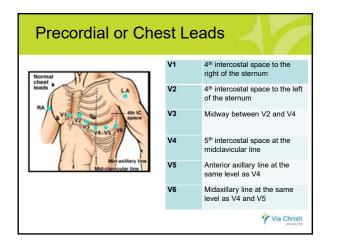
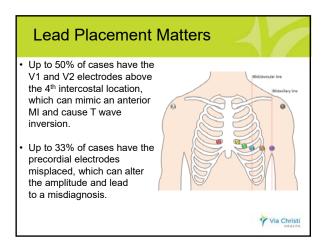
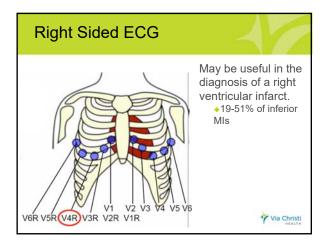

Dawn Gosnell, MSN, APRN-CNS, CCRN September 2018

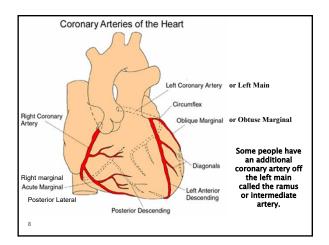

Objectives

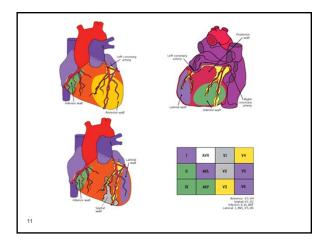

2


- 1. Identify ECG changes associated with myocardial ischemia, injury, and infarction.
- 2. Associate lead views with the correlating area of the heart.
- Identify abnormal ECG findings associated with various pathologies.
- 4. Discuss the management and therapies for identified pathologies.
- Review the clinical practice guidelines for the acute myocardial infarction patient, including anti-platelet, beta blocker, and statin therapies.



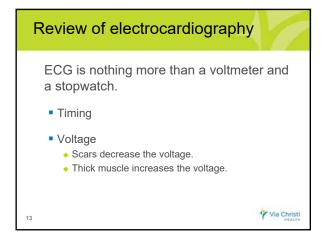






Right Coronary Artery	Circumflex	Left Coronary Artery
(RCA)	(Cx)	(LCA,LAD)
SA node – 55% people AV node, bundle of His – 90% people Right atrium Inferior left ventricle Lower 1/3 of septum Major portion anterior right ventricle and posterior right ventricle Posterior left ventricle papillary muscles Posterior division left bundle branch	SA node – 45% people AV node – 10% people Lateral and posterior left ventricle Posterior left bundle branch Left atrium	Anterior 2/3rds of septum, bundle branches Left ventricle – anterior, apex, posterior) Minor portion of right ventricle

Wall	Leads	Coronary Artery	Reciprocal changes
Anterior	V1, V2, V3, V4	LAD branch of LCA	II, III, aVF
Inferior	II, III, aVF	RCA	I, aVL
Lateral	I, aVL, V5, V6	Circumflex branch of LCA	V1, V3
Posterior	V1, V2 (ST depression, tall R waves)	RCA, Circumflex	
Apical	V3, V4, V5, V6	LAD, RCA	
Anteriolateral	I, aVL, V1, V2, V3, V4, V5, V6	LAD, Circumflex	II, III, aVF
Septal	V1, V2	LAD	


Steps to Interpreting the ECG

Basic rhythm steps Rhythm

Rate P Waves PR Interval QRS QT Interval

12

Additional 12 Lead steps Wall of the heart 3 I's of a MI Axis Deviation Bundle Branch Blocks What's not normal Ugly vs. Dangerous

Information at the top of the 12 Lead

.ast name	, First nam	e	ID: #######	9#	Date and Time
Date of Bir	th	Vent rate BPM	66		Sinus rhythm with marked sinus arrhythmia
Gender	Race	PR interval	200	ms	ST elevation consider inferior injury or acute infarct
		QRS duration	102	ms	****ACUTE MI / STEMI *****
ocation		QT/QTc	394/413	ms	Consider right ventricular involvement in acute inferior infarct
		P-R-T axes	61 52	97	Abnormal ECG
					When compared with ECG of 17-MAY-2006
					ST elevation now present in Inferior leads
					ST now depressed in Anterolateral leads
					T wave inversion now evident in Anterolateral leads

QT Interval Prolongation

Normal is considered less than half of the R-R (when the heart rate is ~70).

