20.06.2016 Views

SKF - Spherical Plain Bearings and Rod Ends

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SKF</strong> spherical plain<br />

bearings <strong>and</strong> rod ends


® <strong>SKF</strong> is a registered trademark of the <strong>SKF</strong> Group.<br />

© <strong>SKF</strong> Group 2011<br />

The contents of this catalogue are the copyright<br />

of the publisher <strong>and</strong> may not be reproduced (even<br />

extracts) unless prior written permission is granted.<br />

Every care has been taken to ensure the accuracy<br />

of the information contained in this catalogue but<br />

no liability can be accepted for any loss or damage<br />

whether direct, indirect or consequential arising out<br />

of the use of the information contained herein.<br />

PUB BU/P1 06116/1 EN · September 2011<br />

This publication supersedes publication 4407/II E.


Principles of selection <strong>and</strong> application ......................... 25<br />

1<br />

Radial spherical plain bearings requiring maintenance .. 99<br />

2<br />

Maintenance-free radial spherical plain bearings ......... 125<br />

3<br />

Angular contact spherical plain bearings ...................... 151<br />

4<br />

Thrust spherical plain bearings ................................... 159<br />

5<br />

<strong>Rod</strong> ends requiring maintenance ................................. 167<br />

6<br />

Maintenance-free rod ends ......................................... 189<br />

7<br />

Other <strong>SKF</strong> plain bearings <strong>and</strong> special solutions ............ 207<br />

8<br />

Product index ............................................................. 213<br />

9<br />

1


Contents<br />

Foreword ................................................................................................................ 5<br />

Unit conversions...................................................................................................... 7<br />

<strong>SKF</strong> – the knowledge engineering company................................................................ 8<br />

General product information .................................................................................... 13<br />

1 Principles of selection <strong>and</strong> application ................................................................... 25<br />

Selection of bearing type ........................................................................................................... 27<br />

Selection of bearing size ............................................................................................................ 38<br />

Friction ........................................................................................................................................ 69<br />

Design of bearing arrangements .............................................................................................. 70<br />

Lubrication ................................................................................................................................. 84<br />

Relubrication .............................................................................................................................. 90<br />

Mounting .................................................................................................................................... 92<br />

Dismounting ............................................................................................................................... 96<br />

2 Radial spherical plain bearings requiring maintenance ........................................... 99<br />

Product tables<br />

2.1 Radial spherical plain bearings, steel/steel, metric sizes .............................................. 104<br />

2.2 Radial spherical plain bearings, steel/steel, inch sizes .................................................. 110<br />

2.3 Radial spherical plain bearings with an extended inner ring, steel/steel, metric sizes .. 116<br />

2.4 Radial spherical plain bearings with an extended inner ring, steel/steel, inch sizes ... 120<br />

3 Maintenance-free radial spherical plain bearings ................................................... 125<br />

Product tables<br />

3.1 Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze,<br />

metric sizes ..................................................................................................................... 132<br />

3.2 Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes..... 134<br />

3.3 Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes ........ 140<br />

3.4 Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes ....... 144<br />

4 Angular contact spherical plain bearings................................................................ 151<br />

Product tables<br />

4.1 Maintenance-free angular contact spherical plain bearings, steel/PTFE FRP ............ 156<br />

5 Thrust spherical plain bearings............................................................................. 159<br />

Product tables<br />

5.1 Maintenance-free thrust spherical plain bearings, steel/PTFE FRP ............................ 164<br />

2


6 <strong>Rod</strong> ends requiring maintenance........................................................................... 167<br />

Product tables<br />

6.1 <strong>Rod</strong> ends with a female thread, steel/steel.................................................................... 172<br />

6.2 <strong>Rod</strong> ends with a female thread, for hydraulic cylinders, steel/steel.............................. 174<br />

6.3 <strong>Rod</strong> ends with a male thread, steel/steel ....................................................................... 178<br />

6.4 <strong>Rod</strong> ends with a cylindrical section welding shank, steel/steel ..................................... 180<br />

6.5 <strong>Rod</strong> ends with a rectangular section welding shank, steel/steel .................................. 182<br />

6.6 <strong>Rod</strong> ends with a female thread, steel/bronze ................................................................ 184<br />

6.7 <strong>Rod</strong> ends with a male thread, steel/bronze.................................................................... 186<br />

7 Maintenance-free rod ends................................................................................... 189<br />

Product tables<br />

7.1 Maintenance-free rod ends with a female thread, steel/PTFE sintered bronze .......... 194<br />

7.2 Maintenance-free rod ends with a male thread, steel/PTFE sintered bronze ............. 196<br />

7.3 Maintenance-free rod ends with a female thread, steel/PTFE fabric .......................... 198<br />

7.4 Maintenance-free rod ends with a male thread, steel/PTFE fabric ............................. 200<br />

7.5 Maintenance-free rod ends with a female thread, steel/PTFE FRP ............................ 202<br />

7.6 Maintenance-free rod ends with a male thread, steel/PTFE FRP ................................ 204<br />

8 Other <strong>SKF</strong> products <strong>and</strong> services ........................................................................... 207<br />

9 Product index....................................................................................................... 213<br />

3


The <strong>SKF</strong> br<strong>and</strong> now st<strong>and</strong>s for more than ever<br />

before, <strong>and</strong> means more to you as a valued<br />

customer.<br />

While <strong>SKF</strong> maintains its leadership as a highquality<br />

bearing manufacturer throughout the<br />

world, new dimensions in technical advances,<br />

product support <strong>and</strong> services have evolved <strong>SKF</strong><br />

into a truly solutions-oriented supplier, creating<br />

greater value for customers.<br />

These solutions enable customers to improve<br />

productivity, not only with breakthrough<br />

application-specific products, but also through<br />

leading-edge design simulation tools <strong>and</strong><br />

consultancy services, plant asset efficiency<br />

maintenance programmes, <strong>and</strong> the industry’s<br />

most advanced supply management techniques.<br />

The <strong>SKF</strong> br<strong>and</strong> still st<strong>and</strong>s for the very best in<br />

rolling bearings, but it now st<strong>and</strong>s for much<br />

more.<br />

<strong>SKF</strong> – the knowledge engineering company<br />

4


Foreword<br />

Many applications require bearings that are<br />

suitable for oscillating movements <strong>and</strong> that can<br />

accommodate misalignment. Rolling bearings<br />

only partly fulfil these requirements as they are<br />

generally designed for continuous rotation <strong>and</strong><br />

can only accommodate limited misalignment.<br />

Therefore, <strong>SKF</strong> manufactures spherical plain<br />

bearings <strong>and</strong> rod ends to provide an economical<br />

solution to these challenges.<br />

This catalogue presents the current assortment<br />

of <strong>SKF</strong> spherical plain bearings <strong>and</strong> rod<br />

ends.<br />

Structure of the catalogue<br />

The catalogue starts with general product information,<br />

followed by nine main chapters, which<br />

are marked with numbered blue tabs in the right<br />

margin:<br />

• Chapter 1 provides design <strong>and</strong> application<br />

recommendations.<br />

• Chapters 2 to 7 describe the various bearing<br />

<strong>and</strong> rod end types. Each chapter contains<br />

descriptions of the products as well as product<br />

tables, listing data for selecting a bearing<br />

or rod end <strong>and</strong> designing the bearing<br />

arrangement.<br />

• Chapter 8 is an overview about other <strong>SKF</strong><br />

products <strong>and</strong> services.<br />

• In chapter 9, all products presented in this<br />

catalogue are listed in alphabetical order by<br />

designation.<br />

About the data in this catalogue<br />

The data in this catalogue relate to <strong>SKF</strong>’s stateof-the-art<br />

technology <strong>and</strong> production capabilities<br />

as of beginning 2010. The data may differ<br />

from that shown in earlier catalogues because<br />

of revised methods of calculation, redesign or<br />

technological developments. For example, the<br />

following new information <strong>and</strong> product data<br />

have been included for radial spherical plain<br />

bearings:<br />

• <strong>Bearings</strong> in the TX series have been added<br />

<strong>and</strong> are available with bore diameters up to<br />

800 mm.<br />

• <strong>Bearings</strong> in the maintenance-free series are<br />

fitted with LS seals as st<strong>and</strong>ard.<br />

• <strong>Bearings</strong> with the sliding material FSA have<br />

been replaced by the FBAS design.<br />

• <strong>Bearings</strong> requiring maintenance are also<br />

available with LS seals.<br />

• Part of the inch assortment is also available<br />

with LS seals.<br />

<strong>SKF</strong> reserves the right to make continuing<br />

improvements to <strong>SKF</strong> products with respect to<br />

materials, design <strong>and</strong> manufacturing methods,<br />

as well as changes necessitated by technological<br />

developments.<br />

The units used in this catalogue are in accordance<br />

with ISO (International Organization for<br />

St<strong>and</strong>ardization) st<strong>and</strong>ard 1000:1992, <strong>and</strong> SI<br />

(Système International d’Unités). Unit conversions<br />

are listed in the table on page 7.<br />

Other <strong>SKF</strong> catalogues<br />

The total <strong>SKF</strong> product portfolio is much broader<br />

than just spherical plain bearings <strong>and</strong> rod ends.<br />

Product information is also available via the <strong>SKF</strong><br />

website at www.skf.com. The <strong>SKF</strong> Interactive<br />

Engineering Catalogue provides not only product<br />

information, but also online calculation tools,<br />

CAD drawings in various formats, <strong>and</strong> search<br />

<strong>and</strong> selection functions.<br />

The main printed <strong>SKF</strong> catalogues are:<br />

• General catalogue<br />

• Needle roller bearings<br />

• High-precision bearings<br />

• Y-bearings <strong>and</strong> Y-bearing units<br />

5


• Bearing housings<br />

• Slewing bearings<br />

• Linear motion st<strong>and</strong>ard range<br />

• <strong>SKF</strong> Maintenance <strong>and</strong> Lubrication Products<br />

• Centralized lubrication systems<br />

• Industrial shaft seals<br />

• <strong>SKF</strong> Power transmission products<br />

For additional information about <strong>SKF</strong> products<br />

<strong>and</strong> services, contact your local <strong>SKF</strong> representative<br />

or <strong>SKF</strong> Authorized Distributor.<br />

More advantages<br />

<strong>SKF</strong> aims to deliver industry-leading, high value<br />

products, services <strong>and</strong> knowledge-engineered<br />

solutions. Many of the product’s capabilities<br />

contribute to the overall value customers receive<br />

in making <strong>SKF</strong> their supplier of choice, such as:<br />

• simplified bearing selection<br />

• short delivery times<br />

• worldwide availability<br />

• commitment to product innovation<br />

• state-of-the-art application solutions<br />

• extensive engineering <strong>and</strong> technology knowledge<br />

in virtually every industry<br />

6


Unit conversions<br />

Quantity Unit Conversion<br />

Length inch 1 mm 0,03937 in 1 in 25,40 mm<br />

foot 1 m 3,281 ft 1 ft 0,3048 m<br />

yard 1 m 1,094 yd 1 yd 0,9144 m<br />

mile 1 km 0,6214 mile 1 mile 1,609 km<br />

Area square inch 1 mm 2 0,00155 sq.in 1 sq.in 645,16 mm 2<br />

square foot 1 m 2 10,76 sq.ft 1 sq.ft 0,0929 m 2<br />

Volume cubic inch 1 cm 3 0,061 cub.in 1 cub.in 16,387 cm 3<br />

cubic foot 1 m 3 35 cub.ft 1 cub.ft 0,02832 m 3<br />

imperial gallon 1 l 0,22 gallon 1 gallon 4,5461 l<br />

U.S. gallon 1 l 0,2642 U.S. 1 U.S. 3,7854 l<br />

gallon<br />

gallon<br />

Velocity, foot per second 1 m/s 3,28 ft/s 1 ft/s 0,30480 m/s<br />

speed mile per hour 1 km/h 0,6214 mile/h 1 mile/h 1,609 km/h<br />

(mph)<br />

(mph)<br />

Mass ounce 1 g 0,03527 oz 1 oz 28,350 g<br />

pound 1 kg 2,205 lb 1 lb 0,45359 kg<br />

short ton 1 tonne 1,1023 short ton 1 short ton 0,90719 tonne<br />

long ton 1 tonne 0,9842 long ton 1 long ton 1,0161 tonne<br />

Density pound per 1 g/cm 3 0,0361 lb/cub.in 1 lb/cub.in 27,680 g/cm 3<br />

cubic inch<br />

Force pound-force 1 N 0,225 lbf 1 lbf 4,4482 N<br />

Pressure, pounds per 1 MPa 145 psi 1 psi 6,8948 ¥ 10 3 Pa<br />

stress<br />

square inch<br />

Moment inch pound-force 1 Nm 8,85 in.lbf 1 in.lbf 0,113 Nm<br />

Power foot-pound per 1 W 0,7376 ft lbf/s 1 ft lbf/s 1,3558 W<br />

second<br />

horsepower 1 kW 1,36 HP 1 HP 0,736 kW<br />

Temperature degree Celsius t C = 0,555 (t F – 32) Fahrenheit t F = 1,8 t C + 32<br />

7


<strong>SKF</strong> – the knowledge<br />

engineering company<br />

From the company that invented the self-aligning<br />

ball bearing more than 100 years ago, <strong>SKF</strong><br />

has evol ved into a knowledge engin eering<br />

company that is able to draw on five technology<br />

platforms to create unique solutions for its<br />

custom ers. These platforms include bearings,<br />

bearing units <strong>and</strong> seals, of course, but extend to<br />

other areas including: lubricants <strong>and</strong> lubrication<br />

sys tems, critical for long bearing life in many<br />

appli cations; mecha tronics that combine<br />

mech anical <strong>and</strong> electron ics knowledge into<br />

systems for more effective linear motion <strong>and</strong><br />

sensorized solutions; <strong>and</strong> a full range of services,<br />

from design <strong>and</strong> logistics support to<br />

con dition monitoring <strong>and</strong> reliability systems.<br />

Though the scope has broadened, <strong>SKF</strong> continues<br />

to maintain the world’s leadership in the<br />

design, manufacture <strong>and</strong> marketing of rolling<br />

bearings, as well as complementary products<br />

such as radial seals. <strong>SKF</strong> also holds an increasingly<br />

important position in the market for linear<br />

motion products, high-precision aerospace<br />

bearings, machine tool spindles <strong>and</strong> plant maintenance<br />

services.<br />

The <strong>SKF</strong> Group is globally certified to ISO<br />

14001, the international st<strong>and</strong>ard for envi r o n-<br />

mental management, as well as OHSAS 18001,<br />

the health <strong>and</strong> safety manage ment st<strong>and</strong>ard.<br />

Individual divisions have been ap proved for<br />

quality certification in ac cord ance with ISO 9001<br />

<strong>and</strong> other customer specific requirements.<br />

With over 100 manufacturing sites worldwide<br />

<strong>and</strong> sales companies in 70 countries, <strong>SKF</strong> is a<br />

truly international corporation. In addition, our<br />

15 000 distributors <strong>and</strong> dealers around the<br />

world, an e-business marketplace, <strong>and</strong> a global<br />

distribution system, put <strong>SKF</strong> closer to customers<br />

to enhance their ability to quickly supply both<br />

products <strong>and</strong> services. In essence, <strong>SKF</strong> solutions<br />

are available wherever <strong>and</strong> whenever customers<br />

need them. Over all, the <strong>SKF</strong> br<strong>and</strong> <strong>and</strong> the corporation<br />

are stronger than ever. As the knowledge<br />

engin eering company, we st<strong>and</strong> ready to<br />

serve you with world-class product competencies,<br />

intellectual resources, <strong>and</strong> the vision to<br />

help you succeed.<br />

Seals<br />

<strong>Bearings</strong><br />

<strong>and</strong> units<br />

Lubrication<br />

systems<br />

Mechatronics<br />

Services<br />

8


Evolving by-wire technology<br />

<strong>SKF</strong> has a unique expertise in the fast-growing by-wire technology, from fly-by-wire,<br />

to drive-by-wire, to work-by-wire. <strong>SKF</strong> pioneered practical fly-by-wire technology <strong>and</strong><br />

is a close working partner with all aerospace industry leaders. As an example, virtually<br />

all aircraft of the Airbus design use <strong>SKF</strong> by-wire systems for cockpit flight control.<br />

