
Single-Ferroelectric FET based Associative Memory
for Data-Intensive Pattern Matching

Abstract—Content addressable memories (CAMs) embeds par-
allel associative search directly into the memory blocks, thus
finding widespread utility in associative memory (AM) related
applications. To accommodate increasing demands of data-
intensive search tasks, various efforts have been devoted to
enhancing CAM density. These endeavors include the use of
non-volatile memory (NVM) devices with compact structures
and capitalizing on the multi-level cell (MLC) characteristics
of NVM devices. In this work, we present a novel single-
FeFET based CAM design, complemented by a 2-step search
scheme. This design achieves ultra-compact storage density and
supports dual CAM operations: binary/ternary CAM search
for Hamming distance computations and multi-bit CAM for
exact associative searches. Both binary/ternary CAM and multi-
bit CAM operations have been illustrated and validated, and
the area per bit, search latency and energy metrics have been
evaluated at array level. In genome sequencing applications using
hyperdimensional computing paradigm, our single-FeFET based
AM engine achieves 89.9x/71.9x speedup and 66.5x/30.7x energy
efficiency improvement over GPU implementations.

Index Terms—content addressable memory, ferroelectric field
effect transistor, associative memory, pattern matching

I. INTRODUCTION

The exponentially growth in data generation and processing,
driven by emerging computing models and tasks in edge
devices and data centers, necessitates efficient computing
hardware platforms. However, current mainstream digital com-
puters, based on Von Neumann architectures, suffer from sig-
nificant energy and performance costs due to the memory wall
issues caused by substantial data transfer between memory and
processors. Various solutions have been proposed to address
the bottleneck, and one effective approach is compute-in-
memory (CiM), which embeds memory-centric computations
directly into memory blocks. This mitigates data movement,
improving the performance and energy computing [1]–[9].

One type of CiM primitives employs content addressable
memories (CAMs), which seamlessly integrate parallel asso-
ciative search operations into the memory. CAMs find wide
applications in associative memory (AM) related tasks such as
inference and learning in artificial intelligence models [10]–
[13] as shown in Fig. 1(a). They generate exact search results,
determining whether stored words exactly match the query.
Beyond exact search, CAMs have evolved to support approxi-
mate search, enabling parallel similarity computations between
stored words and input query based on various distance met-
rics, such as Hamming distance and Euclidean distance [14]–
[17]. This approximate search capability makes CAM as an
ideal hardware for accelerating hyperdimensional computing
(HDC) based pattern matching applications, including genome
sequencing, image classification, speech cognition, etc. [18],
[19]. HDC models encode classes into orthogonal hyper-
vectors within high-dimension space, and transform complex
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Fig. 1: Overview of CAM based associative search. (a) CAM
array can perform exact search and approximate search in
parallel. (b) An example of approximate search as associative
memory in hyperdimensional computing.

sequential pattern matching into parallel Hamming distance
computations. HDC inference involves computing Hamming
distances between class hypervectors and input query (Fig.
1(b)), highly aligning with CAM engines [20], [21].

As data volumes continue to increase, high density CAM
arrays are essential to accommodate data-intensive computing
tasks. CAMs can be categorized based on the bit number of
their stored value, including binary CAM (BCAM), ternary
CAM (TCAM) with a wildcard state, multi-bit CAM (MCAM)
for multi-bit values, and analog CAM (ACAM) for arbitrary
value ranges [22]–[29]. Conventional CMOS based CAM
designs typically utilize 10 transistors to store a binary value
in static random access memory (SRAM) or 16 transistors
to store a ternary value (’0’, ’1’ and ’don’t care’) in an
SRAM pair. More compact CAM designs have been built by
leveraging the non-volatile storage properties of NVM devices,
including two-terminal NVMs such as resistive random access
memory (ReRAM), phase change memory (PCM), magnetic
tunneling junctions (MTJ), and three-terminal devices like
Spin-torque-transfer magnetic random access memory (STT-
MRAM) and ferroelectric field effect transistor (FeFET).
These designs frequently employ device pairs to store com-
plementary bits or wildcard bits, significantly reducing the
device count per cell. Recently, multi-level cell (MLC) char-
acteristics of NVM devices have been explored to expand
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Fig. 2: (a) FeFET structure and polarization states after memory write pulses. (b) Schematic of 1FeFET and 1FeFET1R TCAM
cells. (c) FeFET ID-VG curves for 60 different devices. The ON currents of 1FeFET1R cells are limited by resistors. (d)
Existing CAM designs in terms of CAM bit density. The proposed 1FeFET based CAM design achieves the highest density.

beyond BCAM and TCAM designs. Notable examples include
6T-2R MCAM/ACAM utilizing the tunable conductance of
ReRAMs [24] and FeFET based MCAM/ACAM utilizing the
programmable threshold voltage states of FeFETs [25], [30].