- Conditions Predisposing for Long QT > Torsades
 - Baseline long QT
 >450 ms, esp > 500 ms
 - >450 ms, esp >
 Female gender
 - Electrolyte disorder
 - Especially low K+ and Mg++
 - Bradycardia < 50
 - Structural heart disease
 Significant renal or hepatic dysfunction

3

- Common causes:
- MedicationsElectrolyte imbalance
- Electrolyte imbalance
 Hypokalemia
 - ST flattening, depression, develop U
 waves
- Hypomagnesemia
 Like hypokalemia
- Hypocalcemia
 Normal T wave after prolonged QT
 interval
- CNS catastrophes
 Stroke, seizure, coma, intra-cerebral or
 - Stroke, seizure, coma, intra-cerebral or brainstem bleeding
 Can produce bizarre ST-T waves and some of the longest QT intervals
 - Via Christi

leuicau	ions that pr	olong QT i	niervar
	· · · · · · · · · · · · · · · · · · ·	U .	
Generic name	Brand name	Generic name	Brand name
sotalol	Betapace	albuterol	Ventolin, Proventil
quinidine	Quiniglute	levalbuterol	Xopenex
*amiodarone	Cardarone, Pacerone	Salmeterol	Serevent
*procainamide	Procan, Pronestyl		
*disopyramide	Norpace	amitriptyline	Elavil
nicardipine	Cardene	thioridazine	Mellaril
*ibutilide	Corvert	*haloperidol	Haldol
*dofetilide	Tikosyn	*mesoridazine	Serentil
		risperidone	Risperdal
trimethoprim-sulfa	Bactrim	*chlorpromazine	Thorazine
*clarithromvcin	Biaxin	fluxetine	Prozac
*ervthromvcin	EES. Ervthrocin	seraline	Zoloft
ciprofloxacin	Cipro	methylphenidate	Ritalin
levofloxacin	Levaguin	chloral hydrate	Noctec
azithromycin	Zithromax		
ampicillin	Omnipen	epinephrine	Primatene
fluconazole	Diflucan	norepinephrine	Levophed
ketoconazole	Nizoral	phenylephrine	Neosynephrine
foscamet	Foscavir	ondansetron	Zofran
cocaine	Cocaine	dobutamine	Dobutrex
*methadone		dopamine	Intropin
rmetnadone	Methadone, Dolophine		
	Sudafed	phenylpropanolamine	Dexatrim, Acutrim
pseudoephedrine	Sudated		

QTc by Bazett's Formula

Step 1

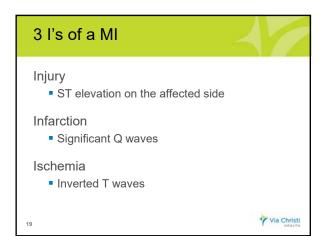
- Find the square root of the R-R interval
 Measure the R-R interval (# of squares x 0.04) then press the sign on a calculator.

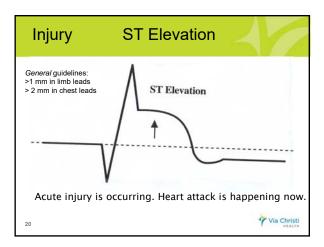
Step 2

Measure the QT interval
 Change the QT interval from seconds to
 milliseconds (QT .44 secs = 440 ms)

Step 3 • Divide the QT interval in ms by the square root of the R-R interval to calculate the QTc.