© Airbus – photo: e x m company, H. Goussé<br />

<strong>SKF</strong> is also a leader in automotive by-wire<br />

technology, <strong>and</strong> has partnered with automotive<br />

engineers to develop two concept cars, which<br />

employ <strong>SKF</strong> mechatronics for steering <strong>and</strong> braking.<br />

Further by-wire development has led <strong>SKF</strong><br />

to produce an all-electric forklift truck, which<br />

uses mechatronics rather than hydraulics for<br />

all controls.<br />

9


Harnessing wind power<br />

The growing industry of wind-generated electric<br />

power provides a source of clean, green electricity.<br />

<strong>SKF</strong> is working closely with global industry<br />

leaders to develop efficient <strong>and</strong> trouble-free<br />

turbines, providing a wide range of large, highly<br />

specialized bearings <strong>and</strong> condition monitoring<br />

systems to extend equipment life of wind farms<br />

located in even the most remote <strong>and</strong> inhospitable<br />

environments.<br />

Working in extreme environments<br />

In frigid winters, especially in northern countries,<br />

extreme sub-zero temperatures can cause bearings<br />

in railway axleboxes to seize due to lubrication<br />

starvation. <strong>SKF</strong> created a new family of<br />

synthetic lubricants formulated to retain their<br />

lubrication viscosity even at these extreme temperatures.<br />

<strong>SKF</strong> knowledge enables manufacturers<br />

<strong>and</strong> end user customers to overcome the<br />

performance issues resulting from extreme temperatures,<br />

whether hot or cold. For example, <strong>SKF</strong><br />

products are at work in diverse environments<br />

such as baking ovens <strong>and</strong> instant freezing in food<br />

processing plants<br />

Developing a cleaner cleaner<br />

The electric motor <strong>and</strong> its bearings are the heart<br />

of many household appliances. <strong>SKF</strong> works closely<br />

with appliance manufacturers to improve their<br />

products’ performance, cut costs, reduce weight,<br />

<strong>and</strong> reduce energy consumption. A recent example<br />

of this cooperation is a new generation of<br />

vacuum cleaners with substantially more suction.<br />

<strong>SKF</strong> knowledge in the area of small bearing technology<br />

is also applied to manufacturers of power<br />

tools <strong>and</strong> office equipment.<br />

10


Maintaining a 350 km/h R&D lab<br />

In addition to <strong>SKF</strong>’s renowned research <strong>and</strong><br />

development facilities in Europe <strong>and</strong> the United<br />

States, Formula One car racing provides a unique<br />

environment for <strong>SKF</strong> to push the limits of bearing<br />

technology. For over 60 years, <strong>SKF</strong> products,<br />

engineering <strong>and</strong> knowledge have helped make<br />

Scuderia Ferrari a formidable force in F1 racing.<br />

(The average racing Ferrari utilizes around 150<br />

<strong>SKF</strong> components.) Lessons learned here are<br />

applied to the products we provide to automakers<br />

<strong>and</strong> the aftermarket worldwide.<br />

Delivering Asset Efficiency Optimization<br />

Through <strong>SKF</strong> Reliability Systems, <strong>SKF</strong> provides<br />

a comprehensive range of asset efficiency products<br />

<strong>and</strong> services, from condition monitoring<br />

hard ware <strong>and</strong> software to maintenance strategies,<br />

engineering assistance <strong>and</strong> machine reliability<br />

programmes. To optimize efficiency <strong>and</strong><br />

boost productivity, some industrial facilities opt<br />

for an Integrated Maintenance Solution, in which<br />

<strong>SKF</strong> delivers all services under one fixed-fee,<br />

performance-based contract.<br />

Planning for sustainable growth<br />

By their very nature, bearings make a positive<br />

contribution to the natural environment, enabling<br />

machinery to operate more efficiently, consume<br />

less power, <strong>and</strong> require less lubrication.<br />

By raising the performance bar for our own products,<br />

<strong>SKF</strong> is enabling a new generation of highefficiency<br />

products <strong>and</strong> equipment. With an eye<br />

to the future <strong>and</strong> the world we will leave to our<br />

children, the <strong>SKF</strong> Group policy on environment,<br />

health <strong>and</strong> safety, as well as the manufacturing<br />

techniques, are planned <strong>and</strong> implemented to help<br />

protect <strong>and</strong> preserve the earth’s limited natural<br />

resources. We remain committed to sustainable,<br />

environmentally responsible growth.<br />

11


General product information<br />

Properties............................................................................................................... 14<br />

<strong>Spherical</strong> plain bearings ............................................................................................................ 14<br />

<strong>Rod</strong> ends...................................................................................................................................... 15<br />

Bearing designs <strong>and</strong> features.................................................................................... 16<br />

<strong>Bearings</strong> <strong>and</strong> rod ends requiring maintenance......................................................................... 17<br />

The multi-groove system....................................................................................................... 17<br />

Maintenance-free, long-life sliding contact surfaces................................................................ 18<br />

Optional <strong>SKF</strong> design features..................................................................................................... 19<br />

A choice of materials .............................................................................................................. 19<br />

With or without seals.............................................................................................................. 19<br />

Wide operating temperature range........................................................................................ 19<br />

Multi-purpose performance ..................................................................................... 20<br />

Typical applications..................................................................................................................... 20<br />

Application examples.................................................................................................................. 20<br />

Suspended roof....................................................................................................................... 20<br />

Road roller articulation joint................................................................................................... 21<br />

Truck twin-axle supports........................................................................................................ 21<br />

Dam gates................................................................................................................................ 22<br />

Hydraulic <strong>and</strong> pneumatic cylinders........................................................................................ 22<br />

Newspaper conveyor............................................................................................................... 22<br />

13


General product information<br />

Properties<br />

<strong>Spherical</strong> plain bearings<br />

<strong>Spherical</strong> plain bearings are st<strong>and</strong>ardized,<br />

ready-to-mount, mechanical components that<br />

enable multi-directional, self-aligning movements.<br />

The inner ring has a spherical convex<br />

outside diameter, while the outer ring has a<br />

correspondingly concave inside diameter<br />

(† fig. 1). The forces acting on the bearing may<br />

be static or may occur when the bearing makes<br />

oscillating or recurrent tilting <strong>and</strong> slewing<br />

movements at relatively low speeds.<br />

Design advantages inherent to spherical plain<br />

bearings include the ability to:<br />

• accommodate misalignment († fig. 2)<br />

• virtually eliminate edge stresses <strong>and</strong><br />

excessive stressing of adjacent components<br />

(† fig. 3)<br />

• accommodate deformation of surrounding<br />

components in operation († fig. 4)<br />

• accommodate wide manufacturing tolerances<br />

<strong>and</strong> the use of cost-effective, welded assemblies<br />

(† fig. 5)<br />

Fig. 2<br />

<strong>Spherical</strong> plain bearings are designed to accommodate<br />

misalignment<br />

Fig. 1<br />

<strong>Spherical</strong> plain bearing<br />

14


Fig. 3<br />

Compared to bushings, spherical plain bearings provide<br />

higher reliability, as the chance of edge stresses <strong>and</strong><br />

overloading are virtually non-existent<br />

<strong>Rod</strong> ends<br />

<strong>Spherical</strong> plain bearing rod ends are bearing<br />

units that consist of a spherical plain bearing in<br />

the eye-shaped head of the rod end housing<br />

(† fig. 6). They are used primarily on the ends<br />

of hydraulic or pneumatic pistons to join the<br />

cylinder to an associated component via an<br />

internal (female) thread, external (male) thread<br />

or a welding shank († fig. 7 on page 16).<br />

<strong>SKF</strong> supplies rod ends with a threaded shank<br />

with a right-h<strong>and</strong> thread as st<strong>and</strong>ard. With the<br />

exception of rod ends with the designation suffix<br />

VZ019, all rod ends are also available with a<br />

left-h<strong>and</strong> thread. They are identified by the<br />

designation prefix L.<br />

Fig. 4<br />

Shaft deflection does not have a negative influence on<br />

bearing service life, the shaft or housing<br />

<strong>Spherical</strong> plain bearings can accommodate the wide<br />

manufacturing tolerances found in cost-effective<br />

welded assemblies<br />

Fig. 5<br />

<strong>Rod</strong> end with a male thread<br />

Fig. 6<br />

15


General product information<br />

Bearing designs <strong>and</strong> features<br />

<strong>SKF</strong> spherical plain bearings <strong>and</strong> rod ends are<br />

an excellent choice for applications that require<br />

total design economy. These state-of-the-art<br />

products are available in a wide assortment of<br />

designs, dimension series <strong>and</strong> sizes to meet the<br />

needs of a particular application. Fig. 7 shows<br />

the general bearing <strong>and</strong> rod end types.<br />

Whether the application calls for a large<br />

spherical plain bearing or a small rod end<br />

assembly, both are available from <strong>SKF</strong> <strong>and</strong> offer:<br />

worldwide, making them readily accessible<br />

whenever <strong>and</strong> wherever they are needed.<br />

Economic considerations <strong>and</strong> unparalleled<br />

design characteristics are not the only reasons<br />

that <strong>SKF</strong> spherical plain bearings <strong>and</strong> rod ends<br />

are the ultimate solution for any plain bearing<br />

application. Their designs, materials <strong>and</strong> manufacturing<br />

quality enable long service life <strong>and</strong><br />

high reliability even in the most dem<strong>and</strong>ing<br />

applications.<br />

• long service life<br />

• minimal maintenance<br />

• high operational reliability<br />

<strong>SKF</strong> spherical plain bearings <strong>and</strong> rod ends, produced<br />

with st<strong>and</strong>ard dimensions, are available<br />

Fig. 7<br />

Radial spherical plain bearing Angular contact spherical plain bearing Thrust spherical plain bearing<br />

<strong>Rod</strong> end with a female thread <strong>Rod</strong> end with a male thread <strong>Rod</strong> end with a welding shank<br />

16


<strong>Bearings</strong> <strong>and</strong> rod ends<br />

requiring maintenance<br />

<strong>Bearings</strong> <strong>and</strong> rod ends requiring maintenance<br />

must be greased prior to being put into operation.<br />

With the exception of a few applications,<br />

they must be relubricated periodically.<br />

<strong>SKF</strong> steel/steel radial spherical plain bearings<br />

are made of bearing steel <strong>and</strong> are through-hardened.<br />

The high-strength sliding contact surfaces<br />

are phosphated <strong>and</strong> treated with a special running-in<br />

lubricant. These bearings are used<br />

primarily in applications where there are:<br />

• heavy static loads<br />

• heavy alternating loads<br />

• shock loads<br />

They are also relatively insensitive to contaminants<br />

<strong>and</strong> high temperatures.<br />

To facilitate relubrication, lubrication holes<br />

<strong>and</strong> grooves are provided in both the inner <strong>and</strong><br />

