

Actuator Line

General catalogue

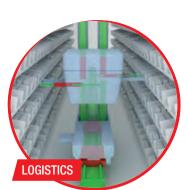
English

Interactive catalogs on: www.rollon.com

ROLLON

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization


ROBOTICS

For over 45 years, Rollon has adopted an approach entailing responsibility and ethics in the design and production of our linear motion solutions for different industrial sectors. The reliability of an international technology group has now been combined with the availability of a local support and service network

VALUES

Rollon's goal is to help our clients become more competitive in their markets through technological solutions, design simplification, productivity, reliability, duration, and low maintenance. PERFORMANCE

COLLABORATION

High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

> Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

> > MEDICAL

SPECIAL VEHICLES

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails

Linear Line

Linear and curved rails with ball and roller bearings, with hardened raceways, high load capacity, self-alignment, and capable of working in dirty environments.

Telescopic Line

Telescopic rails with ball and roller bearings, with hardened raceways, high load capacities, low bending, resistant to shocks and vibrations. For partial, total or extended extraction up to 200% of the length of the guide.

Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Content

Plus System

Technical features overview

1 ELM series	
ELM series description	PLS-2
The components	PLS-3
The linear motion system, The new driving head	PLS-4
ELM 50	PLS-5
ELM 65	PLS-6
ELM 80	PLS-7
ELM 110	PLS-8
Lubrication	PLS-9
Simple shaft versiont	PLS-10
Hollow shafts	PLS-11
Linear units parallel, Accessories	PLS-12
Ordering key	PLS-15

2 ROBOT series

ROBOT series description	PLS-16
The components	PLS-17
The linear motion system, The new driving head	PLS-18
ROBOT 100	PLS-19
ROBOT 100 2C (Double independent carriage)	PLS-20
ROBOT 130	PLS-21
ROBOT 130 2C (Double independent carriage)	PLS-22
ROBOT 160	PLS-23
ROBOT 160 2C (Double independent carriage)	PLS-24
ROBOT 220	PLS-25
ROBOT 220 2C (Double independent carriage)	PLS-26
Lubrication	PLS-27
Simple shaft	PLS-28
Hollow shafts, Accessories	PLS-29
Ordering key	PLS-34

3 SC series

SC series description	PLS-35
The components	PLS-36
The linear motion system, The new driving head	PLS-37
SC 100	PLS-38
SC 130	PLS-39
SC 160	PLS-40
End-of-arm connecting plate, Lubrication	PLS-41
Hollow shafts, Arm extension	PLS-42
Accessories	PLS-43
Installation option	PLS-46
Ordering key	PLS-47
Multiaxis systems	PLS-48

Clean Room System

1 ONE series

1

2

3

ONE series description	CRS-2
The components	CRS-3
The linear motion system	CRS-4
ONE 50	CRS-5
ONE 65	CRS-6
ONE 80	CRS-7
ONE 110	CRS-8
Planetary gear	CRS-9
Accessories	CRS-10
Ordering key	CRS-12

Smart System

E-SMART series	
E-SMART series description	SS-2
The components	SS-3
The linear motion system, The driving heads	SS-4
E-SMART 30 SP2	SS-5
E-SMART 50 SP1 - SP2 - SP3	SS-6
E-SMART 80 SP1 - SP2	SS-7
E-SMART 80 SP3 - SP4	SS-8
E-SMART 100 SP1 - SP2	SS-9
E-SMART 100 SP3 - SP4	SS-10
Lubrication	SS-11
Simple shafts, Hollow sahft	SS-12
Linear units in parallel, Accessories	SS-13
Ordering key	SS-16
R-SMART series	
R-SMART series description	SS-17
The components	SS-18
The linear motion system, The driving heads	SS-19
R-SMART 120 SP4 - SP6	SS-20
R-SMART 160 SP4 - SP6	SS-21
R-SMART 220 SP4 - SP6	SS-22
Lubrication	SS-23
Simple shafts, Hollow shaft	SS-24
Accessories	SS-25
Ordering key	SS-29
S-SMART series	
S-SMART series description	SS-30
The components	SS-31
The linear motion system	SS-32
S-SMART 50 SP	SS-33
S-SMART 65 SP	SS-34
S-SMART 80 SP	SS-35
Lubrication	SS-36
Simple shafts, Hollow shaft	SS-37
Accessories	SS-38
Ordering key	SS-41
Multiaxis systems	SS-42

Eco System

1 ECO series

ECO series description	ES-2
The components	ES-3
The linear motion system	ES-4
ECO 60 SP2 - ECO 60 CI	ES-5
ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI	ES-6
ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI	ES-7
Lubrication	ES-8
Simple shafts, Hollow shafts	ES-9
Linear units in parallel, Accessories	ES-10
Ordering key	ES-13
Multiaxis systems	ES-14

Uniline System

1 Uniline A series Uniline A series description The components A40 A55 A75 Lubrication Accessories Ordering key	US-2 US-3 US-4 US-6 US-8 US-10 US-11 US-14
2 Uniline C series Uniline C series description The components C55 C75 Lubrication Accessories Ordering key	US-16 US-17 US-18 US-20 US-22 US-23 US-23
3 Uniline E series Uniline E series description The components E55 E75 Lubrication Accessories Ordering key	US-28 US-29 US-30 US-32 US-34 US-35 US-38
4 Uniline ED series Uniline ED series description The components ED75 Lubrication Accessories Ordering key	US-40 US-41 US-42 US-44 US-45 US-48
5 Uniline H series Uniline H series description The components	US-50 US-51

H40	US-52
H55	US-53
H75	US-54
Lubrication	US-55
Accessories	US-56
Ordering key	US-58
6 Belt tension	US-59
7 Installation instructions	US-60

Modline

	1 MCR/MCH series	
	MCR/MCH series description	ML-3
Modline	The components	ML-4
	The linear motion system	ML-5
-	MCR 65	ML-6
· 101	MCH 65	ML-7
	MCR 80	ML-8
The second secon	MCH 80	ML-9
16	MCR 105	ML-10
	MCH 105	ML-11
	Profile specifications	ML-12
	Linear units in parallel, Accessories	ML-13
	Insertable nuts and plates	ML-14
	Sensor brackets	ML-15
	Ordering key	ML-16
	2 TCR/TCS series	
	TCR/TCS series description	ML-17
	The components	ML-18
	The linear motion system	ML-19
	TCR 140	ML-20
	TCS 140	ML-21
	TCR 170	ML-22
	TCS 170	ML-23
	TCR 200	ML-24
	TCS 200	ML-25
	TCR 220	ML-26
	TCS 220	ML-27
	TCR 230	ML-28
	TCS 230	ML-29
	TCR 280	ML-30
	TCS 280	ML-31
	TCR 360	ML-32
	TCS 360	ML-33
	Lubrication	ML-34
	Accessories	ML-35
	Assembly brackets	ML-36 ML-37
	Alignment nuts	
	Ordering key	ML-38
	3 ZCR/ZCH series	
	ZCR/ZCH series description	ML-40
	The components	ML-41
	The linear motion system	ML-42
	ZCH 60	ML-43

ZCR 90	ML-44
ZCH 90	ML-45
ZCR 100	ML-46
ZCH 100	ML-47
ZCR 170	ML-48
ZCH 170	ML-49
ZCR 220	ML-50
ZCH 220	ML-51
Lubrication	ML-52
Accessories	ML-53
Alignment nuts	ML-54
Ordering key	ML-56

ML-57

Multiaxis systems

Precision System

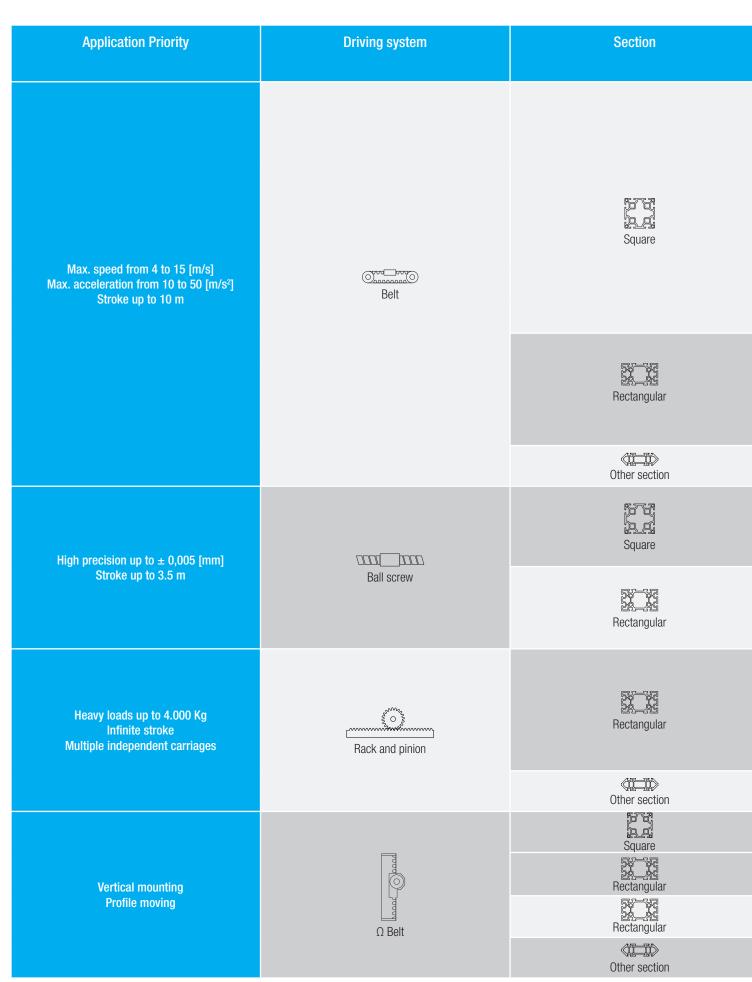
1 TH series

	TH series description		PS-2
	The components		PS-3
	TH 70 SP2		PS-4
	TH 70 SP4		PS-5
	TH 90 SP2		PS-6
	TH 90 SP4		PS-7
	TH 110 SP2		PS-8
	TH 110 SP4		PS-9
	TH 145 SP2		PS-10
	TH 145 SP4		PS-11
	Motor connections		PS-12
	Lubrication		PS-12
	Critical speed		PS-14
	Accessories		PS-15
	Ordering key		PS-21
2 T	T series		
	TT series description		PS-22
	The components		PS-23
	TT 100		PS-24
	TT 155		PS-26
	TT 225		PS-28
	TT 310		PS-30
	Lubrication		PS-32
	Accuracy certificate		PS-33
	Critical speed		PS-35
	Accessories		PS-36
			PS-40
	Ordering key		P 5 -40
3 T	V series		
	TV series description		PS-41
	The components		PS-42
	TV 60		PS-43
	TV 80		PS-44
	TV 110		PS-45
	Lubrication		PS-46
	Critical speed		PS-40
	-		
	Accessories		PS-48
	Ordering key		PS-50
4 T	VS series		
	TVS series description		PS-51
	The components		PS-52
	The linear motion system		PS-53
	TVS 170		PS-54
	TVS 220		PS-55
	Lubrication		PS-56
			PS-50 PS-57
	Critical speed		
	Accessories, Alignment nuts		PS-58
	Profile anchor brackets		PS-59
	Ordering key		PS-60
	Multiaxis systems	1	PS-61

Tecline Teclin

1 PAR/PAS series	
PAR/PAS series description	TL-3
The components	TL-4
The linear motion system	TL-5
PAR 170H	TL-6
PAS 170H	TL-7
PAR 220H	TL-8
PAS 220H	TL-9
PAR 220P	TL-10
PAS 220P	TL-11
PAR 230H	TL-12
PAS 230H	TL-13
PAR 280H	TL-14
PAS 280H	TL-15
PAR 280P	TL-16 TL-17
PAS 280P	
PAR 360H	TL-18
PAS 360H PAR 90V	TL-19
PAR 90V PAS 90V	TL-20 TL-21
PAS 90V PAS 100V	TL-21
PAS 160V PAS 140V	TL-22 TL-23
PAR 170V	TL-23
PAG 170V PAS 170V	TL-24
PAR 220V	TL-26
PAS 220V	TL-27
PAS 230V	TL-28
PAR 280V	TL-29
PAS 280V	TL-30
Z-Axis Extra stroke	TL-31
PAR Roller	TL-32
PAS Slider	TL-33
PAR/PAR	TL-34
PAS/PAS	TL-35
PAR/PAS	TL-36
Profile specification	TL-37
Accessory, Pinion / Racks helical tooth specifications	TL-41
Connections shafts	TL-42
Anti-drop safety device	TL-43
Safety lock-pin (stopper cylinder), Cable carrier	TL-44
Profile anchor brackets	TL-45
L-shaped brackets	TL-46
Threaded inserts	TL-49
Threaded inserts for 220/280/360 profiles	TL-50
Threaded inserts for 140/230 profiles	TL-51
Dovetail inserts for 140/230 profiles	TL-52
Lubrication of the rack and pinion driving system,	
Lubrication of the linear guide system	TL-54
	
Ordering key	TL-55
Multiaxis systems	TL-56
พนแนสมอ องอเอเทอ	11-30

🔼 Speedy Rail A



1 SAB series

SAB series description	SRA-2
The components	SRA-3
The linear motion system	SRA-4
SAB 60V	SRA-5
SAB 120VX	SRA-6
SAB 120VZ	SRA-7
SAB 120CX	SRA-8
SAB 120CZ	SRA-9
SAB 180V	SRA-10
SAB 180C	SRA-11
SAB 250C	SRA-12
Simple shaft version, Albero bisporgente tipo AS	SRA-13
Hollow shafts, Linear units in parallel	SRA-14
Accessories	SRA-15
Ordering key	SRA-18
2 ZSY series	
ZSY series description	SRA-19
The components	SRA-20
The linear motion system	SRA-21
ZSY 180V	SRA-22
Accessories	SRA-23
Ordering key	SRA-26
3 SAR series	
SAR series description	SRA-27
The components	SRA-28
The linear motion system	SRA-29
SAR 120V	SRA-30
SAR 120C	SRA-31
SAR 180C	SRA-32
SAR 250C	SRA-33
Rack specifications, Lubrication, Accessories	SRA-34
Ordering key	SRA-37

Static load and service life	SL-2
Static load and service life Uniline	SL-4
Warnings and legal notes	
Data sheet	

Pre-selection overview

* Optimal reliability in dirty environments thanks to plastic compound coated rollers

Protection		Rollon solution			
	Product Fai	mily	Product		
	Plus System	0	ELM		
Protected	Modline	· · · · · · · · · · · · · · · · · · ·	MCR/MCH with protection		
	Eco System		ECO		
Semi-protected	Modline	2	MCR/MCH		
	Uniline System	Fil	UNILINE		
Open	Smart System	0	E-SMART		
Protected with suction	Clean Room System	T	ONE		
Protected	Plus System	TOI	ROBOT		
Open	Smart System	0	R-SMART		
Open	Modline	- Clev	TCR/TCS		
Open*	Speedy Rail A		SAB		
			TV		
	Precision System		TVS		
Semi-protected			Π		
			TH		
			PAS		
Open	Tecline		PAR		
			PAS		
Open*	Speedy Rail A		SAR		
Semi-protected	Smart System	all and a second se	S-SMART		
Semi-protected	Plus System	1	SC		
Open	Modline	R.	ZCR/ZCH		
Open*	Speedy Rail A	1	ZSY		

Technical features overview

	Reference		Linear mot	ion system		Driving			Protostica
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
		ELM	Ţ		Open Deal				Protected
Plus System	KO	ROBOT	L]		Open Doy			•	Protected
	ſ	SC	LT.		Land Open			•	Semi-protected
Clean Room System	- And	ONE	IJ		Caraaaaaa			•	Protected with suction
	Carl I Co	E-SMART	Ţ		Ouronoodo				
Smart System	No.	R-SMART	IJ		Ouronoodo				
	10	S-SMART	IJ		laaad Open				Semi-protected
Eco System		EC0	IJ		Ouronanano)				Semi-protected
Uniline System		A/C/E/ED/H			Ouronanao Quadaaaaao				Semi-protected
	a a	MCR MCH	LT.		Ogod Bood			•	Semi-protected
Modline	-Oc	TCR TCS	(J)		Open Dov			•	
		ZCR ZCH	LT.		The second se			•	

 \checkmark

Reported data must be verified according to the application. * Longer stroke is available for jointed version

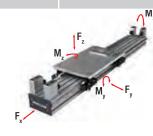
Size		Max. load capacity per carriage [N]		Max. static moment per carriage [Nm]			Max.	Max. acceleration	Repeatability	Max stroke	
	3126	F _x	F _y	Fz	M _x	M _y	M _z	speed [m/s]	[m/s ²]	accuracy [mm]	(per system) [mm]
	50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0.05	6130*
	100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0.05	6100*
	100-130-160	5810	153600	153600	13555	31104	31104	5	50	± 0.05	2500
	50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0.05	6000*
	30-50-80-100	4980	189200	189200	2680	19204	19204	4	50	± 0.05	6145*
	120-160-220	9960	283800	283800	24123	36894	36894	4	50	± 0.05	6050*
	50-65-80	2523	55400	55400	700	4044	4044	4	50	± 0.05	2000
	60-80-100	4565	55400	55400	700	5485	5485	5	50	± 0.05	6000*
	40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0.05	5700*
	65-80-105	3984	55400	55400	700	5983	5983	5	50	± 0.1	10100*
	140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0.1	11480
	60-90-100 170-220	7470	189200	189200	13665	38691	38691	4	25	± 0.1	2500

P L S

> C R S S S

E S U S

ML


Technical features overview

	Reference		Linear motion system		Driving			Anticorrosion	Protection
Р	roduct Family	Product	Balls	Rollers	Toothed belt	Ball Rack and screw pinion			
		ТН	IJ			<u>am</u> []mn			Semi-protected
Precision		TT	LT)			an(_)nn			Semi-protected
System		ΤV	(J)			ant ma			Semi-protected
	and the second s	TVS	(J)			uni jun		•	Semi-protected
Tecline		PAR PAS	(J)				Q	•	
		SAB							
Speedy Rail A	-	ZSY			anar Oppa				
	3. La	SAR					Q		

 \checkmark

Reported data must be verified according to the application. * Longer stroke is available for jointed version

Size -	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]			Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)
CILO	F _x	Fy	Fz	M _x	M _y	M _z	[m/s]	[m/s²]	[mm]	[mm]
70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500
100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000
60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000
170-220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500
90-100-140- 170-220-230- 280-360	10989	386400	386400	65688	159390	159390	3	6	± 0,05	10800*
60-120- 180-250	4980	5431	5431	558	597	644	15	10	± 0,2	7150
180	4980	2300	2600	188	806	713	8	8	± 0,2	6640
120-180-250	1905	7240	7240	744	1521	1521	3	10	± 0,15	7150*

Plus System

New Plus System

It simplifies the project, improves the perfomance and reduces the application cost: **8 main advantages.**

- Avoid costs related to engineering, manufacturing and testing a self-made solution.
- Eliminate all potential risks related to reliability and lack of warranties with one trusted partner.
- Focus your efforts on your core business.

High protection for dirty environments

A dedicated polyurethane sealing strip ensures complete protection against dust, dirt and other contaminants.

Optional pressurization system further reduces the ingress of contaminants.

Side cover bands protect the grooves (2 supplied as standard).

Resistant to corrosion

Optional stainless steel elements for applications in corrosive environments and/or subject to frequent washdown.

Hign versatility

The new re-designed driving head allows for assembly of the gearbox on either the left or the right side of the actuator, by means of a standard assembly kit.

High load capacity

Cor .

Highly engineered combination of recirculating ball guides and aluminum profile, extruded with elaborate geometries, allows for high stiffness and load capacity.

Plus System

New Plus System - SC

- Fixed carriage and movable profile for Z-Axes solutions, with omega belt driving system.
- Joinable extension to reach the desired length regardless of the stroke.
- Predisposition for assembling the clampling element.
- Monoblock and lightened driving head for greater precision, realiability and dynamics.
- Through passing profile protects the cables.
- Easy and fast assembly of accessories at the end of the arm improves productivity.

Ideal for multi-axes systems

A dedicated set of accessories allows easy assembly to achieve high performance X-Y-Z multiaxis systems.

ROBOT and SC series are designed to be compatible and assembled without the need for adapter plates.

Low maintenance

Special lubrication tanks ensure continuous greasing of the ball raceways up to 5000 km.

High productivity

High quality design ensures high dynamics with stressful duty cycles: speed up to 5 m/s, acceleration up to 50 m/s².

6

Good repeatability accuracy

7

Up to \pm 0.05 mm.

ELM series description

ELM

This is Rollon's highly versatile, premier line of completely enclosed belt driven linear actuators.

The ELM series linear units are available in four sizes: 50 - 65 - 80-110 mm. They have a self-supporting structure with a robust profile of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced, polyurethane belt. The moving carriage is guided and supported by a linear guide system.

A polyurethane sealing strip ensures complete protection of the belt drive and linear guide system against dust, dirt and other contaminants. It avoids the fragility of other sealing systems such as stainless steel strips.

The components used for linear motion and accessories promote a "maintenance-free" system. The pulleys, bearings and drive shafts are among the most robust in the industry. The ELM is the best product for applications in very aggressive working environments that also require high speed duty cycles and position repeatability.

Corrosion resistant version

ELM linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes. They are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of ELM series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below).The dimensional tolerances comply with EN 755-9 standard.

Driving belt

ELM series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

The carriage of the ELM series linear units are made of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through it, as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

ELM series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminates, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located inside the carriage. This minimizes resistance as the strip passes through the carriage while providing maximum protection.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	 mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655
						Tob 0

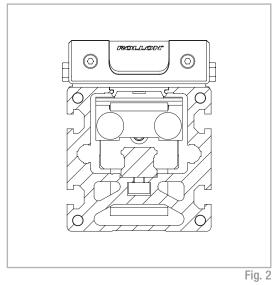
Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	HB
N 	N mm ²	%	—
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.


ELM with ball bearing guides

- A ball bearing guide with high load capacity is mounted in a dedicated seat inside the body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance free (depending on applications)
- Low noise

ELM section

The new driving head

The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on the ELM series linear actuators. With the new head, it is possible to assembly the gearbox on either the right or the left side of the actuator by means of a standard assembly kit.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. PLS-14.

The same logic is valid when mounting the shaft to connect two units in parallel.

ELM 50 Dimensions

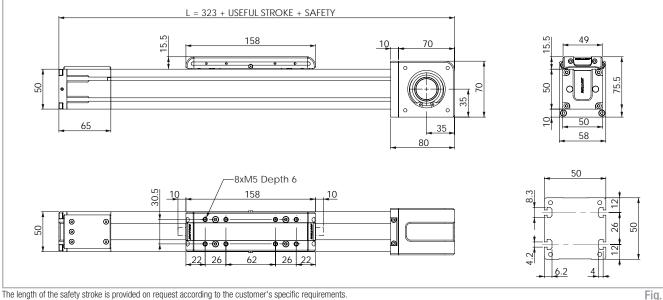


Fig. 3

Technical data

	Туре
	ELM 50
Max. useful stroke length [mm]*1	6130
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.48
Zero travel weight [kg]	2.278
Weight for 100 mm useful stroke [kg]	0.416
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g·mm ²]	30228
Rail size [mm]	12 mini
1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints	Tab. 4

*1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Load capacity

Туре	F _x [N]		F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.		
ELM 50	809	508	7060	6350	7060	46.2	233	233		
See verification under static load and lifetime on page SL-2 and SL-3										

Ρ L

S

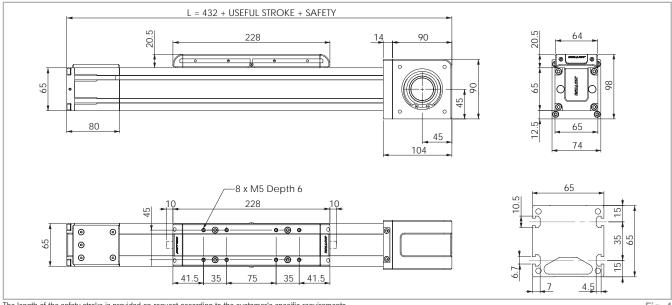
					- 1	I
woments	OT	inertia	OT	tne	aluminum	body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
ELM 50	0.025	0.031	0.056
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ELM 50	22 AT 5	22	0.072
			Tab. 6


Belt length (mm) = $2 \times L - 125$

Fy

Tab. 7

F_v in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

ELM 65 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

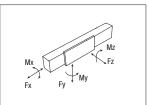
Technical data

	Туре
	ELM 65
Max. useful stroke length [mm]*1	6060
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	1.438
Zero travel weight [kg]	5.411
Weight for 100 mm useful stroke [kg]	0.589
Starting torque [Nm]	1.5
Moment of inertia of pulleys [g·mm²]	185496
Rail size [mm]	15
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab. 8

Moments of inertia of the aluminum body

1

	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ELM 65	0.060	0.086	0.146
			Tab. 9

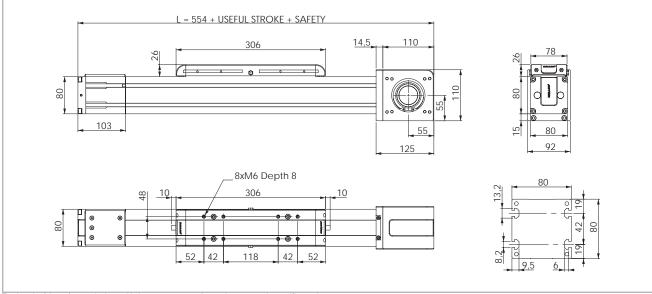

Driving belt

Туре

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ELM 65	32 AT 5	32	0.105
			Tab. 10

Belt length (mm) = $2 \times L - 175$


) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Load capacity

Туре	F [N	× V]	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 65	1344	883	48400	22541	48400	320	1376	1376
See verification under static	load and lifetim	ne on page SL	-2 and SL-3					Tab. 11

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

ELM 80 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

Technical data

	Туре
	ELM 80
Max. useful stroke length [mm]*1	5980
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	3.12
Zero travel weight [kg]	10.761
Weight for 100 mm useful stroke [kg]	1.02
Starting torque [Nm]	2.2
Moment of inertia of pulleys [g·mm²]	400064
Rail size [mm]	20
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab. 12

*2) Positioning repeatability is dependent on the type of transmission used

Load capacity

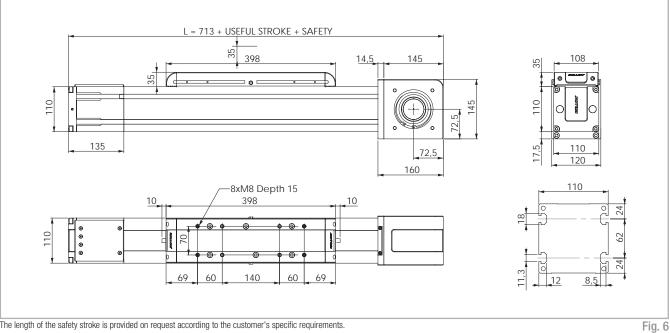
Туре	F [l	= ŇĴ	F [1	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 80	2258	1306	76800	35399	76800	722	5606	5606
See verification under static				the explication	the limit of transmittable to	raus of the obrink dials must b	a considered too (aco page Di	Tab. 15

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ELM 80	0.136	0.195	0.331
			Tab. 13

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ELM 80	32 AT 10	32	0.185
			Tab. 14

Belt length (mm) = 2 x L - 230

Fy

ELM 110 Dimensions

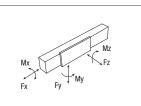
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ELM 110
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	6.82
Zero travel weight [kg]	23.898
Weight for 100 mm useful stroke [kg]	1.443
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g·mm²]	2.286·10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab. 16

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _p [10 ⁷ mm⁴]
ELM 110	0.446	0.609	1.054
			Tab. 17

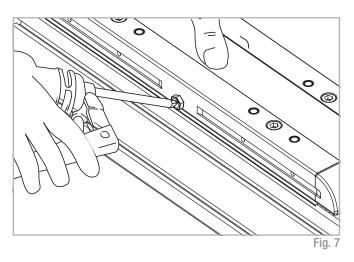
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]		
ELM 110	50 AT 10	50	0.290		
			Tab. 18		

Belt length (mm) = 2 x L - 280

Load capacity

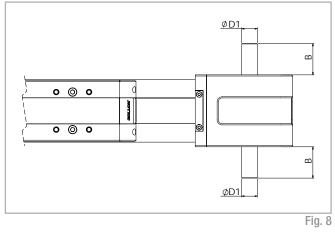

Loud oupdoily								
Туре	F []	: × V]	Р _у [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 110	4980	3300	129400	58416	129400	1392	11646	11646
See verification under static load and lifetime on page SL-2 and SL-3								

F_i in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

Lubrication

ELM Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

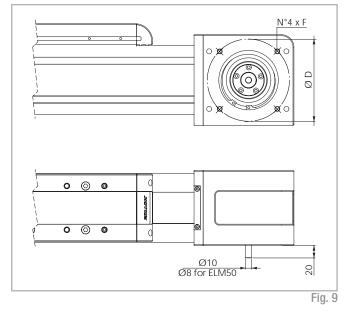

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for re-lubrication:

Туре	Unit: [cm³]
ELM 50	1
ELM 65	1.4
ELM 80	2.8
ELM 110	4.8
	Tab. 20

Simple shaft version

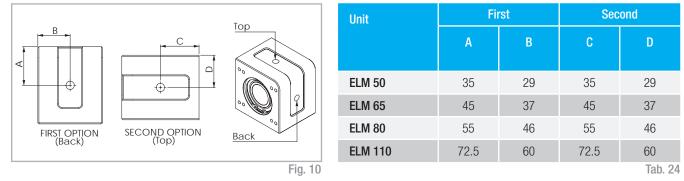
Simple shaft type AS


Unit	Shaft type	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7
			Tab. 21

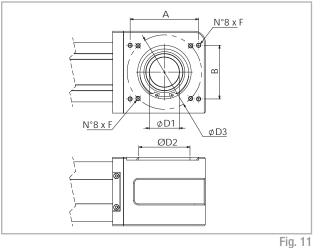
Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	В	D1	AS assembly kit code
ELM 50	AS 12	25	12h7	G002697
ELM 65	AS 15	35	15h7	G000851
ELM 80	AS 20	40	20h7	G002696
ELM 110	AS 25	50	25h7	G000649

Tab. 22


Simple shaft type AE 10 for encoder assembly + AS

Unit	Code kit AE	ØD	F
ELM 50	G002744	75	M5
ELM 65	G002592	96	M6
ELM 80	G002745	100	M6
ELM 110	G002370	130	M8
			Tab. 23


Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

Air Hole

Hollow shafts

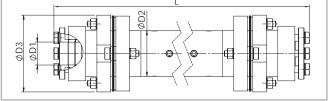
Hollow shaft

Dimensions (mm)

Appliable to unit	Shaft type	D1	D2	D3	A	В	F
ELM 50	FP 26	26 H7	47	75	-	-	M5
ELM 65	FP 34	34 H7	62	96	-	-	M6
ELM 80	FP 41	41 H7	72	100	92	72	M6
ELM 110	FP 50	50 H7	95	130	108.9	108.9	M8
							Tab. 25

L S

Linear units in parallel


Synchronization kit for use of ELM linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

Moment of inertia [g·mm²] C1 + C2 · (X-Y)

	C1	C2	Y	Weigh D1+D2	t [Kg] · · (X-Y)
	[g∙mm²]	[g·mm²]	[mm]	D1 [Kg]	D2 [Kg mm]
GK12P	61.456	69	166	0.308	0.00056
GK15P	906.928	464	210	2.28	0.00148
GK20P	1.014.968	464	250	2.48	0.00148
GK25P	5.525.250	4.708	356	6.24	0.0051

Tab. 26

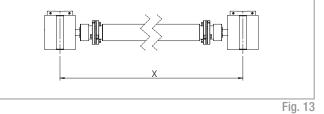
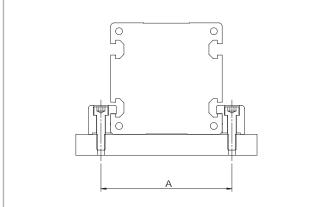


Fig. 12

Dimensions (mm)


Appliable to unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
ELM 50	AP 12	12	25	45	GK12P1A	L= X-73mm
ELM 65	AP 15	15	40	69.5	GK15P1A	L= X-90mm
ELM 80	AP 20	20	40	69.5	GK20P1A	L= X-116mm
ELM 110	AP 25	25	70	99	GK25P1A	L= X-162mm
						Tab. 27

Accessories >

Fixing by brackets

The linear motion system used for the ELM series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130
	Tab. 28

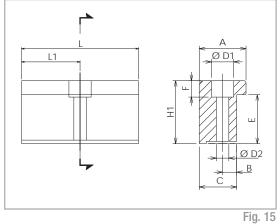
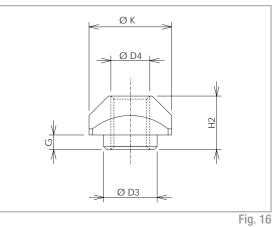

Warning:

Fig. 14

Do not fix the linear units through the drive ends.

PLS-12

Fixing brackets

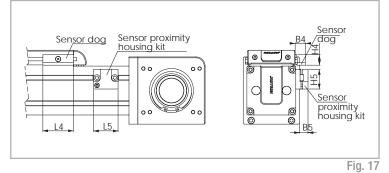

Dimensions (mm)

Unit	A	H1	В	С	E	F	D1	D2	L	L1	Code
ELM 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ELM 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ELM 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ELM 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233
											Tab. 29

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-slots of the body.

T-Nuts


Dimensions (mm)

Unit	D3	D4	G	H2	К	Code
ELM 50	-	M4	-	3.4	8	1001046
ELM 65	6.7	M5	2.3	6.5	10	1000627
ELM 80	8	M6	3.3	8.3	13	1000043
ELM 110	11	M8	2.8	10.8	17	1000932
						Tab. 30

T-nuts

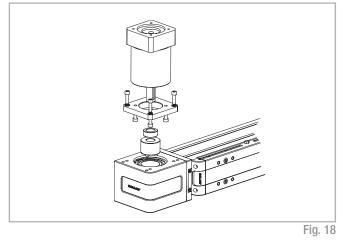
Steel nuts to be used in the T-slots of the body.

Proximity ELM

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog


L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Unit	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing kit code
ELM 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211
ELM 65	17.2	20	50	40	17	32	Ø 12	G003574	G000212
ELM 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ELM 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 31

Dimensions (mm)

Gearbox assembly kit

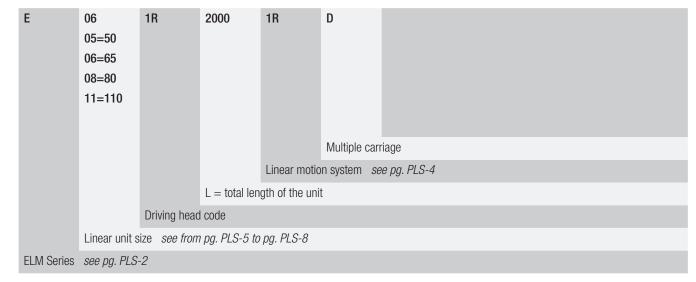
Codes on the table below refer to the gearbox assembly kit. The kit includes: shrink disk; adapter plate; fixing hardware.

Unit type	Gearbox type (not included)	Kit Code
ELM 50	MP060	G000566
ELIVI 50	LC050; PE2; NP005S	G001444
	MP080	G000529
	MP060; PLE060	G000531
ELM 65	SW030	G000748
	PE3; NP015S; LC070	G000530
	P3	G001162
ELM 80	P3	G000824
	MP080	G000826
	LC090; MPV01; NP025S; PE4	G000827
	MP105	G000830
	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	MP130	G000482
ELM 110	LC120; MPV02; NP035S; PE5; AE120	G000483
	LC090; NP025S; PE4; NP025S	G000525
	MP105	G000527
	SW050	G000717
	SP075; PLN090; P4; VRS075; AF075A	G000526
		Tab. 32

Single shrink disc

Codes on the table below refer to a shink disc ordered as single element.

Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
ELM 50	26	14x26	36	6005740
ELM 65	34	14x34	64	6005737
		16x34	73	6005738
		19x34	87	6005739
ELM 80	41	19x41	150	6005734
		22x41	174	6005735
		25x41	198	6005736
ELM 110	50	22x50	286	6005730
		25x50	324	6005731
		32x50	415	6005732


* Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 33 For the application, the limit of F_x must be considered too.

For other gearbox type ask Rollon

Configure Actuator

Identification codes for the ELM linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Ρ

L S

ROBOT series description

ROBOT

ROBOT 2C - Double indepedent carriage

Fig. 20

ROBOT

The ROBOT series is particularly well-suited for heavy load applications where significant carriage pitch, yaw or roll moments are applied. As a robust, high load choice, the ROBOT Series is the linear actuator for the most demanding applications.

Available in four sizes from 100 mm to 220 mm, the ROBOT series linear units have a rigid structure made by a heavy rectangular cross-section of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced polyurethane. The carriage is running on two parallel linear guides with four self-lubricated "maintenance-free" caged ball bearing blocks, positioned to support the carriage and all incident loads and moments. A polyurethane sealing strip ensures complete protection of the driving belt against dirt, chips, liquids and other contaminants.

The ROBOT series is the clear choice for heavy, high-speed, fluctuating load and moment applications in aggressive environments where repeatable, maintenance-free industrial automation is required.

ROBOT 2C

For all sizes of the ROBOT series a 2C version with 2 independent carriages is also available. Each carriage is driven by its own belt. The driving head can accomodate two gearboxes, one on each side. This solution is ideal for pick & place application or loading and unloading machine.

Corrosion resistant version

ROBOT linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes. They are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel, preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

S

The carriage of the ROBOT series linear units are made of anodized

aluminum. Each carriage has mounting holes fitted with stainless steel

thread inserts. Rollon offers multiple carriages to accommodate a vast

array of applications. The unique design of the carriage allows for the

sealing strip to pass through it, as well as house brush seals to remove

ROBOT series linear units are equipped with a polyurethane sealing strip

to protect all of the internal components from dust, contaminants, and

other foreign objects. The sealing strip runs the length of the body and is

kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of ROBOT series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The dimensional tolerances comply with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Driving belt

ROBOT series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with backlash-free pulleys, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The provision of guidance for the belt within the body causes it to run central on the pulley, there by ensuring long service life.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 34

Carriage

Sealing strip

contaminates from the sealing strip.

providing maximum protection.

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10-9	°C
dm ³	mm ²	K	m . K	kg . K	<u>52</u> .111.10 ⁻²	U
2.7	69	23	200	880-900	33	600-655

Tab. 35

Mechanical characteristics

Rm	Rp (02)	A	HB
N 	N mm ²	%	—
205	165	10	60-80

Tab. 36

>

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

ROBOT with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the body.
- The carriage is assembled on four pre-loaded ball bearing blocks.
- The four ball row configuration enable the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The lubrication reservoirs (pockets) fitted on the cages considerably decreases re-lubrication frequency. Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High bending permissible moments
- Low friction
- Long duration
- Maintenance free (dependent on application)
- Low noise

The new driving head

The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on ROBOT series linear actuators. With the new head, it is possible to assembly the gearbox on either the right or the left side of the actuator by means of a standard assembly kit.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. PLS-33.

The same logic is valid when mounting the shaft to connect two units in parallel.

The ROBOT-2C driving head can accomodate two gearboxes, one on each side, to control the two independent carriage. This distinctive feature requires that Rollon assembles the gearbox in-house prior the axis shipment. Please contact our Technical Department.

ROBOT section

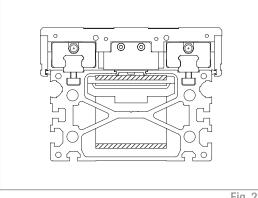
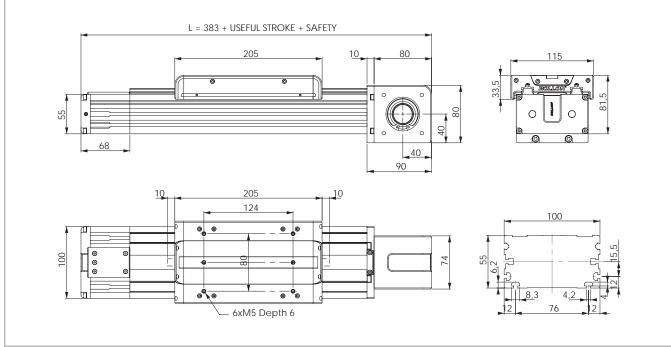



Fig. 22

ROBOT 100

ROBOT 100 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ROBOT 100
Max. useful stroke length [mm]	6100
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	1.489
Zero travel weight [kg]	5.372
Weight for 100 mm useful stroke [kg]	0.775
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g·mm ²]	40004
Rail size [mm]	15 mini
1) Positioning repeatability is dependent on the type of transmission used	Tab. 37

) Positioning repeatability is dependent on the type of transmis-

Load capacity

Туре	F [1	: × V]	F [M	: y 1]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100	1176	739	22800	21144	22800	775	1322	1322
See verification under static load and lifetime on page SL-2 and SL-3								

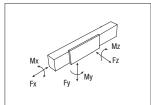
F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

L

S

Fig. 23

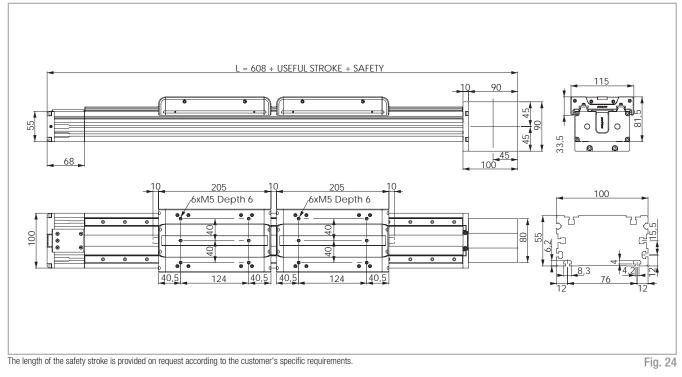
Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ROBOT 100	0.05	0.23	0.28
			Tab. 38

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 100	32 AT 5	32	0.105
			Tab. 39


Belt length (mm) = 2 x L - 105

.....

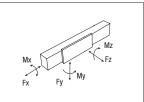
ROBOT 100 2C (Double independent carriage) >

ROBOT 100 2C Dimensions

Technical data

	Туре
	R0B0T 100 2C
Max. useful stroke length [mm]	5885
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	1.489
Zero travel weight [kg]	9.46
Weight for 100 mm useful stroke [kg]	0.775
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g·mm ²]	16220
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 41

Moments of inertia of the aluminum body

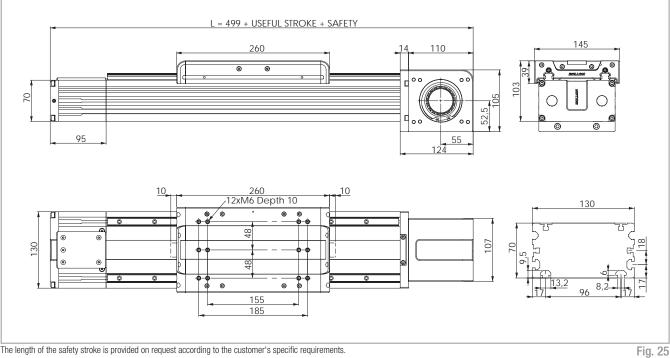

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100 2C	0.05	0.23	0.28
			Tab. 42

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 100 2C	16 AT 5	16	0.05
			Tab. 43

Belt length (mm) = 2 x L - 95 Two belts for each actuator.


Load capacity

Туре	F [1	: × V]	F [1	: v V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 2C	588	370	22800	21144	22800	775	1322	1322
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 44								

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

> **ROBOT 130**

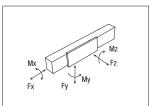
ROBOT 130 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ROBOT 130
Max. useful stroke length [mm]*1	6050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	3.75
Zero travel weight [kg]	12.545
Weight for 100 mm useful stroke [kg]	1.223
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g·mm ²]	360659
Rail size [mm]	15
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joi *2) Positioning repeatability is dependent on the type of transmission used	nts Tab. 45

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 46

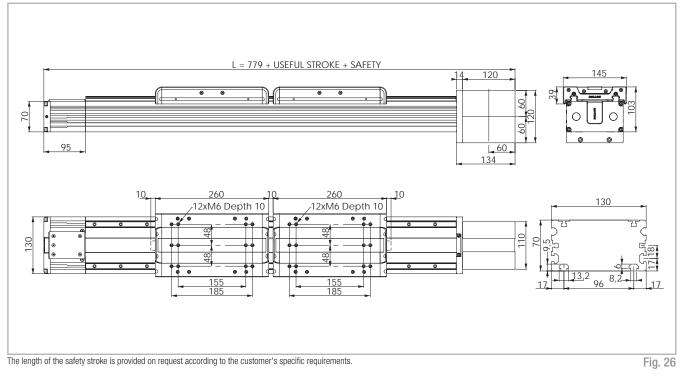
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 130	50 AT 10	50	0.29
			Tab. 47

Belt length (mm) = $2 \times L - 80$

Load capacity


_out oupdoily								
Туре	F _x [N]		F _y [N]		F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130	3112	1725	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

Tab. 48 PLS-21

ROBOT 130 2C (Double independent carriage) >

ROBOT 130 2C Dimensions

Technical data

	Туре
	R0B0T 130 2C
Max. useful stroke length [mm]*1	5780
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	3.75
Zero travel weight [kg]	18.813
Weight for 100 mm useful stroke [kg]	1.223
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g·mm ²]	196200
Rail size [mm]	15
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon jo	ints Tab. 49

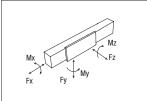
*2) Positioning repeatability is dependent on the type of transmission used

Load capacity

_out ouplion,								
Туре	F [N	: x 1]	F [1	: V Ú]	F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 2C	1556	862	96800	45082	96800	4646	6340	6340
See verification under static load	and lifetime on	page SL-2 ar	nd SL-3					Tab. 52

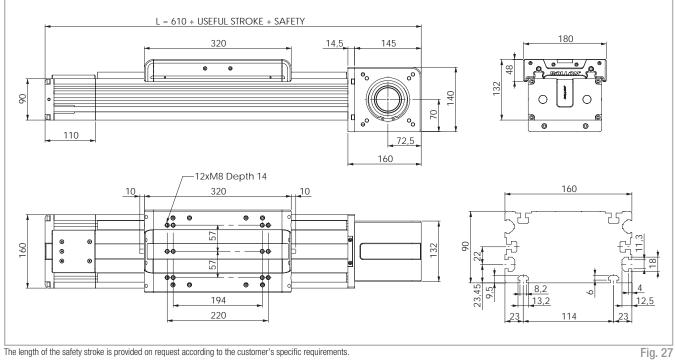
F₄ in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33). PLS-22

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130 2C	0.15	0.65	0.79
			Tab. 50

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 130 2C	25 AT 10	25	0.16
			Tab. 51

Belt length (mm) = $2 \times L - 70$ Two belts for each actuator.

ROBOT 160

ROBOT 160 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ROBOT 160
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	70 AT 10
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	7.26
Zero travel weight [kg]	24.29
Weight for 100 mm useful stroke [kg]	1.934
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g·mm ²]	1.303 · 10 ⁶
Rail size [mm]	20
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joir	nts Tab. 53

*2) Positioning repeatability is dependent on the type of transmission used

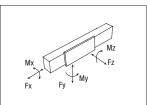
Load capacity

Load capacity								
Туре	F _x [N]		F. [Ň]		F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160	5229	3605	153600	70798	153600	8755	12211	12211

See verification under static load and lifetime on page SL-2 and SL-3

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

Moments of inertia of the aluminum body

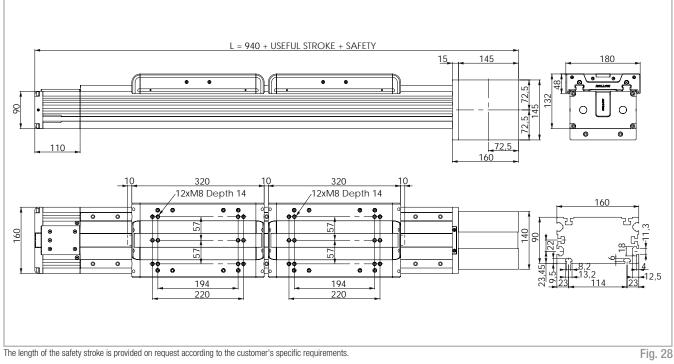

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 54

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160	70 AT 10	70	0.41
			Tab. 55

Belt length (mm) = 2 x L - 120



Tab. 56

PLS-23

ROBOT 160 2C (Double independent carriage)

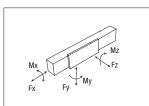
ROBOT 160 2C Dimensions

Technical data

	Туре
	ROBOT 160 2C
Max. useful stroke length [mm]*1	5670
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	7.26
Zero travel weight [kg]	32.913
Weight for 100 mm useful stroke [kg]	1.934
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g·mm ²]	210300
Rail size [mm]	20
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 57

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 160 2C	0.37	1.51	1.88
			Tab. 58

Driving belt

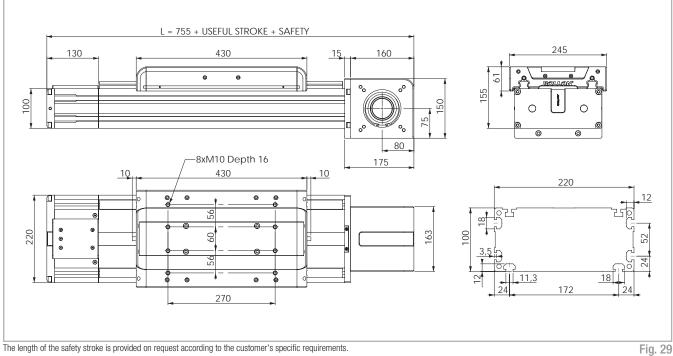
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 160 2C	32 AT 10	32	0.185
			Tab. 59

Belt length (mm) = $2 \times L - 120$ Two belts for each actuator.

Tab. 60

Load capacity


							-	
Туре	F _x [N]		F _y [Ň]		F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 2C	2258	1306	153600	70798	153600	8755	12211	12211

See verification under static load and lifetime on page SL-2 and SL-3

F_i in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

> **ROBOT 220**

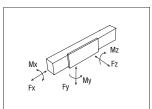
ROBOT 220 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ROBOT 220
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	100 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	15.925
Zero travel weight [kg]	44.722
Weight for 100 mm useful stroke [kg]	2.33
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g·mm ²]	3.687 · 10 ⁶
Rail size [mm]	25
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joi *2) Positioning repeatability is dependent on the type of transmission used	ints Tab. 61

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _ہ [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 62

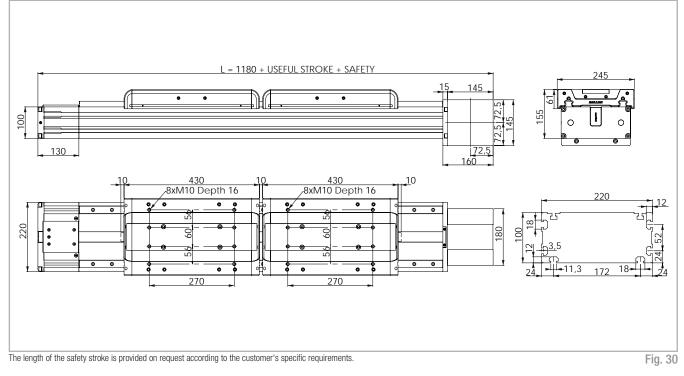
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220	100 AT 10	100	0.58
			Tab. 63

Belt length (mm) = 2 x L - 120

Load capacity


Туре	F [1	: × V]	F [1	: v N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220	9545	6325	258800	116833	258800	22257	28986	28986

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

Tab. 64 PLS-25

ROBOT 220 2C (Double independent carriage) >

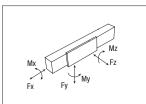
ROBOT 220 2C dimensions

Technical data

	Туре
	ROBOT 220 2C
Max. useful stroke length [mm]*1	5460
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	40 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	15.925
Zero travel weight [kg]	65.807
Weight for 100 mm useful stroke [kg]	2.33
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g·mm²]	2.026 · 10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joir	ts Tab. 65

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 220 2C	0.65	3.26	3.92
			Tab. 66


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220 2C	40 AT 10	40	0.23
			Tab. 67

Belt length (mm) = 2 x L - 135

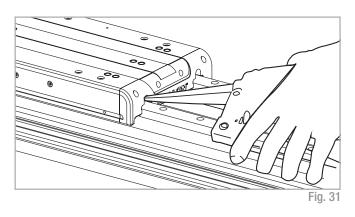
Two belts for each actuator.

Tab. 68

*2) Positioning repeatability is dependent on the type of transmission used

Load capacity

Туре	F [1	: × V]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 2C	3818	2530	258800	116833	258800	22257	28986	28986

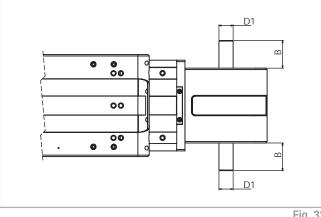

See verification under static load and lifetime on page SL-2 and SL-3

F_v in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

Lubrication

ROBOT Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.


- Insert grease gun in the specific grease nipples.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environemental conditions, lubrication should be carried out more frequently.
 Apply to Rollon for further advice.

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm³]
ROBOT 100	0.7
ROBOT 130	0.7
ROBOT 160	1.4
ROBOT 220	2.4
	Tab. 69

Simple shaft version >

Simple shaft type AS

Unit	Shaft type	В	D1
ROBOT 100	AS 15	35	15h7
ROBOT 130	AS 20	40	20h7
ROBOT 160	AS 25	50	25h7
ROBOT 220	AS 25	50	25h7
			Tab. 70

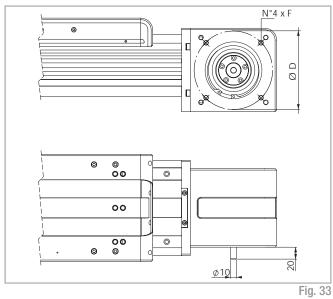
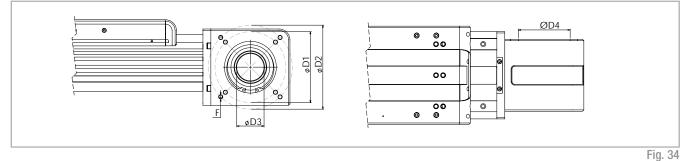

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Fig. 32

Unit	Shaft type	В	D1	AS assembly kit code
ROBOT 100	AS 15	35	15H7	G002695
ROBOT 130	AS 20	40	20H7	G002696
ROBOT 160	AS 25	50	25H7	G000649
ROBOT 220	AS 25	50	25H7	G000649
ROBOT 220	AS 25	50	25H7	G000649

Tab. 71

Simple shaft type AE 10 for encoder assembly + AS


Unit	Code kit AE	ØD	F
ROBOT 100	G002746	75	M6
R0B0T 130	G002745	100	M6
R0B0T 160	G002370	130	M8
R0B0T 220	G002370	130	M8

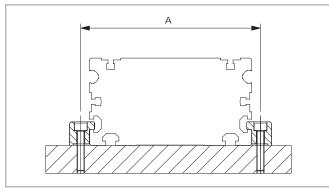
Tab. 72

Position of the simple shafts for encoder assembly to the right or to the left on the driving head.

Hollow shafts

AC hollow shaft type

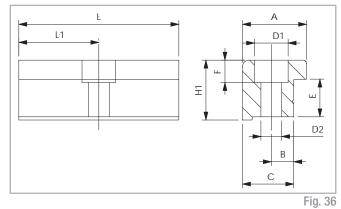
Unit mm


Appliable to unit	Shaft type	D1	D2	D3	D4	F
ROBOT 100	AC26	75	-	26 H8	47	M5
ROBOT 130	AC41	100	72x92	41 H8	72	M6
ROBOT 160	AC50	130	154	50 H8	95	M8
ROBOT 220	AC50	130	154	50 H8	95	M8
						Tab. 73

Accessories

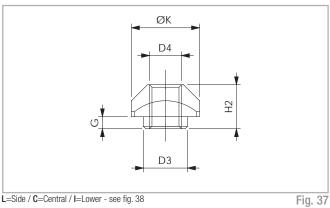
Fixing by brackets

The linear motion systems used for the Rollon series ROBOT linear units enable support of loads in any direction. They can therefore be installed in any position.


To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 74

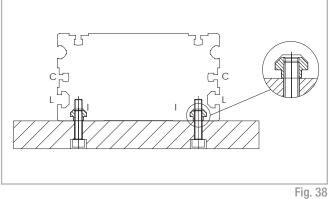
Fixing brackets



Anodised aluminum block for fixing the linear units through the side T-slots of the body.

Dimensions (mm)

Unit	А	В	C	E	F	D1	D2	H1	L	LI	Code
ROBOT 100	20	6	16	10	5.5	9.5	5.3	14	35	17.5	1000958
R0B0T 130	20	7	16	12.7	7	10.5	6.5	18.7	50	25	1001061
R0B0T 160	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
ROBOT 220	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
											Tab. 75

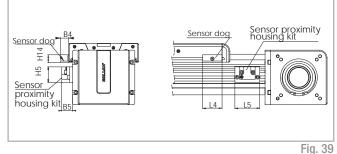


L=Side / C=Central / I=Lower - see fig. 38

Dimensions (mm)

Steel nuts to be used in the slots of the body.

Fixing by T-nuts



Warning:

Do not fix the linear units through the drive ends.

Unit		D3	D4	G	H2	K	Code
ROBOT 100	L-I	-	M4	-	3.4	8	1001046
ROBOT 130	С	-	M3	-	4	6	1001097
ROBOT 130	L-I	8	M6	3.3	8.3	13	1000043
R0B0T 160	С	-	M6	-	5.8	13	1000910
R0B0T 160	I.	8	M6	3.3	8.3	13	1000043
R0B0T 160	L	11	M8	2.8	10.8	17	1000932
ROBOT 220	L-I	11	M8	2.8	10.8	17	1000932

Proximity ROBOT

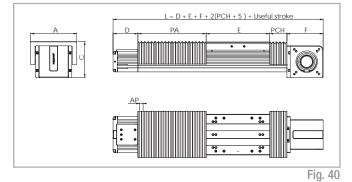
the body slots.

Sensor proximity housing kit

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into


Dimensions (mm)

Unit	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100	9.5	20	25	45	12	25	Ø 8	G000268	G000092
R0B0T 130	21	28	50	60	20	40	Ø 12	G000269	G000126
R0B0T 160	21	28	50	64	20	40	Ø 12	G000269	G000123
R0B0T 220	21	28	50	70	20	40	Ø 12	G000269	G000207
									Tab. 77

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Protections

Standard protections

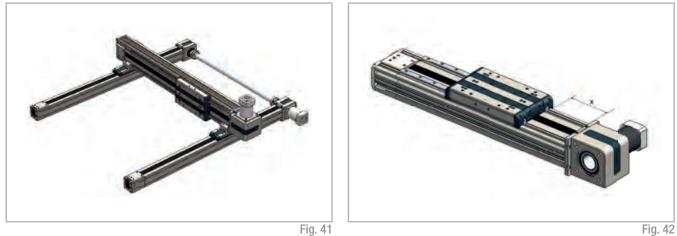
The Rollon series ROBOT linear units are equipped with a polyurethane sealing strip to protect all parts inside the body against dust and foreign matter. The sealing strip runs the length of the body and is kept in position by micro-bearings located within the carriage. This ensures very low frictional resistance as it passes through the carriage.

Dimensions (mm)

Unit	А	С	D	E	F
ROBOT 130	174	103	95	230	135
ROBOT 160	204	131.5	110	280	160
R0B0T 220	275	149.5	130	380	160
					Tab. 78

Protection of ball bearing guides

The four ball bearing blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.

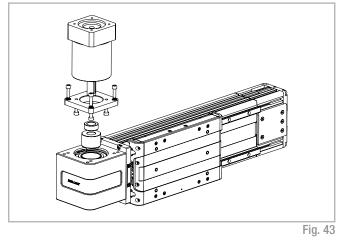

Special protection

To use these linear units in very critical environments, they can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and the ends of the body with Velcro tape for easy assembly and disassembly.

The total length (L) of the linear unit will vary: See Fig. 40.

Standard material: Thermally welded nylon coated with polyurethane Materials on demand: Nylon coated with PVC, fiberglass, stainless steel Warning: The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Assembly kits



For the direct assembly of Robot linear units on other types of actuators Rollon offers dedicated assembly kits (brackets) in order to fix those brackets the ends of the actuator must be free of rails. The table below gives the codes of the assembly kit. The allowed combination of assembly as well as the length without rails at each end.

	Kit	Code	X No rail at each end (mm)
N. H.	ROBOT 100 - ELM 65	G000205	75
A. A.	ROBOT 100 - ROBOT 130	G000201*	155
Art	R0B0T 100 - EC0 80	G000203	90
IP	ROBOT 100 - E-SMART 50	G000642	60
-	ROBOT 130 - ELM 65	G000196	75
N. H.	ROBOT 130 - ELM 80	G000195	90
N. N.	ROBOT 130 - ROBOT 130	G000197*	155
the state	ROBOT 130 - ROBOT 160	G000197*	190
N. S.	R0B0T 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
	ROBOT 160 - ROBOT 220	G000202*	255
1-	R0B0T 220 - ELM 110	G000199	120

* Additional fixing holes are requested on the robot plate

Gearbox assembly kit

Codes on the table below refer to the gearbox assembly kit. The kit includes: shrink disk; adapter plate; fixing hardware.

Unit type	Gearbox type (not included)	Kit Code
ROBOT	MP060	G000566
100	LC050; PE2; NP005S	G001444
	P3	G000824
	MP080	G000826
	LC090; MPV01; NP025S; PE4	G000827
ROBOT	MP105	G000830
130	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	AB115	G000481
	MP130	G000482
	LC120; MPV02; NP035S; PE5; AE120	G000483
ROBOT 160	LC090, NP025S, PE, NP025S	G000525
100	SP+075, PLN090, P4, VRS075, AF075A	G000526
	PSF5; NPS35; SP+100	G000657
	MP105	G000527
	AB115	G000481
	MP130	G000482
	LC120; MPV02; NP035S; PE5; AE120	G000483
R0B0T 220	LC090, NP025S, PE4, NP025S	G000525
	SP+075, PLN090, P4, VRS075, AF075A	G000526
	PSF5; NPS35; SP+100	G000657
	MP105	G000527
		Tab. 80

For other gearbox type ask Rollon

Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
ROBOT 100	26	14x26	36	6005740
		16x41	101	6005733
ROBOT 130	41	19x41	150	6005734
NUDUT 150	41	22x41	174	6005735
		25x41	198	6005736
		22x50	286	6005730
ROBOT 160 ROBOT 220	50	25x50	324	6005731
		32x50	415	6005732

* Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 81 For the application, the limit of F_x must be considered too.

Single shrink disc

Codes on the table below refer to a shink disc ordered as single element.

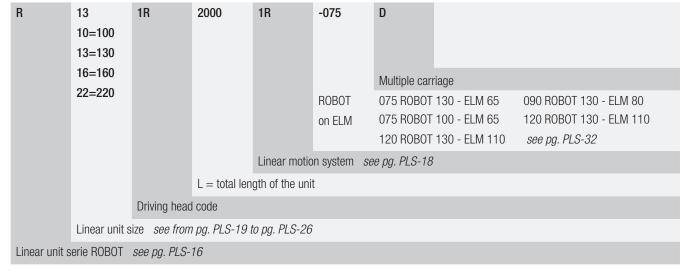

Ρ L S

Fig. 44

PLS-33

Identification codes for the ROBOT linear unit

Configure Actuator

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

SC series

SC series description

SC

The SC series linear unit is specifically designed for vertical motion in gantry applications, or in applications where the aluminum profile must move while the carriage remains fixed. It is available in three sizes: 100, 130 and 160 mm.

SC is a rigid vertical system, ideal for heavy loads and high cycle applications, thanks to the engineered combination of a self-supporting extruded and anodized aluminum profile and two parallel recirculating ball guides with four low maintenance ball bearing blocks.

The connecting plate at end of the arm allows simple and fast switch of the accessories, reducing downtime and improving the system productivity. It can also accomodate a special extension system (available as optional) which is useful for reaching lengths longer than the maximum stroke and to make the system modular. The extension is fast and easy to assemble and center with precision on the connecting plate, thanks to self-centering keys.

This unit is also designed and configured to be compatible and assembled with the ROBOT series actuators without the need for adapter plates, to create high performance multi-axes systems easily and quickly.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components, all of which are made of low carbon SS AISI 303 and 404C steel, to prevent or delay corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- Very low carbon SS AISI 303 and 404C steel linear rails, nuts and bolts and components
- Lubricated with organic food grade vegetable oils

Fig. 45

The components

Extruded profile

The anodized aluminum extrusions used for the profile of the Rollon SC series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

Side slots are provided for fast, trouble-free mounting of accessories (proximity switch runner, etc.). Power cables and/or air hoses (gripper, etc.) can be passed inside the body.

Driving belt

The Rollon SC series linear units use steel reinforced polyurethane drive belt with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

General data about aluminum used: AL 6060

Chemical composition [%]

Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage is an enveloping structure that houses the entire linear motion system consisting of a drive pulley and two driven pulleys. The external parts are made of anodized aluminum. Dimensions vary according to type. The carriage is designed to allow the assembly of the SC and ROBOT actuators without the need for adapter plates, to create multi-axes systems easily (see page PLS-48). The carriage also houses brush seals to remove contaminants from the system.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 82

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	 mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	С°
2.7	69	23	200	880-900	33	600-655

Mechanical characteristics

Rm	Rp (02)	А	HB
<u>N</u> mm ²	N mm ²	%	_
205	165	10	60-80
			Tab. 84

Tab. 83

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SC series with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the aluminum body.
- The carriage of the linear unit is assembled on four pre-loaded ball bearing blocks with plastic retention cages.
- The four ball row configuration enables the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance intervals.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise
- Free maintenance (dependent on application)

SC section

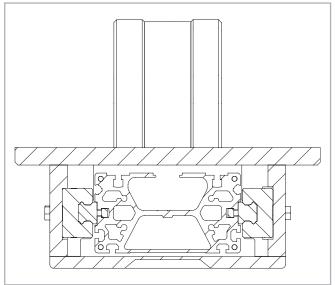
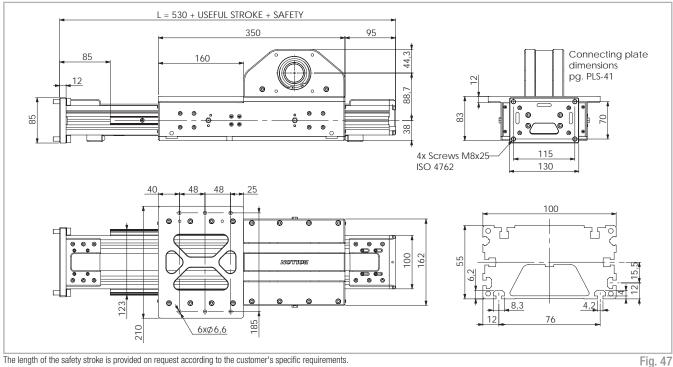


Fig. 46

The new driving head


The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on the SC series linear actuators.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. PLS-45.

The same logic is valid when mounting the shaft to connect two units in parallel.