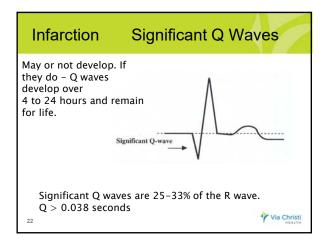
Example: Step 1 R-R is 19 squares x 0.04 = 0.76 Press the square root button The square root of 0.76 is 0.87

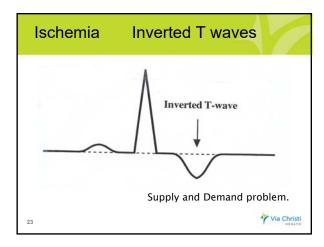

Step 2 QT interval is .48 sec or 480 ms


Step 3

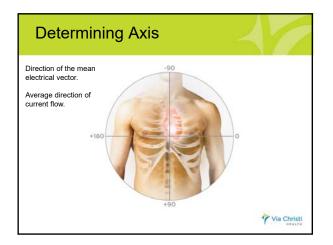
480 ÷ 0.87 = QTc of 552 (551.7) ms

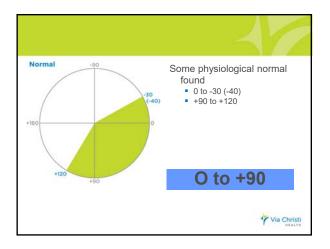
12 Lead	Format		17
I	AVR	V1	V4
II	AVL	V2	V5
111	AVF	V3	V6
18			Via Christi

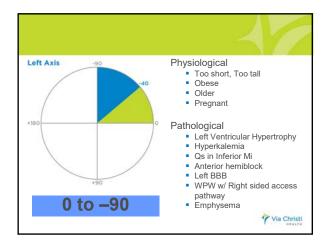




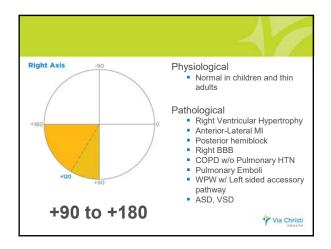
Causes of ST Elevation

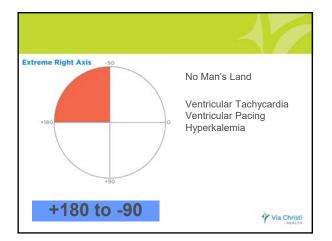

Acute MI Injury pattern Left BBB Angina with coronary artery spasm Early repolarization Left Ventricular hypertrophy Hyperkalemia Tako Tsubo cardiomyopathy Intracranial bleeds Acute corpulmonale Myocarditis Pericarditis Cholecystitis Myocardial tumors Acute pancreatitis Hypothermia

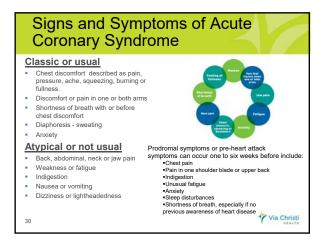




Axis	Lead I	Lead II	Lead III	Comments
Normal 0-90	_/_	_^_		aVF positive
Physiologic Left Axis 040	_^_	~_~	\sim	aVF negative
Pathological Left Axis -40 to -90	_∕_	\sim	\sim	Anterior Hemiblock
Right Axis 90-180	\sim	~ -⁄r ~~	\sim	aVF positive Posterior Hemiblock
Extreme Right Axis No Man's Land	$\overline{\mathbf{v}}$	\sim	\sim	aVF negative Ventricular in origin







Acute Coronary Syndrome

- ST Elevated Myocardial Infarction- STEMI
 - ST segment is elevated above the isoelectric baseline
 - Classic presentation with elevated cardiac biomarkers
 - New LBBB not equivalent since 2013 updated position
- Non ST Elevated Myocardial Infarction NSTEMI
 - ST and T-wave changes with elevated cardiac biomarkers
 - Depressed ST, inverted T wave
 - Classical or atypical presentation
- Angina, Unstable angina

Via Christi

Types of MI

Type 1

- Spontaneous MI related to ischemia due to a primary coronary event such as plaque erosion and/or rupture, fissuring, or dissection.
 - Non ST Elevation MI or ST Elevation MI

Type 2

- MI secondary to ischemia due to either increased oxygen demand or decreased supply.
- Coronary artery spasm, coronary embolism, anemia, arrhythmias, hypertension, or hypotension
- hypertension, or hypotension
 Respiratory distress, renal failure, sepsis

Туре 3

- Sudden unexpected cardiac death, including cardiac arrest, often with symptoms suggestive of MI.
 Accompanied by presumably new ST elevation or new LBBB
- Evidence of fresh thrombus in the coronary artery by angiography

Type 4

MI associated with coronary angioplasty or stent.