outer rings of all steel/steel radial spherical plain<br />

bearings – with the exception of a few small sizes.<br />

<strong>SKF</strong> steel/bronze rod ends also require relubrication.<br />

However, requirements are less stringent<br />

than for steel/steel rod ends, as the emergency<br />

running properties of bronze are more forgiving<br />

than steel.<br />

The multi-groove system<br />

St<strong>and</strong>ard steel/steel radial spherical plain bearings<br />

that must accommodate minor alignment<br />

movements under very heavy, constant direction<br />

loads are prone to lubricant starvation. To maximize<br />

the effects of the lubricant under these<br />

conditions, <strong>SKF</strong> has developed the multi-groove<br />

system <strong>and</strong> manufactures all metric steel/steel<br />

radial spherical plain bearings with an outside<br />

dia meter D ≥ 150 mm with the multi-groove<br />

system on the sliding surface of the outer ring<br />

as st<strong>and</strong>ard († fig. 8). Metric steel/steel radial<br />

spherical plain bearings with an outside diameter<br />

D < 150 mm can be supplied with the multi-groove<br />

system on request. These bearings<br />

are identified by the designation suffix ESL.<br />

These lubrication grooves provide the following<br />

benefits:<br />

• improved lubricant supply to the loaded zone<br />

• enlarged lubricant reservoir in the bearing<br />

• enable relubrication under load<br />

• extended relubrication intervals<br />

• space for wear particles <strong>and</strong> contaminants<br />

• extended grease life<br />

The main benefit of the multi-groove system<br />

is that it improves lubricant distribution in the<br />

heavily loaded zone to extend service life <strong>and</strong>/or<br />

maintenance intervals.<br />

Fig. 8<br />

Steel/steel radial spherical plain bearing with the multigroove<br />

system<br />

17


General product information<br />

Maintenance-free, long-life<br />

sliding contact surfaces<br />

“Maintenance-free” is an industry-wide term<br />

used to describe plain bearings <strong>and</strong> rod ends<br />

with self-lubricating sliding contact surface<br />

combinations. The term maintenance-free<br />

does not imply that these bearings should not<br />

be inspected as part of a regularly scheduled<br />

maintenance program.<br />

These so-called maintenance-free bearings<br />

<strong>and</strong> rod ends offer a number of advantages for<br />

OEMs <strong>and</strong> end users alike. These advantages,<br />

which include minimal maintenance <strong>and</strong><br />

reduced lubricant consumption, quickly compensate<br />

for the difference in the initial purchase<br />

price when compared to st<strong>and</strong>ard steel/steel<br />

bearing solutions. And of course, the impact that<br />

maintenance-free bearings have on the environment<br />

is an added benefit.<br />

To offer maintenance-free solutions for the<br />

greatest number of applications, <strong>SKF</strong> produces<br />

spherical plain bearings <strong>and</strong> rod ends with different<br />

sliding contact surface combinations<br />

(† fig 9). These combinations, which in some<br />

cases are size dependent, include:<br />

• steel/PTFE (polytetrafluoroethylene) sintered<br />

bronze<br />

• steel/PTFE fabric<br />

• steel/PTFE FRP (fibre reinforced polymer)<br />

Maintenance-free bearings can operate without<br />

grease, <strong>and</strong> therefore do not need to be relubricated.<br />

Depending on the sliding surfaces, grease<br />

can improve bearing service life or can have<br />

a negative effect on it. Therefore, <strong>SKF</strong> does not<br />

recommend the use of lubricants for bearings<br />

with steel/PTFE sintered bronze or steel/PTFE<br />

fabric sliding contact surface com binations,<br />

whereas initial lubrication followed by occasional<br />

relubrication of steel/PTFE FRP bearings can<br />

extend the service life of the bearing.<br />

Be aware that “maintenance-free” refers to<br />

bearing service life only, <strong>and</strong> does not refer to<br />

the service life of an application or general<br />

maintenance intervals of other machine parts in<br />

the application. For detailed information about<br />

the life of spherical plain bearings or rod ends,<br />

refer to the section Basic rating life starting on<br />

page 39. The basic rating life as a guideline value<br />

for the service life under certain operating<br />

conditions can be calculated using the information<br />

provided in the section Basic rating life calculation<br />

starting on page 51.<br />

Self-lubricating, dry sliding materials are not<br />

as stiff as steel <strong>and</strong> consequently are subject to<br />

greater deformation under load than steel.<br />

These sliding materials are also more sensitive<br />

than steel to alternating or shock loads. If either<br />

of these load conditions exists, contact the <strong>SKF</strong><br />

application engineering service.<br />

Maintenance-free bearings <strong>and</strong> rod ends are<br />

designed for applications where:<br />

• load direction is constant <strong>and</strong> may be heavy<br />

• low coefficient of friction is necessary<br />

• relubrication is not possible or difficult<br />

Fig. 9<br />

Maintenance-free, long life sliding contact surfaces<br />

steel/PTFE sintered bronze steel/PTFE fabric steel/PTFE FRP<br />

18


Optional <strong>SKF</strong> design<br />

features<br />

A choice of materials<br />

For most applications, <strong>SKF</strong> spherical plain<br />

bearings made of st<strong>and</strong>ard bearing steel requiring<br />

maintenance are an excellent choice. However,<br />

for difficult operating environments, <strong>SKF</strong><br />

maintenance-free stainless steel spherical plain<br />

bearings may be preferred. For other material<br />

options, e.g. surface treatments, contact the<br />

<strong>SKF</strong> application engineering service.<br />

With or without seals<br />

Most popular sizes of <strong>SKF</strong> spherical plain bearings<br />

are available either open (without seals) or<br />

sealed on both sides († fig. 10). St<strong>and</strong>ard<br />

sealed bearings can increase the service life of<br />

a bearing <strong>and</strong> save space, while reducing inventory<br />

<strong>and</strong> assembly costs. Maintenance-free<br />

bearings without seals have to be protected<br />

against contaminants.<br />

<strong>Spherical</strong> plain bearings fitted on both sides<br />

with the <strong>SKF</strong> RS double lip seal are very effective,<br />

under normal operating conditions, at keeping<br />

contaminants away from the sliding contact<br />

surfaces. These seals also effectively retain the<br />

grease <strong>and</strong> therefore are appropriate for bearings<br />

requiring maintenance.<br />

Maintenance-free bearings <strong>and</strong> all bearings<br />

operating in highly contaminated environments<br />

should be fitted with the <strong>SKF</strong> LS triple-lip<br />

heavy-duty contact seal († page 79). They are<br />

reinforced with a steel insert <strong>and</strong> have three seal<br />

lips. These very effective seals protect the bearing<br />

against contaminants <strong>and</strong> enhance the<br />

operational reliability of the spherical plain<br />

bearing.<br />

Wide operating temperature range<br />

<strong>SKF</strong> spherical plain bearings <strong>and</strong> rod ends can<br />

operate effectively over a wide temperature<br />

range. The operating temperature range of open<br />

(without seals) steel/steel radial spherical plain<br />

bearings is –50 to +200 °C.<br />

Fig. 10<br />

Many sealing problems can be solved economically <strong>and</strong> in a space-saving manner using sealed bearings<br />

without seal<br />

(open design)<br />

double-lip seal<br />

(RS design)<br />

triple-lip heavy-duty seal<br />

(LS design)<br />

19


General product information<br />

Multi-purpose performance<br />

Typical applications<br />

Long service life, high reliability <strong>and</strong> minimal<br />

maintenance are some of the features of <strong>SKF</strong><br />

spherical plain bearings <strong>and</strong> rod ends. <strong>SKF</strong>’s<br />

wide assortment of spherical plain bearings <strong>and</strong><br />

rod ends is versatile enough to be used in a<br />

variety of applications that encompass almost<br />

all sectors of industry, including:<br />

• agriculture<br />

• construction<br />

• forklift trucks<br />

• material h<strong>and</strong>ling<br />

• metals<br />

• mining<br />

• railways<br />

• trucks<br />

• wind energy<br />

Application examples<br />

Suspended roof<br />

<strong>SKF</strong> steel/steel radial spherical plain bearings are<br />

in service in an unusual <strong>and</strong> world-renowned<br />

application, the roof of the Olympic Stadium<br />

in Munich, Germany († fig. 11). The roof is<br />

constructed of a number of pre-stressed steel<br />

cables in a network. The nodal points of the network<br />

must be torque-free. That is where 225<br />

st<strong>and</strong>ard <strong>SKF</strong> steel/steel radial spherical plain<br />

bearings with bore diameters ranging from 160<br />

to 300 mm are located. The nodes are statically<br />

loaded but must enable occasional swinging<br />

movements of the roof construction.<br />

Although <strong>SKF</strong> steel/steel radial spherical plain<br />

bearings are typically not maintenance-free,<br />

these particular bearings have not been relubricated<br />

since the construction of the building in<br />

1972.<br />

What better proof could there be for lasting<br />

quality <strong>and</strong> reliability?<br />

Fig. 11<br />

Nodal points of suspended roof construction of the Olympic Stadium in Munich, Germany<br />

20


Road roller articulation joint<br />

<strong>SKF</strong> spherical plain bearings in the articulation<br />

joint between the front <strong>and</strong> rear rollers († fig.<br />

12) enable a road roller to manoeuvre. This joint<br />

must be able to withst<strong>and</strong> very heavy radial<br />

loads <strong>and</strong> high vibration levels. Due to their<br />

location, the bearings should be protected as<br />

they are exposed to a variety of contaminants<br />

including dust, dirt, water <strong>and</strong> hot tarmac,<br />

which promote premature wear <strong>and</strong> corrosion.<br />

<strong>SKF</strong> maintenance-free spherical plain bearings<br />

help to eliminate the need for relubrication,<br />

<strong>and</strong> reduce the total cost of ownership.<br />

Truck twin-axle supports<br />

An <strong>SKF</strong> spherical plain bearing arrangement on<br />

the truck twin-axle support provides even load<br />

distribution between the two axles for trucks<br />

driving on rough roads or off-highway conditions<br />

(† fig. 13). This bearing arrangement is<br />

subjected to heavy loads <strong>and</strong>, depending on the<br />

conditions, heavy shock loads, <strong>and</strong> frequent<br />

alignment movements.<br />

These bearings are located behind the tires<br />

in an area that is very difficult to access, making<br />

it imperative that sudden bearing damage or<br />

failure, requiring immediate roadside repairs,<br />

be avoided at all cost. A pair of <strong>SKF</strong> angular contact<br />

spherical plain bearings mounted in a backto-back<br />

arrangement can help prevent these<br />

emergencies. These bearings, which can withst<strong>and</strong><br />

all the rigours of truck duty, are simple to<br />

install <strong>and</strong> easy to maintain.<br />

Fig. 12<br />

Road roller articulation joint<br />

Fig. 13<br />

Truck twin-axle supports<br />

21


General product information<br />

Dam gates<br />

Segment gates for dams <strong>and</strong> other barrages<br />

are home to large-size <strong>SKF</strong> maintenance-free<br />

spherical plain bearings († fig. 14). The reference<br />

list is very long – with over 3 000 applications<br />

to date.<br />

As main bearings, they compensate for shaft<br />

misalignment, caused by thermal expansion<br />

<strong>and</strong> contraction, elastic deformation of the dam<br />

gates as well as changes caused by settling of<br />

the foundation. These bearings cope with the<br />

heavy radial loads caused by water pressure as<br />

well as axial loads that arise from the inclined<br />

position of the support arms.<br />

In addition, <strong>SKF</strong> spherical plain bearings not<br />

only serve as heavily loaded bearings under<br />

static conditions, they also operate in the frequently<br />

used linkage attachments of the lifting<br />

<strong>and</strong> plunger cylinders as well as the flaps.<br />

Newspaper conveyor<br />

Speed <strong>and</strong> flexibility are all-important when<br />

producing newspapers, not only in the printing<br />

process, but also in distribution. The conveyor<br />

system from the printing press to the loading<br />

dock is a very important component if the newspapers<br />

are to be delivered on time.<br />

The endless conveyor chain is one such system.<br />

It consists of a multitude of links, which<br />

together provide the speed <strong>and</strong> flexibility<br />

required. Fig. 16 shows an application where<br />

more than 1 000 <strong>SKF</strong> maintenance-free<br />

spherical plain bearings with the sliding contact<br />

surface combination steel/PTFE sintered bronze<br />

are used. The bearings have been in daily service<br />

without maintenance for many years.<br />

Hydraulic <strong>and</strong> pneumatic cylinders<br />

<strong>SKF</strong> steel/steel <strong>and</strong> steel/bronze rod ends are<br />

frequently used on hydraulic <strong>and</strong> pneumatic<br />

cylinders († fig. 15). Acting as the link between<br />

the cylinder <strong>and</strong> its attachments, they are able<br />

to transmit heavy mechanical loads.<br />

Hydraulic cylinders (e.g. to ISO 8132) are<br />

often fitted with steel/steel rod ends with a<br />

female thread that can be secured (compressible)<br />

on one end <strong>and</strong> a steel/steel rod end with<br />

a welding shank on the other.<br />

These types of hydraulic cylinders can be<br />

found in all types of construction equipment,<br />

agricultural machinery, lifting equipment <strong>and</strong><br />

shutters, recycling depot presses as well as<br />

other heavily loaded manoeuvring equipment.<br />

In pneumatic cylinders where working pressures<br />

regularly reach 1 MPa, steel/bronze rod<br />

ends <strong>and</strong> maintenance-free rod ends are typically<br />

used at the end of the piston rod. At the<br />

opposite end, <strong>SKF</strong> rod ends with a welding<br />

shank are used.<br />

22


Fig. 14<br />

Dam gates<br />

Fig. 15<br />

Hydraulic <strong>and</strong> pneumatic cylinders<br />

Fig. 16<br />

Newspaper conveyor<br />

23


Principles for selection <strong>and</strong><br />

application<br />

1<br />

Selection of bearing type.......................................................................................... 25<br />

Bearing terminology................................................................................................................... 27<br />

Bearing types.............................................................................................................................. 28<br />

Radial spherical plain bearings requiring maintenance........................................................ 28<br />

Maintenance-free radial spherical plain bearings................................................................. 30<br />

Angular contact spherical plain bearings............................................................................... 33<br />

Thrust spherical plain bearings.............................................................................................. 34<br />

<strong>Rod</strong> ends with a threaded shank, requiring maintenance..................................................... 34<br />

<strong>Rod</strong> ends with a welding shank, requiring maintenance....................................................... 36<br />

Maintenance-free rod ends with a threaded shank.............................................................. 37<br />

Selection of bearing size........................................................................................... 38<br />

Load ratings ................................................................................................................................ 38<br />

Basic dynamic load rating....................................................................................................... 38<br />

Basic static load rating............................................................................................................ 38<br />

Basic rating life ........................................................................................................................... 39<br />

Load............................................................................................................................................. 41<br />

Equivalent dynamic bearing load........................................................................................... 41<br />

Equivalent static bearing load................................................................................................ 43<br />

Permissible loads for rod ends............................................................................................... 44<br />

Requisite bearing size................................................................................................................. 45<br />

Specific bearing load............................................................................................................... 46<br />

Mean sliding velocity............................................................................................................... 46<br />

Basic rating life calculation......................................................................................................... 51<br />

Steel/steel <strong>and</strong> steel/bronze sliding contact surface combinations,<br />

requiring maintenance............................................................................................................ 51<br />

Maintenance-free steel/PTFE sintered bronze sliding contact surface combination.......... 54<br />

Maintenance-free steel/PTFE fabric sliding contact surface combination.......................... 56<br />

Maintenance-free steel/PTFE FRP sliding contact surface combination............................. 59<br />

Variable load <strong>and</strong> sliding velocity............................................................................................ 61<br />

Calculation examples.................................................................................................................. 62<br />

Friction................................................................................................................... 69<br />

Design of bearing arrangements............................................................................... 70<br />

Radial location of bearings......................................................................................................... 70<br />

Axial location of bearings............................................................................................................ 75<br />

Located bearings..................................................................................................................... 75<br />

Non-located bearings............................................................................................................. 75<br />

Abutment <strong>and</strong> fillet dimensions............................................................................................. 77<br />

25


Location of rod ends................................................................................................................... 78<br />

Sealing......................................................................................................................................... 79<br />

Designing a bearing arrangement for easy mounting <strong>and</strong> dismounting................................. 82<br />

Lubrication............................................................................................................. 84<br />

The <strong>SKF</strong> traffic light concept....................................................................................................... 84<br />

<strong>Spherical</strong> plain bearings requiring maintenance...................................................................... 86<br />

Maintenance-free spherical plain bearings............................................................................... 88<br />

Steel/PTFE sintered bronze <strong>and</strong> steel/PTFE fabric sliding contact surface combinations... 88<br />

Steel/PTFE FRP sliding contact surface combination........................................................... 88<br />

<strong>Rod</strong> ends requiring maintenance............................................................................................... 89<br />

Maintenance-free rod ends........................................................................................................ 89<br />

Relubrication........................................................................................................... 90<br />

Mounting................................................................................................................ 92<br />

<strong>Spherical</strong> plain bearings............................................................................................................. 92<br />

Mechanical mounting.............................................................................................................. 92<br />

Hot mounting.......................................................................................................................... 94<br />

<strong>Rod</strong> ends...................................................................................................................................... 95<br />

Dismounting........................................................................................................... 96<br />

<strong>Spherical</strong> plain bearings............................................................................................................. 96<br />

<strong>Rod</strong> ends...................................................................................................................................... 96<br />

26


Selection of bearing type<br />

1<br />

Bearing terminology<br />

Fig. 1<br />

To better underst<strong>and</strong> frequently used plain<br />

bearing <strong>and</strong> rod end specific terms, definitions<br />

are provided in fig. 1 <strong>and</strong> fig. 2.<br />

<strong>Spherical</strong> plain bearing<br />

1 Outer ring<br />

2 Sliding contact surfaces<br />

3 Seal<br />

4 Inner ring<br />

5 Lubrication hole<br />

6 Lubrication groove<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

<strong>Rod</strong> end<br />

1 <strong>Spherical</strong> plain bearing<br />

2 <strong>Rod</strong> end<br />

2a <strong>Rod</strong> end housing<br />

2b <strong>Rod</strong> end shank, with an external (male)<br />

thread. Shanks are also available with an<br />

internal (female) thread or with a welding<br />

shank.<br />

3 Grease fitting<br />

1<br />

Fig. 2<br />

2a<br />

3<br />

2<br />

2b<br />

27


Selection of bearing types<br />

Bearing types<br />

All the products listed below belong to the <strong>SKF</strong><br />

st<strong>and</strong>ard assortment:<br />

• radial spherical plain bearings requiring<br />

maintenance<br />

• maintenance-free radial spherical plain<br />

bearings<br />

• angular contact spherical plain bearings<br />

• thrust spherical plain bearings<br />

• steel/steel <strong>and</strong> steel/bronze rod ends<br />

requiring maintenance<br />

• maintenance-free rod ends<br />

If the st<strong>and</strong>ard assortment does not meet the<br />

requirements of an application, <strong>SKF</strong> can produce<br />

special bearings or rod ends, provided<br />

quantities are sufficient to enable manufacturing<br />

economy.<br />

Radial spherical plain bearings requiring maintenance<br />

See chapter 2 starting on page 99<br />

Bearing design<br />

Radial spherical plain bearings requiring<br />

maintenance<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

GE .. E<br />

d = 4 – 12 mm<br />

Open (without seals), can only be relubricated<br />

from the side<br />

GE .. ES<br />

d = 15 – 200 mm<br />

GEZ .. ES<br />

d = 0.5 – 6 in<br />

Open (without seals), can be relubricated via<br />

lubrication holes <strong>and</strong> an annular groove in<br />

both rings<br />

GE .. ES-2RS<br />

d = 15 – 300 mm<br />

GEZ .. ES-2RS<br />

d = 0.75 – 6 in<br />

With a double-lip seal on both sides, can be<br />

relubricated via lubrication holes <strong>and</strong> an<br />

annular groove in both rings<br />

28


Bearing design<br />

Radial spherical plain bearings requiring maintenance<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

