 78°C
Estimated Observed Estimated Observed Estimated Observed
432 5.68+1.54 421 474+ 1.34 4.15 550146
4.02 6.03£2.10 3.86 5.56 +1.57 411 486 +1.34
2.97 5.29+1.18 4.39 495+ 1.65 3.40 5.86£1.61
3.43 7.04+1.86 3.16 545+1.21 4.69 493+201
2.99 592+1.35 3.57 5.67+1.34 3.88 538+ 1.43
3.64 5.39+1.38 3.88 4.67+1.38 424 5.47 £2.33
3.66 5.90+1.37 3.89 432 +1.13 3.59 6.38 +2.50
4.05 5.57+1.57 3.94 5.65+1.59 421 5.53+2.67
343 5.54+1.85 3.88 5.40=1.87 4.66 5.37+£2.17
3.11 5.34+1.23 3.89 442 £1.21 4.4] 5.78 £2.46
3.13 6.13£1.72 4.30 6.40 £2.50 3.99 495+ 1.98
3.46 592+1.44 3.88 5.81 =203 3.91 6.25+2.21
3.46 6.04 £ 1.89 3.88 5.08+1.69 4.49 593+2.17
429 6.31+2.12 3.00 598 = 1.31 5.02 6.02 £2.50
3.64 6.42£2.12 3.88 541184 3.61 5.65+1.66
3.66 5.95+2.22 3.89 6.22+223 3.42 5.19+ 1.51

The two types of sites, non-isothermal three-response model greatly improved the
estimated polydispersities and was preferred to the one type of site, isothermal three-

response model (at 70°C, Section 4.3.5). 50% of the estimated polydispersity values fell

71



within the estimated 95% confidence interval for the corresponding observed
polydispersity values. Despite this substantial improvement this model still produced
estimated polydispersity values that were consistently lower than the corresponding
observed ones. Therefore, a centered Arrhenius relationship was applied to the chain
transfer rate constant, En. Since the 95% confidence interval for E,, (420, 1.7E5)
included the confidence interval for E; (2.9E3, 3.2E3) and no improvements were
observed in the estimated polydispersities, the parameter E,» (estimated value of 2.3E3)
was not included in the final model and the full results are not presented here. That is,

only one activation energy for the chain transfer rate constant, E,, was estimated.

Most of the polymerization rate data were fitted rather well (Appendix E) and the
fits are similar to those obtained by Shariati (1996). Figure 5.2 shows the fitted and

observed MWs. Although these results are superior to those from previous models, the

proposed model still had difficulty fitting both M . and M, simultaneously. The 95%
confidence intervals for the estimated parameters in Table 5.7a are all much smaller than
the corresponding 95% confidence intervals found in Shariati’s Tables 6.9 and 6.11,
indicating that the estimates of the current study are more precise. However, it was
concluded that non-isothermal, three-response model based on the kinetics from
Shariati’s two types of sites model was incapable of fitting the three-response variables
simultaneously, without a consistent bias. As mentioned in Section 2.3.2, Shariati (1996)
solved two single response models, one for the polymerization rate and the other for one
of the molecular weight response variables. [t is not always possible to separate a kinetic

model in such a manner (McAuley et al., 1990). The approach taken in this study could



be applied to different models that cannot be separated and fitted to missing data

structures.
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Figure 5.2 Fitted molecular weight response values for the non-isothermal three-response
model (R,, M ., and M ..) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (see Appendix B for operating conditions)



5.5 Model Validation

To test the predictive capabilities of the model, parameter estimation was carried
out with 30 experimental runs consisting of ten experimental runs randomly chosen from
each of the three temperature groups (see Appendix F). The results are presented in
Table 5.9. Using those estimated parameters the model equations were then solved to

predict response values for the remaining eighteen experimental runs.

