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Abstract
This paper presents stochastic virtual element methods for propagating uncertainty in linear elastic stochastic problems.
We first derive stochastic virtual element equations for 2D and 3D linear elastic problems that may involve uncertainties in
material properties, external forces, boundary conditions, etc. A stochastic virtual element space that couples the deterministic
virtual element space and the stochastic space is constructed for this purpose and used to approximate the unknown stochastic
solution. Two numerical frameworks are then developed to solve the derived stochastic virtual element equations, including a
Polynomial Chaos approximation based approach and a weakly intrusive approximation based approach. In the Polynomial
Chaos based framework, the stochastic solution is approximated using thePolynomialChaos basis and solvedvia an augmented
deterministic virtual element equation that is generated by applying the stochastic Galerkin procedure to the original stochastic
virtual element equation. In the weakly intrusive approximation based framework, the stochastic solution is approximated by
a summation of a set of products of random variables and deterministic vectors, where the deterministic vectors are solved
via converting the original stochastic problem to deterministic virtual element equations by the stochastic Galerkin approach,
and the random variables are solved via converting the original stochastic problem to one-dimensional stochastic algebraic
equations by the classical Galerkin procedure. This method avoids the curse of dimensionality in high-dimensional stochastic
problems successfully since all random inputs are embedded into one-dimensional stochastic algebraic equations whose
computational effort weakly depends on the stochastic dimension. Numerical results on 2D and 3D problems with low- and
high-dimensional random inputs demonstrate the good performance of the proposed methods.

Keywords Stochastic virtual element method · Polynomial Chaos expansion · Weakly intrusive approximation · Curse of
dimensionality · Uncertainty quantification

1 Introduction

Numerical techniques for solving complex partial differen-
tial equations are continuously developing at an incredible
rate, e.g. finite difference methods, finite volume methods,
finite element methods, spectral element methods, etc [23].
As a generalization of the finite element method, the virtual
element method (VEM) has been proposed and received a
lot of attention in the last decade [4, 20, 30, 31]. Compared
to the classical finite element method, VEM can discretize
2D or 3D geometric domains utilizing arbitrary polygons
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or polyhedrons and is not limited to the regular elements
used in the finite element method, which is thus highly flex-
ible and mesh insensitive. In VEM, the shape functions can
be non-polynomial. It does not require constructing explicit
shape functions on elements since all numerical integration
is transferred to edges rather than performed on the ele-
ments. Several limitations of finite element methods are also
avoided, such as convex elements and element degradation
caused by small edges and interior angles. Applications of
VEM to various problems have been extensively studied,
such as linear elastic problems [5, 11, 14], large deforma-
tion problems [9, 34], contact problems [2, 32, 33], fracture
and crack propagation problems [1, 7, 17], topology opti-
mization [3, 10], etc. Although extensive studies have been
conducted, there is still a gap in using VEM to deal with
problems with uncertainties. In many practical engineering
problems, the inherent or epistemic uncertainty of systems
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are unavoidable. Predicting uncertainty propagation on the
physical models has become an important part of the analysis
of systems [26], which leads to the development of dedicated
numerical methods for uncertainty analysis.

In this paper, we focus on extending the deterministic
VEM to stochastic VEMs (SVEMs) for the uncertainty anal-
ysis of 2D and 3D linear elastic stochastic problems that
may involve randommaterial properties and stochastic exter-
nal forces, etc., which is currently still lacking. Our main
contributions in this paper consist of two parts: the first
contribution is to extend the deterministic virtual element
discretization to stochastic cases and derive corresponding
stochastic virtual element equations (SVEEs), and the second
contribution is to present two numerical methods to solve the
derived SVEEs efficiently and accurately. For the first con-
tribution, we extend the deterministic virtual element space
to a stochastic virtual element space that couples the clas-
sical virtual element space and the stochastic space, which
can provide (stochastic) virtual element approximations for
both deterministic and stochastic functions in the space. The
constructed stochastic virtual element space can be consid-
ered as a deterministic virtual element space parameterized
by random inputs. For each sample realization of the ran-
dom input, it degenerates into a deterministic virtual element
space and inherits all properties of classical virtual element
spaces. Thus, we can simply approximate the stochastic solu-
tion using a linear combination of deterministic virtual basis
functionswith randomcoefficients (i.e. the unknown stochas-
tic solution). Further, numerical techniques for calculating
the gradients of virtual basis functions and the stabilization
term in the deterministic VEM [5, 10, 14, 31] can still be used
to the stochastic discretization with slight modifications. In
this way we can obtain SVEEs by assembling the stochastic
stiffness matrix and the stochastic force vector with a com-
plexity similar to the deterministic VEM.

Similar to VEM being a generalization of the finite ele-
mentmethod, SVEM is also considered to be a generalization
of the stochastic finite element method [28]. Thus, numeri-
cal algorithms for solving the derived SVEEs can benefit
from stochastic finite element solution algorithms, such as
Monte Carlo simulation (MCS) and its improvements [16,
21], spectral stochastic finite element methods [15, 36],
stochastic collocation methods [6, 35], response surface and
krigingmethods [13, 19], etc. For the second contribution,we
develop two numerical methods to solve the derived SVEE,
including a Polynomial Chaos expansion based SVEM (PC-
SVEM) and aWeakly INtrusive approximation based SVEM
(WIN-SVEM). The other methods mentioned above can also
be extended to SVEMs in a similar way to this paper. The PC-
SVEM is a natural extension of the spectral stochastic finite
element method [15]. In this method, the stochastic solu-
tion is decomposed into a summation of a set of products of
PC basis and deterministic vectors. By the use of stochas-

tic Galerkin procedure, the original SVEE is transformed
into an augmented deterministic equationwhose size ismuch
larger than the original SVEE. Also, the size increases dra-
matically as the degree of freedom of physical models, the
stochastic dimension and the expansion order of PC basis
increase, which leads to the curse of dimensionality when
dealing with large-scale and/or high-dimensional stochas-
tic problems. To address this issue, we further present the
WIN-SVEM, which is an extension of our previous work
for solving stochastic finite element equations [41, 42]. In
this method, the stochastic solution is approximated by a
summation of a set of products of random variables and
deterministic vectors. Different from the PC-SVEM, both
random variables and deterministic vectors are not known a
priori. To this end, we solve them using a dedicated iteration.
The deterministic vectors are solved via a few deterministic
equations that are obtained by a similar stochastic Galerkin
process used to PC-SVEM. The random variables are solved
via one-dimensional stochastic algebraic equations that are
obtained by applying the classical Galerkin procedure to the
original SVEE. In this way, all random inputs are embedded
into these one-dimensional stochastic algebraic equations,
and their efficient and accurate solutions are achieved using a
non-intrusive sampling method with weak dimension depen-
dence. The proposed WIN-SVEM thus avoids the curse of
dimensionality in high-dimensional stochastic problems suc-
cessfully.

The paper is organized as follows: Sect. 2 presents the
stochastic virtual element discretization for linear elastic
stochastic problems and stochastic virtual element equations
are then derived. In Sect. 3, the PC-SVEM is developed to
solve the derived stochastic systems. Following that, the
WIN-SVEM is proposed in Sect. 4 to solve the derived
stochastic systems efficiently, with special emphasis on
high-dimensional stochastic problems. 2D and 3D numer-
ical examples involving low- and high-dimensional random
inputs are given in Sect. 5 to demonstrate the performance
of the proposed methods. Conclusions and outlook follow in
Sect. 6.