1<br />

GE .. ES-2LS<br />

d = 20 – 300 mm<br />

GEZ .. ES-2LS<br />

d = 1 – 6 in<br />

With a triple-lip heavy-duty seal on both<br />

sides, can be relubricated via lubrication<br />

holes <strong>and</strong> an annular groove in both rings<br />

GEH .. ES<br />

upon request<br />

GEZH ..ES<br />

d = 1.25 – 5.5 in<br />

Open (not sealed); wider inner ring <strong>and</strong> larger<br />

outside diameter compared to GE .. ES <strong>and</strong><br />

GEZ .. ES series, to enable higher load ratings<br />

<strong>and</strong> larger tilt angle; can be relubricated via<br />

lubrication holes <strong>and</strong> an annular groove in<br />

both rings<br />

GEH .. ES-2RS<br />

d = 20 – 120 mm<br />

GEZH ..ES-2RS<br />

d = 1.25 – 5.5 in<br />

With a double-lip seal on both sides; wider<br />

inner ring <strong>and</strong> larger outside diameter compared<br />

to GE .. ES-2RS <strong>and</strong> GEZ .. ES-2RS<br />

series, to enable higher load ratings <strong>and</strong><br />

larger tilt angle; can be relubricated via lubrication<br />

holes <strong>and</strong> an annular groove in both<br />

rings<br />

GEH .. ES-2LS<br />

d = 20 – 120 mm<br />

GEZH .. ES-2LS<br />

d = 1.25 – 5.5 in<br />

With a triple-lip heavy-duty seal on both<br />

sides; wider inner ring <strong>and</strong> larger outside<br />

diameter compared to GE .. ES-2RS <strong>and</strong><br />

GEZ .. ES-2RS series, to enable higher load<br />

ratings <strong>and</strong> larger tilt angle; can be relubricated<br />

via lubrication holes <strong>and</strong> an annular<br />

groove in both rings<br />

GEM .. ES<br />

upon request<br />

GEZM .. ES<br />

d = 0.5 – 6 in<br />

GEG .. ES<br />

d = 16 – 200 mm<br />

GEG 12 ESA<br />

d = 12 mm<br />

Open (without seals); with an extended inner<br />

ring on both sides; can be relubricated via<br />

lubrication holes <strong>and</strong> an annular groove in<br />

both rings. For bearing arrangements where<br />

a spacer sleeve is normally incorporated on<br />

both sides of the inner ring.<br />

GEG series : The inner ring width equals the<br />

bore diameter<br />

Can only be relubricated via the outer ring<br />

29


Selection of bearing types<br />

Bearing design<br />

Radial spherical plain bearings requiring maintenance<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

GEM .. ES-2RS<br />

d = 20 – 80 mm<br />

GEZM .. ES-2RS<br />

d = 0.75 – 6 in<br />

With a double-lip seal <strong>and</strong> an extended inner<br />

ring on both sides, can be relubricated via<br />

lubrication holes <strong>and</strong> an annular groove in<br />

both rings<br />

GEM .. ES-2LS<br />

d = 20 – 80 mm<br />

GEZM .. ES-2LS<br />

d = 1 – 6 in<br />

With a triple-lip heavy-duty seal <strong>and</strong> an<br />

extended inner ring on both sides, can be<br />

relubricated via lubrication holes <strong>and</strong> an<br />

annular groove in both rings<br />

Maintenance-free radial spherical plain bearings<br />

See chapter 3 starting on page 125<br />

Bearing design<br />

Maintenance-free radial spherical plain bearings<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/PTFE sintered bronze<br />

Suitable for heavy, constant direction loads, where low friction is required;<br />

limited suitability for alternating loads, shock loads.<br />

GE .. C<br />

d = 4 – 30 mm<br />

GE .. CJ2<br />

d = 35 – 60 mm<br />

Open (without seals), self-lubricating sliding<br />

surfaces have to be externally protected<br />

from contaminants<br />

GEH .. C<br />

d = 10 – 25 mm<br />

Open (without seals), self-lubricating sliding<br />

surfaces have to be externally protected<br />

from contaminants; wider inner ring <strong>and</strong><br />

larger outside diameter compared to GE .. C<br />

series, to enable higher load ratings <strong>and</strong><br />

larger tilt angle<br />

30


Bearing design<br />

Maintenance-free radial spherical plain bearings<br />

Designation/<br />

bore diameter range<br />

Sliding contact surface combination: Steel/PTFE fabric<br />

Suitable for very heavy, constant direction loads, where low friction is required;<br />

limited suitability for alternating loads, shock loads<br />

Characteristics<br />

1<br />

GE .. TXE-2LS<br />

d = 20 – 90 mm<br />

GEZ .. TXE-2LS<br />

d = 1 – 3.75 in<br />

GE .. TXG3E-2LS<br />

d = 20 – 60 mm<br />

High performance bearing with a triple-lip<br />

heavy-duty seal on both sides, outer ring<br />

fractured at one point, self-lubricating sliding<br />

surfaces<br />

GE .. TXG3E-2LS series in stainless steel<br />

execution for use in corrosive environments<br />

GE .. TXA-2LS<br />

d = 100 – 300 mm<br />

GEZ .. TXA-2LS<br />

d = 4 – 6 in<br />

GE .. TXG3A-2LS<br />

d = 70 – 200 mm<br />

High performance bearing with a triple-lip<br />

heavy-duty seal on both sides, axially split<br />

outer ring that is held together by one b<strong>and</strong>,<br />

self-lubricating sliding surfaces<br />

GE .. TXG3A-2LS series with rings made<br />

of stainless steel for use in corrosive<br />

environments<br />

GE .. TXGR<br />

d = 12 – 17 mm<br />

Open (without seals), stainless steel execution<br />

for use in corrosive environments,<br />

self-lubricating sliding surfaces have to be<br />

externally protected from contaminants<br />

GEC .. TXA-2RS<br />

d = 320 – 400 mm<br />

High performance bearing with a double-lip<br />

seal on both sides, self-lubricating sliding<br />

surfaces, axially split outer ring that is held<br />

together by two b<strong>and</strong>s<br />

GEC .. TXA-2RS<br />

d = 420 – 800 mm<br />

High performance bearing with a double-lip<br />

seal on both sides, self-lubricating sliding<br />

surfaces, axially split outer ring that is bolted<br />

together<br />

31


Selection of bearing types<br />

Bearing design<br />

Maintenance-free radial spherical plain bearings<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/PTFE fabric<br />

Suitable for very heavy, constant direction loads, where low friction is required;<br />

limited suitability for alternating loads, shock loads<br />

GEH ..TXE-2LS<br />

d = 20 – 80 mm<br />

GEH ..TXG3E-2LS<br />

d = 20 – 50 mm<br />

High performance bearing with a triple-lip<br />

heavy-duty seal on both sides; self-lubricating<br />

sliding surfaces, wider inner ring <strong>and</strong><br />

larger outside diameter compared to<br />

GE .. TXE-2LS series, to enable higher<br />

load ratings <strong>and</strong> larger tilt angle<br />

GEH .. TXG3E-2LS series with rings made<br />

of stainless steel for use in corrosive<br />

environments<br />

GEH ..TXA-2LS<br />

d = 90 – 120 mm<br />

GEH ..TXG3A-2LS<br />

d = 60 – 120 mm<br />

High performance bearing with a triple-lip<br />

heavy-duty seal on both sides, self-lubricating<br />

sliding surfaces, wider inner ring <strong>and</strong><br />

larger outside diameter compared to<br />

GE .. TXE-2LS series, to enable higher load<br />

ratings <strong>and</strong> larger tilt angle; axially split outer<br />

ring that is held together by one b<strong>and</strong><br />

GEH .. TXG3A-2LS series with rings made<br />

of stainless steel for use in corrosive<br />

environments<br />

Sliding contact surface combination: Steel/PTFE FRP<br />

Suitable for heavy, constant direction loads, where low friction is required;<br />

limited suitability for alternating loads, shock loads; relatively insensitive<br />

to contaminants<br />

GEC .. FBAS<br />

d = 320 – 1 000 mm<br />

Open (without seals); axially split outer ring<br />

that is bolted together; self-lubricating capability;<br />

factory greased; lubrication holes <strong>and</strong><br />

an annular groove in both rings; does not<br />

require relubrication, however, relubrication<br />

can extend bearing service life<br />

GEP .. FS<br />

d = 100 – 1 000 mm<br />

Open (without seals); radially split outer ring<br />

that is separable to facilitate mounting; selflubricating<br />

capability; factory greased; lubrication<br />

holes <strong>and</strong> an annular groove in both<br />

rings; does not require relubrication, however,<br />

relubrication can extend bearing<br />

service life<br />

Compared to GEC .. FBAS series, these<br />

bearings are wider <strong>and</strong> have a larger outside<br />

diameter for a given shaft size, resulting in a<br />

higher basic load rating. However, they have<br />

a smaller tilt angle.<br />

32


Angular contact spherical plain bearings<br />

See chapter 4 starting on page 151<br />

Bearing design<br />

Angular contact spherical plain bearings<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

1<br />

Sliding contact surface combination: Steel/PTFE FRP<br />

Suitable for single direction axial loads or combined axial <strong>and</strong> radial loads,<br />

low coefficient of friction, relatively insensitive to contaminants<br />

GAC .. F<br />

d = 25 – 120 mm<br />

Open (without seals); self-lubricating capability;<br />

factory greased; does not require relubrication,<br />

however, relubrication can extend<br />

bearing service life<br />

Sliding contact surface combination: Steel/PTFE fabric<br />

Suitable for single direction axial loads or combined axial <strong>and</strong> radial loads,<br />

very high load carrying capacity <strong>and</strong> low coefficient of friction<br />

GACD .. TX<br />

upon request<br />

Open (without seals), high performance<br />

bearing with self-lubricating sliding surface<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy single direction axial loads or heavy combined<br />

axial <strong>and</strong> radial loads, heavy alternating loads<br />

GACD .. SA<br />

upon request<br />

GAZ .. SA<br />

upon request<br />

Open (without seals), multi-groove system,<br />

can be relubricated via lubrication holes <strong>and</strong><br />

an annular groove in the outer ring<br />

Sliding contact surface combination: Steel/steel<br />

Double direction angular contact bearing with a st<strong>and</strong>ard inner ring, bearing<br />

can be used instead of two angular contact bearings in a face-to-face<br />

arrangement, suitable for heavy combined radial <strong>and</strong> axial loads, heavy alternating loads<br />

GEZP(R) .. S<br />

upon request<br />

Open (without seals), multi-groove system,<br />

can be relubricated via lubrication holes <strong>and</strong><br />

an annular groove in the inner ring <strong>and</strong> the<br />

two outer rings<br />

33


Selection of bearing types<br />

Thrust spherical plain bearings<br />

See chapter 5 starting on page 159<br />

Bearing design<br />

Thrust spherical plain bearings<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/PTFE FRP<br />

Suitable for single direction axial loads or combined axial <strong>and</strong> radial loads,<br />

low coefficient of friction, relatively insensitive to contaminants<br />

GX .. F<br />

d = 17 – 120 mm<br />

Open (without seals); self-lubricating capability;<br />

factory greased; does not require relubrication,<br />

however, relubrication can extend<br />

bearing service life<br />

Sliding contact surface combination: Steel/PTFE fabric<br />

Suitable for heavy single direction axial loads or combined axial <strong>and</strong> radial loads,<br />

very high load carrying capacity <strong>and</strong> low coefficient of friction<br />

GXD .. TX<br />

upon request<br />

Open (without seals), high performance<br />

bearing with self-lubricating sliding surface<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy single direction axial loads or combined axial <strong>and</strong> radial loads,<br />

heavy alternating loads<br />

GXD .. SA<br />

upon request<br />

Open (without seals), multi-groove system,<br />

can be relubricated via lubrication<br />

holes <strong>and</strong> an annular groove in the housing<br />

washer<br />

<strong>Rod</strong> ends with a threaded shank, requiring maintenance<br />

See chapter 6 starting on page 167<br />

Bearing design<br />

<strong>Rod</strong> ends with a threaded shank, requiring<br />

maintenance<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

SI(L) .. E<br />

d = 6 – 12 mm<br />

SA(L) .. E<br />

d = 6 – 12 mm<br />

With an open bearing (without seals),<br />

no relubrication facilities, available with<br />

a right-h<strong>and</strong> or left-h<strong>and</strong> thread (designation<br />

prefix L)<br />

SI series<br />

SA series<br />

34


Bearing design<br />

<strong>Rod</strong> ends with a threaded shank, requiring<br />

maintenance<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

1<br />

SI(L) .. ES<br />

d = 15 – 30 mm<br />

SA(L) .. ES<br />

d = 15 – 30 mm<br />

With an open bearing (without seals), can be<br />

lubricated via the relubrication facility in the<br />

rod end housing <strong>and</strong> via the pin (shaft), available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

SI series<br />

SA series<br />

SI(A) series<br />

SA(A) series<br />

SI(L) .. ES-2RS<br />

d = 35 – 80 mm<br />

SA(L) .. ES-2RS<br />

d = 35 – 80 mm<br />

SI(L)A .. ES-2RS<br />

d = 40 – 80 mm<br />

SA(L)A .. ES-2RS<br />

d = 40 – 80 mm<br />

With a double-lip seal on both sides of the<br />

bearing, can be lubricated via the relubrication<br />

facility in the rod end housing <strong>and</strong> via<br />

the pin (shaft), available with a right-h<strong>and</strong><br />

or left-h<strong>and</strong> thread<br />

SIA <strong>and</strong> SAA series with different fitting<br />

dimensions (thread, height of the housing)<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for hydraulic cylinders, the slotted shank enables the rod end to be<br />

secured by tightening bolts<br />

SI(L)J .. ES<br />

d = 16 – 100 mm<br />

SI(L)J 12 E<br />

d = 12 mm<br />

With an open bearing (without seals), available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

Sizes 16 <strong>and</strong> larger can be lubricated via the<br />

relubrication facility in the rod end housing<br />

<strong>and</strong> via the pin (shaft)<br />

No relubrication facilities<br />

SI(L)R .. ES<br />

d = 25 – 120 mm<br />

With an open bearing (without seals), compact<br />

design, shorter female thread, can be<br />

lubricated via the relubrication facility in the<br />

rod end housing <strong>and</strong> via the pin (shaft), available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

SI(L)QG .. ES<br />

d = 16 – 200 mm<br />

SI(L)QG 12 ESA<br />

d = 12 mm<br />

With an open bearing (without seals), with<br />

an inner ring extended on both sides, can be<br />

lubricated via the relubrication facility in the<br />

rod end housing <strong>and</strong> via the pin (shaft), available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