Table 5.9. Parameter estimates for the model validation using 30 runs and a non-

isothermal three-response model (R, M. , and M = ) with two active site types and
monomer diffusion, assuming a known diagonal covariance matrix (GREG /Jevel 22)

Parameter Estimated value 95% confidence interval

ks0 (L/mol/min) 99.01 94.33 103.93
E. (cal/mol) 1.64E4 1.49E4 1.80E4
Ya 1.5E-2 1.2E-2 1.8E-2
kpo (L/mol/min) 4.76E5 4.72ES 4.81E5
E;1 (cal/mol) 2.51E3 2.30E3 2.74E3
E,> (cal/mol) 1.88E3 1.69E3 2.10E3

¥p0 0.52 0.47 0.58

ka1 (IL/mol/min) 6.34 6.00 6.70

Yd 0.99 0.92 1.07

ke (L/mol/min) 0.45 0.42 0.49
ko (L/mol/min) 6.48E3 6.42E3 6.55E3
E. (cal/mol) 3.60E3 3.40E3 3.82E3
Tt 2.6E-4 9.3E-5 5.0E-4

Figure 5.3 compares the predicted responses with the experimental values for two
runs in each temperature group. The predicted responses for each of the 18 experimental
runs are found in Appendix G. [t was not possible to obtain confidence intervals for the
predicted responses from GREG. Therefore, 95% confidence intervals for the observed
MW responses were calculated (equation (4.12)) and indicated on Figure G2. The fitted

model provides marginally acceptable predictions of the polymerization rate data.
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Figure 5.3. Three-response predictions for two experimental runs at cach temperature group
(62, 70, and 78°C) (see Appendix B for operating conditions)
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Figure 5.3. Three-response predictions for two experimental runs at each temperature group
(62, 70, and 78°C), continued (sec Appendix B for operating conditions)
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As anticipated, the fitted model had some difficulty in predicting both M. and M,. In

this case M. is consistently overpredicted. The estimate of the chain transfer rate
constant obtained from the 30 experimental runs used to fit the model (present Section) is

lower, for all temperature groups, than the estimate obtained from the 48 experimental

runs (Section 5.4) (k,, =6.48E3 exp —3.6E3 (-[—* L ‘] and
R T 343
k. =684E3 expl:—2.653 [ % _‘%):I, respectively). With a lower k; the polymer

chains propagate for a longer period of time and, consequently, a higher M. and a

higher M . are obtained.
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Chapter 6: Conclusions and Recommendations

Experimental data from Ziegler-Natta catalyzed ethylene homopolymerization

reactions were fitted by various models and estimates of kinetic rate constants were

obtained. From the successful parameter estimations using a missing data structure, the

following conclusions can be made:

Reactor operating data and product property data, collected at different times and
frequencies during each experimental run, can be combined for parameter estimation
using a missing data structure.

Even with a severe missing data structure (5760 polymerization rate observations, 48
weight average molecular weight observations, and 48 number average molecular
weight observations), significant estimates were obtained for 13 parameters in a
proposed three-response model that described the non-isothermal behavior of a
Ziegler-Natta catalyst with two types of sites and monomer diffusion.

The two highest pairwise correlations between parameters in this model (kpo with kg
and v, with yy0) were found to be between parameters that should be correlated on
physical grounds. Increasing both ko and ki could maintain a constant molecular and
increasing y. while decreasing y,o could maintain a constant polymerization rate.

The fitted model was deemed to be capable of predicting polymerization rates but had
difficulty predicting both weight average molecular weights and number average
molecular weights simultaneously. The estimated polydispersity values were

consistently lower than the corresponding observed polydispersity values. Only 50%
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of the estimated polydispersity values fell within the approximate 95% confidence
intervals for the corresponding observed polydispersity values.

Transformations of all rate constants were necessary to avoid negative estimates and
to provide appropriate scaling in the isothermal and non-isothermal models with two
types of sites and monomer diffusion.

There is not enough information in the data used in this thesis to estimate certain
parameters in the two types of sites models. For example, only one spontaneous
deactivation rate constant (ksq) could be found for both types of sites in the isothermal
single-response model with two types of sites and monomer diffusion. Furthermore,
two parameters (kquh, ksg) were found to be unnecessary in the isothermal and non-
isothermal three-response models with two types of sites and monomer diffusion, as
their values, along with the terms with which they were involved in the differential

equations, were extremely small.

The following recommendations are made for future work:
The number of potential active sites should be determined experimentally in order to
avoid the need to estimate it since it is highly correlated with the propagation rate
constant.
An analysis of the MWDs should be conducted to determine the number of types of
catalyst sites present in the Ziegler-Natta catalyst used. If there are more than two
types of sites, the model should be modified to include all site types. This should

produce better fits to the product property data.
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Modifications should be made to the reactor to enable polymer samples to be
removed during an experimental run. Removing even a few samples during each
experimental run and analyzing them to determine their product properties would
diminish the severity of the missing data structure and improve the fits of the
proposed models. This option would be less costly than running experimental runs
for various lengths of time to characterize the polymer properties.