2 Stochastic virtual element equations

2.1 Stochastic elastic equations

Let (�,�,P) be a suitable probability space, where �

denotes the space of elementary events, � is a σ -algebra
defined on � and P is a probability measure. In this paper,
we consider the following elastic stochastic equation

⎧
⎪⎨

⎪⎩

−∇ · σ (x, θ) = f (x, θ) in �

σ (x, θ) · n = g (x, θ) on �N

u (x, θ) = uD (x, θ) on �D

, (1)
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where the domain � ⊂ R
d with the boundary ∂�, the spa-

tial dimension may be d = 2, 3 and the d-dimensional
spatial coordinate is given by x = (x1, . . . , xd) ∈ �,
∇ · (·) denotes the divergence operator, σ (x, θ) is the
stochastic stress tensor, the vector-valued displacement field
u (x, θ) = [u1 (x, θ) , . . . , ud (x, θ)]T ∈ R

d is the unknown
stochastic solution that needs to be solved, the vector-
valued field f (x, θ) = [ f1 (x, θ) , . . . , fd (x, θ)]T ∈ R

d

is associated with stochastic external forces, and �N and
�D are boundary segments associated with the Neumann
boundary condition g (x, θ) = [g1 (x, θ) , . . . , gd (x, θ)]T ∈
R
d and the Dirichlet boundary condition uD (x, θ) =
[
uD,1 (x, θ) , . . . , uD,d (x, θ)

]T ∈ R
d . In this paper, we only

consider linear elastic stochastic problems. The following
linear stochastic strain tensor and linear elastic constitutive
relation are adopted

ε (u (x, θ)) = 1

2

[
∇u (x, θ) + (∇u (x, θ))T

]
∈ R

d×d ,

σ (u (x, θ) , θ) = C (x, θ) ε (u (x, θ)) ∈ R
d×d ,

(2)

where C (x, θ) is a fourth order elastic tensor that may
be related to stochastic material properties, e.g. stochastic
Young’s modulus and stochastic Poisson ratio.

To solve (1), let us consider its weak form written as fol-
lows: find a stochastic function u (x, θ) ∈ V : �×� → R

d

such that the following equation holds for P-almost surely
θ ∈ �,

W (u (x, θ) , v (x) , θ) = F (v (x) , θ) , ∀v (x) ∈ V , (3)

where the functional space is defined as V ={
v ∈ [H 1 (�)

]d : v = 0 on �D

}
, and H 1 (�) is the sub-

space of the space of square integrable scalar functions on �

that contains both the function and its weak derivatives [37].
The left-side term W (u (x, θ) , v (x) , θ) and the right-side
termF (v (x) , θ) are given by

W (u (x, θ) , v (x) , θ) =
∫

�

σ (u (x, θ) , θ) : ε (v (x)) dx

=
∫

�

[C (x, θ) ε (u (x, θ))] : ε (v (x)) dx, (4)

F (v (x) , θ) =
∫

�

f (x, θ) · v (x) dx

+
∫

�N

g (x, θ) · v (x) ds. (5)

2.2 Stochastic virtual element discretization

We adopt the stochastic virtual element discretization for the
weak form (3). Specifically, the domain � is partitioned into
ne non-overlapping polygonal elements� = ⋃ne

e=1 �(e), and

each element �(e), e = 1, . . . , ne includes n(e) vertices and
m(e) edges. In this paper, we only consider the lowest-order
virtual element, but the proposed method can be extended
to higher-order virtual elements [12]. We give the following
approximate discretized virtual space Vh

(
�(e)

) ⊂ V of the
element �(e)

Vh

(
�(e)

)
=
{

vh ∈
[
H 1

(
�(e)

)⋂
C 0
(
�(e)

)]d :

v
h,∂�

(e)
i

∈
[
P1

(
∂�

(e)
i

)]d
,∀∂�

(e)
i ∈ ∂�(e),

∇ · [C (θ) ε (vh)] = 0, ∀θ ∈ � on �(e)
}

, (6)

where P1 represents the space of polynomials of degree
up to 1, vh is a polynomial on each edge ∂�

(e)
i , i =

1, . . . ,m(e) of �(e) and C 0-continuity on the element �(e),
and ∇ · [C (θ) ε (vh)] vanishes on the element �(e) for all
θ ∈ �. In this way, we couple the classical virtual element
space and the random input θ . The function vh is not known
on the element �(e) but explicitly known on the edge ∂�(e).
We now consider the weak form (3) on the discretized space:
find uh (x, θ) ∈ Vh : � × � → R

d such that the following
equation holds for P-almost surely θ ∈ � and ∀vh (x) ∈ Vh

Wh (uh (x, θ) , vh (x) , θ) = Fh (vh (x) , θ) , (7)

whereWh andFh are assembled by looping over all elements{
�(e)

}ne
e=1

Wh (uh (x, θ) , vh (x) , θ)

=
ne∑

e=1

W (e)
h (uh (x, θ) , vh (x) , θ) , (8)

Fh (vh (x) , θ) =
ne∑

e=1

F (e)
h (vh (x) , θ) . (9)

It is noted that W (e)
h (uh (x, θ) , vh (x) , θ) and

F (e)
h (vh (x) , θ) cannot be evaluated in a similar way to

the classical finite element method since the function vh is
unknown on the element�(e). To this end, a projection opera-

tor�(e) : Vh
(
�(e)

) → [
P1

(
�(e)

)]d
is defined similar to the

deterministic VEM [11, 30] such that for ∀vh ∈ Vh
(
�(e)

)
,

∀ p1 ∈ [P1
(
�(e)

)]d
and ∀θ ∈ �,

W (e)
h

(
vh (x) − �(e)vh (x) , p1 (x) , θ

)
= 0 (10)

holds. Further, we can reformulate the stochastic term
W (e)

h (uh (x, θ) , vh (x) , θ) as
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W
(e)
h (uh (x, θ) , vh (x) , θ)

= W
(e)
h

(
�(e)uh (x, θ) + uh (x, θ) − �(e)uh (x, θ) ,

�(e)vh (x) + vh (x) − �(e)vh (x) , θ
)

, (11)

= W
(e)
h

(
�(e)uh (x, θ) , �(e)vh (x) , θ

)

︸ ︷︷ ︸

=W (e)
C (θ)

+ W
(e)
h

(
uh (x, θ) − �(e)uh (x, θ) , vh (x) − �(e)vh (x) , θ

)

︸ ︷︷ ︸

=W (e)
S (θ)

+ W
(e)
h

(
�(e)uh (x, θ) , vh (x) − �(e)vh (x) , θ

)

︸ ︷︷ ︸
=0

+ W
(e)
h

(
uh (x, θ) − �(e)uh (x, θ) , �(e)vh (x) , θ

)

︸ ︷︷ ︸
=0

, (12)

whereW (e)
C (θ) andW (e)

S (θ) are called the stochastic consis-
tent term and the stochastic stabilization term, respectively.
The last two terms are obtained according to (10) due to

�(e)vh (x), �(e)uh (x, θ) ∈ [
P1

(
�(e)

)]d
. Furthermore,

ε(e)
(
�(e)uh (x, θ)

)
and ε(e)

(
�(e)vh (x)

)
are (stochastic)

constant strain tensors. Therefore, the stochastic consistent
term W (e)

C (θ) is evaluated via

W (e)
C (θ) =

∫

�(e)

[
C(e) (x, θ) ε(e)

(
�(e)uh (x, θ)

)]
:

ε(e)
(
�(e)vh (x)

)
dx

= a(e)
[
C(e) (x, θ) ε(e)

(
�(e)uh (x, θ)

)]
:

ε(e)
(
�(e)vh (x)

)
, (13)

where a(e) is the area (for 2D polygonal element) or the vol-
ume (for 3D polygonal element) of the element �(e).