Can only be relubricated via the relubrication<br />

facilities in the rod end housing<br />

35


Selection of bearing types<br />

Bearing design<br />

<strong>Rod</strong> ends with a threaded shank, requiring<br />

maintenance<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/bronze<br />

Lower load carrying capacity compared to steel/steel rod ends,<br />

but more suitable for applications where lubricant starvation<br />

might occur<br />

SI(L)KAC .. M<br />

d = 5 – 30 mm<br />

SA(L)KAC .. M<br />

d = 5 – 30 mm<br />

With an open bearing (without seals), available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

Sizes 6 <strong>and</strong> larger can be lubricated via the<br />

relubrication facility in the rod end shank or<br />

housing<br />

SIKAC .. M<br />

SAKAC .. M<br />

<strong>Rod</strong> ends with a welding shank, requiring maintenance<br />

See chapter 6 starting on page 167<br />

Bearing design<br />

<strong>Rod</strong> ends with a welding shank, requiring<br />

maintenance<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

Sliding contact surface combination: Steel/steel<br />

Suitable for heavy static or alternating loads, shock loads<br />

SC ..ES<br />

d = 20 – 80 mm<br />

With an open bearing (without seals), can be<br />

lubricated via a the relubrication facility in<br />

the rod end housing <strong>and</strong> via the pin (shaft)<br />

Primarily used for welding to piston rods <strong>and</strong><br />

the bases of hydraulic cylinders<br />

Centred by a dowel pin<br />

SCF ..ES<br />

d = 20 – 120 mm<br />

With an open bearing (without seals); can be<br />

lubricated via the the relubrication facility in<br />

the rod end housing <strong>and</strong> via the pin (shaft);<br />

high capacity design rod end compared to<br />

SC .. ES series, to enable heavier static loads<br />

Rectangular welding shank without a dowel<br />

pin<br />

36


Maintenance-free rod ends with a threaded shank<br />

See chapter 7 starting on page 189<br />

Bearing design<br />

Maintenance-free rod ends with a threaded shank<br />

Designation/<br />

bore diameter range<br />

Characteristics<br />

1<br />

Sliding contact surface combination: Steel/PTFE sintered bronze<br />

Suitable for heavy, constant direction loads, where low coefficient<br />

of friction is required; limited suitability for alternating loads,<br />

shock loads<br />

SI(L) .. C<br />

d = 6 – 30 mm<br />

SA(L) .. C<br />

d = 6 – 30 mm<br />

With an open bearing (without seals),<br />

available with a right-h<strong>and</strong> or left-h<strong>and</strong><br />

thread<br />

SI .. C<br />

SA .. C<br />

Sliding contact surface combination: Steel/PTFE fabric<br />

Suitable for very heavy, constant direction loads, where low coefficient<br />

of friction is required; limited suitability for alternating loads,<br />

shock loads<br />

SI(L) .. TXE-2LS<br />

d = 35 – 80 mm<br />

SA(L) .. TXE-2LS<br />

d = 35 – 80 mm<br />

SI(L)A .. TXE-2LS<br />

d = 40 – 60 mm<br />

SA(L)A .. TXE-2LS<br />

d = 40 – 60 mm<br />

With a high performance bearing with a triple-lip<br />

heavy-duty seal on both sides of the<br />

bearing, available with a right-h<strong>and</strong> or lefth<strong>and</strong><br />

thread<br />

SIA <strong>and</strong> SAA series with different fitting<br />

dimensions (thread, height of the housing)<br />

SI(A) .. TXE-2LS<br />

SA(A) .. TXE-2LS<br />

Sliding contact surface combination: Steel/PTFE FRP<br />

Suitable for heavy, constant direction loads, where low coefficient<br />

of friction is required; limited suitability for alternating loads,<br />

shock loads<br />

SI(L)KB .. F<br />

d = 5 – 22 mm<br />

SA(L)KB .. F<br />

d = 5 – 22 mm<br />

With an open bearing (without seals), but<br />

relatively insensitive to contaminants, available<br />

with a right-h<strong>and</strong> or left-h<strong>and</strong> thread<br />

SIKB .. F<br />

SAKB .. F<br />

37


Selection of bearing size<br />

Selection of bearing size<br />

Load ratings<br />

There is no st<strong>and</strong>ardized method for determining<br />

the load ratings of spherical plain bearings<br />

<strong>and</strong> rod ends, nor is there any st<strong>and</strong>ardized definition.<br />

As different manufacturers define load<br />

ratings differently, it is not possible to compare<br />

the load ratings of bearings produced by one<br />

manufacturer with those of another.<br />

Dynamic bearing load<br />

Fig. 1<br />

Basic dynamic load rating<br />

The basic dynamic load rating C is used, together<br />

with other influencing factors, to determine<br />

the basic rating life of spherical plain bearings<br />

<strong>and</strong> rod ends. As a rule, it represents the maximum<br />

load that a spherical plain bearing or rod<br />

end can accommodate at room temperature<br />

when there is movement between the sliding<br />

contact surfaces († fig. 1). The maximum load<br />

in any application should always be considered<br />

in relation to the required rating life. The basic<br />

dynamic load ratings quoted in the product<br />

tables are based on the specific load factor K<br />

(† table 4 on page 45) <strong>and</strong> the effective<br />

projected sliding surface.<br />

Static bearing load<br />

Fig. 2<br />

Basic static load rating<br />

The basic static load rating C 0 represents the<br />

maximum permissible load that a spherical plain<br />

bearing or rod end can accommodate when<br />

there is no relative movement between the<br />

sliding contact surfaces († fig. 2).<br />

For spherical plain bearings, the basic static<br />

load rating represents the maximum load that<br />

the bearing can accommodate at room temperature<br />

without inadmissible deforming, fracturing<br />

or damaging the sliding contact surfaces.<br />

The basic static load ratings quoted for <strong>SKF</strong><br />

spherical plain bearings are based on a specific<br />

38


static load factor K 0 († table 4 on page 45)<br />

<strong>and</strong> the effective projected sliding surface. It is<br />

assumed that the bearing is adequately supported.<br />

To fully exploit the static load rating of a<br />

spherical plain bearing, it is generally necessary<br />

to use shafts <strong>and</strong> housings made of highstrength<br />

materials. The basic static load rating<br />

must also be considered when bearings are<br />

dynamically loaded <strong>and</strong> subjected to additional<br />

heavy shock loads. The total load in these cases<br />

must not exceed the basic static load rating.<br />

For rod ends, it is the strength of the housing<br />

at room temperature, under a constant load<br />

acting in the direction of the shank axis, that is<br />

the determining factor. The basic static load<br />

rating represents a safety factor of at least 1,2<br />

relative to the yield strength of the material of<br />

the rod end housing, under the above<br />

conditions.<br />

Basic rating life<br />

For spherical plain bearings, a lubricant film<br />

that fully separates the sliding contact surfaces<br />

cannot be formed. Therefore, the sliding contact<br />

surfaces make direct contact with each other,<br />

resulting in a certain <strong>and</strong> unavoidable degree of<br />

wear. This increases the internal clearance in<br />

the bearing.<br />

Regarding the life of spherical plain bearings<br />

or rod ends, a distinction is made between the<br />

basic rating life <strong>and</strong> the service life. The basic<br />

rating life is a theoretical guideline value, used<br />

to estimate the service life. Service life depends<br />

on the actual operating conditions <strong>and</strong> is the<br />

actual life achieved by the bearing in service.<br />

The basic rating life is based on a large<br />

number of laboratory tests. The bearings were<br />

tested for an operating period until a specific<br />

increase in bearing clearance or friction<br />

occurred († table 1 on page 40). The basic<br />

rating life considers several influencing factors<br />

<strong>and</strong> can be expressed in operating hours or the<br />

number of oscillating movements († fig. 3). In<br />

some cases, however, it is not possible to quantify<br />

factors such as contamination, corrosion,<br />

<strong>and</strong> complex kinematic loads. Therefore, the<br />

basic rating life can be attained or exceeded by<br />

Angle of oscillation<br />

3<br />

b<br />

0<br />

2<br />

4<br />

j<br />

j = angle of oscillation = 2 b<br />

A complete oscillation is from point 0 to point 4 <strong>and</strong> = 4 b<br />

1<br />

Fig. 3<br />

the majority of many apparently identical spherical<br />

plain bearings under the same operating<br />

conditions. For the calculation methods of the<br />

different sliding contact surface combinations<br />

as well as calculation examples, refer to the section<br />

Basic rating life calculation starting on<br />

page 51.<br />

The service life cannot be calculated as it is<br />

too complex to determine <strong>and</strong> evaluate all the<br />

influencing factors. Therefore, depending on the<br />

application conditions, the service life may differ<br />

from the basic rating life.<br />

NOTE: By using the <strong>SKF</strong> Interactive Engineering<br />

Catalogue <strong>and</strong> its incorporated calculation programs,<br />

it is possible to perform the necessary<br />

calculations to select a spherical plain bearing<br />

with the click of a mouse. The product data necessary<br />

for the calculations is automatically put<br />

in by selecting a spher ical plain bearing or rod<br />

end from the product tables. It is then only necessary<br />

to fill in the fields for the operating data.<br />

The <strong>SKF</strong> Interactive Engineering Catalogue is<br />

available online at www.skf.com.<br />

1<br />

39


Selection of bearing size<br />

Table 1<br />

Failure criteria for basic rating life tests<br />

Sliding contact surface combination Increase in bearing clearance Coefficient of friction µ<br />

– mm –<br />

Steel/steel > 0,004 d 1) k 0,20<br />

Steel/bronze > 0,004 d 1) k 0,25<br />

Steel/PTFE 2) sintered bronze<br />

constant direction load 0,2 0,25<br />

alternating direction load 0,4 0,25<br />

Steel/PTFE fabric<br />

constant direction load 0,3 0,15<br />

alternating direction load 0,6 0,15<br />

Steel/PTFE FRP 3) design <strong>and</strong> size dependent 0,20<br />

1) d k = sphere diameter of the inner ring.<br />

2) Polytetrafluoroethylene.<br />

3) Fibre reinforced polymer.<br />

Radial load<br />

Fig. 4<br />

Axial load<br />

Fig. 5<br />

40


Combined load<br />

Fig. 6<br />

Load<br />

When considering load, a distinction is made<br />

between:<br />

1<br />

Constant direction load<br />

Fig. 7<br />

• load direction<br />

– radial load († fig. 4)<br />

– axial load († fig. 5)<br />

– combined (axial <strong>and</strong> radial) load († fig. 6)<br />

• type of load<br />

– dynamic load, i.e. there is relative sliding<br />

movement in the loaded bearing<br />

– static load, i.e. there is no relative movement<br />

in the loaded bearing<br />

• load conditions<br />

– constant load († fig. 7), i.e. the direction in<br />

which the load is applied does not change<br />

<strong>and</strong> the same part of the bearing (loaded<br />

zone) is always subjected to the load<br />

– alternating load († fig. 8), i.e. change of<br />

load direction so that zones at opposite<br />

positions in the bearing are alternately<br />

loaded <strong>and</strong> unloaded<br />

Equivalent dynamic bearing load<br />

The load can be inserted directly into the equation<br />

for the specific bearing load p († page 46)<br />

if the magnitude of the load is constant <strong>and</strong> if<br />

the load acting on:<br />

Alternating direction load<br />

Fig. 8<br />

• radial <strong>and</strong> angular contact spherical plain<br />

bearings is purely radial<br />

• thrust spherical plain bearings is purely axial<br />

• rod ends is purely radial <strong>and</strong> in the direction<br />

of the shank axis<br />

In all other cases it is necessary to calculate the<br />

equivalent dynamic bearing load P. If the magnitude<br />

of the load is not constant, use the equation<br />

provided in the section Variable load <strong>and</strong><br />

sliding velocity († page 61).<br />

41


Selection of bearing size<br />

Radial spherical plain bearings<br />

Radial spherical plain bearings can accommodate<br />

a certain magnitude of axial load F a in addition<br />

to a simultaneously acting radial load F r<br />

(† fig. 6 on page 41). When the resultant load<br />

is constant in magnitude, the equivalent dynamic<br />

bearing load can be calculated using<br />

P = y F r<br />

where<br />

P = equivalent dynamic bearing load [kN]<br />

F r = radial component of the load [kN]<br />

y = load factor that depends on the ratio of the<br />

axial to the radial load F a /F r<br />

– for bearings requiring maintenance<br />

(† diagram 1)<br />

– for maintenance-free bearings<br />

(† diagram 2)<br />

Diagram 1<br />

Diagram 2<br />

Factor y for radial spherical plain bearings requiring<br />

Factor y for maintenance-free radial spherical plain<br />

maintenance<br />

bearings<br />

3<br />

3<br />

y<br />

y<br />

2,5<br />

2,5<br />

Other series<br />

2<br />

2<br />

1,5<br />

Series<br />

1,5<br />

GEP .. FS<br />

1<br />

1 0 0,05 0,1 0,15 0,2 0,25<br />

0 0,1 0,2 0,3 0,4<br />

F a<br />

F a<br />

F r F r<br />

Diagram 3<br />

Diagram 4<br />

Factor y for angular contact spherical plain bearings<br />

Factor y for thrust spherical plain bearings<br />

2<br />

2,5<br />

y<br />

y<br />

2,25<br />

1,75<br />

2<br />

1,75<br />

1,5<br />

1,5<br />

1,25<br />

1,25<br />

1 1 0 0,5 1 1,5 2<br />

0 0,1 0,2 0,3 0,4 0,5<br />

F a<br />

F r<br />

F r F a<br />

If F a /F r > 2, use a thrust spherical plain bearing instead, or<br />

contact the <strong>SKF</strong> application engineering service.<br />

If F r /F a > 0,5, use an angular contact spherical plain bearing<br />

instead, or contact the <strong>SKF</strong> application engineering service.<br />