That said, the aforementioned MCAM/ACAM designs typ-
ically require at least two active NVM devices, leaving the
opportunity for denser and more energy efficient CAM designs
unexplored. In this paper, we propose an ultra-compact CAM
design that supports both BCAM and MCAM functions using
just a single FeFET. We leverage the FeFET’s single-transistor
AND logic and voltage-driven MLC characteristics to achieve
the dual functions. With our proposed 2-step search scheme,
this single-FeFET based CAM design can function as a
BCAM, performing parallel Hamming distance computations
between stored entries and input query. Alternatively, it can
operate as an MCAM, storing and searching multi-bit value for
improved density. Such universal search-in-memory capability
opens doors to applications in data-intensive tasks, particularly
HDC based pattern matching for genome sequencing. We
demonstrate the operation principles and functionality of this
design, and also evaluate the area and performance metrics.
Benchmarking results in HDC based genome sequencing tasks
as AM engines show that our single-FeFET approach achieves
89.9x/71.9x speedup and 66.5x/30.7x higher energy efficiency
compared to state-of-the-art DNA alignment tools.

II. BACKGROUND

In this section, we first introduce FeFET basics including
the device and model, and then review existing BCAM and
MCAM designs based on FeFET and other NVM devices.

A. FeFET Basics
FeFETs stand out as a promising emerging device candidate

for embedded memory and low power CiM designs due to their
CMOS-compatibility and efficient voltage driven read and
write mechanisms. Fig. 2(a) illustrates the device structure that
integrates HfO2 ferroelectric (FE) layers into the gate stack.
By applying positive or negative gate pulses to the device’s
gate, the ferroelectric polarization states within the FE layer
are switched accordingly/partially. This switching behavior
results in single-level cell (SLC) and MLC characteristics
as depicted in Fig. 2(c). Moreover, recent innovations have
included the integration of a series resistor at the drain of
the FeFET (Fig. 2(b) [31]). This enhancement effectively
mitigates device-to-device variability of FeFET ON current
(Fig. 2(c)), substantially reducing sensing errors caused by

current variations. Therefore, we adopt 1FeFET-1R structure
for our CAM design. The programmed MLC states can be read
by applying a read bias and measuring the conduction current.
Thanks to the voltage-driven write/read operation and three-
terminal structure, which separates the write and read paths,
FeFETs exhibit superior energy efficiency and more compact
design methodology compared to other NVM devices [32].

We employ the Preisach FeFET model [33] which has been
calibrated using experimental data for both device and circuit
simulations. The Preisach model combines the responses of
multiple FE domains and incorporates an underlying MOSFET
model to characterize the hysteresis characteristics observed
within partially polarized FE states. By applying gate voltage
pulses with varying widths, FeFET model exhibits MLC
curves calibrated by experiments, as shown in Fig. 2. In this
paper, we leverage MLC FeFET model to build our proposed
ultra-compact single FeFET CAM design.

B. Existing CAM Designs
Besides the matrix multiplications commonly used in neural

networks, there’s a fundamental need for parallel associative
search and distance computations across memory blocks in
various inference or leaning tasks. As a special type of CiM
primitives, CAM designs have constantly evolved from binary
CAM (BCAM) and ternary CAM (TCAM) to multi-bit CAM
(MCAM) and analog CAM (ACAM), as depicted in Fig. 2(d).
These CAM designs aim to enhance data storage density by
leveraging the compact and MLC properties of non-volatile
memory (NVM) devices. Most existing CAMs are BCAMs,
which store binary values in a CAM cell and perform bit-
wise XNOR logic to implement word-wise search operations.
TCAMs, in additional to binary values, store a wildcard value,
representing a ’don’t care’ state. Traditional CMOS based
BCAM/TCAM cells comprise 10T/16T, incurring substantial
power and area overheads [34], [35]. Compact and energy
efficient BCAM and TCAM designs have been built using
ReRAM and STT-MRAM devices. A 2T-2R TCAM design
cell [36] utilizes binary states stored in memristor devices
to represent logic values, while a 10T-4MTJ TCAM design
[37] delivers rapid search operations. Nevertheless, both NVM
based CAM designs still suffer from high write and search
energy due to low variable resistance, low high-resistance-
state (HRS)/low-resistance-state (LRS) ratios, and large access
transistor or complex sensing circuitry needed for current-
driven write and read mechanisms. FeFETs have emerged