The proposed model could be expanded to take into account all of the information in

the molecular weight distribution (MWD). Since M. and M, are just two values
obtained from a MWD, a complete MWD would provide a more accurate picture of

the molecular weight behavior.
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Nomenclature

[A] Cocatalyst concentration, mol/L

C Number of potential active sites, mol

Cq Deactivated catalyst site, mol

Coj’ Number of active sites of type j without monomer attached, mol
Dm Diffusivity constant for monomer diffusion, cm >/min

Dy Dead polymer chain of length n, mol

E Activation energy, cal/mol

e’ Transposed error vector

€ui Errors for response i at time u (Yui - {(X4;,0))

F Objective function

f(xu,0) Model evaluated at the values of independent variables for time u
G Objective function

[H] Hydrogen concentration, mol/L

Kqj Activation rate constant for active sites of type j, L/mol min
kan Rate constant for activation by hydrogen, L/mol min

k. Transformation rate constant, min™

Kgj Deactivation rate constant for active sites of type j, L/mol min
k; Pseudo-rate constant of active center formation, s

ky; Propagation rate constant for active sites of type j, L/mol min
K pi Pseudo-rate constant for species i, i=1,2, min” p31

Ksqj Spontaneous deactivation rate constant for active sites of type j , min™
ke Site transformation rate constant, L/mol min

K Chain transfer rate constant for active sites of type j, L/mol min
ko Rate constant at centering temperature

(0,Z}Y) Likelihood function

m Total number of responses

(M] Monomer concentration, mol/L

[(M] Average monomer concentration, mol/L

Mo [nitial monomer concentration, mol/L

M. Catalyst load, mg

M, Number average molecular weight, g/mol

M, Weight average molecular weight, g/mol

MW Molecular weight of ethylene (repeat unit)

M- z-average molecular weight, g/mol

n Number of experimental runs

N. Number of structural characteristics

n, Number of times response i is measured

No.i Number of points used in the MWD for run i

Nio [nitial molar mass of active species of type I, mol

p Number of parameters

P Pressure, pst

> P: Concentration of active sites, mol

p(8,X) Prior density function



p(0.2]Y)

Posterior density function

p(0,Y™ |Y™?) Marginal density distribution

R Universal gas constant, cal/mol/K

Ip Radius of polymer particles, cm

R, Rate of polymerization, mol/min

sge) or S(¢) Objective function

si Sample variance for response 1

t Time, min

T Temperature, K

To Reference temperature, K

U Bartlett’s test statistic

Xy Independent variables for time u

Yy Measured response j at time u

w Weighting matrix

zZ; Axial position for temperature measurement i

Greek Symbols

o Armijo constant

Sij Element ij from the unit matrix

§; Weighting coefficient

dMwWD Weighting coefficient

Av,; Activation volume, m*/mol

3 Fisher’s information matrix

Yi Ratio of k;> to k;;, where i can be replaced by a, d, p, or t

C Proportionality constant (equation 4.6), mol/mg-catalyst

A Relaxation factor (for GREG)

A Live moment of the MWD, mol

A Dead moment of the MWD, mol

Pp Density of polyethylene, 960 g/L

oi Variance for response i

ol Element of the inverse of the covariance matrix with i 2 j

z Covariance matrix

! Inverse covariance matrix

2y Covariance matrix obtained from X by inserting unit matrix element &;
when either Y,; or Y, is missing

0 Model parameter vector

0. Current value of the parameter vector

0, Frequency factor

L Degrees of freedom

Ljj Sums of squares and cross products of errors

10 Vector of the model parameters and covariance matrix elements

Weight fraction of polymer in the k™ fraction of the MWD



ACRONYMS

ATOL
BNDLW
BNDUP
CHMAX
CSTR
DDASAC
‘exp’
GPC
GREG
HPD
IDPROB
INFO()
IR

‘mod’
MWD
NMR

PD
RPTOL
RSTOL
RTOL
TEA
TREF

Absolute tolerance

Lower boundary

Upper boundary

Maximum allowable change

Continuously-stirred-tank reactor

Double precision Differential-Algebraic Sensitivity Analysis Code
Experimental

Gel permeation chromatography

Generalized REGression analysis FORTRAN 77 subroutine
Highest posterior density

Problem identification variable

Variables set by the user in DDASAC

Infrared spectroscopy

Model

Molecular weight distribution

Nuclear magnetic resonance

Polydispersity (My/ My)