> SC 100

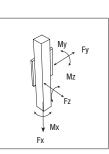
SC 100 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SC 100
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	8.52
Zero travel weight [kg]	13.47
Weight for 100 mm useful stroke [kg]	0.9
Starting torque [Nm]	1.3
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 85

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SC 100	0.05	0.23	0.28
			Tab. 86

Driving belt

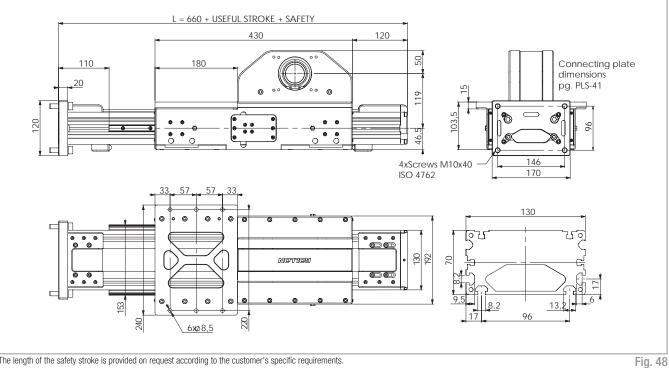
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SC 100	32 AT 5	32	0.105
			Tab 87

Belt length (mm) = L + 77

Load capacity

Туре	Type F _x [N]		F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 100	1080	883	96800	45082	96800	5469	11713	11713


See verification under static load and lifetime on page SL-2 and SL-3

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-45). PLS-38

Tab. 88

SC 130

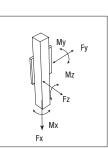
SC 130 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

iconnour dutu	
	Туре
	SC 130
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.84
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	14.59
Zero travel weight [kg]	23.98
Weight for 100 mm useful stroke [kg]	1.13
Starting torque [Nm]	3
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 89

Moments of inertia of the aluminum body


Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
SC 130	0.15	0.65	0.79
			Tab. 90

Driving belt

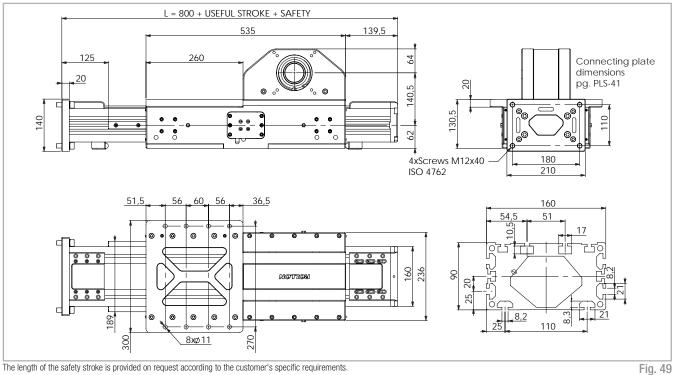
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SC 130	50 AT 10	50	0.209
			Tab. 91

Belt length (mm) = L + 115

Load capacity

Туре	F [1	: × V]	F [N	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 130	3943	2446	96800	45082	96800	6921	16311	16311
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 92								


L S

Ρ

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-45).

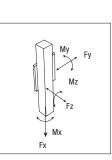
SC 160

SC 160 Dimensions

Technical data

	Туре
	SC 160
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	70 AT 10
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	26.506
Zero travel weight [kg]	42.405
Weight for 100 mm useful stroke [kg]	1.202
Starting torque [Nm]	6.1
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 93

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SC 160	0.383	1.313	1.696
			Tab. 94

Driving belt

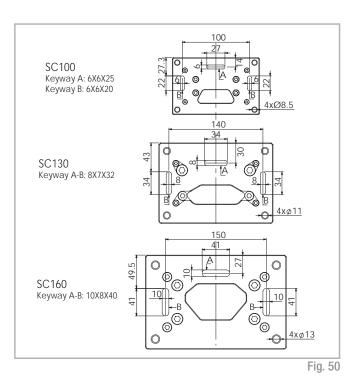
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SC 160	70 AT 10	70	0.407
			Tab. 95

Belt length (mm) = L + 106

Load capacity

Туре	F [N	: X V]	F [N	: v J]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 160	5810	3605	153600	70798	153600	13555	31872	31872


See verification under static load and lifetime on page SL-2 and SL-3

 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-45).

Tab. 96

End-of-arm connecting plate

The connecting plate at end of the arm allows simple and fast switch of the accessories, reducing downtime and improving the system productivity. It can also accomodate a special extension system (available as optional) which is useful for reaching lengths longer than the maximum stroke and to make the system modular. The extension is fast and easy to assemble and center with precision on the connecting plate, thanks to self-centering keys.

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

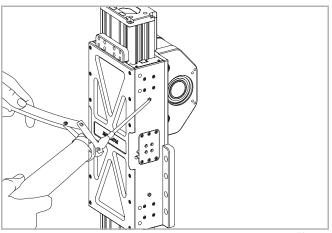
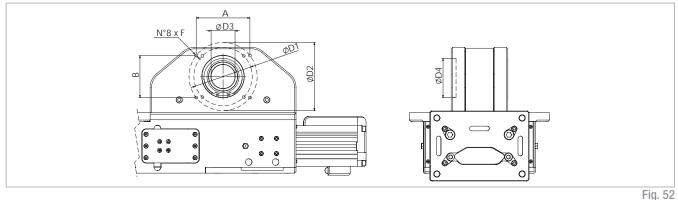


Fig. 51

Insert the tip of the grease gun in the specific grease blocks.

For lubrication of linear units use lithium soap grease NLGI 2.


 For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm³]
SC 100	0.7
SC 130	0.7
SC 160	1.4
	Tab. 97

Hollow shafts

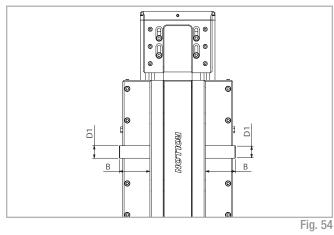
Hollow shaft type AC - Standard supply

Appliable to unit	Shaft type	D3	D1	D2	A x B	D4	F
SC 100	AC 34	34 H8	-	96	-	62	M6
SC 130	AC 41	41 H8	100	-	92 x 72	72	M6
SC 160	AC 50	50 H8	130	154	-	95	M8
							Tab. 98

Arm extension

The extension system allows to optimize and unify the stroke of the vertical axis, expecially when part of a multi-axis system, and to reach lengths longer than the maximum stroke. Thanks to dedicated connecting plates, it is easy to assemble and center with precision.

Upon delivery, Rollon provides the extension and the self-centering keys to properly connect it the main axis body. Screws to connect the accessories at the end of the extension must be bought separately.


The dimensions of the connecting plate at the end of the extension are the same of the plate at the end of the axis arm, as shown on pg. PLS-41.

Appliable to unit	L min. [mm]	L max [mm]
SC 100	60	1000
SC 130	100	1000
SC 160	100	1000
		Tab. 99

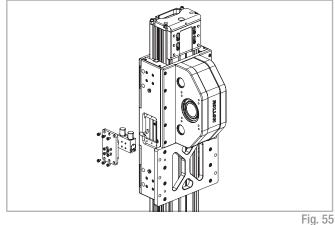
> Accessories

Simple shaft type AS

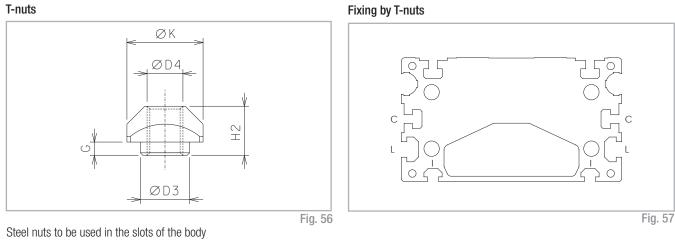
Position of the simple shaft can be to the left or right of the drive head.

Unit	Shaft type	В	D1	AS assembly KIT code
SC 100	AS 20	40	20h7	G003372
SC 130	AS 25	50	25h7	G003375
SC 160	AS 25	50	25h7	G000649

Tab. 100

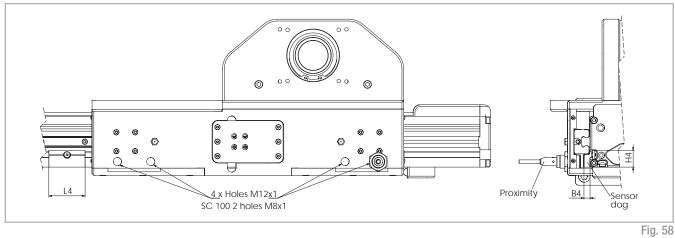

Dedicated pneumatic clamping elements are available for every size of the SC linear units. The slots for installation are located on the left and right side of the carriage, one per side.

The clamp kit provided by Rollon includes: clamp, fixing screws and air port. It must be ordered separetely from the actuator using the code on Tab. 101. For size 100 the clamp must be requested on order and the actuator can be delivered only with the clamp assembled by Rollon. For size 130 and 160 Rollon can assemble the kit on the actuator if the unit is ordered with the head code 1RZ (see Ordering Key pg. PLS-47), otherwise the kit can be delivered as separate item and assembled later.


To properly function, the system must be connected to air pressure supply (6 bars). When the air supply is cut, the clamping elements close on the two rails with the total clamping force shown in the table below.

Unit	Item code	Clamping force [N]
SC 100	G003495	800
SC 130	G003495	800
SC 160	G003496	1200
		Tab. 101

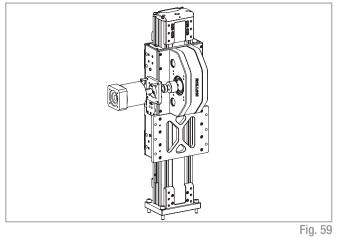
Pneumatic clamping elements



Unit	Slot	D3	D4	G	H2	K	Code
SC 100	L-I	-	M4	-	3.4	8	1001046
SC 130	L-I	8	M6	3.3	8.3	13	1000043
SC 130	С	-	M3	-	4	6	1001097
SC 160	L-I	-	M6	-	-	-	6000437
SC 160	L-1	-	M8	-	-	-	6001544
L = Side - I = Lower - C=Central	1						Tab. 102

Proximity

Fitting of the proximity switch


Proximity switches can be mounted on threaded mounting holes that are positioned on the sides of the carriage. Do not over-torque the switches during installation as this can cause interference with the proximity switch runner and damage the sensor.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Unit	B4	H4	L4	Sensor dog Code
SC 100	8.5	23	50	G003346
SC 130	8.4	25	50	G001862
SC 160	10	27	50	G003459
				Tab. 103

Gearbox assembly kit

The kit includes: shrink disk; adapter plate; fixing hardware.

Unit type	Gearbox type (not included)	Kit Code
	MP080	G000529
	PE3; LP070; LC070	G000530
SC100	MP060; PLE060	G000531
	SW030	G000748
	P3	G001162
	P3	G000824
	MP080	G000826
SC130	LC090; MPV01; NP025S; PE4	G000827
	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	AB115	G000481
	MP130	G000482
	LC120; MPV02; NP035S; PE5	G000483
SC160	LC090; PE4; NP025S	G000525
	SP075; PLN090;P4	G000526
	MP105	G000527
	PSF5;NPS35;SP+100	G000657
		Tab. 104

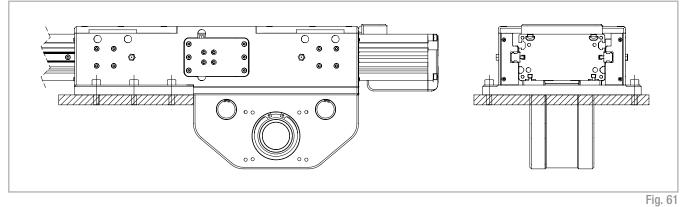
For other gearbox type ask Rollon

Codes on the table below refer to the gearbox assembly kit.

Single	shrink	disc
--------	--------	------

Fig. 60

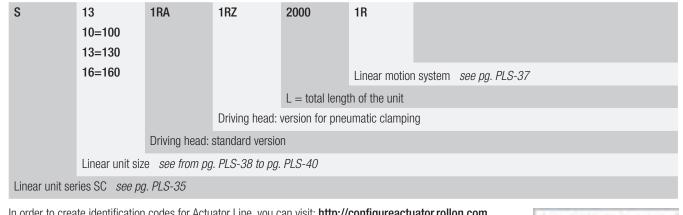
Codes on the table below refer to a shink disc ordered as single element.


Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
SC100	34	14x34	64	6005737
		16x34	73	6005738
		19x34	87	6005739
SC130	41	16x41	101	6005733
		19x41	150	6005734
		22x41	174	6005735
		25x41	198	6005736
SC160	50	22x50	286	6005730
		25x50	324	6005731
		32x50	415	6005732

* Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 105 For the application, the limit of F_x must be considered too.

Installation option

The ball bearing guide linear drive systems of Rollon SC series linear units enable support of loads in any direction. They can therefore be installed in any position. even horizontally as per the figure below


Direct fixing

Configure Actuator

Identification codes for the SC linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Rollon now offers a set of fittings including brackets and cross plates, to enable multiaxis units to be built. The SC series is also pre-engineered to facilitate direct connection with the units of the ROBOT series. In addition to standard elements, Rollon also provides plates for special applications.

Two axis - X-Y system

A - Linear units: X Axis - 2 ELM 80, Y Axis - 1 ROBOT 160
 Connection part: 2 kits of fixing brackets for ROBOT 160 on to the carrieages of ELM 80.

Application examples:

Three axis - 2X-Y-Z system

C - Linear units: X Axis - 2 ELM 65, Y Axis - 1 ROBOT 130, Z Axis - 1 SC 100

Connection part: 2 kits of fixing brackets for ROBOT 130 on to the carrieages of ELM 65. The SC 100 unit is directly assembled on to the ROBOT 130 unit without further elements.

Two axis - Y-Z system

B - Linear Axis: Y Axis - ROBOT 220, Z Axis - SC 160
 Connection part: None
 The SC 160 unit is directly assembled on to the ROBOT 220 unit without further elements

Three axis - X-Y-Z system

D - Linear units: X axis - ROBOT 220, Y axis - ROBOT 130, Z axis - SC 100

Connection part: 1 kit of fixing brackets for ROBOT 130 unit to the carriage of the ROBOT 220 unit. The SC 100 unit is directly assembled on to the ROBOT 130 unit without further elements.

ONE series description

The ONE series actuators are belt driven linear actuators specifically designed for Clean Room applications.

The ONE series reduces particle contamination using a specially designed straight seal that isolates the internals of the actuator from the environment. In addition to particle containment, the ONE series can support a vacuum pump (up to 0,8 bar) to remove and transport contaminates from the interior of the actuator to filtration sites. The 2 vacuum ports are located on the drive and idle head.

All internal components of the ONE series actuators are designed to minimize particle release. Component materials are limited to stainless steel. Where stainless steel is not an option, special treatments are used to ensure low particle release.

Special lubrications designed for use in cleanroom environments are used for all bearings and linear rails.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon ONE series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. Aluminum alloy 6060 is used (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

We are using selected higth quality polyurethane timing belts, AT profile, manufactured by leading companies in this field.

Carriage

The carriage of the Rollon ONE series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage.

Sealing strip

Rollon ONE series linear units are equipped with a polyurethane sealing strip to prevent particles generated inside the unit to go outside. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10	00
dm ³	mm ²	K	m . K	kg . K	Ω.m.10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655

Tab. 2

C R S

Mechanical characteristics

Rm	Rp (02)	А	HB
N 	N mm ²	%	—
205	165	10	60-80
			Tab. 3

The linear motion system

Vacuum system

The ONE series actuator has specific connection ports on the drive and the idle end of the unit to connect a vacuum system. The vacuum quality must be evaluated case by case, but Rollon has had success with 0,8 bar on a ONE 80 with a stroke of 1.000 mm up to 4.000 mm.

Selected mechanical components

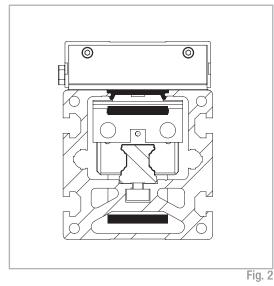
ONE Series is assembled with select high-quality components.

Only Stainless Steel (AISI 303, AISI 440C) is used for bearings, linear guides, shafts, pulleys, and other metallic components. Where it is impossible to use Stainless Steel, Rollon provides a special treatment tested under severe conditions and under particle generation.

Lubrication

ONE Series is equiped with "innovate and hi-tech linear guides" that feature special ball cages to maintain spacing. This feature supports a longterm maintenance and a low particle generation if combined with special lubricant, specifically developed and adopted for Clean Room applications.

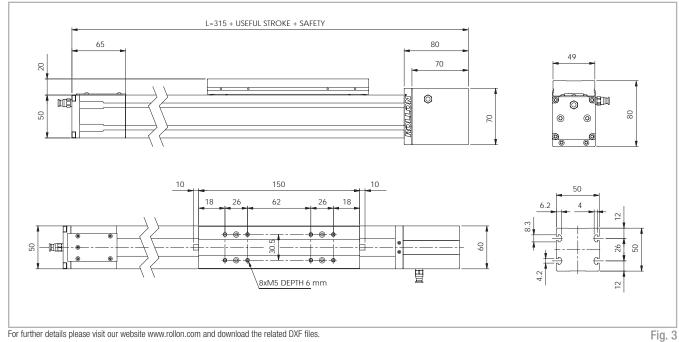
Range


ONE Series is now available in 3 different sizes, for multi axes combinations:

- ONE 50
- ONE 65
- ONE 80
- ONE 110

Maximum stroke is 6.000 mm, except ONE 50 where the maximum stroke is 3.700 mm.

For technical details and load capacities, please refer to next pages.


ONE section

ONE 50 >

ONE 50 Dimension

Technical data

	Туре
	ONE 50
	UNE 30
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36,61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.4
Zero travel weight [kg]	1.8
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm²]	19810
Rail size [mm]	12 mini
1) Positioning repeatability is dependant on the type of transmission used	Tab. 4

Load capacity

Loud oupdoily	capacity							
Туре	F [1	: × V]	F [1	: V Ú]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 50	809	508	7060	6350	7060	46.2	233	233
See verification under static	load and lifetim	ie on page SL-	2 and SL-3					Tab. 7

Moments of inertia of the aluminum body

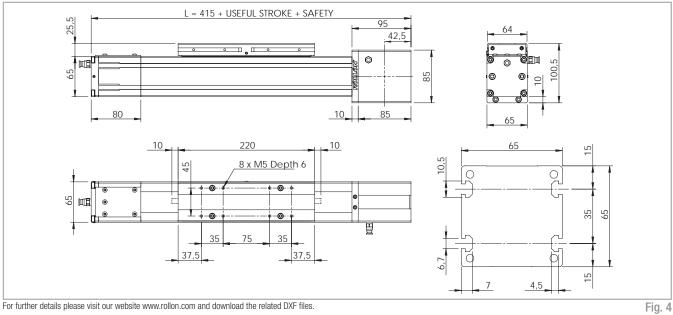
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 50	0.025	0.031	0.056
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 50	22 AT 5	22	0.072
			Tab. 6

Belt length (mm) = 2 x L - 130


Mz

Fv

C R S

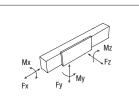
ONE 65 >

ONE 65 Dimension

Technical data

	Туре
	ONE 65
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	1.1
Zero travel weight [kg]	3.5
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	1.5
Moment of inertia of pulleys [g mm ²]	117200
Rail size [mm]	15
1) Positioning repeatability is dependent on the type of transmission used	Tab. 8

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 65	0.060	0.086	0.146
			Tab. 9

Driving belt

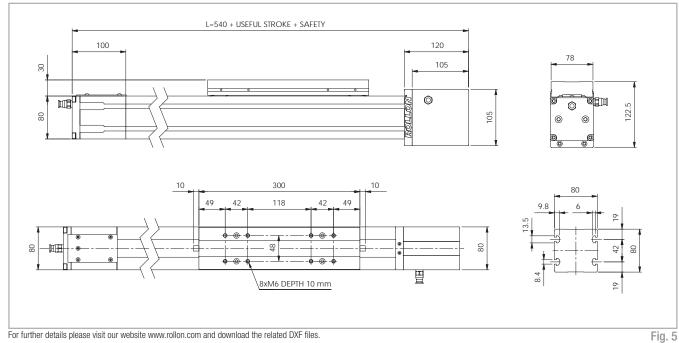
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 65	32 AT 5	32	0.105
			Tab. 10

Belt length (mm) = 2 x L - 180

Load capacity

Туре	F [1	: × V]	F [1	: y N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 65	1344	883	48400	22541	48400	320	1376	1376
See verification under static	load and lifetin	e on nade SL	2 and SL -3					Tab 11


ion under static load and lifetime on page SL-2 and SL-3

Tab. 11

ONE 80

ONE 80 Dimension

Technical data

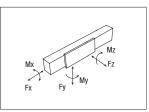
	Туре
	ONE 80
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	2.7
Zero travel weight [kg]	10.5
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	2.2
Moment of inertia of pulleys [g mm ²]	388075
Rail size [mm]	20
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 12

Load capacity

Туре	F [1	× V]	F [N	: v N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 80	2258	1306	76800	35399	76800	722	5606	5606

See verification under static load and lifetime on page SL-2 and SL-3

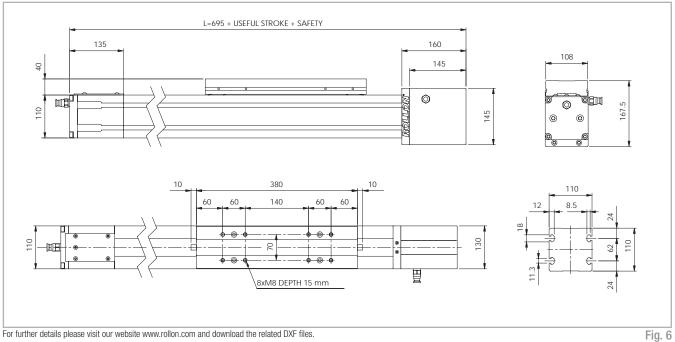
Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
ONE 80	0.136	0.195	0.331
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 80	32 AT 10	32	0.185
			Tab. 14


Belt length (mm) = 2 x L - 230

Tab. 15

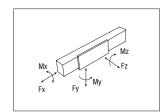
ONE 110 >

ONE 110 Dimension

Technical data

	Туре
	ONE 110
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	5.6
Zero travel weight [kg]	22.5
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm ²]	$2.193 \cdot 10^{6}$
Rail size [mm]	25
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 16

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
ONE 110	0.446	0.609	1.054
			Tab. 17

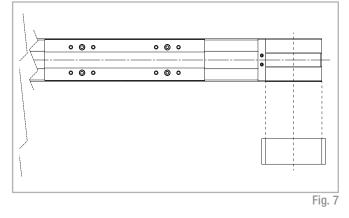
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ONE 110	50 AT 10	50	0.290
			Tab. 18

Belt length (mm) = 2 x L - 290

Load capacity

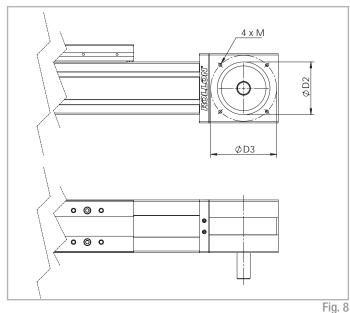

Туре	F [1	: × V]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 110	4980	3300	104800	50321	104800	1126	10532	10532
Construction at a station	In a diama di Bénéhan		0 and 01 0					T 1 40

See verification under static load and lifetime on page SL-2 and SL-3

Planetary gears

Assembly to the right or to the left of the driving head

The series ONE linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.


Versions with planetary gears

Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

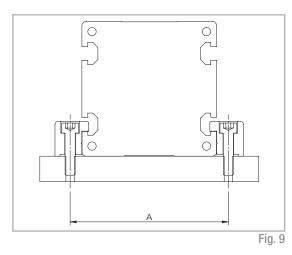
 \triangle

Shaft with centering

Unit	Shaft type	D2	D3 M		Head code AS left	Head code AS right
ONE 50	AS 12	55	70	M5	VB	VA
ONE 65	AS 15	60	85	M6	VB	VA
ONE 80	AS 20	80	100	M6	VB	VA
ONE 110	AS 25	110	130/160	M8	VB	VA

Tab. 20

CRS-9

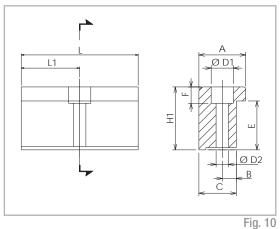

C R S

> Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ONE linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-Slots in the extruded bodies as shown below.

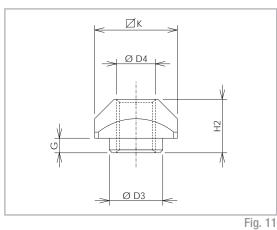


Unit	A (mm)
ONE 50	62
ONE 65	77
ONE 80	94
ONE 110	130
	Tab. 21

Warning:

Do not fix the linear units through the drive ends.

Fixing brackets

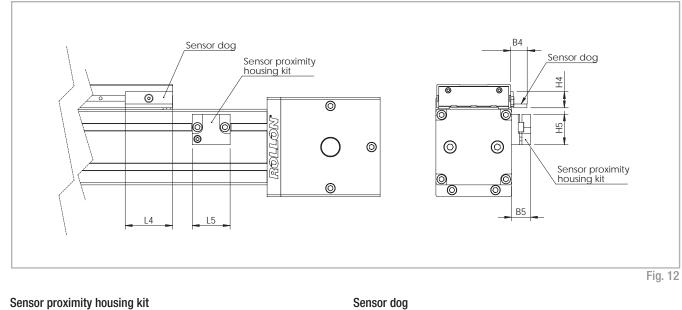

Dimensions (mm)

Dimensions	()										
Unit	А	H1	В	C	E	F	D1	D2	L	L1	Code
ONE 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ONE 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ONE 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ONE 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233
											Tab. 22

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-Slots of the body.

T-Nuts


Dimensions (mm)

Unit	D3	D4	G	H2	К	Code				
ONE 50	-	M4	-	3.4	8	1001046				
ONE 65	6.7	M5	2.3	6.5	10	1000627				
ONE 80	8	M6	3.3	8.3	13	1000043				
ONE 110	11	M8	2.8	10.8	17	1000932				
						Tab. 23				

T-nuts

Steel nuts to be used in the slots of the body.

Proximity

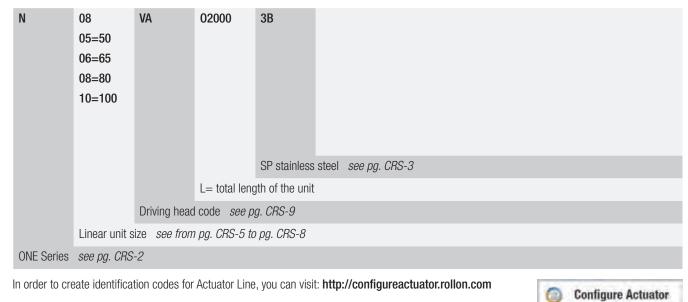
Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Dimensions (mm)

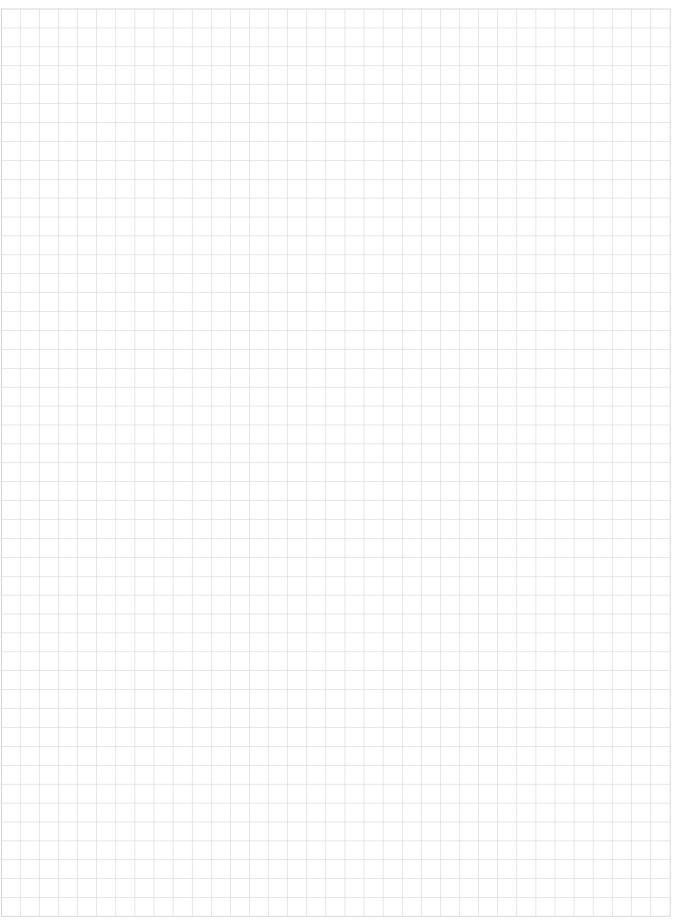
Unit	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing kit code
ONE 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211
ONE 65	17.2	20	50	40	17	32	Ø 12	G000267	G000212
ONE 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ONE 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210
									Tah 24

Tab. 24


L-shaped bracket in zinc-plated iron, mounted on the carriage and used

for proximity switch operations.

C R S



Identification codes for the ONE linear unit

Left / right orientation

Notes / 🗸

Smart System

6

ROLLON

E-SMART series description

E-SMART

The E-SMART series linear units are available in four sizes: 30 - 50 - 80 - 100 mm. They have a self-supporting structure with a robust profile of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced, polyurethane belt. The moving carriage is guided and supported by a recirculating ball guide system featuring one or more blocks.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the E-SMART series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This type of belt is ideal due to its high load transmission characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg dm ³	<u>kN</u> 	10 ⁻⁶ —	 	J kg . K	Ω.m.10 ⁻⁹	°C
2.7	70	23.8	200	880-900	33	600-655
						Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	HB
Ν	Ν		
mm ²	mm ²	%	—
250	200	10	75
			Tab. 3

Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the E-SMART series linear units is made of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accomodate a vast array of applications.

The linear motion system

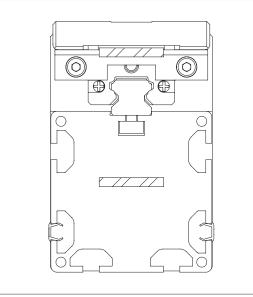
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

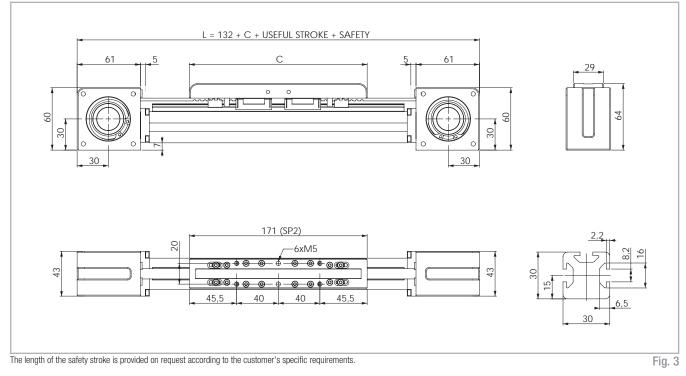
- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise


The driving heads

The couple of symmetrical heads is designed to allow the highest freedom while sizing the application and mounting the gearbox on the E-SMART series linear actuators. Therefore, it is possible to assembly the gearbox on both the heads, either on the right or the left side, by means of a standard assembly kit. This feature is also useful when the unit is assembled to be part of a multiaxis system.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. SS-15.

The same logic is valid when mounting the shaft to connect two units in parallel.


E-SMART section

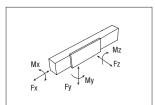
E-SMART 30 SP2 >

E-SMART 30 Dimensions

Technical data

	Туре
	туре
	E-SMART 30 SP2
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	10 AT 5
Type of pulley	Z 24
Pulley pitch diameter [mm]	38.2
Carriage displacement per pulley turn [mm]	120
Carriage weight [kg]	0.263
Zero travel weight [kg]	1.873
Weight for 100 mm useful stroke [kg]	0.343
Starting torque [Nm]	0.15
Moment of inertia of pulleys $[g \cdot mm^2]$	57.630
Rail size [mm]	12 mini
*1) Positioning repeatability is dependent on the type of transmission used.	Tab. 4

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 30 SP2	0.003	0.003	0.007
			Tab. 5

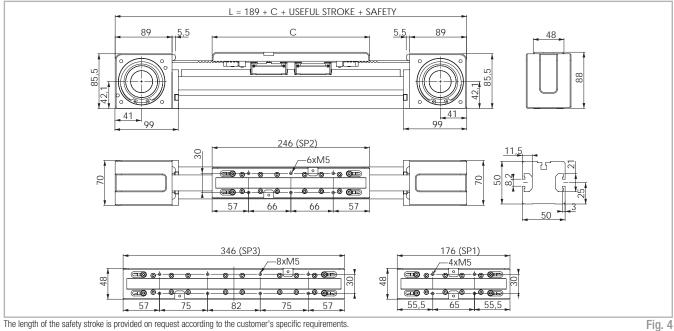
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 30 SP2	10 AT 5	10	0.033
			Tab. 6

Belt length (mm) = $2 \times L - 100$ (SP2)

Load capacity


Loud oupdoily									
Туре	F [1	: × V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.	
E-SMART 30 SP2	385	242	7060	6350	7060	46.2	166	166	
See verification under static load	d and lifetime o	on page SL-2 a	and SL-3					Tab. 7	

See verification under static load and lifetime on page SL-2 and SL-3

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15).

E-SMART 50 SP1 - SP2 - SP3 >

E-SMART 50 Dimensions

Technical data

	Туре		
	E-SMART 50 SP1	E-SMART 50 SP2	E-SMART 50 SP3
Max. useful stroke length [mm]*1	6145	6075	5975
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0	4.0
Max. acceleration [m/s ²]	50	50	50
Type of belt	25 AT 5	25 AT 5	25 AT 5
Type of pulley	Z 40	Z 40	Z 40
Pulley pitch diameter [mm]	63.66	63.66	63.66
Carriage displacement per pulley turn [mm]	200	200	200
Carriage weight [kg]	0.614	0.99	1.42
Zero travel weight [kg]	4.961	5.665	6.469
Weight for 100 mm useful stroke [kg]	0.441	0.376	0.431
Starting torque [Nm]	0.35	0.35	0.55
Moment of inertia of pulleys [g \cdot mm²]	891.270	891.270	891.270
Rail size [mm]	15	15	15

*1) It is possible to obtain stroke up to 11.270 (SP1), 11.200 (SP2), 11.100 (SP3) by means of special Rollon joints. Tab. 8 *2) Positioning repeatability is dependent on the type of transmission used.

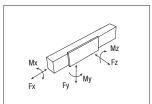
Load capacity

Туре	F [N	: x V]	F []	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 50 SP1	1050	750	12700	9860	12700	120	87	87
E-SMART 50 SP2	1050	750	25400	19720	25400	240	712	712
E-SMART 50 SP3	1050	750	38100	29580	38100	360	2146	2146

See verification under static load and lifetime on page SL-2 and SL-3

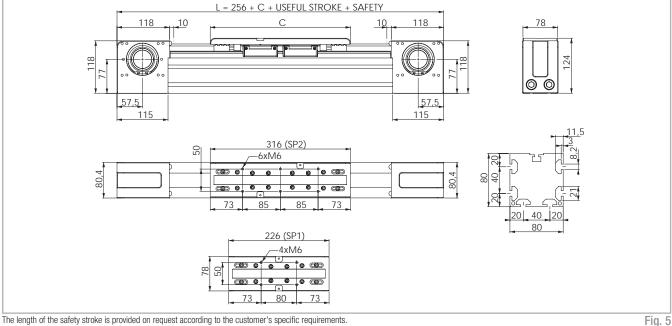
F_i in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15).

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 50 SP	0.021	0.020	0.041
			Tab. 9

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight [kg/m]		
E-SMART 50 SP	25 AT 5	25	0.080		
Tab. 10 Belt length (mm) = 2 x L - 60 (SP1) 2 x L - 125 (SP2)					

125 (5P2 2 x L - 225 (SP3)

E-SMART 80 SP1 - SP2

E-SMART 80 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

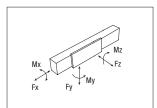
Technical data

	Туре		
	E-SMART 80 SP1	E-SMART 80 SP2	
Max. useful stroke length [mm]*1	6060	5970	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	32 AT 10	32 AT 10	
Type of pulley	Z 21	Z 21	
Pulley pitch diameter [mm]	66,84	66,84	
Carriage displacement per pulley turn [mm]	210	210	
Carriage weight [kg]	1.52	2.31	
Zero travel weight [kg]	10.17	11.71	
Weight for 100 mm useful stroke [kg]	0.87	0.84	
Starting torque [Nm]	0.95	1.3	
Moment of inertia of pulleys $[g \cdot mm^2]$	938.860	938.860	
Rail size [mm]	20	20	
1) It is possible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) by means		Tab. 12	

*1) It is possible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) py means of *2) Positioning repeatability is dependent on the type of transmission used. sible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) by means of special Rollon joints.

Load capacity

Туре	F [f	: Ň]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP1	2523	1672	27700	22200	27700	350	240	240
E-SMART 80 SP2	2523	1672	55400	44400	55400	700	2025	2025
See verification under static load	See verification under static load and lifetime on page SL-2 and SL-3							Tab. 15

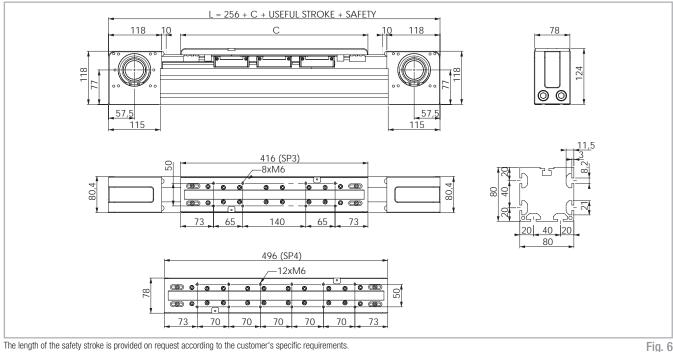

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 80 SP	0.143	0.137	0.280
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 80 SP	32 AT 10	32	0.186
Belt length (mm) = 2	Tab. 14		



See verification under static load and lifetime on page SL-2 and SL-3

F_v in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15).

E-SMART 80 SP3 - SP4 >

E-SMART 80 Dimensions

Technical data

	Туре		
	E-SMART 80 SP3	E-SMART 80 SP4	
Max. useful stroke length [mm]*1	5870	5790	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	32 AT 10	32 AT 10	
Type of pulley	Z 21	Z 21	
Pulley pitch diameter [mm]	66,84	66,84	
Carriage displacement per pulley turn [mm]	210	210	
Carriage weight [kg]	3.13	3.89	
Zero travel weight [kg]	13.39	14.80	
Weight for 100 mm useful stroke [kg]	0.83	0.87	
Starting torque [Nm]	1.4	1.52	
Moment of inertia of pulleys [g \cdot mm ²]	938.860	938.860	
Rail size [mm]	20	20	
1) It is possible to obtain stroke up to 11.000 (SP3), 10.920 (SP4) by means	s of special Rollon joints.	Tab. 16	

*2) Positioning repeatability is dependent on the type of transmission used.

Load capacity

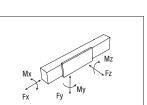
Туре	F [1	: X V]	F [N	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP3	2523	1672	83100	66600	83100	1050	5263	5263
E-SMART 80 SP4	2523	1672	110800	88800	110800	1400	7479	7479

See verification under static load and lifetime on page SL-2 and SL-3 F_a in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15).

Fig. 6

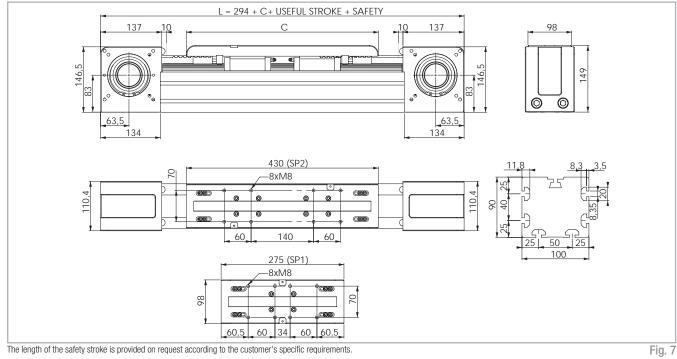
Moments of inertia of the aluminum body					
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]		
E-SMART 80 SP	0.143	0.137	0.280		
			Tab. 17		

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 80 SP	32 AT 10	32	0.186
Delt les eth (mm)	Tab. 18		

Belt length (mm) = 2 x L - 325 (SP3)



2 x L - 405 (SP4)

E-SMART 100 SP1 - SP2

E-SMART 100 Dimensions

Technical data

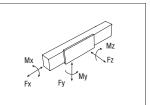
	Туре		
	E-SMART 100 SP1	E-SMART 100 SP2	
Max. useful stroke length [mm]*1	6025	5870	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	50 AT 10	50 AT 10	
Type of pulley	Z 27	Z 27	
Pulley pitch diameter [mm]	85.94	85.94	
Carriage displacement per pulley turn [mm]	270	270	
Carriage weight [kg]	3.22	5.19	
Zero travel weight [kg]	19.396	23.165	
Weight for 100 mm useful stroke [kg]	1.186	1.188	
Starting torque [Nm]	2.1	2.4	
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390	
Rail size [mm]	25	25	
1) It is possible to obtain stroke up to 11.155 (SP1), 11.000 (SP2) by means	of special Rollon joints.	Tab. 20	

*2) Positioning repeatability is dependent on the type of transmission used.

Load capacity

Туре	F [1	: × V]	F []	: y (]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP1	4980	3390	47300	34800	47300	670	670	670
E-SMART 100 SP2	4980	3390	94600	69600	94600	1340	7379	7379

Moments of inertia of the aluminum body

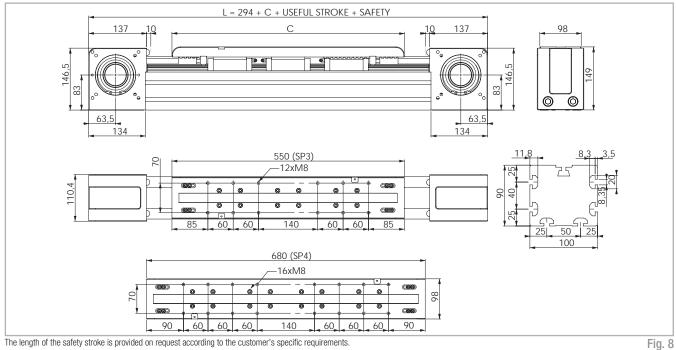

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 100 SP	50 AT 10	50	0.290
Belt length (mm) = $2 \times$	Tab. 22		

2 x L - 275 (SP2)



Tab. 23

See verification under static load and lifetime on page SL-2 and SL-3 Fx in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15).

E-SMART 100 SP3 - SP4

E-SMART 100 Dimensions

Technical data

	Туре		
	E-SMART 100 SP3	E-SMART 100 SP4	
Max. useful stroke length [mm]*1	5750	5620	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	50 AT 10	50 AT 10	
Type of pulley	Z 27	Z 27	
Pulley pitch diameter [mm]	85.94	85.94	
Carriage displacement per pulley turn [mm]	270	270	
Carriage weight [kg]	6.943	8.755	
Zero travel weight [kg]	26.274	29.573	
Weight for 100 mm useful stroke [kg]	1.188	1.192	
Starting torque [Nm]	2.6	2.8	
Moment of inertia of pulleys [g \cdot mm ²]	4.035.390	4.035.390	
Rail size [mm]	25	25	
*1) It is possible to obtain stroke up to 10.880 (SP3), 10.750 (SP4) by means	, ,	Tab. 24	

*2) Positioning repeatability is dependent on the type of transmission used.

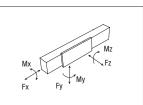
Load capacity

Туре	F []	: X V]	F []	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP3	4980	3390	141900	104400	141900	2010	13055	13055
E-SMART 100 SP4	4980	3390	189200	139200	189200	2680	19204	19204

See verification under static load and lifetime on page SL-2 and SL-3

F_i in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-15). **SS-10**

Moments of inertia of the aluminum body

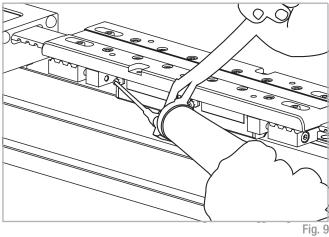

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 25

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]			
E-SMART 100 SP	50 AT 10	50	0.290			
Belt length (mm) = 2 x L - 395 (SP3)						

2 x L - 252 (SP4)


Lubrication

SP linear units with ball bearing guides

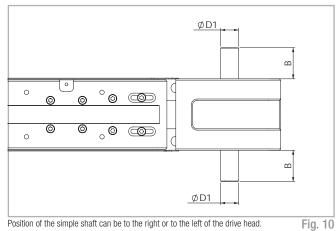
The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 2000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

E-SMART

Quantity of	lubricant necessar	y for re-	lubrication	of each block	Κ.

Туре	Unit [cm³]
E-SMART 30	0.5
E-SMART 50	0.2
E-SMART 80	0.5
E-SMART 100	0.6
	Tob 20


Tab. 28

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

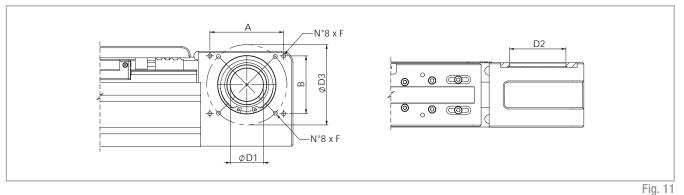
S S

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.


Units (mm)

Applicable to unit	Shaft type	В	D1	AS assembly kit code
E-SMART 30	AS 12	25	12h7	G000348
E-SMART 50	AS 15	35	15h7	G000851
E-SMART 80	AS 20	36.5	20h7	G000828
E-SMART 100	AS 25	50	25h7	G000649

Tab. 29

Hollow shaft

Hollow shaft type AC - Standard supply

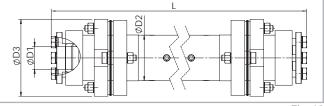
Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	F	АхВ	Drive head code
E-SMART 30	AC 22	22H7	42	68	M5	-	2R
E-SMART 50	AC 34	34H7	72	90	M6	-	2R
E-SMART 80	AC 41	41H7	72	100	M6	92x72	2R
E-SMART 100	AC 50	50H7	95	130	M8	109x109	2R
							Tah 30

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices.

Tab. 30


Linear units in parallel

Synchronization kit for use of SMART linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

Moment of inertia $[g \cdot mm^2]$ C1 + C2 · (X-Y)

	C1	C2	Weight [Kg] D1+D2 · (X-Y)	
	[g∙mm²]	[g∙mm²]	D1 [Kg]	D2 [Kg mm]
GK12P	61.456	69	0.308	0.00056
GK15P	906.928	464	2.28	0.00148
GK20P	1.014.968	464	2.48	0.00148
GK25P	5.525.250	4.708	6.24	0.0051
				Tab. 31

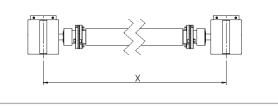
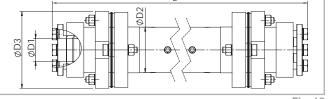



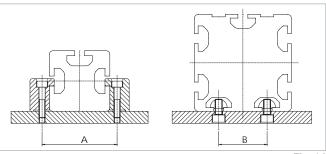
Fig. 13

S S

Dimensions (mm)

Applicable to unit	Shaft type	D1	D2	D3	Y [mm]	Code	Formula for length calculation
E-SMART 30	AP 12	12	25	45	166	GK12P1A	L= X-51 [mm]
E-SMART 50	AP 15	15	40	69.5	210	GK15P1A	L= X-79 [mm]
E-SMART 80	AP 20	20	40	69.5	250	GK20P1A	L= X-97 [mm]
E-SMART 100	AP 25	25	70	99	356	GK25P1A	L= X-145 [mm]

Tab. 32

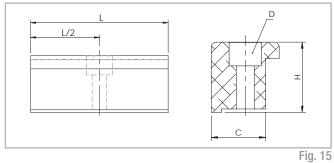

Accessories >

Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction.

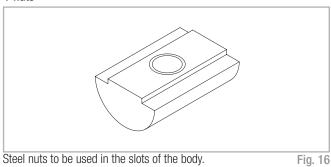
They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:


Fig. 14

Dimensions (mm)

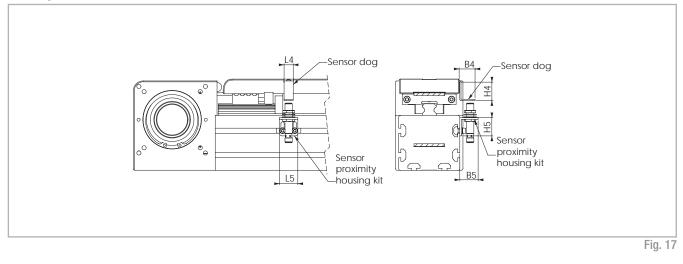
А	В
42	-
62	-
92	40
120	50
	42 62 92


Tab. 33

Fixing brackets

T-nuts

Units (mm)


Dimensions (mm)

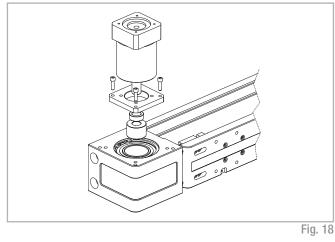
	С	H	L	D	Cod. Rollon
E-SMART 30	16	17.5	50	M5	1001490
E-SMART 50	16	26.9	50	M5	1000097
E-SMART 80	16	20.7	50	M5	1000111
E-SMART 100	31	28.5	100	M10	1002377
					Tab. 34

	Hole	Length	Cod. Rollon
E-SMART 30	M5	20	6000436
E-SMART 50	M6	20	6000437
E-SMART 80	M6	20	6000437
E-SMART 100	M6	20	6000437
			Tab. 35

Iron plate mounted on the carriage used for the proximity operation

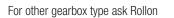
Proximity

Sensor proximity housing kit


Sensor dog

Aluminum block equipped with T-nuts for fixing

B4 B5 L4 H4 For proximity Sensor dog Sensor code proximity kit code E-SMART 30 30 30 30 30 15 30 Ø 8 G000847 G000901 E-SMART 50 26 30 15 30 32 30 Ø 8 G000838 G000833 E-SMART 80 26 30 15 30 32 30 Ø 8 G000833 G000838 E-SMART 100 26 30 30 32 30 Ø 8 G000833 G000838 15

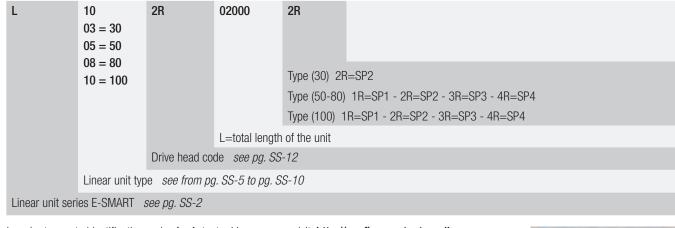

Units (mm)

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

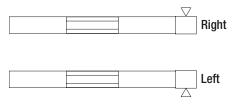
Unit type	Gearbox type (not included)	Kit Code
E-SMART 30	MP053	G000356
	LC050; NP005S; PE2	G000357
	SW030	G000383
	MP060; PLE60	G000852
E-SMART 50	LC070; MPV00; NP015S; PE3	G000853
	SW040	G000854
	P3	G000824
	MP080	G000826
	LC090; MPV01; NP025S; PE4	G000827
	MP105	G000830
E-SMART 80	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	SW050	G000895
	MP130	G000482
	LC120; MPV02; NP035S; PE5	G000483
E-SMART 100	LC090; PE4; NP025S	G000525
	MP105	G000527
	SW050	G000717
		Tab. 37

Single shrink disc


Codes on the table below refer to a shink disc ordered as single element.

Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
E-SMART 30	22	12x22	29	6000791
		14x34	64	6005737
E-SMART 50	34	16x34	73	6005738
		19x34	87	6005739
	41	19x41	150	6005734
E-SMART 80		22x41	174	6005735
		25x41	198	6005736
		22x50	286	6005730
E-SMART 100	50	25x50	324	6005731
		32x50	415	6005732

* Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 38 For the application, the limit of F_x must be considered too.


Identification codes for the E-SMART linear unit

Configure Actuator

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

R-SMART series description

R-SMART

The R-SMART series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting, and operation in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in three sizes ranging from 120 to 220 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Also featured is a dual rail system with four or more recirculating ball bearing runner blocks. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary system maintenance.

S S

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the R-SMART series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below).The dimensional tolerances comply with EN 755-9 standard.

Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

The carriage of the Rollon SMART series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accomodate a vast array of applications.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 39

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10-9	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	70	23.8	200	880-900	33	600-655
						Tab. 40

Mechanical characteristics

Rm	Rp (02)	A	HB
N 	N mm²	%	_
250	200	10	75
			Tab. 41

The linear motion system

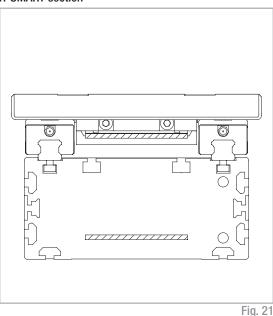
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

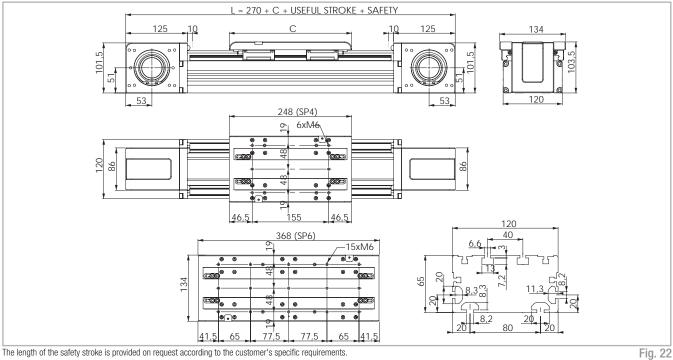
- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise


The driving heads

The couple of symmetrical heads is designed to allow the highest freedom while sizing the application and mounting the gearbox on the R-SMART series linear actuators. Therefore, it is possible to assembly the gearbox on both the heads, either on the right or the left side, by means of a standard assembly kit. This feature is also useful when the unit is assembled to be part of a multiaxis system.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. SS-28.

The same logic is valid when mounting the shaft to connect two units in parallel.


R-SMART section

S

R-SMART 120 SP4 - SP6

R-SMART 120 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре		
	R-SMART 120 SP4	R-SMART 120 SP6	
Max. useful stroke length [mm]*1	6050	5930	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	40 AT 10	40 AT 10	
Type of pulley	Z 21	Z 21	
Pulley pitch diameter [mm]	66.84	66.84	
Carriage displacement per pulley turn [mm]	210	210	
Carriage weight [kg]	2.79	3.94	
Zero travel weight [kg]	11.801	13.765	
Weight for 100 mm useful stroke [kg]	1.062	1.04	
Starting torque [Nm]	1.95	2.3	
Moment of inertia of pulleys [g \cdot mm ²]	1.054.300	1.054.300	
Rail size [mm]	15	15	

*1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means of special Rollon joints.

*2) Positioning repeatability is dependent on the type of transmission used.

Load capacity

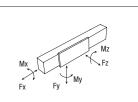
Туре	F []	: × V]	F [1	: y v]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 120 SP4	3154	2090	50800	39440	50800	2337	3277	3277
R-SMART 120 SP6	3154	2090	76200	59160	76200	3505	6248	6248

Tab. 42

See verification under static load and lifetime on page SL-2 and SL-3

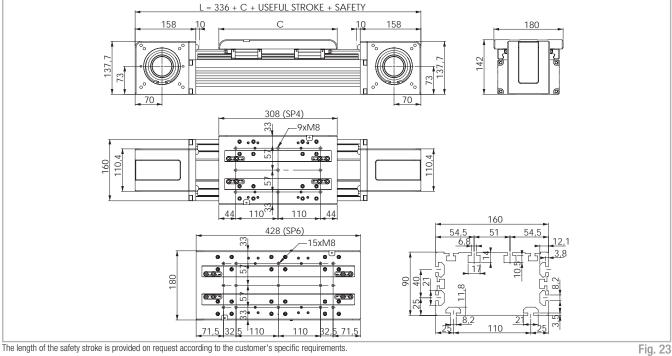
F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-28) SS-20

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 120 SP	0.108	0.367	0.475
			Tab. 43

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight [kg/m]			
R-SMART 120 SP	40 AT 10	40	0.23			
Belt length (mm) = 2 x L - 115 (SP4)						

2 x L - 235 (SP6)

R-SMART 160 SP4 - SP6

R-SMART 160 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

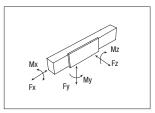
	Ту	ре
	R-SMART 160 SP4	R-SMART 160 SP6
Max. useful stroke length [mm]*1	6000	5880
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	6.06	8.6
Zero travel weight [kg]	25.843	30.488
Weight for 100 mm useful stroke [kg]	1.727	1.736
Starting torque [Nm]	3.4	3.95
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390
Rail size [mm]	20	20
1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means	of special Rollon joints	Tab. 46

*2) The positioning repeatability depends upon the type of transmission used

Load capacity

Туре	F [1	: × V]	F [1	: y v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.	
R-SMART 160 SP4	4980	3390	110800	88800	110800	6426	9086	9086	
R-SMART 160 SP6	4980	3390	166200	133200	166200	9640	15457	15457	
See verification under static loa	See verification under static load and lifetime on page SL-2 and SL-3 Tab. 49							Tab. 49	

S S

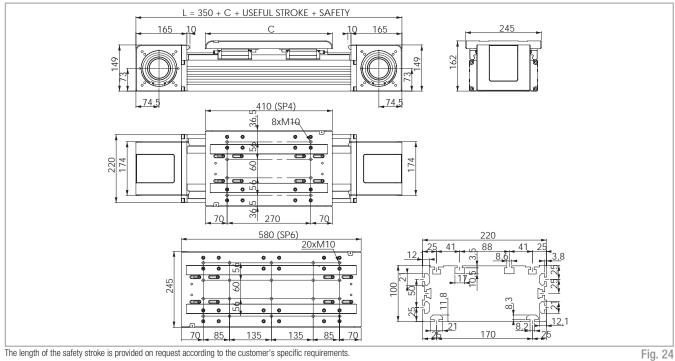

Moments of inertia of the aluminum body							
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]				
R-SMART 160 SP	0.383	1.313	1.696				
			Tab. 47				

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R-SMART 160 SP	50 AT 10	50	0.29
			Tab. 48

Belt length (mm) = 2 x L - 150 (SP4) 2 x L - 270 (SP6)



F_v in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-28)

SS-21

R-SMART 220 SP4- SP6 >

R-SMART 220 Dimensions

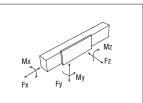
Technical data

	Туре		
	R-SMART 220 SP4	R-SMART 220 SP6	
Max. useful stroke length [mm]*1	5900	5730	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s ²]	50	50	
Type of belt	100 AT 10	100 AT 10	
Type of pulley	Z 32	Z 32	
Pulley pitch diameter [mm]	101.86	101.86	
Carriage displacement per pulley turn [mm]	320	320	
Carriage weight [kg]	12.41	17.37	
Zero travel weight [kg]	45.332	54.437	
Weight for 100 mm useful stroke [kg]	2.319	2.447	
Starting torque [Nm]	4.3	7	
Moment of inertia of pulleys $[g \cdot mm^2]$	12.529.220	12.529.220	
Rail size [mm]	25	25	
1) It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means		Tab. 50	

*1) It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means of special Rollon joints. *2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	I I I I I I I I I I I I I I I I I I I			
R-SMART 220 SP	0.663	3.658	4.321	
			Tab. 51	


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]		
R-SMART 220 SP	100 AT 10	100	0.58		
Tab. Tab.					

Belt length (mm) = 2 x L - 130 (SP4) 2 x L - 300 (SP6)

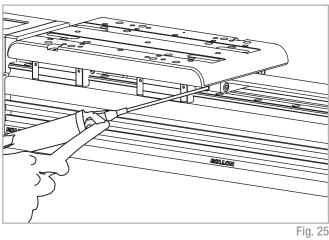
Load capacity

Туре	F [N	: × V]	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 220 SP4	9960	7380	189200	139200	189200	16082	20812	20812
R-SMART 220 SP6	9960	7380	283800	208800	283800	24123	36894	36894
	at the state of th							

See verification under static load and lifetime on page SL-2 and SL-3

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-28) SS-22

Lubrication


SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.

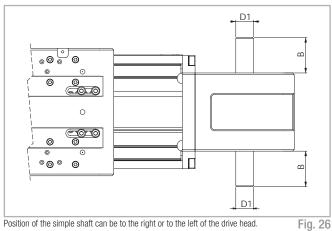
This system guarantees a long interval between maintenances: SP version: every 2000 Km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

R-SMART

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Quantity of Grease [cm ³]
R-SMART 120	0.7
R-SMART 160	1.4
R-SMART 220	2.4
	Tob 54


Tab. 54

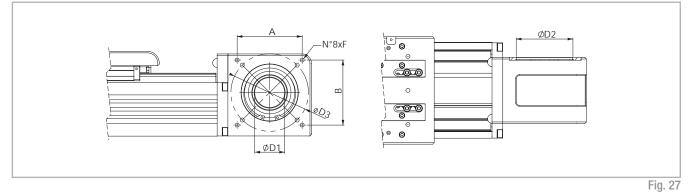
S S

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts >

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.


Shaft can be installed on the left or right side of the drive head as decided by the customer.

Applicable to unit	Shaft type	В	D1	AS assembly kit code
R-SMART 120	AS 20	36	20h7	G000828
R-SMART 160	AS 25	50	25h7	G000649
R-SMART 220	AS 25	50	25h7	G002789
				Tab. 55

Hollow shaft

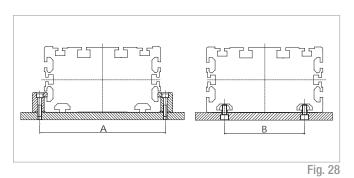
Units (mm)

Hollow shaft type AC - Standard supply

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	F	АхВ	Drive head code
R-SMART 120	AC 41	41H7	72	100	M6	92x72	2R
R-SMART 160	AC 50	50H7	95	130	M8	109x109	2R
R-SMART 220	AC 60	60H7	115	130	M8	109x109	2R
							Tab. 56

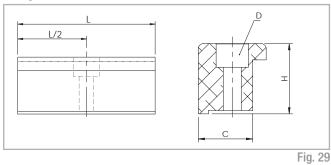
An (optional) connection flange is required to fit the standard reduction units selected by Rollon.


For further information contact our offices.

Accessories

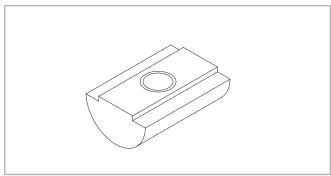
Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.


To install the SMART System series units, we recommend use of one of the systems indicated below:

Units (mm)

	А	В
R-SMART 120	132	80
R-SMART 160	180	110
R-SMART 220	240	170
		Tab. 57


Fixing brackets

Dimensions (mm)

	С	H	L	D	Code Rollon
R-SMART 120	16	20.7	50	M5	1000111
R-SMART 160	31	28.5	100	M10	1002377
R-SMART 220	31	28.5	100	M10	1002377
					Tab. 58

T-nuts

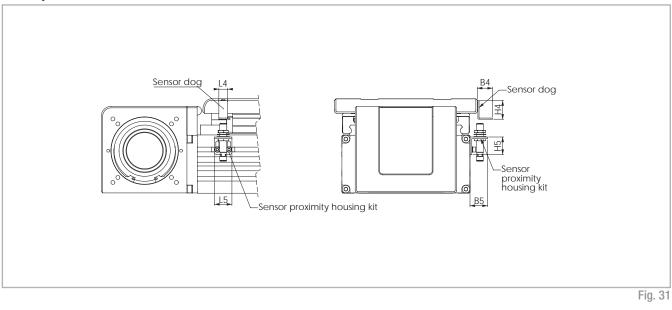

Steel nuts to be used in the slots of the body.

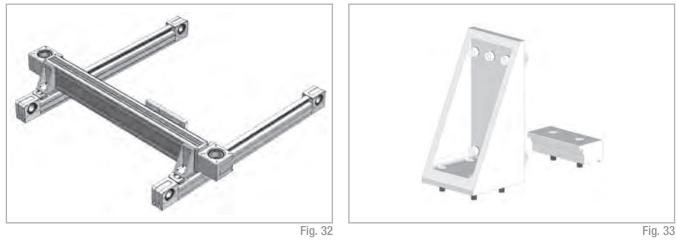
Fig. 30

Units (mm)								
	Hole	Length	Code Rollon					
R-SMART 120	M6	20	6000437					
R-SMART 160	M6	20	6000437					
R-SMART 160	M8	20	6001544					
R-SMART 220	M6	20	6000437					
R-SMART 220	M8	20	6001544					
			Tab. 59					

S S

Proximity

Sensor proximity housing kit


Sensor dog

Iron plate mounted on the carriage used for the proximity operation

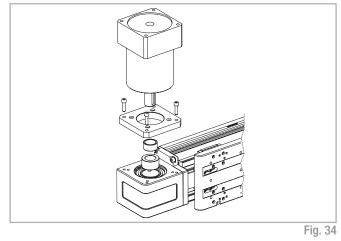
Aluminum block equipped with T-nuts for fixing

Units (mm)									
	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog	Sensor proximity housing kit
R-SMART 120	26	30	15	30	32	30	Ø 8	G000833	G000844
R-SMART 160	26	30	15	30	32	30	Ø 8	G000833	G000838
R-SMART 220	26	30	15	30	32	30	Ø 8	G000833	G000838
									Tab. 60

Assembly kits

For the direct assembly of R-SMART linear units on other types of actuators Rollon offers dedicated assembly kits. The table below shows the allowed combinations as well as the assembly kit codes.

	Kit	Code	X No rail at each end (mm)
A.	R-SMART 120 on E-SMART 50	G000899*	60
In	R-SMART 120 on E-SMART 80	G000863*	90
1-	R-SMART 160 on E-SMART 80	G000902*	90
1-	R-SMART 160 on E-SMART 100	G000903*	110
The second second	R-SMART 220 on E-SMART 100	G001207	110


* Additional fixing holes are requested on the E-SMART plate.

Tab. 61

SS-27

S S

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit type	Gearbox type (not included)	Kit Code
	P3	G000824
	MP080	G000826
	LC90; MPV01; NP025S; PE4	G000827
R-SMART 120	MP105	G000830
n-SiviAnt 120	PE3; NP015S; LC070	G001078
	SP060; PLN070	G000829
	SP070; PLN090	G000859
	SW040	G000866
	MP130	G000482
	LC120; MPV02; NP035S; PE5	G000483
R-SMART 160	LC090; NP025S; PE4	G000525
K-SIMART TOU	MP105	G000527
	SP075; PLN090	G000526
	SW050	G000717
	MP130	G002785
R-SMART 220	MP105	G002786
R-SIMART 220	LP120; LC120; PE5	G002787
	SP100	G002788
		Tab. 62

Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code			
		19x41	150	6005734			
R-SMART 120	41	22x41	174	6005735			
		25x41	198	6005736			
		22x50	286	6005730			
R-SMART 160	50	25x50	324	6005731			
		32x50	415	6005732			
		22x60	343	6005298			
R-SMART 220	60	25x60	389	6005299			

32x60 * Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 63 For the application, the limit of F_x must be considered too.

498

6005300

Single shrink disc

Codes on the table below refer to a shink disc ordered as single element.

For other gearbox type ask Rollon

Configure Actuator

Identification codes for the R-SMART linear unit

D	12 12=120 16=160 22=220	2R	02000	4R		
	22-220			Туре (120-16	60-220) 4R=SP4 6R=SP6	
			L=total length	of the unit		
		Drive head co	de <i>see pg. SS</i>	-24		
	Linear unit type see from pg. SS-20 to pg. SS-22					
Linear unit seri	es R-SMART	see pg. SS-17				

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

		∇	
			Right
			-

		Left
	Δ	

S-SMART series description

Fig. 36

S-SMART

The S-SMART series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the aluminum profile must be moving and the carriage must be fixed.

The self-supporting extruded and anodized aluminum structure is available in three sizes. Since it is a rigid system, it is ideal for a "Z" axis in a 3-axis system by using a linear guide rail.

