Nnational Semiconductor
100341
Low Power 8-Bit Shift Register

General Description

The 100341 contains eight edge-triggered, D-type flip-flops with individual inputs $\left(P_{n}\right)$ and outputs $\left(Q_{n}\right)$ for parallel operation, and with serial inputs $\left(D_{n}\right)$ and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.
The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Logic Symbol

Features

- 35% power reduction of the 100141
- 2000V ESD protection
- Pin/function compatible with 100141
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Standard Microcircuit Drawing (SMD) 5962-9459101

Pin Names	Description
$C P$	Clock Input
S_{0}, S_{1}	Select Inputs
D_{0}, D_{7}	Serial Inputs
$P_{0}-P_{7}$	Parallel Inputs
$Q_{0}-Q_{7}$	Data Outputs

Connection Diagrams

\[

\]

Logic Diagram

Truth Table

Function	Inputs					Outputs							
	D_{7}	D_{0}	S_{1}	S_{0}	CP	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
Load Register	X	X	L	L	-	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}
Shift Left	X	L	L	H	\checkmark	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}	L
Shift Left	X	H	L	H	\sim	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H
Shift Right	L	X	H	L	\checkmark	L	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}
Shift Right	H	X	H	L	\checkmark	H	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}
Hold	X	X	H	H	X	No Change							
Hold	X	X	X	X	H								
Hold	X	X	X	X	L								

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage
$\mathrm{X}=$ Don't Care
\sim = LOW-to-HIGH Transition

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Above which the useful life may be impaired
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
$V_{\text {EE }}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015 .

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{c}	Conditions		Notes
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V	(Notes 3, 4, 5)
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$			
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V	(Notes 3, 4, 5)
		-1085		mV	$-55^{\circ} \mathrm{C}$			
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			-1555	mV	$-55^{\circ} \mathrm{C}$			
$\overline{V_{1 H}}$	Input HIGH Voltage	-1165	-870	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed HIGH Signal for All Inputs		$\begin{aligned} & (\text { Notes } 3,4 \text {, } \\ & 5,6) \end{aligned}$
V IL	Input LOW Current	-1830	-1475	mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Guaranteed LOW Signal for All Inputs		$\begin{aligned} & (\text { Notes } 3,4, \\ & 5,6) \end{aligned}$
$\overline{I_{\text {IL }}}$	Input LOW Current	0.50		$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		$\begin{aligned} & (\text { Notes } 3,4 \text {, } \\ & 5,6) \end{aligned}$
I_{IH}	Input High Current		240	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \end{aligned}$		(Notes 3, 4,
			340	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$			
l_{EE}	Power Supply Current	$\begin{aligned} & -168 \\ & -178 \end{aligned}$	$\begin{aligned} & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to } . \end{aligned}$	$\begin{aligned} & 4.8 \mathrm{~V} \\ & 5.7 \mathrm{~V} \end{aligned}$	(Notes 3, 4, 5)

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures.
Note 4: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 6: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	400		400		300		MHz	Figures 2, 3	4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.50	2.50	0.50	2.30	0.50	2.80	ns	Figures 1, 3	$\begin{gathered} \text { (Notes 7, 8, } \\ 9,11) \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.30	0.30	1.30	0.30	1.30	ns		

AC Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately after power-up. This provides "cold start" specifications which can be considered a worst case condition at cold temperatures
Note 8: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11 Note 10: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 11: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Test Circuitry

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for Flatpak; for DIP see logic symbo

FIGURE 1. AC Test Circuit

Test Circuitry (Continued)

Notes:
For shift right mode pulse generator connected to S_{0} is moved to S_{1}.
Pulse generator connected to S_{1} has a LOW frequency 99% duty cycle, which allows occasional parallel load
The feedback path from output to input should be as short as possible.

FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Switching Waveforms

Switching Waveforms (Continued)

Notes:

t_{s} is the minimum time before the transition of the clock that information must be present at the data input.
t_{h} is the minimum time after the transition of the clock that information must remain unchanged at the data input. FIGURE 4. Setup and Hold Times
\square

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (0.400" Wide) (D) NS Package Number J24E

W2AB (REV D)
24-Lead Quad Cerpak (F)
NS Package Number W24B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