Step size tolerance

Objective function tolerance

Relative tolerance

Triethylaluminum

Temperature-rising elution fractionation
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Appendix A: GREG Maodification

The following modification was made to the original GREG code in order to use
DDASAC at level 22. In the subroutine GREG2X there is an IF statement which reads as
follows:

[FITNO.EQ.1.OR.(NOT.ALLFDD).AND.IDPROB.NE.2) THEN
The condition “.AND.IDPROB.NE.2” was removed from the IF statement since the
model equations are solved numerically with DDASAC and IDPROB is equal to 2

(Section 3.3).

Furthermore, the results given at /leve/ 22 do not include the observations, fitted
values, or residuals for the response variables. In order to display those values, a
COMMON statement is required to pass the fitted values from the MODEL subroutine to
the main program. The following lines were added in the main program after the call to

the GREG subroutine:

IF (LEVEL.EQ.22) THEN
DO 191 K=1,NRESP
WRITE(LUN,192) K
192 FORMAT(/5X,RESPONSE: ',13,/13X,OBSERVED VALUES',
+ 8X,'PREDICTIONS',10X,'/RESIDUALS)
DO 193 [=],NEXP
INDEX = K+(I-1)*NRESP
IF(PRE(K,[).NE.0.0D0) THEN
ERR = OBS(INDEX)-PRE(K,)
WRITE(LUN, 194) LOBS(INDEX),PRE(K,I),ERR

ENDIF
194 FORMAT(4X,16,3X,1PD13.7,8X,1PD14.8,8X,1PD14.6)
193 CONTINUE
191 CONTINUE

ENDIF
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Appendix B. Polymerization conditions for ethylene homopolymerization

experiments

Appendix Bl. Polymerization conditions for the experimental runs at 62°C

Monomer |Hydrogen Estimated
Catalyst Partial Partial Particle |Potential
Load Cocatalyst |Pressure |{Pressure [Size Active

Run (mg) Load (mL) |(atm) (atm) (Bm) Sites (mol)
A020 8.2 1.5 226 0.36 325 5.8E-07
A025 12.0 0.9 2.26 0.36 325 8.5E-07
A026 12.1 0.9 1.36 0.12 325 8.5E-07
A029 12.0 0.9 2.26 0.20 177 8.5E-07
AQ031 8.0 0.9 1.36 0.12 177 5.6E-07
AQ34 12.0 1.5 2.26 0.20 325 8.5E-07
A037 8.0 1.5 2.26 0.20 177 5.6E-07
A040 8.0 0.9 2.26 0.36 177 5.6E-07
A042 12.0 0.9 1.36 0.20 177 8.5E-07
A043 12.0 L.5 1.36 0.12 177 8.5E-07
A050 8.0 1.5 1.36 0.12 325 5.6E-07
A053 8.0 0.9 2.26 0.20 325 5.6E-07
A054 8.0 0.9 1.36 0.20 325 5.6E-07
A055 12.0 1.5 2.26 0.36 177 8.5E-07
A0S58 12.0 1.5 1.36 0.20 325 8.5E-07
A061 8.0 1.5 1.36 0.20 177 5.6E-07
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Appendix B. Polymerization conditions for ethylene homopolymerization

experiments

Appendix B2. Polymerization conditions for the experimental runs at 70°C

Monomer |Hydrogen Estimated
Catalyst Partial Partial Particle |Potential
Load Cocatalyst|Pressure Pressure |[Size Active