42


Angular contact spherical plain bearings<br />

When the resultant load († fig. 9) is constant<br />

in magnitude, then use<br />

Angular contact spherical plain bearing under<br />

combined load<br />

Fig. 9<br />

1<br />

P = y F r<br />

where<br />

P = equivalent dynamic bearing load [kN]<br />

F r = radial component of the load [kN]<br />

y = load factor that depends on the ratio of the<br />

axial to the radial load F a /F r († diagram 3)<br />

Thrust spherical plain bearings<br />

Thrust spherical plain bearings can accommodate<br />

a radial load F r in addition to an axial load<br />

F a († fig. 10). However, the radial load must<br />

not exceed 50% of the simultaneously acting<br />

axial load. When the resultant load is constant in<br />

magnitude, then use<br />

P = y F a<br />

Thrust spherical plain bearing under combined load<br />

Fig. 10<br />

where<br />

P = equivalent dynamic bearing load [kN]<br />

F a = axial component of the load [kN]<br />

y = load factor depending on the ratio of the<br />

radial to the axial load F r /F a<br />

(† diagram 4)<br />

Equivalent static bearing load<br />

If spherical plain bearings <strong>and</strong> rod ends are subjected<br />

to static loads, or very slight alignment<br />

movements, then the permissible load is not<br />

limited by wear, but by the strength of the sliding<br />

contact layer or the strength of the rod end<br />

housing.<br />

If the actual load is a combined load, then<br />

an equivalent static bearing load must be calculated.<br />

For radial <strong>and</strong> angular contact spherical<br />

plain bearings, it can be calculated using<br />

P 0 = y F r<br />

For thrust spherical plain bearings, it can be<br />

calculated using<br />

P 0 = y F a<br />

where<br />

P 0 = equivalent static bearing load [kN]<br />

F r = radial component of the load [kN]<br />

F a = axial component of the load [kN]<br />

y = load factor that depends on the ratio of the<br />

axial to the radial load F a /F r<br />

– for radial bearings requiring maintenance<br />

(† diagram 1)<br />

– for maintenance-free radial bearings<br />

(† diagram 2)<br />

– for angular contact spherical plain<br />

bearings († diagram 3)<br />

<strong>and</strong> load factor that depends on the ratio of<br />

the radial to the axial load F r /F a<br />

– for thrust spherical plain bearings<br />

(† diagram 4)<br />

43


Selection of bearing size<br />

Permissible loads for rod ends<br />

<strong>Rod</strong> ends are primarily intended for the support<br />

of radial loads acting in the direction of the<br />

shank axis. If loads act at angles to the shank<br />

axis († fig. 11), the maximum permissible load<br />

is reduced, as additional bending stresses occur<br />

in the shank. Under these conditions, consider<br />

the design <strong>and</strong> size dependent material used for<br />

the rod end housing († table 6 on page 170).<br />

The load portion acting perpendicular to the<br />

direction of the shank axis should never exceed<br />

the value of 0,1 C 0 . If heavier loads are involved,<br />

a larger rod end should be selected.<br />

The maximum permissible load for a rod<br />

end in the direction of the shank axis can be<br />

calculated using<br />

<strong>Rod</strong> end under combined load<br />

Fig. 11<br />

P perm = C 0 b 2 b 6<br />

where<br />

P perm = maximum permissible load [kN]<br />

C 0 = static load rating [kN]<br />

b 2 = temperature factor<br />

– for rod ends requiring maintenance<br />

(† table 5 on page 52)<br />

– for maintenance-free rod ends with<br />

the sliding contact surface<br />

combination<br />

– steel/PTFE sintered bronze<br />

(† diagram 16 on page 55)<br />

– steel/PTFE fabric<br />

(† diagram 17 on page 56)<br />

– steel PTFE FRP<br />

(† diagram 19 on page 59)<br />

b 6 = factor for the type of load († table 2)<br />

Factor b 6 for rod end load type<br />

Type of load Factor b 6<br />

Constant<br />

+F r<br />

Pulsating magnitude (single direction)<br />

+F r<br />

Alternating direction<br />

+F r<br />

-F r<br />

1<br />

0,5<br />

(0,35)<br />

0,5<br />

(0,35)<br />

Table 2<br />

The values in brackets apply to rod ends with a relubrication<br />

facility.<br />

44


Requisite bearing size<br />

To determine the requisite size of a spherical<br />

plain bearing or rod end, it is necessary to know<br />

the requisite rating life for the application. This<br />

depends on the type of machine, the operating<br />

conditions <strong>and</strong> the dem<strong>and</strong>s regarding operational<br />

reliability. The following steps can be<br />

used to determine requisite bearing size:<br />

1 Use the guideline values of the load ratio C/P<br />

provided in table 3 to obtain a requisite basic<br />

dynamic load rating C. Compare this value<br />

with the basic dynamic load rating of the<br />

bearings listed in the product tables.<br />

2 Use diagrams 5 to 10 on pages 46 to 50 to<br />

check whether the sliding contact surface<br />

combination of the selected bearing or rod<br />

end can be used under the actual load p <strong>and</strong><br />

sliding velocity v conditions. The specific<br />

bearing load p <strong>and</strong> the sliding velocity v<br />

needed to perform this check can be calculated<br />

as explained in the following sections:<br />

a) If the pv diagram indicates that the basic<br />

rating life equation can be used, proceed<br />

to step 3.<br />

b) If the pv diagram shows that the pv range<br />

is exceeded, select a bearing with a higher<br />

load carrying capacity.<br />

3 Calculate the basic rating life († page 51)<br />

<strong>and</strong> proceed as follows:<br />

a) If the calculated rating life is shorter than<br />

the requisite rating life, a larger bearing<br />

or rod end should be selected <strong>and</strong> the<br />

calculation repeated.<br />

b) If the calculated rating life is larger than<br />

the requisite rating life, the bearing or rod<br />

end can be selected for the application.<br />

The bearing or rod end size is often determined<br />

by the dimensions of the associated components.<br />

In these cases, check the pv diagram to<br />

determine if the product is suitable.<br />

Guideline values for C/P<br />

Sliding contact<br />

surface combination<br />

Steel/steel 2<br />

Steel/bronze 2<br />

Steel/PTFE sintered bronze 1,6<br />

Steel/PTFE fabric 2<br />

Steel/PTFE FRP<br />

GAC .. F 1,25<br />

GX .. F 1,25<br />

GEP .. FS 1,6<br />

GEC .. FBAS 1,6<br />

<strong>Rod</strong> ends 1,25<br />

Load ratio C/P<br />

Table 3<br />

Table 4<br />

Specific load factors<br />

Sliding contact surface<br />

Specific load factors<br />

combination dyn. K stat. K 0<br />

– N/mm 2<br />

Steel/steel<br />

Metric bearings 100 500<br />

Inch bearings 100 300<br />

Steel/bronze 50 80<br />

Steel/ PTFE sintered bronze 100 250<br />

Steel/PTFE fabric<br />

Metric bearings 300 500<br />

Inch bearings 150 300<br />

Steel/PTFE FRP<br />

GAC .. F 50 80<br />

GX .. F 50 80<br />

GEP .. FS 80 120<br />

GEC .. FBAS 80 120<br />

<strong>Rod</strong> ends 50 80<br />

1<br />

45


Selection of bearing size<br />

Specific bearing load<br />

The magnitude of the specific bearing load can<br />

be calculated using<br />

P<br />

p = K –––<br />

C<br />

where<br />

p = specific bearing load [N/mm 2 ]<br />

K = specific load factor depending on the bearing<br />

design <strong>and</strong> sliding contact surface combination<br />

(† table 4 on page 45) [N/mm 2 ]<br />

P = equivalent dynamic bearing load [kN]<br />

C = basic dynamic load rating [kN]<br />

Mean sliding velocity<br />

The mean sliding velocity for constant movement<br />

can be calculated using<br />

where<br />

v = mean sliding velocity [m/s]<br />

When the operation is intermittent<br />

(not continuous), the mean sliding velocity<br />

should be calculated for a cycle of<br />

operation<br />

d m = inner ring mean diameter [mm]<br />

d m = d k for radial spherical plain bearings<br />

<strong>and</strong> rod ends<br />

d m = 0,9 d k for angular contact spherical<br />

plain bearings<br />

d m = 0,7 d k for thrust spherical plain<br />

bearings<br />

d k = inner ring sphere diameter [mm]<br />

b = half the angle of oscillation († fig. 3 on<br />

page 39), degrees [°], for rotation b = 90°<br />

f = frequency of oscillation [min –1 ], or<br />

rotational speed [min –1 ]<br />

v = 5,82 ¥ 10 –7 d m b f<br />

Diagram 5<br />

pv diagram for steel/steel sliding contact surface combination<br />

500<br />

p<br />

[N/mm 2 ]<br />

100<br />

50<br />

IV<br />

20<br />

10<br />

II<br />

I<br />

III<br />

5<br />

2<br />

1<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2 0,3<br />

v [m/s]<br />

Refer to Note 1 († page 47) for explanation of operating ranges.<br />

46


For intermittent movement, the angle of oscillation<br />

is usually given in units of time. In this case<br />

the mean sliding velocity can be calculated using<br />

1<br />

4b<br />

v = 8,73 ¥ 10 –6 d m ––– t<br />

where<br />

b = half the angle of oscillation [°]<br />

(† fig. 3 on page 39)<br />

t = time taken to pass through complete oscillation<br />

[s]<br />

Note 1: pv operating ranges<br />

I Range where rating life equation is valid<br />

II Quasi-static range; before using the rating<br />

life equation, contact the <strong>SKF</strong> application<br />

engineering service<br />

III Possible range of use, e.g. with very good<br />

lubrication; before using the rating life equation,<br />

contact the <strong>SKF</strong> application engineering<br />

service for additional information<br />

IV Extended range where rating life equation is<br />

valid provided the load is exclusively<br />

alternating<br />

Diagram 6<br />

pv diagram for steel/bronze sliding contact surface combination<br />

100<br />

p<br />

[N/mm 2 ]<br />

50<br />

20<br />

10<br />

5<br />

2<br />

II I III<br />

1<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2 0,4<br />

v [m/s]<br />

Refer to Note 1 for explanation of operating ranges.<br />

47


Selection of bearing size<br />

Note 2: pv operating ranges<br />

I Range where rating life equation is valid<br />

II Quasi-static range; rating life equation has<br />

limited validity, refer to the section Basic<br />

rating life, starting on page 39<br />

III Possible range of use, e.g. with very good<br />

heat dissipation; before using the rating life<br />

equation, contact the <strong>SKF</strong> application engineering<br />

service for additional information<br />

Diagram 7<br />

pv diagram for steel/PTFE sintered bronze sliding contact surface combination<br />

300<br />

200<br />

p<br />

[N/mm 2 ]<br />

100<br />

50<br />

20<br />

10<br />

II I III<br />

5<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2 0,5<br />

v [m/s]<br />

Refer to Note 2 for explanation of operating ranges.<br />

48


Diagram 8<br />

pv diagrams for steel/PTFE fabric sliding contact surface combination<br />

1<br />

500<br />

p<br />

[N/mm 2 ]<br />

Metric bearings<br />

200<br />

100<br />

50<br />

20<br />

10<br />

II I III<br />

5<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2 0,5<br />

v [m/s]<br />

500<br />

p<br />

[N/mm 2 ]<br />

Inch bearings<br />

200<br />

100<br />

50<br />

20<br />

10<br />

II I III<br />

5<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2 0,5<br />

v [m/s]<br />

Refer to Note 2 († page 48) for explanation of operating ranges.<br />

49


Selection of bearing size<br />

Diagram 9<br />

pv diagram for steel/PTFE FRP sliding contact surface combination, FS <strong>and</strong> FBAS designs<br />

120<br />

p<br />

[N/mm 2 ]<br />

100<br />

50<br />

III<br />

20<br />

II<br />

I<br />

10<br />

5<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1<br />

v [m/s]<br />

Refer to Note 2 († page 48) for explanation of operating ranges.<br />

Diagram 10<br />

pv diagram for steel/PTFE FRP sliding contact surface combination, F design<br />

100<br />

p<br />

[N/mm 2 ]<br />

50<br />

III<br />

20<br />

II<br />

I<br />

10<br />

5<br />

0,0001 0,001 0,002 0,005 0,01 0,02 0,05 0,1<br />

v [m/s]<br />

Refer to Note 2 († page 48) for explanation of operating ranges.<br />

50


Basic rating life calculation<br />

Steel/steel <strong>and</strong> steel/bronze sliding<br />

contact surface combinations, requiring<br />

maintenance<br />

The basic rating life for initial lubrication only,<br />

can be calculated using<br />

330<br />

G h = b 1 b 2 b 3 b 4 b 5 –––––<br />

p 2,5 v<br />

When the bearing is regularly relubricated after<br />

the initial lubrication<br />

G hN = G h f b f H<br />

or<br />

H = frequency of relubrication († diagram 15<br />

on page 53)<br />

b 1 = load condition factor,<br />

b 1 = 1 for constant direction load<br />

b 1 = 2 for alternating direction load<br />

b 2 = temperature factor († table 5 on page 52)<br />

b 3 = sliding factor († diagram 11)<br />

b 4 = velocity factor († diagram 12 on<br />

page 52)<br />

b 5 = factor for angle of oscillation<br />

(† diagram 13 on page 52), refer to<br />

Note († page 53)<br />

p = specific bearing load [N/mm 2 ] (for values<br />

of p < 10 N/mm 2 use p = 10 N/mm 2 )<br />

v = mean sliding velocity [m/s]<br />

f b = factor depending on the angle of oscillation<br />

(† diagram 14 on page 53), refer to<br />

Note († page 53)<br />

f H = factor depending on the frequency of<br />

relubrication († diagram 15 on page 53)<br />

f = frequency of oscillation [min –1 ]<br />

N = relubrication interval [h]<br />

If the basic rating life requirement is not met,<br />

the relubrication interval N should be shortened,<br />

or a larger bearing or rod end should be<br />

selected.<br />

Diagram 11<br />

Sliding factor b 3 for steel/steel <strong>and</strong> steel/bronze sliding contact surface combinations<br />

5<br />

b 3<br />

G N = 60 f G hN<br />

The frequency of relubrication can be calculated<br />

using<br />

G h<br />

H = –––<br />

N<br />

where<br />

G h = basic rating life with initial lubrication only,<br />

operating hours [h]<br />

G hN = basic rating life with regular relubrication,<br />

operating hours [h]<br />

G N = basic rating life with regular relubrication,<br />

number of oscillations<br />

1<br />

2<br />

1<br />

10 20 50 100 200 500<br />

d k [mm]<br />

51


Selection of bearing size<br />

Diagram 12<br />

Velocity factor b 4 for steel/steel <strong>and</strong> steel/bronze sliding contact surface combinations<br />

15<br />

b 4<br />

10<br />

steel/bronze<br />

5<br />

steel/steel<br />

2<br />

1<br />

0,002 0,005 0,01 0,02 0,05 0,1<br />

v [m/s]<br />

Table 5<br />

Temperature factor b 2 for steel/steel <strong>and</strong> steel/bronze<br />

sliding contact surface combinations<br />

Operating<br />

Temperature<br />

temperature factor b 2<br />

over incl.<br />

°C –<br />

– 120 1,0<br />

Diagram 13<br />

Angle of oscillation factor b 5 for steel/steel <strong>and</strong> steel/<br />

bronze sliding contact surface combinations<br />

b 5<br />

10<br />

120 160 0,9<br />

160 180 0,8<br />

180 – Contact the <strong>SKF</strong> application<br />

engineering service<br />

5<br />

2<br />

I<br />

1<br />

5 10 20 45<br />

b [°]<br />

The temperature limits for integral seals († table 6 on<br />

page 79) <strong>and</strong> <strong>SKF</strong> greases († table 1 on page 87) must<br />

also be considered.<br />

If b < 5°, the value of b 5 for b = 5° should be used.<br />

52


Diagram 14<br />

Multiplication factor f b for steel/steel <strong>and</strong> steel/bronze<br />

sliding contact surface combinations<br />

f b<br />

6<br />

5<br />

4<br />

3<br />

2<br />

I<br />

NOTE: <strong>SKF</strong> manufactures all metric steel/steel<br />

radial spherical plain bearings with an outside<br />

diameter D ≥ 150 mm as st<strong>and</strong>ard with the<br />

multi-groove feature in the outer ring († page<br />

17). The extra large grease reservoir in the bearing,<br />

made possible by the multi-groove system,<br />

extends relubrication intervals <strong>and</strong> bearing<br />

service life, especially in applications where<br />

there are constant direction loads († page 40).<br />

These advantages are considered in the calculation<br />

of the basic rating life by the coloured<br />

regions in diagrams 13 <strong>and</strong> 14 for the factors<br />

for the angle of oscillation b 5 <strong>and</strong> f b . The values<br />

of these two factors in the upper limit of the coloured<br />

area may be used for bearings with the<br />

multi-groove system.<br />

1<br />

1<br />

5 10 15 20<br />

b [°]<br />

If b < 5°, the value of f b for b = 5° should be used.<br />

Diagram 15<br />

Relubrication factor f H for steel/steel <strong>and</strong> steel/bronze sliding contact surface combinations<br />