as a solution to the challenges faced by other two-terminal
NVMs, owing to their high ON/OFF ratio, high OFF resistance
and three-terminal structure. A compact CAM cell based on
two FeFETs has been extensively studied [22], exhibiting
improved energy efficiency, area per bit and search latency
over conventional CMOS based and other NVM based CAMs.
Moreover, the 2FeFET based CAM design has been employed
as an associative memory kernel for Hamming distance com-
putations, augmenting various emerging learning models [15].

To further enhance the density of BCAM and TCAM
designs, the MLC characteristics of NVM devices have been
leveraged in several recently reported MCAM/ACAM designs.
These designs store multi-level/analog values in cells and con-
duct searches for multi-level/analog queries. A ReRAM based
6T-2R structure utilizes the MLC and programmable con-
ductance properties of ReRAM devices to construct MCAM
and ACAM within the same structure [24]. However, such
design improves the bit density at the cost of extra tran-
sistors to facilitate MCAM and ACAM functions. The 2Fe-
FET BCAM/TCAM cell structure, known as FeCAM [25],
achieves both MCAM and ACAM search by leveraging the
programmable threshold voltage states within the FeFET de-
vices. Nevertheless, the analog voltage conversion necessitates
energy consuming analog inverter circuitry. The 2FeFET-1T
MCAM design from [26] eliminates the need for analog
conversion by dividing the two FeFETs into NOR-type and
NAND-type matchline (ML) structures. However, the separate
ML branches require two sense amplifiers for independent ML
sensing and are sensitive to device variations. The 3T-1FeFET
MCAM cell employs a single FeFET [38] to simplify associ-
ated write and read circuitry, yet the structure suffers from high
energy consumption due to static currents via sensing lines
upon a mismatch. Another concept of a single FeFET based
CAM design has been demonstrated by leveraging ambipolar
ferroelectric tunnel FinFET devices, which exhibit ambipolar
conduction currents [39], achieving the most compact CAM.
However, the asymmetric ambipolar branches severely degrade
the search function, as asymmetric currents resulting from
mismatches lead to accumulated current overlaps [27]. In
this work, we propose a single FeFET CAM design that
fully harnesses the FeFET’s MLC properties. This design
supports both BCAM based Hamming distance computations
and MCAM based searches, demonstrating superior density,
energy efficiency and robustness over other dense CAM ef-
forts.

III. SINGLE FEFET BASED CAM

Here we introduce the proposed single-FeFET CAM which
can perform both BCAM and MCAM functions. We introduce
the operation principles of BCAM and MCAM, as well as the
current-domain sense amplifier (SA).

A. Binary CAM for Hamming Distance Computation
The proposed BCAM design consists of an 1FeFET1R

structure per cell, and adopts our proposed 2-step search
scheme to achieve the parallel associative search function. As
shown in Fig. 3, the proposed CAM array connects the FeFETs
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Fig. 3: 2-step search in the 1FeFET BCAM.

in parallel, with all drains connected to matchline (ML). Per
the FeFET characteristic shown in Fig. 3, value ’0’/’1’ can be
programmed into FeFET as the high/low threshold voltage VTH
(i.e., HVT/LVT), and three search voltages, i.e., VSL1 below
the LVT VTH1, VSL2 between the LVT VTH1 and HVT VTH2,
and VSL3 above HVT VTH2, are used for the 2-step scheme. In
the first step, VTH1 is applied at the FeFET gate for searching
’0’, and VTH2 is applied at the gate for searching ’1’. When
FeFETs storing ’0’/’1’ are applied with VSL1/VSL2, denoted
as St0Sr0/St1Sr1, a match occurs, resulting in a negligible
ML current IML since the applied two search voltages are
below their respective stored VTHs. When one or more FeFETs
storing ’0’ are applied with VSL2 for searching ’1’, denoted
as St0Sr1, a mismatch occurs, resulting in a high IML since
the applied search voltage turns on the FeFETs with the LVT
state. In this step, the mismatch case St0Sr1 is identified, and
the number of mismatch cells NSt0Sr1 is linearly proportional
to IML. The Hamming distance calculated in this step, i.e.,
NSt0Sr1 can be determined by the ML current IMLS1:

IMLS1 = ION × NSt0Sr1. (1)

In the second search step, VSL2, and VSL3 are applied to the
FeFET gates for searching ’0’ and ’1’, respectively, as shown
in Fig. 3. As a result, two match cases when FeFETs storing
’0’ are applied with VSL2 (denoted as St0Sr0), and FeFETs
storing ’1’ are applied with VSL3 (denoted as St1Sr1), and one
mismatch case when FeFETs storing ’0’ are applied with VSL3
(denoted as St0Sr1), will all conduct ON currents of FeFETs.
The other mismatch case when FeFETs storing ’1’ are applied
with VSL2 (denoted as St1Sr0) induces a negligible low current
since VSL2 is below HVT. In this step, the sensing ML current
IMLS2 is linearly proportional to the total number of two match
cases St0Sr0, St1Sr1 and one mismatch case St0Sr1:
IMLS2 = ION×(NSt0Sr1+NSt0Sr0+NSt1Sr1) = ION×(Ntotal−NSt1Sr0)

(2)
where N total is the number of cells. Therefore, the Hamming

distance between the stored word and search query, i.e., the
total number of mismatch cells

Nmismatch = NSt0Sr1 + NSt1Sr0 ∝ IMLS1 − IMLS2 (3)

As can be seen, the BCAM design functions well with
the 1FeFET1R structure, as the series resistor current limiter
significantly suppresses the variability of FeFET’s ON current
and mitigates its dependency on gate voltage VG, making our
proposed design robust to device variations.
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B. Multi-bit CAM for Exact Search
Our proposed single FeFET based CAM can also enable

MCAM function, improving the data density. Similar to the
search voltage and stored threshold voltage configurations,
in the first step, the search voltages that are below VTH
identifies the mismatch cells with stored VTH, and in the
second step, the search voltages above VTH identifies the
mismatch cells with stored VTH. Upon a match, ML currents
in the two steps IMLS1/ IMLS2 will be low/high. Specifically,
IMLS2 is roughly ION×N total. Such scheme enables only exact
search functionality, while hamming distance computation is
infeasible in MCAM. Nevertheless, the design is scalable
depending on the number of distinct VTH states FeFETs store.

Detailed operation principle of MCAM mode is illustrated
as below, taking 2-bit per cell as an example. Without loss
of generality, all cells store value ’01’ corresponding to the
second lowest VTH state, the search voltages encoding the
query values ’00’, ’01’, ’10’, ’11’ are applied to the gates of
FeFET cells, respectively, as shown in Fig. 4. In the first step, a
search voltage i.e., VSL3l, that is below the VTH corresponding
to value ’10’ and above the VTH corresponding to value ’01’,
is applied to search query value ’10’. Then the mismatch cells
that are applied by the search voltages above their stored VTH
states, i.e., the voltages searching for ’10’, ’11’, will conduct
high ON currents ION. In the second step, for searching value
’10’, a search voltage, i.e., VSL3h, above the VTH corresponding
to value ’10’, and below the VTH corresponding to value ’11’,
is applied. Then the mismatch cells that are applied by the
search voltages below their stored VTH states, i.e., the voltages
searching for ’00’, will yield a low current, and all other
cells will conduct high ON currents. The total ML current can
determine whether such mismatch cells exist. As can be seen
from above illustration, an exact match occurs only when the
ML current is low in the first step, and linearly proportional
to the number of cells, i.e., IML≈ION×N total, in the second
step. Other ML currents in the two steps indicate a mismatch
condition. The proposed MCAM operation then completes.