Run (mg) Load (mL)|(atm) (atm) (Hm) Sites (mol)
A023 10.1 20 2.0 0.24 250 7.1E-07
AQ24 14.9 1.2 2.0 0.24 250 1.1E-06
AQ035 10.0 1.2 2.0 0.40 250 7.1E-07
A036 10.0 1.2 1.0 0.12 250 7.1E-07
A038 9.9 0.4 2.0 0.24 250 7.0E-07
A039 10.0 1.2 2.0 0.24 250 7.1E-07
A045 10.1 1.2 2.0 0.24 420 7.1E-07
A048 5.3 1.2 2.0 0.24 250 3.7E-07
A049 10.0 1.2 2.0 0.24 250 7.1E-07
A056 9.9 1.2 2.0 0.24 250 7.0E-07
A057 10.0 1.2 3.0 0.36 250 7.1E-07
A059 10.0 1.2 2.0 0.24 125 7.1E-07
AQ60 10.0 1.2 2.0 0.24 250 7.1E-07
A064 10.0 1.2 2.0 0.10 250 7.1E-07
A065 10.0 1.2 2.0 0.24 250 7.1E-07
AQ69 9.9 1.2 2.0 0.24 250 7.0E-07
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Appendix B. Polymerization conditions for ethylene homopolymerization
experiments

Appendix B3. Polymerization conditions for the experimental runs at 78°C

Monomer |Hydrogen Estimated
Catalyst Partial Partial Particle |[Potential
Load Cocatalyst |Pressure |Pressure |Size Active

Run (mg) Load (mL) {(atm) (atm) (Hm) Sites (mol)
A021 8.4 1.5 2.72 0.24 325 5.9E-07
A022 12.0 1.5 2.72 0.24 177 8.5E-07
A027 12.0 0.9 1.63 0.15 177 8.5E-07
A028 8.2 1.5 2.72 0.44 177 5.8E-07
A030 12.0 0.9 2.72 0.24 325 8.5E-07
A032 8.0 1.5 1.63 0.26 325 5.6E-07
A033 12.0 1.5 1.63 0.15 325 8.5E-07
A041 12.0 1.5 1.63 0.26 177 8.5E-07
AQ44 12.3 1.5 2.72 0.44 325 8.7E-07
AQ46 8.2 0.9 2.72 0.44 325 5.8E-07
A047 7.9 0.9 1.63 0.26 177 5.6E-07
A051 8.0 0.9 2.72 0.24 177 5.6E-07
AQ062 12.0 0.9 1.63 0.26 325 8.5E-07
A063 12.0 0.9 2.72 0.44 177 8.5E-07
AQ66 8.0 1.5 1.63 0.15 177 5.6E-07
A068 8.1 0.9 1.63 0.15 325 5.7E-07




Appendix C
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Figure CI. Fitted and observed polymerization rate values for the single response model

with one type

of site and no monomer diffusion at 70°C
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Figure C1. Fitted and observed polymerization rate values for the single response model

with one type of site and no monomer diffusion at 70°C (continued)
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Figure C1. Fitted and observed polymerization rate values for the single response model

with one type of site and no monomer diffusion at 70°C (continued)



Appendix D

Appendix D1. Correlation matrix for the parameter estimates from a single response
model at 70°C with two types of sites and monomer diffusion (corresponding to Table

5.3a)
Parameter | ka Ya kal Yd ko1 Yp Ksd Kan Kst
Kat 1.00
Ya -0.04 | 1.00
Ka -0.08 | 0.13 | 1.00
Yd -0.03 | 0.84 | -026 | 1.00
K1 -046 | -008 | -025 | 0.21 | 1.00
Y 0.13 | -0.81 | 0.18 | -0.90 | -0.33 [ 1.00
Kea 009 | -0.62 | 0.60 | -0.88 | -040 | 0.77 | 1.00
Kan 005 | 035 | -0.83 | 0.65 | 0.40 [ -0.68 | -0.86 | 1.00
kq -0.16 | -094 | 0.06 | -086 | 022 | 0.72 | 0.67 | -0.41 | 1.00

Appendix D2. Correlation matrix for the parameter estimates from a single response
model at 62°C with two types of sites and monomer diffusion (corresponding to Table

5.3b)
Parameter ka; Ya kq; Yd kp 1 Yp Ksa Kan Kst
ka 1.00
Ya 036 | 1.00
kai -0.41 | -0.28 1.00
Yd -0.16 | 0.76 | -0.49 | 1.00
Kp1 -0.67 | 0.40 0.66 0.18 1.00
Yo 0.63 | -0.79 | -0.09 | -0.37 | -0.56 | 1.00
Ksq -0.31 | -0.25 | 0.55 | -0.66 | 0.20 | -0.34 | 1.00
Kan 0.42 | -0.88 | 0.27 | -0.88 | -0.41 | 0.74 | -0.86 1.00
kg -0.19 | 0.34 | -042 ; 0.70 0.01 | -0.22 | 0.67 | -0.71 1.00