Further, we let the stochastic solution uh (x, θ) and the
function vh (x) on the element �(e) be approximated using a

set of virtual basis functions
{
ϕi (x) ∈ Vh

(
�(e)

)}n(e)

i=1

uh (x, θ) =
n(e)
∑

i=1

ϕi (x) u
(e)
i (θ) ,

vh (x) =
n(e)
∑

i=1

ϕi (x) v
(e)
i ,

(14)

where the stochastic solution vector u(e)
i (θ) of the element

�(e) is given by u(e) (θ) =
[
u(e)T
1 (θ) , . . . ,u(e)T

n(e) (θ)
]T ∈

R
n(e)d , and the componentu(e)

i (θ) =
[
u(e)
i,1 (θ) , . . . , u(e)

i,d (θ)
]T

∈ R
d is the stochastic solution vector of the i-th vertex. The

vector v(e)
i ∈ R

n(e)d has a similar expression but does not
involve the random input θ . Applying the projection opera-
tor �(e) to uh (x, θ) and vh (x) we have

�(e)uh (x, θ) =
n(e)
∑

i=1

�(e)ϕi (x) u
(e)
i (θ) ,

�(e)vh (x) =
n(e)
∑

i=1

�(e)ϕi (x) v
(e)
i .

(15)

On the basis of this we rewrite the strain tensors
ε(e)

(
�(e)uh (x, θ)

)
and ε(e)

(
�(e)vh (x)

)
as the following

vector forms

ε
(e)
�,vec

(
u(e) (θ)

)
= B(e)u(e) (θ)

=
[
B(e)
1 , . . . ,B(e)

n(e)

]
u(e) (θ) ∈ R

d(d+1)
2 ,

ε
(e)
�,vec

(
v(e)

)
= B(e)v(e) ∈ R

d(d+1)
2 ,

(16)

where the component matrices B(e)
i ∈ R

d(d+1)
2 ×d , i =

1, . . . , n(e) are given by

B(e)
i =

⎡

⎢
⎢
⎣

∂�(e)ϕi (x)
∂x1

0

0 ∂�(e)ϕi (x)
∂x2

∂�(e)ϕi (x)
∂x2

∂�(e)ϕi (x)
∂x1

⎤

⎥
⎥
⎦ (d = 2)

or =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂�(e)ϕi (x)
∂x1

0 0

0 ∂�(e)ϕi (x)
∂x2

0

0 0 ∂�(e)ϕi (x)
∂x3

∂�(e)ϕi (x)
∂x2

∂�(e)ϕi (x)
∂x1

0

0 ∂�(e)ϕi (x)
∂x3

∂�(e)ϕi (x)
∂x2

∂�(e)ϕi (x)
∂x3

0 ∂�(e)ϕi (x)
∂x1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(d = 3),

(17)

where the components ∂�(e)ϕi (x)
∂x j

, i = 1, . . . , n(e), j =
1, . . . , d are evaluated via transferring the calculations to
edges and faces of the element �(e) based on (10), which is
the same as the deterministic virtual element method, see [5,
14, 30, 31] for details. In thisway, it does not require knowing
explicit representations of the functions {ϕi (x)}n(e)

i=1 and only
needs to know their traces on edges. The Lagrangian linear
basis functions similar to those used in the classical finite
element method can be adopted for the purpose. Substituting
(16) into (13) we have

W (e)
C (θ) = a(e)v(e)TB(e)TG(e) (θ)B(e)u(e) (θ) , (18)

where G(e) (θ) ∈ R
d(d+1)

2 × d(d+1)
2 is the matrix form of the

tensor C (x, θ) of the element �(e). Two detailed represen-
tations ofG (θ) for 2D and 3D problems can be found in the
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numerical example section. Hence, the stochastic element
stiffness matrix corresponding to the stochastic consistent
term W (e)

C (θ) is given by

k(e)
C (θ) = a(e)B(e)TG(e) (θ)B(e) ∈ R

n(e)d×n(e)d . (19)

Further, let us consider the calculation of the stochastic
stabilization term W (e)

S (θ) in (12), which can be achieved
taking advantage of several numerical strategies [5, 14, 30].
Here we adopt the approach presented in [10, 31], which
corresponds to

W (e)
S (θ) = γ

(e)
S (θ)

n(e)
∑

i=1

[
uh (xi , θ) − �(e)uh (xi , θ)

]

·
[
vh (xi ) − �(e)vh (xi )

]
, (20)

where xi = (
xi,1, . . . , xi,d

)
, xi, j denotes the i-th coordinate

value of the j-th vertex of the element �(e). In the practical
implementation, it is calculated as [10]

W (e)
S (θ) = γ

(e)
S (θ) v(e)T

(
In(e)d − S(e)

)T ·
(
In(e)d − S(e)

)
u(e) (θ) , (21)

where the coefficient γ
(e)
S (θ) = 1

2Tr
(
G(e) (θ)

)
, Tr (·) is the

trace operator of matrices, In(e)d ∈ R
n(e)d×n(e)d is the identity

matrix, and the deterministic matrix S(e) ∈ R
n(e)d×n(e)d is

given by

S(e) =

⎡

⎢
⎢
⎣

h(e)
11 Id · · · h(e)

1n(e)Id
...

. . .
...

h(e)
n(e)1

Id · · · h(e)
n(e)n(e)Id

⎤

⎥
⎥
⎦ , (22)

h(e)
i j = X(e)T

i A(e)
j + 1

n(e)
, (23)

where the vectors X(e)
i ∈ R

d and A(e)
i ∈ R

d are given by

X(e)
i =

⎡

⎣x1,i − 1

n(e)

n(e)
∑

j=1

x1, j , . . . , xd,i − 1

n(e)

n(e)
∑

j=1

xd, j

⎤

⎦

T

A(e)
i =

[
∂�ϕi (x)

∂x1
, . . . ,

∂�ϕi (x)
∂xd

]T

(24)

Hence, the stochastic element stiffness matrix k(e)
S (θ) ∈

R
n(e)d×n(e)d corresponding to the stochastic stabilization term

W (e)
S (θ) is given by

k(e)
S (θ) = γ

(e)
S (θ)

(
In(e)d − S(e)

)T (
In(e)d − S(e)

)
, (25)

which is very close to that in the deterministic VEM, but
the coefficient γ (e)

S (θ) involves the random input θ . The cal-
culation procedure of deterministic virtual element matrices
can thus be inherited for k(e)

S (θ). We only need to pay a little

attention to the calculation of the random coefficient γ (e)
S (θ).

In the last step, let us consider the stochastic term
F (e)

h (vh (x) , θ) calculated exactly using the one-point inte-
gration rule on the edges and the face (for 2D case) or the
faces and the element (for 3D case)

F (e)
h (vh (x) , θ) =

∫

�(e)
f (e) (x, θ) · vh (x) dx

+
∫

�
(e)
N

g(e) (x, θ) · vh (x) ds

= a(e)

(
n(e)

)2 v
(e)TZT

1Z1 f (e) (θ)

+ v(e)T

n(e)
�N∑

j=1

b(e)
j

(
n(e)

�N , j

)2Z
T
2, jZ2, j g(e) (θ) ,

(26)

where n(e)
�N

is the number of edges (for 2D case) or

faces (for 3D case) of the element �(e), �
(e)
N , j is the j-

th edge or face and includes n(e)
�N , j

vertices, and b(e)
j is

the length (for 2D element) or the area (for 3D ele-
ment) of �

(e)
N , j . The vectors consisting of the values on

each vertex are f (e) (θ) =
[
f (e)T
1 (θ) , . . . , f (e)T

n(e) (θ)
]T ∈

R
n(e)d , f (e)

i (θ) =
[
f (e)
i,1 (θ) , . . . , f (e)

i,d (θ)
]T ∈ R

d and

g(e) (θ) =
[
g(e)T
1 (θ) , . . . , g(e)T

n(e) (θ)
]T ∈ R

n(e)d , g(e)
i (θ) =

[
g(e)
i,1 (θ) , . . . , g(e)

i,d (θ)
]T ∈ R

d . The deterministic matrices

are given by Z1 =
⎡

⎢
⎣Id , . . . , Id︸ ︷︷ ︸

n(e)