C. Current-Domain Sense Amplifier
To support both BCAM and MCAM operations of our pro-

posed single-FeFET based CAM, we adopt a current-domain
thermometer-code analog-to-digital converter (ADC) as the
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Fig. 5: (a) Schematic of thermometer-code ADC. (b) Output
waveforms with varying Hamming distances.

sense amplifier (SA) to measure the ML currents in the 2-
step scheme. The SA consists of a reference current generator
for Iref and a ladder-style current-to-voltage converter. Each
converter of a word connects to its ML. The SA converts the
ML current into voltage output as shown in Fig. 5. If the ML
current IML from a CAM word is less than Iref, the ladder-style
current mirrors maintain high voltage at their drains, as the
serial connected NMOS transistors conduct negligible current.
If IML exceeds Iref, the voltage at the first ladder current
mirror’s drain quickly drops down, activating the associated
NMOS transistor and drawing excess current IML-Iref. In this
case, the output at the first ladder becomes high. As IML
continues to grow and exceed two folds of Iref, following the
same principle, the output at the second ladder grows to high.
Such ladder-style current-to-voltage conversion repeats for all
ladders. Simulation results validate that the SA can detect the
Hamming distance of the CAM word.

When the proposed design works in BCAM mode, the SA
senses the currents of the 2-step scheme and calculate the
Hamming distance between the input query and the stored
words as discussed in Sec. III-A. When the design works in
MCAM mode, the output of the SA directly indicates the
match and mismatch results. We build the proposed CAM
array with the SA for performance evaluations.

IV. EVALUATIONS

In this section, the proposed CAM design is evaluated and
benchmarked in AM based HDC applications.

A. Function Validation
To validate the proposed single-FeFET based CAM design,

simulations were conducted using a SPICE Monte Carlo
method. Preisach FeFET model incorporating experimentally
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Fig. 6: 1FeFET CAM word functional verification. The ML
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word indicate successful operations.

extracted device variations is employed for FeFETs, and pre-
dicted technology model (PTM) 45nm is used for MOSFETs
[40]. An array with 64 wordlength is built for verification.

The Hamming distance computation of 1FeFET BCAM
design is validated under two scenarios, where all cells store
either ’0’ or ’1’. The worst mismatch case is verified, where
only one bit mismatch exists within the stored word. Per Fig.
6(a), the BCAM remains robust in the first search step. In the
second step, thanks to the 1FeFET-1R structure, clear decision
boundaries between different mismatch conditions can be
defined to enable reliable Hamming distance computations.

We also validated the exact search function of the MCAM
array with 64 cells per word. Without loss of generality, all
cells store 2bit value ’01’, and the worst mismatch case is
considered. Fig. 6(b) shows the output current distributions of
the CAM word in the four cases. Only when all cells match
with the input query, can the word ML currents are low in
the first step and high in the second step. The mismatch cell
upon a search value (i.e., ’10’/’11’) above the stored state
(i.e., ’01’) results in an ON current in the first step, while the
mismatch cell upon a search value (i.e., ’00’) below the stored
state results in a less ML current in the second step. All these
cases fail to meet the match conditions in the 2-step scheme.

B. Performance Evaluation
The single-FeFET based CAM design is evaluated in terms

of area per bit, search latency and energy metrics. Fig. 7(a)
shows the CAM density scaling trends based on various
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step with different hamming distance thresholds.

emerging devices and CMOS technology. As can be seen,
CAM schematic gradually evolves to 2T-2R and 2FeFET cells,
which require only 2 devices. Our single-FeFET based CAM
design ultimately provides the most compact cell and universal
BCAM and MCAM functions. The MCAM mode further
improves the density, achieving at least double density of the
prior 2FeFET MCAM design [25].

Fig. 7(b)(c) demonstrates the search latency and energy of
our CAM design regarding varying Hamming distances. The
series resistor Rs is set to 1MΩ, and the search latency is
defined as the time point when SA detects the maximum Ham-
ming distance. The ladder-style ADC SA generates the voltage
outputs in serial, thus the search latency and energy exhibit
linearity to the number of ADC stages, i.e., the maximum
Hamming distance or wordlength, which is consistent with
Fig. 7. The latency can be reduced by adopting parallel ADC
design, with more area and energy overheads [41].