In addition, the S-SMART series has been specifically designed and configured to be easily assembled with the R-SMART series by using a simple bracket.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards. characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon SMART series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission

General data about aluminum used: AL 6060

Chemical composition [%]

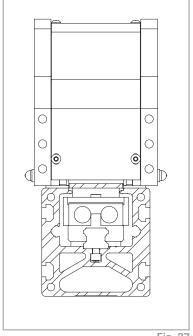
AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 64

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10-9	°C
dm ³	mm ²	К	m . K	kg . K	22.111.10	U
2.7	70	23.8	200	880-900	33	600-655
						Tab. 65

Mechanical characteristics

Rm	Rp (02)	A	HB
<u>N</u> mm²	N mm²	%	
250	200	10	75
			Tab 66

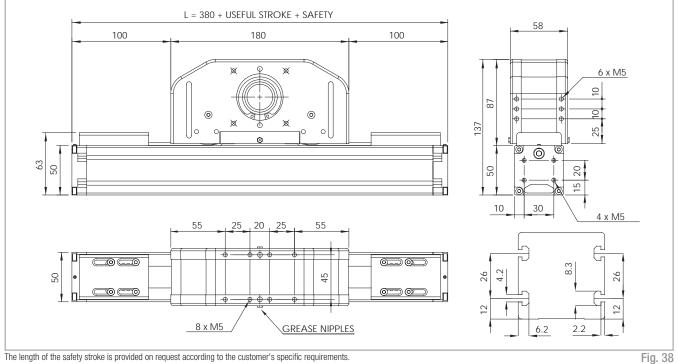

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART System series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on pre-loaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

S-SMART section



The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

S-SMART 50 SP >

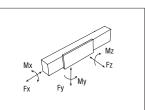
S-SMART 50 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 50 SP
Max. useful stroke length [mm]	1000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2
Zero travel weight [kg]	5.7
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.25
Rail size [mm]	12 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 67

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 50 SP	0.025	0.031	0.056
			Tab. 68

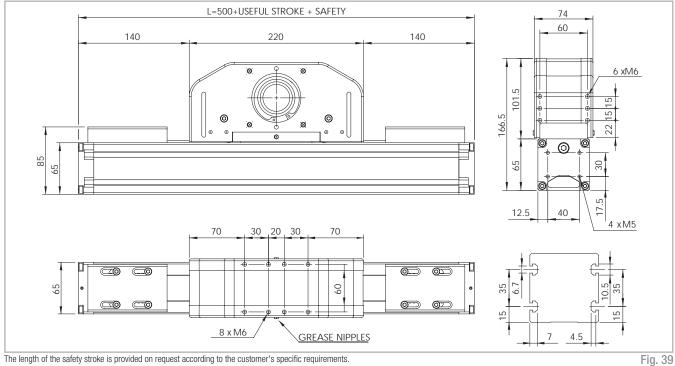
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 50 SP	22 AT 5	22	0.072
			Tab. 69

Belt length (mm) = L + 30

Load capacity


	Туре	F []	= ŇJ	F []	: V 1	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
	S-SMART 50 SP	809	508	7060	6350	7060	46.2	233	233
- 2									

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-40)

Tab. 70

S-SMART 65 SP

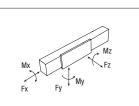
S-SMART 65 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 65 SP
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	3.6
Zero travel weight [kg]	7.3
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	0.60
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 71

Moments of inertia of the aluminum body

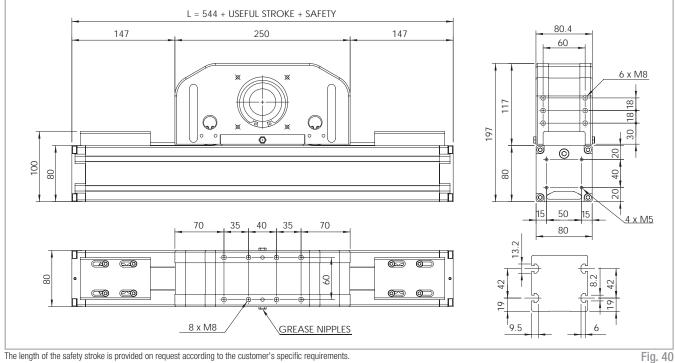

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 65 SP	0.060	0.086	0.146
			Tab. 72

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 65 SP	32 AT 5	32	0.105
			Tab. 73

Belt length (mm) = L + 35


Load capacity

Loud oupdoily								
Туре	ן []	= Ň]	F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 65 SP	1344	960	25400	19720	25400	240	1008	1008
See verification under static loa			2 and SL-3					Tab. 74

F_i in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-40)

S-SMART 80 SP

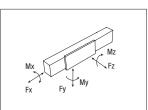
S-SMART 80 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 80 SP
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.85
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	6.3
Zero travel weight [kg]	12.6
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.65
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 75

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 80 SP	0.136	0.195	0.331
			Tab. 76

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 80 SP	32 AT 10	32	0.186
			Tab. 77

Belt length (mm) = L + 50

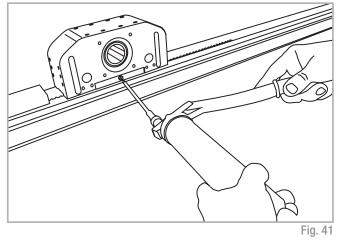
Load capacity

	-oud oupdoily								
Туре		F []	: X]	F []	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
	S-SMART 80 SP	2523	1672	55400	44400	55400	700	4044	4044
- 2									

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page SS-40)

Tab. 78

Lubrication

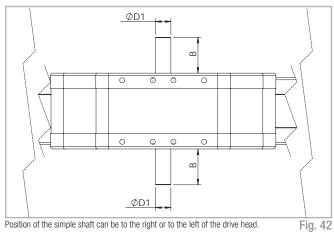

SP linear units with ball bearing guides

The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 2000 Km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

S-SMART


Quantity of lubricant necessary for re-lubrication of each block:

Туре	Quantity of Grease (cm³)
S-SMART 50	0.5
S-SMART 65	0.2
S-SMART 80	0.5
	Tab. 79

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

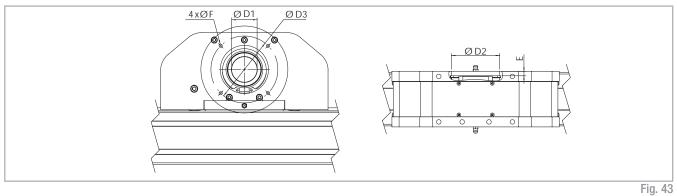
Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Applicable to unit	Shaft type	В	D1	AS Assembly kit code
S-SMART 50	AS 12	26	12h7	G000652
S-SMART 65	AS 15	35	15h7	G000851
S-SMART 80	AS 20	40	20h7	G000828


Tab. 80

S S

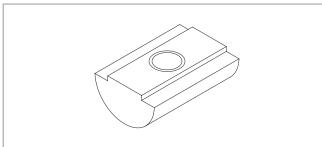
Hollow shaft

Units (mm)

Hollow shaft type AC - Standard supply

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	Drive head code
S-SMART 50	AC 26	26H7	47	75	2.5	M5	2YA
S-SMART 65	AC 34	34H7	62	96	2.5	M6	2YA
S-SMART 80	AC 41	41H7	72	100	5	M6	2ZA
							Tab. 81


An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices.

Accessories

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

T-nuts

Steel nuts to be used in the slots of the body.

Units (mm)										
	Hole	Length	Code Rollon							
S-SMART 50	M4	8	1001046							
S-SMART 65	M5	10	1000627							
S-SMART 80	M6	13	1000043							
			Tab. 82							

Proximity

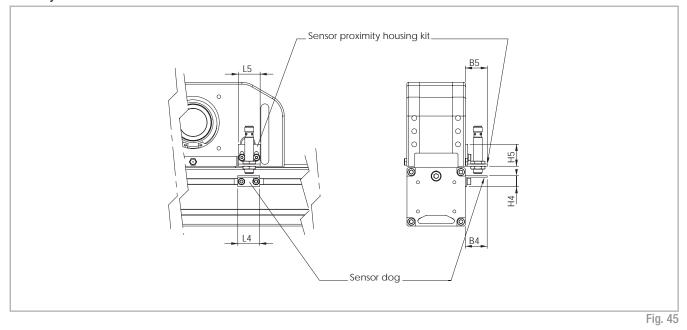
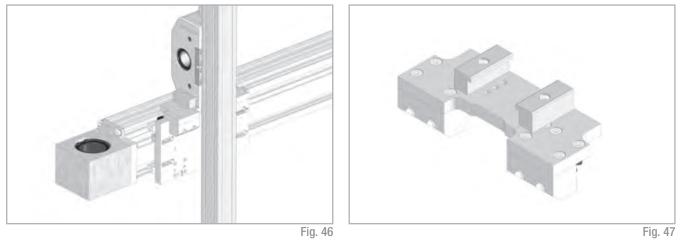


Fig. 44

Proximity switch holder

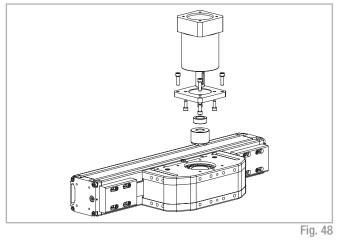
Aluminum block equipped with T-nuts for fixing


Proximity switch runner

Iron plate mounted on the carriage used for the proximity operation

Units (mm)	Jnits (mm)										
	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing code		
S-SMART 50	30	30	30	30	15	30	Ø8 / Ø12	G000835	G000834 / G001408		
S-SMART 65	30	30	30	30	15	30	Ø8/Ø12	G000836	G000834 / G001408		
S-SMART 80	30	30	30	30	15	30	Ø8/Ø12	G000837	G000834 / G001408		
									Tab. 83		

SS-38


Assembly kits

While ordering two units for Y-Z assembly key has to be specified that they work together in order to drill the trolleys for the assembly of the kit.

	Actuator combination Y-Z	Kit Code
12m	S-SMART 50 on E-SMART 50	G000647
	S-SMART 50 on R-SMART 120	G000910
12mm	S-SMART 65 on E-SMART 50	G000654
12mm	S-SMART 65 on E-SMART 80	G000677
	S-SMART 65 on R-SMART 120	G000911
	S-SMART 65 on R-SMART 160	G000912
13mg	S-SMART 80 on E-SMART 80	G000653
12m	S-SMART 80 on E-SMART 100	G000688
	S-SMART 80 on R-SMART 120	G000990
	S-SMART 80 on R-SMART 160	G000913
		Tab. 84

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code
S-SMART 50	MP060	G000566
3-31VIANT 30	LC050; PE2; LP050	G001444
	MP080	G000529
S-SMART 65	MP060; PLE060	G000531
3-31VIAN1 00	SW030	G000748
	PE3; LP070; LC070	G000530
	P3	G000824
	MP080	G000826
	LC090; MPV01; LP090; PE4	G000827
S-SMART 80	PLE080	G000884
	SP060; PLN070	G000829
	SW040	G000866
	SW050	G000895
		Tab. 85

Codes on the table below refer to a shink disc ordered as single element.

Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
S-SMART 50	26	14x26	36	6005740
		14x34	64	6005737
S-SMART 65	34	16x34	73	6005738
		19x34	87	6005739
		19x41	150	6005734
S-SMART 80	41	22x41	174	6005735
		25x41	198	6005736

* Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 86 For the application, the limit of F_x must be considered too.

For other gearbox type ask Rollon

Configure Actuator

0

Ordering key // 🗸

Identification codes for the S-SMART linear unit

F	08 05 = 50 06 = 65 08 = 80	2ZA	1300	1A 1A=SP					
	00 - 00			Linear motion	system see pg. SS-32				
			L=total length	n of the unit					
		Drive head co							
	Linear unit typ	be <i>see from p</i> g	g. SS-33 to pg.	SS-35					
Linear unit ser	ies S-SMART	see pg. SS-30							
In order to crea	In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com								

Rollon now offers a set of components, including brackets and plates, to enable multiaxis units to be built.

Application examples:

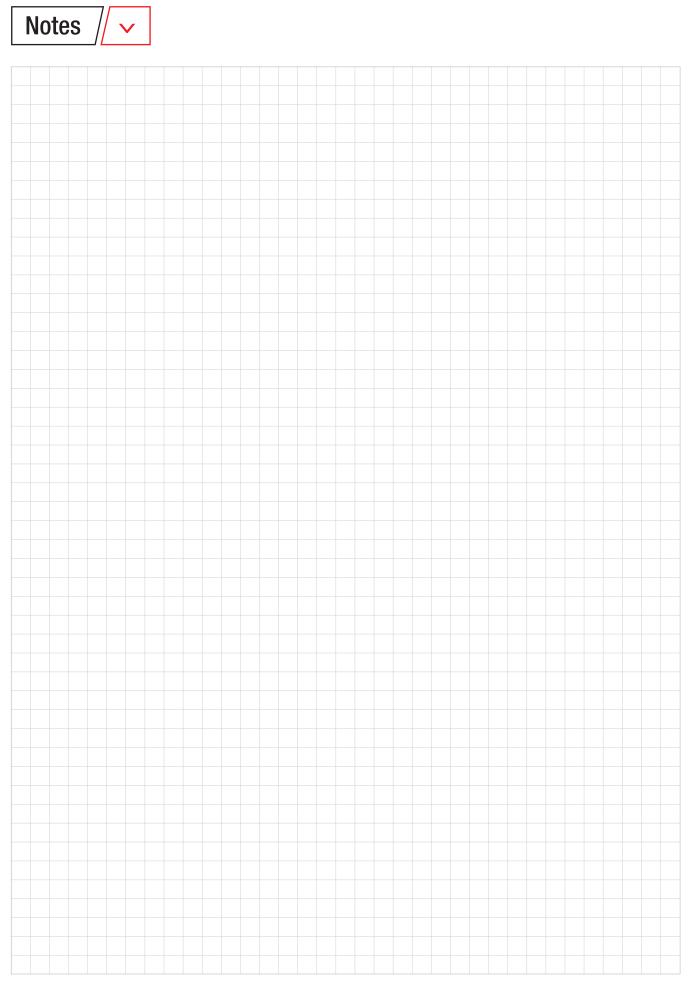
In addition to the standard elements, Rollon can supply plates for special applications.

One axis system

Two parallel axis system

B - Linear units: 2 E-SMART Connection kit: Parallel Kit

A - X Axis: E-SMART



C - Linear units: Y Axis 1 R-SMART - Z Axis 1 S-SMART Connection kit: Connection plate Kit for S-SMART (Z axis) on R-SMART (Y axis).

Three axis X-Y-Z system

D - Linear units: X Axis 2 E-SMART - Y Axis 1 R-SMART - Z Axis 1 S-SMART Connection kit: 2 fixing brackets Kit for 2 R-SMART (Y axis) on 2 E-SMART (X axis). Connection plate Kit for S-SMART (Z axis) on 2 R-SMART (Y axis). Parallel Kit

S S

ECO series description

Fig. 1

The ECO SYSTEM units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Three different sizes available: 60mm, 80mm, 100mm
- Version available with recirculating ball bearing or roller rails
- Reduced weight ensured by the light frame and the aluminum sliders
- High sliding speed

The ECO SYSTEM series actuators are offered with two motion systems:

ECO SYSTEM – SP

Featuring a maintenance free recirculating linear guide rail fitted inside the profile.

ECO SYSTEM - CI

Featuring four rollers with a Gothic arch outer profile sliding on hardened steel bars placed inside the profile.

The components

Extruded bodies

The anodized aluminum extrusion used for the profile of the Rollon ECO series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complant with EN 755-9 standards.

Driving belt

The Rollon ECO series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

General data about aluminum used: AL 6060

Chemical composition [%]

Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

Carriage

The carriage of the Rollon ECO series linear units is made of anodized aluminum. Two different length carriages are available for each type of linear unit.

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10-9	°C
dm ³	mm ²	К	m . K	kg . K		Ū.
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	НВ
$\frac{N}{mm^2}$	N mm²	%	_
205	165	10	60-80
			Tah 3

Tab. 3

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ECO...SP with ball bearing guides

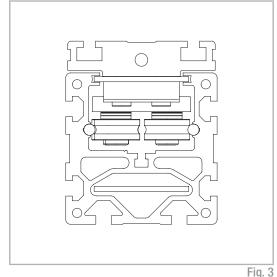
- A ball bearing guide with high load capacity is mounted in a dedicated seat on the inside of the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

 \square

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance Free (dependent on application)
- Low noise
- Suitable for long stroke

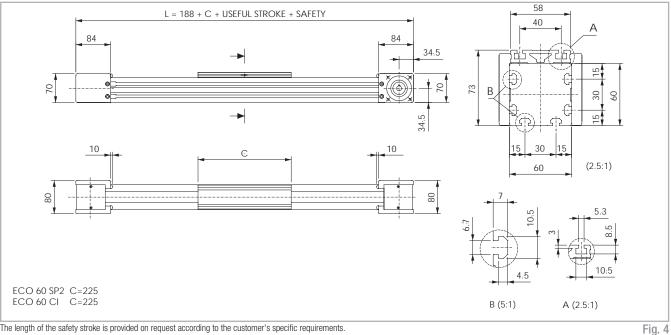
ECO SP


ECO...Cl with gothic arch bearing guides inside the body

- Two hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with six bearing assemblies each having a gothic arch groove machined into its outer race to run on the steel rods.
- The six bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted on the ends of the carriage.
- The driving belt is supported by the entire length of the profile in order to avoid deflection as well as to protect the linear guide.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)


ECO CI

ES-4

ECO 60 SP2 - ECO 60 CI

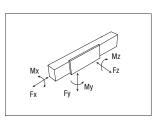
ECO 60 SP2 - ECO 60 CI Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Ту	ре
	ECO 60 SP2	ECO 60 CI
Max. useful stroke length [mm]	6025	5725
Max. positioning repeatability [mm]*1	± 0.05	± 0.05
Max. speed [m/s]	4.0	1.5
Max. acceleration [m/s ²]	50	1.5
Type of belt	32 AT 5	32 AT 5
Type of pulley	Z 28	Z 28
Pulley pitch diameter [mm]	44.56	44.56
Carriage displacement per pulley turn [mm]	140	140
Carriage weight [kg]	0.51	0.80
Zero travel weight [kg]	3.5	3.2
Weight for 100 mm useful stroke [kg]	0.45	0.68
Starting torque [Nm]	0.24	0.32
Moment of inertia of pulleys [g mm ²]	163000	163000
Rail size [mm]	12 mini	Ø6
1) Positioning repeatability is dependant on the type of transmission use	ed	Tab. 4

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا [10 ⁷ mm⁴]
ECO 60	0.037	0.054	0.093
			Tab. 5

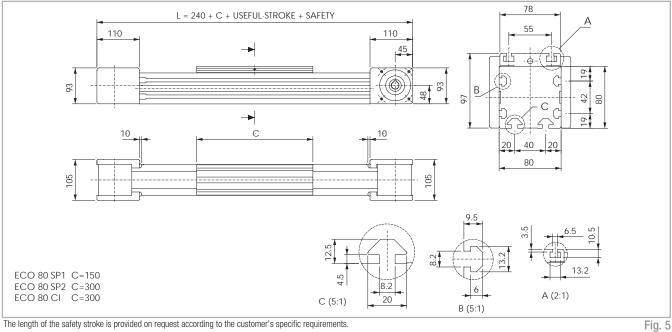
Driving belt

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ECO 60	32 AT 5	32	0.105
			Tab. 6

Belt length (mm) SP2/Cl = 2 x L - 166

Load capacity


Туре	F [1	: × V]	F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
EC0 60 SP2	1344	922	7060	6350	7060	46.2	325	325
ECO 60 CI	1344	922	1648	3072	1110	24.4	33	76.2

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 7

ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI >

ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI Dimensions

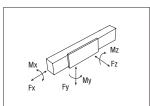
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

		Туре	
	ECO 80 SP2	ECO 80 SP1	ECO 80 Cl
Max. useful stroke length [mm]	5940	6090	5640
Max. positioning repeatability [mm]*1	± 0.05	± 0.05	± 0.05
Max. speed [m/s]	5.0	5.0	1.5
Max. acceleration [m/s ²]	50	50	1.5
Type of belt	50 AT 5	50 AT 5	50 AT 5
Type of pulley	Z 37	Z 37	Z 37
Pulley pitch diameter [mm]	58.89	58.89	58.89
Carriage displacement per pulley turn [mm]	185	185	185
Carriage weight [kg]	1.6	0.9	2.1
Zero travel weight [kg]	7.7	5.9	8.2
Weight for 100 mm useful stroke [kg]	0.8	0.8	0.65
Starting torque [Nm]	0.75	0.75	0.75
Moment of inertia of pulleys [g mm ²]	706000	706000	706000
Rail size [mm] 1) Positioning repeatability is dependant on the type of transmission u	15 sed	15	Ø6 Tab. 8

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا [10 ⁷ mm⁴]
EC0 80	0.117	0.173	0.280
			Tab. 9

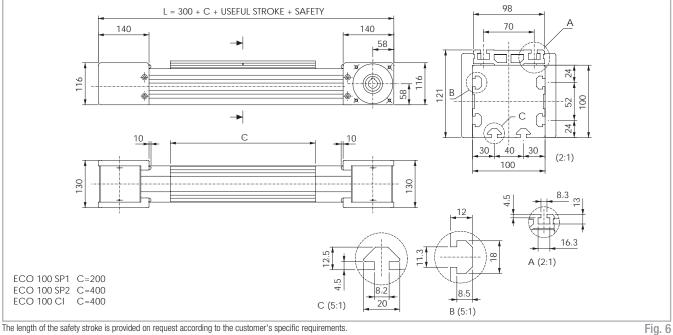

Driving belt

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
EC0 80	50 AT 5	50	0.164
			Tab. 10

Belt length (mm) SP2/Cl = 2 x L - 240

SP1= 2 x L - 90


Load capacity

Туре	F _x	[N]		[N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
EC0 80 SP2	2100	1440	25400	19720	25400	240	1791	1791
EC0 80 SP1	2100	1440	12700	9860	12700	120	87	87
EC0 80 CI	2100	1770	4229	8731	2849	83	129	297

See verification under static load and lifetime on page SL-2 and SL-3

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

		Туре	
	ECO 100 SP2	ECO 100 SP1	ECO100 Cl
Max. useful stroke length [mm]	6630	6830	5530
Max. positioning repeatability [mm]*1	± 0.05	± 0.05	± 0.05
Max. speed [m/s]	5.0	5.0	1.5
Max. acceleration [m/s ²]	50	50	1.5
Type of belt	50 AT 10	50 AT 10	50 AT 10
Type of pulley	Z 24	Z 24	Z 24
Pulley pitch diameter [mm]	76.39	76.39	76.39
Carriage displacement per pulley turn [mm]	240	240	240
Carriage weight [kg]	2.9	1.5	3.3
Zero travel weight [kg]	16.7	12.5	17.1
Weight for 100 mm useful stroke [kg]	1.3	1.3	1.1
Starting torque [Nm]	1.90	1.35	1.35
Moment of inertia of pulleys [g mm ²]	2070000	2070000	2070000
Rail size [mm]	20	20	Ø10
1) Positioning repeatability is dependant on the type of transmission u	sed		Tab. 12

ie typ

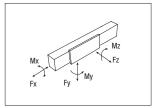
Load capacity

Туре	F _x	[N]	F _y	[N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
EC0 100 SP2	4565	2832	55400	44400	55400	700	5485	5485
EC0 100 SP1	4565	2832	27700	22200	27700	350	240	240
ECO 100 CI	4565	3740	9154	20079	6167	214	310	962

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ECO 100	0.342	0.439	0.781
			Tab. 13


Driving belt

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ECO 100	50 AT 10	50	0.290
			Tab. 14

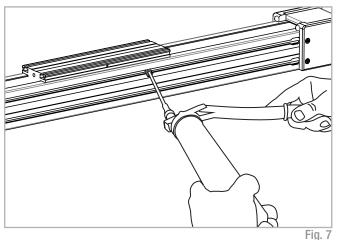
Belt length (mm) SP1 = 2 x L - 112

SP2/CI = 2 x L - 312

S

Lubrication

ECO linear units with ball bearing guides

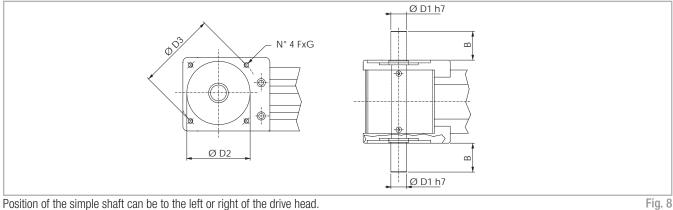

ECO linear are equipped with self lubricating linear ball guides.

The ball bearing carriages of the ECO series are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

EC0


- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm³]
ECO 60	0.5
EC0 80	0.7
EC0 100	1.4
	Tab. 16

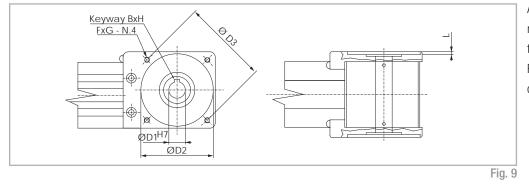
Simple shafts

AS type simple shafts

Position of the simple shaft can be to the left or right of the drive head.

Dimensions (mm)

Applicable to unit	Shaft type	D1	D2	D3	В	F	G	Head code AS left	Head code AS right
EC0 60	AS 12	12	60	75	25	M5	12	2G	21
EC0 80	AS 20	20	80	100	36.5	M6	16	2G	21
ECO 100	AS 25	25	110	130	50	M8	20	2G	21


Tab. 17

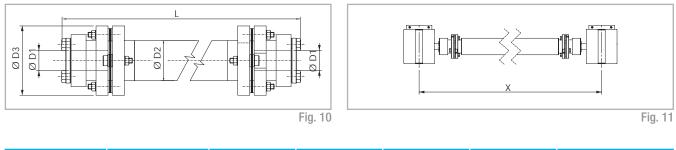
Hollow shafts >

Transmission of torque to the drive pulley

Torque is transmitted to the drive pulley from a hollow shaft and keyway. This system may create backlash in the case of alternating loads and high level acceleration. For further information, contact our offices.

Hollow shaft

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information, contact our offices


Unit	Shaft type	D1	D2	D3	L	Key way BxH	F	G	Drive head code
ECO 60	AC 12	12H7	60	75	3.5	4 x 4	M5	12	2A
EC0 80	AC 19	19H7	80	100	3.5	6 x 6	M6	16	2A
ECO 100	AC 25	25H7	110	130	4.5	8 x 7	M8	20	2A

E S

Linear units in parallel

Synchronisation kit for use of ECO linear units in parallel

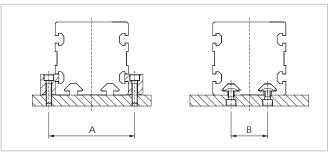
When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.

Unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
ECO 60	AP 12	12	25	45	GK12P1A	L= X-88 [mm]
EC0 80	AP 20	20	40	69.5	GK20P1A	L= X-116 [mm]
ECO 100	AP 25	25	70	99	GK25P1A	L= X-165 [mm]
						Tab 10

Tab. 19

Accessories

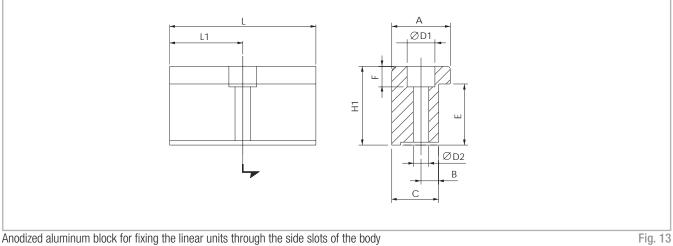
>


Fixing by brackets

The linear motion systems used for the Rollon ECO series linear units enables them to support loads in any direction. They can therefore be installed in any position.

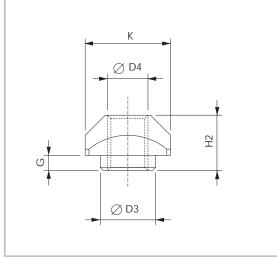
To install the units, we recommend use of the dedicated T-slots in the aluminum extruded bodies as shown below.

Moment of inertia [g mm²] C1 + C2 · (X-Y)


	C1	C2	Y		t [Kg] ∶• (X-Y)
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]
GK12P	61.456	69	166	0.308	0.00056
GK20P	1.014.968	464	250	2.48	0.00148
GK25P	5.525.250	4.708	356	6.24	0.0051
					Tab. 20

Unit	A (mm)	B (mm)
EC0 60	72	30
EC0 80	94	40
EC0 100	120	40
		Tab. 21

Fig. 12


Fixing brackets

Anodized aluminum block for fixing the linear units through the side slots of the body

Unit	A	H1	В	С	E	F	D1	D2	L	LI	Code
ECO 60	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
EC0 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
EC0 100	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233
											Tab. 22

T-nuts

Steel nuts to be used in the slots of the body.

imensions	

Dimensions (mm)									
Unit		D3	D4	G	H2	К	Code		
ECO 60	S	6.7	M5	2.3	6.5	10	1000627		
ECO 60	С	-	M5	-	5	10	1000620		
EC0 80	S	8	M6	3.3	8.3	13	1000043		
EC0 80	С	-	M6	-	5.8	13	1000910		
EC0 80	L	-	M6	-	6.5	17	1000911		
ECO 100	S	11	M8	3	11	17	1000932		
ECO 100	С	-	M8	-	8	16	1000942		
ECO 100	L	-	M8	-	6.5	17	1000943		
$\mathbf{S} = \text{Side} - \mathbf{C} = \text{Carr}$	s = Side - c = Carriage - L = Lower Tab. 23								

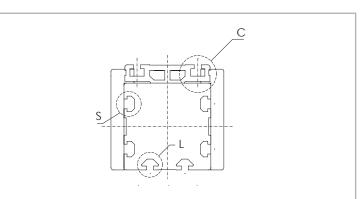
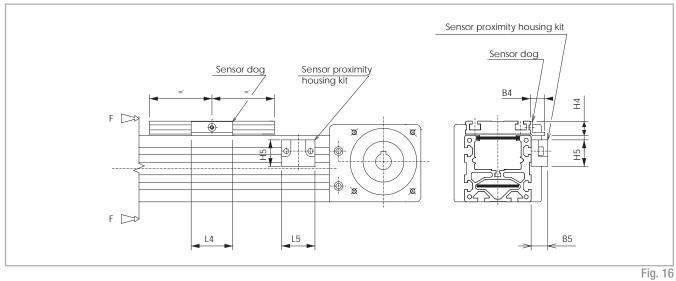



Fig. 15 ES-11

Proximity

Sensor proximity housing kit

Sensor dog

Anodized aluminum block, red colour, equipped with T-nuts for fixing into the body slots.

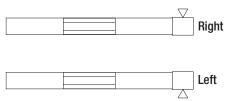
L-shaped bracket in zinc-plated iron, mounted on the carriage and used for the proximity switch operation.

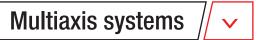
Unit	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog Code	Sensor proximity housing kit code
ECO 60	9.5	14	25	29	12	22.5	Ø 8	G000268	G000213
ECO 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ECO 100	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

Configure Actuator

0

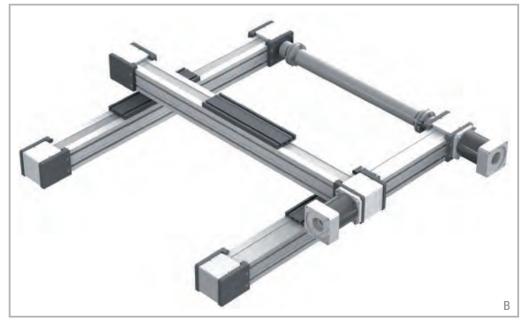



Identification codes for the ECO linear unit

C	06 06=60 08=80 10=100	2A	0 2000	1A 1A=SP1 2A=SP2 1C=CI				
				Linear motio	n system see pg. ES-4			
		L=total length of the unit						
	Driving head code see pg. ES-8							
	Linear unit size see from pg. ES-5 to pg. ES-7							
ECO series	see pg. ES-2	2						

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

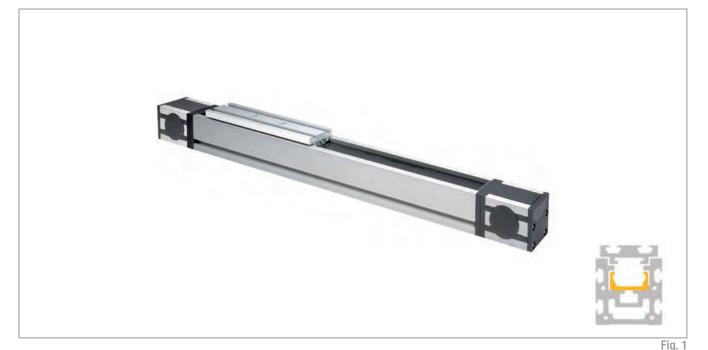
Left / right orientation


Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axis. Rollon now offers a set of fittings including brackets and cross plates to enable multiaxis units to be built. In addition to standard elements, Rollon also provides plates for special applications.

ECO axis system

A - Linear units: X axis 1 ECO 80

Two axis X-Y system


B - Linear units: X axis: 2 ECO 80 - Y axis 1 ECO 80
 Connection kit: 2 Kits of fixing brackets for the ECO 80 unit (Y axis) on the carriages of the ECO 80 units (X axis).

Uniline A series 🛛 🗸

Uniline A series description

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the A series, the fixed bearing rail (T-rail) is mounted horizontally in the aluminum profile. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

Handling and automation

- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:
 Type A: 40, 55, 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline A series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard. be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt

The Rollon Uniline A series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

General data about aluminum used: AL 6060

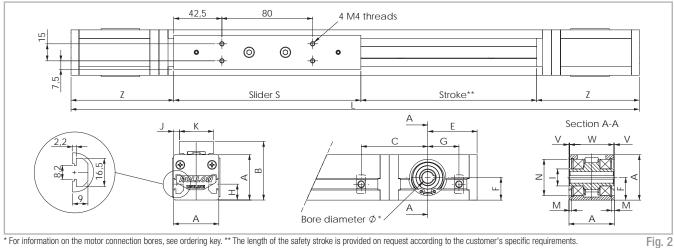
Chemical composition [%]

The carriage of the Rollon Uniline A series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element (size 40 has threded holes). Rollon offers multiple carriages to accommodate a vast array of applications.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω.m.10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		Ŭ
2.7	69	23	200	880-900	33	600-655
						Tab. 2


Mechanical characteristics

Rm	Rp (02)	А	HB
N 	N mm ²	%	_
205	165	10	60-80
			Tab. 3

U

A40

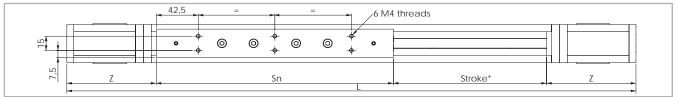
A40 system

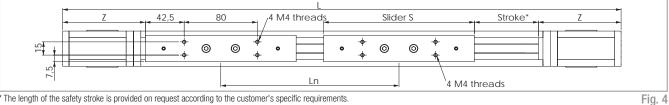
* For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.

Stroke* C* V W Ζ G* K Μ A В Ε J Туре [mm] 5 30 2.3 91.5 20 14 Ø 14,9 Ø 32 165 0.5 39 1900 A40 40 51.5 57 43.5 26 For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff Tab. 4

** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 9

A40L with long slider



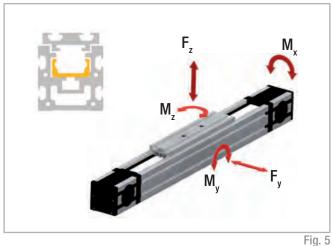

Fig. 3

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S _{min} [mm]	S _{max} [mm]	Sn [mm]	Z [mm]	Stroke* [mm]		
A40L	240	400	$Sn = S_{min} + n \cdot 10$	91.5	1660		
Maximum stroke for a single-piece guiding rail and a maximum slider plate length S _{max} Tab. 5							

For longer strokes, see tab. 9

A40D with double slider


* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]	
A40D	165	235	1900	$Ln = L_{min} + n \cdot 5$	91.5	1660	
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min} Tab. 6							

Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 9

Load ratings, moments and characteristic data

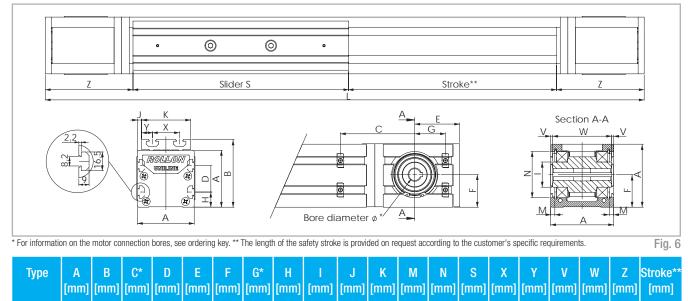
A40

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
A40	10RPP5	10	0.041
			Tab. 7

Belt length (mm) = 2 x L - 168 Standard slider **Belt length (mm) =** $2 \times L - S_n - 3$ Long slider **Belt length (mm)** = $2 \times L - L_n - 168$ Double slider


Туре	C [N]	F, [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
A40	1530	820	300	2.8	5.6	13.1	
A40-L	3060	1640	600	5.6	22 to 70	61 to 192	
A40-D	3060	1640	600	5.6	70 to 570	193 to 1558	
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 8							

Technical data	Туре
	A40
Standard belt tension [N]	160
Moment at no load [Nm]	0.14
Max. traversing speed [m/s]	3
Max. acceleration [m/s ²]	10
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV18
Slider type	CS18 spec.
Moment of inertia ly [cm4]	12
Moment of inertia Iz [cm4]	13.6
Pitch diameter of pulley [m]	0.02706
Moment of inertia of each pulley [gmm ²]	5055
Stroke per shaft revolution [mm]	85
Mass of slider [g]	220
Weight with zero stroke [g]	1459
Weight with 1 m stroke [g]	3465
Max. stroke [mm]	3500
Working temperature	from -20 °C to + 80 °C

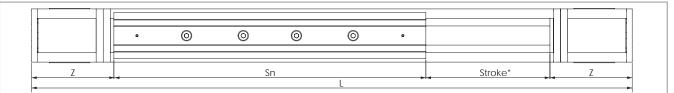
Tab. 9

> A55

A55 system

* For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff

** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 15


67.5

A55L with long slider

55

71

A55

52

2.35 Ø 47 200

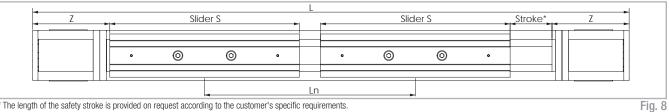
28

12

0.5

54

108


* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S _{min} [mm]	S _{max} [mm]	Sn [mm]	Z [mm]	Stroke* [mm]		
A055-L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770		
Maximum stroke for a single-piece guiding rail and a maximum slider plate length S _{max} Tab. 11							

25 50.5 27.5 32.5 15 Ø 24.9 1.5

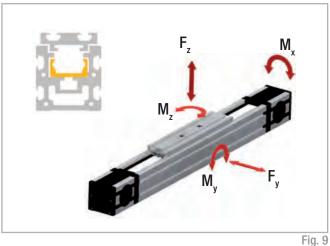
For longer strokes, see tab. 15

A55D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]
A55D	200	300	3070	$Ln = L_{min} + n \cdot 5$	108	2770
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min}						

** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm


For longer strokes, see tab. 15

3070

Tab. 10

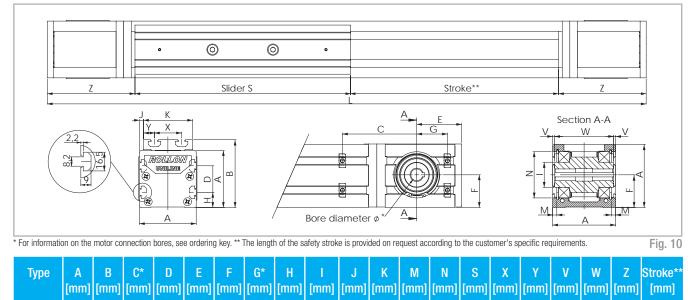
Load ratings, moments and characteristic data

A55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
A55	18RPP5	18	0.074
			Tab. 13


Belt length (mm) = 2 x L - 182 Standard slider **Belt length (mm) =** $2 \times L - S_n + 18$ Long slider Belt length (mm) = $2 \times L - L_n - 182$ Double slider

		9. 0						
Туре	C [N]	F _y F _z M _x [N] [N] [Nm]		M _y [Nm]	M _z [Nm]			
A55	4260	2175	750	11.5	21.7	54.4		
A55-L	8520	4350	1500	23	82 to 225	239 to 652		
A55-D	8520	4350	1500	23	225 to 2302	652 to 6677		
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 14								

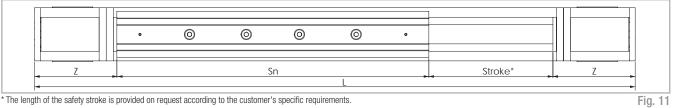
Technical data	Туре
	A55
Standard belt tension [N]	220
Moment at no load [Nm]	0.22
Max. traversing speed [m/s]	5
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV28
Slider type	CS28 spec.
Moment of inertia ly [cm4]	34.6
Moment of inertia Iz [cm⁴]	41.7
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm ²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	475
Weight with zero stroke [g]	2897
Weight with 1 m stroke [g]	4505
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C

A75

A75 system

For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff

** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 21


71.5

A75L with long slider

75

90

A75

65

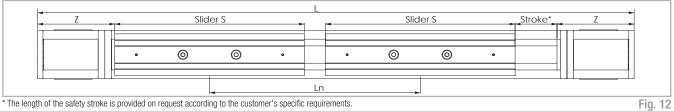
4.85 Ø 55 285

36

14.5 2.3 70.4 116

3420

Tab. 16

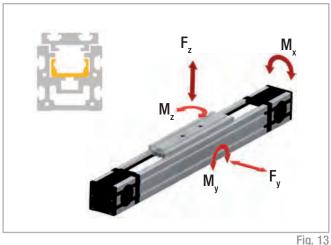

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре S_{min} [mm] S_{max} [mm] Stroke* Ζ [mm] [mm] [mm] 116 3000 A75-L 440 700 $Sn = S_{min} + n \cdot 10$ $^{
m f}$ Maximum stroke for a single-piece guiding rail and a maximum slider plate length ${
m S}_{
m max}$ Tab. 17

35 53.5 38.8 34.5 20 Ø 29.5 5

For longer strokes, see tab. 21

A75D with double slider


* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]
A75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min} Tab						

** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 21

Load ratings, moments and characteristic data

A75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
A75	30RPP8	30	0.185
			Tab. 19

Belt length (mm) = 2 x L - 213 Standard slider **Belt length (mm) =** $2 \times L - S_n + 72$ Long slider **Belt length (mm) =** $2 \times L - L_n - 213$ Double slider

	Hig. To							
Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
A75	12280	5500	1855	43.6	81.5	209		
A75-L	24560	11000	3710	87.2	287 to 770	852 to 2282		
A75-D	24560	11000	3710	87.2	771 to 6336	2288 to 18788		
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 20								

Technical data	Туре
	A75
Standard belt tension [N]	800
Moment at no load [Nm]	1.15
Max. traversing speed [m/s]	7
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV43
Slider type	CS43 spec.
Moment of inertia ly [cm ⁴]	127
Moment of inertia Iz [cm ⁴]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm ²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1242
Weight with zero stroke [g]	6729
Weight with 1 m stroke [g]	9751
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]		
Roller bearing grease	Lithium soap	-30 to +170	<4500		
			Tab. 22		

Relubrication of the guide rails

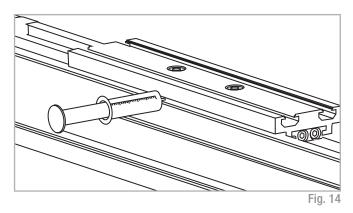
These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

1. Relubrication using a grease gun:

This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 14). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley. The advantage of this solution is the possibility of rail re-lubrication with-


Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 15).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

*(Any adapter that may be necessary must be manufactured on site)

out machine downtime.

- Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

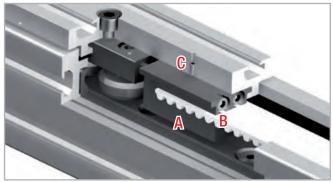


Fig. 15

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

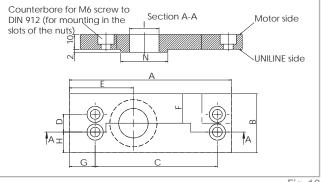


Fig. 16

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
40	110	40	83	12	43.5	20	17.5	14	Ø 20	Ø 32
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55
										Tab. 23

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes	
40	NEMA 23	
55	NEMA 34	
75	NEMA 42	
		Tab. 24

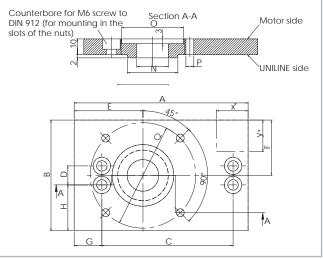
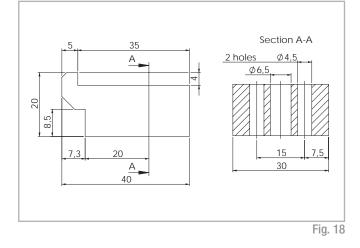


Fig. 17

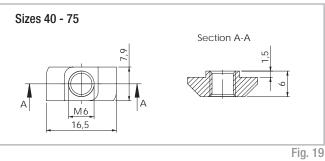

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
40	110	70	83	12	43.5	35	17.5	29	20	Ø 32	Ø 39	Ø 5	Ø 66.7
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø 74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7
													Tab. 25

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

U

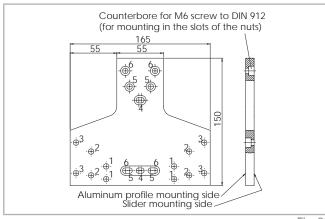
Fixing brackets APF-2


Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

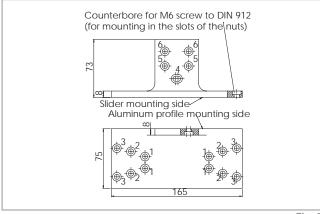
The maximum tightening torque is 10 Nm.



Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.


Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 26

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 27

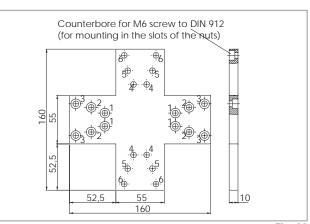
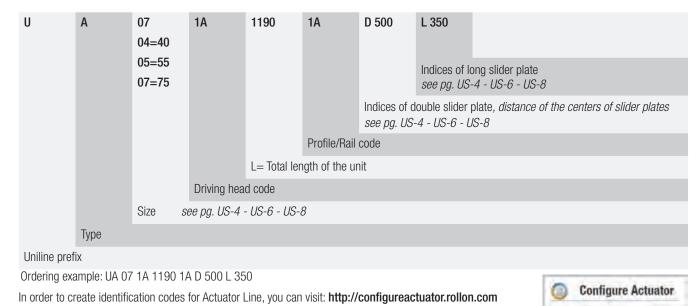
Fig. 21

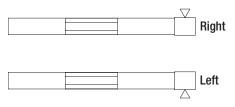
X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6

Tab. 28


Fig. 22

Ordering key // 🗸

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

А	07	AC2
	04=40	
	05=55	Chandraid makey adapter plates and pp 1/C 11
	07=75	Standard motor adapter plates see pg. US-11
	Size se	ee pg. US-11
Туре		

Ordering example: A07-AC2

NEMA motor adapter plates

А	07	AC1
	04=40	
	05=55	NEMA motor adapter plates see pg. US-11
	07=75	
	Size se	pe pg. US-11
Туре		

Ordering example: A07-AC1

T-connection plate	Order code: APC-,1 s. pg. US-12
Angle connection plate	Order code: APC-2, s. pg. US-13
X connection plate	Order code: APC-3, s. pg. US-13
Fixing clamp	Order code: APF-2, s. pg. US-12

Motor connection bores

		Size		
Hole [Ø]	40	55	75	Head code
	10G8 / 3js9	12G8 / 4js9	14G8 / 5js9	1A
Metric [mm] with slot for key		10G8 / 3js9	16G8 / 5js9	2A
		14G8 / 5js9	19G8 / 6js9	ЗA
		16G8 / 5js9		4A
Metric [mm]			18	1B
for compression coupling			24	2B
	3⁄8 / 1⁄8	1/2 / 1/8	5⁄ ₈ / 3⁄ ₁₆	1P
Inch [in] with slot for key		3⁄8 / 1⁄8		2P
		5⁄8 / 3⁄16		ЗP

The highlighted connection bores are standard connections Metric: key seat for keys to DIN 6885 form A

Inch: key seat for keys to BS 46 Part 1: 1958

Tab. 29

Uniline C series // 🗸

Uniline C series description

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the C series, the fixed bearing rail (T-rail) and the compensating bearing rail (U-rail) are mounted in the aluminum profile vertically. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]: Type C: 55, 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline C series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard. be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt

The Rollon Uniline C series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

General data about aluminum used: AL 6060

Chemical composition [%]

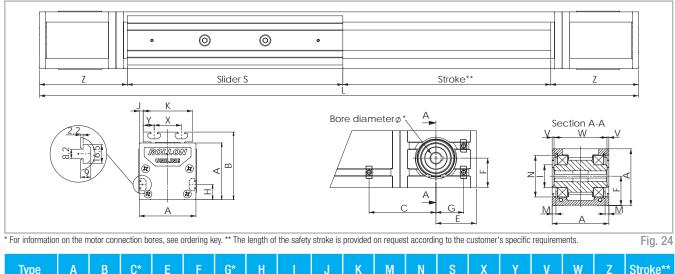
The carriage of the Rollon Uniline C series linear units are made entirely
of anodized aluminum. Each carriage has mounting T-slots for the con-
nection to the moving element. Rollon offers multiple carriages to accom-
modate a vast array of applications.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 30

Physical characteristics

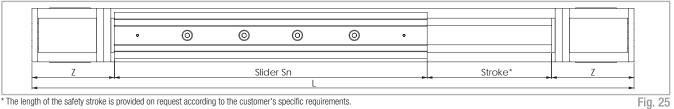
Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 100	
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655
						Tab 01

Tab. 31


U

Mechanical characteristics

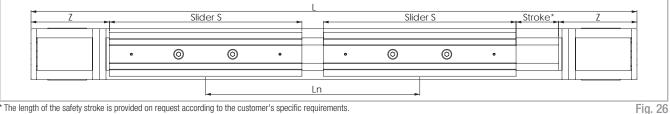
Rm	Rp (02)	А	HB
N 	N mm ²	%	_
205	165	10	60-80
			Tab. 32


C55

C55 system

	туре	A [mm]	ь [mm]	[mm]	с [mm]	г [mm]	G [mm]	п [mm]	[mm]	ן [mm]	_∧ [mm]	[mm]	[mm]	ა [mm]	^ [mm]	r [mm]	v [mm]	w [mm]	۲ [mm]	[mm]
1	C55	55	71	67.5	50.5	27.5	32.5	15	Ø 24.9	1.5	52	2.35	Ø 47	200	28	12	0.5	54	108	1850
	 For the positi ** Maximum str 			0			,	10	23ff											Tab. 33

C55L with long slider



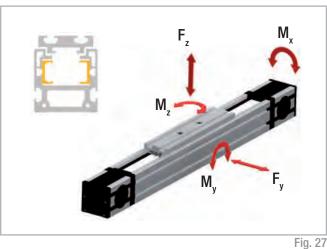
* The length of the safety stroke is provided on request according to the customer's specific requirements.

S_{min} [mm] S_{max} [mm] Туре Stroke* Ζ [mm] [mm] [mm] $Sn = S_{_{min}} + n \cdot 10$ C55L 310 500 108 1550 Tab. 34

* Maximum stroke for a single-piece guiding rail and a maximum slider plate length $S_{\rm max}$ For longer strokes, see tab. 38

C55D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.


Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]				
C55D 200 300 1850 $Ln = L_{min} + n \cdot 5$ 108										
* Maximum stroke for a sine	gle-piece guiding	y rail and a minii	mum slider plate	distance L _{min}		Tab. 35				

** Maximum distance $L_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 38

US-18

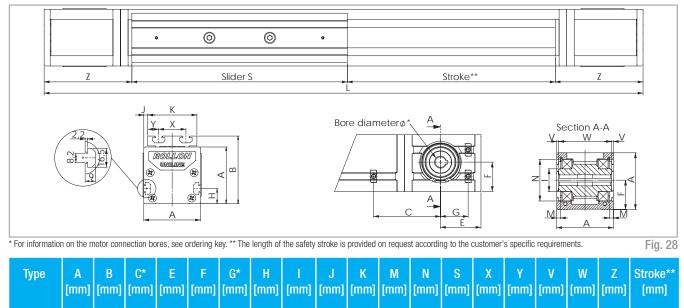
Load ratings, moments and characteristic data

C55

Driving belt

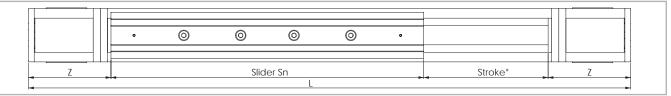
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
C55	18RPP5	18	0.074
			Tab. 36


Belt length (mm) = 2 x L - 182 Standard slider **Belt length (mm) =** $2 \times L - S_n + 18$ Long slider **Belt length (mm)** = $2 \times L - L_n - 182$ Double slider

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
C55	560	300	1640	18.5	65.6	11.7		
C55-L	1120	600	3280	37	213 to 525	39 to 96		
C55-D	1120	600	3280	37	492 to 3034	90 to 555		
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 37								

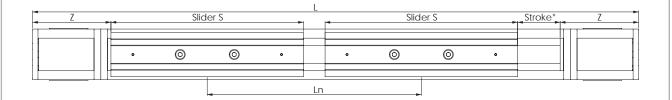
Technical data	Туре
	C55
Standard belt tension [N]	220
Moment at no load [Nm]	0.3
Max. traversing speed [m/s]	3
Max. acceleration [m/s ²]	10
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV18 / ULV18
Slider type	2 CS18 spec.
Moment of inertia ly [cm4]	34.4
Moment of inertia Iz [cm ⁴]	45.5
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm ²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	549
Weight with zero stroke [g]	2971
Weight with 1 m stroke [g]	4605
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C


C75

C75 system

C75 75 90 71.5 53.5 38.8 34.5 20 Ø 29.5 5 65 4.85 Ø 55 285 36 14.5 2.3 * For the position of the T-nuts when using our motor adapter plates, see pg. US-23ff
 ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 44

C75L with long slider



* The length of the safety stroke is provided on request according to the customer's specific requirements.

S_{min} [mm] S_{max} [mm] Туре Stroke* Ζ [mm] [mm] [mm] C75L 440 700 $Sn = S_{min} + n \cdot 10$ 116 2610 Tab. 40 * Maximum stroke for a single-piece guiding rail and a maximum slider plate length S_{max}

For longer strokes, see tab. 44

C75D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.

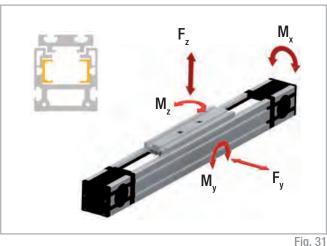
Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]	
C75D	285	416	3024	$Ln = L_{min} + n \cdot 8$	116	2610	
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min} Tab.							

** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm

For longer strokes, see tab. 44

Fig. 29

3000


Tab. 39

70.4 116

Fig. 30

Load ratings, moments and characteristic data

C75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
C75	30RPP8	30	0.185
			Tab. 42

Belt length (mm) = 2 x L - 213 Standard slider **Belt length (mm) =** $2 \times L - S_n + 72$ Long slider **Belt length (mm) =** $2 \times L - L_n - 213$ Double slider

		119.51							
Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]			
C75	1470	750	4350	85.2	217	36.1			
C75-L	2940	1500	8700	170.4	674 to 1805	116 to 311			
C75-D	2940	1500	8700	170.4	1809 to 13154	312 to 2268			
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 43									

Technical data	Туре
	С75
Standard belt tension [N]	800
Moment at no load [Nm]	1.3
Max. traversing speed [m/s]	5
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV28 / ULV28
Slider type	2 CS28 spec.
Moment of inertia ly [cm4]	108
Moment of inertia Iz [cm⁴]	155
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm ²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1666
Weight with zero stroke [g]	6853
Weight with 1 m stroke [g]	9151
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500
			Tab. 45

Relubrication of the guide rails

- 1. Slide the slider plate to one end of the unit.
- At about half the stroke press and manually move the belt in order to see one of the two rails inside the unit (see Fig. 32).
 It may be necessary to release or loosen the belt tension. See chapter Belt tension (pg. US-59).
- 3. By using a grease syringe (not supplied by ROLLON) or an alternative tool (i.e. brush), apply a sufficient quantity of grease on the raceways.
- 4. If required, re-establish the recommended belt tension (see pg. US-59).
- 5. Finally slide the slider plate back and forth over the entire stroke, in order to distribute the grease over the entire length of the rail.

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 33).
- Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

 Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
 Fasten the safety screws C.

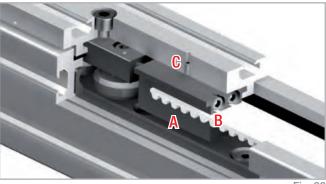


Fig. 33

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

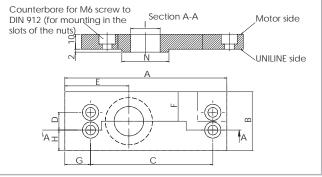


Fig. 34

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

Tab. 46

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes	
55	NEMA 34	
75	NEMA 42	
		Tab. 47

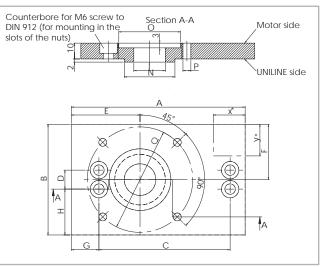
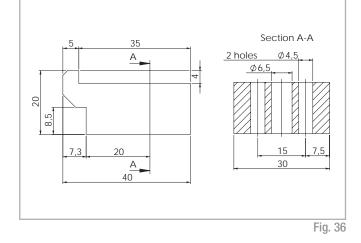
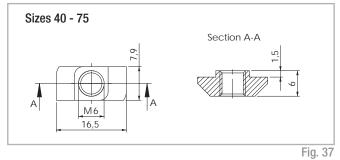


Fig. 35


Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7
													Tab. 48

Synchronous use of linear axes in pairs


If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

U

Fixing brackets APF-2

T-nut

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

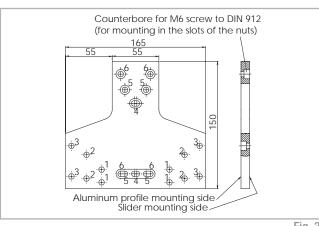


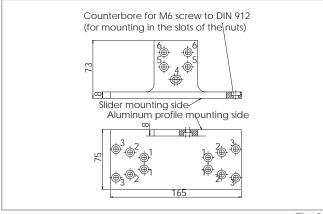
Fig. 38

Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

The maximum tightening torque is 10 Nm.


Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 49

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

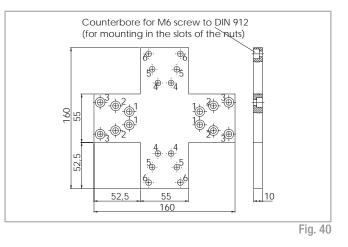
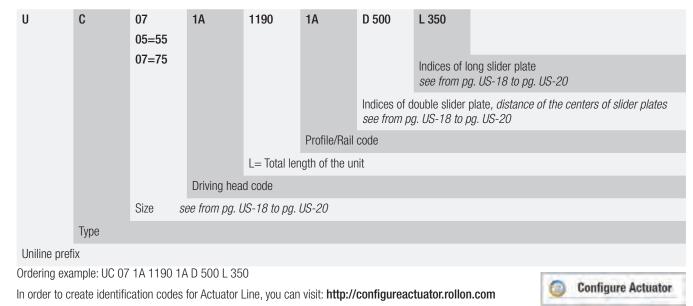
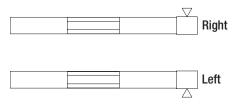

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 50

Fig. 39

X connection plate APC-3


X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 51



Ordering key // 🗸

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

)5=55)7=75	Standard motor adapter plates see pg. US-23
S	Size <i>see</i>	эрд. US-23
Туре		

Ordering example: C07-AC2

NEMA motor adapter plates

С	07	AC1
	05=55 07=75	NEMA motor adapter plates see pg. US-23
	Size s	ee pg. US-23
Туре		

Ordering example: C07-AC1

T-connection plate	Order code: APC-1, s. pg. US-24
Angle connection plate	Order code: APC-2, s. pg. US-25
X connection plate	Order code: APC-3, s. pg. US-26
Fixing clamp	Order code: APF-2, s. pg. US-24

Motor connection bores

	Si		
Hole [Ø]	55	75	Head code
	12G8 / 4js9	14G8 / 5js9	1A
Metric [mm]	10G8 / 3js9	16G8 / 5js9	2A
with slot for key	14G8 / 5js9	19G8 / 6js9	ЗA
	16G8 / 5js9		4A
Metric [mm]		18	1B
for compression coupling		24	2B
	1/2 / 1/8	5⁄ ₈ / 3⁄ ₁₆	1P
Inch [in] with slot for key	3⁄8 / 1⁄8		2P
	5⁄8 / 3⁄16		ЗР
The highlighted conn	ection hores are stan	dard connections	Tab. 52

The highlighted connection bores are standard connections Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline E series description

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the E series, the fixed bearing rail (T-rail) is mounted horizontally in the aluminum profile, and the compensating bearing rail (U-rail) is flanged to the outside of the profile as moment support. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]: Type E: 55, 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in) Fig. 41

The components >

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline E series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt The Rollon Uniline E series linear units use steel reinforced polyurethane

drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

General data about aluminum used: AL 6060

Chemical composition [%]

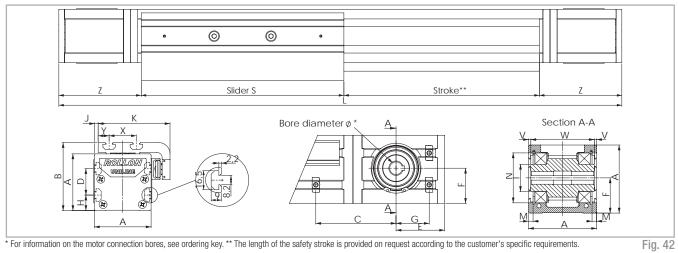
The carriage of the Rollon Uniline E series linear units are made entirely
of anodized aluminum. Each carriage has mounting T-slots for the con-
nection to the moving element. Rollon offers multiple carriages to accom-
modate a vast array of applications.

	AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
R	emaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
								Tab. 53

Physical characteristics

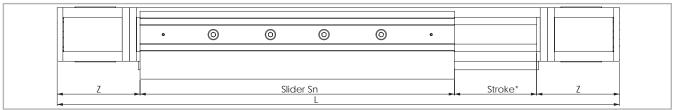
Density	Coeff. of elasticity			Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 100	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	С°
2.7	69	23	200	880-900	33	600-655
						Tab E4

Tab. 54


U

Mechanical characteristics

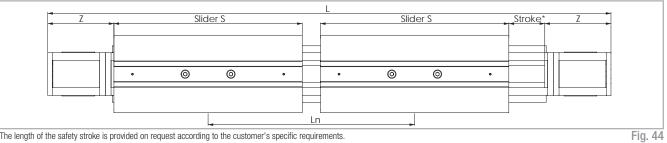
Rm	Rp (02)	А	HB
<u>N</u> mm ²	N mm ²	%	_
205	165	10	60-80
			Tab. 55


E55 >

E55 system

Туре	A [mm]	B (mm)	C* [mm]	D (mm)	E [mm]	F [mm]	G* [mm]	H (mm)	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
E55	55	71	67.5	25	50.5	27.5	32.5	15	Ø 24.9	1.5	71	2.35	Ø 47	200	28	12	0.5	54	108	3070
														Tab. 56						

E55L with long slider



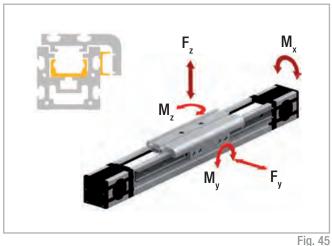
* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S _{min} [mm]	S _{max} [mm]	Sn [mm]	Z [mm]	Stroke* [mm]							
E55L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770							
* Maximum stroke for a sing	* Maximum stroke for a single-piece guiding rail and a maximum slider plate length S _{max} Tab. 57											

For longer strokes, see tab. 61

E55D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.


Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]				
E55D	200	300	3070	$Ln = L_{min} + n \cdot 5$	108	2770				
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min}										

** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 61

Fig. 43

Load ratings, moments and characteristic data

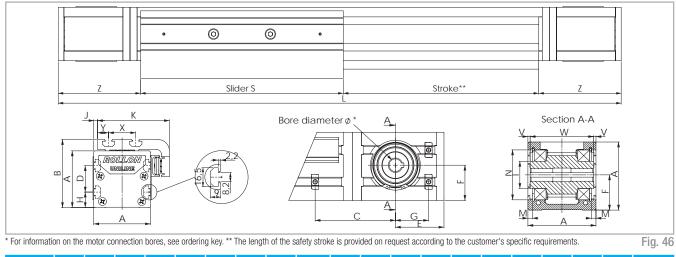
E55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

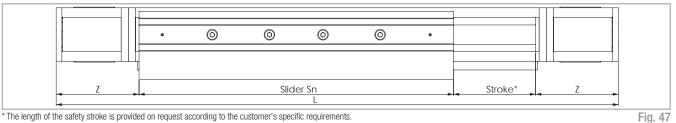
Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E55	18RPP5	18	0.074
			Tab. 59

Belt length (mm) = 2 x L - 182 Standard slider **Belt length (mm) =** $2 \times L - S_n + 18$ Long slider **Belt length (mm)** = $2 \times L - L_n - 182$ Double slider


	19.10									
Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]				
E55	4260	2175	1500	25.5	43.4	54.4				
E55-L	8520	4350	3000	51	165 to 450	239 to 652				
E55-D	8520	4350	3000	51	450 to 4605	652 to 6677				
For the calculation of the allowed moments, please observe pages SL-5ff Tab. 6										

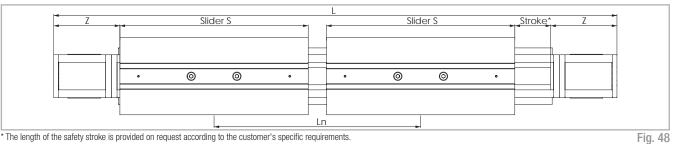
Technical data	Туре
	E55
Standard belt tension [N]	220
Moment at no load [Nm]	0.3
Max. traversing speed [m/s]	3
Max. acceleration [m/s ²]	10
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV28 / ULV18
Slider type	CS28 spec. / CPA 18
Moment of inertia ly [cm ⁴]	34.6
Moment of inertia Iz [cm ⁴]	41.7
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm ²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	635
Weight with zero stroke [g]	3167
Weight with 1 m stroke [g]	5055
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C

Tab. 61


> E75

E75 system

Тур		A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
E75	;	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	5	95	4.85	Ø 55	285	36	14.5	2.3	70.4	116	3420
* For the position of the T-nuts when using our motor adapter plates, see pg. US-35ff ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 67									Tab. 62												

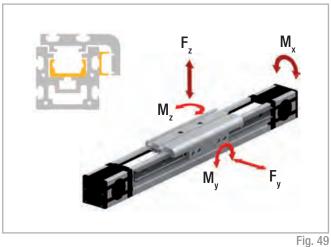

E75L with long slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S _{min} [mm]	S _{max} [mm]	Sn [mm]	Z [mm]	Stroke* [mm]
E75L	440	700	$Sn = S_{min} + n \cdot 10$	116	3000
* Maximum stroke for a sing For longer strokes, see tab		and a maximum sl	ider plate length S_{max}		Tab. 63

E75D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.


Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]	
E75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000	
* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L							

** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 67

US-32

Load ratings, moments and characteristic data

E75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E75	30RPP8	30	0.185
			Tab. 65

Belt length (mm) = 2 x L - 213 Standard slider **Belt length (mm) =** $2 \times L - S_n + 72$ Long slider **Belt length (mm) =** $2 \times L - L_n - 213$ Double slider

Туре	C [N]	F, [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]				
E75	12280	5500	3710	85.5	163	209				
E75-L	24560	11000	7420	171	575 to 1540	852 to 2282				
E75-D	24560	11000	7420	171	1543 to 12673	2288 to 18788				
For the calculation of the allowed moments, please see pages SL-5ff Tab. 66										

Technical data	Туре
	E75
Standard belt tension [N]	800
Moment at no load [Nm]	1.3
Max. traversing speed [m/s]	5
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	TLV43 / ULV28
Slider type	CS43 spec. / CPA 28
Moment of inertia ly [cm4]	127
Moment of inertia Iz [cm4]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm ²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1772
Weight with zero stroke [g]	7544
Weight with 1 m stroke [g]	10751
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500
			Tab. 68

Relubrication of the guide rails

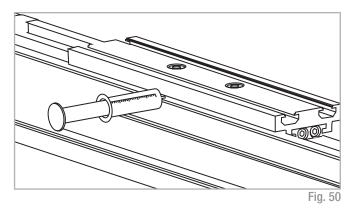
These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

1. Relubrication using a grease gun:

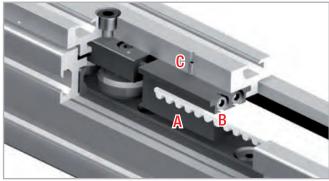
This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 50). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley.


Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.


- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 51).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

The advantage of this solution is the possibility of rail re-lubrication without machine downtime.

*(Any adapter that may be necessary must be manufactured on site)

6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).7. Fasten the safety screws C.

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

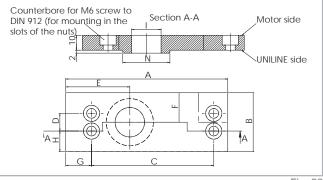


Fig. 52

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

Tab. 69

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes	
55	NEMA 34	
75	NEMA 42	
		Tab. 70

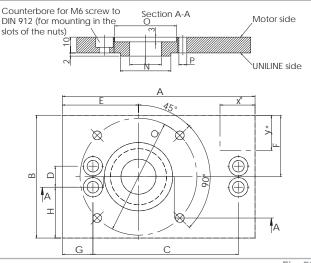
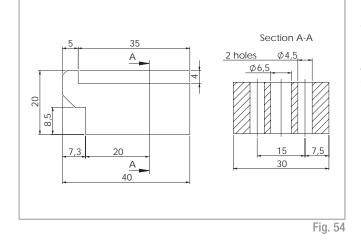
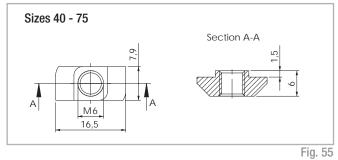


Fig. 53


U

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø 74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7
													Tab. 71


Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2

T-nut

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

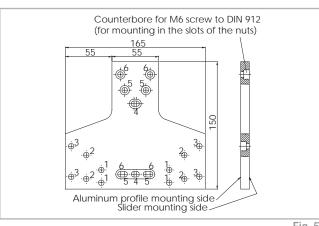


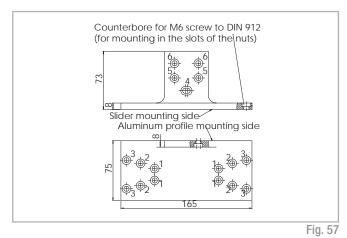
Fig. 56

Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

The maximum tightening torque is 10 Nm.


Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

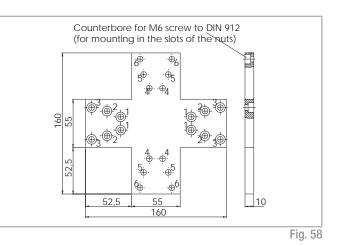
Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 72

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

Note

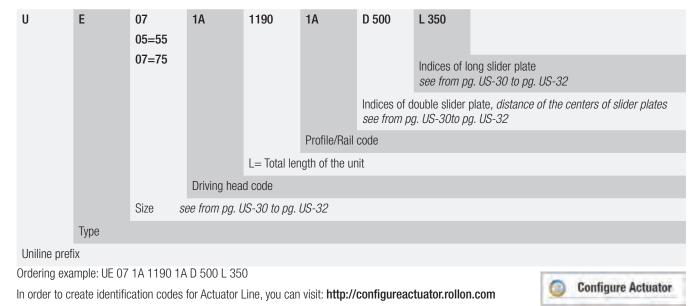
This adapter plate can be used with types E and ED only to a limited extent. For further information, please contact our Application Engineering Department.

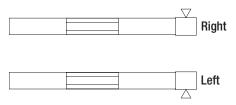

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 73

X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
55	Holes 2	Holes 5
75	Holes 3	Holes 6




U S

Ordering key // 🗸

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

E	07	AC2
	05=55 07=75	Standard motor adapter plates see pg. US-35
	Size s	ee pg. US-35
Туре		

Ordering example: E07-AC2

NEMA motor adapter plates

E	07	AC1
	05=55 07=75	NEMA motor adapter plates see pg. US-35
	Size se	ee pg. US-35
Туре		
Ordering		

Ordering example: E07-AC1

T-connection plate	Order code: APC-1, s. pg. US-36
Angle connection plate	Order code: APC-2, s. pg. US-37
X connection plate	Order code: APC-3, s. pg. US-37
Fixing clamp	Order code: APF-2, s. pg. US-36

Motor connection bores

	Si		
Hole [Ø]	55	75	Head code
	12G8 / 4js9	14G8 / 5js9	1A
Metric [mm]	10G8 / 3js9	16G8 / 5js9	2A
with slot for key	14G8 / 5js9	19G8 / 6js9	ЗA
	16G8 / 5js9		4A
Metric [mm]		18	1B
for compression coupling		24	2B
	1/2 / 1/8	5⁄ ₈ / 3⁄ ₁₆	1P
Inch [in] with slot for key	3/8 / 1/8		2P
	5⁄8 / 3⁄16		ЗР
The highlighted conn	ection hores are stan	dard connections	Tab. 75

The highlighted connection bores are standard connections Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline ED series // 🗸

Uniline ED series description

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the ED series, a compensating bearing rail (U-rail) is mounted horizontally in the aluminum profile, and for increased moment support, two more compensating bearing rails (U-rail) are flanged to the profile externally. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]: Type ED: 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline ED series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt

The Rollon Uniline ED series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

General data about aluminum used: AL 6060

Chemical composition [%]

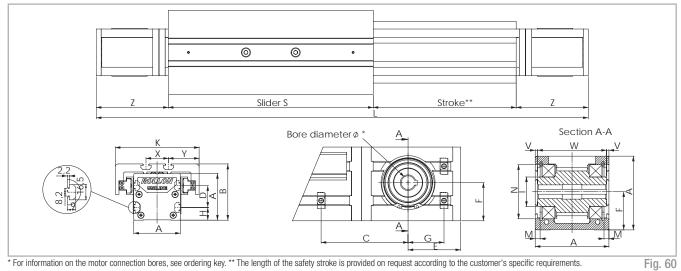
The carriage of the Rollon Uniline ED series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 76

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	 mm ²		 K	kg.K	Ω.m.10 ⁻⁹	°C
GITT				Ng TN		
2.7	69	23	200	880-900	33	600-655
						Tab. 77

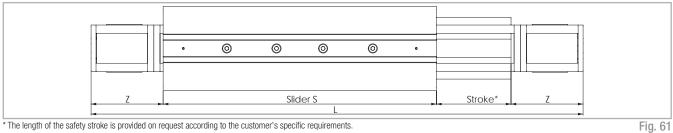
Tab. 77


U

Mechanical characteristics

Rm	Rp (02)	A	HB
N 	N mm ²	%	_
205	165	10	60-80
			Tab. 78

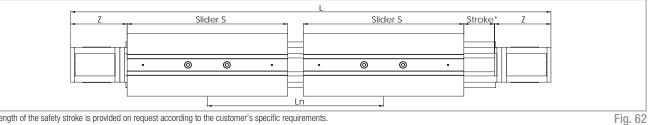
ED75 >


ED75 system

Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H (mm)	l [mm]	K [mm]	M (mm)	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
ED75	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	135	4.85	Ø 55	330	36	49.5	2.3	70.4	116	2900
* For the position of the T-nuts when using our motor adapter plates, see pg. US-45ff Tab. 7										Tab. 79									

Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 84

ED75L with long slider



* The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	S _{min} * [mm]	S _{max} [mm]	Sn [mm]	Z [mm]	Stroke** [mm]
ED75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2500
* The length of 440 mm is o	considered standard	l, all other lengths a	re considered special dimensions		Tab. 80

** Maximum stroke for a single-piece guiding rail and a maximum slider plate length S_{max} For longer strokes, see tab. 84

ED75D with double slider



* The length of the safety stroke is provided on request according to the customer's specific requirements.

			0	· ·							
Туре	S [mm]	L _{min} [mm]	L _{max} ** [mm]	Ln [mm]	Z [mm]	Stroke* [mm]					
ED75D 330 416 2864 $Ln = L_{min} + n \cdot 8$ 116											
	* Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L _{min} Tab. 81										

Maximum distance $L_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 84

Type ED

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ED75	30RPP8	30	0.185
			Tab. 82

Belt length (mm) = 2 x L - 258 Standard slider **Belt length (mm) =** $2 \times L - S_n + 72$ Long slider Belt length (mm) = $2 \times L - L_n - 258$ Double slider

F	i	n		6	2
		y	-	v	υ.

Туре	C [N]	F _y [N]	F [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
ED75	9815	5500	8700	400.2	868	209
ED75-L	19630	11000	8700	400.2	1174 to 2305	852 to 2282
ED75-D	19630	11000	17400	800.4	3619 to 24917	2288 to 15752
For the calculation of the allowed moments, please see pages SL-5ff Tab. 83						

Technical data	Туре
	ED75
Standard belt tension [N]	1000
Moment at no load [Nm]	1.5
Max. traversing speed [m/s]	5
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	ULV43 / ULV28
Slider type	CS43 spec. / CS28 spec.
Moment of inertia ly [cm4]	127
Moment of inertia Iz [cm4]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm ²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	3770
Weight with zero stroke [g]	9850
Weight with 1 m stroke [g]	14400
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Tab. 84

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

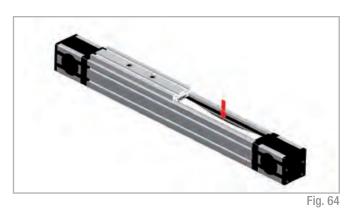
Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500
			Tab. 85

Relubrication of the guide rails

- 1. Slide the slider plate to one end of the unit.
- At about half the stroke press and manually move the belt in order to see one of the two rails inside the unit (see Fig. 64).
 It may be necessary to release or loosen the belt tension. See chapter


Belt tension (pg. US-59).

- 3. By using a grease syringe (not supplied by ROLLON) or an alternative tool (i.e. brush), apply a sufficient quantity of grease on the raceways.
- 4. If required, re-establish the recommended belt tension (see pg. US-59).
- 5. Finally slide the slider plate back and forth over the entire stroke, in order to distribute the grease over the entire length of the rail.

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 65).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).7. Fasten the safety screws C.

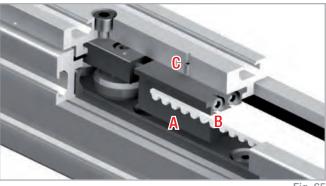
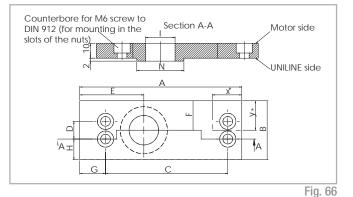


Fig. 65



Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

* Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm; Y = 35 mm

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55
										Tab. 86

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes	
75	NEMA 42	
		Tab. 87

* Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm: Y = 60 mm

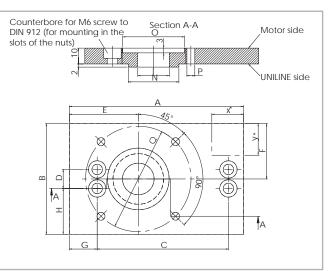
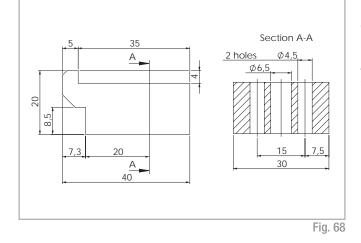
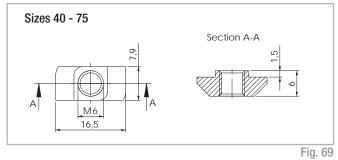


Fig. 67

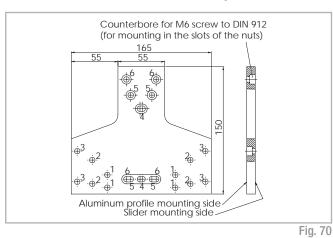

U

Size	A [mm]	B [mm]							l [mm]		0 [mm]	P [mm]	Q [mm]
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7
													Tab. 88


Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2


T-nut

Assembly kits

T-connection plate APC-1

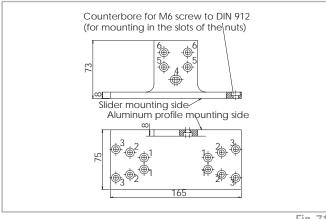
T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
75	Holes 3	Holes 6
		Tab. 89

Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).


A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

The maximum tightening torque is 10 Nm.

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

Note

This adapter plate can be used with types E and ED only to a limited extent. For further information, please contact our Application Engineering Department.

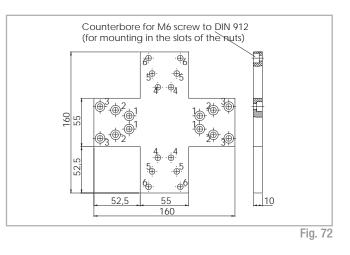
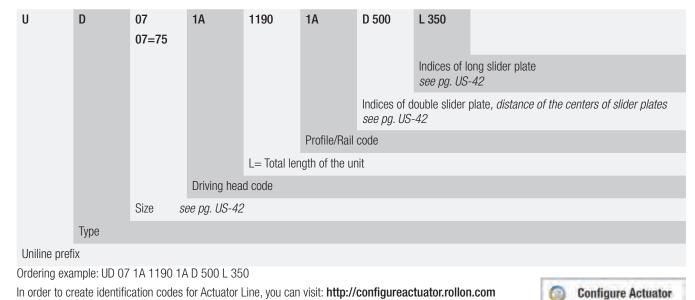
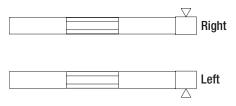


Fig. 71

X connection plate APC-3


X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
75	Holes 3	Holes 6
		Tab. 91



Ordering key // 🗸

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

D	07	AC2
	07=75	Standard motor adapter plates see pg. US-45
	Size se	ee pg. US-45
Туре		

Ordering example: D07-AC2

NEMA motor adapter plates

D	07	AC1
	07=75	NEMA motor adapter plates see pg. US-45
	Size se	ee pg. US-45
Туре		

Ordering example: D07-AC1

T-connection plate	Order code: APC-1, s. pg. US-46
Angle connection plate	Order code: APC-2, s. pg. US-47
X connection plate	Order code: APC-3, s. pg. US-47
Fixing clamp	Order code: APF-2, s. pg. US-46

Motor connection bores

	Size	
Hole [Ø]	75	Head code
	14G8 / 5js9	1A
Metric [mm]	16G8 / 5js9	2A
with slot for key	19G8 / 6js9	ЗA
		4A
Metric [mm]	18	1B
for compression coupling	24	2B
	5⁄ ₈ / 3⁄ ₁₆	1P
Inch [in] with slot for key		2P
2		3P
		Tab. 92

The highlighted connection bores are standard connections Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline H series description

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the H series, the compensating bearing rail (U-rail) is mounted horizontally in the aluminum profile. The H series is used as a compensating bearing axis for load absorption of radial forces, and in combination with the other series, as support bearing for the resulting moments. Versions with long (L) or double (D) sliders in one axis are possible. H series is a slave actuator, it has not the driving belt.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]: Type H: 40, 55, 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below).The dimensional tolerances comply with EN 755-9 standard.

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

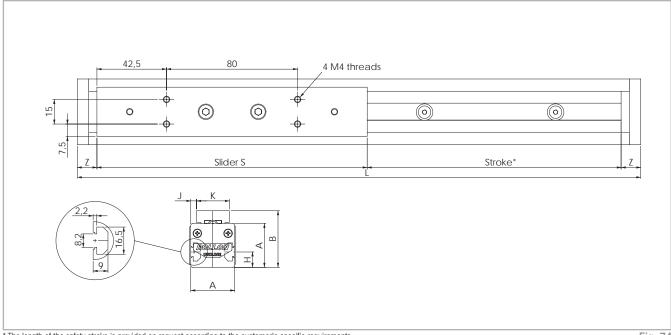
The carriage of the Rollon Uniline H series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 93

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655
						T 04

Tab. 94


Mechanical characteristics

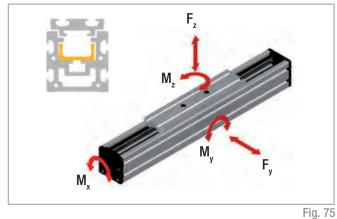
Rm	Rp (02)	A	HB
N 	N mm ²	%	—
205	165	10	60-80
			Tab 05

Tab. 95

H40 >

H40 system

* The length of the safety stroke is provided on request according to the customer's specific requirements.


B_{nom} B_{max} [mm] Stroke** Type* B_{min} D Κ Х [mm] 40 51.5 51.2 52.6 14 5 30 165 12 1900

* Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D

** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 98

H40

H40

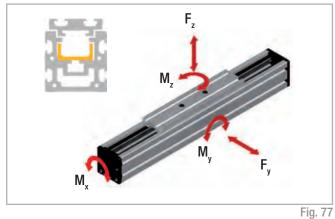
Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]				
H40	1530	820		0	0	13.1				
H40-L	3060	1640	0			61 to 192				
H40-D	3060	1640				192 to 1558				
For the calculation of	For the calculation of the allowed moments, please see pages SL-5ff Tab. 97									

Туре **Technical data** H40 Max. traversing speed [m/s] 3 Max. acceleration [m/s²] 10 0.1 Repeat accuracy [mm] ULV18 Compact Rail guiding rail Slider type CS18 spec. Moment of inertia ly [cm⁴] 12 Moment of inertia Iz [cm4] 13.6 Mass of slider [g] 220 Weight with zero stroke [g] 860 Weight with 1 m stroke [g] 3383 3500 Max. stroke [mm] Working temperature from -20 °C to + 80 °C Tab. 98

Tab. 96

H55

H55 system

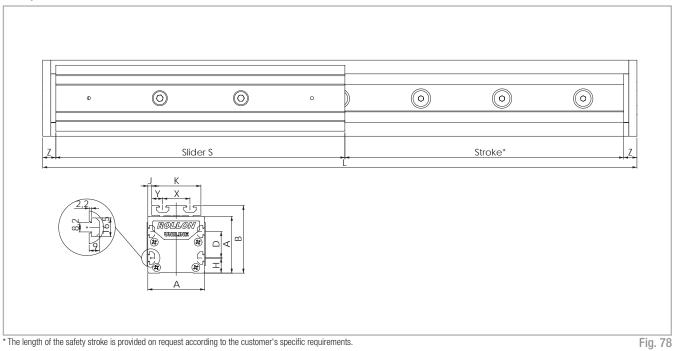


Туре*	A [mm]	B _{nom} [mm]	B _{min} [mm]	B _{max} [mm]	D [mm]	H [mm]	J [mm]	K [mm]	S [mm]	X [mm]	Y [mm]	Z [mm]	Stroke** [mm]
H55 55 71 70.4 72.3 25 15 1.5 52 200 28 12 13 3070									3070				
* Including long or double slider. See chapter 3 Product dimensions Types AL and AD Tab. 9										Tab. 99			

Technical data

Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 101

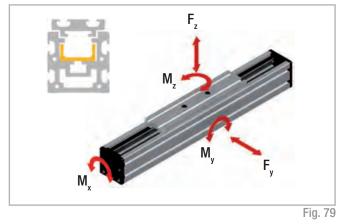
H55


Туре	C [N]	F _y [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H55	4260	2175	0		0	54.5
H55-L	8520	4350		0		239 to 652
H55-D	8520	4350				652 to 6677
For the calculation of	of the allowed	moments, pl	ease see pag	ges SL-5ff		Tab. 100

H55 Max. traversing speed [m/s] 5 Max. acceleration [m/s²] 15 Repeat accuracy [mm] 0.1 Compact Rail guiding rail ULV28 Slider type CS28 spec. Moment of inertia ly [cm4] 34.6 Moment of inertia Iz [cm4] 41.7 Mass of slider [g] 475 Weight with zero stroke [g] 1460 Weight with 1 m stroke [g] 4357 5500 Max. stroke [mm] from -20 °C to + 80 °C Working temperature

Туре

H75


H75 system

Туре*	A [mm]	B _{nom} [mm]	B _{min} [mm]	B _{max} [mm]	D [mm]	H [mm]	J [mm]	K [mm]	S [mm]	X [mm]	Y [mm]	Z [mm]	Stroke** [mm]
H75	75	90	88.6	92.5	35	20	5	65	285	36	14.5	13	3420
* Including long or double slider. See chapter 3 Product dimensions Types AL and AD Tab. 1										Tab. 102			

* Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 104

H75

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]				
H75	12280	0 5500				209				
H75-L	24560	11000	0	0	0	852 to 2282				
H75-D	24560	11000				2288 to 18788				
For the calculation	For the calculation of the allowed moments, please see pages SL-5ff Tab. 103									

Technical data	Туре
	H75
Max. traversing speed [m/s]	7
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Compact Rail guiding rail	ULV43
Slider type	CS43 spec.
Moment of inertia ly [cm4]	127
Moment of inertia Iz [cm⁴]	172
Mass of slider [g]	1242
Weight with zero stroke [g]	4160
Weight with 1 m stroke [g]	9381
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C
	Tab. 104

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500
			Tab. 105

Relubrication of the guide rails

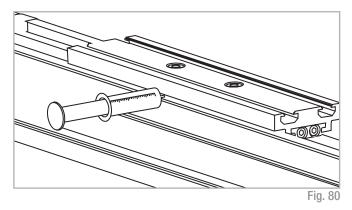
These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

1. Relubrication using a grease gun:

This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 80). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

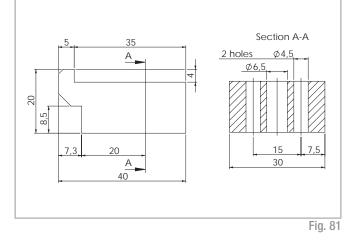
2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley.

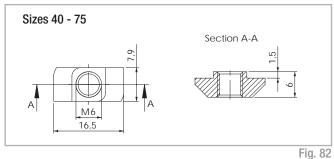

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 2. Apply a sufficient amount of grease to the raceways.

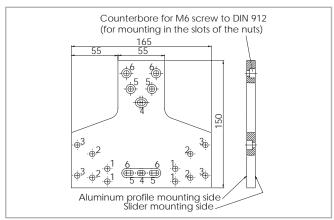

The advantage of this solution is the possibility of rail re-lubrication without machine downtime.

*(Any adapter that may be necessary must be manufactured on site)



Accessories

Fixing brackets APF-2


T-nut

Assembly kits

T-connection plate APC-1

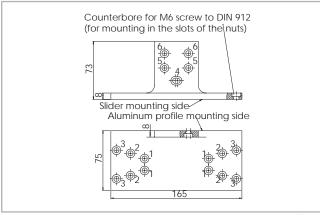
T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

The maximum tightening torque is 10 Nm.


Note

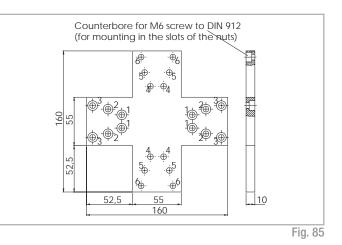
In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 106

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

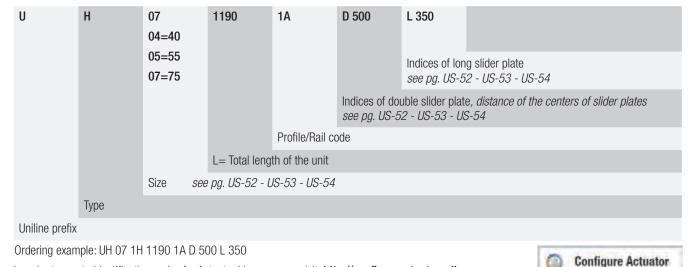
Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab. 107


Fig. 84

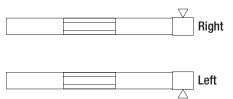
X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab 100


Tab. 108

U S



Identification code for Uniline linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

All Uniline linear axes are all supplied with a standard belt tension suitable for most applications (see tab. 109).

0i	40		75	FDZE
Size	40	55	75	ED75
Belt tension [N]	160	220	800	1000
				Tab 109

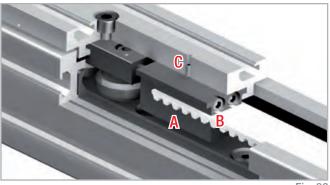
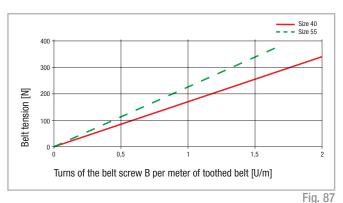
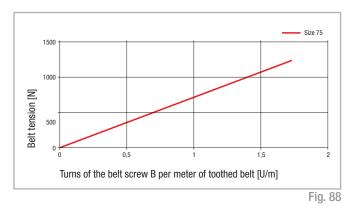


Fig. 86

The belt tensioning system (located at the ends of the slider plates for sizes 45 to 75) allows the toothed belt tension to be set in accordance with requirements.


To set the belt tension for sizes 40 to 75, the following steps must be followed (the reference values are standard values):


- 1. Determine the deviation of the belt tension from the standard value.
- Figures 87 and 88 show how many turns the belt tensioning screws B must be for the required belt tension deviation.
- 3. Calcualte the length of the belt (m), with the formula:
 - L = 2 x stroke (m) + 0.515 m (size 40);
 - L = 2 x stroke (m) + 0.630 m (size 55);
 - L = 2 x stroke (m) + 0.792 m (size 75).
- 4. Multiply the number of turns (see step 2) by the toothed belt length m (see step 3) to calculate the required number of turns to achieve the new desired belt tension..
- 5. Unscrew the safety screw C.
- 6. Turn the belt tensioning screws B in accordance with the above explanation. Re-tighten the safety screw C.

Example:

Increasing the belt tension from 220 N to 330 N for an A55 - 1070: 1. deviation = 330 N - 220 N = 110 N.

- Figures 87 and 88 show that the value by which the belt tensioning screws B must be turned to increase the belt tension by 110 N is 0.5 turns.
- 3. Formula for calculating the toothed belt length:
 - L = 2 x stroke (m) + 0.630 m = 2 x 1.070 + 0.630 = 2.77 m.

4. This means that the required number of turns is: 0.5 rpm x 2.77 m = 1.4 turns.

- 5. Unscrew the safety screw C.
- 6. Turn the belt tensioning screws B by 1.4 turns with the aid of an external reference.
- 7. Re-tighten the safety screw C.

Note:

If the linear unit is used such that the load acts directly on the toothed belt, it is important not to exceed the specified values for the belt tension. Otherwise, the positional accuracy and stability of the toothed belt cannot be guaranteed. If higher values are required for the belt tension, please contact our Application Engineering Department.

Installation instructions /

Motor adapter plates AC2 and AC1-P, sizes 40 - 75

To connect the linear units to the motor and gearbox, suitable adapter plates must be used. Rollon offers these plates in two different designs (see chapter Accessories). The standard plates are already provided with the holes required for mounting to the linear unit. The fixing holes must be made on site. Ensure that the mounted plate will not interfere with the stroke of the traversing slider plate.

Connection to motor and gearbox

- 1. Attach the motor adapter plate to the motor or gearbox.
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the unit.
- 3. Insert the connecting shaft into the drive head by aligning the key in the key slot.
- 4. Attach the motor adapter plate to the drive head of the linear axis by means of nuts and make sure that the nuts in the slots were rotated by 90° (see Accessories). Ensure correct fit of the adapter plate.

T-connection plate APC-1, sizes 40 - 75

Connection of two linear axes is achieved by means of the T-connection plate APC-1 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Prepare the connection plate by inserting the screws into the existing holes on the APC-1 (see fig. 90).
- 2. Connect the T-nuts by introducing the screws without tightening them and align the nuts in parallel to the slots of the unit.
- 3. Place the plate against the long side of unit 1 and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.
- 4. To fasten the plate to unit 2, insert the screws from the the long side of unit 1 (see fig. 91).
- 5. Connect the T-nuts by introducing the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 2.
- Place the plate against the slider plate and tighten the screws. Important: Please make sure that the nuts in the slots were rotated by 90°.

Fig. 89

Note:

- The connecting plates for the Uniline A40 are delivered with four fixing holes, even though only two holes are required for the connection. The presence of four holes give the plate a symmetric design which allows it to be used on any side of the unit.
- Due to the constructive design of the aluminum profile, only three fixing holes can be used the for the Uniline C series. (see pg. US-18, fig. 24).

Fig. 90

Fig. 91

Example 1: System consisting of 2 X-axes and 1 Y-axis

The connection of the two units is attained by means of the parallel slider plates and the drive heads. For this configuration, we recommend using our connection plate APC-1.

Fig. 92

Angle connection plate APC-2, sizes 40 - 75

Connection of two linear axes is achieved by means of the angle connection plate APC-2. To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Insert the screws to be used for the connection to unit 1 into the prepared holes (see fig. 93).
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plates.
- 3. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.
- 4. To fix the connection plate to unit 2, insert the screws into the prepared holes on the short plate side (see fig. 94).
- 5. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the aluminum profile of unit 2.
- Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.

Fig. 93

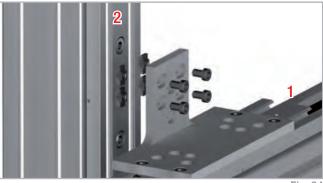


Fig. 94

Example 2 – System consisting of 1 X-axis and 1 Z-axis

With this configuration, the Z-axis is connected to the slider plate of the X-axis by means of the angle connection plate APC-2.

X connection plate APC-3, sizes 40 - 75

Connection of the two linear axes is achieved by means of the X connection plate APC-3 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Insert the screws from one side of the connection plate into the prepared holes (see fig. 96).
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 1.
- 3. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90° .
- 4. Insert the screws from the other side of the connection plate (see fig. 97).
- 5. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 2.6. Place the connection plate against the slider plate and tighten the
- b. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.

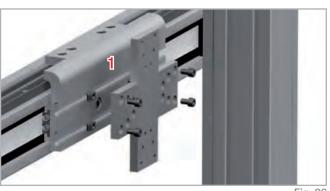
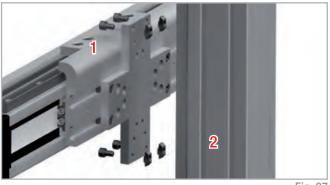



Fig. 96

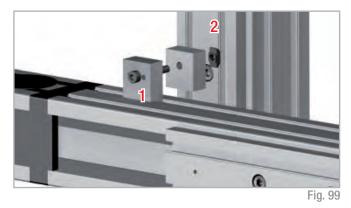
Fig. 97

Example 3 – System consisting of 2 X-axes, 1 Y-axis and 1 Z-axis

Connect four linear units to create a 3-axis gantry. The vertical axis is arranged to be self-supporting on the central unit. To do so, connect the two slider plates to each other, using the X connection plate APC-3.

The connection of the two parallel axes to the central unit is attained by means of the T-connection plate APC-1.

Fixing clamp APF-2, sizes 40 - 75


Connection of two linear axes is achieved by means of the fixing clamps APF-2 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

1. Insert the fastening screws into the clamp and, if necessary, place a spacer* between the clamp and the slider plate.

*(Any spacer that is to be used must be manufactured on site)

- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plates.
- 3. Insert the projecting part of the clamp into the lower slot of the aluminum profile of unit 1.
- 4. Position the clamp lengthwise according to the desired position of the slider plate of unit 2.

- 5. Tighten the fastening screws. Ensure that the nuts in the slots were rotated by 90°.
- 6. Repeat this operation for the required number of fixing clamps.

Example 4 – System consisting of 1 Y-axis and 2 Z-axes

The connection of the Y-axis to the parallel slider plates is attained via the fixing clamps APF-2.

Fig. 100

Modline -۲ 0

MCR/MCH series $// \sim$

MCR/MCH series description

Fig. 1

The MCR/MCH units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Reduced weight ensured by the light frame and the aluminum sliders
- Three different sizes available: 65mm, 80mm, 105mm
- High sliding speed

MCR

Featuring four + four rollers with a Gothic arch outer profile and flat outer profile, sliding on hardened steel bars placed inside the profile.

MCH

Featuring a recirculating ball linear guide rail placed inside the profile.

The components

Extruded bodies

The anodized aluminum extrusion used for the profile of the Rollon MCR/ MCH series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complaint with EN 755-9 standards. Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

Carriage

The carriage of the Rollon MCR/MCH series linear units is made of anodized aluminum. Two different length carriages are available for size 80 and 105.

Driving belt

The Rollon MCR/MCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Си	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
$\frac{\text{kg}}{\text{dm}^3}$	kN mm²	10 ⁻⁶ K	W 	J kg.K	Ω . m . 10 ⁻⁹	°C
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	HB
N mm ²	N mm ²	%	—
205	165	10	60-80
			Tab. 3

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

MCR with gothic arch bearing guides

- Hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with four + four bearing assemblies, four having a gothic arch groove machined into its outer race, to run on the steel rods, and four having flat outer ring.
- The bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- The driving belt is supported by the entire length of the profile to avoid deflection as well as to protect the linear guide.

MCH with ball bearing guides

- A recirculating ball guide with high load capacity is mounted in a dedicated seat inside the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)

The linear motion system described above offers:

- High permissible bending moments
- High speed and acceleration
- High load capacity
- Low friction
- Long life
- Low noise

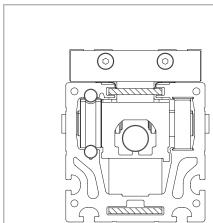


Fig. 2

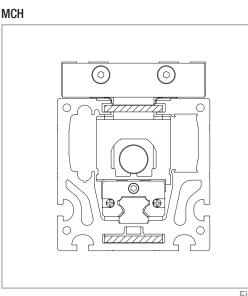


Fig. 3

ML-5

Μ

MCR 65 >

MCR 65 Dimension

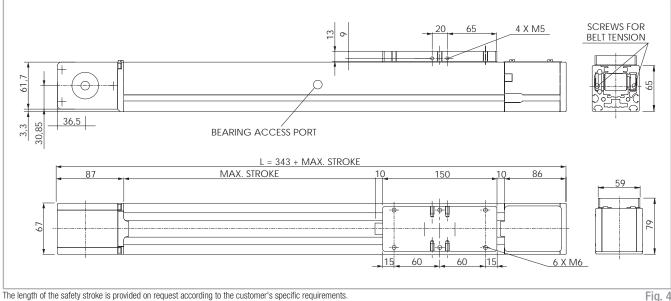
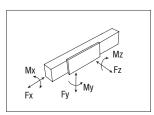


Fig. 4

Technical data

	Туре
	MCR 65
Max. useful stroke length [mm]	5800
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	20
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.87
Zero travel weight [kg]	3.7
Weight for 100 mm useful stroke [kg]	0.475
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm ²]	267443
Rail size [mm]	Ø8
1) Positioning repeatability is dependent on the type of transmission used	Tab. 4

Moments of inertia of the aluminum body

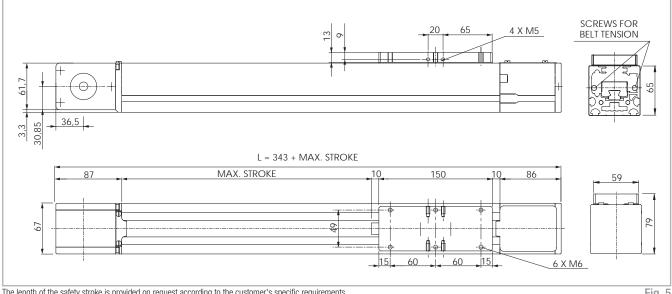

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCR 65	0.080	0.068	0.148
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 65	32 AT 05	32	0.105
			Tab. 6

Belt length (mm) = 2 x L - 69


Load capacity

Туре	F [N) Ĵ	F _y [Ň]	F [1	z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 65	1344	960	1964	2192	9195	65.1	132	93.9

See verification under static load and lifetime on page SL-2 and SL-3

MCH 65 >

MCH 65 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

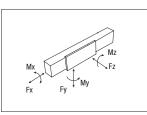
Technical data

	Туре
	MCH 65
Max. useful stroke length [mm]	8750
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	30
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.9
Zero travel weight [kg]	3.85
Weight for 100 mm useful stroke [kg]	0.58
Starting torque [Nm]	0.3
Moment of inertia of pulleys [g mm ²]	267443
Rail size [mm]	15
1) Positioning repeatability is dependent on the type of transmission used	Tab. 8

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l ^p [10 ⁷ mm⁴]
MCH 65	0.080	0.068	0.148
			Tab. 9

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

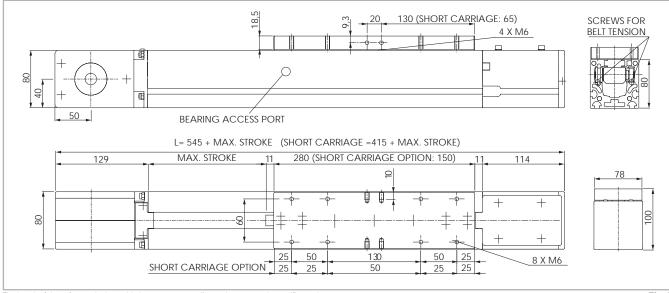
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 65	32 AT 05	32	0.105
			T 1 40

Tab. 10

Μ

Belt length (mm) = 2 x L - 69

Load capacity


Туре	F [N	: Ň]	F [1	: V V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 65	1344	960	25400	19720	25400	240	1168	1168

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 11

MCR 80 >

MCR 80 Dimension

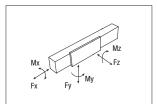
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.6

Technical data

	Ту	pe
	MCR 80	MCR 80 C
Max. useful stroke length [mm]	5650	5780
Max. positioning repeatability [mm] *1	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	20	20
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.2	1.25
Zero travel weight [kg]	8.8	6.95
Weight for 100 mm useful stroke [kg]	0.7	0.7
Starting torque [Nm]	0.7	0.7
Moment of inertia of pulleys [g mm ²]	1174346	1174346
Rail size [mm]	Ø8	Ø8
1) Positioning repeatability is dependent on the type of transmission used		Tab. 12

Moments of inertia of the aluminum body

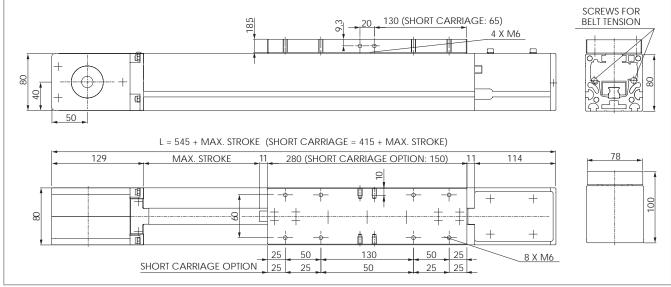

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCR 80	0.179	0.147	0.326
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 80	32 AT 10	32	0.185
			Tab. 14

Belt length (mm) = 2 x L - 182 Short carriage (mm) = 2 x L - 52


Load capacity

Туре	F [N) Ĵ	F _v [Ň]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 80	2656	1648	1964	2579	9195	85.4	361	193
MCR 80 C	2656	1760	1964	2579	9195	85.4	156	93.9

See verification under static load and lifetime on page SL-2 and SL-3

MCH 80

MCH 80 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 7

Technical data

	Ту	ре
	MCH 80	MCH 80 C
Max. useful stroke length [mm] *1	7650	7780
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	40	40
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.45	1.3
Zero travel weight [kg]	9.4	7.1
Weight for 100 mm useful stroke [kg]	0.79	0.79
Starting torque [Nm]	0.9	0.9
Moment of inertia of pulleys [g mm²]	1174346	1174346
Rail size [mm]	15	15
1) It is possible to obtain strokes up to 9000 mm by means of special Roll	on joints	Tab. 1

*2) Positioning repeatability is dependent on the type of transmission used

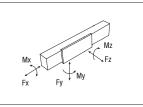
Load capacity

Туре	F [1	: × V]	F [1	: V Ú]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 80	2656	1648	25400	19720	25400	240	2731	2731
MCH 80 C	2656	1760	12700	9860	12700	120	87	87

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

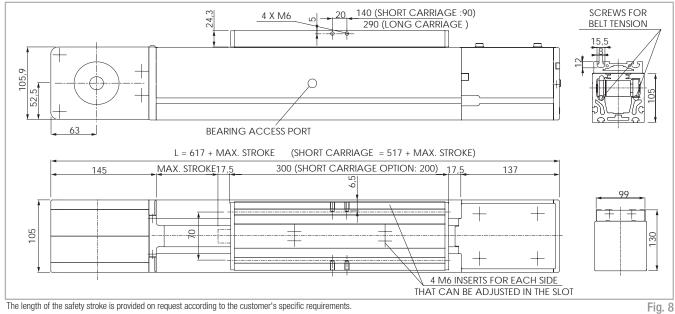
Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCH 80	0.179	0.147	0.326
			Tab. 17


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 80	32 AT 10	32	0.185
			Tab. 18

Belt length (mm) = 2 x L - 182


Short carriage (mm) = 2 x L - 52

Μ

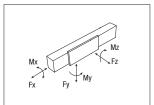
MCR 105 >

MCR 105 Dimension

Technical data

	Ту	pe
	MCR 105	MCR 105 C
Max. useful stroke length [mm]	7100	7200
Max. positioning repeatability [mm]*1	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	20	20
Type of belt	40 AT 10	40 AT 10
Type of pulley	Z 29	Z 29
Pulley pitch diameter [mm]	92.31	92.31
Carriage displacement per pulley turn [mm]	290	290
Carriage weight [kg]	3.51	2.56
Zero travel weight [kg]	17.15	14.9
Weight for 100 mm useful stroke [kg]	1.2	1.2
Starting torque [Nm]	1.2	1.2
Moment of inertia of pulleys [g mm ²]	4482922	4482922
Rail size [mm]	Ø10	Ø10
1) Positioning repeatability is dependent on the type of transmission used		Tab. 20

Moments of inertia of the aluminum body

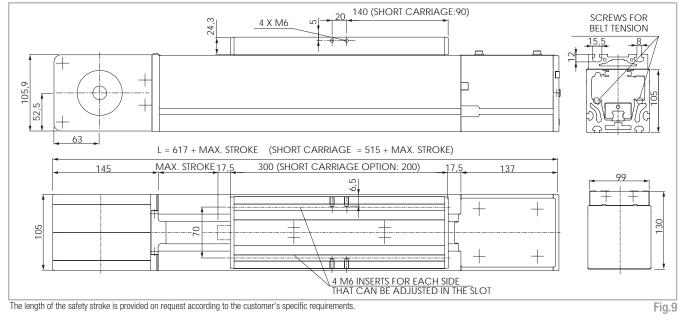

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCR 105	0.448	0.576	1.015
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]	
MCR 105	40 AT 10	40	0.231	
			Tab. 22	

Belt length (mm) = 2 x L - 165 Short carriage (mm) = $2 \times L - 65$


Load capacity

Туре	F _x [N]		F _v [Ň]	F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 105	3984	2640	4250	7812	26997	340	1033	417
MCR 105 C	3984	2640	4250	7812	26997	340	544	250

See verification under static load and lifetime on page SL-2 and SL-3

MCH 105

MCH 105 Dimension

Technical data

	Ту	pe
	MCH 105	MCH 105 C
Max. useful stroke length [mm]	7100	7200
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	50	50
Type of belt	40 AT 10	40 AT 10
Type of pulley	Z 29	Z 29
Pulley pitch diameter [mm]	92.31	92.31
Carriage displacement per pulley turn [mm]	290	290
Carriage weight [kg]	3.5	2.3
Zero travel weight [kg]	17.5	14.4
Weight for 100 mm useful stroke [kg]	1.36	1.36
Starting torque [Nm]	1.5	1.5
Moment of inertia of pulleys [g mm ²]	4482922	4482922
Rail size [mm]	20	20
1) It is possible to obtain strokes up to 10000mm by means of special rolle	on joint	Tab. 24

*2) Positioning repeatability is dependent on the type of transmission used

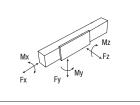
Load capacity

	Туре	F []	= Ň]	F [1	: V Ú]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
	MCH 105	3984	2640	55400	44400	55400	700	5983	5983
	MCH 105 C	3984	2640	27700	22200	27700	350	240	240
-	See verification under static load and lifetime on page SL-2 and SL-3 Tab. 27								

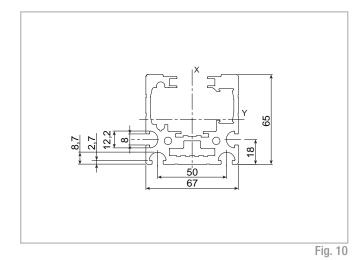
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCH 105	0.448	0.576	1.015
			Tab. 25

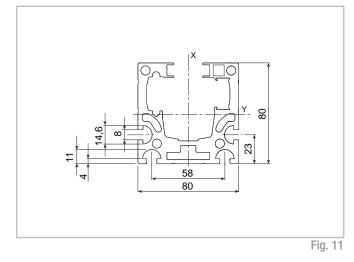
Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

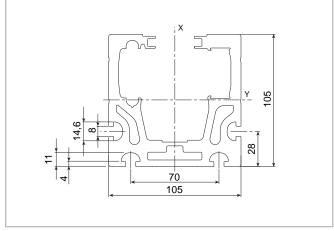
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 105	40 AT 10	40	0.231


Tab. 26

Μ

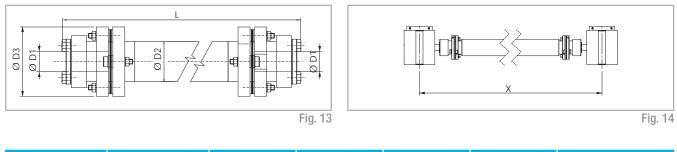

Belt length (mm) = 2 x L - 165 Short carriage (mm) = 2 x L - 65

Profile specifications



Profile 65x67	
Weight [Kg/m]	4.5
Max. length [mm]	9000
Moment of inertia Ix [107 mm4]	0.080
Moment of inertia ly [107 mm4]	0.068
Polar moment of inertia lp [107 mm4]	0.148
	Tab. 28

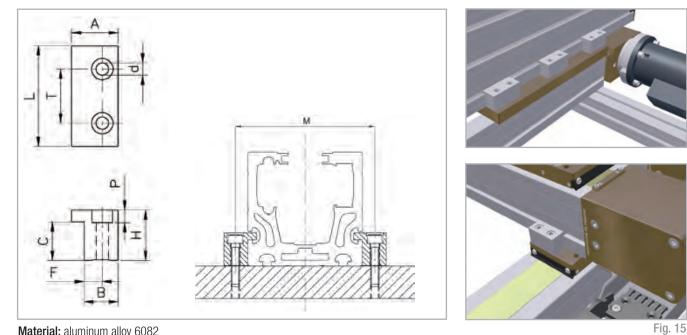
Profile 80x80



Profile 105x105	
Weight [Kg/m]	11
Max. length [mm]	7600
Moment of inertia lx [107 mm4]	0.448
Moment of inertia ly [107 mm4]	0.576
Polar moment of inertia lp [107 mm4]	1.015
	Tab. 30

Linear units in parallel

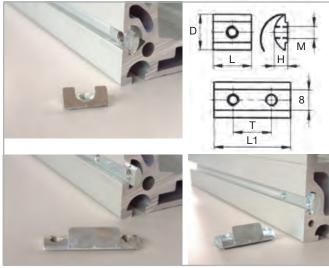
Synchronisation kit for use of MCR/MCH linear units in parallel


When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.

Unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
MCR/MCH 65	AP 12	12	25	45	GK12P1A	L= X-80 [mm]
MCR/MCH 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
MCR/MCH 105	AP 25	25	70	99	GK25P1A	L= X-130 [mm]

Tab. 31

Accessories



Material: aluminum alloy 6082

Unit	А	L	т	d	н	Р	С	F	В	М	Code
MCR/MCH 65	25	50	25	6.7	20	6.8	13.5	10	18	87	415.0380
MCR/MCH 80	25	50	25	6.7	25	6.8	18.6	10	18	100	415.0760
MCR/MCH 105	30	50	25	9	30	9.5	23.6	12	22	129	415.0761

Insertable nuts and plates

Spring nut

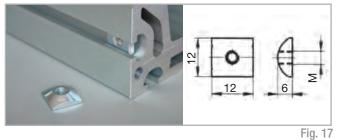
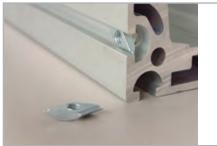

Single plate	MC	80-105		MC 6	5	
M5	Д	32-55		B32-5	55	
M6	A	32-65		B32-6	65	
M8	А	32-85		B32-8	35	
					Tab. 33	
Double plate	MC	80-105		MC 6	5	
M6	А	32-67		B32-67		
					Tab. 34	
Size						
Base module	D	Н	L	L1	Т	
MC 80-105	14	7.8	20	40	30	
MC 65	11	4.1	20	40	30	
					Tab. 35	

Fig. 16

Plate suitable for every kind of module (8 mm slot).

Material: nut in galvanised steel welded to the harmonic steel spring.


Simple nut



Thread	Code
M5	209.2431
M6	209.2432
M8	209.2433
	Tab. 36

Material: galvanised steel. Insert through the end of the profile. Suitable for series: MC 80-105

Front insertable spring nut

Material: galvanised steel, harmonic steel spring. To be inserted through the slot.

Suitable for series: MC 65

Thread	Code
M3	BD31-30
M4	BD31-40
M5	BD31-50
	Tab. 37

Simple nut

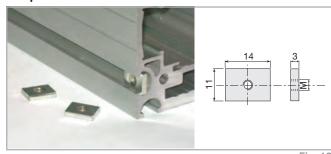
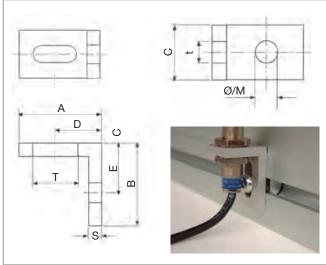



Fig. 19

Material: galvanised steel. To be inserted through the slot. Suitable for series: MC 65

Thread	Code
M4	D32.40
M5	D32.50
M6	D32.60

Sensor brackets

Thread								Co	de
А	В	С	D	Е	S	Txt	Ø/M	Ø	М
45	45	20	25	25	5	20X6.5	6	76	A 30-86
35	25	20	19	15	5	20X6.5	4	54	64
35	25	20	19	15	5	20X6.5	5	55	65
35	25	20	19	15	5	20X6.5	6	56	66
25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
Suitab	Suitable for all the modules Tab. 39								

Fig. 20

Steel strip protection for series MCR/MCH 80-105

Material: Stainless steel foil.

Optional: For additional protection from dust and debris, a magnetic seal strip can be added to the profile to cover the belt way.

Due to the magnetic strip, it is best to avoid use in the presence of ferrous debris.

 $\mathbf{M} = \text{Threaded version}$

 $\mathbf{Ø} = \mathsf{Passing} \ \mathsf{through} \ \mathsf{hole} \ \mathsf{version}$

Material: natural, anodized anticorodal alloy.

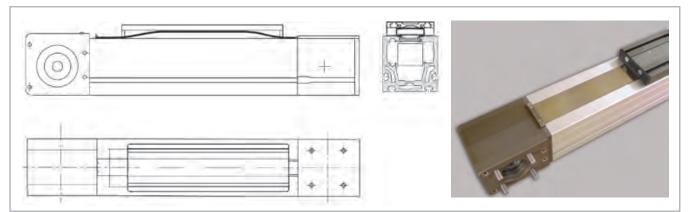
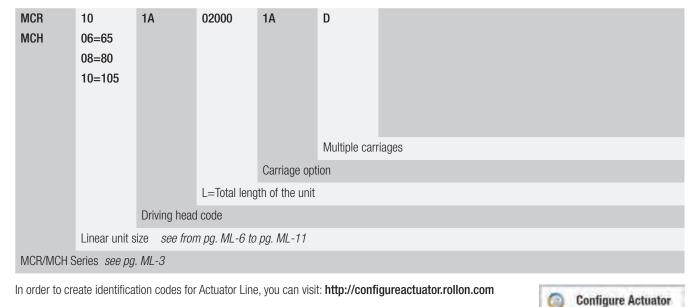
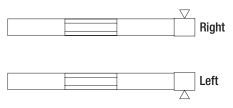



Fig. 21


M L

Identification codes for the MCR/MCH series

Left / right orientation

TCR/TCS series $\parallel \checkmark$

TCR/TCS series description

The TCR/TCS series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting and operations in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in different sizes ranging from 140 to 360 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary maintenance.

TCR

Features a dual Prismatic Rail system.

TCS

Features a dual rail system with four recirculating ball bearing runner blocks.

Fig. 22

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TCR/ TCS series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

Driving belt

The Rollon TCR/TCS series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size, and low noise. Used in conjunction

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 40

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		
2.7	70	23.8	200	880-900	33	600-655
						Tab. 41

Mechanical characteristics

Rm	Rp (02)	А	НВ
$\frac{N}{mm^2}$	N mm ²	%	_
250	200	10	75
			Tab. 42

with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon TCR/TCS series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accommodate a vast array of applications.

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

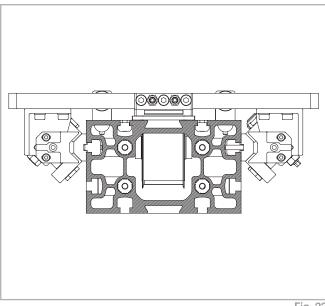
TCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution TCR is specifically dedicated for dirty environments and high dynamics in automation.

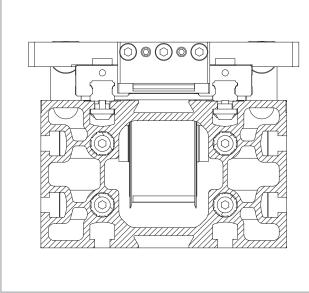
- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise

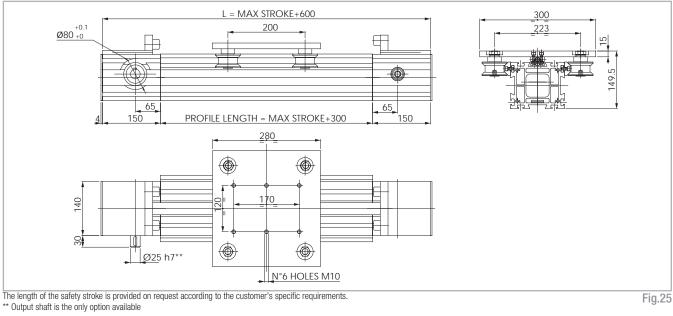

TCS with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.


The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

TCR section



TCS section

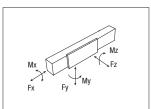
TCR 140 >

TCR 140 Dimension

Technical data

	Туре
	TCR 140
Max. useful stroke length [mm]	9700
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	6.0
Zero travel weight [kg]	21.2
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	3
Moment of inertia of pulleys [g mm ²]	978467
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 43

Moments of inertia of the aluminum body

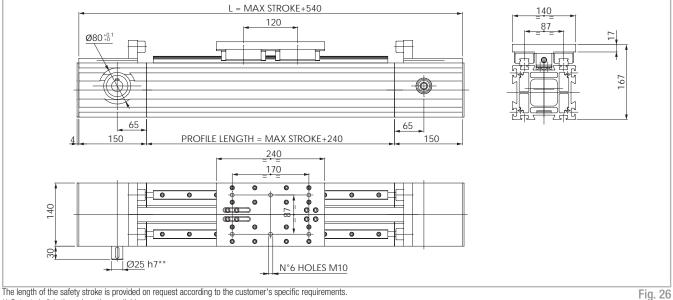

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TCR 140	1.148	0.892	2.040
			Tab. 44

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type Type of belt		Weight per meter [kg/m]	
TCR 140	32 AT 10	32	0.185	
			Tab. 45	

Belt length (mm) = 2 x L - 160



Load capacity

Туре	F _x [N]		F _x F _y F _z [N] [N] [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 140	3187	2170	6000	23405	4000	280	400	600

See verification under static load and lifetime on page SL-2 and SL-3

TCS 140 Dimension

¹ The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

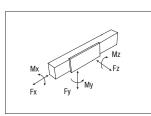
Technical data

	Туре
	TCS 140
Max. useful stroke length [mm]	9760
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	4.2
Zero travel weight [kg]	18
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm ²]	978467
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 47

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l₀ [10 ⁷ mm⁴]
TCS 140	1.148	0.892	2.040
			Tab. 48

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 140	32 AT 10	32	0.185
			T 1 40

Tab. 49

Μ

Belt length (mm) = 2 x L - 100

Load capacity

Туре	F _x [N]		F [N	y	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 140	3187	2170	153600	70798	153600	6682	9216	9216

See verification under static load and lifetime on page SL-2 and SL-3

TCR 170 >

TCR 170 Dimension

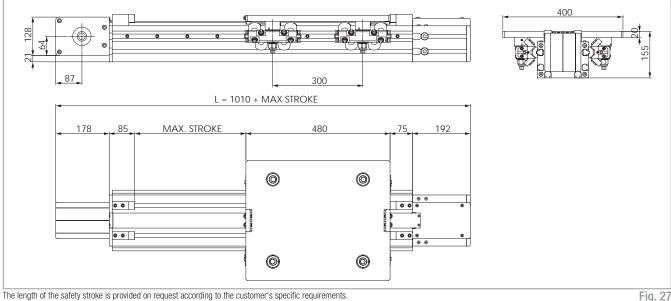


Fig. 27

Technical data

	Туре
	TCR 170
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.2
Zero travel weight [kg]	51.1
Weight for 100 mm useful stroke [kg]	2.4
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 51

Moments of inertia of the aluminum body

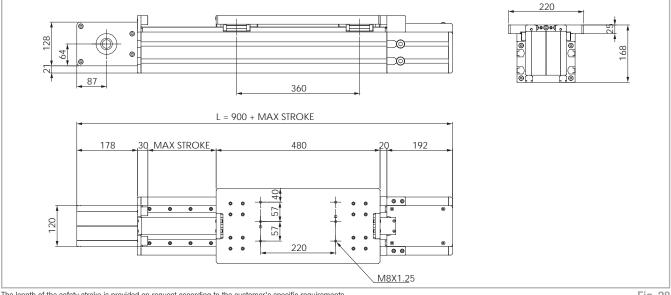

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCR 170	1.973	0.984	2.957
			Tab. 52

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 170	50 AT 10 HP	50	0.290
			Tab. 53

Belt length (mm) = 2 x L - 250



Load capacity

Туре	F []	= Ň]	F [1	: v v]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 170	4980	3300	14142	65928	14142	1202	2121	2121
								Tab E4

See verification under static load and lifetime on page SL-2 and SL-3

TCS 170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

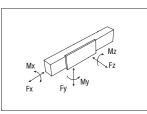
Fig. 28

Technical data

	Туре
	TCS 170
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	34.2
Weight for 100 mm useful stroke [kg]	2,2
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 55

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCS 170	1.973	0.984	2.957
			Tab. 56

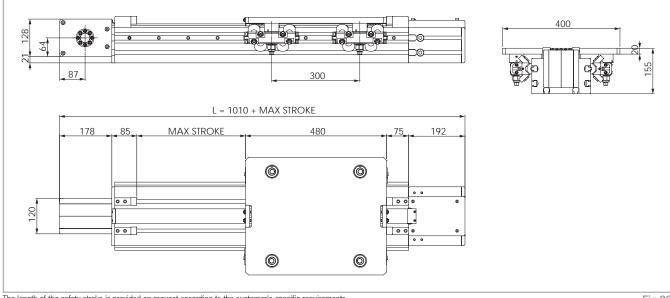

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 170	50 AT 10 HP	50	0.290

Tab. 57

Belt length (mm) = 2 x L - 250


Load capacity

Туре	F [1	: × V]	F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 170	4980	3300	153600	70798	153600	7680	27648	27648

See verification under static load and lifetime on page SL-2 and SL-3

TCR 200

TCR 200 Dimension

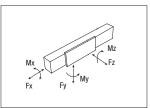
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.29

Technical data

	Туре
	TCR 200
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	54.5
Weight for 100 mm useful stroke [kg]	2.7
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 59

Moments of inertia of the aluminum body

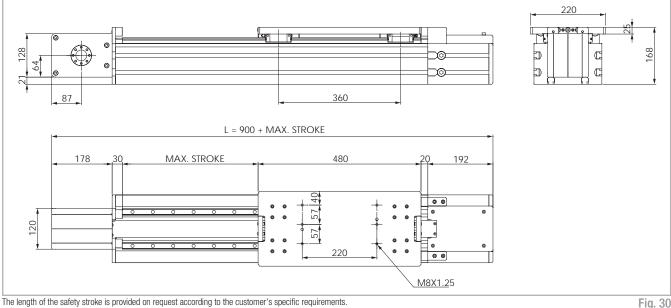

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCR 200	3.270	1.298	4.586
			Tab. 60

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 200	50 AT 10 HP	50	0.290
			Tab. 61

Belt length (mm) = 2 x L - 250



Load capacity

Туре	F [1	: × V]	F [1	: y V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 200	4980	3300	14142	65928	14142	1414	2121	2121
								Tab 60

See verification under static load and lifetime on page SL-2 and SL-3

TCS 200 Dimension

Fig. 30

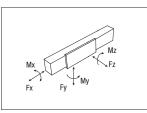
Technical data

	Туре
	TCS 200
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	39.7
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 63

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCS 200	3.270	1.298	4.586
			Tab. 64

Driving belt

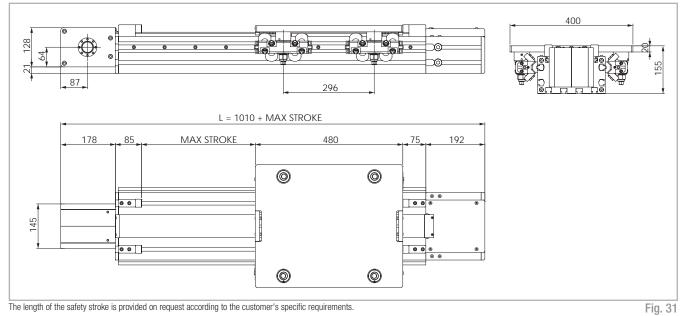

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 200	50 AT 10 HP	50	0.290

Tab. 65

Μ

Belt length (mm) = 2 x L - 250


Load capacity

Туре	F []	: X V]	F [N	i V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 200	4980	3300	153600	70798	153600	7680	27648	27648
								T 1 00

See verification under static load and lifetime on page SL-2 and SL-3

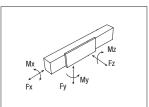
TCR 220

TCR 220 Dimension

Technical data

	Туре
	TCR 220
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	60.1
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	5.8
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 67

Moments of inertia of the aluminum body

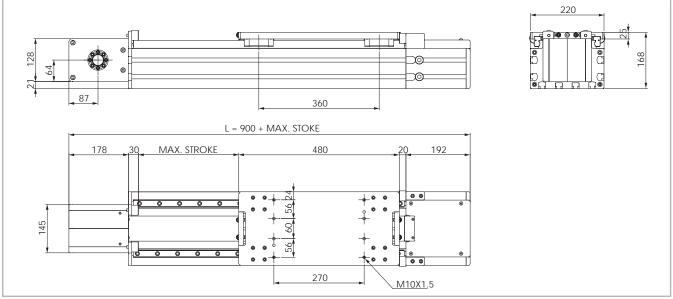

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCR 220	4.625	1.559	6.184
			Tab. 68

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 220	75 AT 10 HP	75	0.435
			Tab. 69

Belt length (mm) = 2 x L - 250



Load capacity

Stat. Dyn. Stat. Dyn Stat. Stat. Stat. Stat.	y M _z n] [Nm]	M _y [Nm]	M _x [Nm]	F _z [N]	: V V]	F [1	= ŇJ]	Туре
	it. Stat.	Stat.	Stat.	Stat.	Dyn	Stat.	Dyn.	Stat.	
TCR 220 7470 4950 14.142 65928 14142 1556 2093 2093	93 2093	2093	1556	14142	65928	14.142	4950	7470	TCR 220

See verification under static load and lifetime on page SL-2 and SL-3

TCS 220 Dimension

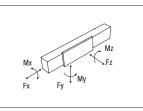
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 32

Technical data

	Туре
	TCS 220
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	9.5
Zero travel weight [kg]	49.3
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	6.9
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 71

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l₀ [10 ⁷ mm⁴]
TCS 220	4.625	1.559	6.184
			Tab. 72

Driving belt

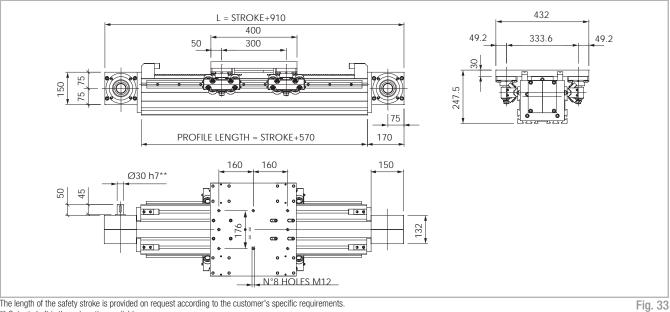
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 220	75 AT 10 HP	75	0.435
			Tab. 73

Belt length (mm) = 2 x L - 250

Load capacity

Туре	F []	: × V]	F [1	: V Ú]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 220	7470	4950	258800	116833	258800	19410	46584	46584


See verification under static load and lifetime on page SL-2 and SL-3

Tab. 74

Μ

TCR 230 >

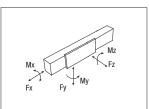
TCR 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

Technical data

	Туре
	TCR 230
Max. useful stroke length [mm]	11430
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	23.0
Zero travel weight [kg]	60
Weight for 100 mm useful stroke [kg]	3.3
Starting torque [Nm]	10.5
Moment of inertia of pulleys [g mm ²]	12020635
Rail size [mm]	35x16
1) Positioning repeatability is dependent on the type of transmission used	Tab. 75

Moments of inertia of the aluminum body

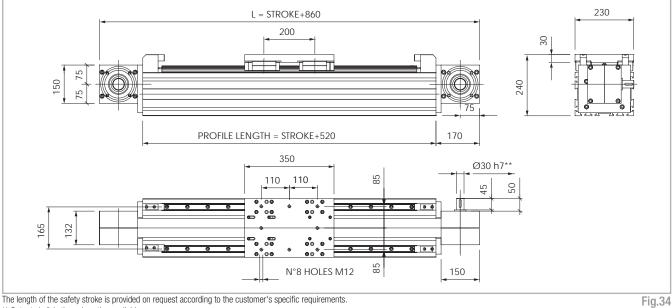

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCR 230	6.501	3.778	1.028
			Tab. 76

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 230	75 AT 10	75	0.435
			Tab. 77

Belt length (mm) = 2 x L - 100



Load capacity

Туре	F [1	: × V]	F [N	: y V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 230	7470	5220	14142	65928	14142	1626	2121	2121
								Tob 70

See verification under static load and lifetime on page SL-2 and SL-3

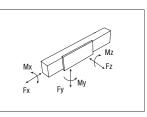
TCS 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. ** Output shaft is the only option available

Technical data

	Туре
	TCS 230
Max. useful stroke length [mm]	11480
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	10.5
Zero travel weight [kg]	43.5
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	11.5
Moment of inertia of pulleys [g mm ²]	12020635
Rail size [mm]	30
1) Positioning repeatability is dependent on the type of transmission used	Tab. 79

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCS 230	6.501	3.778	1.028
			Tab. 80

Driving belt

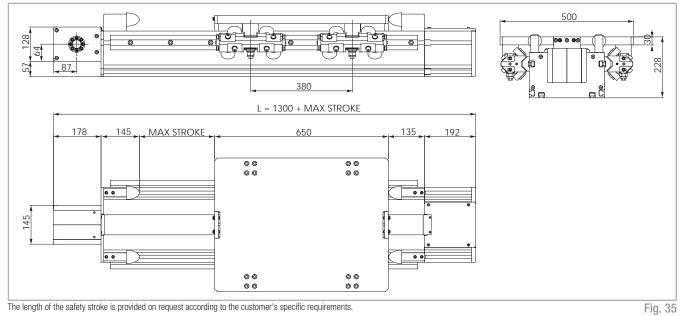
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 230	75 AT 10	75	0.435
			Tab. 81

Belt length (mm) = 2 x L - 50

Load capacity

Туре	i []	= ŇĴ	F [N	: V Ú]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 230	7470	5220	355200	172074	355200	29304	35520	35520


See verification under static load and lifetime on page SL-2 and SL-3

Μ

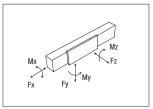
TCR 280

TCR 280 Dimension

Technical data

	Туре
	TCR 280
Max. useful stroke length [mm]	11070
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	47.3
Zero travel weight [kg]	126.1
Weight for 100 mm useful stroke [kg]	4.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	55x25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 83

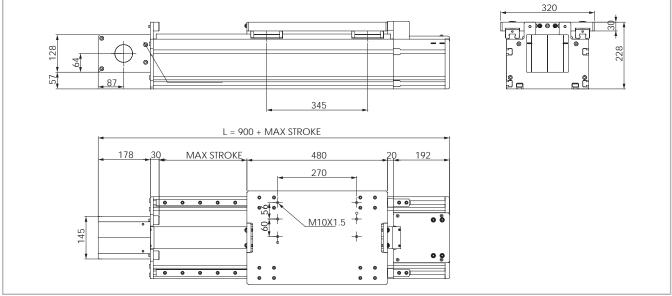
Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCR 280	12.646	4.829	17.475
			Tab. 84

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 280	75 AT 10 HP	75	0.435
			Tab. 85


Belt length (mm) = 2 x L - 420

Load capacity

Туре	F []	: × V]	F [1	: y N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 280	7470	4950	24042	112593	24042	3366	4568	4568
See verification under static	See verification under static load and lifetime on page SL-2 and SL-3							

TCS 280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

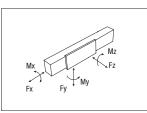
Fig. 36

Technical data

	Туре
	TCS 280
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	18
Zero travel weight [kg]	65.1
Weight for 100 mm useful stroke [kg]	4.6
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm ²]	9829829
Rail size [mm]	25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 87

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TCS 280	12.646	4.829	17.475
			Tab. 88

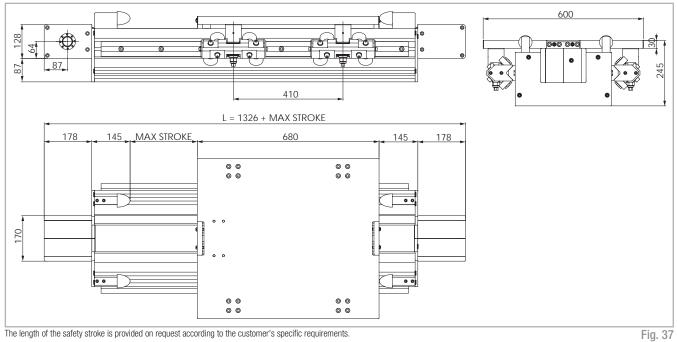

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 280	75 AT 10 HP	75	0.435

Tab. 89

Belt length (mm) = 2 x L - 250


Load capacity

Туре	F [1	: X J]	F [N	, v 1]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 280	7470	4950	258800	116833	258800	31056	46584	46584

See verification under static load and lifetime on page SL-2 and SL-3

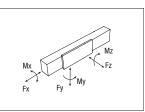
TCR 360

TCR 360 Dimension

Technical data

	Туре
	TCR 360
Max. useful stroke length [mm]	11030
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	10
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	56.3
Zero travel weight [kg]	163
Weight for 100 mm useful stroke [kg]	6.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm ²]	14085272
Rail size [mm]	55x25
1) Positioning repeatability is dependent on the type of transmission used	Tab. 91

Moments of inertia of the aluminum body

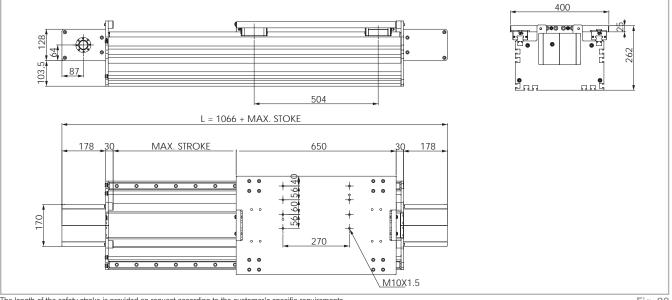

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
TCR 360	31.721	10.329	42.05
			Tab. 92

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 360	100 AT 10 HP	100	0.58
			Tab. 93

Belt length (mm) = 2 x L - 460



Load capacity

Туре	F [1	: × V]	F [1	: V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 360	9960	6600	24042	112593	24042	4327	4929	4929
								T I 04

See verification under static load and lifetime on page SL-2 and SL-3

TCS 360 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

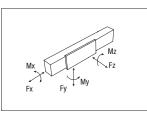
Fig. 38

Technical data

connoal data	
	Туре
	TCS 360
Max. useful stroke length [mm]	11290
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.2
Zero travel weight [kg]	104.6
Weight for 100 mm useful stroke [kg]	6.9
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm ²]	14085272
Rail size [mm]	30
1) Positioning repeatability is dependent on the type of transmission used	Tab. 95

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TCS 360	31.721	10.329	42.05
			Tab. 96


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

of belt	Belt width [mm]	Weight per meter [kg/m]
100 AT 10 HP	100	0.580
		of belt [mm]

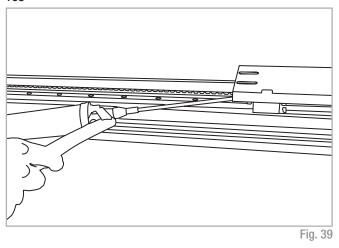
Tab. 97

Belt length (mm) = 2 x L - 430

Load capacity

Stat. Dyn. Stat. Dyn Stat. Stat. Stat. Stat.	Туре	F [1	= Ň]	F [N	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 360 9960 6600 266400 142231 266400 42624 61272 61272	TCS 360	9960	6600	266400	142231	266400	42624	61272	61272

See verification under static load and lifetime on page SL-2 and SL-3


Lubrication

TCS linear units with ball bearing guides

TCS Linear units are equipped with ball bearing carriage fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment. Lubrication interval between maintenance every 2000 Km or 1 year of use, based on the value reached first.