Туре 5

MI associated with coronary artery bypass grafting (CABG)

Via Christi

Pathological Types

Transmural AMI

- Infarct extends through the whole thickness of the heart muscle, usually resulting in complete occlusion of the area's blood supply.
- Associated with atherosclerosis involving a major coronary artery.
- Subclassified into anterior, posterior, inferior, lateral, or septal.
- ST elevation, and Q-waves

Subendocardial AMI

- Involves a small area in the subendocardial wall of the left ventricle, ventricular septum, or papillary muscles.
- Susceptible to ischemia.
- ST depression, T-wave changes

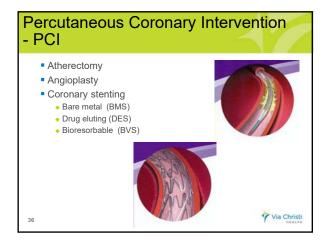
AMI Clinical Practice Guidelines (CPGs)

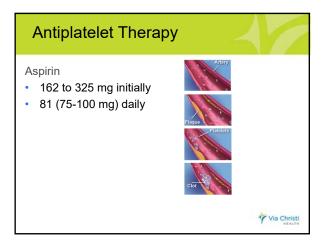
During hospitalization

- Reperfusion strategies
- Aspirin within 24 hours before or after arrival
- Smoking (tobacco) cessation advice/counseling

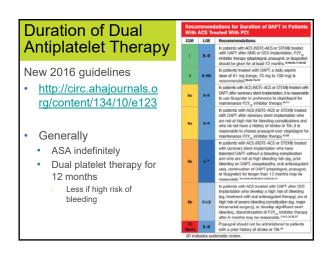
At Discharge

- Aspirin
- Beta-Blocker
- Statin
- ACE-I or ARB therapy for left ventricular systolic dysfunction, EF (ejection fraction) <40%


STEMI Reperfusion Strategy


Door-to-needle goal of 30 minutes Thrombolytic (fibrinolysis) therapy

- TNKase (tenecteplase)
- Activase (t-PA, alteplase)
- Retavase (r-PA, reteplase)
- Streptokinase (Streptase)
- Door-to-Balloon (D2B) within 90 minutes

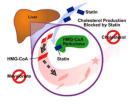

Angioplasty

- PTCA Percutaneous Transluminal Coronary Angioplasty
- Coronary artery stents
- Atherectomy Percutaneous Coronary Intervention ^{*} Via Christian Coronary Intervention

Statistication Description Comments Appirin Anti-platelet, attaches to XD; 12:325 mg loading, then Do not take with PPI, Pavix (clopidogro) Anti-platelet, attaches to AD; 10:07 mg PD pading, then Do not take with PPI, Efficient (prasugrel) Anti-platelet, attaches to AD; 10:07 mg PD pading, then Do not take with PPI, Efficient (prasugrel) Anti-platelet, attaches to AD; 10 mg PD loading, then 10 Dot take with PPI, Efficient (prasugrel) Anti-platelet, attaches to AD; 100 mg PD loading, then 10 Dot take with PPI, Efficient (prasugrel) Anti-platelet, attaches to AD; 100 mg PD loading, then 10 Dot take with PPI, Efficient (prasugrel) Anti-platelet, attaches to AD; 100 mg PD loading, then 10 Dot take with PPI, Integrilin (optifibation) Anti-platelet, attaches to GP 20 mg PD loading, then 10 Dot take with PPI, Integrilin (optifibation) Anti-platelet, attaches to GP 22 mg Mg platels, then 10 Dot take of 24 hours Integrilin (optifibation) Anti-platelet, attaches to GP 22 mg Mg platels, then 10 Do not take of 20 minutes Units of the PPI, The platelet, attaches to GP 22 mg Mg platels, then 10 Do mg Mg Platelet,