6<br />

f H<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1 10 20 30 40<br />

H<br />

50<br />

If H < 5, the values indicated by the broken line can be used.<br />

53


Selection of bearing size<br />

Maintenance-free steel/PTFE sintered<br />

bronze sliding contact surface<br />

combination<br />

The basic rating life can be calculated using<br />

1 400<br />

G h = b 1 b 2 –––––<br />

p 1,3 v<br />

or<br />

NOTE: Basic rating life calculations consider<br />

the influence of the load <strong>and</strong> sliding velocity.<br />

Under very light loads <strong>and</strong>/or low sliding velocities,<br />

the result shows relatively long life. The<br />

longer the service life the more important is the<br />

influence of contaminants such as dirt, moisture<br />

<strong>and</strong> corrosion. Depending on the operating conditions,<br />

accurate life calculations may not be<br />

possible.<br />

G = 60 f G h<br />

where<br />

G h = basic rating life, operating hours<br />

G = basic rating life, number of oscillations<br />

b 1 = load condition factor († table 6)<br />

b 2 = temperature factor († diagram 16)<br />

p = specific bearing load [N/mm 2 ]<br />

v = mean sliding velocity [m/s]<br />

f = frequency of oscillation [min –1 ]<br />

Table 6<br />

Load condition factor b 1 for the steel/PTFE sintered<br />

bronze sliding contact surface combination<br />

Type of load Factor Permissible<br />

b 1 specific<br />

bearing load 1)<br />

– – N/mm 2<br />

Constant load 2)<br />

Single direction 1 up to 100<br />

Variable load<br />

Alternating direction<br />

or pulsating magnitude<br />

at a frequency<br />

up to 0,5 Hz 0,4 up to 60<br />

over 0,5 up to 5 Hz 0,2 up to 40<br />

1) Inertia forces should also be taken into consideration.<br />

2) For constant load, oscillating frequencies above 300 min –1<br />

<strong>and</strong> very short sliding distances, b 1 = 1 cannot be used<br />

because of possible material fatigue. For additional information,<br />

contact the <strong>SKF</strong> application engineering service.<br />

54


Diagram 16<br />

Temperature factor b 2 for the steel/PTFE sintered bronze sliding contact surface combination<br />

1<br />

1,0<br />

b 2<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

20 40 60 80 100 120 140 160<br />

Operating temperature t [°C]<br />

55


Selection of bearing size<br />

Maintenance-free steel/PTFE fabric<br />

sliding contact surface combination<br />

The basic rating life can be calculated using<br />

K p<br />

G h = b 1 b 2 b 4 ––––<br />

p n v<br />

or<br />

NOTE: Basic rating life calculations consider<br />

the influence of the load <strong>and</strong> sliding velocity.<br />

Under very light loads <strong>and</strong>/or low sliding velocities,<br />

the result shows relatively long life. The<br />

longer the service life the more important is the<br />

influence of contaminants such as dirt, moisture<br />

<strong>and</strong> corrosion. Depending on the operating conditions,<br />

accurate life calculations may not be<br />

possible.<br />

G = 60 f G h<br />

where<br />

G h = basic rating life, operating hours<br />

G = basic rating life, number of oscillations<br />

b 1 = load condition factor († table 7)<br />

b 2 = temperature factor († diagram 17)<br />

b 4 = velocity factor († diagram 18 on page 58)<br />

K p = constant for the specific bearing load<br />

(† table 8)<br />

p = specific bearing load [N/mm 2 ]<br />

n = exponent for the specific bearing load<br />

(† table 8)<br />

v = mean sliding velocity [m/s]<br />

f = frequency of oscillation [min –1 ]<br />

Diagram 17<br />

Temperature factor b 2 for steel/PTFE fabric sliding contact surface combination<br />

b 2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

20 40 60 80 100 120 140 160<br />

Operating temperature t [°C]<br />

56


Table 7<br />

Load condition factor b 1 for steel/PTFE fabric sliding<br />

contact surface combination<br />

Type of load Factor b 1) 1 Specific<br />

bearing load<br />

– – N/mm 2<br />

1<br />

Constant<br />

Single direction 1 up to 300<br />

Variable load<br />

Alternating direction<br />

or pulsating magnitude<br />

at a frequency<br />

up to 0,5 Hz 0,55 up to 50<br />

0,4 50 to 100<br />

over 0,5 to 1 Hz 0,35 up to 50<br />

0,15 50 to 100<br />

over 1 to 5 Hz 0,1 up to 50<br />

1) The factor b 1 covers several parameters that affect the<br />

bearing life. Depending on the operating conditions, higher<br />

b 1 values can be applied. Contact the <strong>SKF</strong> application<br />

engineering service.<br />

Table 8<br />

Constant K p <strong>and</strong> exponent n for steel/PTFE fabric<br />

sliding contact surface combination<br />

Specific bearing load 1) Constant K p Exponent n<br />

over incl.<br />

N/mm 2 – –<br />

– 25 770 0,2<br />

25 90 4 000 0,7<br />

90 300 40 000 1,2<br />

1) For inch bearings, specific bearing load may not exceed<br />

150 N/mm 2 († table 4 on page 45).<br />

57


Selection of bearing size<br />

Diagram 18<br />

Velocity factor b 4 for steel/PTFE fabric sliding contact surface combination<br />

1,0<br />

b 4<br />

0,9<br />

p = 5 N/mm 2<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

20<br />

40<br />

60<br />

80<br />

100<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0,001 0,005 0,01 0,05 0,1<br />

0,5 1<br />

v [m/s]<br />

0,50<br />

b 4<br />

0,45<br />

p = 100 N/mm 2<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

120<br />

140<br />

160<br />

180<br />

200<br />

220<br />

240<br />

260<br />

280<br />

300<br />

0,00<br />

0,001 0,005 0,01 0,05 0,1<br />

v [m/s]<br />

58


Maintenance-free steel/PTFE FRP<br />

sliding contact surface combination<br />

The basic rating life can be calculated using<br />

K M<br />

G h = b 1 b 2 b 3 ––––<br />

p v<br />

or<br />

G = 60 f G h<br />

where<br />

G h = basic rating life, operating hours<br />

G = basic rating life, number of oscillations<br />

b 1 = load condition factor († table 9)<br />

b 2 = temperature factor († diagram 19)<br />

b 3 = sliding factor († table 10 on page 60)<br />

K M = material constant († table 10 on page 60)<br />

p = specific bearing load [N/mm 2 ]<br />

v = mean sliding velocity [m/s]<br />

f = frequency of oscillation [min –1 ]<br />

NOTE:<br />

1. The basic rating life calculated from the above<br />

equation can be doubled if the bearings are<br />

relubricated occasionally (refer to the sections<br />

Lubrication, starting on page 84 <strong>and</strong> Relubrication<br />

on page 90)<br />

2. Rating life calculations consider the influence<br />

of the load <strong>and</strong> sliding velocity. Under very<br />

light loads, <strong>and</strong>/or low sliding velocities, the<br />

result shows relatively long life. The longer<br />

the service life the more important is the<br />

influence of contaminants such as dirt, moisture<br />

<strong>and</strong> corrosion. Depending on the operating<br />

conditions, accurate life calculations may<br />

not be possible.<br />

Table 9<br />

Load condition factor b 1 for steel/PTFE FRP sliding<br />

contact surface combination<br />

Type of load Factor Permissible<br />

b 1 specific<br />

bearing load 1)<br />

– – N/mm 2<br />

Constant load 2)<br />

Single direction<br />

GAC .. F 1 up to 50<br />

GX .. F 1 up to 50<br />

GEP .. FS 1 up to 80<br />

GEC .. FBAS 1 up to 80<br />

Variable load<br />

Alternating direction<br />

or pulsating magnitude<br />

at a frequency<br />

up to 0,5 Hz 0,25 up to 40<br />

over 0,5 up to 5 Hz 0,1 up to 25<br />

1) Inertia forces should also be taken into consideration.<br />

2) For constant load, oscillating frequencies above 300 min –1<br />

<strong>and</strong> very short sliding distances, b 1 = 1 cannot be used<br />

because of possible material fatigue. For additional information,<br />

contact the <strong>SKF</strong> application engineering service.<br />

Temperature factor b 2 for steel/PTFE FRP sliding<br />

contact surface combination<br />

b 2<br />

1,0<br />

0,8<br />

Diagram 19<br />

1<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

20 40 60 80 100<br />

Operating temperature t [°C]<br />

59


Selection of bearing size<br />

Table 10<br />

Sliding factor b 3 <strong>and</strong> constant K M for steel/PTFE FRP sliding contact surface combination<br />

Bearing type Nominal<br />

Series<br />

bore diameter<br />

Sliding factor Constant<br />

d b 3 K M<br />

over incl.<br />

– mm – –<br />

Radial bearings<br />

GEP .. FS – 180 1 1 055<br />

180 440 1,15 1 055<br />

440 – 1,35 1 055<br />

GEC .. FBAS – 440 1 1 055<br />

440 – 1,15 1 055<br />

Angular contact bearings 1)<br />

GAC .. F – 60 1 480<br />

60 – 1,5 480<br />

Thrust bearings<br />

GX .. F – 60 1 670<br />

60 – 1,5 670<br />

<strong>Rod</strong> ends 1 530<br />

1) For preloaded bearings that cannot be re-adjusted, always use b 3 = 1.<br />

60


Variable load <strong>and</strong> sliding velocity<br />

If the load <strong>and</strong>/or sliding velocity change during<br />

operation, calculate individual rating lives for the<br />

periods of constant load <strong>and</strong> sliding velocity. If<br />

the load <strong>and</strong> sliding velocity occur as shown in<br />

diagram 20a, the individual basic rating life can<br />

be calculated using the constant values of p <strong>and</strong><br />

v. If the load <strong>and</strong> sliding velocity are not constant<br />

as shown in diagram 20b, first calculate the<br />

basic rating life for the individual time periods,<br />

using mean values for the load <strong>and</strong> sliding<br />

velocity for the individual time periods. Then<br />

calculate the total basic rating life using<br />

1<br />

1<br />

G h = ———————————––<br />

t I t II t III<br />

––––– + ––––– + ––––– + …<br />

T G hI T G hII T G hIII<br />

where<br />

G h = total basic rating life, operating hours<br />

t I , t II … = time during which p 1 <strong>and</strong> v 1 , p 2 <strong>and</strong> v 2<br />

etc. pertain [h]<br />

T = total duration of one cycle<br />

(= t I + t II + t III + …) [h]<br />

G hI … = individual values of basic rating life for<br />

conditions p 1 <strong>and</strong> v 1 , p 2 <strong>and</strong> v 2 etc.,<br />

operating hours<br />

Diagram 20<br />

Alternating load <strong>and</strong> variable sliding velocity<br />

v p<br />

p 1<br />

v p<br />

p 2<br />

v 1<br />

v 2<br />

p 3 p<br />

v 4 3 v 4<br />

t I t II t III t IV<br />

T<br />

t<br />

p 1<br />

v 2<br />

v 1<br />

p 2<br />

v 3<br />

p 3<br />

t I t II t III<br />

T<br />

t<br />

a<br />

b<br />

61


Selection of bearing size<br />

Calculation examples<br />

The following calculation examples illustrate the<br />

methods used to determine the requisite bearing<br />

size or the basic rating life for spherical plain<br />

bearings <strong>and</strong> rod ends.<br />

1. Torque support of a concrete transporter<br />

Given data<br />

Purely radial load that alternates direction:<br />

F r = 12 kN<br />

Half angle of oscillation: b = 15°<br />

(† fig. 3 on page 39)<br />

Frequency of oscillation: f = 10 min –1<br />

Maximum operating temperature: +80 °C<br />

Requirements<br />

The bearing must have a basic rating life of<br />

7 000 h.<br />

Calculations <strong>and</strong> selection<br />

Because a bearing in this application must<br />

accommodate an alternating load, a steel/steel<br />

radial spherical plain bearing is the appropriate<br />

choice. Relubrication is planned after every<br />

40 hours of operation.<br />

If, for the first check, a guideline value of 2 is<br />

used for the load ratio C/P († table 3 on page<br />

45), the required basic dynamic load rating C for<br />

the bearing is<br />

C = 2 P = 24 kN<br />

Bearing GE 20 ES, with a C = 30 kN <strong>and</strong> a<br />

sphere diameter d k = 29 mm, is chosen from the<br />

product table on page 104.<br />

To check the suitability of the bearing using<br />

the pv diagram († diagram 5 on page 46), calculate<br />

the specific bearing load using K = 100<br />

from table 4 on page 45.<br />

P 12<br />

p = K –– = 100 ¥ –––– = 40 N/mm 2<br />

C 30<br />

<strong>and</strong> the sliding velocity v using d m = d k = 29 mm,<br />

b = 15° <strong>and</strong> f = 10 min –1<br />

v = 5,82 ¥ 10 –7 d m b f<br />

= 5,82 ¥ 10 –7 ¥ 29 ¥ 15 ¥ 10 = 0,0025 m/s<br />

The values for p <strong>and</strong> v lie within the permissible<br />

operating range I of the pv diagram († diagram<br />

5 on page 46), for steel/steel radial spherical<br />

plain bearings. To calculate the basic rating life<br />

for initial lubrication, the values that apply are<br />

b 1 = 2 (alternating direction load)<br />

b 2 = 1 (operating temperature < 120 °C<br />

from table 5 on page 52)<br />

b 3 = 1,5 (from diagram 11 on page 51,<br />

for d k = 29 mm)<br />

b 4 = 1,1 (from diagram 12 on page 52,<br />

for v = 0,0025 m/s)<br />

b 5 = 3,7 (from diagram 13 on page 52,<br />

for b = 15°)<br />

p = 40 N/mm 2<br />

v = 0,0025 m/s<br />

Therefore<br />

330<br />

G h = b 1 b 2 b 3 b 4 b 5 –––––<br />

p 2,5 v<br />

330<br />

= 2 ¥ 1 ¥ 1,5 ¥ 1,1 ¥ 3,7 ¥ –––––––––––––<br />

40 2,5 ¥ 0,0025<br />

≈ 160 operating hours<br />

The basic rating life of the bearing that is relubricated<br />

regularly can now be calculated using<br />

f b = 5,2 (from diagram 14 on page 53)<br />

f H = 1,8 (from diagram 15 on page 53, for a<br />

relubrication frequency H = G h /N = 160/40<br />

= 4 with the relubrication interval of 40 h)<br />

G hN = G h f b f H = 160 ¥ 5,2 ¥ 1,8<br />

≈ 1 500 operating hours<br />

62


Because this life is shorter than the required<br />

rating life of 7 000 h, a larger bearing is chosen<br />

<strong>and</strong> calculations are repeated.<br />

Bearing GE 25 ES, with C = 48 kN <strong>and</strong> d k =<br />

35,5 mm, is chosen. The values for the specific<br />

bearing load lie within the permissible operating<br />

range I of the pv diagram († diagram 5 on<br />

page 46)<br />

NOTE: The <strong>SKF</strong> Interactive Engineering Catalogue<br />

incorporates programs to perform these<br />

<strong>and</strong> many other calculations quickly <strong>and</strong> accurately.<br />