If a long service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

TCS

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Quantity of Grease [cm³]
TCS 140	1.4
TCS 170	1.4
TCS 200	1.4
TCS 220	2.4
TCS 230	4.2
TCS 280	2.4
TCS 360	3.2
	Tab. 99

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

TCR linear units with roller guides

Roller slides are provided with a self- lubrication system for a long lubrication interval. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

Guide rails do not require excessive lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Accessories

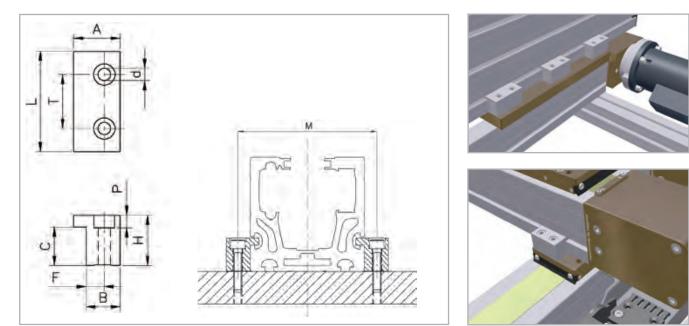
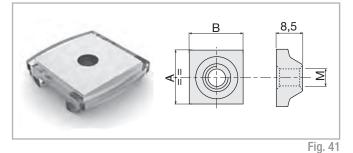


Fig. 40

Material: aluminum alloy 6082

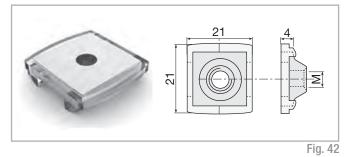
Unit	bxh	А	L	т	d	Н	Р	С	F	В	М	Code												
TCR/TCS 170	120x170										198													
TCR/TCS 200	120x200	30	30	30	30	30	30	30	30	30	30	30	30	30	90	50	11	40	11	28.3	14	25	228	415.0762
TCR/TCS 220	120x220										248													
TCR/TCS 280	170x280	30	90	50	11	20	11	11.3	14	25	308	415.0763												
TCR/TCS 280 Vert.	280x170	30	90	50	11	20	11	13.5	14	25	198	915.1174												

Tab. 100

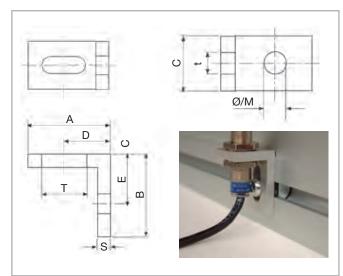

M L

Semi-rounded threaded inserts with spring

Threaded plate for base profile 45, 50 and 60. Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.


Suitable for series:

TC 170-180-200-220-360


	A	хB
Thread	18x18	20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467
		Tab. 101

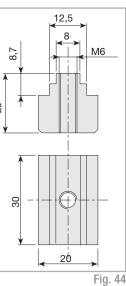
Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732
	Tab. 102

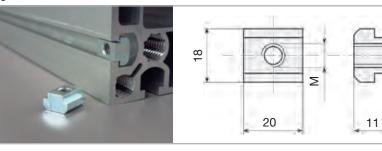
Assembly brackets

Mater	Material: natural, anodized anticorodal alloy.								
Thre	ad	Co	de						
А	В	С	D	Е	S	Txt	Ø/M	Ø	Μ
45	45	20	25	25	5	20X6.5	6	A30-76	A 30-86
35	25	20	19	15	5	20X6.5	4	A30-54	A30-64
35	25	20	19	15	5	20X6.5	5	A30-55	A30-65
35	25	20	19	15	5	20X6.5	6	A30-56	A30-66
25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
Suitab	le for a	all the	modu	les					Tab. 103

Fig. 43

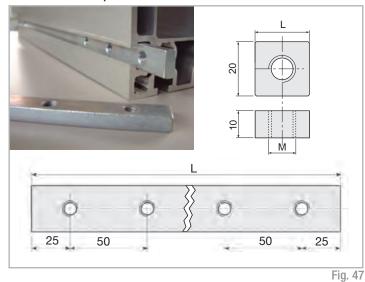

 $\mathbf{M} = \text{Threaded version}$

 $\mathbf{Ø} = \mathsf{Passing} \mathsf{ trough} \mathsf{ hole} \mathsf{ version}$


Alignment nuts

Nuts for steel guide rails

Material: galvanised steel. Code 209.1855 Alignment nuts. V-shaped guide rail: 35x16 Profile with slot. 12.5 mm. Series: TC 170-200-220-280-360


Alignment nut for slot 12.5 mm

Alignment nut for slot 12.5 mm front insertable

Threaded nuts and plates

 $\begin{array}{l} \textbf{Material: galvanised steel. Suitable for series:} \\ \textbf{TC 170-200-280-360} \end{array}$

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 104

Material: galvanised steel. Suitable for series: TC 170-200-280-360

Thread	Codo
Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab 100

Fig. 46

11

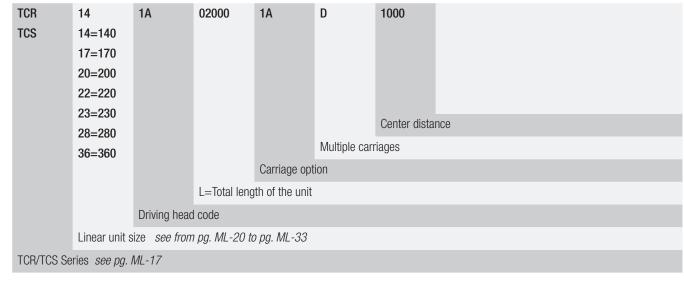
5

2

Fig. 45

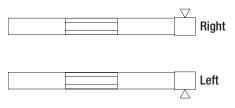
M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

Material: galvanised steel. Suitable for series: TC 170-200-220-280-360


Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Hole centre-distance: 50 mm.

Tab. 105


Identification codes for the TCR/TCS series

Configure Actuator

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ZCR/ZCH series // 🗸

ZCR/ZCH series description

The ZCR/ZCH series linear units are designed to meet the vertical motion requirements in gantry applications or where the aluminum profile must be moving and the carriage must be fixed. The self-supporting extruded and anodized aluminum structure is available in different sizes from 60 to 220 mm. Being a rigid system, it is ideal for a "Z" axis in a 3-axis system. In addition, the ZCR/ZCH series has been specifically designed and configured to be easily assembled with the R-SMART, TCR/TCS series and ROBOT series.

ZCR

Features a dual Prismatic Rail system.

ZCH

Features a dual recirculating ball guide system.

The components

Extruded profile

Driving belt

The anodized aluminum extrusions used for the bodies of the Rollon ZCR/ ZCH series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards. backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The Rollon ZCR/ZCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 107

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K	22.111.10	0
2.7	70	23.8	200	880-900	33	600-655
						Tab. 108

Mechanical characteristics

Rm	Rp (02)	А	HB
N mm ²	N mm ²	%	_
250	200	10	75
			Tab 100

Tab. 109

M L

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

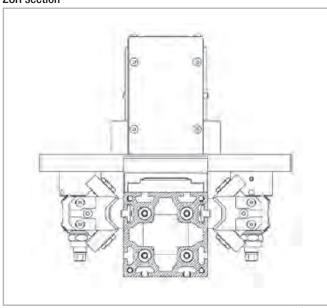
ZCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution ZCR is specifically dedicated for dirty environments and high dynamics in automation.

- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise


ZCH with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.

The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

ZCR section

ZCH section

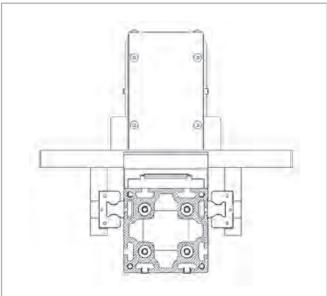
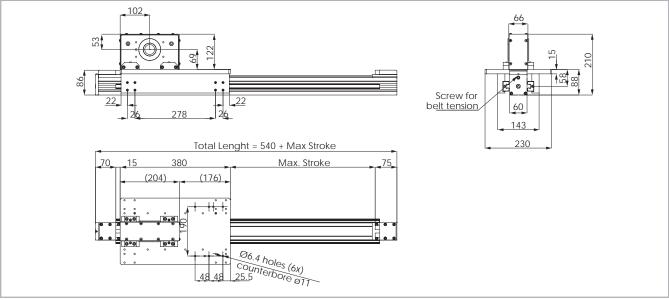



Fig. 49

ZCH 60

ZCH 60 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

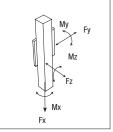
Fig. 51

Technical data

	Туре
	ZCH 60
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	40
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.1
Zero travel weight [kg]	17
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.8
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 110

Moments of inertia of the aluminum body

monto el morta el ale alaminam seay							
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]				
ZCH 60	0.054	0.054	0.109				
			Tab. 111				

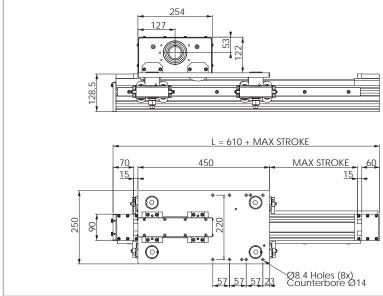

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

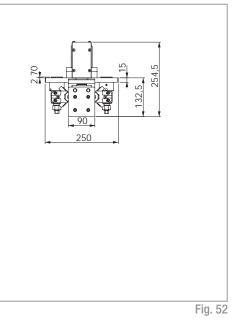
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 60	32 AT 10 HF	32	0.185
Dalt Is worth (a	Tab. 112		

Belt length (mm) = L + 190

Μ


Load capacity

Туре	F [1	: X J]	F [1	i V V	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 60	2656	1760	50800	39440	50800	1836	5944	5944


See verification under static load and lifetime on page SL-2 and SL-3

ZCR 90 >

ZCR 90 Dimension

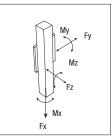
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ZCR 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.6
Zero travel weight [kg]	25
Weight for 100 mm useful stroke [kg]	1.3
Starting torque [Nm]	1.8
Rail size [mm]	28.6x11
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 114

Moments of inertia of the aluminum body

Туре	l_x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ZCR 90	0.253	0.253	0.507
			Tab. 115

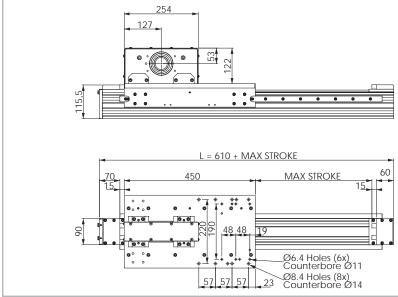

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 90	32 AT 10 HF	32	0.185
			Tab. 116

Belt length (mm) = L + 190

Tab. 116


Load capacity

Туре	F []	: × V]	 [= ŇJ	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCR 90	2656	1760	7637	28286	7637	344	1298	1298
								Tob 117

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 90

ZCH 90 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 53

Technical data

	Туре
	ZCH 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	20
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	12.8
Zero travel weight [kg]	24
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	1.8
Rail size [mm]	20
1) Positioning repeatability is dependent on the type of transmission used	Tab. 118

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]	
ZCH 90	0.253	0.253	0.507	
			Tab. 119	

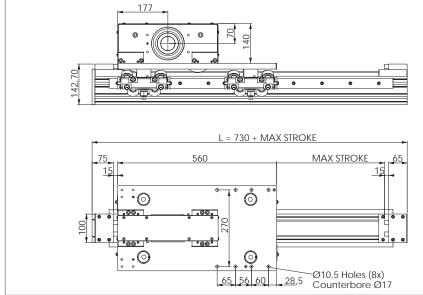
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

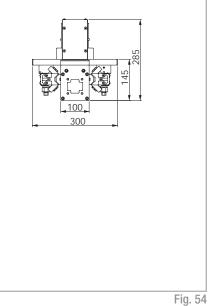
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 90	32 AT 10 HF	32	0.185
Delt Leventhe (or	Tab. 120		

Belt length (mm) = L + 190

Μ


Load capacity

Туре	F [1	: X V]	F. [N	,]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 90	2656	1760	110800	88800	110800	6136	16842	16842
								T-1 404


See verification under static load and lifetime on page SL-2 and SL-3

ZCR 100 >

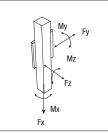
ZCR 100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ZCR 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	27.6
Zero travel weight [kg]	45
Weight for 100 mm useful stroke [kg]	1.8
Starting torque [Nm]	4.5
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 122

Moments of inertia of the aluminum body

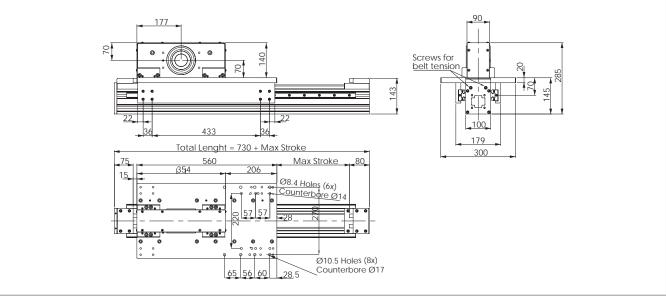

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ZCR 100	0.443	0.443	0.886
			Tab. 123

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 100	50 AT 10 HPF	50	0.290
			Tab. 124

Belt length (mm) = L + 250


Load capacity

Туре	F _x [N]		F _y [Ň]		F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 100	4980	3480	14142	65298	14142	707	2666	2666
								T 405

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 100

ZCH 100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

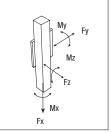
Fig. 55

Technical data

	Туре
	ZCH 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.1
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	1.8
Starting torque [Nm]	4.5
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 126

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [₽] [10 ⁷ mm⁴]				
ZCH 100	0.443	0.443	0.886				
			Tab. 127				

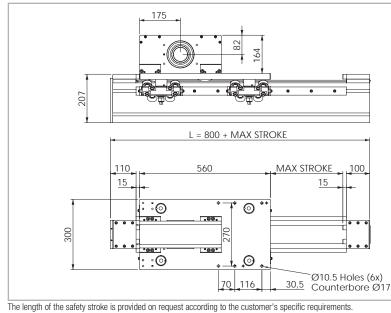

Driving belt

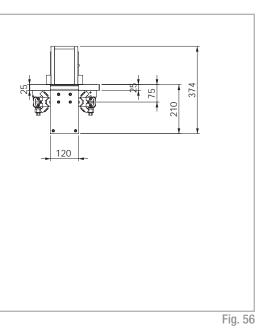
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 100	50 AT 10 HPF	50	0.290
Delli Jana alla	() 050		Tab. 128

Belt length (mm) = L + 250

Μ


Load capacity


Туре	l [F N]	F []	: Ň]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 100	4980	3480	110800	88800	110800	6690	22326	22326
								T-1 400

See verification under static load and lifetime on page SL-2 and SL-3

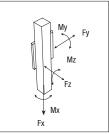
ZCR 170 >

ZCR 170 Dimension

Technical data

	Туре
	ZCR 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	55.4
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	7.8
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 130

Moments of inertia of the aluminum body

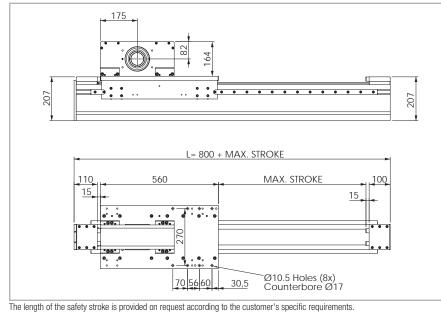

Туре	l _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ZCR 170	1.973	0.984	2.957
			Tab. 131

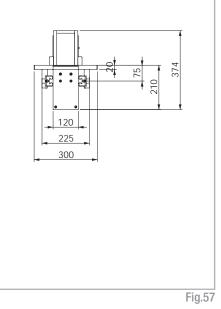
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 170	75 AT 10 HPF	75	0.435
			Tab. 132

Belt length (mm) = L + 280


Load capacity


Loud oupdoily								
Туре	i [= ŇĴ	F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 170	7470	5220	14142	65298	14142	849	2666	2666
								T-1 400

See verification under static load and lifetime on page SL-2 and SL-3

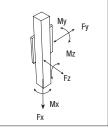
ZCH 170

ZCH 170 Dimension

Technical data

	Туре
	ZCH 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	53.7
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	7.8
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 134

Moments of inertia of the aluminum body

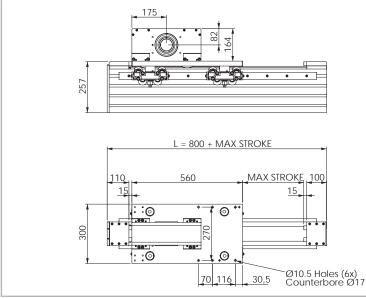

montonice of monta of the alaminant body								
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]					
ZCH 170	1.973	0.984	2.957					
			Tab. 135					

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 170	75 AT 10 HPF	75	0.435
Dalt law with (a) 000		Tab. 136

Belt length (mm) = L + 280


Load capacity

Туре	F [1	= Ň]	F [N	: y V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 170	7470	5220	189200	139200	189200	13665	38691	38691
								T I 407

See verification under static load and lifetime on page SL-2 and SL-3

ZCR 220 >

ZCR 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 58

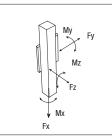
Technical data

	Туре
	ZCR 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	61
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	7.8
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 138

Moments of inertia of the aluminum body

120

300

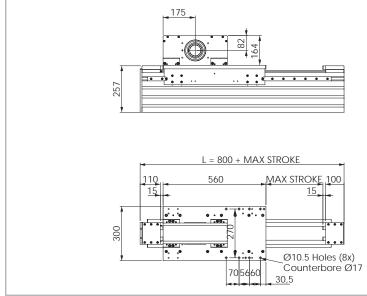

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
ZCR 220	4.625	1.559	6.184
			Tab. 130

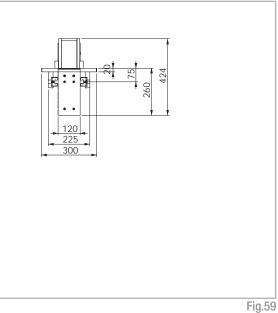
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 220	75 AT 10 HPF	75	0.435
			Tab. 140

Belt length (mm) = L + 280


Load capacity


Туре	F [1	: × V]	F [1	: v V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 220	7470	5220	14142	65298	14142	849	2666	2666
								Tab. 4.44

See verification under static load and lifetime on page SL-2 and SL-3

ZCH 220

ZCH 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	ZCH 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	60.7
Weight for 100 mm useful stroke [kg]	3.5
Starting torque [Nm]	7.8
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 142

Moments of inertia of the aluminum body

momonito or mortia or the alaminant body						
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]			
ZCH 220	4.625	1.559	6.184			
			Tab. 143			

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 220	75 AT 10 HPF	75	0.435
			Tab. 144

Belt length (mm) = L + 280

Mx Fx

Μ

Load capacity

Туре	F []	= Ň]	F [N	i V V	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCH 220	7470	5220	189200	139200	189200	13665	38691	38691
								T 1 445

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

ZCH

ZCH linear units with ball bearing guides

The ball bearing carriages of the ZCH versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every

2000 Km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

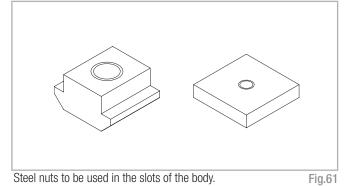
Fig. 60

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Quantity of Grease [cm³]
ZCH 60	0.2
ZCH 90	0.5
ZCH 100	0.5
ZCH 170	0.6
ZCH 220	0.6
	Tab. 146

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

ZCR linear units with roller guides

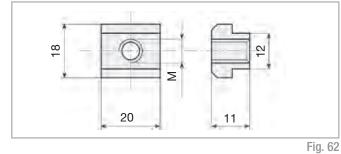

Roller slides are provided with a self- lubrication system for a long lubrication interval. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

Guide rails do not require excessive lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

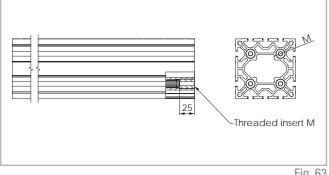
Accessories

To install accessories on ZCH/ZCR series aluminum profile we recommend to use the T-nuts shown below

Front insertable T-Nuts


Units (mm)						
	Hole	Length	Code Rollon			
ZCH 60	M6	15x13x8	6006071			
	M4	19x19x4	6006054			
ZCH / ZCR 90-100	M5	19x19x4	6006051			
	M6	19x19x4	6006052			
	M8	19x19x4	6006053			
			Tab. 147			

Lateral insertable T-Nuts


Bushings for ZCR/ZCH series

Suitable for series:

ZC 170-220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 148

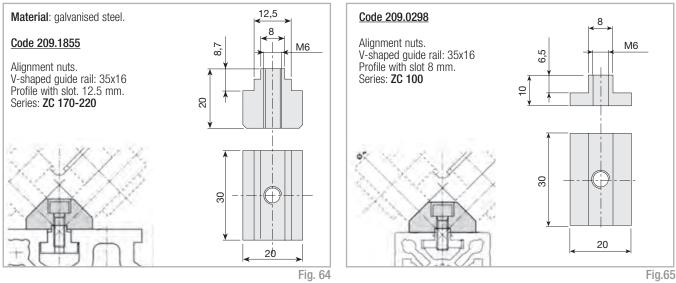
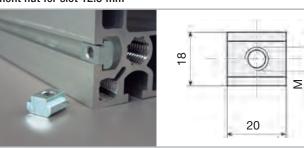
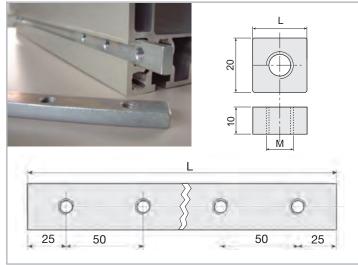

	Threaded insert Nb. x M					
ZCH 60	1 x M6	1 x M8	1 x M10			
ZCH 90	4 x M6	4 x M8	4 x M10			
ZCH 100	4 x M6	4 x M8	4 x M10			
ZCH 170		4 x M8	4 x M10	4 x M12		
ZCH 220		4 x M8	4 x M10	4 x M12		
The highlighted threaded i	nserts are standa	rd.		Tab. 149		

Fig. 63


The highlighted threaded inserts are standard. In case of need, the others have to be ordered separately.

Alignment nuts

Nuts for steel guide rails



Alignment nut for slot 12.5 mm

Threaded nuts and plates

Material: galvanised steel. Suitable for series: ZC 170-220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 150

Material: galvanised steel. Suitable for series: $ZC \ 170\mathchar`-220$

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 151

Fig. 67

2

Fig. 66

11

11

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

Material: galvanised steel. Suitable for series:

ZC 170-220			
Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Hole centre-distance: 50 mm.

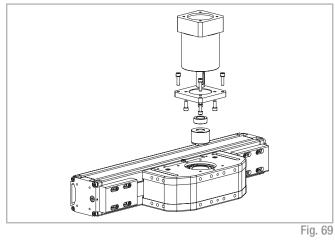
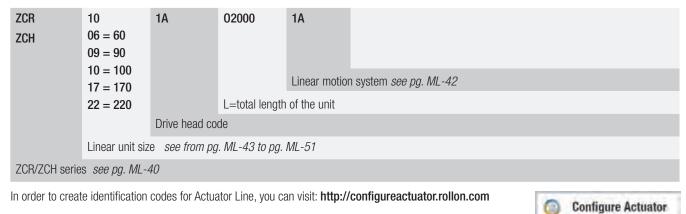

Tab. 152

Fig.68

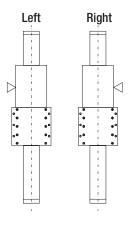
5

 30°

Adapter flange for gearbox assembly


Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code
	SP 100	G002255
	LP 090	G001920
ZCH 60	LP 070	G002264
2011 00	MP080	G001915
	CP080	G001970
	PSF221	G001917
	RF 27	G002335
	LP 090	G002254
ZCR/ZCH 90	SP 100	G002316
ZUR/ZUH 90	MP 080	G002328
	PSF 321	G002345
	PSF 221	G002348
	LP120; PE5; LC120	G001856
	SP100; P5	G001857
	PSF321	G001858
ZCR/ZCH 100	PSF521	G001859
	EP120TT	G001860
	MP105	G001861
	MP080	G001951
		Tab. 153


For other gearbox type ask Rollon

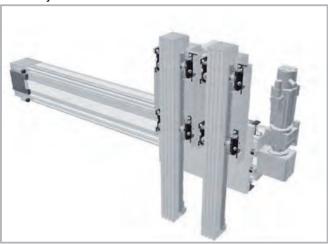
Identification codes for the ZCR/ZCH linear unit

Left / right orientation

1 - Two axis Y-Z system

2 - Two axis 2X-Y system

3 - Three axis 2X-Y-Z system



4 - Three Axis X-Y-Z system

6 - Y-3Z system

TH series description

TH linear actuators are rigid and compact, ball screw driven linear units, that enable high positioning accuracy and repeatability in all process phases. With optimal performance assured, TH actuators have a repeatability within 5 μ m.

Thrust force transmission is achieved by means of super high efficient ball screws, which are available in several precision classes and a variety of leads. Linear motion is based on two or four preloaded re-circulating ball bearing blocks, with ball retainer technology, mounted on two precision aligned parallel rails. The TH series is available in single carriage or double carriage versions to meet different load requirements.

The TH linear units also feature safe rail and screw lubrication through a dedicated channel for each component. The incredibly compact structure of the TH actuator makes it the ideal solution for applications where space is limited.

- Extremely compact dimensions
- High positioning accuracy
- High load capacity and stiffness
- Preloaded ball screw
- Block with ball retainer
- Internal protected rails and ball screw
- Safe lubrication through dedicated channels for each component (block and ball screw)

The components

Aluminum base unit and carriage

The anodized extrusions used for the profile and carriages of the Rollon TH-series linear units were designed and manufactured in cooperation with industry experts to achieve high-level accuracy and to maximize mechanical properties. The anodized aluminum alloy 6060 used and was extruded with dimensional tolerances complying with UNI 3879 standards.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TH series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

Drive system

Rollon TH-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 7, however ISO 5 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

Protection

Rollon TH series linear units are equipped with sealing strips in order to protect the mechanical components inside the linear unit against contaminants. In addition, the ball bearing guides and ball screws have their own protection system, including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

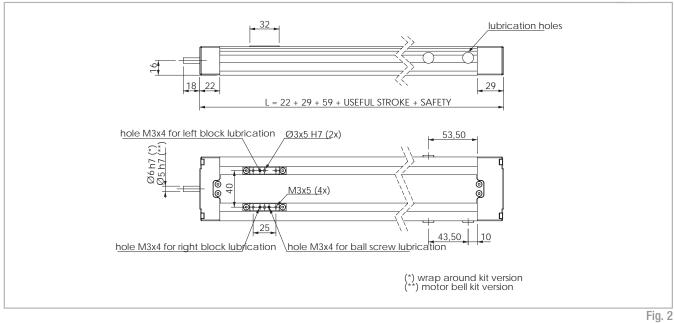
General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	К	m.K	kg . K		
2.7	69	23	200	880-900	33	600-655


Tab. 2

Mechanical characteristics

Rm	Rp (02)	A	НВ
<u>N</u> mm²	N mm ²	%	—
205	165	10	60-80

TH 70 SP2

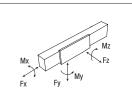
TH 70 SP2 Dimensions (single carriage)

Technical data

	Туре	
	TH 70 SP2	
Useful stroke length [mm]	290 *1	
Max. speed [m/s]	See page PS-14	
Carriage weight [kg]	0.152	
Zero travel weight [kg]	0.58	
Weight for 100 mm useful stroke [kg]	0.26	
Rail size [mm]	9 mini	
¹ Max stroke 591mm. For more information please contact Rollon.	Tab. 4	

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
TH 70 SP2	0.0054	0.0367	0.042
			Tab. 6

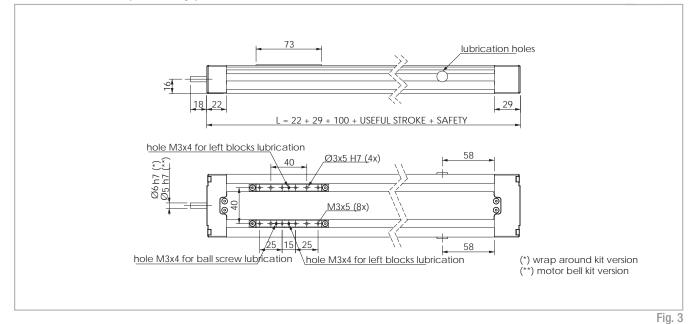

Ball screw precision

Туре	Max. positioning precision [mm/300mm]		Max. repeatability precision [mm]	
	ISO 5*	ISO 7	ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.01	0.02

* ISO5 available only for max stroke 370mm. For more information please contact Rollon. Tab. 5

Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
TH 70 SP2	8-2.5	2220	1470			
			Tab. 7			


Load capacity

Туре	F [1	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 70 SP2	4990	3140	4990	99.8	12.8	12.8

See verification under static load and lifetime on page SL-2 and SL-3

TH 70 SP4

TH 70 SP4 Dimensions (dual carriage)

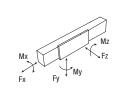
Technical data

	Туре
	TH 70 SP4
Useful stroke length [mm]	249 *1
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.268
Zero travel weight [kg]	0.8
Weight for 100 mm useful stroke [kg]	0.26
Rail size [mm]	9 mini
*1 Max stroke 550mm. For more information please contact Rollon.	Tab. 9

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 70 SP4	0.0054	0.0367	0.042
			Tab. 11

Ball screw precision

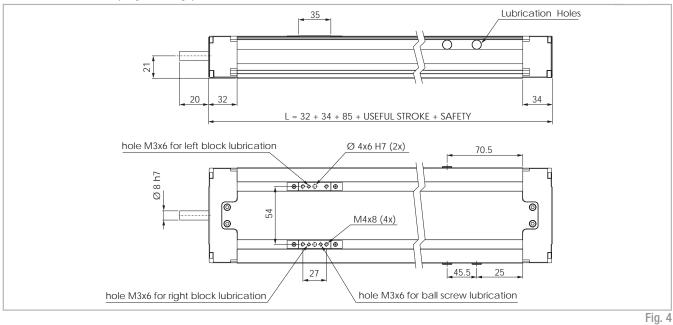

Туре	Max. positioning precision [mm/300mm]		Max. rep precisio	
	ISO 5*	ISO 7	ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.01	0.02

 * IS05 available only for max stroke 330mm. For more information please contact Rollon. Tab. 10

Load capacity F_x

Туре	F _x [N]		
	Screw	Stat.	Dyn
TH 70 SP4	8-2.5	2220	1470
			Tab. 12

Load capacity


Туре	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 70 SP4	9980	6280	9980	200	319	319

See verification under static load and lifetime on page SL-2 and SL-3

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 90 SP2

TH 90 SP2 Dimensions (single carriage)

Technical data

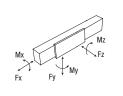
	Туре
	TH 90 SP2
Max. useful stroke length [mm]	665
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.65
Zero travel weight [kg]	1.41
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini
	Tab. 14

Ball screw precision

Туре		sitioning 1m/300mm]	Max. rep precisio	eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 90 / 12-05	0.023	0.05	0.01	0.02
TH 90 / 12-10	0.023	0.05	0.01	0.02
				Tab. 15

Moments of inertia of the aluminum body

Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TH 90 SP2	0.0130	0.0968	0.1098
			Tab. 16


Starting torque

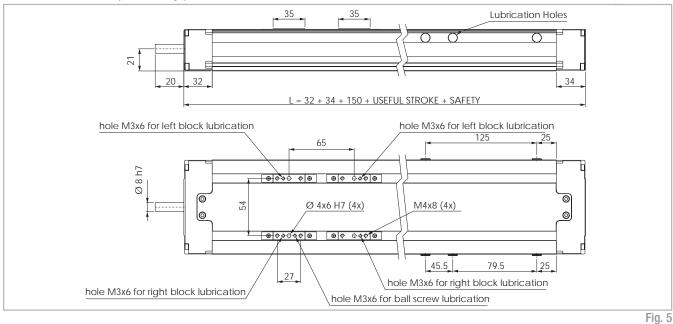
0 1		
Туре	Ball Screw	[Nm]
TH 90 SP2	12-05	0.07
	12-10	0.08
		Tab. 17

Load capacity $F_{\rm x}$

Туре	F, [N]			
	Screw	Stat.	Dyn.	
TH 90 SP2	12-05	9000	4300	
IN 90 SP2	12-10	6600	3600	

Tab. 18

Load capacity


Туре	F []	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 90 SP2	7060	6350	7060	192	24	24

See verification under static load and lifetime on page SL-2 and SL-3

P S

TH 90 SP4

TH 90 SP4 Dimensions (dual carriage)

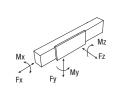
Technical data

	Туре
	TH 90 SP4
Max. useful stroke length [mm]	600
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.90
Zero travel weight [kg]	2.04
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini
	Tab. 20

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 90 SP4	0.0130	0.0968	0.1098
Starting torque			Tab. 22

Туре	Ball Screw	[Nm]
	12-05	0.07
TH 90 SP4	12-10	0.08
		Tab. 23

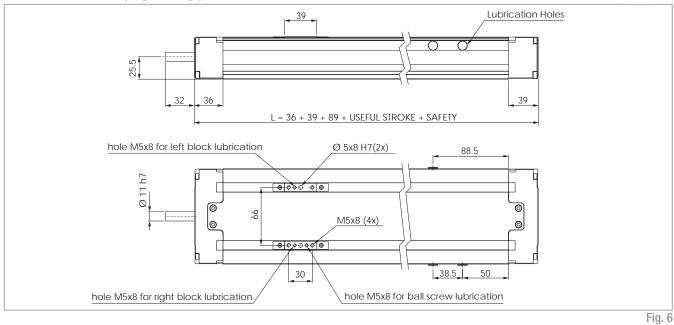

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 90 / 12-05	0.023	0.05	0.01	0.02
TH 90 / 12-10	0.023	0.05	0.01	0.02
				Tab. 21

Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn		
TH 90 SP4	12-05	9000	4300		
IN 90 SP4	12-10	6600	3600		

Load capacity


Туре	F	= ŇJ	F _z [N]	M_ [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	vj Dyn	Stat.	Stat.	Stat.	Stat.
TH 90 SP4	14120	12699	14120	384	459	459
o 10 11 1 1 1 1		01 0 10				

See verification under static load and lifetime on page SL-2 and SL-3

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 110 SP2

TH 110 SP2 Dimensions (single carriage)

Technical data

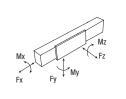
	Туре
	TH 110 SP2
Max. useful stroke length [mm]	1411
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.76
Zero travel weight [kg]	2.65
Weight for 100 mm useful stroke [kg]	0.83
Rail size [mm]	15
	Tab. 26

Ball screw precision

Туре	Max. po: precision [n		Max. rep precisio	eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 110 / 16-05	0.023	0.05	0.005	0.045
TH 110 / 16-10	0.023	0.05	0.005	0.045
TH 110 / 16-16	0.023	0.05	0.005	0.045
				Tab. 27

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 110 SP2	0.0287	0.2040	0.2327
			Tab. 28

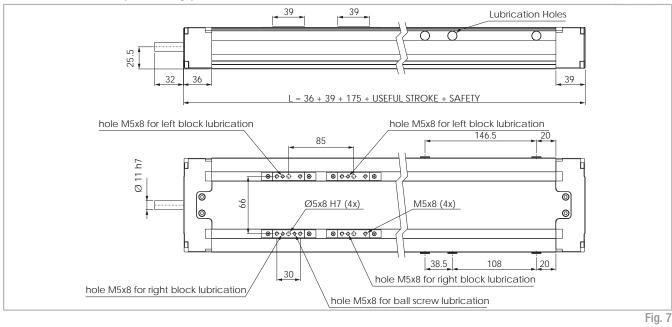

Starting torque

Туре	Ball Screw	[Nm]
	16-05	0.16
TH 110 SP2	16-10	0.23
	16-16	0.27
		Tab. 29

Load capacity F_x

Туре			
	Screw	Stat.	Dyn.
	16-05	17400	11800
TH 110 SP2	16-10	18300	10500
	16-16	18800	10300

Tab. 30


Load capacity

Туре	F [1	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 110 SP2	48400	22541	48400	1549	350	350
See verification under static load and lifetime on page SL-2 and SL-3						Tab. 31

P S

TH 110 SP4

TH 110 SP4 Dimensions (Dual carriage)

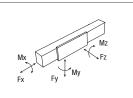
Technical data

Ball screw precision

	Туре
	TH 110 SP4
Max. useful stroke length [mm]	1325
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	1.26
Zero travel weight [kg]	4.00
Weight for 100 mm useful stroke [kg]	0.83
Rail size [mm]	15
	Tab. 32

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 110 SP4	0.0287	0.2040	0.2327
			Tab. 34

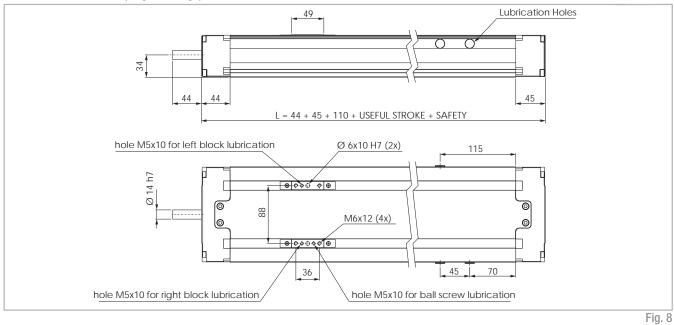

Starting torque

Туре	Ball Screw	[Nm]
TH 110 SP4	16-05	0.16
	16-10	0.23
	16-16	0.27

Туре	Max. pos precision [n	sitioning 1m/300mm]	Max. rep precisio	eatability on [mm]
	ISO 5 ISO 7		ISO 5	ISO 7
TH 110 / 16-05	0.023	0.05	0.005	0.045
TH 110 / 16-10	0.023	0.05	0.005	0.045
TH 110 / 16-16	0.023	0.05	0.005	0.045
				Tab. 33

Load	capacity	F_x
------	----------	-------

Туре	F _x [N]				
	Screw	Dyn			
	16-05	17400	11800		
TH 110 SP4	16-10	18300	10500		
	16-16	18800	10300		
			Tab. 36		


Load capacity

Туре	F [1	: y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.	
TH 110 SP4	96800	45082	96800	3098	2606	2606	
See verification under static load and lifetime on page SL-2 and SL-3							

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TH 145 SP2 >

TH 145 SP2 Dimensions (single carriage)

Technical data

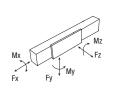
	Туре
	TH 145 SP2
Max. useful stroke length [mm]	1690
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	1.45
Zero travel weight [kg]	5.9
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20
	Tab. 38

Ball screw precision

Туре	Max. pos precision [n			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 145 / 20-05	0.023	0.05	0.005	0.045
TH 145 / 20-20	0.023	0.05	0.005	0.045
TH 145 / 25-10	0.023	0.05	0.005	0.045
				Tab. 39

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP2	0.090	0.659	0.749
			Tab. 40

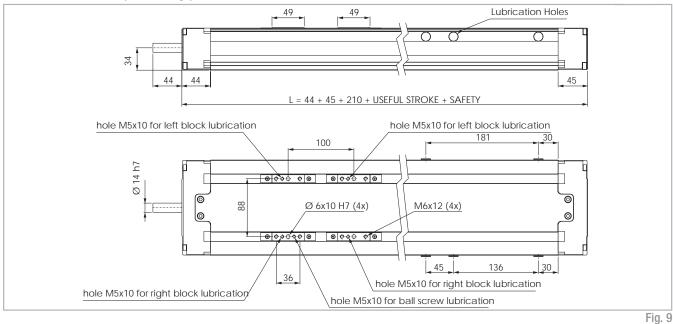

Starting torque

Туре	Ball Screw	[Nm]
TH 145 SP2	20-05	0.22
	20-20	0.35
	25-10	0.29
		Tab. 41

Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
	20-05	25900	14600			
TH 145 SP2	20-20	23900	13400			
	25-10	32600	16000			

Tab. 42


Load capacity

Туре	F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.		
TH 145 SP2	76800	35399	76800	3341	668	668		
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 43								

P S

TH 145 SP4

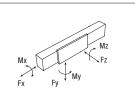
TH 145 SP4 Dimensions (dual carriage)

Technical data

	Туре
	TH 145 SP4
Max. useful stroke length [mm]	1590
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	2.42
Zero travel weight [kg]	8.3
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20
	Tab. 44

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP4	0.090	0.659	0.749
Starting torque			Tab. 46

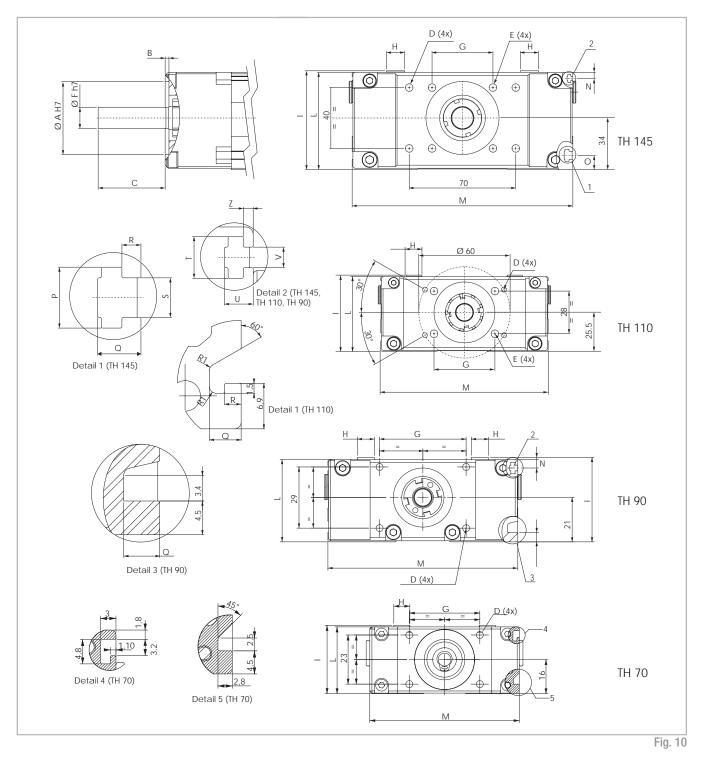

Туре	Ball Screw	[Nm]
	20-05	0.22
TH 145 SP4	20-20	0.35
	25-10	0.29
		Tab. 47

Ball screw precision

Туре	Max. pos precision [n	sitioning 1m/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 145 / 20-05	0.023	0.05	0.005	0.045
TH 145 / 20-20	0.023	0.05	0.005	0.045
TH 145 / 25-10	/ 25-10 0.023 0.05		0.005	0.045
				Tab. 45

Load capacity F_x

Туре	F _x [N]								
	Screw	Stat.	Dyn.						
	20-05	25900	14600						
TH 145 SP4	20-20	23900	13400						
	25-10	32600	16000						
			Tab. 48						



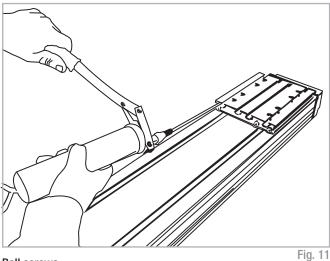
Load capacity

Туре	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]						
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.						
TH 145 SP4	153600	70798	153600	6682	5053	5053						
See verification under static loa	See verification under static load and lifetime on page SL-2 and SL-3 Tab. 49											

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

Motor connections

Units [mi	m]																				
Туре	А	В	С	D	Е	F	G	Н	I	L	М		0	Р	Q	R	S	Т	U	V	Z
TH 70	28	2.5	18	M4x8	-	5 or 6	33	7.5	32	31.3	70	-	-	-	-	-	-	-	-	-	-
TH 90	28	2.5	20	M4x8	-	8	41	8	40	39	90	4	4.5	-	4.8	-	-	5.5	3.8	2.7	1.3
TH 110	40	2.5	32	M4x8	M6x10	11	40	10	50	49	110	4	-	-	4.8	2.5	-	5.5	3.8	2.7	1.3
TH 145	48	2.5	44	M6x10	M6x12	14	40	12	65	64	145	4	9.5	8	5.7	2.5	5.2	5.5	3.8	2.7	1.3
																				Т	ab. 50


PS-12

Lubrication

TH linear units with ball bearing guides

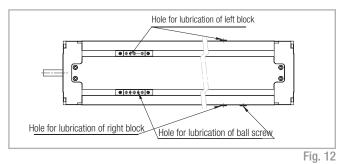
TH Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

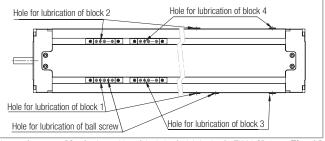
This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

Ball screws

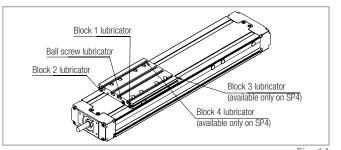
The ball screw nuts for the Rollon TH series linear slides should be re-lubricated every 100 km.

Туре	Quantity [cm ³] for grease nipple
08-2.5	0.1
12-05	0.2
12-10	0.2
16-05	0.41
16-10	0.78
16-16	0.6
20-05	0.79
20-20	1.0
25-10	1.2
	Tab. 51


service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.


Amount of lubricant needed to lubricate carriages:

Туре	Quantity [cm ³]
TH 70	0.23
TH 90	0.5
TH 110	0.7
TH 145	1.4


- Insert grease gun into the specific grease nipples.
- Type of lubrificant: Lithium soap grease of class NLGI 2.

 For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Please refer to page PS-5 for the position of the holes for lubrication for TH 90 SP 4. Fig. 13

Critical speed

The maximum linear speed of Rollon TH series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

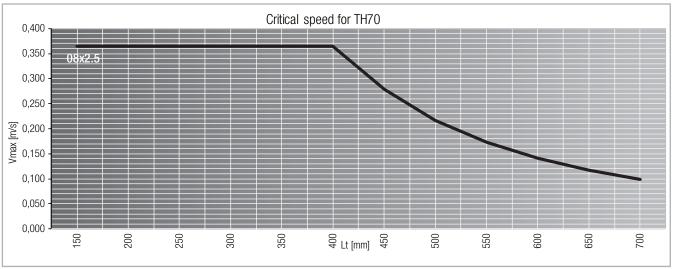
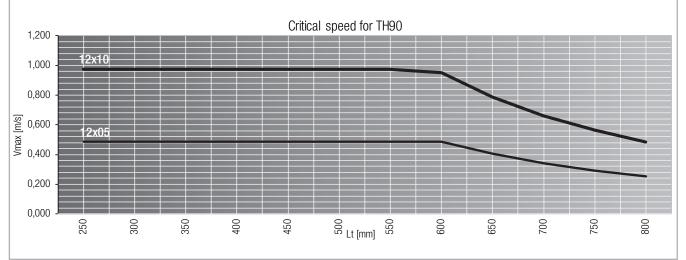
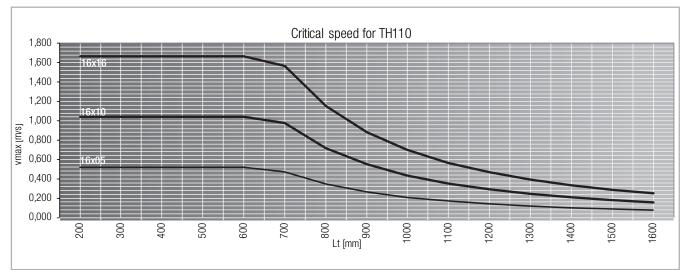
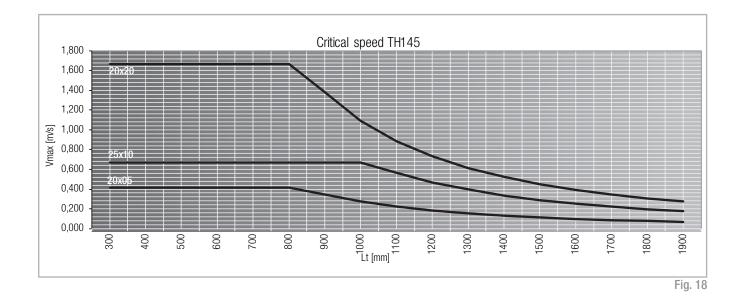
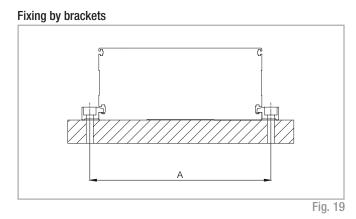
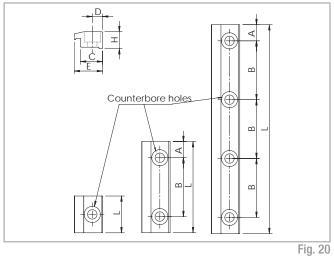



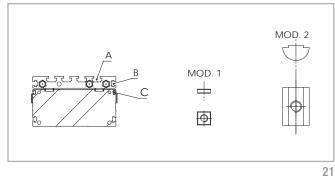
Fig. 15


Fig. 17

Accessories

Fixing brackets


Units (mm)

Туре	A Unit mm
TH 70	82
TH 90	102
TH 110	126
TH 145	161
	Tab. 53

Dimensions (mm)

Туре	N° holes	Counterbore for screw	А	В	С	D	E	H	L	Code Rollon
TH 70	1	M4	-	-	12.5	6.5	15	9	22	1005198
	2	M4	11	40	10.5	4.5	14.5	9.1	62	1003385
TH 90	4	M4	8.5	30	10.5	4.5	14.5	9.1	107	1003509
11 90	4	M4	8.5	20	10.5	4.5	14.5	9.1	77	1003510
	1	M4	-	-	10.5	4.5	14.5	9.1	25	1003612
	4	M5	8.5	30	15	7	19.3	11.5	107	1002805
T IL 440	4	M6	11	40	15	7	19.3	11.5	142	1002864
TH 110 TH 145	1	M6	-	-	15	7	19	11.5	25	1002970
11140	2	M6	11	40	15	7	19	11.5	62	1002971
	4	M5	20	20	15	7	19	11.5	100	1003311
										Tab. 54

T nuts

Units (mm)

Туре	А	В	С
TH 70	Mod. 1 M4 - 963.0407.81	Mod. 1 M4 - 963.0407.81	-
TH 90	Mod. 2 M5 - 6000436	-	Mod. 1 M2.5 - 6001361
TH 110	Mod. 2 M5 - 6000436	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361
TH 145	Mod. 2 M6 - 6000437	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361
			Tab. 55

Proximity

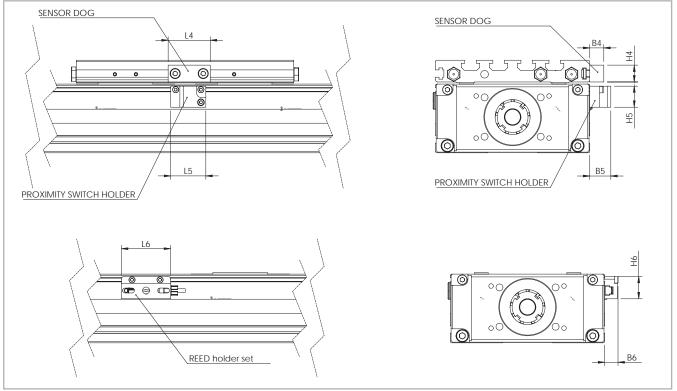
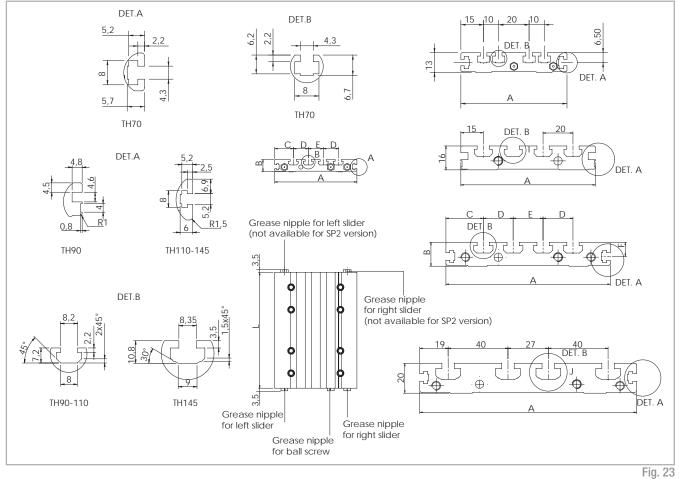



Fig. 22

P S

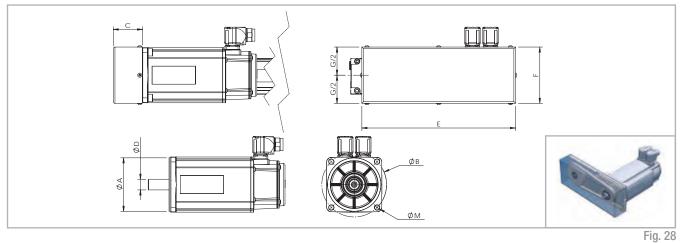
Units (mm)													
	B4	B5	B6	L4	L5	L6	H4	H5	H6	Sensor	Proximity holder set	Sensor dog	REED holder set
TH 70	8	10	8	30	25	35	10	18	18	Ø 6.5	G001975	G001976	G001974
TH 90	10	15	9.5	12	25	35	6	15	16	Ø 8	G001193	G001203	G001204
TH 110	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
TH 145	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
													Tab. 56

External carriage

External carriage for SP2	Туре	А	В	С	D	E	F	L	Code
	TH 70	70	13	15	10	20	6,5	60	G001957
El.	TH 90	90	16	15	20	20	6.8	60	G001195
2	TH 110	110	16	25	20	20	9.5	60	G001059
1.34	TH 145	145	20	19	40	27	9.5	80	G001062
									Tab. 57

External carriage for SP4 С Туре В D F L Code TH 70 70 13 15 10 20 6,5 95 G001958 TH 90 90 16 15 20 20 6.8 125 G001194 TH 110 110 16 25 20 20 9.5 155 G001060 G001061 TH 145 145 20 19 40 27 9.5 190

Assembly kits


For the direct assembly of TH linear units on multiple axis system Rollon offers dedicated assembly kits. The table below shows the allowed combinations as well as the assembly kit codes.

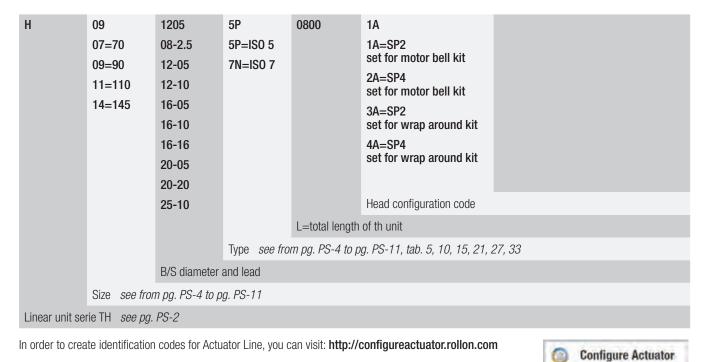
	Kit	Code
	TH 90 - TH 90 XY ₂	G001199
	TH 90 - TH 110 XY ₂	G001199
4	TH 90 - TH 110 XZ	G001205
	TH 110 - TH 110 XY ₂	G001080
4	TH 110 - TH 110 XZ	G001083
	TH 110 - TH 145 XY ₂	G001079
4	TH 110 - TH 145 XZ	G001084
	TH 145 - TH 145 XY ₂	G001081
4	TH 145 - TH 145 XZ	G001085
	TH 90 - TH 90 XY1	G001483
	TH 90 - TH 90 XY3	G001483 + G001194
	TH 110 - TH 110 XY1	G001173
0	TH 110 - TH 110 XY ₂	G001173 + G001060
	TH 145 - TH 145 XY1	G001362
Con and and and and and and and and and an	TH 145 - TH 145 XY2	G001362 + G001061

Wrap around kit

Unit	Ratio	А	В	С	D	E	F	М	Code
TH 90	1:1	Ø 40	Ø 63	30	Ø 9	168	63	M4	G001592
TH 110	1:1	Ø 40	Ø 63	40.5	Ø 9	233	88	M4	G001011
TH 110	1:1	Ø 50	Ø 70	40.5	Ø 14	233	88	M4	G001055
TH 110	1:1	Ø 60	Ø 75	40.5	Ø 14	233	88	M6	G001013
TH 145	1:1	Ø 80	Ø 100	52	Ø 14	273	100	M6	G000984
TH 145	1:1	Ø 95	Ø 115	52	Ø 19	273	100	M8	G000988
For further information please contact Bollon Technical Dept Tab. 61									

For further information please contact Rollon Technical Dept.

Mounting of the motor


Rollon TH Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

The types of bells available for the related units are shown in the table motor mounts:

Ø D2 4 x D4	Unit	D1	D2	D3	D4	L	L3	Code
	TH70	Ø 30	Ø 45	38	M3	52	4	G002000
a ai	TH70	Ø 40	Ø 63	54	M4	49	3.5	G002001
	TH70	Ø 50	Ø 70	60	M4	59	4	G002002
	TH90	Ø 40	Ø 63	56	M5	50	3	G001192
	TH110	Ø 60	Ø 75	65	M6	68	4	G001051
ØD1H7	TH110	Ø 73,1	Ø 98,4	86	M5	76.7	2	G001074
□ D3	TH110	Ø 60	Ø 75	65	M5	68	4	G001119
	TH110	Ø 50	Ø 70	65	Ø 5.4	75	11	G001200
	TH145	Ø 50	Ø 70	80x60	M4	92	21	G000979
	TH145	Ø 70	Ø 85	80x85	M6	92	4	G001066
	TH145	Ø 70	Ø 90	80x85	M5	92	5	G001067
	TH145	Ø 80	Ø 100	90	M6	92	4	G001068
	TH145	Ø 50	Ø 65	80x85	M5	92	21	G001069
	TH145	Ø 60	Ø 75	80x85	M6	92	4	G001070
	TH145	Ø 50	Ø 70	80x85	M5	92	21	G001071
Fig. 29	TH145	Ø 73	Ø 98,4	85	M5	92	4	G001072
	TH145	Ø 55	68X40	85x60	Ø6,4	82	11	G001073
PC 00								Tab. 62

Ordering key /

Identification code for the TH linear units

Left / right orientation

TT series description

ΤT

The TT is a linear actuator series mainly used for high accuracy positioning within a 10 μ m range and precision repeatability within 5 μ m. Manufactured using a very rigid extruded anodized aluminum base structure, this actuator series is designed for high loads and precise movements that are typically required in machine tools and other exacting machine design applications.

All mounting surfaces and reference datums have been produced to significantly reduce the deviations of pitch, yaw and roll along the entire stroke. The heavy duty carriage is driven by a C5 or C7 preloaded ball screw drive and the payload is supported by a system of four runner blocks mounted on two parallel linear guides. High speeds can be accomplished by specifying available super lead ball screw drivers.

The TT series contains all the necessary features and hardware to make multi-axis configurations and assembly easy. All TT units are 100% inspected and supplied with certificates of accuracy.