⎤

⎥
⎦ ∈ R

d×n(e)d and Z2, j =
[

δ∗
1,�(e)

N , j

Id , . . . , δ∗
n(e),�

(e)
N , j

Id

]

∈ R
d×n(e)d , where δ∗

i,�(e)
N , j

= 1

if the vertex i ∈ �
(e)
N , j and 0 otherwise. Thus, the stochastic

element force vector is calculated as

f (e) (θ) = a(e)

(
n(e)

)2Z
T
1Z1 f (e) (θ)

+
n(e)

�N∑

j=1

b(e)

(
n(e)

�N , j

)2Z
T
2, jZ2, j g(e) (θ) ∈ R

n(e)d . (27)
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Assembling the above stochastic element stiffness matri-
ces and stochastic element force vector we obtain the
following SVEE

K (θ)u (θ) = F (θ) , (28)

where the global stochastic stiffness matrixK (θ) and the the
global stochastic force vector F (θ) are assembled by

K (θ) =
ne⋃

e=1

(
k(e)
C (θ) + k(e)

S (θ)
)

∈ R
n×n,

F (θ) =
ne⋃

e=1

f (e) (θ) ∈ R
n,

(29)

where
⋃

(·) represents the assembly operator for all stochas-
tic element matrices and vectors, and the total degree of
freedom (DoF) is given by n = ned.

Further, let us consider that the stochastic matrixG (x, θ)

(or the tensor C (x, θ)) can be approximated using the fol-
lowing separated form in many cases

G (x, θ) =
m∑

i=0

ξi (θ)Gi , (30)

where ξ0 (θ) ≡ 1, {ξi (θ)}mi=1 are scalar random variables,
{
Gi ∈ R

d(d+1)
2 × d(d+1)

2

}m

i=0
are deterministic matrices. For the

non-separated stochastic matrixG (x, θ), the approaches for
simulating random fields can be adopted to achieve (30)-
like approximations for both Gaussian and non-Gaussian
random inputs, e.g. Karhunen–Loève expansion and Poly-
nomial Chaos expansion [25, 39, 40]. In this way, we can
reformulate the SVEE (28) as

(
m∑

i=0

ξi (θ)Ki

)

u (θ) = F (θ) , (31)

where the deterministic matrices {Ki }mi=0 are assembled via

Ki =
ne⋃

e=1

(
k(e)
C (Gi ) + k(e)

S (Gi )
)

∈ R
n×n (32)

since the stochastic element matrices k(e)
C (θ) in (19) and

k(e)
S (θ) in (25) depend linearly on the matrix components

{Gi }mi=0.

3 PC-SVEM: Polynomial Chaos based
spectral stochastic virtual element method

The PC-basedmethods have beenwell developed andwidely
applied to solve a variety of stochastic problems. In this sec-
tion, we present a PC-SVEM to solve the SVEE (28) (or the
separated form (31)). In this method, the stochastic solution
u (θ) is expanded using (generalized) PC basis as follows

uPC,k (θ) =
k∑

i=1

�i (θ)dPC,i , (33)

where
{
dPC,i

}k
i=1 are the corresponding deterministic vectors

to be solved, {�i (θ)}ki=1 are the PC basis. In practice, we
can choose different PC basis for different types of random
inputs, such as the Hermite PC basis for Gaussian random
variables and the Legendre PC basis for uniform random
variables [15, 36]. The stochastic Galerkin approach is then
used to transformSVEE (28) into the following deterministic
equation [15]

∫

�

[

K (θ)

k∑

i=1

�i (θ)dPC,i − F (θ)

]

� j (θ) dP (θ) = 0

(34)

for j = 1, . . . , k,whereP (θ) is the probabilitymeasurement
of the random input θ . Further, the above equation can be
rewritten as a compact form

KPCdPC = FPC, (35)

where the augmented deterministic matrix KPC ∈ R
nk×nk

and the augmented deterministic vectors dPC, FPC ∈ R
nk are

assembled by

KPC =
⎡

⎢
⎣

KPC,11 · · · KPC,1k
...

. . .
...

KPC,k1 · · · KPC,kk

⎤

⎥
⎦ ,

dPC =
⎡

⎢
⎣

dPC,1
...

dPC,k

⎤

⎥
⎦ , FPC =

⎡

⎢
⎣

FPC,1
...

FPC,k

⎤

⎥
⎦ , (36)

where the matrix and vector componentsKPC, j i ∈ R
n×n and

FPC, j ∈ R
n , i, j = 1, . . . , k are

KPC, j i =
∫

�

K (θ) �i (θ) � j (θ) dP (θ) ,

FPC, j =
∫

�

F (θ) � j (θ) dP (θ) .

(37)

123



Computational Mechanics

Further, if the separated form (31) is considered, the above
calculation of the matrices KPC, j i is simplified as

KPC, j i =
m∑

l=0

[∫

�

ξl (θ) �i (θ) � j (θ) dP (θ)

]

Kl , (38)

whichonly involves thenumerical integration
∫

�
ξl (θ) �i (θ)

� j (θ) dP (θ). For low-dimensional stochastic problems, the
calculation is cheap enough benefiting from efficient numer-
ical integration strategies in stochastic spaces [35].

It is noted that the total number of PC basis is k = (m+r)!
m!r ! ,

where (·)! is the factorial operator, r is the expansion order
of the PC basis. Thus, similar to classical PC-based methods,
the proposed PC-SVEM still suffers from the curse of dimen-
sionality since the matrix/vector size nk in (35) increases
sharply as the spatial DoF n of the physical model, the
stochastic dimension m of the random input and the expan-
sion order r of the PC basis increase. For instance, the size
is about nk = 1 × 106 when n = 1 × 103, m = 10 and
r = 4, which requires extremely expensive computational
effort. Although several methods are developed to alleviate
the computational burden, e.g. dedicated iterative algorithms
and sparse PC approximations [8, 18, 22]. It is still challeng-
ing to solve very high-dimensional stochastic problems using
the PC-SVEM.

4 WIN-SVEM: weakly intrusive stochastic
virtual element method

4.1 A weakly intrusive stochastic virtual element
method

To avoid the curse of dimensionality arising in the above PC-
SVEM, we present a WIN-SVEM in this section, which can
be considered as an extension of our previous work [41, 42]
on stochastic finite element methods to SVEM. To this end,
we consider the stochastic solution u (θ) approximated by
the following series expansion

uWIN,k (θ) =
k∑

i=1

λi (θ)dWIN,i , (39)

where {λi (θ) ∈ R}ki=1 are scalar random variables,
{
dWIN,i ∈ R

n
}k
i=1 are deterministic vectors, and k is the

number of retained terms. It is noted that the number k and all
pairs

{
λi (θ) ,dWIN,i

}k
i=1 are not known a priori. An iterative

algorithm is presented to solve the pairs
{
λi (θ) ,dWIN,i

}
one

by one. Specifically, we assume that the (k − 1)-th approxi-
mation uWIN,k−1 (θ) = ∑k−1

i=1 λi (θ)dWIN,i has been known
and the goal is to solve the k-th pair

{
λk (θ) ,dWIN,k

}
. The

original SVEE (28) can be rewritten as

K (θ) λk (θ)dWIN,k = Fk (θ) , (40)

where the stochastic vector Fk (θ) = F (θ) − K (θ)
∑k−1

i=1 λi (θ)dWIN,i . In this way, (40) only involves one
unknownpair

{
λk (θ) ,dWIN,k

}
. However, different from that

the random basis (i.e. PC basis) has been known in PC-
SVEM, both the randomvariableλk (θ) and the deterministic
vector dWIN,k are unknown in this case. To avoid this issue,
an alternating iteration is adopted to solve them. Specifically,
if the random variable λk (θ) has been known (or given an
initial value), (40) is transformed into the following deter-
ministic virtual element equation by taking advantage of the
stochastic Galerkin procedure [15] similar to that in (34)