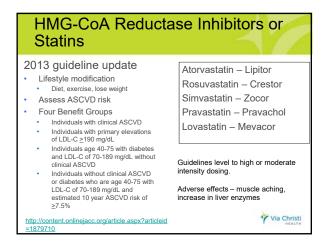
Beta Blockers

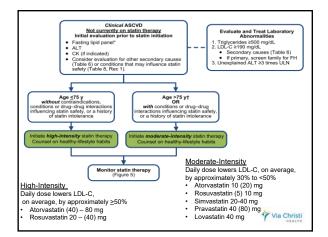
- Reduce catecholamine levels
- Decrease myocardial ischemia and limit infarct size
- Reduce myocardial workload and oxygen demand
- Reduce heart rate and blood pressure
- Reduce supraventricular and malignant ventricular arrhythmias

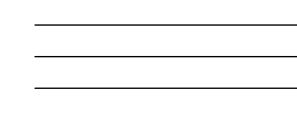

Metoprolol – Lopressor, Toprol XL Carvedilol – Coreg Bisoprolol - Zebeta Atenolol – Tenormin Sotalol – Betapace Betaxolol – Kerlone Propranolol – Inderol Esmolol – Brevibloc (IV) Labetalol – Normodyne (IV)

Via Christi

Common Beta Blockers


E	Beta blockers		
	Drug	Initial Daily Dose	Maximum Dose
	carvedilol (Coreg)	3.125 mg BID	50 mg BID
	Carvedilol extended release (Coreg CR)	10 mg daily	80 mg daily
	metoprolol succinate extended release (Toprol XL, generic)	12.5-25 mg daily	200 mg daily
	bisoprolol (Zebeta)	1.25 mg daily	10 mg daily
	Atenolol (Tenormin)	50 mg daily	100 mg (200) daily
			Via Christi


HMG-CoA Reductase



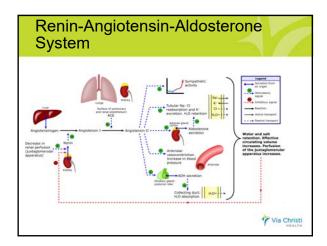
Cholesterol is synthesized in the smooth endoplasmic reticulum by a series of chemical reactions.

The first way to block cholesterol synthesis is to interrupt the conversion of HMG CoA to mevalonate.

PCSK9 Inhibitors

By blocking PCSK9's ability to work, more receptors are available to get rid of LDL cholesterol from the blood and, as a result, lower LDL cholesterol levels

Alirucumab (Praluent)


• 75 mg or 150 mg SQ every 2 weeks

Evolocumab (Repatha)

- 140 mg every 2 weeks or 420 mg once monthly
- 420 mg dose Single use body infusor over 9 minutes or 3 injections within 30 minutes

These are additions to statin therapy.

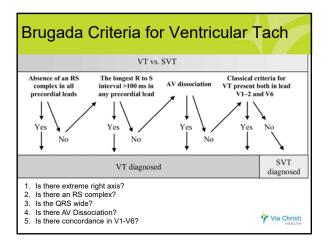
45

ACE-I & ARBs	
ACE-I Lisinopril – Prinivil, Zestril Captopril – Capoten Ramipril - Altace Enalapril – Vasotec Fosinopril – Monopril	ARB Losartan – Cozaar Valsartan - Diovan Candesartan - Atacand
Adverse effect – cough, angioedema, hyperkalemia Watch renal function.	Tend not to have as many adverse effects. Cough not really seen.