The components

Aluminum base unit and carriage

The base and carriages of the Rollon TT series linear units were designed and manufactured in co-operation with industry experts to obtain the high-level of accuracy and maximize mechanical properties. Anodized aluminum alloy 6060 was used with dimensional tolerances complying with UNI 3879 standards. To guarantee highly precise movement, the bodies are precision machined on all outer surfaces and in the areas where the mechanical components are fitted, such as ball bearing guides and ball screw supports.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TT series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Drive system

Rollon TT-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 5, however ISO 7 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

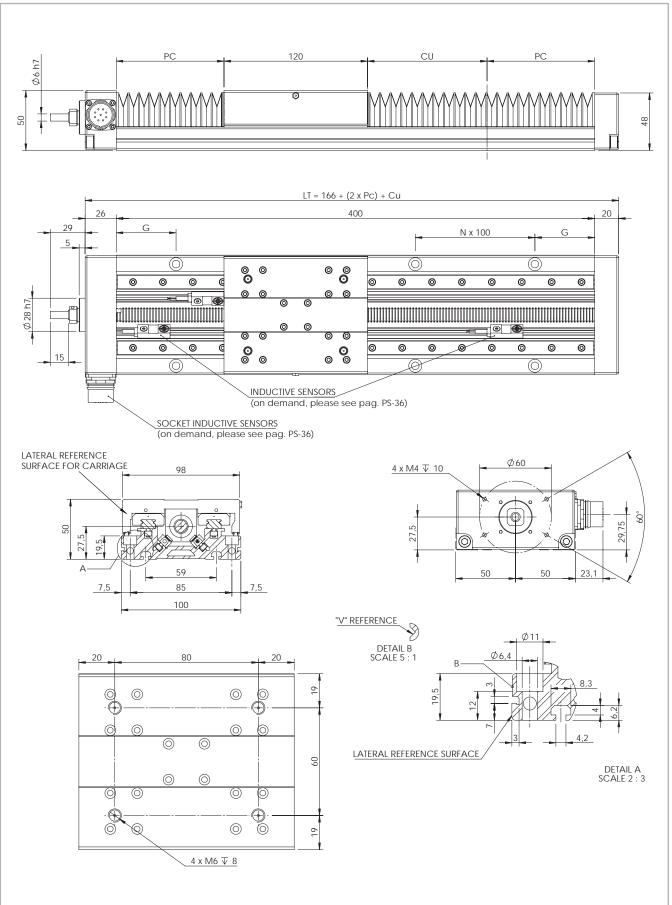
Protection

Rollon TT-series linear units are equipped with bellows in order to protect the mechanical and electrical components inside the linear unit against contaminants. In addition to the bellows system, the ball bearing guides and ball screws have their own protection including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 63

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	 mm ²	 //			Ω . m . 10 ⁻⁹	°C
UIII°	111115	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655


Tab. 64

Mechanical characteristics

Rm	Rp (02)	A	НВ
N 	N mm ²	%	—
205	165	10	60-80

TT 100

TT 100 Dimensions

Technical data

Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]
46	246	50	2.5
114	346	50	3
182	446	50	4
252	546	50	5
320	646	50	6
390	746	50	7
458	846	50	7
526	946	50	8
596	1046	50	9
664	1146	50	10
734	1246	50	11
802	1346	50	11
940	1546	50	13
Note: for the ballscrew 1	ke is 664 mm.	Tab. 66	

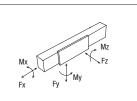
Technical data

	Туре
	TT 100
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	0.93
Rail size [mm]	12 mini
	Tab 68

Tab. 68

P S

Moments of inertia of the aluminum body

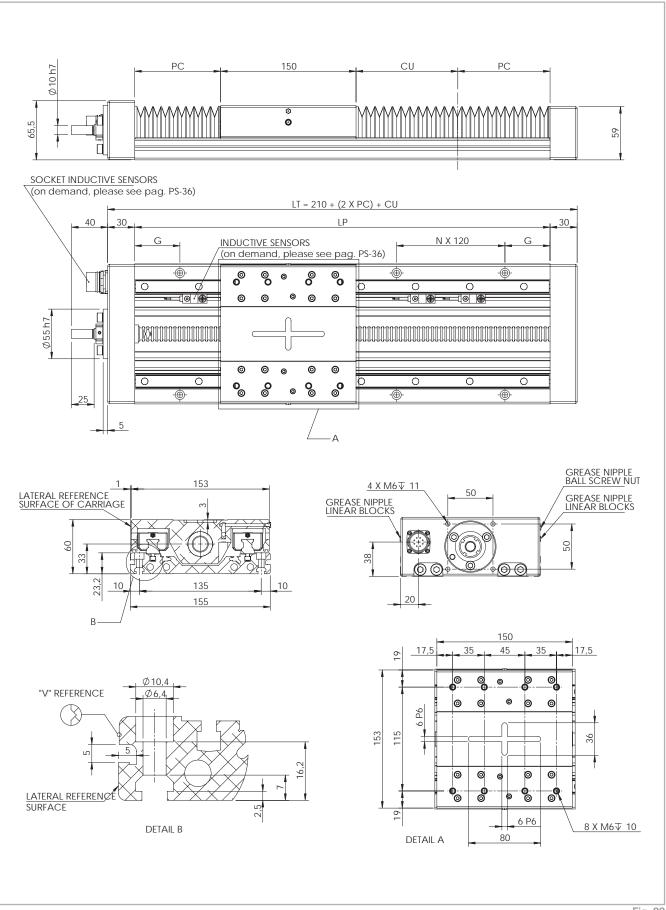

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TT 100	0.006	0.144	0.150
			Tab. 69

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 100 / 12-05	0.023	0.05	0.01	0.02
TT 100 / 12-10	0.023	0.05	0.01	0.02
				Tab. 67

Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
TT 100	12-05	9000	4300		
			Tab. 70		



Load capacity

Туре	F [N	: V 4]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 100	9980	6280	9980	274	349	349
See verification under static loa	ad and lifetime on	page SL-2 and S	L-3			Tab. 71

> TT 155

TT 155 Dimensions

Technical data

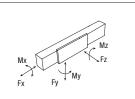
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]
92	340	20	7.5
140	400	50	8.5
188	460	20	9
236	520	50	10
282	580	20	11
330	640	50	12
378	700	20	13
424	760	50	13
520	880	50	15
614	1000	50	17
710	1120	50	18
806	1240	50	20
900	1360	50	21
994	1480	50	23
1090	1600	50	25
1184	1720	50	26
1280	1840	50	28
1376	1960	50	30
1470	2080	50	31
Note: for the ballscrew Ø1	Tab. 72		

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 155 / 16-05	0.023	0.05	0.005	0.045
TT 155 / 16-10	0.023	0.05	0.005	0.045
TT 155 / 20-05	0.023	0.05	0.005	0.045
TT 155 / 20-20	0.023	0.05	0.005	0.045
				Tab. 73

Technical data

	Туре
	TT 155
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	2.93
Rail size [mm]	15
	Tab. 74


Moments of inertia of the aluminum body

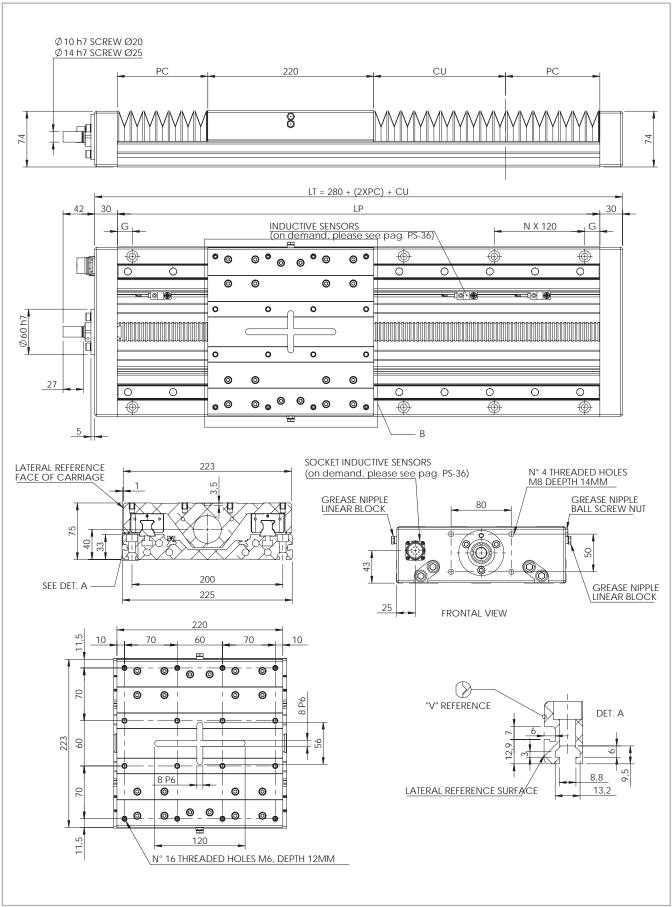
Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 155	0.009	0.531	0.54
			Tab. 75

Load capacity F_x

F. [N]				
Screw	Stat.	Dyn.		
16-05	17400	11800		
16-10	18300	10500		
20-05	25900	14600		
20-20	23900	13400		
	16-05 16-10 20-05	Screw Stat. 16-05 17400 16-10 18300 20-05 25900		

Tab. 76

Load capacity


Туре	F [1	: v i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 155	96800	45082	96800	5082	2972	2972
Construction at an original statistical second	A					T 1

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 77

> TT 225

TT 225 Dimensions

Technical data

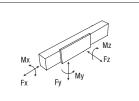
	[mm]	[mm]	Weight [Kg]
92	400	50	15
144	460	20	16
196	520	50	17
248	580	20	19
300	640	50	20
352	700	20	21
404	760	50	23
508	880	50	25
612	1000	50	28
714	1120	50	31
818	1240	50	33
922	1360	50	36
1026	1480	50	39
1234	1720	50	44
1440	1960	50	49
1648*	2200	50	54
1856*	2440	50	60
2062*	2680	50	65
2270*	2920	50	70

Technical data

	Туре
	TT 225
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	5.4
Rail size [mm]	20
	Tab. 80

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 225	0.038	2.289	2.327
			Tab. 81

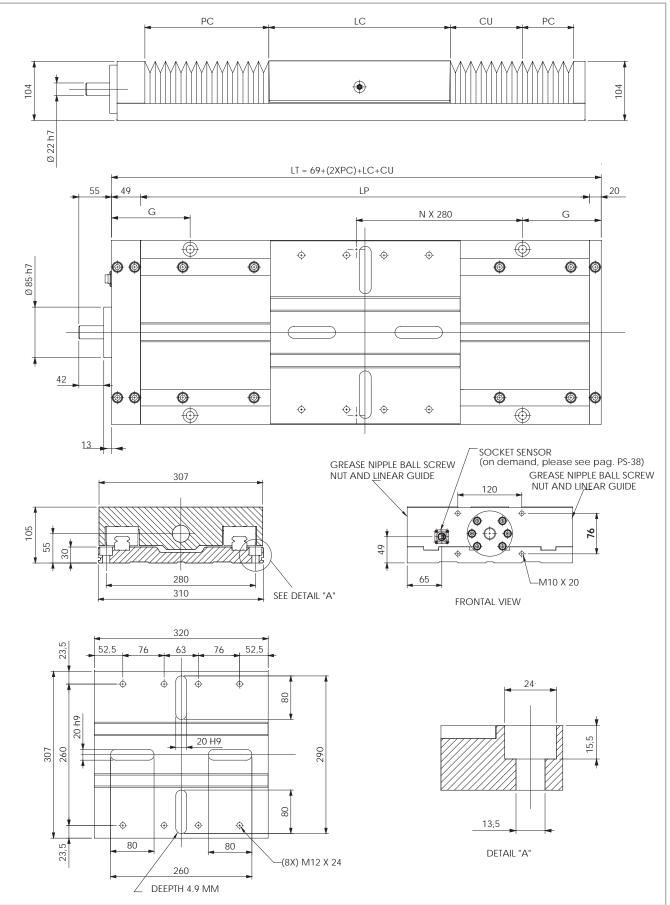

* For the indicated lengths Rollon does not guarantee the tolerance values shown on pag. PS-33

Ball screw precision

Туре		sitioning 1m/300mm]	Max. repeatability precision [mm]	
	ISO 5 ISO 7		ISO 5	ISO 7
TT 225 / 20-05	0.023	0.05	0.005	0.045
TT 225 / 20-20	0.023	0.05	0.005	0.045
TT 225 / 25-05	0.023	0.05	0.005	0.045
TT 225 / 25-10	0.023	0.05	0.005	0.045
TT 225 / 25-25	0.023 0.05		0.005	0.045
				Tab. 79

Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
	20-05	25900	14600			
	20-20	23900	13400			
TT 225	25-05	41200	19800			
	25-10	32600	16000			
	25-25	30500	15100			
			Tab. 82			


Load capacity

Туре	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 225	153600	70798	153600	12288	9984	9984
See verification under static load and lifetime on page SL-2 and SL-3						Tab. 83

P S

TT 310

TT 310 Dimensions

Technical data

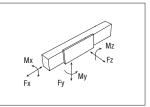
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]		
100	560	140	47		
150	625	172.5	50		
200	690	65	53		
250	760	100	56		
300	825	132.5	59		
350	895	167.5	62		
400	965	62.5	65		
450	1030	95	68		
500	00 1100 130		71		
600*	1235 197.5		77		
800*	1505	192.5	89		
1000*	1750	175	100		
1200*	2000	160	111		
1600*	2495	127.5	133		
2000*	2990	235	156		
2400*	3485	202.5	178		
3000*	4225	292.5	211		
For the indicated lengths Rollon does not guarantee the tolerance Tab.					

Technical data

	Туре
	TT 310
Max. speed [m/s]	See page PS-36
Carriage weight [kg]	16.6
Rail size [mm]	30
	Tab. 86

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
TT 310	0.1251	8.56	8.008
			Tab. 87


values shown on pag. PS-33

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5 ISO 7		ISO 5	ISO 7
TT 310 / 32-05	0.023	0.05	0.008	0.045
TT 310 / 32-10	0.023	0.05	0.008	0.045
TT 310 / 32-32	0.023	0.05	0.008	0.045
				Tab. 85

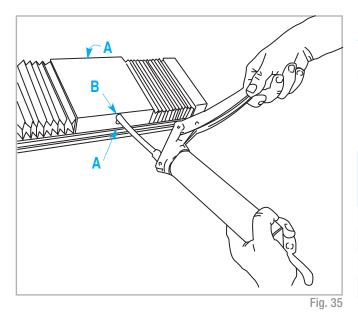
Load capacity F_x

Туре	Fx ^{*1} [N]					
	Screw	Stat.	Dyn.			
	32-05	11538	8947			
TT 310	32-10	11538	8947			
	32-32	8947				
*1 Referred to the Max axial load on the bearings not the Ball Screw Tab. 88						

Load capacity

Туре	F [1	: V V]	F [1	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TT 310	230500	128492	274500	146031	30195	26625	22365

See verification under static load and lifetime on page SL-2 and SL-3


Tab. 89

Lubrication

TT linear units with ball bearing guides

TT Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

Ball screws

The ball screw nuts of Rollon TT series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TT series actuators. The linear units are lubricated with class NLGI2 lithium soap grease. service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

- Insert the tip in the specific grease nipples:
- A Linear block B Ball screw nut
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

Туре	Quantity [cm ³] for grease nipple
TT 100	1.4
TT 155	1.4
TT 225	2.8
TT 310	5.6
	Tab. 90

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm ³] for grease nipple
12-05	0.3
12-10	0.3
16-05	0.41
16-10	0.78
20-05	0.79
20-20	1
25-05	1.2
25-10	1.2
25-25	1.58
32-05	1.8
32-10	2.0
32-32	3.0
	Tab 01

Accuracy certificate

The Rollon TT series linear units are high accurate products. The base and the carriages are made of aluminum extrusions that are manufactured by means of high precision machining of all external faces and all mounting surfaces of mechanical components (linear guides, ball screw supports, etc.). This results in excellent repeatability, positioning accuracy and running parallelism. Rollon TT series linear units are 100% tested and will be delivered with a certificate of accuracy.

CERTIFICATE OF INSPECTION

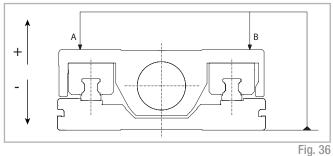
The certificate shows all parallel tolerances during the movement of the carriage on the base unit. The figures can be used for eventual electronic compensations during the movement of the linear units.

The maximum deviations are shown as follows:

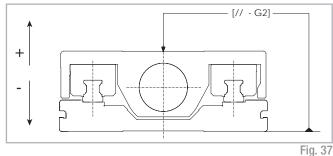
- G1 rolling 50 µm
- G2 pitching 50 μm
- G3 yawing $~50\ \mu m$
- G4 parallelism carriage/base unit $\,50\mu m$

Туре	Screw	Fixing torques screws 12.9		
		On aluminum	On steel	
TT 100	M6	10 Nm	14 Nm	
TT 155	M6	10 Nm	14 Nm	
TT 225	M8	15 Nm	30 Nm	
TT 310	M12	60 Nm	120 Nm	
			Tab. 92	

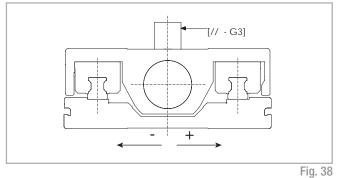
Note :Values for base unit length (Lt) <_ 2000 mm

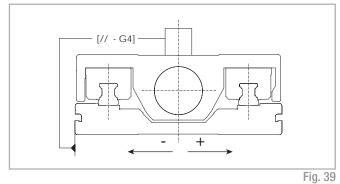

These values are measured while linear unit is fixed with brackets on a reference table with parallelism error $< 2 \ \mu m$.

The fixing torques of the bolt must follow the indicated values in the table.

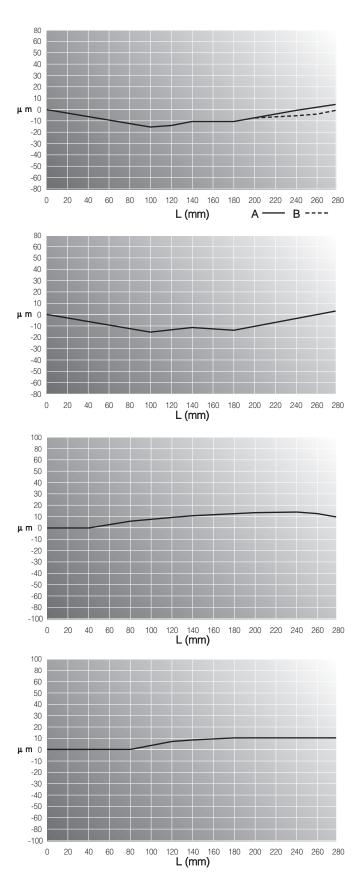

TYPE AND MODEL			
Type	T155		
Stroke	710 m		
Ball screw diam.	16 m	m	
Ball screw lead	5 m	m	
Serial rif.	Nº - 0407		
SPECIFICATION			
Measurement pitch	20 m	m	
Max error accepted on e			
GI		m	
G2	50 µ	m	
G3	50 µ	m	
G4	50 H	m	
TEST RESULTS			
Max error on G1		m	
Max error on G2		m	
Max enter on GS		m	
Max enter on G4	14 P	m	
Date	19/10/07		
Lemperature (C*) Chechec by	(°C)20		
Criedned by			
Final test result:	POSITIVO		
Signature			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ROLLON S.p.A.	Tel.: (+39) 039 62 59 1	
		Fax: (+39) 039 62 59 20	ns
ROLLON	Via Trieste 26 I	E-Mail: infocom@rollon.i	

ATTENTION: The mentioned accuracy grades are valid only if the linear unit is fixed on a continuous mounting surface with the same length. The errors of the mounting surface may negatively influence the accuracy of the Rollon linear unit. Rollon does not guarantee the above mentioned parallelism tolerances for applications when the linear unit is mounted without support or as a cantilever.


Precision G1


Precision G2

Precision G3



Precision G4

The graphs below show an example of measurement of accuracy along the stroke the deviation is given.

Each actuator delivered is provided with the graphs.

Critical speed

x10

400

460

520

580

640

700

760

860

1000

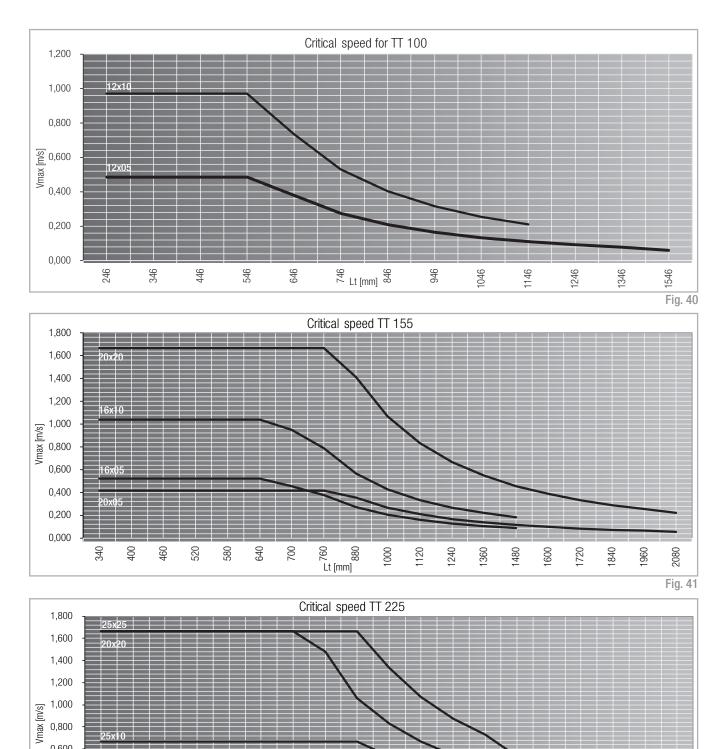
Lt [mm]

1120

1240

1360

1480

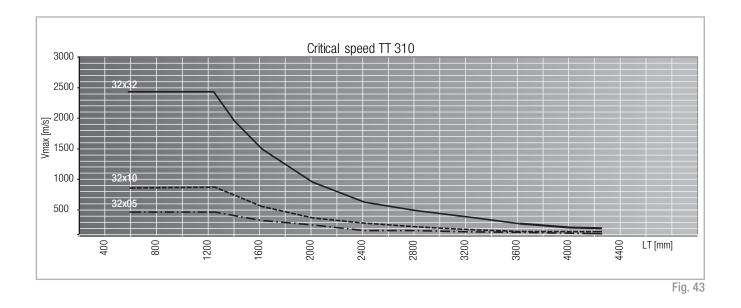

1720

1960

2200

0,600 0,400 0,200 0,000

The maximum linear speed of Rollon TT series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

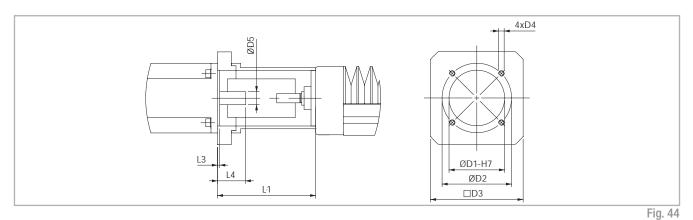


P S

2920

2440

2680

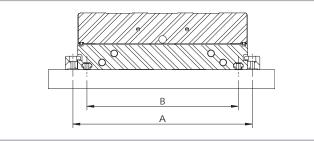


Accessories

Mounting of the motor

Rollon TT Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

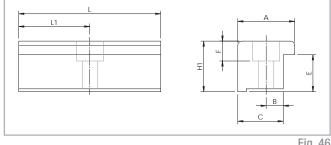
The types of bells available for the related units are shown in the table motor mounts:


P S

Units	[mm]
Onito	լուույ

Type of	Ø D1	Ø D2	Ø D3	D4	Ø	D5	L1	L3		L4	Kit
unit					min.	max.			min.	max.	code
	60	75	65	M6	5	16	68	4	25	27	G000321
TT 100	73.1	98.4	86	M5	5	16	76.7	2	33.7	35.7	G000322
	40	64.5	65	M5	5	16	68	4	25	27	G000336
	50	70	65	M5	5	16	77.5	3.5	34.5	36.5	G000433
	70	85	80	M6	10	20	90	4	20	34	G000311
	70	90	80	M5	10	20	90	5	20	34	G000312
	80	100	90	M6	10	20	90	4	20	34	G000313
	50	65	80	M5	10	20	90	5	20	34	G000314
TT 155	60	75	80	M6	10	20	90	4	20	34	G000315
	50	70	80	M5	10	20	90	5	20	34	G000316
	73	98.4	85	M5	10	20	90	4	20	34	G000317
	55.5	125.7	105	M6	10	20	100	5	30	44	G000318
	60	99	85	M6	10	20	98	4	28	42	G000319
	80	100	100	M6	10	28	106	5	30	48	G000302
	95	115	100	M8	10	28	106	5	30	48	G000303
	110	130	115	M8	10	28	106	5	30	48	G000304
	60	75	100	M6	10	28	106	5	30	48	G000305
TT 225	70	85	100	M6	10	28	106	5	30	48	G000306
11 225	70	90	100	M5	10	28	106	5	30	48	G000307
	50	70	96x75	M4	10	28	101	4	30	48	G000308
	55.5	125.7	105	M6	10	28	106	5	30	48	G000309
	73.1	98.4	96	M5	10	28	101	3	30	48	G000310
	130	165	150	M10	10	28	106	5	30	48	G000363
TT 310						Option					Tab. 02

Tab. 93


Fixing by brackets

Туре	A Unit mm	B Unit mm
TT 100	112	59
TT 155	167	135
TT 225	237	200
		Tab. 94

Fig. 45

Fixing brackets

Туре	A	В	С	E	F	D1	D2	H1	L	L1	Code Rollon
TT 100	18.5	6	16	7	4.5	9.5	5.3	9.8	50	25	1002353
TT 155	20	6	16	11	7	9.5	5.3	15.8	50	25	1002167
TT 225	20	6	16	13	7	9.5	5.3	17.8	50	25	1002354
											Tab. 98

Fig. 46

T nuts

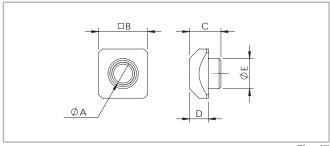


Fig. 47

Туре	ØA	□B	C	D	ØE	Code Rollon
TT 100	M4	8	-	3.4	-	1001046
TT 155	M5	10	6.5	4.2	6.7	1000627
TT 225	M6	13	8.3	5	8	1000043
						Tab. 99

End cap	Туре	Code
6	TT 100	G000245
0	TT 155	G000244
	TT 225	G000244
~	TT 310	/
		Tab. 100

9 Pin Fixed Connector	Туре	Code
	TT 100	G000191
Cin .	TT 155	G000191
	TT 225	G000191
	TT 310	/
		Tab 101

Tab. 101

Proximity	Туре	PNP-NO	PNP-NC
	TT 100	G001981	G001980
50	TT 155	G001981	G001980
	TT 225	G001981	G001980
	TT 310	/	/
			Tab. 95

Cable Strain Relief	Туре	Code
them -	TT 100	G000249
γ	TT 155	G000248
ON L	TT 225	G000248
-	TT 310	/
		Tab. 96

9 Pin Back-Shell Connector	Туре	To crimp	To solder
	TT 100	6000516	6000589
100	TT 155	6000516	6000589
0	TT 225	6000516	6000589
	TT 310	/	/
			Tah 07

Tab. 97

P S

Assembly kits

The Rollon TT series linear units must be mounted to the application's surface in an appropriate way in order to achieve maximum accuracy of the system. The evenness of the mounting surface determines the final result of the movement of the system. The aluminum base and the carriage of the Rollon TT linear units have a lateral reference surface, indicated by a groove (except on the TT 310). On the carriage's surface are two reference slots at 90° angles, useful for accurate mounting of

X-Y-systems. The Rollon TT series linear units can be fixed to the mounting surface from above the base unit by screws (fig. 48), through T-slots (fig. 49), or through appropriate mounting brackets (fig. 50), depending on the application. For high accuracy applications, Rollon recommends bolting the unit down from above. For mounting dimensions please refer to the dimensional drawings of the units.

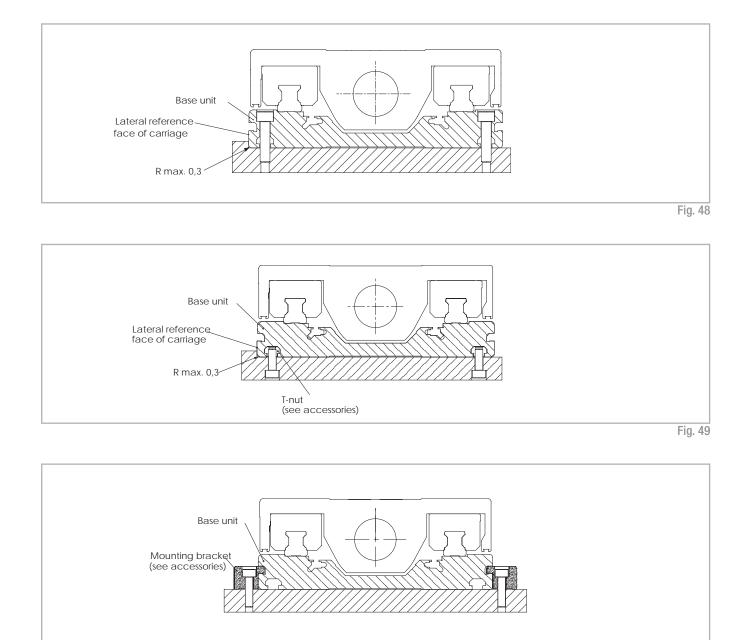
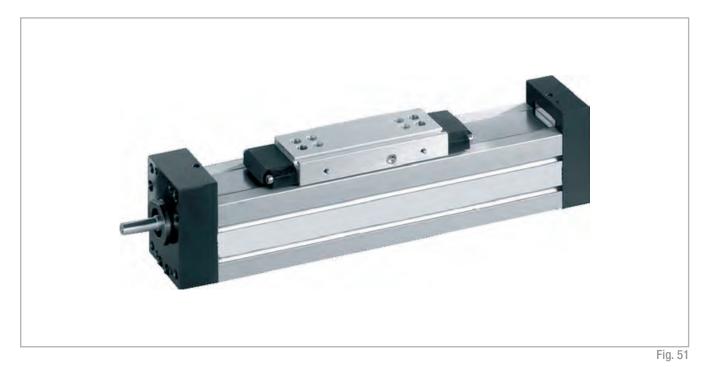


Fig. 50

Ordering key // 🗸

Identification code for the TT linear units

Т	10	1205	5P	0880	1A			
	10=100	12-05	5P=IS0 5					
	15=155	12-10	7N=IS0 7					
	22=225	16-05						
	31=310	16-10						
		20-05						
		20-20						
		25-05						
		25-10						
		25-25						
		32-05			Head configuration coo	de		
		32-10		L=total length	of th unit			
		32-32	Type see from	m pg. PS-24 to	pg. PS-30			
		B/S diameter	and lead se	e from pg. PS-2	24 to pg. PS-30			
	Size see from	n pg. PS-24 to	pg. PS-30					
Linear unit ser	Linear unit series TT see pg. PS-22							
In order to crea	In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com							tuator


Left / right orientation

TV series description

τv

TV series linear units have a rigid anodized aluminum extrusion with a square cross-section. Transmission of motion is achieved by means of a precision C5 or C7 rolled ball screw drive.

The payload is supported by a dual block, single linear guide system which ensures high precision and high rigidity.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TV series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the accuracy and high mechanical properties necessary to accommodate the bending and torsional stresses. Aluminum alloy 6060 was used and was extruded with dimensional tolerances complying with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Drive system

Rollon TV series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

The carriage of the Rollon TV series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator. The carriage is installed on 2 linear runner blocks on a single linear guide rail.

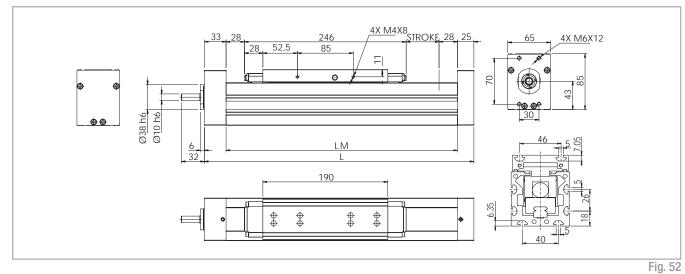
Protection

Rollon TV series linear units are equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 102

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655


Tab. 103

Mechanical characteristics

Rm	Rp (02)	А	НВ
N mm ²	N mm ²	%	_
205	165	10	60-80

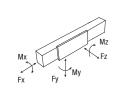
TV 60

TV 60 Dimensions

Technical data

	Туре
	TV 60
Max. useful stroke length [mm]	2000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 58
Total length LT [mm]	Stroke + 360
Carriage weight [kg]	1.41
Zero travel weight [kg]	4.6
Weight for 100 mm useful stroke [kg]	0.65
Rail size [mm]	15
	Tab. 105

Ball screw precision

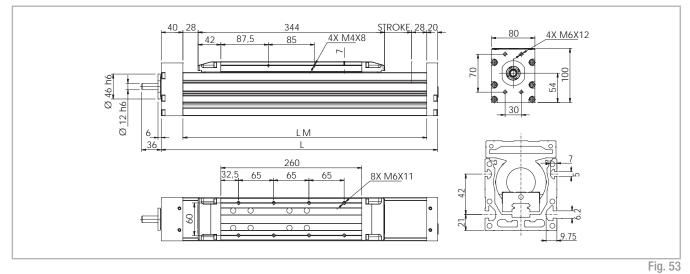

Туре		sitioning nm/300mm]	Max. rep precisio	eatability on [mm]
	ISO 5	ISO 7	ISO 5	IS0 7
TV 60 / 16-05	0.023	0.05	0.01	0.05
TV 60 / 16-10	0.023	0.05	0.01	0.05
TV 60 / 16-16	0.023	0.05	0.01	0.05
				Tab. 106

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TV 60	0.064	0.081	0.145
			Tab. 107

Load capacity F_x

Туре	Fx ^{*1} [N]				
	Screw	Stat.	Dyn.		
	16-05	4551	4327		
TV 60	16-10	4551	4327		
	16-16	4327			
*1 Referred to the Max axi	al load on the bearings r	ot the Ball Screw	Tab. 108		



Load capacity

_out oupdoily							
Туре	۲ ۲)	: y V]	F [1	: z Ŋ	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 60	35000	18000	35000	18000	286	1353	1353
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 1							

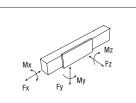
TV 80

TV 80 Dimensions

Technical data

	Туре
	TV 80
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 60
Total length LT [mm]	Stroke + 460
Carriage weight [kg]	2.5
Zero travel weight [kg]	7.8
Weight for 100 mm useful stroke [kg]	0.95
Rail size [mm]	20
	Tab. 110

Ball screw precision

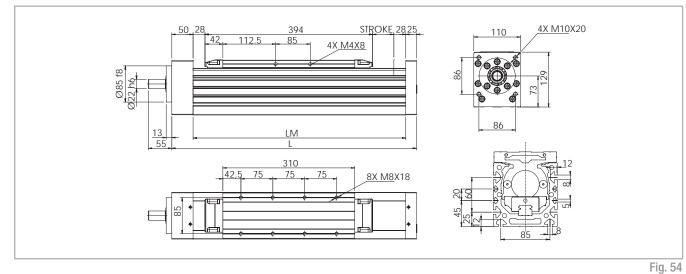

Туре		sitioning nm/300mm] ISO 7		eatability on [mm] ISO 7
TV 80 / 20-05	0.023	0.05	0.01	0.05
TV 80 / 20-20	0.023	0.05	0.01	0.05
				Tab. 111

Moments of inertia of the aluminum body

Туре	l, [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TV 80	0.106	0.152	0.258
			Tab. 112

Load capacity F_x

Туре	F_x = [N]					
	Screw	Stat.	Dyn.			
TV 80	20-05	5705	4912			
10 00	20-20	4912				
*1 Referred to the Max axial load on the bearings not the Ball Screw Tab. 113						


Load capacity

Туре	F [1	: V N]	F [N	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 80	59900	34200	59900	34200	646	1573	1573
Soo vorification under static lo	ad and lifatima an	page SL 2 and S	1.2				Tab 114

See verification under static load and lifetime on page SL-2 and SL-3

TV 110

TV 110 Dimensions

Technical data

	Туре
	TV 110
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 75
Total length LT [mm]	Stroke + 525
Carriage weight [kg]	5.33
Zero travel weight [kg]	16.8
Weight for 100 mm useful stroke [kg]	1.9
Rail size [mm]	25
	Tab. 115

Ball screw precision

Туре	Max. pos precision [n	sitioning 1m/300mm]	Max. rep precisio	eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TV 110 / 32-05	0.023	0.05	0.01	0.05
TV 110 / 32-10	0.023	0.05	0.01	0.05
TV 110 / 32-32	0.023	0.05	0.01	0.05
				Tab. 116

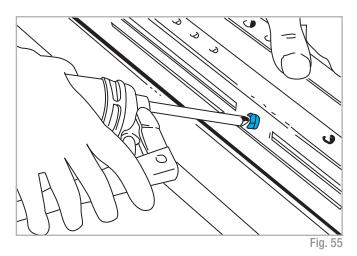
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TV 110	0.432	0.594	1.026
			Tab. 117

Load capacity F_x

Туре	F _x " [N]					
	Screw	Stat.	Dyn.			
	32-05	11538	8947			
TV 110	32-10	11538	8947			
	32-32	11538	8947			
*1 Referred to the Max axial load on the bearings not the Ball Screw Tab. 118						

Mz Fz ΨMy Fy


Load capacity

Туре	F [1	: V V]	F [N	: z 1]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 110	85000	49600	85000	49600	1080	2316	2316
See verification under static loa	ad and lifetime on	page SL-2 and S	iL-3				Tab. 119

Lubrication >

TV 60, TV 80, TV 110 linear units

Rollon TV series linear units are equipped with ball bearing guides lubricated with grease lithium soap based grade 2. Re-lubrication is required every 3-6 months or approximately 2000 Km of linear travel. The application environment and applied loads may infl uence the re-lubrication periods.

- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult enviromental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

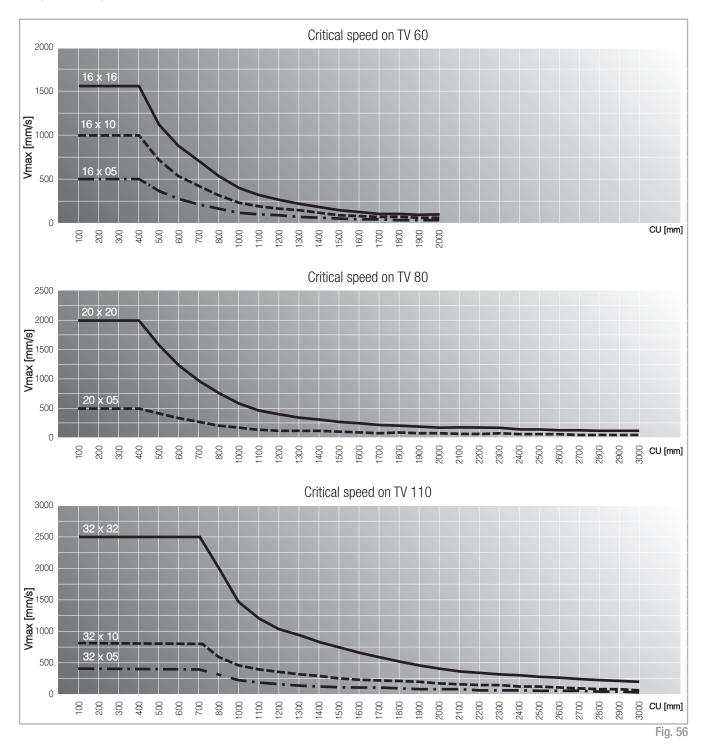
Туре	Quantity [g] of grease for each nipple
TV 60	1.4
TV 80	2.6
TV 110	5.0
	Tab. 120

Ball screws

The ball screw nuts of Rollon TV series linear units must be re-lubricated every 100 km.

Grease Nipples position

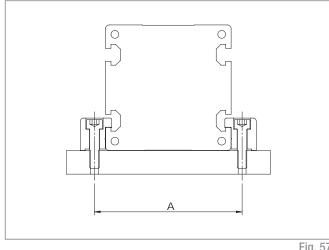
The position of grease nipples for the linear blocks and for the ball screw nuts are indicated in the specific drawings of each product.


Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [g] for grease nipple
16-05	0.6
16-10	0.8
16-16	1.0
20-05	0.9
20-20	1.7
32-05	2.3
32-10	2.8
32-32	3.7
	Tab. 121

P S

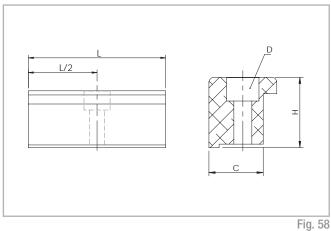
Critical speed


The maximum linear speed of Rollon TV series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

> Accessories

Fixing by brackets

The linear motion systems used for the Rollon TV series linear units enables them to support loads in any direction. They can therefore be installed in any position. To install the units, we recommend the use of the dedicated slots in the extruded bodies as shown below.



Туре	A [mm]
TV 60	77
TV 80	94
TV 110	130
	Tab. 122

Warning: Do not secure the linear units by means of the T-slots in the Drive head or Idle head at either end of the actuator.

Fig. 57

Fixing bracket

16 TV 80 16

Dimensions / Unit [mm]

С

31

Туре

TV 60

TV 110

Tab. 123

Code

Rollon

1002358

1004552

1002360

D

M5

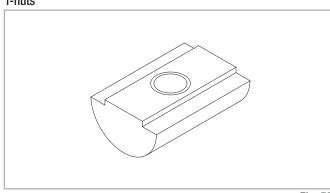
M6

M10

Anodized aluminum block for fixing the linear units through the side slots of the body.

19.5

22.5

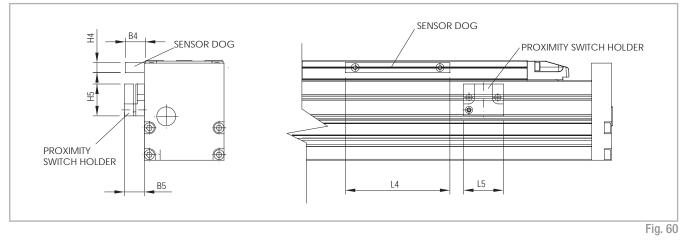

27

35

50

100

T-nuts


Code Rollon

Slot dimension [mm]	М5	М6	M8
5	6001038	-	-
6	-	6001863	-
8	-	6001044	6001045
Ctaal puta ta ba ugad i	Tab. 124		

Steel nuts to be used in the slots of the body.

Fig. 59

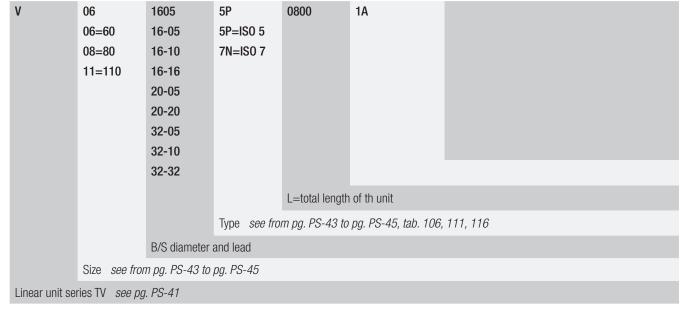
Proximity

Proximity switch holder

Red anodized aluminum block, equipped with T-nuts for fixing into the body slots.

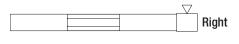
Sensor dog

Zinc-plated steel plate, mounted on the carriage and used for the proximity switch operation.


Туре	B4	B5	L4	L5	H4	H5	Sensor	Proximity holder set	Sensor dog
TV 60	20	20	105	40	10	32	Ø12	G000849	G000581
TV 80	20	20	105	40	10	32	Ø12	G000849	G000581
TV 110	20	20	105	40	10	32	Ø12	G000850	G000581

Unit [mm]

Tab. 125


Identification code for the TV linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Configure Actuator

Left / right orientation

TVS series description

TVS

TVS series linear actuators have a rigid anodized and extruded aluminum alloy profile and transmission of motion is achieved by means of a precision rolled ball screw drive. Recirculating ball guides with cage as linear motion components ensure high precision and high rigidity. TVS linear actuators are available with profiles of different sizes: 170 - 220.

Fig. 61

P S

The components

Extruded bodies

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon TVS series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Drive system

Rollon TVS series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. This type of technology makes it possible to obtain the following features:

- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Chemical composition [%]

Carriage

The carriage of the Rollon TVS series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator.

Protection

Rollon TVS series linear units can be equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 126

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	С°
2.7	69	23	200	880-900	33	600-655
						Tab 107

Tab. 127

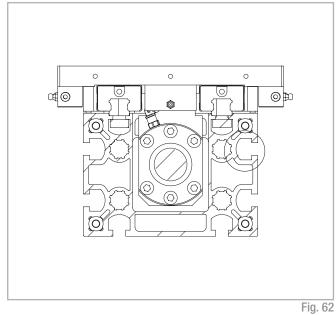
Mechanical characteristics

Rm	Rp (02)	A	НВ
N mm ²	N mm ²	%	_
205	165	10	60-80

P

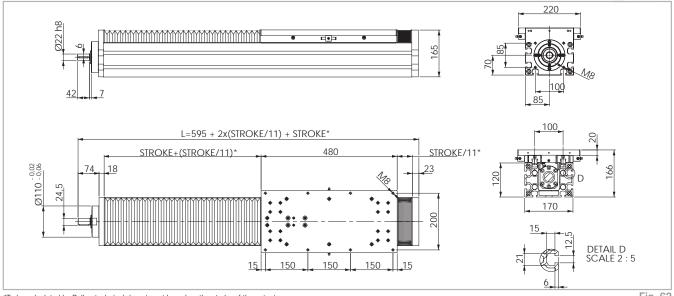
The linear motion system

The linear motion system has been designed to meet load capacity and precision conditions of a wide variety of applications.


TVS with recirculating ball guides

The recirculating ball guides used for TVS have the cage system. The cage included has two purposes: it reduces the friction between the guide and the slider, increasing their service life, and allows lubrication refills to be performed more rarely. The assembly of recirculating ball guides normally also involves the machining of the related seat in the profile. Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 5000km.

Main advantages of this configuration:


- High load capacity
- Long lasting
- High precision
- High rigidity

TVS section

TVS 170

TVS 170 Dimensions

*To be calculated by Rollon technical department based on the stroke of the actuator.

Fig. 63

Technical data

Ball screw precision

Туре

TVS 170

	Туре
	TVS 170
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-57
Carriage weight [kg]	9.9
Zero travel weight [kg]	28.9
Weight for 100 mm useful stroke [kg]	2.7
Rail size [mm]	20
	Tab. 129

Max. positioning

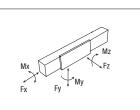
precision [mm/300mm]

ISO 7

0.05

ISO 5

0.023


Moments of inertia of the aluminum body

Load capacity F_x

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TVS 170	1.944	0.799	2.742
			Tab. 131

Туре	F _x [N]				
	Screw	Stat.	Dyn		
	32-05	64200	25900		
TVS 170	32-10	66300	29800		
103 170	32-20	49700	24100		
	32-32	48600	22700		

Tab. 132

Load capacity

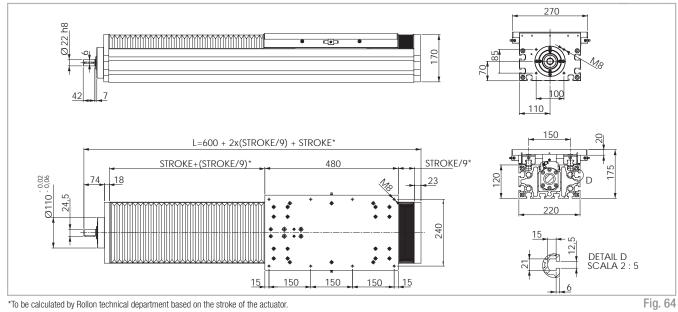
Туре	F _y [N]		F _y F _z M [N] [N] [N	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 170	153600	70798	153600	7680	29184	29184
Cas varification under static la	ad a sel life bins a sec	and CL O and C	1.0			T-1 400

Max. repeatability precision [mm]

ISO 7

0.02 Tab. 130

ISO 5


0.02

See verification under static load and lifetime on page SL-2 and SL-3

P S

TVS 220

TVS 220 Dimensions

Technical data

	Туре
	TVS 220
Max. useful stroke length [mm]	3500
Max. speed [m/s]	See page PS-57
Carriage weight [kg]	13.3
Zero travel weight [kg]	37.4
Weight for 100 mm useful stroke [kg]	3.6
Rail size [mm]	25
	Tab. 134

Ball screw precision						
Туре		Max. positioning precision [mm/300mm]		eatability on [mm]		
	ISO 5	ISO 7	ISO 5	ISO 7		
TVS 220	0.023	0.05	0.02	0.02		
				Tab. 135		

Moments of inertia of the aluminum body

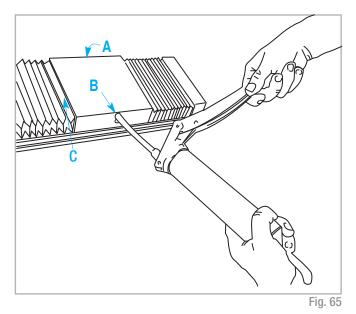
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TVS 220	4.394	1.247	5.641
			Tab. 136

Load capacity F_x Туре [Ń] Stat. Screw Dyn 32-05 64200 25900 32-10 66300 29800 **TVS 220** 32-20 49700 24100 32-32 48600 22700 Tab. 137

F7 ٢M٧ Fy Fx

Load capacity

Туре	F [Ň]		F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]			
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.			
TVS 220	258800	116833	258800	19410	47360	47360			
See verification under static load and lifetime on page SL-2 and SL-3									


Tab. 138

Lubrication

TVS linear units with ball bearing guides

TVS Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer

Ball screws

The ball screw nuts of Rollon TVS-series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TVS series actuators. The linear units are lubricated with class NLGI2 lithium soap grease. service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Insert the tip in the specific grease nipples:

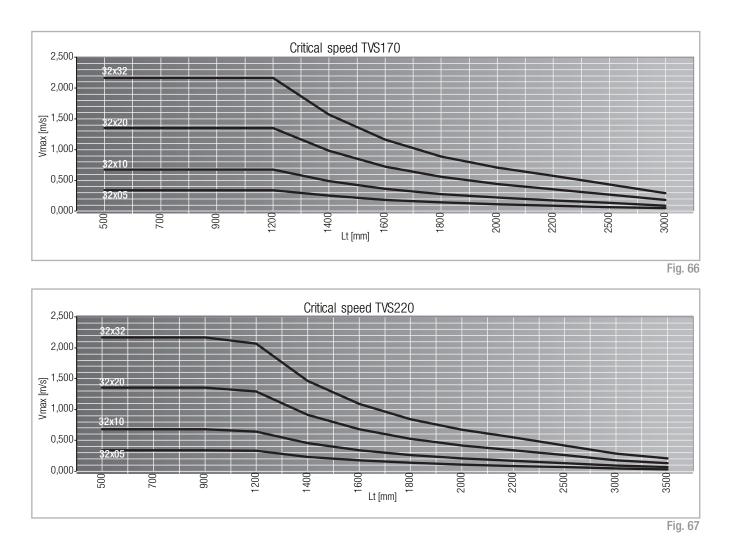
A and B - Linear block - C - Ball screw nut

- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication at each point:

Туре	Quantity [cm ³] for grease nipple
TVS 170	1.4
TVS 220	2.8
	Teb 100

Tab. 139

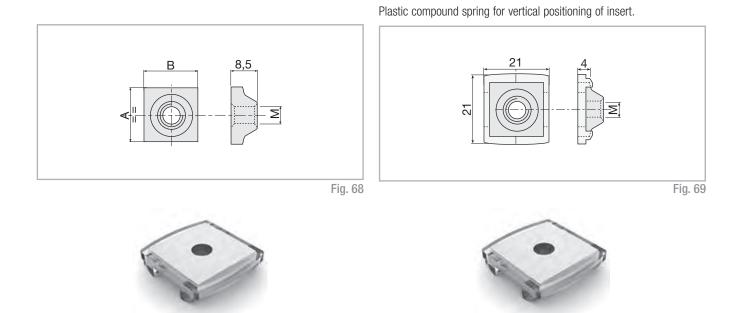

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm³] for grease nipple
32-05	1.8
32-10	2.0
32-20	2.0
32-32	3.0
	Tab 1/0

Tab. 140

Critical speed

The maximum linear speed of Rollon TVS series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

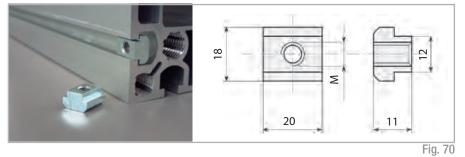


Accessory

Semi-rounded threaded inserts with spring

Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.

Suitable for series: TVS 170 - TVS 220

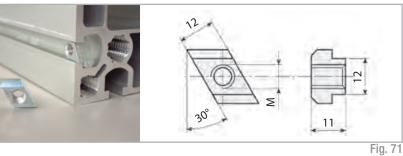


Thread	AxB						
	18x18	20x20					
M4	209.0031	209.0023					
M5	209.0032	209.0019					
M6	209.0033	209.1202					
M8	209.0034	209.0467					
		Tab. 141					

Spring	Code
Suitable for all insert 18x18	101.0732
	Tab. 142

Alignment nuts

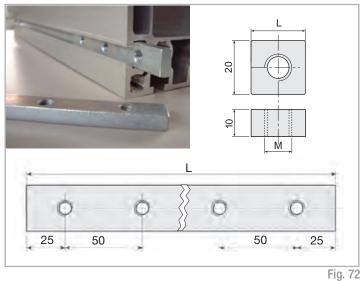
Alignment nut for slot 12.5 mm



Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 143

PS-58


Alignment nut for slot 12.5 mm front insertable

Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 144

Threaded nuts and plates

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

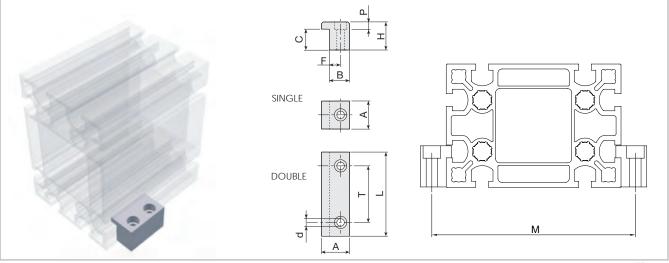
Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

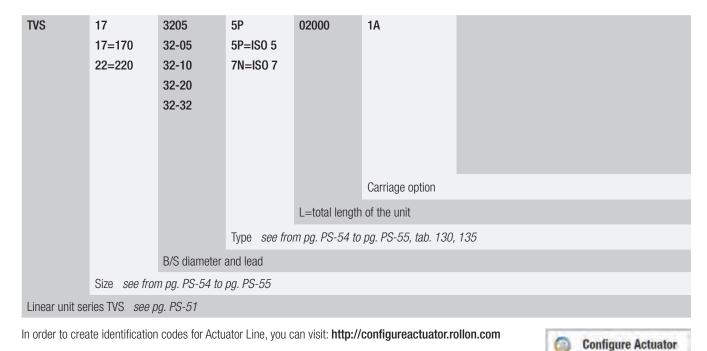
Thread	Threaded holes	L	Code				
M10	1	40	215.0477				
M12	1	40	209.1281				
M10	1	20	209.1277				
M10	2*	80	209.1776				
M10	3*	150	209.1777				
M10	4*	200	209.1778				
M10	5*	250	209.1779				
M10	6*	300	209.1780				
M10	7*	350	209.1781				
* Hole centre-distance: 50 mm. Tab. 145							

* Hole centre-distance: 50 mm.

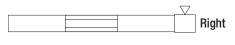
Profile anchor brackets

Material: alluminum alloy (Rs=310 N/mm²).



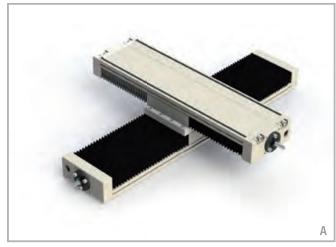

Fig. 73

Profile	A	L	Т	d	Н	Р	С	F	В	М	Single code	Double code
TVS 170	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
TVS 220	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762


P S

Identification code for the TVS linear units

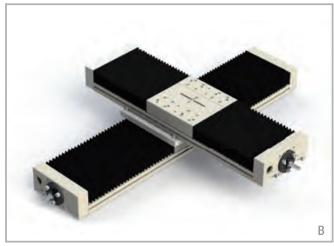
Left / right orientation



P S

Rollon Precision System series linear units have been specifically designed to be modular and therefore to permit fast, trouble-free setup of multi-axis systems. Rollon can provide all the connection elements necessary for combining the various sizes and lengths of Precision System series linear units.

System with 2 horizontal axes


A - Direct fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using screws without intermediate brackets.

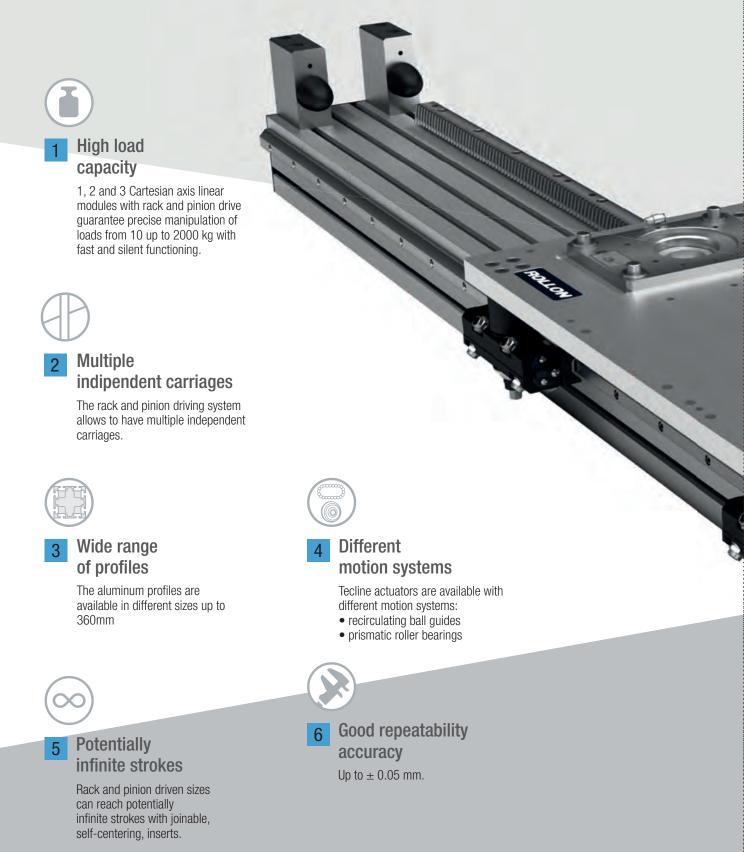
Three-axes system

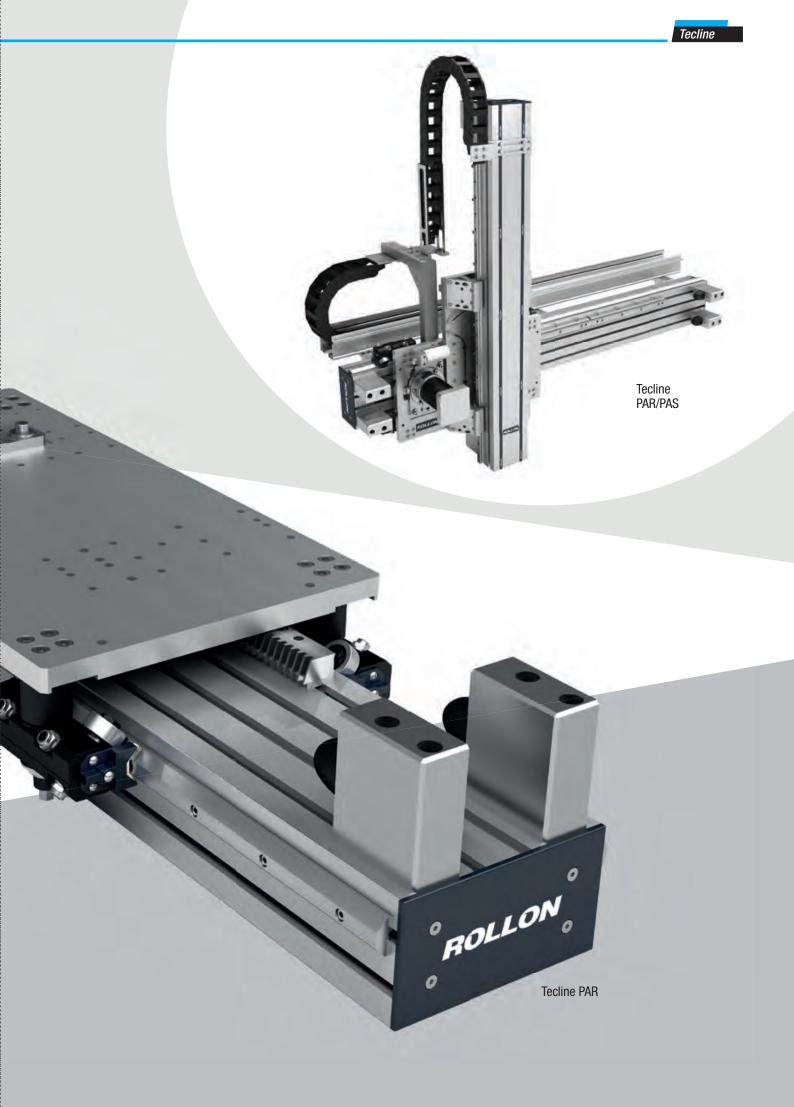

C - Fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using 90° brackets.
 Fastening of the Z-axis on the Y-axis ("carriage on carriage" assembly) using a "cross" plate.

System with 2 horizontal axes

B - Fastening of the Y-axis on the X-axis ("carriage on carriage" assembly) using a "cross" plate.

Three-axes system


D - Fastening of the Y-axis on the X-axis ("base unit on carriage assembly) using 90° brackets.



Tecline

Linear axes with rack and pinion transmission. Rolling on trapezoidal or recirculating ball guides: **6 main advantages**.

PAR/PAS series $\parallel \checkmark$

PAR/PAS series description

Fig. 1

Tecline products are linear actuators made of a self-supporting extruded aluminum with rack and pinion transmission designed for multi-axes solutions for several applications like pick and place, industrial machines feeding and logistics with loads up to 2.000 Kg. PAR/PAS horizontal linear actuators are available with different sizes:

170 - 220 -230 - 280 - 360mm.

PAR/PAS vertical linear actuators are available with different sizes:

90 - 100 - 140 - 170 - 220 - 230 - 280mm.

Some of the main advantages of PAR/PAS solutions are:

- Easy and quick assembly.
- High quality and competitive performances.
- Reduced and simplified maintenance.
- Wide range of integrated solutions.
- Possibility of customized solutions.
- Up to 12 m beams, high level torsional rigidity, precise shape. Longer lengths can be obtained with jointed versions.
- Precise machining of all profiles.

PAR

PAR series is defined by Prismatic Rails as linear motion components.

PAS

PAS series is defined by recirculating ball guides with cage as linear motion components.

The components

Extruded bodies

The PAR/PAS series is created using extruded and anodized Rollon profiles, made of hardened and tempered aluminum alloy tolerance according to UNI EN 755-9. Profiles are specifically designed by Rollon to create rigid and light structures, suitable for manufacturing linear transfer machines.

Rack and pinion drive

The PAR/PAS series is driven by a rack and pinion system, can reach potentially infinite strokes (with standard junction kit).

The PAR/PAS transmission is made by hardened and ground helical tooth racks (Q6 quality), for higher load capacity and low noise. They are available with four different modules: m2, m3, m4 and m5.

The PAR/PAS systems are equipped with fully ground hardened steel pinions (Q6 quality) to achieve high performance. With the aid of correct and constant lubrication, for special applications, speeds of up to 5 m/s can be achieved.

Carriage

The carriage of the PAR/PAS series linear units is made of anodized aluminum. Different lengths of the carriages are available according to the different sizes.

The linear motion system

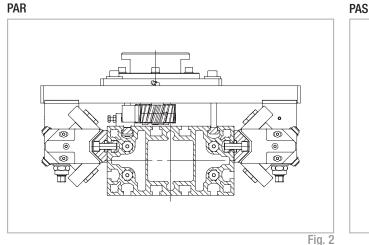
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

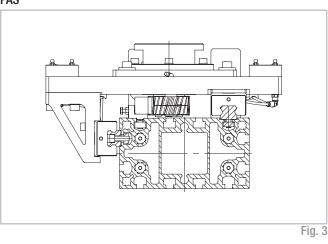
PAR with Prismatic Rails

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution PAR is specifically dedicated for dirty environments and high dynamics in automation.

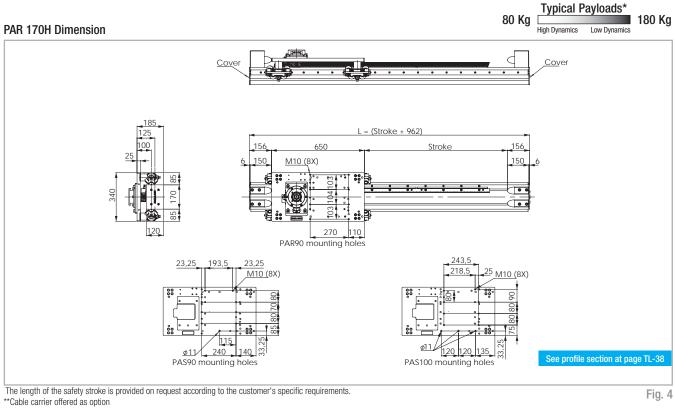
- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:


- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise


PAS with recirculating ball guides with cage

The recirculating ball guides used for PAS have the cage system. The cage included has two purposes: it reduces the friction between the guide and the slider, increasing their service life, and allows lubrication refills to be performed more rarely. Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 2000 Km.