∫

�

[
K (θ) λk (θ)dWIN,k − Fk (θ)

]
λk (θ) dP (θ) = 0, (41)

which is equivalent to

KWIN,kdWIN,k = FWIN,k, (42)

where the deterministic matrix KWIN,k = ∫

�
K (θ) λ2k (θ)

dP (θ) ∈ R
n×n and the deterministic vector FWIN,k =∫

�
Fk (θ) λk (θ) dP (θ) ∈ R

n . Existing numerical solvers
can be adopted to solve it efficiently and accurately [38].
Note that the size of (42) is the same as the original SVEE
(28), which is different from the augmented size of PC-based
derived equation (35) and can thus save a lot of computational
effort. In practical implementations, we let the vector dWIN,k

orthogonal to the obtained vectors
{
dWIN,i

}k−1
i=1 to speed up

the convergence, which is achieved by using the following
Gram-Schmidt orthogonalization

dWIN,k = dWIN,k −
k−1∑

i=1

(
dTWIN,kdWIN,i

)
dWIN,i (43)

and thenormalizationdTWIN,kdWIN,k = 1,where
{
dWIN,i

}k−1
i=1

are normalized orthogonal vectors thatmeet dTWIN,idWIN, j =
δi j , where δi j is the Kronecker delta.

With the deterministic vectordWIN,k solved using (42), the
random variable λk (θ) is then recalculated taking advantage
of the following classical Galerkin procedure

dTWIN,k

[
K (θ) λk (θ)dWIN,k − Fk (θ)

] = 0. (44)

Since the stochastic matrix K (θ) is positive definite and
zTK (θ) z > 0, ∀z 	= 0 ∈ R

n , ∀θ ∈ � holds, the above
equation can be rewritten as

λk (θ) = dTWIN,kFk (θ)

dTWIN,kK (θ) dWIN,k
. (45)
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To avoid the curse of dimensionality arising in the high-
dimensional problems, we adopt a non-intrusive sampling
approach [42] to solve (45) instead of the PC-based approxi-
mation, which is to calculate the sample vector λk

(
θ̂
) ∈ R

ns

by

λk
(
θ̂
) =

[
dTWIN,kFk

(
θ̂
)]


[
dTWIN,kK

(
θ̂
)
dWIN,k

]
, (46)

where �
(
θ̂
)
represents ns random sample realizations of

� (θ), dTWIN,kFk
(
θ̂
) ∈ R

ns and dTWIN,kK
(
θ̂
)
dWIN,k ∈ R

ns

are the sample vectors of the random variables dTWIN,kFk (θ)

and dTWIN,kK (θ)dWIN,k , respectively, and 
 represents the
element-wise division of two sample vectors, also known
as Hadamard division operator. In this way, all random
inputs are embedded into the sample realization vectors
dTWIN,kFk

(
θ̂
)
and dTWIN,kK

(
θ̂
)
dWIN,k , which is insensitive

to the stochastic dimension of random inputs. The curse of
dimensionality can thus be avoided successfully, which will
be discussed in detail in the next section.

We can solve the k-th pair
{
λk (θ) ,dWIN,k

}
by performing

the iterative process of (42) and (46) until reaching a specified
precision.A similar iteration is also adopted to calculate other
pairs

{
λk+1 (θ) ,dWIN,k+1

}
, . . . until a good approximation

of the stochastic solution is achieved.However, it is noted that
the stochastic solution uWIN,k (θ) in (39) is approximated in
a sequential way and it does not exactly fulfill the original
SVEE (28). The approximation has low accuracy for some
cases [41]. We introduce a recalculation process to avoid
this problem. To this end, DWIN = [

dWIN,1, . . . ,dWIN,k
] ∈

R
n×k is considered as a set of reduced basis functions and

the random variable vector � (θ) = [λ1 (θ) , . . . , λk (θ)]T ∈
R
k is recalculated via the following reduced-order stochastic

equation

[
DT
WINK (θ)DWIN

]
� (θ) = DWINF (θ) , (47)

which requires to be solved repeatedly for ns sample real-
izations to get the final solution �

(
θ(i)
)
, i = 1, . . . , ns , but

only very low computational effort is involved since the sizes
of the reduced-order stochastic matrix DT

WINK (θ)DWIN ∈
R
k×k and the reduced-order stochastic vector DT

WINF (θ) ∈
R
k are greatly reduced compared to the original SVEE (28)

in most cases.
Let us highlight the weak intrusiveness of the proposed

method.On one hand, (39) is considered as a kind of intrusive
approximation of the stochastic solution, which is very sim-
ilar to the PC-based intrusive approximation (33). However,
on the other hand, the implementation for solving dWIN,k in
(42) only involves deterministic calculations and the matrix
KWIN,k keeps the same size and matrix properties as the
original stochastic matrix K (θ), which is weakly intrusive.
Also, (46) for calculating the random variable λk (θ) is fully

non-intrusive. In these senses, we implement the intrusive
stochastic solution approximation only in weakly intrusive
and fully non-intrusive ways. The method combines the high
efficiency of intrusive methods and the weak dimensionality
dependence of non-intrusive methods. It can solve high-
dimensional stochastic problems efficiently and accurately.

4.2 High-dimensional stochastic problems

In this section, we will show that the proposed WIN-SVEM
can be applied to high-dimensional stochastic problems
without any modification. We explain this point from the
perspective of the influence of high stochastic dimensions
on solving (42) and (46). We only consider (31) in this sec-
tion and a large number m is truncated in (31) to generate a
high-dimensional stochastic problem. In this way, the deter-
ministic matrix KWIN,k and the deterministic vector FWIN,k

in (42) are calculated via

KWIN,k =
m∑

i=0

[∫

�

ξi (θ) λ2k (θ) dP (θ)

]

Ki , (48)

FWIN,k =
∫

�

F (θ) λk (θ) dP (θ)−
m∑

i=0

k−1∑

j=1

[∫

�

ξi (θ) λ j (θ) λk (θ) dP (θ)

]

KidWIN, j , (49)

where the probability integrals are approximated using the
following non-intrusive sampling approach

∫

�

ξi (θ) λ j (θ) λk (θ) dP (θ)

= Ê
{
ξi
(
θ̂
)� λ j

(
θ̂
)� λk

(
θ̂
)}

, (50)

for i = 0, . . . ,m, j = 1, . . . , k, where
{
ξi
(
θ̂
) ∈ R

ns
}m
i=0

are sample vectors of the random variables {ξi (θ)}mi=0, the
operator � represents the element-wise multiplication of
sample vectors, Ê {·} is the expectation operator of the sample
vector. (50) takes a total of k (m + 1) expectation opera-
tions, which is not sensitive to the stochastic dimension and
has low computational effort even for very high stochastic
dimensions. Note that although we only illustrate the high-
dimensional input in the stochastic matrix K (θ), the above
calculation also works efficiently for

∫

�
F (θ) λk (θ) dP (θ)

if the stochastic vector F (θ) involves high-dimensional ran-
dom inputs.