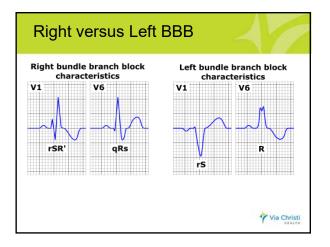
ACE-I and ARBs

Drug	Initial Daily Dose	Maximum Dose	Drug	Initial Daily Dose	Maximum Dose
Captopril	6.25 mg TID	50 mg TID	Losartan	25-50 mg daily	50-150 mg daily
Enalapril	2.5 mg BID	10-20 BID	Valsartan	20-40 mg	160 mg
Fosinopril	5-10 mg	40 mg daily		BID	BID
	daily		Candesartan	4-8 mg	32 mg
Lisinopril	2.5-5 mg daily	20-40 mg daily		daily	daily
Ramipril	1.25-2.5 daily	10 mg daily			
					1
					Via Chris

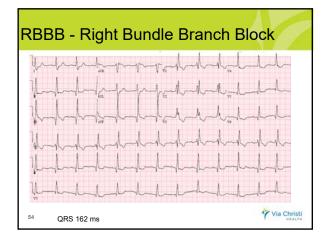
Patient Safety Indicators AMI Quality Measures			
30-Day Mortality	30-day, all cause, risk-standardized mortality rate following a hospitalization for AMI	50%	Claims-based per IQR (NQF #0230)
AMI Excess Days	Excess days in acute care, including emergency department, observation, and inpatient readmission days following a hospitalization for AMI	20%	Claims-based per IQR
HCAHPS Survey	Patient experience composite measure (akin to star rating measure) not specific to DRGs. Reflects elements of care such as communication, pain management, discharge transition information, cleanliness, and quietness.	20%	Patient Survey (NQF #0166)
Hybrid AMI Mortality Voluntary Data	30-day, risk-standardized AMI mortality rate, using a combination of claims data and EHR data submitted by hospitals	10%	Voluntary submission (NOF #2473)

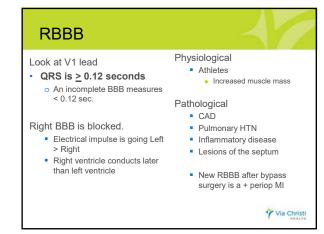

September 2017 AHA / ACA New Performance Measures for MI

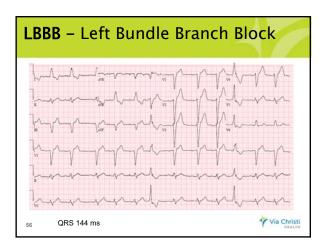
- 1. Immediate angiography for resuscitated out-ofhospital cardiac arrest in STEMI patients
- 2. Noninvasive stress testing before discharge in conservatively treated patients
- 3. Early cardiac troponin measurement, within 6 hours of arrival
- 4. Participation in a regional or national acute-MI registry


Via Christi

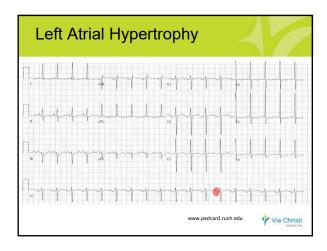
September 2017 AHA / ACA New Quality Measures for MI

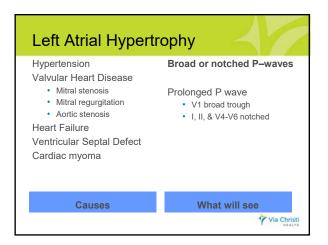

- 1. Risk-score stratification for NSTEMI patients
- 2. Early invasive strategy, within 24 hours, in high-risk NSTEMI patients
- 3. Therapeutic hypothermia for comatose STEMI patients with out-of-hospital cardiac arrest
- 4. Aldosterone antagonist at discharge
- 5. Inappropriate in-hospital use of NSAIDS
- 6. Inappropriate prescription of prasugrel at discharge in patients with a history of prior stroke or TIA
- 7. Inappropriate prescription of high-dose aspirin with ticagrelor at discharge