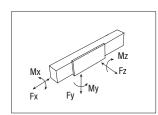

The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

> **PAR 170H**

Technical data

	Туре
	PAR 170H
Max. useful stroke length [mm]*1	9050
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	29.8
Zero travel weight [kg]	65.7
Weight for 100 mm useful stroke [kg]	3.3
Rail size [mm]	35x16
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 1


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

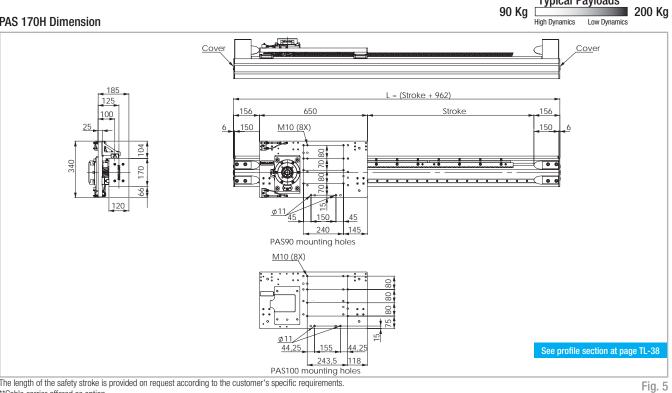
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 170H	1.973	0.984	2.957
			Tab. 2

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 170H	Helical teeth hardened ground	m 3	Q6
			Tab. 3

Load capacity

Туре	F _x [N]	F. [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 170H-4S	5714	14142	65928	14142	1202	3889	3889


See verification under static load and lifetime on page SL-2 and SL-3

200 Kg

Typical Payloads*

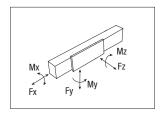
PAS 170H

PAS 170H Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

	Туре
	PAS 170H
Max. useful stroke length [mm]*1	9050
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	22.3
Zero travel weight [kg]	56.5
Weight for 100 mm useful stroke [kg]	3.2
Rail size [mm]	20
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 5

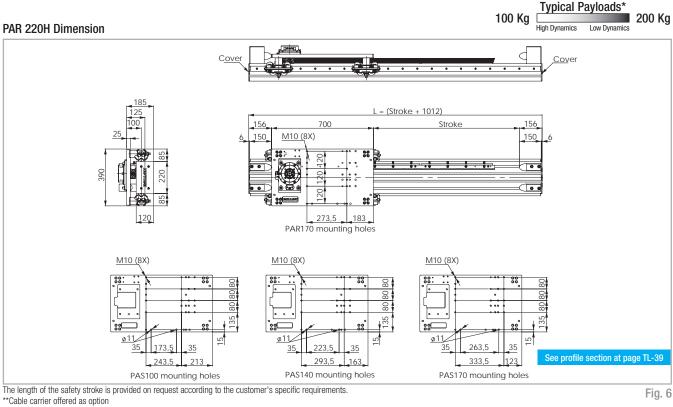

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 170H	1.973	0.984	2.957
			Tab. 6

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 170H	Helical teeth hardened ground	m 3	Q6
			Tab. 7



Load capacity

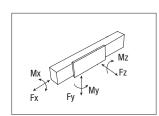
Туре	F _x [N]	F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	DYN.	Stat.	Stat.	Stat.	Stat.
PAS 170H	5714	153600	70798	153600	10790	43392	43392

See verification under static load and lifetime on page SL-2 and SL-3

PAR 220H >

Technical data

	Туре
	PAR 220H
Max. useful stroke length [mm]*1	11000
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	33.4
Zero travel weight [kg]	78.9
Weight for 100 mm useful stroke [kg]	4.17
Rail size [mm]	35x16
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 9

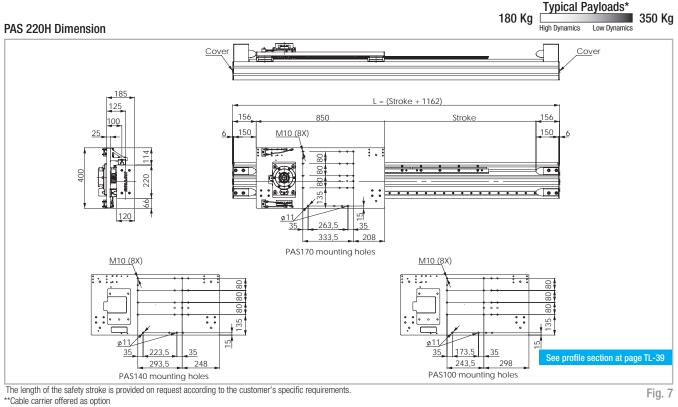

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 220H	4.625	1.559	6.184
			Tab. 10

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 220H	Helical teeth hardened ground	m 3	Q6
			Tab. 11



Load capacity

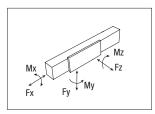
Туре	F _x [N]	F, [N]]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 220H-4S	5714	14142	65928	14142	1556	4243	4243

See verification under static load and lifetime on page SL-2 and SL-3

PAS 220H

Technical data

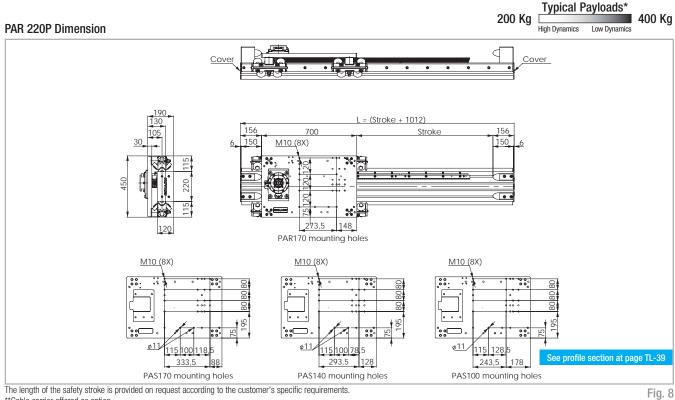
	Туре
	PAS 220H
Max. useful stroke length [mm]*1	10850
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	33
Zero travel weight [kg]	84.2
Weight for 100 mm useful stroke [kg]	4.2
Rail size [mm]	25
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 13


*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _ہ [10 ⁷ mm4]
PAS 220H	4.625	1.559	6.184
			Tab. 14

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 220H	Helical teeth hardened ground	m 4	Q6
			Tab. 15

Load capacity

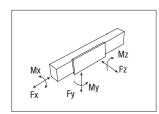
Туре	F _x [N]	F [N	; y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 220H	5714	258800	116833	258800	24910	95109	95109
See verification under static load and lifetime on page SL-2 and SL-3							

PAR 220P >

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

	Туре
	PAR 220P
Max. useful stroke length [mm]*1	11000
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	56.3
Zero travel weight [kg]	113.5
Weight for 100 mm useful stroke [kg]	5.5
Rail size [mm]	55x25
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 1

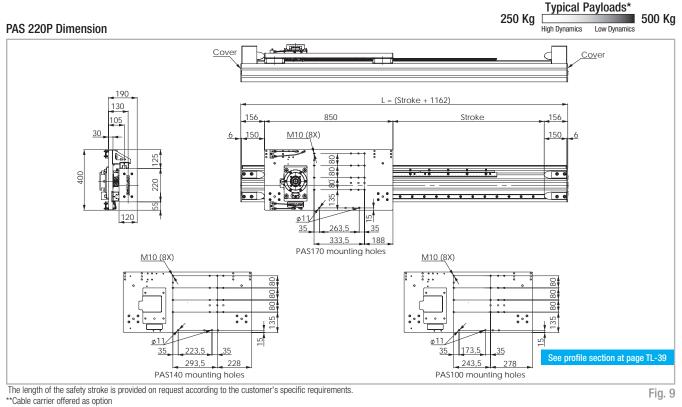

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 220P	4.625	1.559	6.184
			Tab. 18

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 220P	Helical teeth hardened ground	m 3	Q6
			Tab. 19



Load capacity

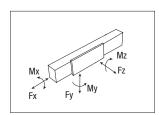
Туре	F _x [N]	F [N	y Í]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 220P-4S	5714	29981	149063	29981	3298	8844	8844

See verification under static load and lifetime on page SL-2 and SL-3

PAS 220P >

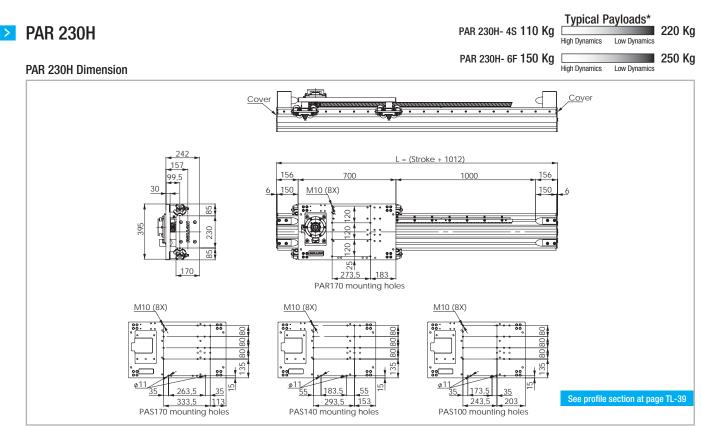
Technical data

	Туре
	PAS 220P
Max. useful stroke length [mm]*1	10850
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	44
Zero travel weight [kg]	100.5
Weight for 100 mm useful stroke [kg]	5.1
Rail size [mm]	30
1) It is possible to obtain longer stroke by means of special Rollon joints 2) Restitucing repeatability is dependent on the type of transmission used	Tab. 2


al Kollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 220P	4.625	1.559	6.184
			Tab. 22


Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 220P	Helical teeth hardened ground	m 3	Q6
			Tab. 23

Load capacity

Туре	F _x [N]	F [N	y J]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 220P	5714	355200	172074	355200	34188	126984	126984
See verification under static load and lifetime on page SL-2 and SL-3							

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	PAR 230
Max. useful stroke length [mm]*1	11000
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	40.6
Zero travel weight [kg]	87
Weight for 100 mm useful stroke [kg]	4.2
Rail size [mm]	35x16
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 25

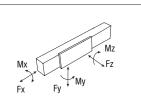
*2) Positioning repeatability is dependent on the type of transmission used

Load capacity

Туре	F _x [N]	F [1	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 230H-4S	5714	14142	65928	14142	1626	4243	4243
PAR 230H-6W	5714	14142	65928	14142	3253	4243	4243
PAR 230H-6F	5714	14142	65928	28284	1626	4243	4243
PAR 230H-6C	5714	14142	65928	28284	1626	4243	4243
See verification under static	load and lifetime on page SL-	2 and SL-3					Tab. 28

*The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 230H	6.501	3.778	10.279
			Tab. 26

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 230H	Helical teeth hardened ground	m 3	Q6

Tab. 27

Fig. 10

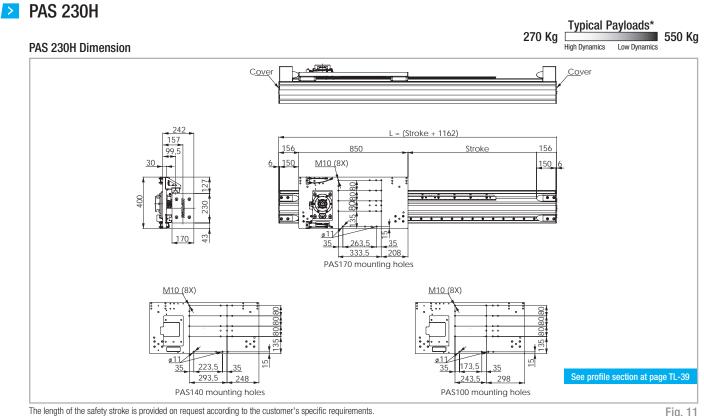
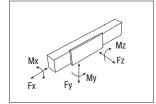


Fig. 11

Technical data

	Туре
	PAS 230H
Max. useful stroke length [mm]*1	10850
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	41.1
Zero travel weight [kg]	94.2
Weight for 100 mm useful stroke [kg]	4.4
Rail size [mm]	30
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 29

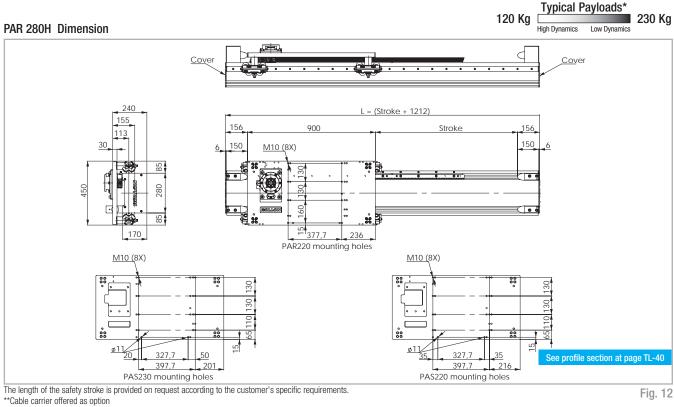
*2) Positioning repeatability is dependent on the type of transmission used


Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 230H	6.501	3.778	10.279
			Tab. 30

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 230H	Helical teeth hardened ground	m 3	Q6


Tab. 31

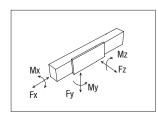
Load capacity

Туре	F _x [N]	F [N	; y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 230H	5714	355200	172074	355200	37118	126984	126984
See verification under station	c load and lifetime on page S	L-2 and SL-3					Tab. 32

PAR 280H >

Technical data

	Туре
	PAR 280H
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	48.2
Zero travel weight [kg]	116.5
Weight for 100 mm useful stroke [kg]	5.4
Rail size [mm]	35x16
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 33

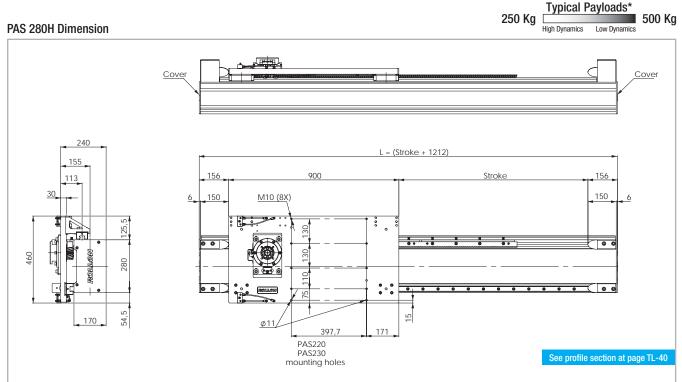

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 280H	12.646	4.829	17.475
			Tab. 34

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 280H	Helical teeth hardened ground	m 4	Q6
			Tab. 35



Load capacity

Туре	F _x [N]	F, [Ň]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280H-4S	5714	14142	65928	14142	1980	5657	5657

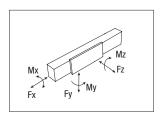
See verification under static load and lifetime on page SL-2 and SL-3

PAS 280H >

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

	Туре
	PAS 280H
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	47.7
Zero travel weight [kg]	117.1
Weight for 100 mm useful stroke [kg]	5.7
Rail size [mm]	30
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 3

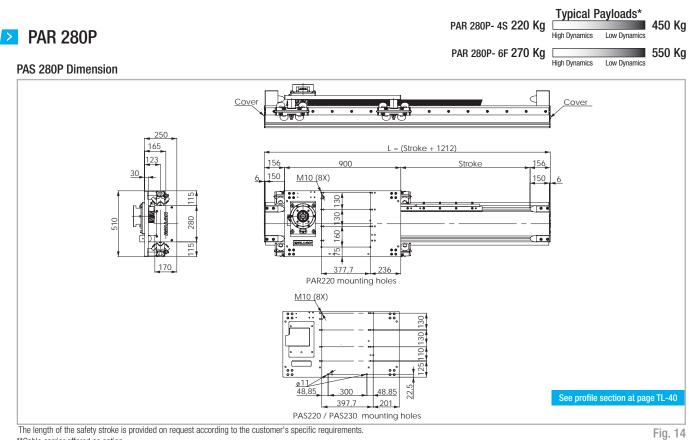

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _ہ [10 ⁷ mm4]
PAS 280H	12.646	4.829	17.475
			Tab. 38

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 280H	Helical teeth hardened ground	m 3	Q6
			Tab. 39



Load capacity

Туре	F _x [N]	F [N	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.	
PAS 280H	5714	355200	172074	355200	47952	135864	135864	
See verification under static	See verification under static load and lifetime on page SL-2 and SL-3							

*The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.

Fig. 13

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

lechnical data	
	Туре
	PAR 280P
Max. useful stroke length [mm]*1	10800 (4S) 10650 (6W-F)
Max. positioning repeatability [mm]*2	± 0.13
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	78.9
Zero travel weight [kg]	166.7
Weight for 100 mm useful stroke [kg]	6.8
Rail size [mm]	55x25
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 4

*2) Positioning repeatability is dependent on the type of transmission used

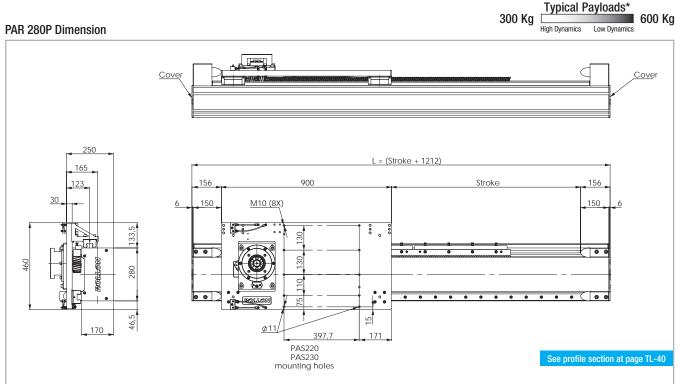
Load capacity

Load capacity							
Туре	F [Ň]	F [1	: ŇJ	F[Ń]	M _× [Nm]	M, [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280P-4S	10989	29981	149063	29981	4197	11843	11843
PAR 280P-6W	10989	29981	149063	29981	8395	11843	11843
PAR 280P-6F	10989	29981	149063	59963	4197	11843	11843
PAR 280P-6C	10989	29981	149063	59963	4197	11843	11843

See verification under static load and lifetime on page SL-2 and SL-3


*The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 280P	12.646	4.829	17.475
			Tab. 42

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 280P	Helical teeth hardened ground	m 4	Q6
			Tab. 43

PAS 280P

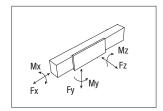
The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

	Туре
	PAS 280P
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.07
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	51.2
Zero travel weight [kg]	127.3
Weight for 100 mm useful stroke [kg]	6.6
Rail size [mm]	35
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 45

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 280P	12.646	4.829	17.475
			Tab. 46

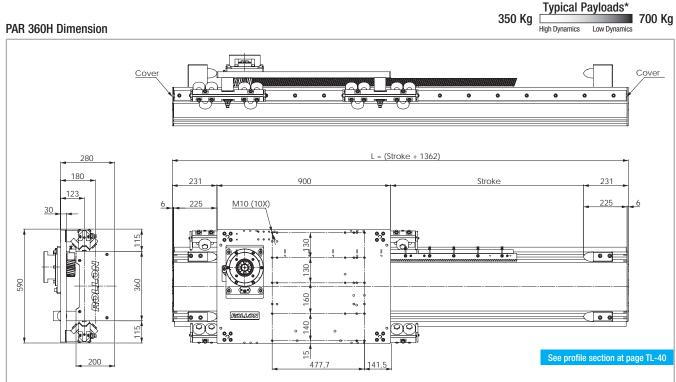
Rack specifications

PAS 280P Helical teeth m 4 Q6	Туре	Type of rack	Rack module	Quality
nardened ground	PAS 280P	Helical teeth hardened ground	m 4	Q6

Tab. 47

Fig. 15

Load capacity


Туре	F _x [N]	F _y [N	, j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280P	10989	386400	197790	386400	50232	149730	149730

See verification under static load and lifetime on page SL-2 and SL-3

*The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.

Tab. 48

PAR 360H

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 16

Technical data

	Туре
	PAR 360H
Max. useful stroke length [mm]*1	10650
Max. positioning repeatability [mm]*2	± 0.13
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	84.7
Zero travel weight [kg]	197
Weight for 100 mm useful stroke [kg]	8.6
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 49

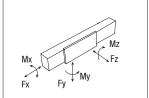
*2) Positioning repeatability is dependent on the type of transmission used

Load capacity

Туре	F _x [N]	F [1	: V]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 360H-6W	10989	29981	149063	29981	10793	11843	11843
PAR 360H-6F	10989	29981	149063	59963	5397	11843	11843
PAR 360H-6C	10989	29981	149063	59963	5397	11843	11843

See verification under static load and lifetime on page SL-2 and SL-3

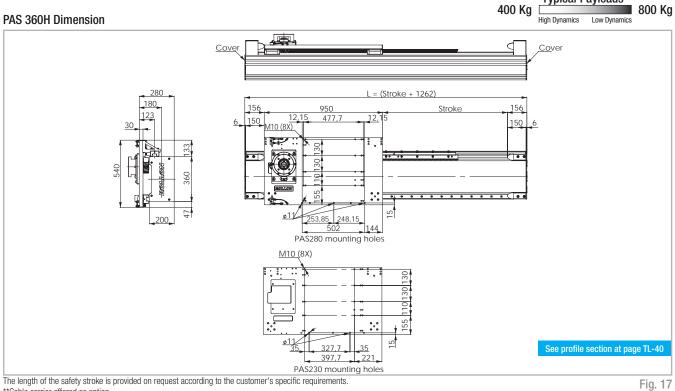
*The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.


Moments of inertia of the aluminum body

momonto or morta or the alaminam body							
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]				
PAR 360H	31.721	10.329	42.050				
			Tab. 50				

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 360H	Helical teeth hardened ground	m 4	Q6


Tab. 51

Typical Payloads*

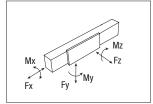
PAS 360H >

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

	Туре
	PAS 360H
Max. useful stroke length [mm]*1	10750
Max. positioning repeatability [mm]*2	± 0.07
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	59.5
Zero travel weight [kg]	161
Weight for 100 mm useful stroke [kg]	8.4
Rail size [mm]	35
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 53

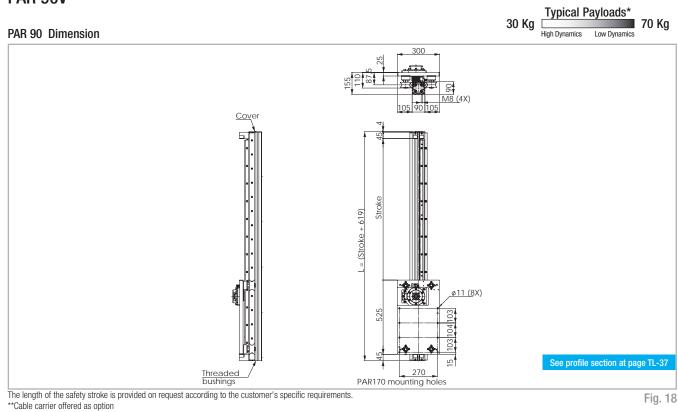
*2) Positioning repeatability is dependent on the type of transmission used


Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _ہ [10 ⁷ mm4]
PAS 360H	31.721	10.329	42.050
			Tab. 54

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 360H	Helical teeth hardened ground	m 4	Q6


Tab. 55

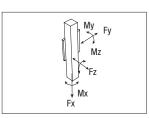
Load capacity

Туре	F _x [N]	F [1	: y i]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 360H	10989	386400	197790	386400	65688	159390	159390
See verification under static load and lifetime on page SL-2 and SL-3							Tab. 56

PAR 90V >

	data	

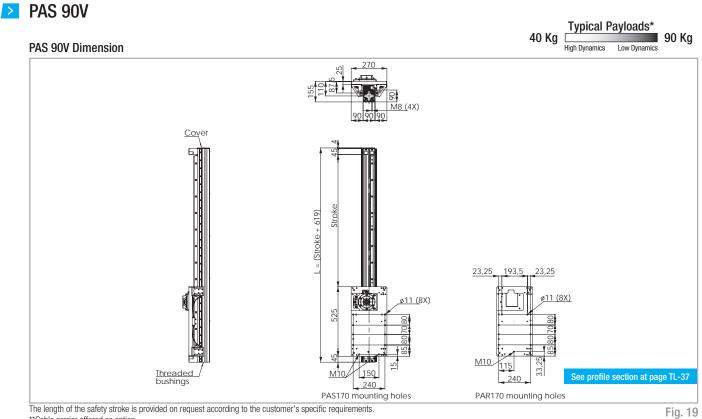
	Туре
	PAR 90V
Max. useful stroke length [mm]*1	2000
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	6
Rack module	m 2
Pinion pitch diameter [mm]	53.05
Carriage displacement per pinion turn [mm]	167
Carriage weight [kg]	16.7
Zero travel weight [kg]	31
Weight for 100 mm useful stroke [kg]	2.3
Rail size [mm]	35x16
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 57


*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	_x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 90V	0.254	0.254	0.508
			Tab. 58

Rack specifications


Туре	Type of rack	Rack module	Quality
PAR 90V	Helical teeth hardened ground	m 2	Q6
			Tab. 59

Load capacity

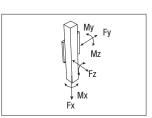
Туре	F _x [N]	F _y [N]]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 90V	3356	9000	53557	5600	344	1260	2025

See verification under static load and lifetime on page SL-2 and SL-3

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

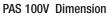
	Туре
	PAS 90V
Max. useful stroke length [mm]*1	2000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m2
Pinion pitch diameter [mm]	53.05
Carriage displacement per pinion turn [mm]	167
Carriage weight [kg]	15.2
Zero travel weight [kg]	27.5
Weight for 100 mm useful stroke [kg]	1.9
Rail size [mm]	15
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 6

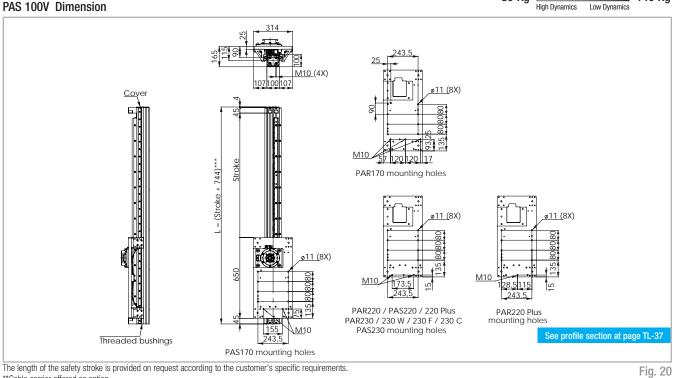

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 90V	0.254	0.254	0.508
			Tab. 62

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 90V	Helical teeth hardened ground	m 2	Q6
			Tab. 63


Load capacity

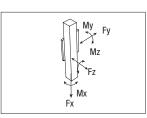
Туре	F _x [N]	F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 90V	3356	96800	45082	96800	4913	22167	22167
See verification under station	c load and lifetime on page Sl	-2 and SL-3					Tab. 64

PAS 100V >

Typical Payloads* 80 Kg 140 Kg High Dynamics

*** Cable carrier offered as option **** If the unit PAS 100V is to be mounted on PAR 220P additional strokes are required to clear the Y-axis carriege plate. Please see tab. 103 on pag TL-31.

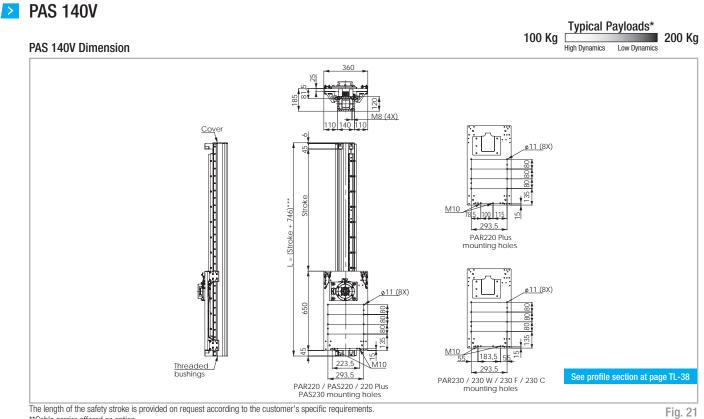
Technical data


	Туре
	PAS 100V
Max. useful stroke length [mm]*1	2200
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	22.3
Zero travel weight [kg]	40
Weight for 100 mm useful stroke [kg]	2.6
Rail size [mm]	20
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 65

1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 100V	0.443	0.443	0.887
			Tab. 66

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 100V	Helical teeth hardened ground	m 3	Q6
			Tab. 67

Load capacity

Туре	F _x [N]	F. [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 100V	5714	153600	70798	153600	8870	43392	43392

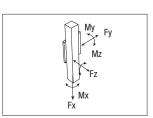
See verification under static load and lifetime on page SL-2 and SL-3

The length of the safety stroke is provided on request according to the customer's specific requirements.

*** Cable carrier offered as option *** If the unit PAS 140V is to be mounted on PAR 220P additional strokes are required to clear the Y-axis carriege plate. Please see tab. 104 on pag TL-31.

Technical data

	Туре
	PAS 140
Max. useful stroke length [mm]*1	2400
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	24.5
Zero travel weight [kg]	44.6
Weight for 100 mm useful stroke [kg]	2.9
Rail size [mm]	20
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 69

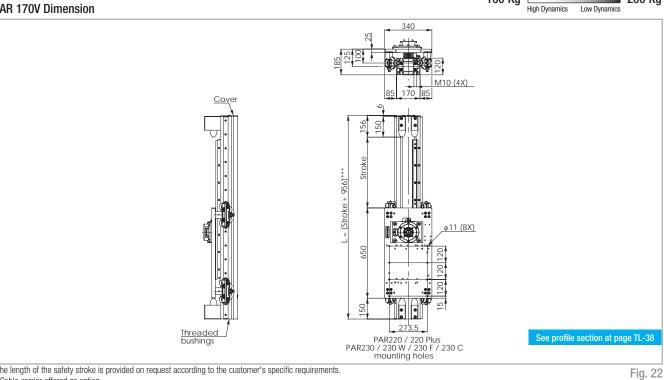

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _p [10 ⁷ mm⁴]
PAS 140	1.148	0.892	2.040
			Tab. 70

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 140	Helical teeth hardened ground	m 3	Q6
			Tab. 71


Load capacity

Туре	F _x [N]	F [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 140	5714	153600	70798	153600	11942	43392	43392
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 72							

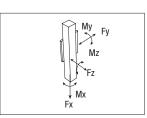
PAR 170V >

Typical Payloads* 100 Kg 200 Kg

The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option
*** If the unit PAR 170V is to be mounted on PAR 220P-PAR 230H additional strokes are required to clear the Y-axis carriege plate. Please see tab. 101 on pag TL-31.

Technical data

	Туре
	PAR 170V
Max. useful stroke length [mm]*1	2400
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	30.1
Zero travel weight [kg]	67.5
Weight for 100 mm useful stroke [kg]	3.3
Rail size [mm]	35x16
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 73

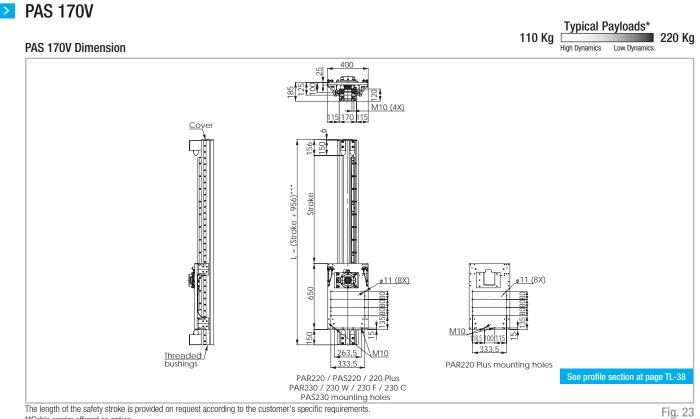

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 170V	1.973	0.984	2.957
			Tab. 74

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 170V	Helical teeth hardened ground	m 3	Q6
			Tab. 75



Load capacity

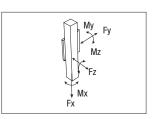
Туре	F _x [N]	F. [N	, []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 170V	5714	14142	65928	14142	1202	3889	3889

See verification under static load and lifetime on page SL-2 and SL-3

***Cable carrier offered as option ***If the unit PAS 170V is to be mounted on PAR 220P additional strokes are required to clear the Y-axis carriege plate. Please see tab. 105 on pag TL-31.

Technical data

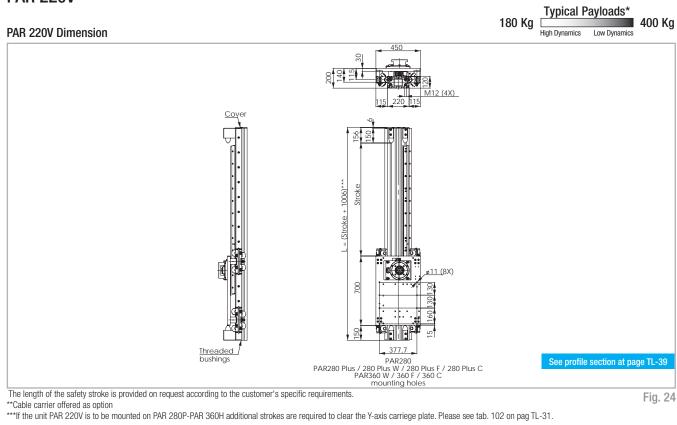
	Туре
	PAS 170V
Max. useful stroke length [mm]*1	2400
Max. positioning repeatability [mm]*2	± 0.06
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	30
Zero travel weight [kg]	66.4
Weight for 100 mm useful stroke [kg]	3.4
Rail size [mm]	25
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 77


*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

momonio or moraa or mo alaminam boay						
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]			
PAS 170V	1.973	0.984	2.957			
			Tab. 78			

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 170V	Helical teeth hardened ground	m 3	Q6
			Tab. 79

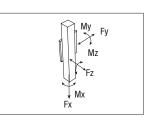
Load capacity

Туре	F _x [N]	F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	DYN.	Stat.	Stat.	Stat.	Stat.
PAS 170V	5714	258800	116833	258800	24030	69229	69229
See verification under static load and lifetime on page SL-2 and SL-3							Tab. 80

PAR 220V >

Technical data

	Туре
	PAR 220V
Max. useful stroke length [mm]*1	2800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	56.6
Zero travel weight [kg]	119.3
Weight for 100 mm useful stroke [kg]	5.5
Rail size [mm]	55x25
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 8


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

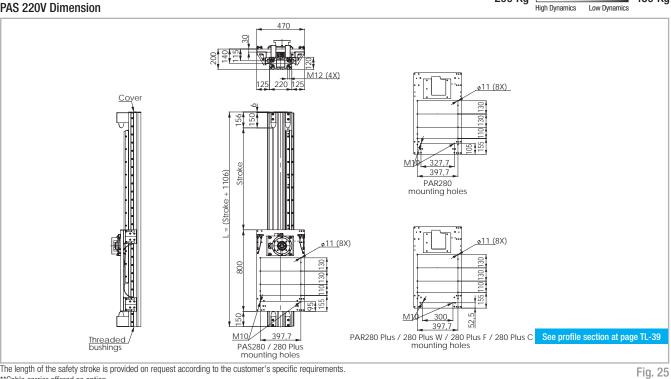
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 220V	4.625	1.559	6.184
			Tab. 82

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 220V	Helical teeth hardened ground	m 4	Q6
			Tab. 83

Load capacity

Туре	F _x [N]	F [1	y V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 220V	10989	29981	149063	29981	3298	8844	8844
See verification under static load and lifetime on page SL-2 and SL-3							Tab. 84


450 Kg

Typical Payloads*

200 Kg

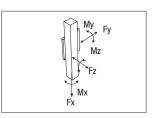
PAS 220V >

PAS 220V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Technical data

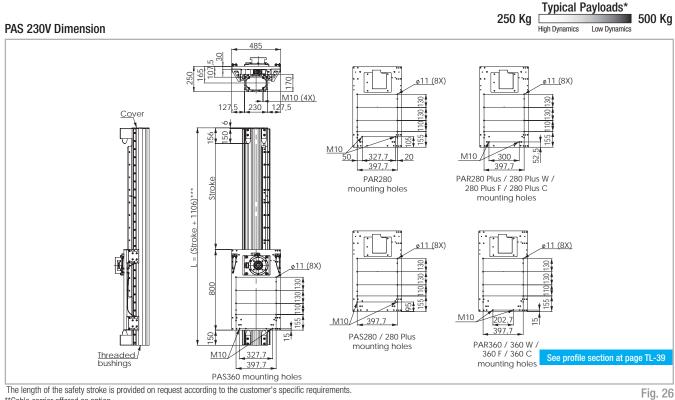
	Туре
	PAS 220V
Max. useful stroke length [mm]*1	2800
Max. positioning repeatability [mm]*2	± 0.07
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	50.7
Zero travel weight [kg]	106.2
Weight for 100 mm useful stroke [kg]	5.1
Rail size [mm]	30
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 85


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
PAS 220V	4.625	1.559	6.184
			Tab. 86

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 220V	Helical teeth hardened ground	m 4	Q6
			Tab. 87

Load capacity

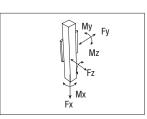
Туре	F _x [N] Stat.	F [1 Stat.	ij DYN.	F, [N] Stat.	M _x [Nm] Stat.	M _y [Nm] Stat.	M _z [Nm] Stat.
PAS 220V	10989	355200	172074	355200	42624	118104	118104
See verification under stati	c load and lifetime on page Sl	-2 and SL-3					Tah 88

PAS 230V >

Cable carrier offered as option *If the unit PAS 230V is to be mounted on PAR 360H additional strokes are required to clear the Y-axis carriege plate. Please see tab. 106 on pag TL-31.

Technical data

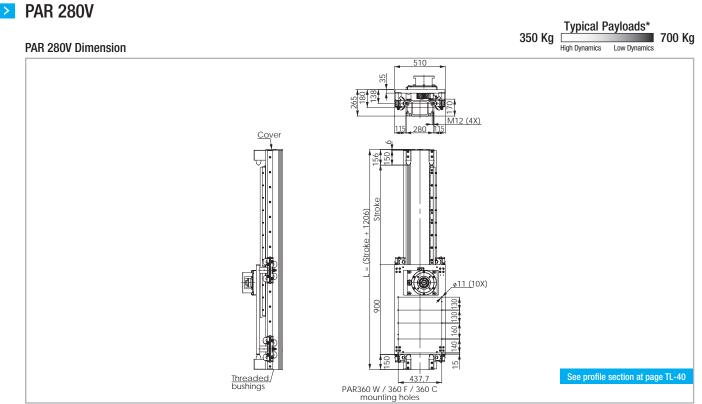
	Туре
	PAS 230V
Max. useful stroke length [mm]*1	2800
Max. positioning repeatability [mm]*2	± 0.07
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39
Carriage displacement per pinion turn [mm]	240
Carriage weight [kg]	52
Zero travel weight [kg]	106
Weight for 100 mm useful stroke [kg]	5.1
Rail size [mm]	30
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 8


*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 230V	6.501	3.778	10.279
			Tab. 90

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 230V	Helical teeth hardened ground	m 4	Q6
			Tab. 91

Load capacity

Туре	F _x [N]	F. [N	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 230V	10989	355200	172074	355200	45110	118104	118104

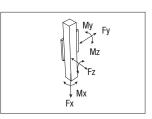
See verification under static load and lifetime on page SL-2 and SL-3

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 27

Technical data

	Туре
	PAR 280V
Max. useful stroke length [mm]*1	3000
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 5
Pinion pitch diameter [mm]	116.71
Carriage displacement per pinion turn [mm]	366
Carriage weight [kg]	84.7
Zero travel weight [kg]	165.1
Weight for 100 mm useful stroke [kg]	7
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 93

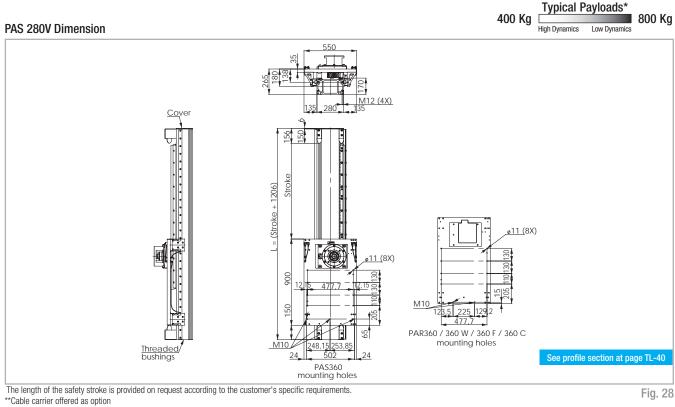

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAR 280V	12.646	4.829	17.475
			Tab. 94

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 280V	Helical teeth hardened ground	m 5	Q6
			Tab. 95


Load capacity

Туре	F _x [N]	F [N	-	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	DYN.	Stat.	Stat.	Stat.	Stat.
PAR 280V	15873	29981	149063	29981	4197	11843	11843
See verification under static load and lifetime on page SL-2 and SL-3							

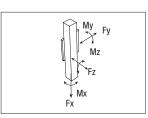
"The payload capacity is impacted by the center of mass and dynamics; the payload capacity is considered centered on the carriage (vertical actuator for 2-axis systems) to ensure a theoretical guides lifetime of L₁₀=100.000 km.

Tab. 96

PAS 280V >

Technical data

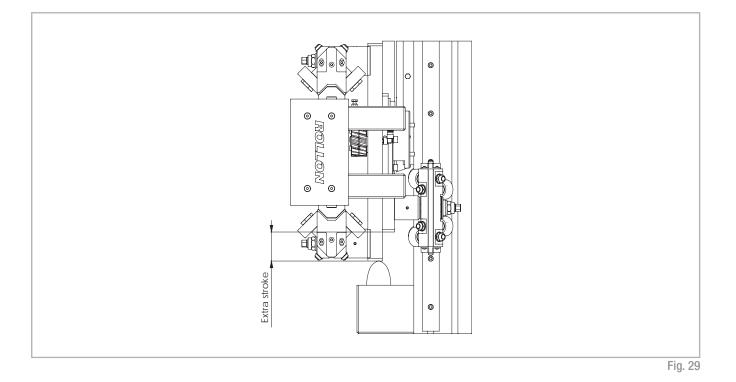
	Туре
	PAS 280V
Max. useful stroke length [mm]*1	3000
Max. positioning repeatability [mm]*2	± 0.08
Max. speed [m/s]	3
Max. acceleration [m/s²]	6
Rack module	m 5
Pinion pitch diameter [mm]	116.71
Carriage displacement per pinion turn [mm]	366
Carriage weight [kg]	77
Zero travel weight [kg]	155.5
Weight for 100 mm useful stroke [kg]	6.8
Rail size [mm]	35
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 97


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	_x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
PAS 280V	12.646	4.829	17.475
			Tab. 98

Rack specifications


Туре	Type of rack	Rack module	Quality
PAS 280V	Helical teeth hardened ground	m 5	Q6
			Tab. 99

Load capacity

Туре	F _x [N]	F [1	v Ň]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280V	15873	386400	197790	386400	58540	149730	149730
See verification under static load and lifetime on page SL-2 and SL-3 Tab. 100							

Z-AXIS EXTRA STROKE

PAR 170V Extra stroke

	Z-axis
Y-axis	PAR 170V
PAR 220P	60 mm
PAR 230H	10 mm
	Tab. 101

PAS 100V Extra stroke

	Z-axis
Y-axis	PAS 100V
PAR 220P	60 mm
	Tab. 103

PAR 220V Extra stroke

	Z-axis
Y-axis	PAR 220V
PAR 280P	60 mm
PAR 360H	140 mm
	Tab. 102

PAS 140V Extra stroke

	Z-axis
Y-axis	PAS 140V
PAR 220P	60 mm
	Tab. 104

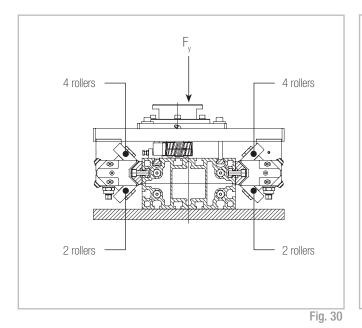
PAS 170V Extra stroke

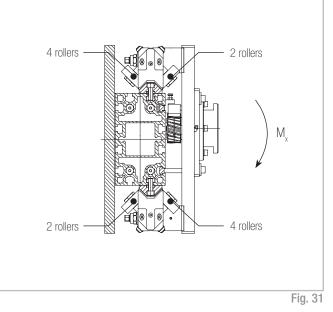
	Z-axis	
Y-axis	PAS 170V	
PAR 220P	60 mm	
		Tab. 105

PAS 230V Extra stroke

	Z-axis
Y-axis	PAS 230V
PAR 360H	50 mm
	Tab. 106

PAR rollers

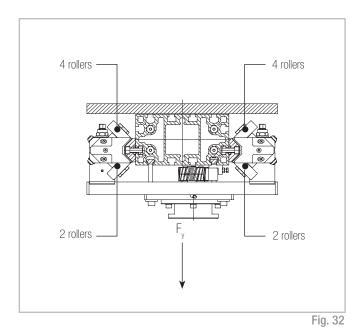

The aluminium slider can be configured with a variable number of rollers with steel pins, ranging from 4 (2+2) to 6 (4+2). The number of rollers are depending on the actuator size and mounting: floor, wall or ceiling.

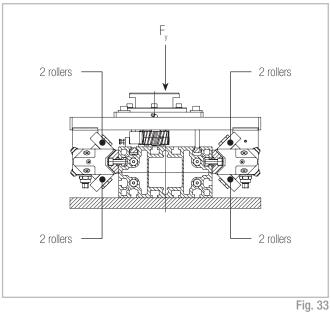

6F (6 ROLLERS, FLOOR MOUNTING)

6W (6 ROLLERS, WALL MOUNTING)

Type has the 4 bearings of all 6 roller sliders on the upper side.

Type has the 4 bearings of all 6 roller sliders in opposite direction.



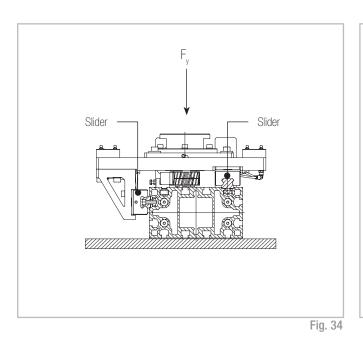

6C (6 ROLLERS, CEILING MOUNTING)

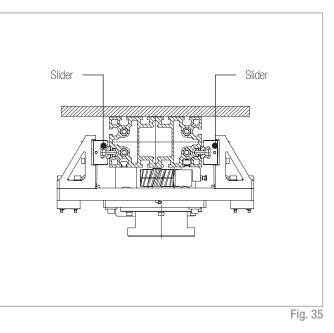
Type has the 4 bearings of all 6 roller sliders on the opposite side than the carriage plate.

4S (4 ROLLERS, SYMMETRIC)

Type has the 2 bearings of all 4 roller sliders on the upper side.

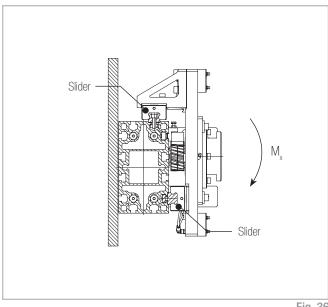
TL-32


PAS slider


HORIZONTAL (FLOOR MOUNTING)

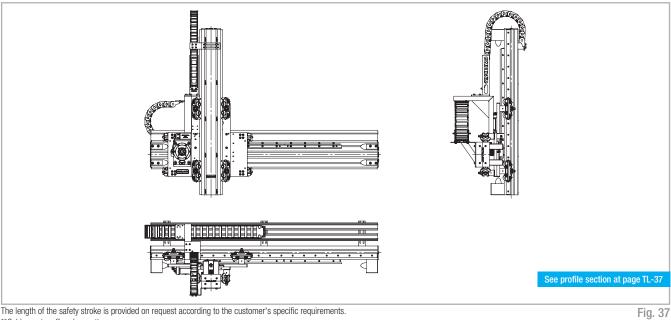
VERTICAL

Type has 2 sliders opposite mounting


Type has 2 sliders L mounting

HORIZONTAL (WALL MOUNTING)

Type has 2 sliders L mounting



TL-33

PAR/PAR >

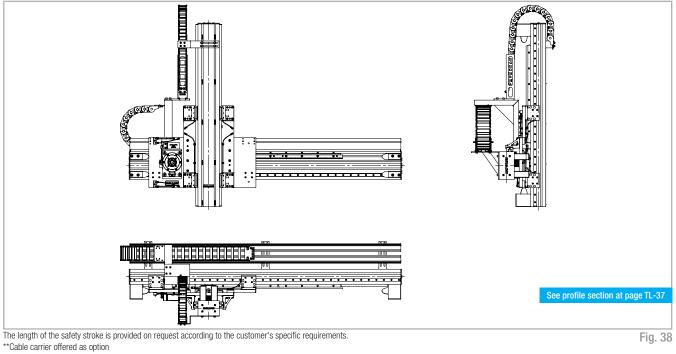
Standard Y-Z configurations

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Product range overview

	Z-axis								
Y-axis	PAR 90V	PAR 170V	PAR 220V	PAR 280V					
PAR 170H	YES								
PAR 220H		YES							
PAR 220P		YES							
PAR 230H		YES							
PAR 280H			YES						
PAR 280P			YES						
PAR 360H			YES	YES					
				Tab. 107					

Rack specifications


Axis	Type of rack	Rack module	Quality
PAR 170H		m 3	
PAR 90V		m 2	
PAR 220H		m 3	
PAR 170V		m 3	
PAR 220P	Helical teeth hardened ground	m 3	
PAR 170V		m 3	Q6
PAR 230H		m 3	QU
PAR 170V		m 3	
PAR 280H		m 3	
PAR 220V		m 4	
PAR 280P		m 4	
PAR 220V		m 4	

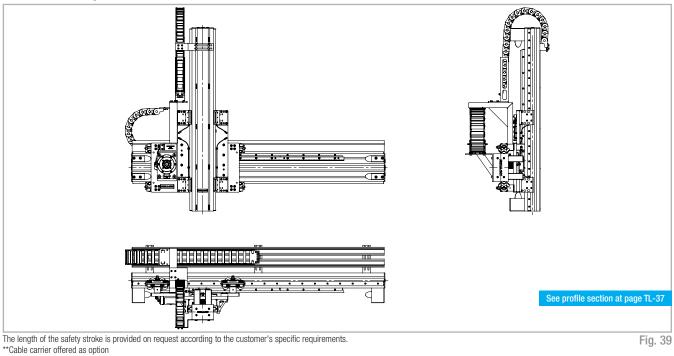
Axis	Type of rack	Rack module	Quality
PAR 360H		m 4	
PAR 220V	Helical teeth	m 4	Q6
PAR 360H	hardened ground	m 4	QO
PAR 280V		m 5	
			Tab 100

Tab. 109

PAS/PAS

Standard Y-Z configurations

Product range overview


	Z-axis						
Y-axis	PAS 90V	PAS 100V	PAS 140V	PAS 170V	PAS 220V	PAS 230V	PAS 280V
PAS 170H	YES	YES					
PAS 220H		YES	YES	YES			
PAS 220P		YES	YES	YES			
PAS 230H		YES	YES	YES			
PAS 280H					YES	YES	
PAS 280P					YES	YES	
PAS 360H						YES	YES
							Tab. 110

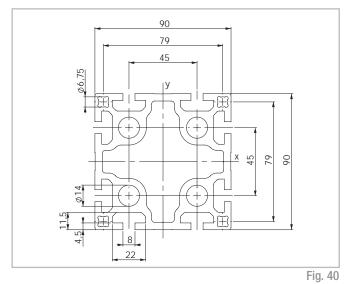
Rack specifications

Axis	Type of rack	Rack module	Quality	Axis	Type of rack	Rack module	Quality	Axis	Type of rack	Rack module	Quality
PAS 170H		m 3		PAS 220P		m 3		PAS 280H		m 3	
PAS 90V		m 2		PAS 140V		m 3		PAS 230V		m 4	
PAS 170H		m 3		PAS 220P		m 3		PAS 280P		m 4	
PAS 100V		m 3		PAS 170V		m 3		PAS 220V	Helical	m 4	
PAS 220H	Helical	m 3		PAS 230H	Helical	m 3		PAS 280P	teeth	m 4	Q6
PAS 100V	teeth	m 3	Q6	PAS 100V	teeth	m 3	Q6	PAS 230V	hardened	m 4	QU
PAS 220H	hardened	m 3	QU	PAS 230H	hardened	m 3	QU	PAS 360H	ground	m 4	
PAS 140V	ground	m 3		PAS 140V	ground	m 3		PAS 230V		m 4	
PAS 220H		m 3		PAS 230H PAS 170V		m 3		PAS 360H		m 4	
PAS 170V		m 3				m 3		PAS 280V		m 5	
PAS 220P		m 3		PAS 280H		m 3					Tab. 113
PAS 100V		m 3		PAS 220V		m 4					

> PAR/PAS

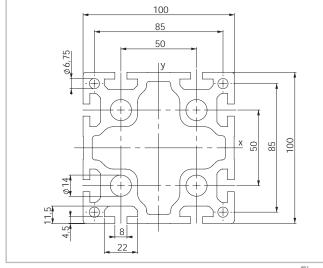
Standard Y-Z configurations

Product range overview


	Z-axis						
Y-axis	PAS 90V	PAS 100V	PAS 140V	PAS 170V	PAS 220V	PAS 230V	PAS 280V
PAR 170H	YES	YES					
PAR 220H		YES	YES	YES			
PAR 220P		YES	YES	YES			
PAR 230H		YES	YES	YES			
PAR 280H					YES	YES	
PAR 280P					YES	YES	
PAR 360H						YES	YES
							Tab. 114

Rack specifications

Axis	Type of rack	Rack module	Quality	Axis	Type of rack	Rack module	Quality	Axis	Type of rack	Rack module	Quality
PAR 170H		m 3		PAR 220P		m 3		PAR 280H		m 3	
PAS 90V		m 2		PAS 140V		m 3		PAS 230V		m 4	
PAR 170H		m 3		PAR 220P		m 3		PAR 280P		m 4	
PAS 100V		m 3		PAS 170V		m 3		PAS 220V	Helical	m 4	
PAR 220H	Helical	m 3		PAR 230H	Helical	m 3		PAR 280P	teeth	m 4	06
PAS 100V		m 3	06	PAS 100V	teeth	m 3	06	PAS 230V	hardened	m 4	Q6
PAR 220H	hardened	m 3	Q6	PAR 230H	hardened	m 3	Q6	PAR 360H	ground	m 4	
PAS 140V	ground	m 3		PAS 140V	ground	m 3		PAS 230V		m 4	
PAR 220H		m 3		PAR 230H		m 3		PAR 360H		m 4	
PAS 170V		m 3		PAS 170V		m 3		PAS 280V		m 5	
PAR 220P		m 3		PAR 280H		m 3					Tab. 117
PAS 100V		m 3		PAS 220V		m 4					
TI 26			Tab. 115				Tab. 116				


Profile specifications

Medium profiles

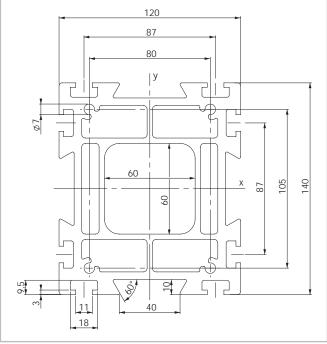
Profile 90	
Weight [Kg/m]	7.9
Max. length [mm]	6000
Moment of inertia lx [107 mm4]	0.254
Moment of inertia ly [107 mm4]	0.254
Polar moment of inertia lp [107 mm4]	0.508
Bending section modulus Wx [mm ³]	56400
Bending section modulus Wy [mm ³]	56400
	Tab. 118

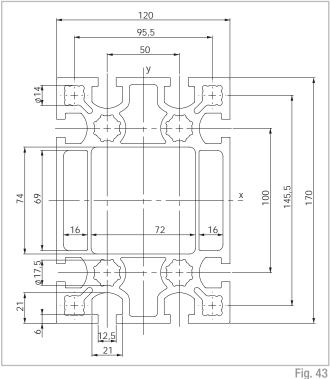
L

Profile 100	
Weight [Kg/m]	10.7
Max. length [mm]	6000
Moment of inertia lx [107 mm4]	0.444
Moment of inertia ly [107 mm4]	0.444
Polar moment of inertia lp [107 mm4]	0.887
Bending section modulus Wx [mm ³]	88800
Bending section modulus Wy [mm ³]	88800
	Tab. 119

)	
m]	10.7
[mm]	6000
nertia lx [10 ⁷ mm ⁴]	0.444
nertia ly [10 ⁷ mm ⁴]	0.444
nt of inertia lp [107 mm4]	0.887
tion modulus Wx [mm³]	88800

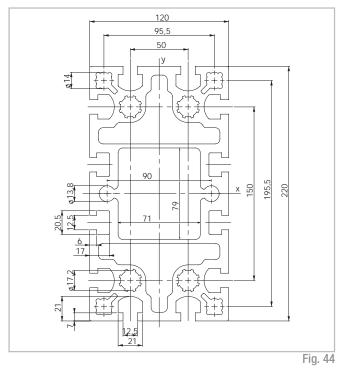
Fig. 41

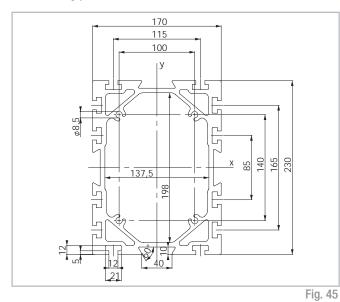


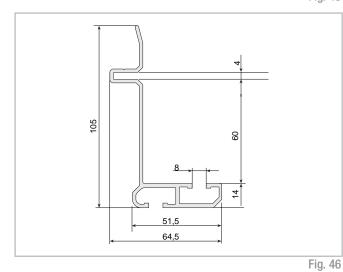

Fig. 42

Profile 140	
Weight [Kg/m]	14.6
Max. length [mm]	10000
Moment of inertia lx [107 mm4]	1.148
Moment of inertia ly [107 mm4]	0.892
Polar moment of inertia lp [107 mm4]	2.040
Bending section modulus Wx [mm ³]	191372
Bending section modulus Wy [mm ³]	127421
	Tab. 120

Profile 170	
Weight [Kg/m]	17
Max. length [mm]	10000
Moment of inertia lx [107 mm4]	1.973
Moment of inertia ly [107 mm4]	0.984
Polar moment of inertia lp [107 mm4]	0.846
Bending section modulus Wx [mm ³]	232168
Bending section modulus Wy [mm ³]	163929
	Tab. 121


Load bearing profiles


	and a
rofile 170	
eight [Kg/m]	17
ax. length [mm]	10000
oment of inertia lx [10 ⁷ mm ⁴]	1.973
oment of inertia ly [107 mm4]	0.984
lar moment of inertia lp [107 mm4]	0.846
nding section modulus Wx [mm ³]	232168
nding section modulus Wy [mm ³]	163020

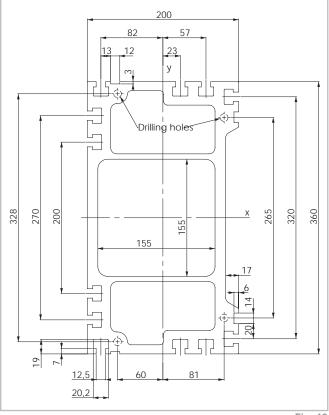


Load bearing profiles

Load bearing profiles

Profile 220	
Weight [Kg/m]	25
Max. length [mm]	12000
Moment of inertia Ix [107 mm4]	4.625
Moment of inertia ly [107 mm4]	1.559
Polar moment of inertia lp [107 mm4]	6.184
Bending section modulus Wx [mm ³]	423182
Bending section modulus Wy [mm ³]	260833
	Tab. 122

Profile 230	
Weight [Kg/m]	25.5
Max. length [mm]	12000
Moment of inertia Ix [107 mm4]	6.501
Moment of inertia ly [107 mm4]	3.778
Polar moment of inertia lp [107 mm4]	10.279
Bending section modulus Wx [mm ³]	564284
Bending section modulus Wy [mm ³]	444500
* Not anodized	Tab. 123


7400568 energy chain support profile		
Weight [kg/m]	1.3	
Available length [Mm]	6	
	Tab. 124	

Profile 280	
Weight [Kg/m]	40
Max. length [mm]	12000
Moment of inertia lx [107 mm4]	12.646
Moment of inertia ly [107 mm4]	4.829
Polar moment of inertia lp [107 mm4]	17.475
Bending section modulus Wx [mm ³]	957790
Bending section modulus Wy [mm ³]	591620
* Not anodized	Tab. 125

Load bearing profiles

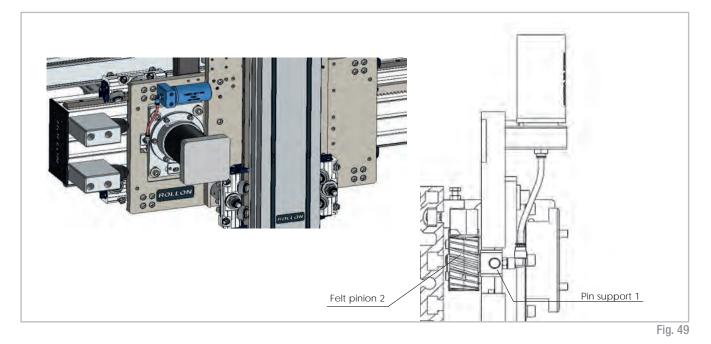

Profile 360	
Weight [Kg/m]	60
Max. length [mm]	12000
Moment of inertia Ix [107 mm4]	31.721
Moment of inertia ly [107 mm4]	10.329
Polar moment of inertia lp [107 mm4]	42.050
Bending section modulus Wx [mm ³]	1770500
Bending section modulus Wy [mm ³]	1035300
* Not anodized	Tab. 126

Fig. 48

Accessory

Programmable automatic rack lubrication

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a). The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per driven carriage.

1 - Spares

Specification	Code
Programmable grease cartridge (125 ml) [b]	1011244
m2 - helical toolth felt pinion [1]	1011165
m3 - helical toolth felt pinion [1]	1160050
m4 - helical toolth felt pinion [1]	1160056
m5 - helical toolth felt pinion [1]	1160055
	Tab. 127

Pinion / Racks helical tooth specifications

Pinion / Racks - Helical tooth

Module	Z [n°]	Øp [mm]
2	25	53,05
3	20	63.66
4	18	76.39
5	22	116.71

Tab. 129

2 - Lubrication assembly kit

Specification (see figure C)	Code
Lubrication assembly kit (no felt pinion, nonriscan pipe)	7363137
	Tab. 128

Example of simplified calculation

To obtain the working torque value, divide the maximum operating torque

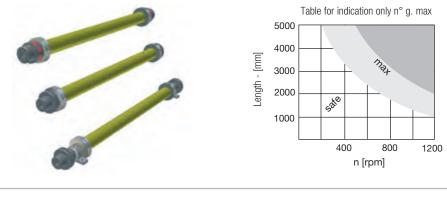
by the safety factor. Intermediate values can be adjusted

according to the application.

Motion (A) = High shock 1.75

Speed (B) = Low 1

Lubrication (C) = Constant 0.9 Rack = module 3 KSD Pinion = \emptyset p 63.66 (400 Nm) Safety factor = A x B x C = 1.575


Maximum transmissible torque = Maximum torque 400 / Safety factor 1,575 \leq 254 N

For heavy-duty applications, please ask our technical dept. to carry out the appropriate checks.

Motion (A)	Speed (B)	Lubrication (C)	Safety fac. (AxBxC)
Low shock 1.25	Low 1	Constant 0.9	1.13
Medium shock 1.5	Medium 1.25	Daily 1.2	2.25
High shock 1.75	High 1.5	Monthly 2.5	6.56
			Tab. 130

Connections shafts

The Tecline range includes a series of hollow shafts for connecting the pinions on the systems. We can supply standard connections, according to your application requirements. The complete kit includes all the components needed to make the connection, with shrink-discs and crop down sizes of pins for insertion into the pinions.

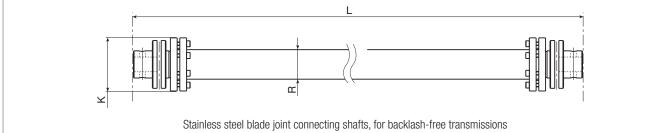


Fig. 50

R(*)	К	L _{max}	MTwork [Nm]	Mom. of inertia [kgm²]	Code L
50	81	6.300	35	0.0092 + 0.66 x L. x10 ⁻⁶	4360291
50	93	6.300	70	0.0161 + 1.34 x L. x10 ⁻⁶	4360245
70	104	6.400	100	0.0293 + 2.93 x L. x10 ⁻⁶	4360282
80	126	6.400	190	0.0793 + 4.5 x L. x10 ⁻⁶	4360292
90	143	6.500	300	0.1456 + 6.53 x L. x10 ⁻⁶	4360986

(*) R: Shaft material and diameter are selected in accordance with required speed, centre-distance L, torque and accuracy.

Anti-drop safety device

Anti-drop safety devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position.

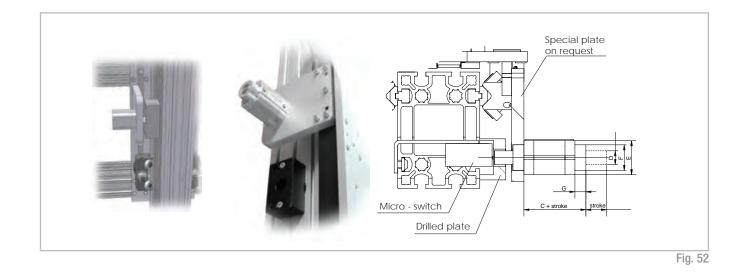
One-way blocking occurs following a pressure cut.

Tempered and chrome-plated cylindrical rod Brake system

1- Static rod blocking device

Operating pressure 3.5-8 Bar.

With no pressure = locked.


Brake Code*	Rod blocking force [kN]	Stroke [mm]	Cylindrical rod diamiter [mm]
1010387	/ 2.5	/	16
1011121	/ 5.0	/	22
1011161	/ 10.0	/	22
1011114	/ 15.0	/	25

*Cylindrical rod and relative supports are not included. For more information contact Rollon technical support.

Tab. 132

Safety lock-pin (stopper cylinder)

Lock-pins are available in two sizes to block the vertical axes in the safety position to allow horizontal movements during maintenance. The safety lock-pins comprise the use of the through rod. Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, microswitch and 2 magnetic gearboxes. Max. operating pressure: 10 bar.

1- Safety lock-pin

ØD Rod	Stroke	C	E	F	G	Kit Code
20	20	60.5	50	38	16	2360021
32	30	-	-	-	-	2360022
						Tab. 133

2- Accessory: drilled plate for rod

ØD Rod	Base	Width	Thickness
20	60	100	39
32	60	100	39
			Tab. 134

Cable carrier

Cable carrier offered as option.

Profile anchor brackets

Material: alluminum alloy (Rs=310 N/mm²).

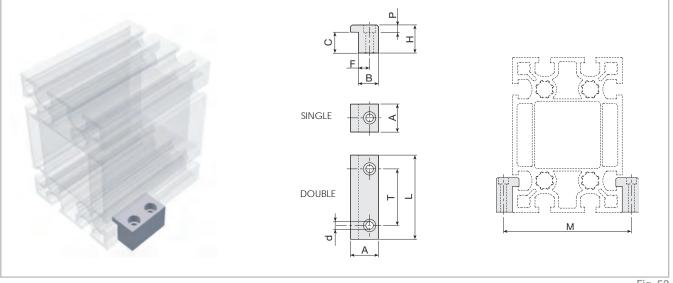
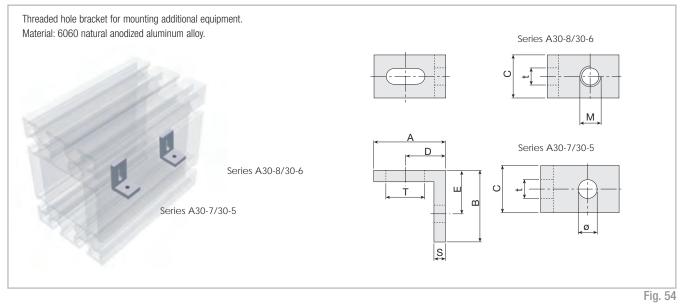


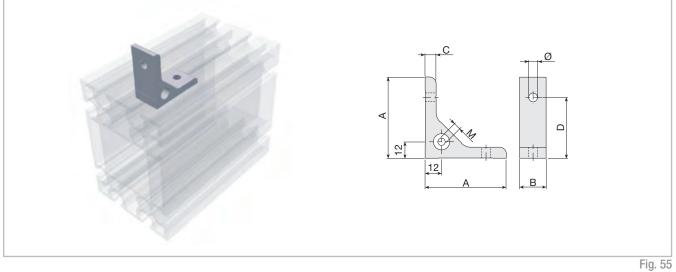
Fig. 53


Profile	A	L	Т	d	Н	Р	С	F	В	М	Single code	Double code
Profile 90 H	30	50	25	9	25	9.5	18	12	22	114	4150772	4150773
Profile 100 V	25	50	25	6.7	27	6.8	20.6	10	18	120	4150769	4150764
Profile 140 V	-	-	-	-	-	-	-	-	-	-	-	-
Profile 170 H	30	90	50	11	40	11	28.3	14	25	198	4150767	4150762
Profile 170 V	30	90	50	11	40	11	28.3	14	25	148	4150767	4150762
Profile 220 H	30	90	50	11	40	11	28.3	14	25	248	4150767	4150762
Profile 220 V	30	90	50	11	40	11	28.3	14	25	148	4150767	4150762
Profile 230 H	-	-	-	-	-	-	-	-	-	-	-	-
Profile 230 V	-	-	-	-	-	-	-	-	-	-	-	-
Profile 280 H	30	90	50	11	20	11	11.3	14	25	308	4150768	4150763
Profile 280 V*	30	90	50	11	25	11	13.5	14	25	198	-	-
Profile 360 H	30	90	50	11	20	11	11.3	14	25	388	4150768	4150763
Profile 360 V*	30	90	50	11	25	11	13.5	14	25	228	-	- Tab. 105

* For vertical orientation of cross section this profile has asymmetric position of the T-Slots. Contact Rollon Technical department

Tab. 135

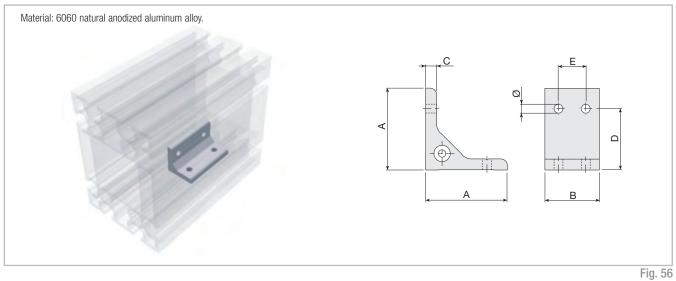
L-shaped brackets


Threaded hole bracket

А	В	С	D	E	S	Txt	М	Code	Ø	Code
45	45	20	25	25	5	16 x 6.5	M6	A30-86	6	A30-76
35	25	20	19	15	5	20 x 6.5	M4	A30-64	4	A30-54
35	25	20	19	15	5	20 x 6.5	M5	A30-65	5	A30-55
35	25	20	19	15	5	20 x 6.5	M6	A30-66	6	A30-56
25	25	15	14	15	4	13.5 x 5.5	M3	B30-63	3	B30-53
25	25	15	14	15	4	13.5 x 5.5	M4	B30-64	4	B30-54
25	25	15	14	15	4	13.5 x 5.5	M5	B30-65	5	B30-55
25	25	15	14	15	4	13.5 x 5.5	M6	B30-66	6	B30-56

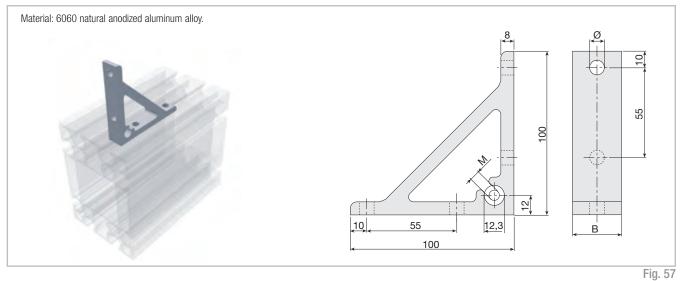
Tab. 136

Bracket for mounting additional equipment



L-shaped bracket for mounting additional equipment and improving the rigidity of frames made with profiles.

Material: 6060 natural anodized aluminum alloy.


А	В	С	D	E	Ø	М	Code
60	20	8	45	-	6.5	-	B30-10
60	20	8	45	-	6.5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6.5	-	C30-00
							Tab. 137

Bracket for mounting additional profiles

A	В	С	D	E	Ø	М	Code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6.5	-	C30-02
							Tab. 138

Bracket for mounting additional profiles

	В	Ø	М	Code
Without bushing	30	9	-	A30-30
Without bushing	20	6.5	-	B30-30
With bushing	30	9	M6	A30-40
With bushing	20	6.5	M6	B30-40
				Tab. 139

Threaded inserts

Frontally insertable for profiles 90/100/170/220/280/360

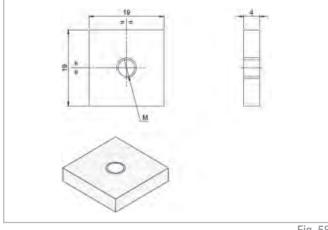
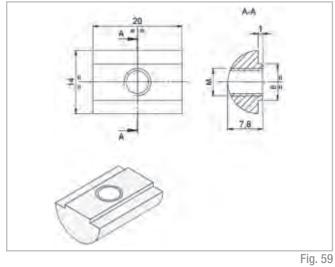
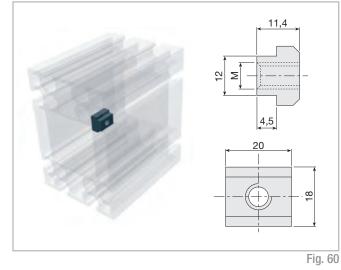
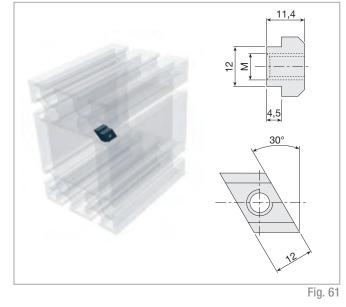



Fig. 58

Laterally insertable for profiles 90/100


Thread	Code
M5	6001387
M6	6000437
M8	6001544
	Tab. 141

Material: galvanised steel.