Further, the sample vectors in right side of (46) are calcu-
lated via

dTWIN,kK
(
θ̂
)
dWIN,k

=
m∑

i=0

ξi
(
θ̂
) (

dTWIN,kKidWIN,k

)
∈ R

ns , (51)
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dTWIN,kFk
(
θ̂
) = dTWIN,kF (θ)−

m∑

i=0

k−1∑

j=1

[
ξi
(
θ̂
)� λ j

(
θ̂
)] (

dTWIN,kKidWIN, j

)
∈ R

ns ,

(52)

which requires a total of k (m + 1) operations for
dTWIN,kKidWIN, j , i = 0, . . . ,m, j = 1, . . . , k and is also
computationally cheap for high-dimensional stochastic prob-
lems. Therefore, both (42) and (46) are insensitive to the
stochastic dimension. The proposed method can avoid the
curse of dimensionality successfully.

4.3 Algorithm implementation

The above proposedWIN-SVEM for solving SVEEs is sum-
marized in Algorithm 1, which includes two loop processes.
The inner loop is from step 4 to step 9 and used to solve
the k-th pair

{
λk (θ) ,dWIN,k

}
. The outer loop from step 2

to step 13 is to approximate the stochastic solution using a
set of pairs

{
λi (θ) ,dWIN,i

}k
i=1. To execute the inner loop, a

random sample vector λ
(0)
k

(
θ̂
) ∈ R

ns is initialized in step 3.
In the numerical implementation, any nonzero vectors of size
ns can be chosen as the initialization since the initial samples
have little influence on the computational accuracy and effi-
ciency of the proposed method. Following each inner loop,
we only need to update the stochastic force vector Fk+1 (θ)

in step 10 and store the reduced-order matrix DWIN in step
11 in the outer loop.

Algorithm 1 WIN-SVEM for solving SVEEs
1: k ← 1
2: while εu,k > εu do

3: Initialize random samples λ
(0)
k

(
θ̂
) =

{
λ

(0)
k

(
θ(i)
)}ns

i=1
∈ R

ns

4: while εd, j > εd do

5: Calculate the deterministic vector d( j)
WIN,k by solving (42)

6: Orthonormalize d( j)
WIN,k using (43)

7: Update the random sample vector λ
( j)
k

(
θ̂
) ∈ R

ns via (46)
8: Compute the locally iterative error εd, j , j ← j + 1
9: end while
10: Update the stochastic force vector Fk+1 (θ) = Fk (θ) −

K (θ) λk (θ) dWIN,k
11: Update the deterministic matrix DWIN = [

DWIN,dWIN,k
] ∈

R
n×k

12: Compute the locally iterative error εu,k , k ← k + 1
13: end while
14: Recalculate the random variable vector � (θ) ∈ R

k via (47)

Two iterative criteria are involved in the above algorithm
to check the convergence, i.e. εd, j in step 8 for the inner loop
and εu,k in step 12 for the outer loop. The iterative error εd, j

is defined as

εd, j =
(
d( j)
WIN,k − d( j−1)

WIN,k

)T (
d( j)
WIN,k − d( j−1)

WIN,k

)

d( j)T
WIN,kd

( j)
WIN,k

= 2 − 2d( j)T
WIN,kd

( j−1)
WIN,k, (53)

which measures the difference between the vectors d( j)
WIN,k

and d( j−1)
WIN,k and the calculation is stopped when εd, j < εd is

met. Similarly, the iterative error εu,k is defined as

εu,k = 1
∫

�
uTWIN,k (θ)uWIN,k (θ) dP (θ)

·
[∫

�

[
uWIN,k (θ) − uWIN,k−1 (θ)

]T ·
[
uWIN,k (θ) − uWIN,k−1 (θ)

]
dP (θ)

]

=
∫

�
λ2k (θ) dP (θ) dTWIN,kdWIN,k

k∑

i, j=1

∫

�
λi (θ) λ j (θ) dP (θ)dTWIN,idWIN, j

=
∫

�
λ2k (θ) dP (θ)

∑k
i=1

∫

�
λ2i (θ) dP (θ)

, (54)

which measures the contribution of the k-th pair {λk (θ) ,

dWIN,k
}
to the stochastic solution uWIN,k (θ). However, (54)

may be not a good error indicator inmany cases [41] since the
random variables {λi (θ)}ki=1 are calculated in a sequential
way and

∫

�
λ2k (θ) dP (θ)may not keep decreasing.We avoid

this problem by replacing {λi (θ)}ki=1 in (54) with equivalent

random variables
{
λ̃i (θ)

}k
i=1. To calculate equivalent ran-

dom variable, we first calculate the autocorrelation function
of the random variable vector� (θ) = [λ1 (θ) , . . . , λk (θ)]T

by

C�� = Ê

{
�
(
θ̂
)
�T (θ̂

)} ∈ R
k×k, (55)

which is decomposed by the eigendecomposition into

C�� = QZQT, (56)

where Q ∈ R
k×k is an orthonormal matrix and Z is a diago-

nalmatrix consisting of descending eigenvalues of thematrix
C��. We construct an equivalent random variable vector
˜� (θ) = QT� (θ) = [

λ̃1 (θ) , . . . , λ̃k (θ)
]T ∈ R

k whose
autocorrelation function happens to be C

˜�˜�
= Z. Substitut-

ing the equivalent random variables
{
λ̃i (θ)

}k
i=1 into (54) we

recalculate the iterative error εu,k as

εu,k =
∫

�
λ̃2k (θ) dP (θ)

∑k
i=1

∫

�
λ̃2i (θ) dP (θ)

= Zk

Tr (Z)
, (57)
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Fig. 1 Geometry and Voronoi mesh of the 2D model

where Zk is the k-th diagonal element of the matrix Z.
It is noted that the above reformulation does not improve
the approximation accuracy of the stochastic solution and
only provides an equivalent representation. In this way, the
iterative error εu,k keeps decreasing as the retained item k
increases. More details of the basic implementation and the
comparison between (54) and (57) can be found in [41].

5 Numerical examples

In this section, we test the two proposedmethods with the aid
of 2D and 3D numerical examples. For Algorithm 1, the con-
vergence errors εd in step 2 for the inner loop and εu in step
4 for the outer loop are set as 1×10−3 and 1×10−6, respec-
tively. For both examples, ns = 1× 104 random samples are
used for performing MC simulations and generating refer-
ence solutions. In our cases, 1 × 104 samples are enough to
achieve convergent probabilistic solutions. The same 1×104

random samples are also used in the proposedWIN-SFEM to
eliminate the influence caused by sampling processes. Fur-
ther, the examples are performed on one core of a desktop
computer (sixteen cores, Intel Core i7, 2.50GHz).

5.1 Example 1: SVEM analysis of a 2D stochastic
problem

5.1.1 Simulation of random inputs

In this example, we consider the SVEM-based plane stress
analysis of a 2D model shown in Fig. 1 [29]. The Voronoi
mesh is adopted for the spatial discretization, including a
total of 2018vertices, 1000Voronoi elements and4036DoFs.
The model is fixed at the two red points as shown in Fig. 1.
A stochastic force f (θ) = −1000 − 100ξ f (θ) (unit: N) is
applied to the blue point along the y direction, where ξ f (θ)

is a standard Gaussian random variable. Further, the material
property matrix G (x, y, θ) ∈ R

3×3 is given by

G (x, y, θ) = E (x, y, θ)

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1

2 (1 − ν)

⎤

⎦ , (58)

where the Poisson ratio ν = 0.3 and the stochastic Young’s
modulus E (x, y, θ) is modeled as a two-dimensional ran-
dom field with the mean value E0 (x, y) = 100 MPa and the
covariance function [27]

CovEE (x1, y1; x2, y2) = σ 2
E

(

1 + |x1 − x2|
lx

)

·
(

1 + |y1 − y2|
ly

)

exp

(

−|x1 − x2|
lx

− |y1 − y2|
ly

)