Appendix E
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Figure E1. Fitted polymerization rate response values for the non-isothermal three-response
model (R;, M,, and M,,) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (620C)
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Figure E1. Fitted polymerization rate response values for the non-isothermal three-response
model (R, M,, and M,;) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (62°C, continued)
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Figure E1. Fitted polymerization rate response values for the non-isothermal three-response
model (R, M,, and M,)) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (62°C, continued)
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Appendix E

Run A023 ‘ Run A024
2.0E-02 2.5E-02
1.5E-02 2.0E-02
1.5E-02
L.0E-02 1.0E-02
5.0E-03 5.0E-03
0.0E+00 0.0E+00
0 20 40 60 0 20 40 60
¢ Observed — Fitted ¢ Observed — Fitted
Run A035 Run A036
2.0E-02 1.0E-02
1.5E-02 8.0E-8§ .
6.0E-
.0E-02 4.0E-03
5.0E-03 2.0E-03
0.0E+0Q0 ' 0.0E+00
0 20 40 60 0 20 40 60
. Observed —— Fitted ¢ Observed ———Firted—
Run A038 Run A039
2.0E-02 2.0E-02
1.5E-02 1.5E-02
1.0E-02 1.0E-02
5.0E-03 5.0E-03
0.0E+00 0.0E+QO0
0 20 40 60 0 20 40 60
+ Observed — Fitted o Observed —— Fitted

Figure E1. Fitted polymerization rate response values for the non-isothermal three-response
model (R, Mn, and M) with two active site types and monomer diffusion. assuming a

known diagonal covariance matrix (70°C)
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Figure E 1. Fitted polymerization rate response values for the non-isothermal three-response
model (R,, Mn, and M,,) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (70°C, continued)
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Figure El. Fitted polymerization rate response values for the non-isothermal three-response
model (R, Mn, and M,,) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (70°C, continued)
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Appendix E
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Figure El. Fitted polymerization rate response values for the non-isothermal three-response
model (R,, M,, and M,,) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (78°C)
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Figure El. Fitted polymerization rate response values for the non-isothermal three-response
model (R, M,, and M,,) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (78°C, continued)
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Figure El. Fitted polymerization rate response values for the non-isothermai three-response
model (R;, My, and M,;) with two active site types and monomer diffusion, assuming a

known diagonal covariance matrix (78°C, continued)



Appendix F

The following were the experimental runs used to estimate the
model parameters in Section 5.5.

62°C 70°C 78°C
A025 AQ023 AQ021
A026 A024 AQ27
AO031 AQ36 A028
A034 A038 A032
A037 A039 A044
A042 A045 A046
A043 A048 A047
A050 A060 A062
AQ0S3 A064 A066
A054 A069 A068

The remaining eighteen experimental runs were used for the
response predictions.

62°C 70°C 78°C
A020 A035 A022
A029 A049 A030
A040 A056 A033
A055 A057 A041
A058 A059 A051
A061 A065 A063
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Appendix G
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Figure Gl. Predicted polymerization rate values for the non-isothermal three-response

model (R, M. , and H..-) with monomer diffusion, assuming a known diagonal
covariance matrix (62°C)
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Figure G1l. Predicted polyrnerlzatlon rate values for the non-isothermal three-response

model (R;, M. ,and M w ) with monomer diffusion, assuming a known diagonal
covariance matrix (62°C, continued)
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Figure Gl. Predicted polymerization rate values for the non-isothermal three-response

model (R, M. , and M « ) with monomer diffusion, assuming a known diagonal
covariance matrix (70°C)
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Figure Gl. Predicted polymerization rate values for the non-isothermal three-response

model (R, M., ,and M ..) with monomer diffusion, assuming a known diagonal
covariance matrix (70°C, continued)
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Figure G1. Predicted polymerization rate values for the non-isothermal three-response

model (R, M. , and A—/I..,) with monomer diffusion, assuming a known diagonal
covariance matrix (78°C)
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Figure Gl. Predicted polymerization rate values for the non-isothermal three-response

model (R;, Ma ,and M .) with monomer diffusion, assuming a known diagonal
covariance matrix (78°C, continued)
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Appendix G
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Figure G2. Predicted molecular weight values for the non-isothermal three-response

model (R,, M., and M . ) with monomer diffusion, assuming a known diagonal
covariance matrix
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