C. Benchmarking on HDC
Our single-FeFET based CAM is further benchmarked in

HDC genome sequencing tasks as AM kernels. Associative
searches are widely used in genome sequencing, where a query
DNA sequence comprising A, C, G, T nucleotide bases is
searched across a long reference string to detect the presence
of query sequence, and accelerate DNA alignment [42]. In the
HDC architecture, the CAM array is integrated with Tensor-
Flow and evaluated via a cycle-accurate simulator [43] given
the array level performance. The overall HDC architecture is
comprised of 32 tiles, each containing 128 512x512 CAM
memory blocks. The genome database sequences from E.coli
[44], Human CHR14 [44] and COVID-19 [45] are stored in
the CAM blocks, and a genome query is searched across
multiple CAMs in parallel. Hamming distance computations
within a threshold are performed by CAMs to detect the closest
reference sequences to the query. Fig. 8 suggests that our
CAM based AM engine achieves on average 89.9X/71.9X and
66.5X/30.7X performance and energy efficiency improvements
over state-of-the-art alignment tools NVBIO/GPU-BLAST
[46]. This benchmarking highlights that our proposed single-
FeFET based CAM design can be exploited for efficient AM
engines, leveraging its high density and energy efficiency.

V. CONCLUSION

We propose a novel ultra-compact single-FeFET based
CAM design that supports both BCAM and MCAM functions.
The proposed 2-step search scheme encodes the binary and
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Fig. 8: (a) Overall flow of HDC for DNA genome sequencing. (b) 1FeFET CAM array architecture.(c) Speedup and energy
saving compared with GPU.

multi-bit values into search voltage and stored threshold states,
enabling high CAM density with efficient Hamming distance
computations and multi-bit search function. Our work paves a
way towards better AM engine for pattern matching tasks.

REFERENCES

[1] A. Sebastian et al., “Memory devices and applications for in-memory
computing,” Nature nanotechnology, vol. 15, pp. 529–544, 2020.

[2] Z. Yan et al., “Computing-in-memory neural network accelerators for
safety-critical systems: Can small device variations be disastrous?” in
IEEE ICCAD, 2022, pp. 1–9.

[3] Q. Huang et al., “Fefet based in-memory hyperdimensional encoding
design,” IEEE TCAD, 2023.

[4] Z. Xu et al., “Ferex: A reconfigurable design of multi-bit fer-
roelectric compute-in-memory for nearest neighbor search,” arXiv
preprint:2401.05708, 2024.

[5] Y. Zhou et al., “Low power and temperature-resilient compute-in-
memory based on subthreshold-fefet,” arXiv preprint:2312.17442, 2023.

[6] W. Ye et al., “Aging aware retraining for memristor-based neuromorphic
computing,” in IEEE ISCAS, 2022, pp. 3294–3298.

[7] Y. Wei et al., “Imga: Efficient in-memory graph convolution network
aggregation with data flow optimizations,” IEEE TCAD, 2023.

[8] D. Gao et al., “Brocom: A bayesian framework for robust computing
on memristor crossbar,” IEEE TCAD, 2022.

[9] X. Yin et al., “A ferroelectric compute-in-memory annealer for combi-
natorial optimization problems,” arXiv preprint:2309.13853, 2023.

[10] X. S. Hu et al., “In-memory computing with associative memories: A
cross-layer perspective,” in IEEE IEDM, 2021, pp. 25–2.

[11] X. Yin et al., “An ultracompact single-ferroelectric field-effect transistor
binary and multibit associative search engine,” AIS, 2023.

[12] C.-K. Liu et al., “Cosime: Fefet based associative memory for in-
memory cosine similarity search,” in IEEE/ACM ICCAD, 2022.

[13] C. Zhuo et al., “Design of ultra-compact content addressable memory
exploiting 1t-1mtj cell,” IEEE TCAD, 2022.

[14] A. Kazemi et al., “Fefet multi-bit content-addressable memories for in-
memory nearest neighbor search,” IEEE TC, 2021.

[15] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-
shot learning,” Nature Electronics, 2019.

[16] L. Liu et al., “A reconfigurable fefet content addressable memory for
multi-state hamming distance,” IEEE TCAS-I, 2023.

[17] Q. Huang et al., “A fefet-based time-domain associative memory for
multi-bit similarity computation,” in DATE, 2024.

[18] A. Hernández-Cano et al., “Reghd: Robust and efficient regression in
hyper-dimensional learning system,” in IEEE DAC, 2021, pp. 7–12.

[19] P. Poduval et al., “Cognitive correlative encoding for genome sequence
matching in hyperdimensional system,” in IEEE DAC, 2021, pp. 781–
786.