, (59)

where the standard deviation σE = 10 MPa, and lx and ly
are the correlation lengths in the x and y directions, respec-
tively. The random field E (x, y, θ) is approximated by the
following Karhunen–Loève expansion [15, 39]

E (x, y, θ) = E0 (x, y) +
m∑

i=1

ξi (θ)
√

κi Ei (x, y) , (60)

where {ξi (θ)}mi=1 are mutually independent standard Gaus-
sian random variables and they are also independent of the
random variable ξ f (θ). {κi , Ei (x, y)}mi=1 are eigenvalues
and eigenvectors of the covariance function CovEE (x1, y1;
x2, y2). They are solved by the following Fredholm integral
equation of the second kind

∫

�

CovEE (x1, y1; x2, y2) Ei (x1, y1) dx1dy1

= κi Ei (x2, y2) , (61)

which can be solved efficiently by taking advantage of exist-
ing eigenvalue solvers [24]. To ensure E (x, y, θ) > 0,
the samples θ(i) such that min

x,y∈�
E
(
x, y, θ(i)

) ≤ 1 × 10−3

are dropped out in numerical implementations. In this way,
the deterministic matrices

{
Gi (x, y) ∈ R

3×3
}m
i=0 in (30) are

given by

Gi (x, y) =
√

κi Ei (x, y, θ)

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1

2 (1 − ν)

⎤

⎦ , (62)

where κ0 = 1.
In this example, we consider a low-dimensional case and

a high-dimensional case via introducing different truncated
itemsm in (60). For the low-dimensional case, we let the cor-
relation lengths be lx = max(x)−min(x) and ly = max(y)−
min(y). To achieve the truncated error κm/

∑m
i=1 κi < 1 ×
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Fig. 2 Eigenvectors {Ei (x, y)}6i=1 of the covariance function CovEE (x1, y1; x2, y2) of the low-dimensional case

Fig. 3 Truncated errors of different numbers of retained random vari-
ables

10−3, the number of truncated items is m = 6. Correspond-
ing eigenvectors {Ei (x, y)}6i=1 of the covariance function
CovEE (x1, y1; x2, y2) are shown in Fig. 2. It is noted that
we can solve (61) using the discretized covariance matrix
CovEE ∈ R

2018×2018 of CovEE (x1, y1; x2, y2), which is
only dependent of the vertices and independent of elements.
In this way, the eigenvectors in Fig. 2 are plotted on each
vertex of the mesh. For the high-dimensional case, the cor-
relation lengths are set as lx = 1

8 [max(x) − min(x)] and
ly = 1

8 [max(y) − min(y)], and m = 34 truncated items

are retained to achieve κ34/
∑34

i=1 κi < 1 × 10−3. The trun-
cated errors of low- and high-dimensional cases are seen
from Fig. 3. Due to smaller correlation lengths in the high-
dimensional case, it is slower to converge to the specified
truncated error and more truncated items are required to cap-
ture the local correlation property.

Fig. 4 Iterative errors of different retained terms in the low-dimensional
case

5.1.2 Low-dimensional case

In this section, we solve the low-dimensional case using the
proposed PC-SVEM and WIN-SVEM. For the PC-SVEM,
the second order Hermite PC basis of seven standard Gaus-
sian random variables ({ξi (θ)}6i=1 and ξ f (θ)) is adopted for
{�i (θ)}36i=1. The size of the augmented deterministic equa-
tion (35) is 145,296,which ismuch larger than the 4036DoFs
of the original stochastic problem. We do not perform the
numerical implementations for higher order PC basis in this
example. On one hand, the second order PC basis is enough
to achieve a good approximation of the stochastic solution.
On the other hand, the size of the augmented equation (35)
is 484,320 if the third order PC basis is adopted, which leads
to too high computational burden in terms of storage and
solution for a problem of such a small spatial scale.
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Fig. 5 Components of the stochastic solution: the deterministic vectors
{
dux ,i

}4
i=1 in the x direction (the first line), the deterministic vectors

{
duy ,i

}4
i=1 in the y direction (the second line) and PDFs of the random variables {λi (θ)}4i=1 (the third line), respectively

For the WIN-SVEM, Algorithm 1 is performed and the
iterative errors εu,k of different retained terms are shown
in Fig. 4. Only four terms k = 4 are retained for the
stochastic solution approximation (39), which demonstrates
the good convergence of the proposedWIN-SVEM. Further,
the components

{
dux ,i ∈ R

2018
}4
i=1 and

{
duy ,i ∈ R

2018
}4
i=1

of the deterministic vectors
{
dWIN,i

}4
i=1 in the x and y direc-

tions are depicted in the first and second lines of Fig. 5,
respectively, and probability density functions (PDFs) of cor-
responding random variables {λi (θ)}4i=1 solved by (47) are
seen from the third line of Fig. 5. As the retained term k
increases, the ranges of random variables {λi (θ)}4i=1 become
smaller and more concentrated around zero, which indicates
that the subsequent retained terms contribute less and less to
the stochastic solution.

To show the computational accuracy of the proposed PC-
SVEM andWIN-SVEM, we compare PDFs of the stochastic
displacements uA,x (θ) and uA,y (θ) in the x and y directions
of the point A (i.e. the blue point where the force f (θ) acts
as shown in Fig. 1) obtained by PC-, WIN- and MCS-based
SVEMs and their absolute errors in Fig. 6. It is seen from
Fig. 6a, c that the PDFs of both stochastic displacements
uA,x (θ) and uA,y (θ) obtained by PC- and WIN-SVEMs
are in good accordance with those of MCS, which illus-
trates the good accuracy of the two proposed methods. The

comparison in logarithmic scales shown in Fig. 6b, d demon-
strates that WIN-SVEM can achieve smaller absolute errors
than PC-SVEM, especially for the stochastic displacement
uA,y (θ) in the y direction. Further, WIN-SVEM can capture
tails of the PDFs more accurately than PC-SVEM, which is
very useful for many uncertainty quantification problems,
such as the simulation of physical phenomena with long
tailed probability distributions and the estimation of small
failure probability in structural reliability analysis. There-
fore, WIN-SVEM is recommended for problems with such
requirements.

Further, let us focus on the computational efficiency of the
proposedmethods. Computational times (unit: second) of the
numerical execution of PC-SVEM, WIN-SVEM and MCS
are listed in the second to fourth columns of Table 1, where
the solving and recalculating times of WIN-SVEM are the
computational times of step 2 to step 13 and the recalculation
step 14 of Algorithm 1, respectively. The cost of the recal-
culation process of WIN-SVEM is almost negligible since
only deterministic equations with size 4 are solved for differ-
ent sample realizations. It is found that both PC-SVEM and
WIN-SVEM are much cheaper than MCS. However, since
a very large deterministic equation needs to be solved in
PC-SVEM, it is more computationally intensive than WIN-
SVEM.
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Fig. 6 PDFs of the stochastic displacements uA,x (θ) and uA,y (θ) in the x and y directions of the point A obtained by PC-, WIN-SVEMs and
MCS and their absolute errors

Table 1 Computational costs of the stochastic dimensions 7 and 35

Method WIN PC MCS WIN MCS
Stochastic dimension 7 35

Solving time 0.51 12.33

Recalculating time 0.04 0.35

Total time (s) 0.55 26.09 159.13 12.68 221.52

5.1.3 High-dimensional case

In this section, we solve the high-dimensional case with a
total of 35 stochastic dimensions ({ξi (θ)}34i=1 and ξ f (θ)).
Only WIN-SVEM is adopted in this section. For PC-SVEM,
even if we only use the second order PC basis, the size of
the derived deterministic equation (35) is about 2.69 × 106,

which suffers from the curse of dimensionality. By using
Algorithm 1, the iterative errors εu,k of different retained
terms for the high-dimensional case are shown in Fig. 7. The
proposed WIN-SVEM still has good convergence for high-
dimensional stochastic problems. k = 6 terms are retained
in this case, which is slightly increased compared to the low-
dimensional case. Computational times for this case are seen
from the fifth and sixth columns of Table 1. WIN-SVEM
has very low cost even for high-dimensional cases and is
much cheaper than MCS. Compared to the low-dimensional
case, the computational cost of the high-dimensional case
does not increase dramatically as the stochastic dimension
increases. In these senses, the proposed WIN-SVEM avoids
the curse of dimensionality successfully. Further, PDFs of
the stochastic displacements uA,x (θ) and uA,y (θ) in the x
and y directions of the point A obtained by WIN-SVEM
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Fig. 7 Iterative errors of different retained terms in the high-
dimensional case

and MCS are compared in Fig. 8. For both two stochastic
displacements, the computational accuracy of WIN-SVEM
is still comparable to MCS.