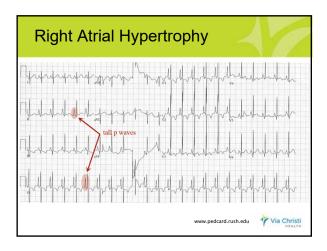


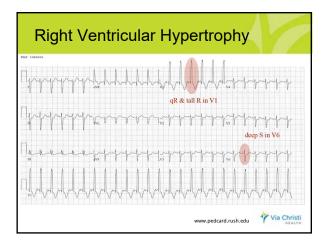


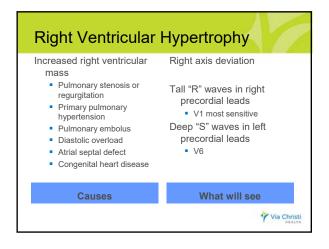


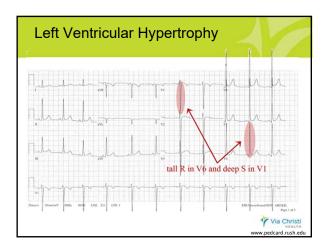






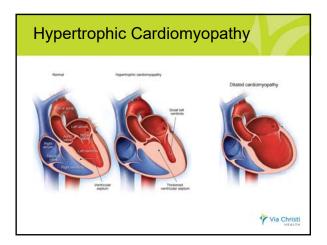


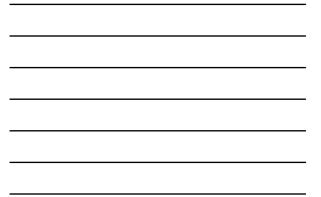




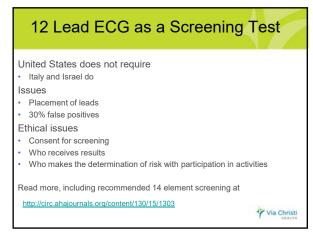
Right Atrial Hypertrophy				
Lung disease • COPD Pulmonary Embolus Pulmonary Hypertension Right ventricular failure Tricuspid regurgitation or stenosis Atrial Septal Defects	 Tall, peaked P-waves II, III, aVF ≥ 2.5 mm tall in the inferior leads 			
Causes	What will see			
	Via Christi			







Left Ventricular Hypertrophy	
Increased LV muscle mass • Hypertension • Cardiomegaly • Cardiomyopathy • Aortic stenosis and regurgitation • Mitral regurgitation	Left axis deviation Measure V1 or V2 Deepest "S" wave PLUS V5 or V6 Tallest "R" wave #mm add up > 35 mm
Causes	What will see
	Via Christi


Hypertrophic Cardiomyopathy

Previously known as

- Hypertrophic obstructive cardiomyopathy – HCOM
 Idiopathic hypertrophic
- Idiopatnic hypertrophic subaortic stenosis – IHSS
- Number one cause of sudden cardiac death in young athletes (1-2%).
- Inheritance is primarily autosomal dominant.

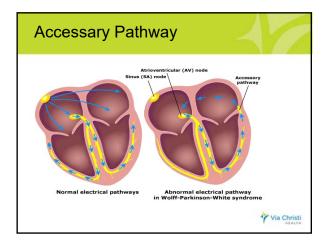
ECG changes

- Left ventricular hypertrophy pattern
 Tall R waves
 - Large precordial voltages
- Deep, narrow "dagger-like" Q waves in lateral and inferior leads
- Giant T-wave inversion in apical HCM
- Left atrial enlargement
- Atrial fibrillation and SVTs are common

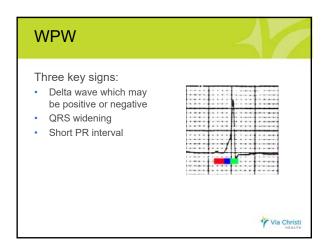
Treatment and Management

Medical

- No highly strenuous activity
- Control blood pressure
 o Beta blockers
- o Calcium channel blockers
- Amiodarone
- Norpace (disopyramide)
- Cautious with diuretics
- Avoid inotropes, nitrates, sympathomimetic amines
- Surgical


 Surgical septal myectomy
- Alcohol septal ablation
- Heart transplant

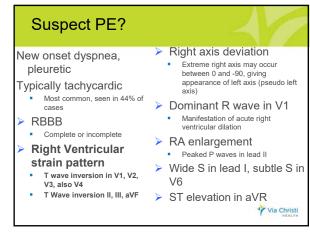
Via Christi


Wolff-Parkinson White

Sinus impulses bypass the AV node via an accessory pathway (AP) conduction.