[20] M. Imani et al., “Searchd: A memory-centric hyperdimensional com-
puting with stochastic training,” IEEE TCAD, vol. 39, pp. 2422–2433,
2019.

[21] Q. Huang et al., “Computing-in-memory using ferroelectrics: From
single-to multi-input logic,” IEEE D&T, vol. 39, pp. 56–64, 2021.

[22] X. Yin et al., “An ultra-dense 2fefet tcam design based on a multi-
domain fefet model,” IEEE TCAS-II, vol. 66, pp. 1577–1581, 2018.

[23] X. Yin et al., “Ferroelectric ternary content addressable memories for
energy-efficient associative search,” IEEE TCAD, vol. 42, pp. 1099–
1112, 2022.

[24] C. Li et al., “Analog content-addressable memories with memristors,”
Nature communications, vol. 11, p. 1638, 2020.

[25] X. Yin et al., “Fecam: A universal compact digital and analog content
addressable memory using ferroelectric,” IEEE TED, vol. 67, pp. 2785–
2792, 2020.

[26] C. Li et al., “A scalable design of multi-bit ferroelectric content
addressable memory for data-centric computing,” in IEEE IEDM, 2020.

[27] H. Xu et al., “On the challenges and design mitigations of single
transistor ferroelectric content addressable memory,” IEEE EDL, 2023.

[28] J. Cai et al., “Energy efficient data search design and optimization based
on a compact ferroelectric fet content addressable memory,” in IEEE
DAC, 2022, pp. 751–756.

[29] S. Shou et al., “See-mcam: Scalable multi-bit fefet content addressable
memories for energy efficient associative search,” in IEEE/ACM ICCAD,
2023.

[30] X. Yin et al., “Deep random forest with ferroelectric analog content
addressable memory,” arXiv preprint:2110.02495, 2021.

[31] T. Soliman et al., “Ultra-low power flexible precision fefet based analog
in-memory computing,” in IEEE IEDM, 2020.

[32] S. Salahuddin et al., “The era of hyper-scaling in electronics,” Nature
Electronics, vol. 1, pp. 442–450, 2018.

[33] K. Ni et al., “A circuit compatible accurate compact model for
ferroelectric-fets,” in IEEE VLSI, 2018, pp. 131–132.

[34] A. T. Do et al., “Design of a power-efficient cam using automated
background checking scheme for small match line swing,” in IEEE
ESSCIRC, 2013, pp. 209–212.

[35] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(cam) circuits and architectures: A tutorial and survey,” IEEE JSSC,
vol. 41, pp. 712–727, 2006.

[36] J. Li et al., “1mb 0.41 µm 2 2t-2r cell nonvolatile tcam with two-bit
encoding and clocked self-referenced sensing,” in IEEE VLSI, 2013, pp.
C104–C105.

[37] C. Wang et al., “Design of magnetic non-volatile tcam with priority-
decision in memory technology for high speed, low power, and high
reliability,” IEEE TCAS-I, vol. 67, no. 2, pp. 464–474, 2019.

[38] R. Rajaei et al., “Compact single-phase-search multistate content-
addressable memory design using one fefet/cell,” IEEE TED, vol. 68,
pp. 109–117, 2020.

[39] J. Luo et al., “A novel ambipolar ferroelectric tunnel finfet based content
addressable memory with ultra-low hardware cost and high energy
efficiency for machine learning,” in VLSI Technology and Circuits.
IEEE, 2022, pp. 226–227.

[40] R. Vattikonda et al., “Modeling and minimization of pmos nbti effect
for robust nanometer design,” in IEEE DAC, 2006.

[41] H. Jiang et al., “Analog-to-digital converter design exploration for
compute-in-memory accelerators,” IEEE D&T, 2021.

[42] C. Camacho et al., “Blast+: architecture and applications,” BMC bioin-
formatics, vol. 10, pp. 1–9, 2009.

[43] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ACM/IEEE ISCA, 2019, pp.
802–815.

[44] “NIH National Library of Medicine,” https://www.ncbi.nlm.nih.gov/sars-
cov-2/.

[45] “NIH SARS-COV-2 Data,” https://www.ncbi.nlm.nih.gov/datasets/docs/command-
line-virus/.

[46] P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics processors
to accelerate protein sequence alignment,” Bioinformatics, vol. 27, no. 2,
pp. 182–188, 2011.