5.2 Example 2: SVEM analysis of a 3Dmechanical
part

In this case, we consider the SVEManalysis of a 3Dmechan-
ical part as shown in Fig. 9a, where Dirichlet boundary
conditions ux (θ) = uy (θ) = uz (θ) = 0 are imposed on the
red surface and an external force f (x, y, z) = −500N/mm2

is applied along the x direction on the blue surface. The
model is discretized by use of the Voronoi mesh depicted in
Fig. 9b, including a total of 28,232 vertices, 4389 elements
and 84,696 DoFs. In this example, the stochastic material
matrix G (x, y, z, θ) ∈ R

6×6 is given by

G (x, y, z, θ) = E (x, y, z, θ)

(1 + ν) (1 − 2ν)

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2 − ν 0 0
0 0 0 0 1

2 − ν 0
0 0 0 0 0 1

2 − ν

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(63)

where the Poisson ratio ν = 0.3 and the stochastic Young’s
modulus E (x, y, z, θ) is a three-dimensional random field
with the covariance function

CovEE (x1, y1, z1; x2, y2, z2)
= σ 2

E exp

(

−|x1 − x2|
lx

− |y1 − y2|
ly

− |z1 − z2|
lz

)

, (64)

Fig. 8 PDFs of the stochastic displacements uA,x (θ) and uA,y (θ) in
the x and y directions of the point A obtained by WIN-SVEMs and
MCS, respectively

where the standard deviation σE = 41.8 GPa, and the
correlation lengths are given by lx = max(x) − min(x),
ly = max(y) − min(y) and lz = max(z) − min(z). The
random field E (x, y, z, θ) has a (60)-like series expansion

E (x, y, z, θ) = E0 (x, y, z) +
m∑

i=1

ξi (θ)
√

κi Ei (x, y, z) ,

(65)

where the function E0 (x, y, z) = 208 GPa, and {ξi (θ)}mi=1
are mutually independent uniform random variables on
[0, 1]. It is noted that the mean value of the random
field E (x, y, z, θ) is E0 (x, y, z)+0.5

∑m
i=1

√
κi Ei (x, y, z)

insteadof E0 (x, y, z). Similarly, {κi , Ei (x, y)}mi=1 are eigen-
values and eigenvectors of the covariance function
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Fig. 9 Geometry of the 3D
mechanical part (left) and its
Voronoi mesh (right)

CovEE (x1, y1, z1; x2, y2, z2) and can be solved by the (61)-
like integral equation. The truncated number is set asm = 13
in this case to achieve the truncated error κ13/

∑13
i=1 κi <

1 × 10−3.
Similar to the example in the previous section, PC-SVEM

suffers from the curse of dimensionality in this example since
the size of the derived deterministic equation (35) is about
8.89× 106, even with only the second order PC basis. Thus,
only WIN-SVEM is used to solve this problem. Iterative
errors of different retained terms are seen from Fig. 10. Five
terms are retained to meet the specified convergence error,
which verifies the good convergence of WIN-SVEM for 3D
stochastic problems. Regarding the computational accuracy,
PDFs of the stochastic displacements uA,x (θ), uA,y (θ) and
uA,z (θ) in the x , y and z directions of the point A (shown in
Fig. 9b) obtained by WIN-SVEM and MCS are compared in
Fig. 11. For the PDFs of stochastic displacements uA,x (θ)

and uA,z (θ), WIN-SVEM is in very good agreement with
MCS. The PDF of the stochastic displacement uA,y (θ) is
slightly less accurate than those of uA,x (θ) and uA,z (θ),
but acceptable accuracy is still achieved. We can simply
retain more terms in the stochastic solution approximation
to improve the accuracy if higher accuracy is required in
practice. Further, the computational times of WIN-SVEM
and MCS in this example are 213.45 s (including the solv-
ing time 212.89 s and the recalculating time 0.56 s) and
2.74×104 s, respectively. The proposedWIN-SVEM is still

Fig. 10 Iterative errors of different retained terms

much cheaper than MCS and a speedup of more than one
hundred times is achieved.

We also highlight that statistical properties of the stochas-
tic solution are easily computed based onWIN-SVEM. Here
we focus on the first and second order global statistical
moments, that is, the mean value and the standard devia-
tion dependent on spatial positions. According to (39), the
mean value vector u is computed as

u =
k∑

i=1

Ê
{
λi
(
θ̂
)}

dWIN,i , (66)
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Fig. 11 PDFs of the stochastic displacements uA,x (θ) (top left),
uA,y (θ) (top right) and uA,z (θ) (bottom) in the x , y and z directions of
the point A obtained by WIN-SVEM and MCS, respectively

which only involves the expectations of sample vectors
{
λi
(
θ̂
) ∈ R

104
}k

i=1
and has very low computational effort.

The mean value components ux , uy and uz of u in the x , y
and z directions are seen from the first line of Fig. 12. Further,
the standard deviation vector σ u is calculated via

σ u =
√
√
√
√

k∑

i, j=1

Ê

{
λ�
i

(
θ̂
)� λ�

j

(
θ̂
)}

dWIN,i � dWIN, j , (67)

where the random sample vectors are given by λ�
i

(
θ̂
) =

λi
(
θ̂
) − Ê

{
λi
(
θ̂
)} ∈ R

104 , i = 1, . . . , k. The components
σ ux , σ uy and σ uz of σ u in the x , y and z directions can be
found in the second line of Fig. 12.

6 Conclusions

We presented two numerical approaches, PC-SVEM and
WIN-SVEM, for solving stochastic systems derived from
the stochastic virtual element discretization of 2D and 3D
linear elastic stochastic problems. The deterministic virtual
element method is first extended to SVEM to solve problems
involving stochastic material properties and stochastic exter-
nal forces. Several key calculations of SVEMcanbe inherited
from the deterministic virtual element method, e.g. the gra-
dient computations of virtual basis functions in (17) and the
stabilizing element stiffness matrix in (25) (except for the
random coefficient γ (e)

S (θ)). Numerical results demonstrate
that both PC-SVEMandWIN-SVEMhave comparable accu-
racy to MCS. However, PC-SVEM suffers from the curse of
dimensionality and cannot be applied to high-dimensional
stochastic problems. As a comparison, WIN-SVEM can
efficiently solve both low- and high-dimensional stochastic
problems without any modification, which has been verified
by a numerical example of up to 35 stochastic dimensions.
Further, although only linear elastic stochastic problems are
concerned in this paper, both the proposed PC-SVEM and
WIN-SVEM can be applied to more general cases, which
will be further investigated in subsequent research.
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Fig. 12 The mean functions ux ,
uy and uz (the first line) in the
x , y and z directions, and the
standard derivation functions
σ ux , σ uy and σ uz (the second
line) in the x , y and z directions
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