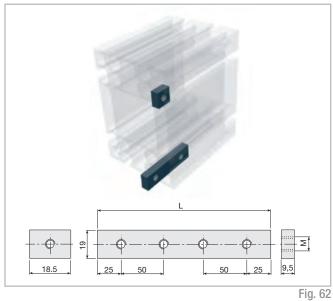

Thread	Code
M5	6006051
M6	6006052
M8	6006053
	Tab. 140

Threaded inserts for 220/280/360 profiles

Frontally insertable alignment plates

Frontally insertable alignment plates

Material: galvanised steel.


Material: galvanised steel.

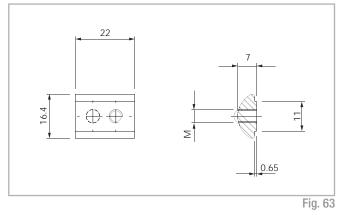
Important: inserts must be inserted into the longitudinal slots before assembling.

Thread	Code
M5	2151768
M6	2151769
M8	2151770
M10	2152124
	Tab. 142

Thread	Code
M5	2151771
M6	2151772
M8	2151773
M10	2152125
	Tab. 143

Threaded inserts

Material: galvanised steel.


Thread	N. holes	L	Code
M10	1	40	2150477
M12	1	40	2091281
M10	1	20	2091277
M10	2	80	2091776
M10	3	150	2091777
M10	4	200	2091778
M10	5	250	2091779
M10	6	300	2091780
M10	7	350	2091781
			Tab. 144

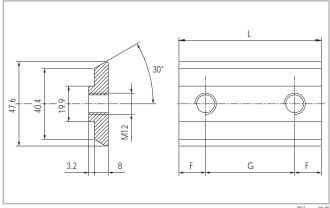
TL-50

Threaded inserts for 140/230 profiles

Inserts for 140/230 profiles

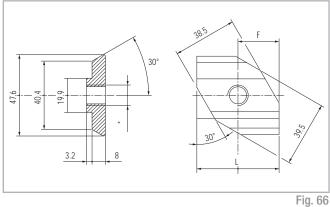
Inserts for profile 230

Material: burnished steel


Thread	Holes	Code
M4*	1	4111360
M5*	1	4111351
M6*	1	4111352
M8*	1	4111353
* Quick front insert on PAS118 (sh	nort side) and PAS 230 only	Tab. 145

Material: burnished steel

Thread Holes Code M5 4112540 1 4112541 M6 1 4112542 M8 1 M10 4112543 1 Tab. 146

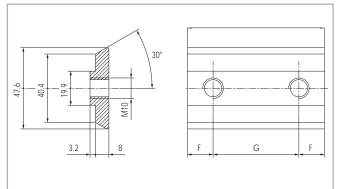

Dovetail inserts for 140/230 profiles

Material: burnished steel.

		•		
Holes	F	G	L	Code N.
1	25	/	50	4110745
2	15	40	70	4110503
2	25	50	100	4110469
3	25	50	150	4110588
2	25	150	200	4110472
6	25	50	300	4110470
				Tab. 147

Fig. 65

411.1178


* M10 dovetail-quick front-insertion version

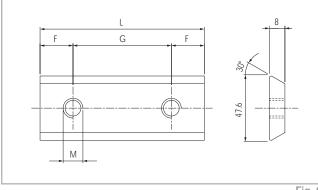
411.0845

* M12 dovetail-quick front-insertion version

Fig. 67

Dovetail clamps with M10 threaded holes

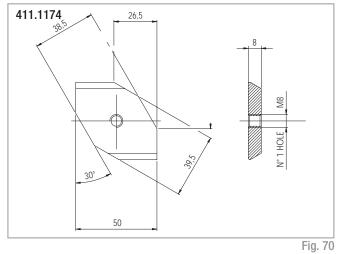
Material: burnished steel.


Holes	F	G	L	Code N.
2	15	20	50	4110675
1	25	/	50	4111111
2	25	50	100	4111112
3	25	50	150	4111113
6	25	50	300	4110970
				Tab. 148

Material: burnished steel.

Holes	F	G	L	Code N.
1	25	/	50	4111117
2	25	50	100	4111119
3	25	50	150	4111120
				Tab. 149

Dovetail clamps with M8 threaded holes


Steel dovetail without step

Holes	F	G	L	М	Code N.
2	15	20	50	M8	4111675
1	25	/	50	M10	4111186
1	25	/	50	M12	4111185
3	25	50	150	M12	4110888
					Tab. 150

Fig. 69

Steel dovetail quick front insertion without step

T L

Lubrication of the rack and pinion driving system

Proper lubrication is critical to ensure good lifetime of rack and pinion drive systems. Rollon's rack and pinion lubrication system applies grease directly to the driving pinion via a polyurethane pinion. The lubrication can be made manually via lubrication fitting, or an automatic lubricator tank is available that offers continuous and maintenance-free operation of the drive system during the lifetime of the tank. The automatic lubricator tank can be configured to distribute the lubrication over time (up to ~1 year max.) according to the application requirements.

Manual lubrication

Automatic lubrication

Fig. 71

Fig. 72

Lubrication of the linear guide system

PAR Series

PAR Series actuators features cam roller guide elements that are standard with lifetime lubrication.

PAS series

PAS Series actuators feature recirculating ball slider blocks, that must be periodically lubricated. The slider blocks are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment in the circuits.

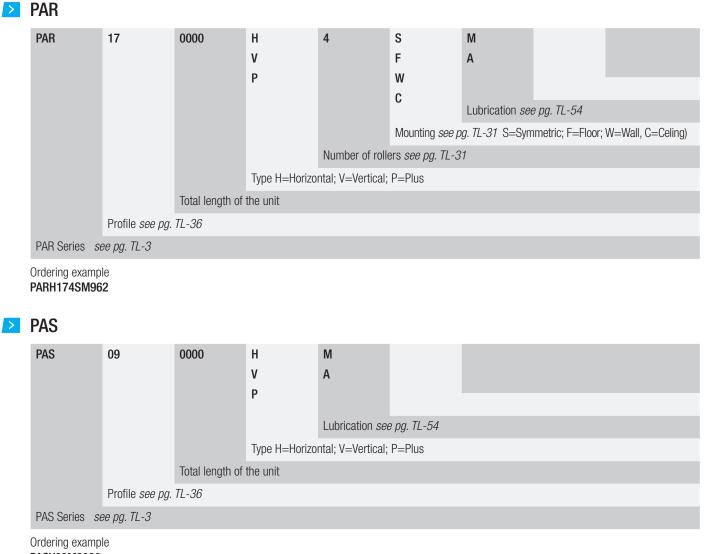
Standard lubrication method for the slider blocks is by manual refill. The slider block lubrication points are factory routed to a grease fitting block mounted on top of the carriage for easy access. This system guarantees a long interval between mainte-nances: every 2000 km or 1 year of use, based on the value reached first.

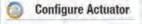
For PAS actuators equipped with optional automated lubrication system, automatic lubricator tanks are mounted on the grease block which continuously pro-vides the necessary amount of grease to the ball raceways under load. These lubrication reservoirs considerably reduce the frequency of lubri-cation of the module. This system guarantees a long interval between maintenances: every 4000 km, based on the value reached first.

If a longer service life is required or in case of high dynamics or high loading applications, please contact our offices for further verification. Quantity of lubricant (approximate) necessary for re-lubrication of each block:

Туре	Size	Lubricant [g]
	90	1.5
	100	2.5
	140	2.5
DAC	170	3.0
PAS	220	5.0
	230	5.0
	280	6.0
	360	6.0
		Tab. 151

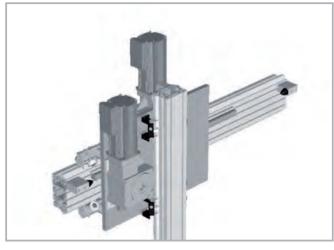
Manual lubrication



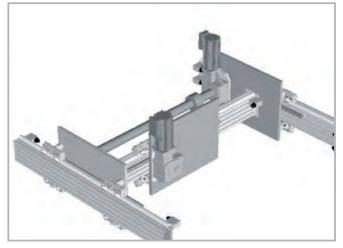

Fig. 73

PASV09M2000

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com


Left / right orientation

Right

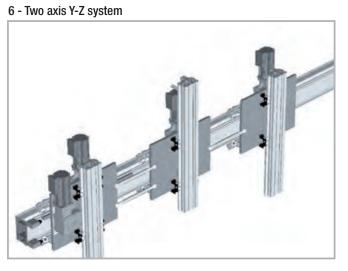

Left

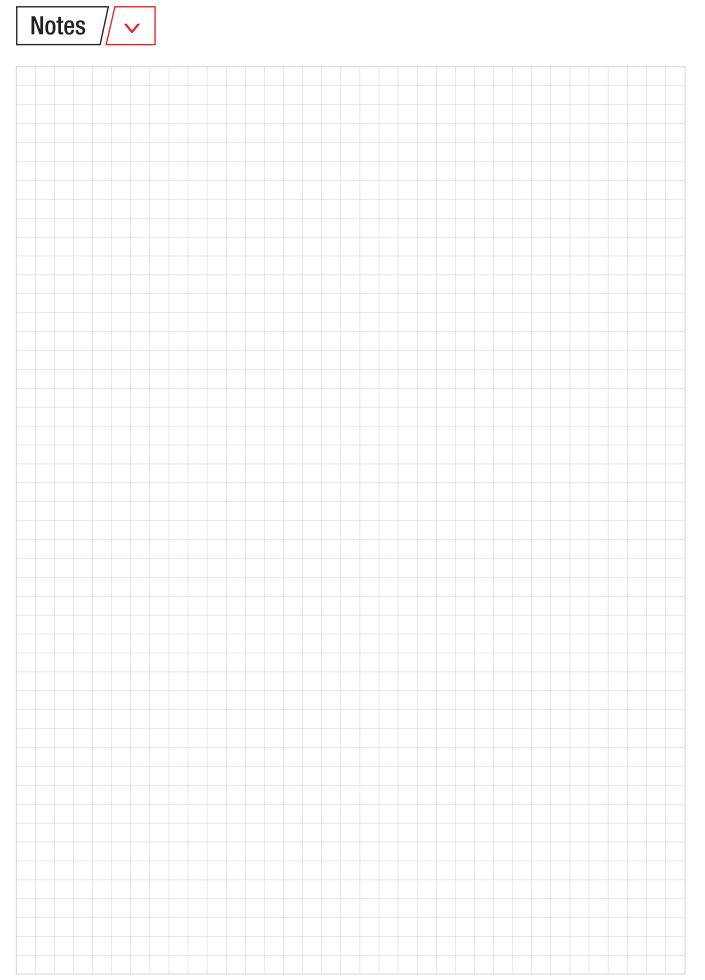
Multiaxis systems // 🗸

1 - Two axis Y-Z system

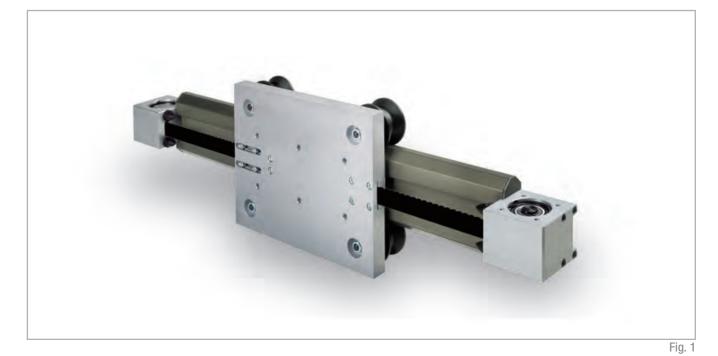
2 - Two axis Y-X system

3 - Three axis X-Y-Z system




4 - Three Axis X-Y-Z system

5 - Two axis Y-Z system


T L

SAB series description

SAB products are self-supporting extruded aluminum actuators driven by a polyurethane belt system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, SAB series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

SAB series is defined by the use of **guides with cylindrical and Vshaped rollers** as linear motion components. These linear motion systems are lightweight, self-supporting, easy to assemble, cost effective, modular, clean and quiet. Thanks to this kind of solution they are specifically dedicated for dirty environments and high dynamics in automation. SAB series is available with profiles of different sizes: 60 - 120 -180 - 250 mm. Some of the main **advantages** of SAB series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system

The components

Extruded bodies

SAB beam is a heat-treated Aluminum alloy profile with hollow crosssections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Driving belt

The SAB series driving system consists in a polyurethane toothed belt, reinforced with high resistance steel cords. For some applications, the belt driven solution is ideal due to its high load transmission characteristics, compact size and low noise. Some of the advantages of using a belt driven system are: high speed, high acceleration, low noise and no need for lubrication.

Carriage

The carriage of the SAB series linear units is made of anodised aluminum. Different lengths of the carriages are available according to the different sizes.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	 mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655
						Tab 2

Tab. 2

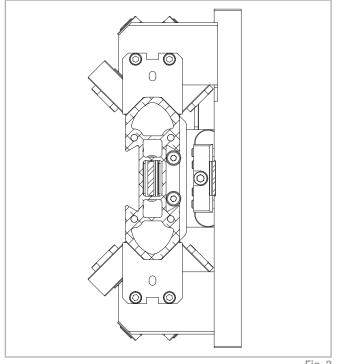
Mechanical characteristics

Rm	Rp (02)	A	HB
N mm ²	N mm ²	%	—
205	165	10	60-80

R A >

The linear motion system

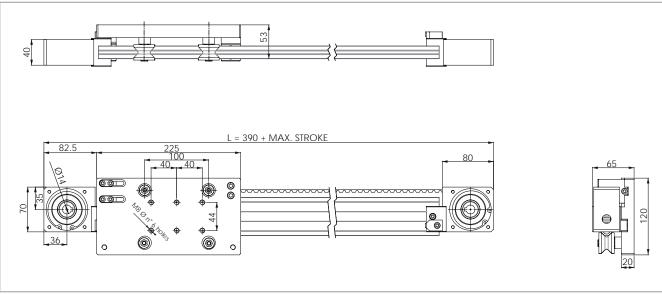
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.


SAB with cylindrical and V-shaped rollers:

The SAB range includes a large selection of rollers both cylindrical and V-shaped, and sliders assembled with two or more rollers. SAB rollers are covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail.

Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

SAB section


SRA-4

• Anticorrosion

SAB 60V

SAB 60V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 3

Technical data

	Туре
	SAB 60V
Max. useful stroke length [mm]	7250
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	7
Max. acceleration [m/s ²]	8
Type of belt	10 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.479
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	1.7
Zero travel weight [kg]	3.8
Weight for 100 mm useful stroke [kg]	0.13
Rail size [mm]	60x20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 4

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
SAB 60V	0.014	0.002	0.003
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

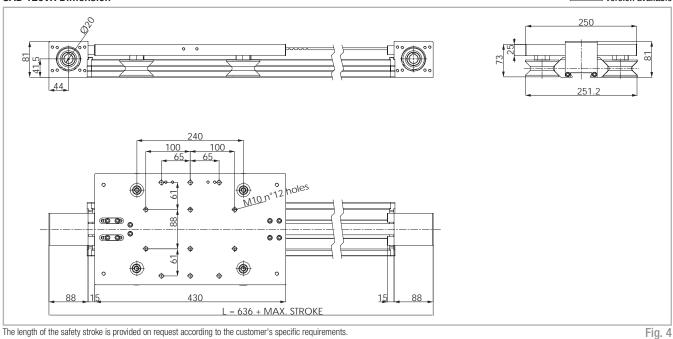
Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SAB 60V	10 AT 10	10	0.064
			Tab. 6

Belt length (mm) = $2 \times L - 80$

A

Load capacity

Туре	F [1	: × V]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 60V	706	374	540	400	9	20	27


Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Tab. 7

SAB 120VX >

SAB 120VX Dimension

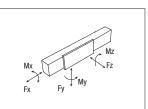
Anticorrosion

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAB 120VX
Max. useful stroke length [mm]	7056
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	6
Max. acceleration [m/s ²]	8
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage weight [kg]	8.22
Zero travel weight [kg]	17.0
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 8

Moments of inertia of the aluminum body

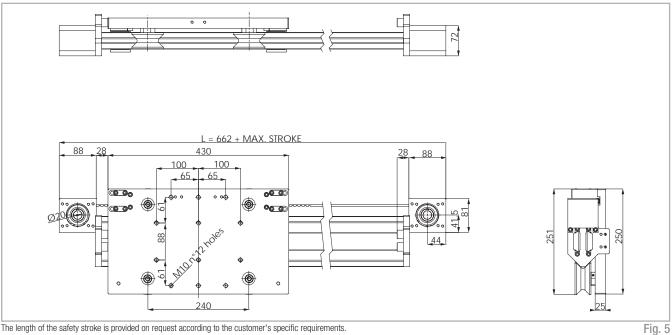

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _p [10 ⁷ mm⁴]
SAB 120VX	0.214	0.026	0.043
			Tab. 9

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt		
SAB 120VX	25 AT 10HPF	25	0.16
			Tab. 10

Belt length (mm) = 2 x L - 300


Load capacity

Туре	F [M	: X V]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120VX	1349	715	1400	800	39.3	96	168
Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.						Tab. 11	

SAB 120VZ >

SAB 120VZ Dimension

Anticorrosion ۵

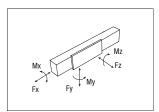
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAB 120VZ
Max. useful stroke length [mm]*1	7040
Max. positioning repeatability [mm]*2	± 0.2
Max. speed [m/s]	6
Max. acceleration [m/s ²]	8
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	9.1
Zero travel weight [kg]	17.9
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) It is possible to obtain longer strokes by means of special Rollon joints	Tab. 12

*1) It is possible to obtain longer strokes by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

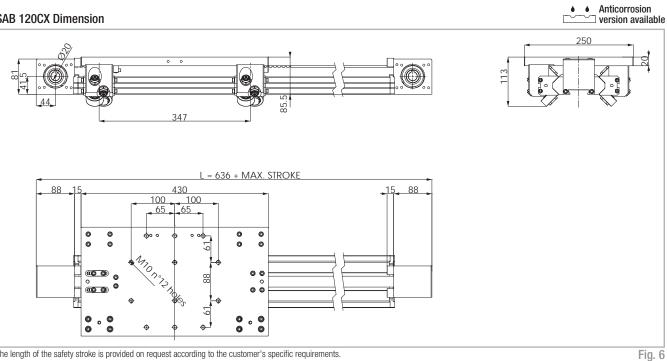

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120VZ	0.214	0.026	0.043
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SAB 120VZ	25 AT 10HPF	25	0.16
			Tab. 14

Belt length (mm) = 2 x L - 310



Load capacity

Туре	F []	: X V]	F _y [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120VZ	1349	715	1400	800	39.3	96	168
Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Bail quide and of the rollers of up to 80,000 km Tab.						Tab. 15	

SAB 120CX >

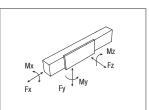
SAB 120CX Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAB 120CX
Max. useful stroke length [mm]	7056
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	6
Max. acceleration [m/s ²]	10
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	8.5
Zero travel weight [kg]	17.3
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 16

Moments of inertia of the aluminum body

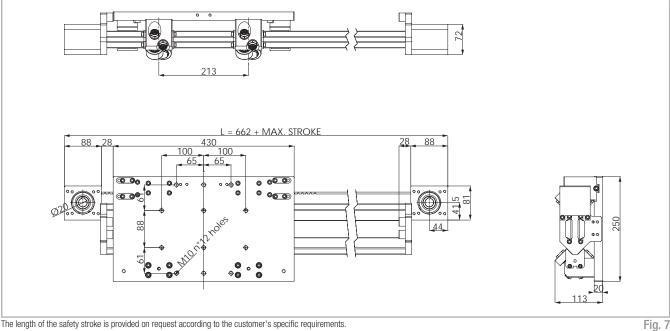

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _p [10 ⁷ mm⁴]
SAB 120CX	0.214	0.026	0.043
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SAB 120CX	25 AT 10HPF	25	0.16
			Tab. 18

Belt length (mm) = 2 x L - 300


Load capacity

Туре	F [}	: × V]	F _v [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120CX	1349	715	2489	2489	98	432	432
Non-cumulative moments referred to the median trollev axis and to a theoretical lifetime of the Speedy Rail quide and of the rollers of up to 80.000 km.							Tab. 19

SAB 120CZ >

SAB 120CZ Dimension

Anticorrosion ۵

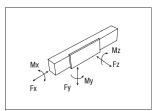
The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAB 120CZ
Max. useful stroke length [mm]*1	7040
Max. positioning repeatability [mm]*2	± 0.2
Max. speed [m/s]	6
Max. acceleration [m/s ²]	10
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	9.4
Zero travel weight [kg]	18.2
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) It is possible to obtain longer strokes by means of special Rollon joints	Tab. 20

*2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]	
SAB 120CZ	0.214	0.026	0.043	
			Tab. 21	

Driving belt

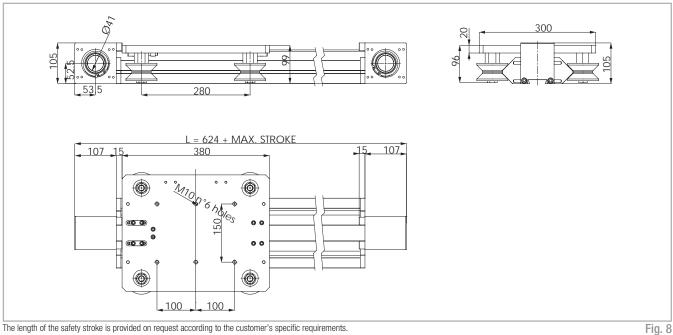
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]	
SAB 120CZ	25 AT 10HPF	25	0.16	
			Tab. 22	

Belt length (mm) = 2 x L - 300

Load capacity

Loud oupdoily							
Туре	F [: × V]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120CZ	1349	715	2489	2489	98	265	265
Non-cumulative moments referred to the median trollev axis and to a theoretical lifetime of the Speedy Rail quide and of the rollers of up to 80.000 km.							Tab. 23


Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

S R A

SAB 180V >

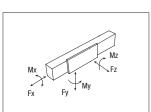
SAB 180V Dimension

Anticorrosion version available

Technical data

	Туре
	SAB 180V
Max. useful stroke length [mm]	7114
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s ²]	8
Type of belt	40 AT10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.84
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	8.3
Zero travel weight [kg]	27.6
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 24

Moments of inertia of the aluminum body

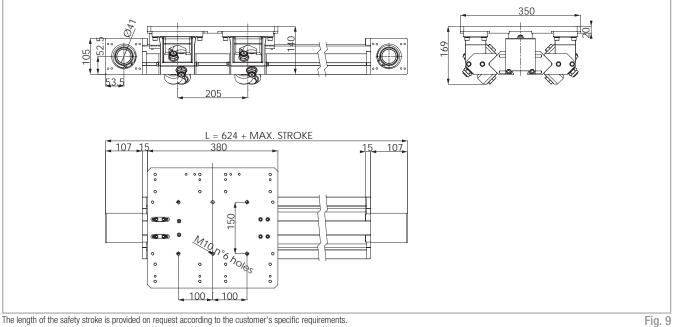

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]	
SAB 180V	1.029	0.128	0.260	
			Tab. 25	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]	
SAB 180V	40 AT10	40	0.23	
			Tab 26	

Belt length (mm) = 2 x L - 220



Load capacity

Туре	F []	: × V]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 180V	3154	1671	1400	800	58	112	196
Non-cumulative moments	on-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.						

SAB 180C >

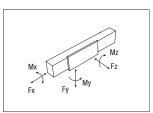
SAB 180C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAB 180C
Max. useful stroke length [mm]	7114
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s ²]	10
Type of belt	40 AT10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.84
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	16.0
Zero travel weight [kg]	30.8
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 28

Moments of inertia of the aluminum body

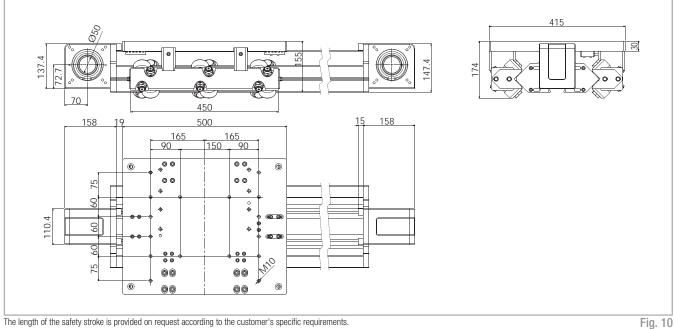

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 180C	1.029	0.128	0.260
			Tab. 29

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SAB 180C	40 AT 10	40	0.23
			Tab. 30

Belt length (mm) = 2 x L - 210


Load capacity

Loud oupdoily							
Туре	l [= Ň]	F _y [N]	F_ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 180C	3154	1671	3620	3620	246	371	371
Non-cumulative moments referred to the median trollev axis and to a theoretical lifetime of the Speedy Rail ouide and of the rollers of up to 80.000 km.							Tab. 31

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

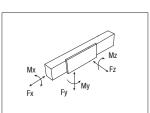
SAB 250C >

SAB 250C Dimension

Technical data

	Туре
	SAB 250C
Max. useful stroke length [mm]	6970
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	10
Max. acceleration [m/s ²]	10
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	32.3
Zero travel weight [kg]	57.7
Weight for 100 mm useful stroke [kg]	1.55
Rail size [mm]	250x80
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 32

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	ا _p [10 ⁷ mm⁴]
SAB 250C	2.735	0.412	0,840
			Tab. 33

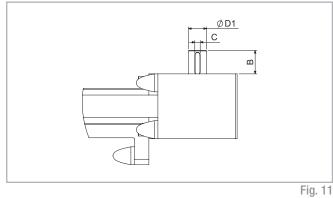
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SAB 250C	50 AT 10	50	0.34
			Tab. 34

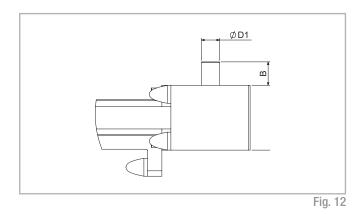
Belt length (mm) = 2 x L - 330

Load capacity


 oud oupdoily							
Туре	F [1	: X V]	F [Ň]	F_ [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 250C	4980	2640	5431	5431	558	597	644
							T 1 0 F

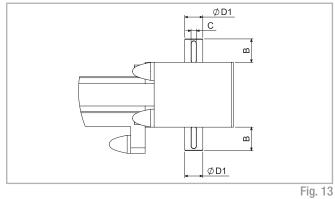
Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

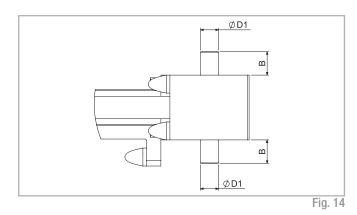
Tab. 35


Simple shaft version

Simple shaft type AS

Unit	Shaft type	Keyway C	В	D1	Kit Code
SAB 60	AS 14	5x5	32	14h7	G002486
SAB 120	AS 20	6x6	26	20h7	G002488
					Tab. 36

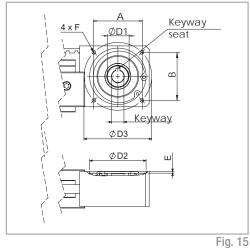

Position of the simple shaft can be to the right, left, or both sides of the drive head.



Unit	Shaft type		В	D1	Kit Code
SAB 180	AS 20	Straight	36	20h7	G000828
SAB 250	AS 25	Straight	50	25h7	G000649
					Tab. 37

Double shaft version

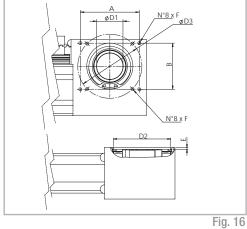
Double shaft type AS


Unit	Shaft type	Keyway C	В	D1	Kit Code
SAB 60	AS 14	5x5	32	14h7	G002487
SAB 120	AS 20	6x6	26	20h7	G002489
					Tab. 38

Unit	Shaft type		В	D1	Kit Code
SAB 180	AS 20	Straight	36	20h7	2 x G000828
SAB 250	AS 25	Straight	50	25h7	2 x G000649
					Tab. 39

Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

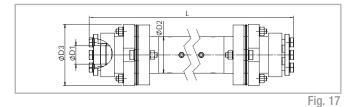
Hollow shafts


Hollow shaft type AC

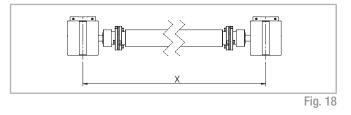
Unit	Shaft type	Key- way	D1	D2	D3	E	F	АХВ
SAB 60	AC 14	5 X 5	14H7	65	78	1.5	M5	-
SAB 120	AC 20	6 X 6	20H7	55	72	3.5	M6	72,8 x 59,2
								Tab. 40

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices

Hollow shaft type FP - Standard supply


Unit	Shaft type		D1	D2	D3	E	F	АХВ
SAB 180	FP 41	Straight	41H7	72	100	3.5	M6	92 x 72
SAB 250	FP 50	Straight	25H7	95	130	3.5	M8	109 x 109
								Tab. 41

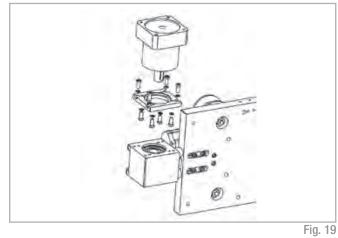
1


Linear units in parallel

Synchronization kit for use of SAB linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina

type precision joints complete with tapered splines and hollow aluminum drive shafts.

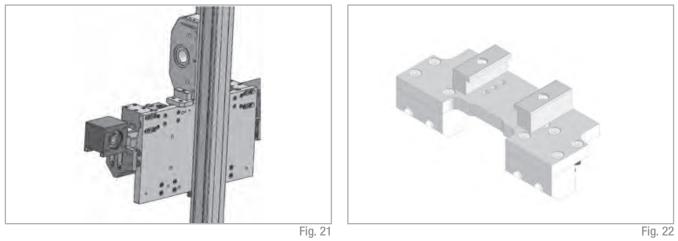


Dimensions (mm)

Unit	Shaft type	D1	D2	D3	Kit Code
SAB 60	AP 15	15	40	69.5	GK15P1A
SAB 120	AP 20	20	40	69.5	GK20P1A
SAB 180	AP 20	20	40	69.5	GK20P1A
SAB 250	AP 25	25	70	99	GK25P1A

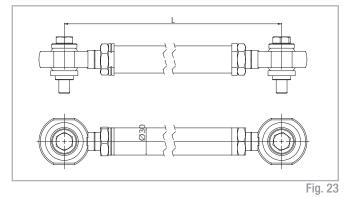
Accessories

Adapter flange for gearbox assembly



Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type	Kit Code		
SAB60	MP060; PLE060; CP060	G002375		
	PLE080	G002411		
	PGII080	G002422		
SAB120	MP080	G002426		
	PLE060; CP060; PGII060	G002427		
	MP060	G002432		
	P3	G000824		
	MP080	G000826		
	LC90; MPV01; LP090; PE4	G000827		
SAB180	MP105	G000830		
SADTOU	PE3; LP070; LC070	G001078		
	SP060; PLN070	G000829		
	SP070; PLN090	G000859		
	SW040	G000866		
	MP130	G000482		
	LC120; MPV02; LP120; PE5	G000483		
SAB 250	LC090; LP090; PE4	G000525		
3AD 230	MP105	G000527		
	SP075; PLN090	G000526		
	SW050	G000717		
		Tab. 43		


Assembly kits

While ordering two units for Y-Z assembly key has to be specified that they work together in order to drill the trolleys for the assembly of the kit.


Actuator combination Y-Z	Kit Code
S-SMART 65 on SAB 120	G002440
S-SMART 80 on SAB 180	G000990
	Tab. 44

Connection rods

Unit	Kit Code
SAB 60	
SAB 120	GT125xxxxx1A
SAB 180	
SAB 250	GT205xxxxx1A
	Tab. 45

Kit spacer

Unit	A	В	С	D	E	Kit Code
SAB 60	50	40	30	25	M6	G002343
SAB 120	100	80	50	55	M8	G002362
SAB 180	100	125	50	70	M10	G002466
SAB 250	100	145	50	80	M12	G002523
						Tab. 46

Insert for SAB 180V - SAB 180C - SAB250C

M5	Steel Std.	
M6	Steel Std.	
M8	Steel Std.	411.1352

Fig. 25

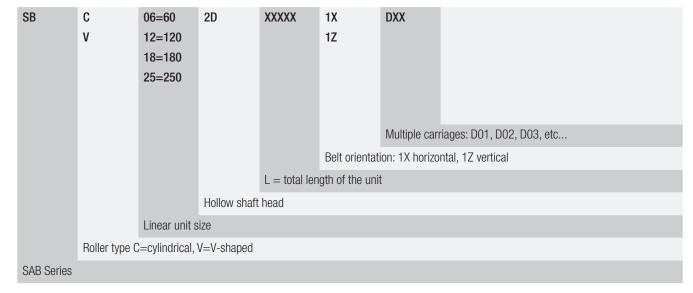
Quick insert for: SAB 180V - SAB 180C - SAB 250C

M4	Steel Std.	411.1360	9	411.2534	-+	-+-	496 —	-+-	-+	-+	-+
M5	Steel Std.	411.1361	9	411.2533	¢	∳	496 — ¢ —	¢	¢		
M6	Steel Std.	411.1362	9	4 11.3633	- \$	- + -	496 — ф —	-\$	- ¢	-+-	
M8	Steel Std.	411.1363									

Fig. 26

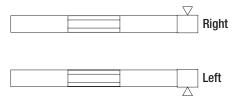
Dovetails for: SAB 120C - SAB 120V - SAB 180V - SAB 180C - SAB 250C

M12	Steel Std.	Image: Constraint of the system Image: Constand of the system Image: Constand	411.0845
M12	Steel Std.	411.0888 411.1185 411.1048	
M10	Steel Std.	411.1120 411.1119 411.1117 411.1178	
M10	Steel Std.	411.1186	
M8	Steel Std.	411.1113 411.1112 411.0675 411.1111 411.1174	
M6	Steel Std.	411.0682	
M8	Steel Std.	411.1675	
			Fig. 27


Dovetails for: SAB 60V

M8	Steel Std.	€ 411.3532					
M6	Steel Std.	4 4 11.0769	411.0771	* * * 411.0754	4 11.0768	■ 411.0732	
M5	Steel Std.	€ 411.2732	411.2733	 			
M4	Steel Std.	4 411.1732					
							Fig. 28

S R A


Identification codes for the SAB linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Configure Actuator

Left/right orientation

ZSY series // 🗸

ZSY series description

ZSY products are self-supporting extruded aluminum actuators driven by a polyurethane belt system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, ZSY series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

The ZSY series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the Aluminum profile must be moving and the carriage must be fixed. It is ideal for a "Z" axis in a 3-axis system. Available in the 180mm size.

Some of the main advantages of ZSY series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system

The components

Extruded bodies

ZSY beam is a heat-treated Aluminum alloy profile with hollow crosssections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Driving belt

The ZSY series driving system consists in a polyurethane toothed belt with AT pitch, reinforced with high resistance steel cords. For some applications, the belt driven solution is ideal due to its high load transmission characteristics, compact size and low noise. Some of the advantages of using a belt driven system are: high speed, high acceleration, low noise and no need for lubrication.

Carriage

The carriage of the ZSY series linear units is made of anodised aluminum.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 47

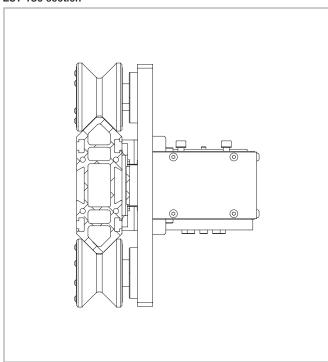
Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10-9	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655
						Tob 10

Tab. 48

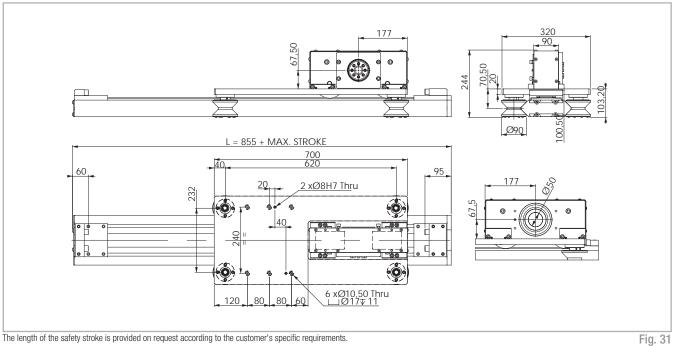
Mechanical characteristics

Rm	Rp (02)	А	HB
$\frac{N}{mm^2}$	N mm ²	%	_
205	165	10	60-80
			Tab. 49


The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

ZSY with V-shaped rollers:


These rollers are V-shaped and covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail. Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

ZSY 180 section

ZSY 180V >

ZSY 180V Dimension

Technical data

	Туре
	ZSY 180V
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s ²]	8
Type of belt	50 AT 10HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.7
Zero travel weight [kg]	36
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 50

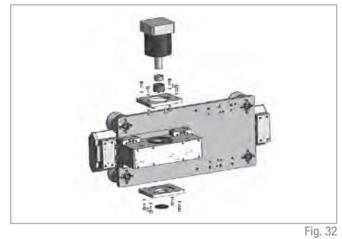
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ZSY 180V	1.029	0.128	0.260
			Tab. 51

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ZSY 180V	50 AT 10HPF	50	0.34
			Tab. 52

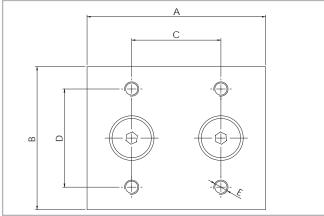

Load capacity

Туре	F _x [N]		F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]				
	Stat.	Dyn.									
ZSY 180V	4980	2880	2300	2600	188	806	713				
Non-cumulative moments r	Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Bail quide and of the rollers of up to 80,000 km Tab.										

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

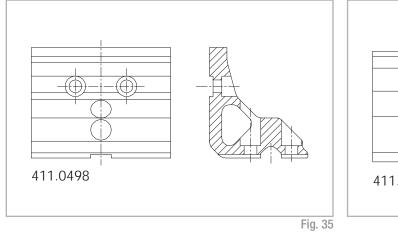
Accessories

Adapter flange for gearbox assembly



Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code
	LP120; PE5; LC120	G001856
	SP100; P5	G001857
	PSF321	G001858
ZSY 180V	PSF521	G001859
	EP120TT	G001860
	MP105	G001861
	MP080	G001951
		Tab. 54


For other gearbox type ask Rollon

Kit spacer

Unit	A	В	C	D	E	Kit Code
ZSY 180V	100	125	50	70	M10	G002466
						Tab. 55

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

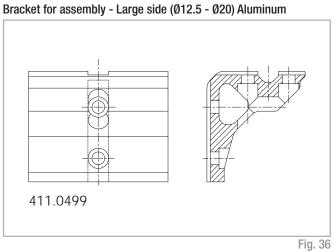
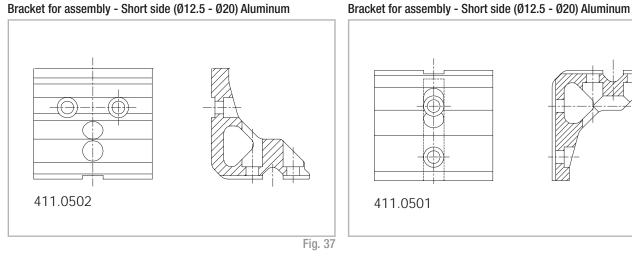
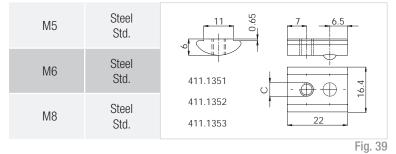




Fig. 38

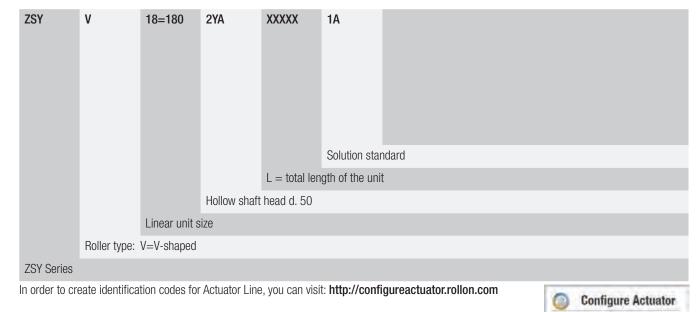
Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

Insert for: ZSY 180V

Quick front insert for: ZSY 180V

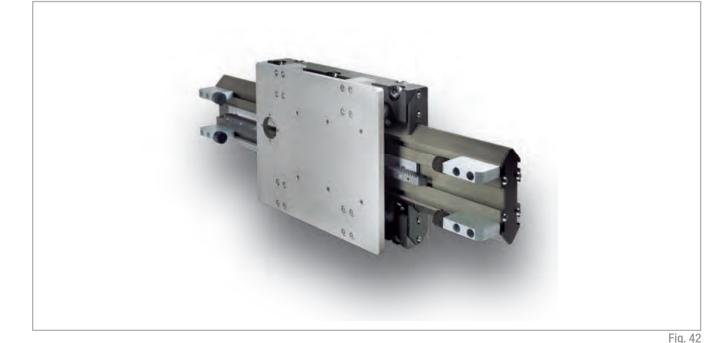
M4	Steel Std.	411.1360		411.2534	¢	-+-	496 —	-+-	-+	-+-	-+
M5	Steel Std.	411.1361	2	411.2533	¢	¢	496 — ф —	¢		-+-	
M6	Steel Std.	411.1362	16	- фф 411.3633	- \$-	_\	496 — ф —	-+-	- \$	-+-	-
M8	Steel Std.	411.1363									

Fig. 40


S R A

Dovetails for: ZSY 180V

Dovotano Ion. 2			
M12	Steel Std.	Image: Constraint of the state of	.0845
M12	Steel Std.	Image: Height of the second	
M10	Steel Std.	4 • • • 411.1120 411.1119 411.117 411.1178	
M10	Steel Std.		
M8	Steel Std.	411.1113 411.1112 411.0675 411.1111 411.1174	
M6	Steel Std.	411.0682	
M8	Steel Std.	4 11.1675	
			Eig /1



Identification codes for the ZSY linear unit

SAR series description

SAR products are self-supporting extruded aluminum actuators driven by a rack and pinion system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, SAR series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

SAR series is defined by the use of **guides with cylindrical and Vshaped rollers** as linear motion components. These linear motion systems are lightweight, self-supporting, easy to assemble, cost effective, modular, clean and quiet. Thanks to this kind of solution they are specifically dedicated for dirty environments and high dynamics in automation. SAR series is available with profiles of different sizes: 120 -180 - 250 mm. Some of the main advantages of SAR series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system
- Potentially infinite strokes

The components

Extruded bodies

SAR beam is a heat-treated Aluminum alloy profile with hollow crosssections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Rack and pinion drive

The SAR series is driven by a rack and pinion system. This option is suitable to achieve long strokes and enables the possibility to mount and to manage multiple carriages. Hardened racks and pinions allow the system to work better in dirty environments, while straight teeth permit high load capacity, low noise and a smooth linear movement. SAR products can be provided with a lubrication kit, to eliminate periodic greasing operations.

Carriage

The carriage of the SAR series linear units is made of anodised aluminum. Different lengths of the carriages are available according to the different sizes.

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remaining	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 56

Physical characteristics

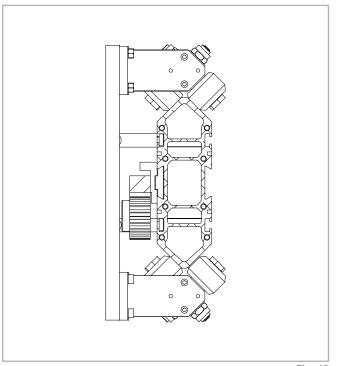
Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω.m.10-9	°C
dm ³	mm ²	K	m . K	kg . K	<u>11</u> .10 ⁻²	U
2.7	69	23	200	880-900	33	600-655
						Tab. 57

1ab. 57

Mechanical characteristics

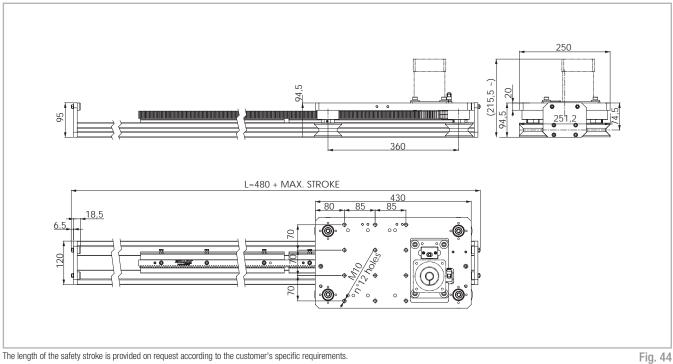
Rm	Rp (02)	А	HB
$\frac{N}{mm^2}$	N mm ²	%	_
205	165	10	60-80
			Tab. 58

The linear motion system


The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SAR with cylindrical and V-shaped rollers:

The SAR range includes a large selection of rollers both cylindrical and V-shaped, and sliders assembled with two or more rollers. SAR rollers are covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail.


Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

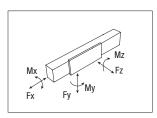
SAR section

> **SAR 120V**

SAR 120V Dimension

Technical data

	Туре
	SAR 120V
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	8
Rack module	m 2
Pinion pitch diameter [mm]	54
Carriage displacement per pinion turn [mm]	169.65
Carriage weight [kg]	7
Zero travel weight [kg]	12
Weight for 100 mm useful stroke [kg]	1.1
Rail size [mm]	120x40
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 59


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

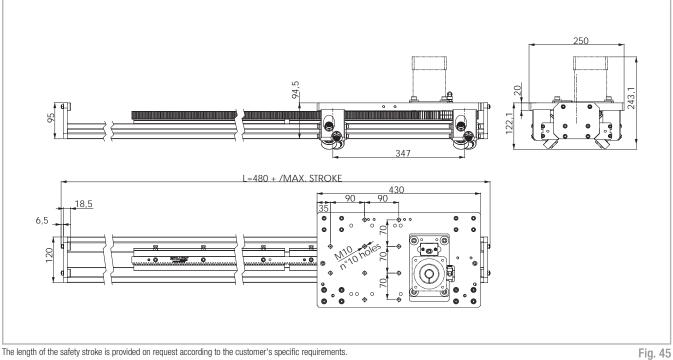
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAR 120V	0.214	0.026	0.043
			Tab. 60

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 120V	Straight teeth Hardened	m 2	Q10
			Tab. 61

Load capacity


Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAR 120V	1633	1400	800	39.3	144	252

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Tab. 62

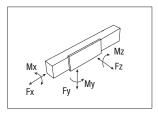
SAR 120C

SAR 120C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	SAR 120C
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	10
Rack module	m 2
Pinion pitch diameter [mm]	54
Carriage displacement per pinion turn [mm]	169.65
Carriage weight [kg]	8.4
Zero travel weight [kg]	13.5
Weight for 100 mm useful stroke [kg]	1.1
Rail size [mm]	120x40
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 63


*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

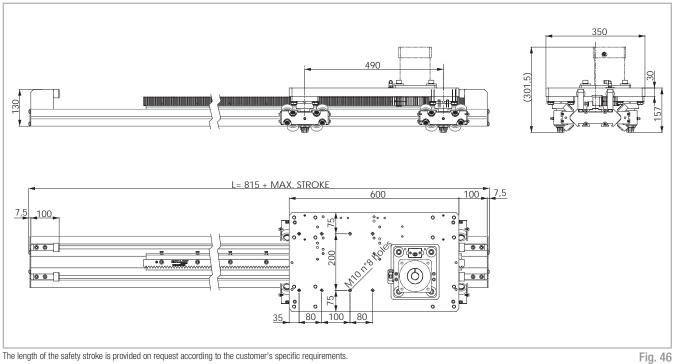
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAR 120C	0.214	0.026	0.043
			Tab. 64

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 120C	Straight teeth Hardened	m 2	Q10
			Tab. 65

Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAR 120C	1633	2489	2489	98	432	432


Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Tab. 66

S R A

SAR 180C >

SAR 180C Dimension

Technical data

	Туре
	SAR 180C
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	10
Rack module	m3
Pinion pitch diameter [mm]	63
Carriage displacement per pinion turn [mm]	197.92
Carriage weight [kg]	31.3
Zero travel weight [kg]	47
Weight for 100 mm useful stroke [kg]	2
Rail size [mm]	180x40
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 67

*1) It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

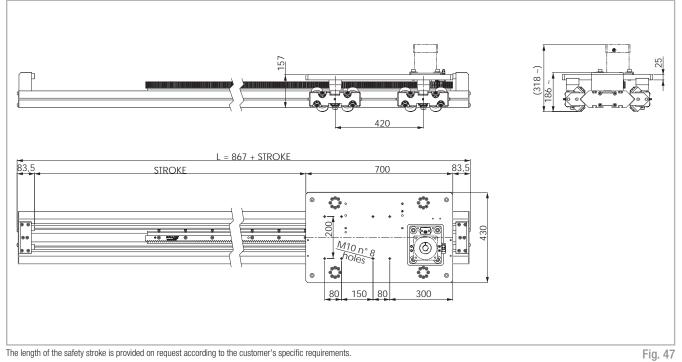
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAR 180C	1.029	0.128	0.260
			Tab. 68

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 180C	Straight teeth Hardened	m3	Q10
			Tab. 69

Load capacity


Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAR 180C	1905	4978	4978	246	1220	1220

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Tab. 70

SAR 250C

SAR 250C Dimension

Technical data

	Туре
	SAR 250C
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	10
Rack module	m3
Pinion pitch diameter [mm]	63
Carriage displacement per pinion turn [mm]	197.92
Carriage weight [kg]	40
Zero travel weight [kg]	64
Weight for 100 mm useful stroke [kg]	2.5
Rail size [mm]	250x80
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 71

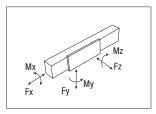
1) It is possible to obtain longer stroke by means of special Rollon joints $^{\ast}2)$ Positioning repeatability is dependent on the type of transmission used

Load capacity

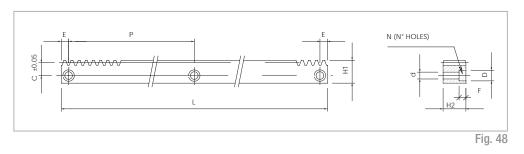
Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 250C	1905	7240	7240	744	1521	1521

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Tab. 74


S R A

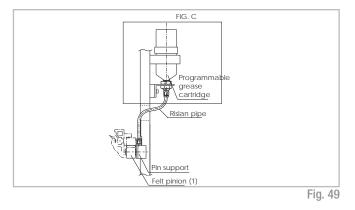
Moments	of inertia	of the	aluminum	body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAR 250C	2.735	0.412	0,840
			Tab. 72

Rack specifications

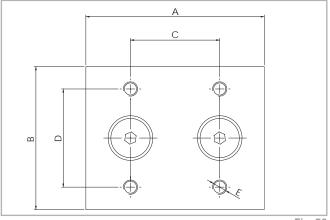
Туре	Type of rack	Rack module	Quality
SAR 250C	Straight teeth Hardened	m3	Q10
			Tab. 73

Rack specifications


Code	С	D	d	E	F	H1	H2	L	N	Р	Mod.	Surface treatment / Material
1006919	10	11	7	62.8	7	20	20	1005.31	8	125.7	2	Black manganese phosphating/SAE1141
1006920	10	11	7	62.8	7	20	20	2010.6	16	125.7	2	Black manganese phosphating/SAE1141
1006430	10	11	7	19.41	7	20	20	998.82	9	120	2	Stainless steel AISI 304
1006242	18	15	10	63.6	9	30	30	1017.6	8	127.2	3	Black manganese phosphating/SAE1141
1006243	18	15	10	63.6	9	30	30	2035.2	16	127.2	3	Black manganese phosphating/SAE1141

Tab. 75

Lubrication


Programmable automatic rack lubrication

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a). The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per rack.

Accessories

Kit spacer

Unit	А	В	С	D	E	Kit Code
SAR 120	100	80	50	55	M8	G002362
SAR 180	100	125	50	70	M10	G002466
SAR 250	100	145	50	80	M12	G002523
						Tab. 76

Adapter flange for gearbox assembly

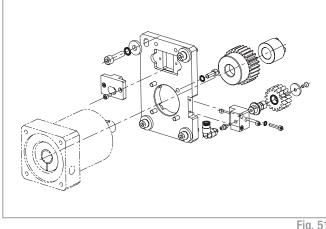


Fig. 51

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code
SAR 120	MP080	G002853
SAR 180 SAR 250	MP080 MP105	G003120 G002854
		Tab 77

Tab. 77

For other gearbox type ask Rollon

Insert for: SAR 180C - SAR 180V - SAR 250C

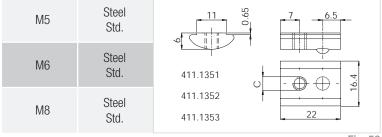


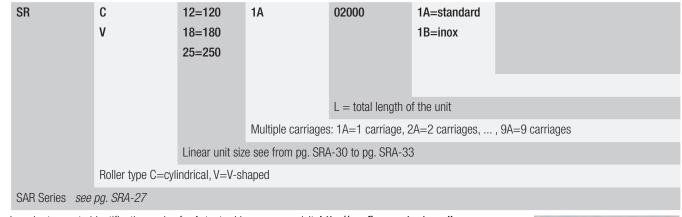
Fig. 53

Quick front insert for: SAR 180C - SAR 180V - SAR 250C

M4	Steel Std.	411.1360		411.2534	- ¢	-+-	496 —	-+-	†	-+-	-+
M5	Steel Std.	411.1361	9	411.2533	¢	¢	496 —	¢	¢	-+-	
M6	Steel Std.	411.1362	9 <mark>1</mark>	- - - - - - - - - -		_\	496 — ф —		-\$	_ \	-
M8	Steel Std.	411.1363 6 V									
											Fig 5/

Fig. 54

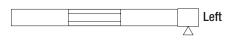
Dovetails for: SAR 120C - SAR 120V - SAR 180C - SAR 180V - SAR 250C


M12	Steel Std.	Image: Constraint of the state of	5 411.0845
M12	Steel Std.	411.0888 411.1185 411.1048	
M10	Steel Std.	4 • • • 411.1120 411.1119 411.1117 411.1178	
M10	Steel Std.		
M8	Steel Std.	Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state Image: test state <t< td=""><td></td></t<>	
M6	Steel Std.	411.0682	
M8	Steel Std.	411.1675	

Configure Actuator

6

Ordering key 🖊 🗸


Identification codes for the SAR linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left/right orientation

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

 $L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$

The effective equivalent load P_{eq} is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

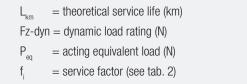
For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 3

Fig. 2

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.


Service factor f_i

f_{i}	
no shocks or vibrations, smooth and low-frequency changes in direction; (α < 5m/s ²) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s ² < α < 10 m/s ²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s ²) high contamination, very short stroke	> 3
	Tob 0

Speedy Rail A Lifetime

The rated lifetime for Speedy Rail A is: SAR 80.000 km, SAB 50.000 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations	LOW	vertical	1.8
Light impacts	Medium	horizontal	1.7
and/or vibrations	Medium	vertical	2.2
Strong impacts	High	horizontal	2.2
and/or vibrations	riigii	vertical	3

Tab. 1

Service life Uniline

Service life >

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

 $L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

- L_{km} = theoretical service life (km)
- С = dynamic load rating (N)
- Ρ = acting equivalent load (N)
- f, = service factor (see tab. 5)
- f_c = contact factor (see tab. 6)
- = stroke factor (see fig. 13) f,

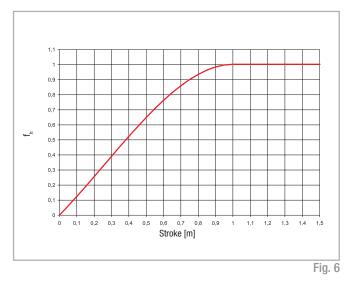
The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

$$\mathsf{P} = \mathsf{P}_{_{fy}} + \big(\frac{\mathsf{P}_{_{fz}}}{\mathsf{F}_{_{z}}} + \frac{\mathsf{M}_{_{1}}}{\mathsf{M}_{_{x}}} + \frac{\mathsf{M}_{_{2}}}{\mathsf{M}_{_{y}}} + \frac{\mathsf{M}_{_{3}}}{\mathsf{M}_{_{z}}}\big) \cdot \mathsf{F}_{_{y}}$$

Fig. 5

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f,


f _i	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5
	Tab 2

Contact factor f_c

	f _c
Standard slider	1
Long slider	0.8
Double slider	0.8
	Tab. 4

Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

Determination of the motor torque

The torque C_m required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

- C_m = torque of the motor (Nm)
- C_v = starting torque (Nm)
- F = force acting on the toothed belt (N)
- D_{p} = pitch diameter of pulley (m)

Fig. 7

Calculation formulae

>

Moments M_v and M_z for linear units with long slider plate

The allowed loads for the moments $M_{\rm y}$ and $M_{\rm z}$ depend on the length of the slider plate. The allowed moments $M_{\rm zn}$ and $M_{\rm yn}$ for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$
$$M_{zn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{z \min}$$
$$M_{yn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{y \min}$$

M _{zn}	=	allowed moment (Nm)
$M_{z \min}$	=	minimum values (Nm)
M _{yn}	=	allowed moment (Nm)
M _{y min}	=	minimum values (Nm)
S _n	=	length of the slider plate (mm)
S _{min}	=	minimum length of the slider plate (mm)
∆S	=	factor of the change in slider length
K	=	constant

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	K
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Tab. 5

Moments $\rm M_{v}$ and $\rm M_{z}$ for linear units with two slider plates

The allowed loads for the moments $M_{\rm y}$ and $M_{\rm z}$ are related to the value of the distance between the centers of the sliders. The allowed moments $M_{\rm yn}$ and $M_{\rm zn}$ for each distance between the centers of the sliders are calculated by the following formulae:

$$\begin{split} L_n &= L_{min} + n \cdot \Delta L \\ M_y &= (\frac{L_n}{L_{min}}) \cdot M_{y \, min} \\ M_z &= (\frac{L_n}{L_{min}}) \cdot M_{z \, min} \end{split}$$

M_y	=	allowed moment (Nm)
Mz	=	allowed moment (Nm)
${\sf M}_{{\sf y}{\sf min}}$	=	minimum values (Nm)
${\rm M}_{\rm zmin}$	=	minimum values (Nm)
L	=	distance between the centers of the sliders (mm)
L	=	minimum value for the distance between the centers of the sliders (mm)
ΔL	=	factor of the change in slider length

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8
				Tab 6

Warnings and legal notes

Before incorporating the partly completed machinery, we recommend consulting this chapter carefully, in addition to the assembly manual supplied with the individual modules. The information contained in this chapter and in the manuals for the individual modules, is provided by highly qualified and certified personnel, possessing adequate competence in incorporating the partly completed machinery.

Precaution in installation and handling operations. Significantly heavy equipment.

When handling the axis or system of axes, always make sure that the support or anchoring surfaces do not leave room for bending.

In order to stabilize the axis or system of axes, before handling it is mandatory to securely block the mobile parts. When moving axes with vertical translation (Z AXES) or combination systems (horizontal X and/or more than one vertical Z), it is mandatory to use the vertical movement to put all of the axes at the corresponding lower limit switch.

Do not overload. Do not subject to torsion stress.

Do not leave exposed to atmospheric agents.

Before mounting the motor on the gearbox, it is advisable to perform a pre-test of the motor itself, without connection to the gear unit. The testing of this component was not carried out by the manufacturer of the machine. It will therefore be the responsibility of the customer of Rollon to perform the testing of the same, in order to verify its correct operation.

The manufacturer cannot be considered responsible for any consequences derived from improper use or any use other than the purpose the axis or system of axes was designed for, or derived from failure to comply, during incorporation phases, with the rules of Good Technique and with what is indicated in this manual.

Avoid damage. Do not operate with inadequate tools

Warning: moving parts. Do not leave objectson the axis

Special installations: check the depth of the threads on moving elements

Make sure that the system has been installed on a level floor surface.

In use, accurately comply with the specific performance values declared in the catalog or, in particular cases, the load and dynamic performance characteristics requested in the phase prior to design.

For modules or parts of modular systems with vertical movement (Z axis), it is mandatory to mount self-braking motors to neutralize the risk of the axis dropping.

The images in this manual are to be considered merely an indication and not binding; therefore, the supply received could be different from the images contained in this manual, and Rollon S.p.A has deemed it useful to insert only one example.

Systems supplied by Rollon S.p.A. were not designed/envisaged to operate in ATEX environments.

Residual risks

- Mechanical risks due to the presence of moving elements (X, Y axes).
- Risk of fire resulting from the flammability of the belts used on the axes, for temperatures in excess of 250 °C in contact with the flame.
- The risk of the Z axis dropping during handling and installation operations on the partly completed machinery, before commissioning.
- Risk of the Z axis dropping during maintenance operations in the case

Basic components

of a drop in the electrical power supply voltage.

- Crushing hazard near moving parts with divergent and convergent motion.
- Shearing hazard near moving parts with divergent and convergent motion.
- Cutting and abrasion hazards.

The Partly Completed Machinery shown in this catalog is to be considered a mere supply of simple Cartesian axes and their accessories agreed when the contract is stipulated with the client. The following are therefore to be considered excluded from the contract:

- 1. Assembly on the client's premises (direct or final)
- 2. Commissioning on the client's premises (direct or final)
- 3. Testing on the client's premises (direct or final)

It is therefore understood that the aforementioned operations in points 1.,2., and 3. are not chargeable to Rollon.

Instructions of an environmental nature

Rollon operates with respect for the envirorment, in order to limit environmental impact. The following is a list of some instructions of an environmental nature for correct management of our supplies. Our products are mainly composed of:

Material	Details of the supply		
Alluminum alloys	Profiles, pleates, various details		
Steel with various composition	Screws, racks and pinions, and rails		
Plastic	PA6 – Chains PVC – Covers and sliding block scrapers		
Rubber of various types	Plugs, seals		
Lubrification of various types	Used for the lubrication of sliding rails and bearings		
Rust proof protectione	Rust proof protection oil		
Wood, polyethylene, cardboard	Transport packaging		

At the end of the product's life cycle, it is therfore possible to recover the various elements, in compliance with current regulations on waste issues.

Rollon is the supplier of Partly Completed Machinery, the (direct or final) client is responsible for testing and safely checking all equipment which, by definition, cannot be theoretically tested or checked at our facilities where the only movement possible is manual movement (for example: motors or reduction gears, cartesian axes movements that are not manually operated, safety brakes, stopper cylinders, mechanical or induction sensors, decelerators, mechanical limit switches, pneumatic cylinders, etc.). The partly completed machine must not be commissioned until the final machine, in which it is to be incorporated, has been declared compliant, if necessary, with the instructions in Machinery Directive 2006/42/CE.

Safety warnings for handling and transport

- The manufacturer has paid the utmost attention to packaging to minimize risks related to shipping, handling and transport.
- Transport can be facilitated by shipping certain components dismantled and appropriately protected and packaged.
- Handling (loading and unloading) must be carried out in compliance with information directly provided on the machine, on the packing and in the user manuals.
- Personnel authorized to lift and handle the machine and its components shall possess acquired and acknowledged skills and experience in the specific sector, besides having full control of the lifting devices used.
- During transport and/or storage, temperature shall remain within the allowed limits to avoid irreversible damage to electric and electronic components.
- Handling and transport must be carried out with vehicles presenting adequate loading capacity, and the machines shall be anchored to the established points indicated on the axes.
- DO NOT attempt to bypass handling methods and the established lifting points in any way.
- During handling and if required by the conditions, make use of one or more assistants to receive adequate warnings.
- If the machine has to be moved with vehicles, ensure that they are adequate for the purpose, and perform loading and unloading without risks for the operator and for people directly involved in the process.
- Before transferring the device onto the vehicle, ensure that both the machine and its components are adequately secured, and that their profile does not exceed the maximum bulk allowed. Place the necessary warning signs, if necessary.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Download the axes just near the established location and store them in an environment protected against atmospheric agents.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.
- The Installation Manager must have the project to organize and monitor all operative phases.
- The Installation Manager shall ensure that the lifting devices and equipment defined during the contract phase are available.
- The Manager of the established location and the Installation Manager shall implement a "safety plan" in compliance with the legislation in force for the workplace.
- The "safety plan" shall take into account all surrounding work-related

activities and the perimeter spaces indicated in the project for the es tablished location.

- Mark and delimit the established location to prevent unauthorized personnel from accessing the installation area.
- The installation site must have adequate environmental conditions (lighting, ventilation, etc.).
- Installation site temperature must be within the maximum and minimum range allowed.
- Ensure that the installation site is protected against atmospheric agents, does not contain corrosive substances and is free of the risk of explosion and/or fire.
- Installation in environments presenting a risk of explosion and/or of fire must ONLY be carried out if the machine has been DECLARED COMPLIANT for such use.
- Check that the established location has been correctly fitted out, as defined during the contract phase and based on indications in the relative project.
- The established location must be fitted out in advance to carry out complete installation in compliance with the defined methods and schedule.

Note

- Evaluate in advance whether the machine must interact with other production units, and that integration can be implemented correctly, in compliance with standards and without risks.
- The manager shall assign installation and assembly interventions ONLY to authorized technicians with acknowledged know-how.
- State of the art connections to power sources (electric, pneumatic, etc.) must be ensured, in compliance with relevant regulatory and legislative requirements.
- "State of the art" connection, alignment and leveling are essential to avoid additional interventions and to ensure correct machine function.
- Upon completion of the connections, run a general check to ascertain that all interventions have been correctly carried out and compliance with requirements.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.

Transport

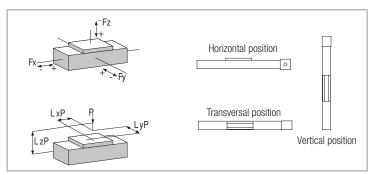
- Transport, also based on the final destination, can be done with different vehicles.
- Perform transport with suitable devices that have adequate loading capacity.
- Ensure that the machine and its components are adequately anchored to the vehicle.

Handling and lifting

- Correctly connect the lifting devices to the established points on the packages and/or on the dismantled parts.
- Before handling, read the instructions, especially safety instructions, provided in the installation manual, on the packages and/or on the dismantled parts.
- DO NOT attempt, in any way, to bypass handling methods and the established lifting, moving and handling points of each package and/or dismantled part.
- Slowly lift the package to the minimum necessary height and move it with the utmost caution to avoid dangerous oscillations.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to reach the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Do not stack packages to avoid damaging them, and reduce the risk of sudden and dangerous movements.
- In case of prolonged storage, regularly ensure that there are no variations in the storage conditions of the packages.

Check axis integrity after shipment

Every shipment is accompanied by a document ("Packing list") with the list and description of the axes.


- Upon receipt check that the material received corresponds to specifications in the delivery note.
- Check that packaging is perfectly intact and, for shipments without packaging, check that each axis is intact.
- In case of damages or missing parts, contact the manufacturer to define the relevant procedures.

Data sheet // 🗸

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
E-Mail:	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		а	[m/s ²]			
Positioning repeatability		∆s	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

A NEW DIGITAL EXPERIENCE SURROUNDED BY ROLLON EXPERTS WHERE YOU CAN EASILY SELECT THE PRODUCT YOU NEED.

MY.ROLLON.COM

Plus System ROBOT

EARCH Q

ASK FOR AN E

CATALOGS ±

100 130 160 220

Rigid and "self-supported" linear unit

Available Sizes

ictus

Share this product

Distributors for Australia & New Zealand MOTION TECHNOLOGIES PTY LIMITED

24/22-30 Northumberland Road Caringbah NSW 2229 Australia Phone: (02) 9524 4782

sales@motiontech.com.au www.motiontech.com.au

© 13/07/2023

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.