- Uncommon ~2 per 1,000 in the general population
- Can be right-sided, left-sided, anterior, or posterior – and sometimes more than a single AP.
- A very fast atrial fibrillation (250-300) think WPW.

Treatment and Management


Acutely	Long Term
Adenosine	Catheter ablation
Consult cardiology	Flecainide (Tambocor) Sotalol (Betapace)
	Via Christ

Pulmonary Embolus

Look at the sum of all in context with the clinical history.

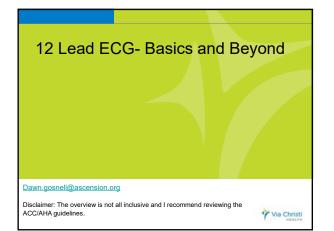
- ECG is not diagnostic.
- Can strongly suggest before the V/Q or CT scan.

 $Old - S_{l} \text{-} Q_{lll} \text{-} T_{lll} \text{ ``classic'' finding is neither sensitive nor specific.}$

References

Amsterdam, E. A., Wenger, N. K., Brindis, R. G., Casey, D. E. Ganiats, T. G., Holmes, D. R, ...Zieman, S. J. (2014). 2014 AH4ACC guideline for the management of patients with non-stelevation acute coronary syndromes. Retrieved from <u>http://conten.onlinejacc.org/article.aspx?articleid=1910086</u>

Levine, G. N., Bates, E. R., Bittl, J. A., Brindis, R. G., Fihn, S. D., Fleisher, L. A., ...Smith, S. C. (2016). 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease. Retrieved from http://circ.ahajournals.org/content/134/10/e123


Marion, B. J., Friedman, R. A., Kligfield, P., Levine, B. D., Viskin, S., Chaitman, B. R., ... Thompson, P. D. (2014). Assessment of the 12-lead ecg as a screening test for detection of cardiovascular disease in healthy general populations of young people (12-25 years of age). Retrieved from http://circ.ahajournals.org/content/130/15/1303

Obeyesekere, M., Gula, L. J., Skanes, A. C. Leong-Sit, P., & Klein, G. J. (2012). Risk of sudden death in wolff-parkinson-white syndrome: how high is the risk? Circulation, 125 (5), 659-660.

Y Via Christi

References

- O'Gara, P. T., Kushner, F. G., Ascheim, D. D., Casey, D. E., Chung, M. K., de Lemos, J. A., ... Zhao, D.X. (2013). 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction. *Circulation*, 127. Retrieved from http://circ.ahajournals.org/content/early/2012/12/17/CIR.0b013e3182742cf6.full.pdf+html
- Pappone, C., Vicedomini, G., Manguso, F., Baldi, M., Pappone, A., Petretta, A., ... Santinelli, V. (2012). Risk of malignant arrhythmias in initially symptomatic patients with wolff-parkinsonwhite syndrome: results of a prospective long-term electrophysiological follow-up study. Circulation, 125 (5), 661-668.
- Shenasa, M., Josephson, M. E., & Mark Estes, N. A. (2015). ECG handbook of contemporary challenges. Minneapolis, MN: Cardiotest Publishing
- Thaler, M. S. (2015). The only ecg book you'll ever need (8th ed.). Philadelphia, PA: Wolters Kluwer Health.
- Yancy, C. W., Jessup, M., Bozkurt, B., Hollenberg, S. M., Butler, J., Lindenfeld, J., ... Givertz, M. M. (2017). 2017 ACC/AHA //HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. Retrieved from http://circ.ahajournals.org/content/early/2017/04/26/CIR.0000000000000509