These programs can be run any number<br />

of times to find the best possible solution.<br />

The <strong>SKF</strong> Interactive Engineering Catalogue is<br />

available online at www.skf.com.<br />

1<br />

12<br />

p = 100 ¥ –––– =25 N/mm 2<br />

48<br />

<strong>and</strong> the sliding velocity is<br />

v = 5,82 ¥ 10 –7 ¥ 35,5 ¥ 15 ¥ 10 = 0,0031 m/s<br />

As before<br />

b 1 = 2, b 2 = 1, b 5 = 3,7<br />

<strong>and</strong> now<br />

b 3 = 1,6 (from diagram 11 on page 51,<br />

for d k = 35,5 mm)<br />

b 4 = 1,2 (from diagram 12 on page 52 ,<br />

for v = 0,0031 m/s)<br />

Therefore, the basic rating life for initial<br />

lubrication is<br />

330<br />

G h = 2 ¥ 1 ¥ 1,6 ¥ 1,2 ¥ 3,7 ¥ –––––––––––––<br />

25 2,5 ¥ 0,0031<br />

≈ 480 operating hours<br />

With f b = 5,2 (from diagram 14 on page 53)<br />

<strong>and</strong> f H = 3 (from diagram 15 on page 53 for<br />

H = 480/40 = 12) the basic rating life for regular<br />

relubrication (N = 40 h) becomes<br />

G hN = 480 ¥ 5,2 ¥ 3 ≈ 7 490 operating hours<br />

This larger bearing satisfies the rating life<br />

requirement.<br />

63


Selection of bearing size<br />

2. Attachment of a shock absorber of an<br />

off-highway vehicle<br />

Given data:<br />

Radial load: F r = 7 kN<br />

Axial load: F a = 0,7 kN<br />

Half angle of oscillation: b = 8° († fig. 3 on<br />

page 39)<br />

Frequency of oscillation: f = 15 min –1<br />

Load frequency: 2–5 Hz<br />

Maximum operating temperature: +75 °C<br />

Requirements:<br />

This bearing must have a basic rating life corresponding<br />

to a driven distance of 100 000 km<br />

at an average speed of 65 km/h without<br />

maintenance.<br />

Calculations <strong>and</strong> selection<br />

For design reasons, a GE 20 C spherical plain<br />

bearing with a steel/PTFE sintered bronze sliding<br />

contact surface combination is proposed.<br />

From the product table on page 132, the basic<br />

dynamic load rating C = 31,5 kN <strong>and</strong> the sphere<br />

diameter d k = 29 mm are obtained.<br />

First, the equivalent dynamic bearing load<br />

must be determined by<br />

The values for p <strong>and</strong> v lie within the permissible<br />

operating range I of the pv diagram where<br />

b 1 = 0,2 (from table 6 on page 54, for a load<br />

frequency over 0,5 Hz <strong>and</strong><br />

25 < p < 40 N/mm 2 )<br />

b 2 = 1 (from diagram 16 on page 55, for temperatures<br />

< 80 °C)<br />

The basic rating life for a GE 20 C bearing with<br />

the steel/PTFE sintered bronze sliding contact<br />

surface combination is<br />

1 400<br />

G h = b 1 b 2 –––––<br />

p 1,3 v<br />

1 400<br />

= 0,2 ¥ 1 ¥ ––––––––––––<br />

31 1,3 ¥ 0,002<br />

≈ 1 600 operating hours<br />

This basic rating life corresponds to a distance<br />

(at an average speed of 65 km/h) of 1 600 ¥ 65<br />

= 104 000 km. Therefore, the bearing satisfies<br />

the rating life requirement.<br />

F a /F r = 0,7/7 = 0,1<br />

From diagram 2 on page 42 factor y = 1,4. The<br />

equivalent dynamic bearing load is therefore<br />

P = y F r = 1,4 ¥ 7 = 9,8 kN<br />

To check the suitability of the bearing size using<br />

the pv diagram 7 on page 48, calculate the values<br />

for the specific bearing load (using K = 100<br />

from table 4 on page 45) using<br />

P 9,8<br />

p = K –– = 100 ¥ –––– = 31 N/mm 2<br />

C 31,5<br />

<strong>and</strong> the sliding velocity (d m = d k = 29 mm).<br />

v = 5,82 ¥ 10 –7 dm b f<br />

= 5,82 ¥ 10 –7 ¥ 29 ¥ 8 ¥ 15 = 0,002 m/s<br />

64


3. A 320-bar hydraulic cylinder on a fully<br />

automatic press for building industry<br />

waste<br />

Given data<br />

Radial load (constant direction)<br />

Operation Load Time period<br />

case F r t<br />

I 300 kN 10%<br />

II 180 kN 40%<br />

III 120 kN 50%<br />

The number of press cycles n = 30 per hour, <strong>and</strong><br />

the movement between the end positions (90°)<br />

is made in 10 seconds. The operating temperature<br />

is less than +50 °C.<br />

Requirements<br />

A maintenance-free radial spherical plain bearing<br />

with a steel/PTFE fabric sliding contact surface<br />

combination is required for a rating life of 5<br />

years with 70 h of operation per week.<br />

Calculations <strong>and</strong> selection<br />

Using a guideline value for the load ratio C/P = 2<br />

(† table 3 on page 45), <strong>and</strong> with P = F rI the<br />

required basic dynamic load rating<br />

C = 2 P = 2 ¥ 300 = 600 kN<br />

From the product table on page 136,<br />

a GE 60 TXE-2LS bearing with a basic dynamic<br />

load rating C = 695 kN <strong>and</strong> a sphere diameter<br />

d k = d m = 80 mm is chosen.<br />

First, it is necessary to check that the operation<br />

cases I to III fall within the permissible<br />

range of the pv diagram 8 on page 49.<br />

The sliding velocity is the same for all three<br />

cases. The angle of oscillation is specified as 2b,<br />

the time t as the time taken to pass through 2b<br />

in seconds. Complete cycle duration is 4b<br />

(† fig 3 on page 39).<br />

2b<br />

v = 8,73 ¥ 10 –6 d m ––<br />

t<br />

90<br />

= 8,73 ¥ 10 –6 ¥ 80 ¥ –– = 0,0063 m/s<br />

10<br />

The specific bearing load, p = K(P/C),<br />

using K = 300 from table 4 on page 45 , is<br />

for case I<br />

P 300<br />

p I = K –– = 300 ¥ –––– = 129,5 N/mm 2<br />

C 695<br />

for case II<br />

P 180<br />

p II = K –– = 300 ¥ –––– = 77,7 N/mm 2<br />

C 695<br />

for case III<br />

P 120<br />

p III = K –– = 300 ¥ –––– = 51,8 N/mm 2<br />

C 695<br />

The values for p I , p II , p III <strong>and</strong> v are within the<br />

permissible range I of the pv diagram 8 on<br />

page 49.<br />

To make the lifetime estimate for variable<br />

loads <strong>and</strong>/or sliding velocities, the calculation of<br />

each load case has to be made separately, with<br />

the equation for TX bearings first<br />

K p<br />

G h = b 1 b 2 b 4 –––<br />

p n v<br />

The parameters b 1 , b 2 , b 4 , K p <strong>and</strong> n are defined<br />

on page 56 <strong>and</strong> are as follows<br />

b 1 = 1 (from table 7 on page 57, constant load)<br />

b 2 = 1 (from diagram 17 on page 56, operating<br />

temperature < +50 °C)<br />

b 4 = (from diagram 18 on page 58)<br />

b 4 I = 0,31<br />

b 4 II = 0,48<br />

b 4 III = 0,57<br />

K p = (from table 8 on page 57)<br />

K p I = 40 000<br />

K p II = 4 000<br />

K p III = 4 000<br />

n = (from table 8 on page 57)<br />

n 1 = 1,2<br />

n 2 = 0,7<br />

n 3 = 0,7<br />

1<br />

65


Selection of bearing size<br />

for case I<br />

40 000<br />

G hI = 1 ¥ 1 ¥ 0,31 ¥ –––––––––––––––––<br />

129,5 1,2 ¥ 0,0063<br />

= 5 745 operating hours<br />

for case II<br />

The required life of five years should be met<br />

assuming the machine is operated 70 h/week,<br />

30 cycles/hour <strong>and</strong> 50 weeks per year, to<br />

525 000 cycles or 2 916 operating hours.<br />

(Note that time for a complete cycle is 20 s.)<br />

G N, Req = 5 ¥ 70 ¥ 30 ¥ 50 = 525 000 cycles<br />

G h, Req = (525 000 ¥ 20)/3600 = 2 916 h.<br />

4 000<br />

G hII = 1 ¥ 1 ¥ 0,48 ¥ –––––––––––––––<br />

77,7 0,7 ¥ 0,0063<br />

= 14 477 operating hours<br />

for case III<br />

4 000<br />

G hII = 1 ¥ 1 ¥ 0,57 ¥ –––––––––––––––<br />

51,8 0,7 ¥ 0,0063<br />

= 22 833 operating hours<br />

Using the calculated basic rating lives of the<br />

three operation cases, the total basic rating life<br />

for continuous operation is († page 61)<br />

1<br />

G h = ———————————<br />

t I t II t III<br />

––––– + ––––– + –––––<br />

T G hI T G hII T G hIII<br />

For t I , t II etc., the percentages given in the operating<br />

data are inserted (with T = t I + t II + t III =<br />

100%.)<br />

1<br />

G h = ——————————————————<br />

10 40 50<br />

–––––––––– + ––––––––––– + –––––––––––<br />

100 ¥ 5 745 100 ¥ 14 477 100 ¥ 22 833<br />

≈ 14 940 operating hours<br />

66


4. Linkages of a conveyor installation<br />

Given data<br />

Radial load of alternating direction: F r = 5,5 kN<br />

Half angle of oscillation: b = 15° († fig. 3 on<br />

page 39)<br />

Frequency of oscillation: f = 25 min –1<br />

Operating temperature: +70 °C<br />

Requirements<br />

A rod end is needed that provides a basic rating<br />

life of 9 000 hours under alternating load<br />

conditions.<br />

Calculations <strong>and</strong> selection<br />

Because the load is alternating, a steel/steel<br />

rod end is appropriate. Relubrication is planned<br />

every 40 hours of operation. Using the guideline<br />

value for the load ratio C/P = 2 from table 3 on<br />

page 45, <strong>and</strong> as P = F r , the requisite basic<br />

dynamic load rating is<br />

C = 2 P = 2 ¥ 5,5 = 11 kN<br />

The SI 15 ES rod end with a basic dynamic load<br />

rating C = 17 kN is selected († page 172). The<br />

basic static load rating is C 0 = 37,5 kN <strong>and</strong> the<br />

sphere diameter d k = 22 mm.<br />

To check the suitability of rod end size using<br />

the pv diagram 5 on page 46, calculate the values<br />

for the specific bearing load (using K = 100<br />

from table 4 on page 45)<br />

C 0<br />

= 37,5 kN<br />

b 2 = 1 (from table 5 on page 52,<br />

for temperatures < 120 °C)<br />

b 6 = 0,35 (from table 2 on page 44,<br />

for rod ends with a lubrication hole)<br />

P perm = C 0 b 2 b 6<br />

= 37,5 ¥ 1 ¥ 0,35<br />

= 13,125 kN > P<br />

The following values of the factors are used to<br />

determine the basic rating life for initial lubrication<br />

only<br />

b 1 = 2 (alternating load)<br />

b 2 = 1 (for operating temperatures < 120 °C,<br />

from table 5 on page 52)<br />

b 3 = 1,3 (from diagram 11 on page 51,<br />

for d k = 22 mm)<br />

b 4 = 1,6 (from diagram 12 on page 52,<br />

for v = 0,0048 m/s)<br />

b 5 = 3,7 (from diagram 13 on page 52,<br />

for b = 15°)<br />

p = 32 N/mm 2<br />

v = 0,0048 m/s<br />

Therefore<br />

330<br />

G h = b 1 b 2 b 3 b 4 b 5 ––––––––––––––<br />

32,4 2,5 ¥ 0,0048<br />

1<br />

P 300<br />

p = K –– = 100 ¥ –––– = 32,4 N/mm 2<br />

C 695<br />

<strong>and</strong> the mean sliding velocity (d m = d k = 22 mm)<br />

v = 5,82 ¥ 10 –7 d k b f<br />

= 5,82 ¥ 10 –7 ¥ 22 ¥ 15 ¥ 25 = 0,0048 m/s<br />

The values for p <strong>and</strong> v lie within the permissible<br />

range I of the pv diagram 5 on page 46.<br />

Checking the permissible load on the rod end<br />

housing<br />

330<br />

= 2 ¥ 1 ¥ 1,3 ¥ 1,6 ¥ 3,7 ¥ ––––––––––––––<br />

32,4 2,5 ¥ 0,0048<br />

≈ 177 operating hours<br />

The basic rating life for regular relubrication<br />

(N = 40 h) with<br />

f b<br />

= 5,2 (from diagram 14 on page 53) <strong>and</strong><br />

f H = 2 (from diagram 15 on page 53,<br />

for H = G h /N = 177/40 = 4,4)<br />

G hN = G h f b f H = 177 ¥ 5,2 ¥ 2<br />

≈ 1 840 operating hours<br />

67


Selection of bearing size<br />

The required basic rating life of 9 000 h is not<br />

achieved; therefore a larger rod end has to be<br />

selected. A SI 20 ES rod end, with C = 30 kN,<br />

C 0 = 57 kN <strong>and</strong> d k = 29 mm is selected <strong>and</strong> the<br />

calculation repeated.<br />

The values for the specific bearing load<br />

P 5,5<br />

p = K –– = 100 ¥ –––– = 18,3 N/mm 2<br />

C 30<br />

<strong>and</strong> the mean sliding velocity (d m = d k = 29 mm)<br />

v = 5,82 ¥ 10 –7 ¥ 29 ¥ 15 ¥ 25 = 0,0063 m/s<br />

both lie within the permissible range I. It is not<br />

necessary to check the permissible rod end<br />

housing load since the basic static load rating of<br />

the larger rod end is higher. Also, as before<br />

b 1 = 2; b 2 = 1 <strong>and</strong> b 5 = 3,7<br />

while<br />

b 3 = 1,4 (from diagram 11 on page 51,<br />

for d k = 29 mm)<br />

b 4 = 1,8 (from diagram 12 on page 52,<br />

for v = 0,0063 m/s)<br />

so that<br />

330<br />

G h = 2 ¥ 1 ¥ 1,4 ¥ 1,8 ¥ 3,7 ¥–––––––––––––––<br />

18,3 2,5 ¥ 0,0063<br />

≈ 681 operating hours<br />

With f b = 5,2 (from diagram 14 on page 53)<br />

<strong>and</strong> f H = 3,7 (from diagram 15 on page 53, for<br />

H = 681/40 ≈ 17) the basic rating life for regular<br />

relubrication (N = 40 h) becomes<br />

G hN = 681 ¥ 5,2 ¥ 3,7<br />

≈ 13 100 operating hours<br />

Therefore, the larger rod end meets the rating<br />

life requirements.<br />

68


Friction<br />

1<br />

The friction in a spherical plain bearing or rod<br />

end depends primarily on the sliding contact<br />

surface combination, the load <strong>and</strong> the sliding<br />

velocity. Because there are so many influencing<br />

factors that are not mutually independent, it is<br />

not possible to quote exact values for the coefficient<br />

of friction. Under laboratory conditions,<br />

however, it is possible to record the coefficient<br />

of friction for different sliding contact surface<br />

combinations. The friction during the running-in<br />

phase is higher than the value recorded during<br />

the subsequent test period.<br />

Guideline values for the coefficient of friction<br />

µ are listed in table 1. They have been determined<br />

in laboratory trials.<br />

The coefficient of friction for maintenancefree<br />

steel/PTFE fabric <strong>and</strong> steel/PTFE sintered<br />

bronze sliding contact surface combinations<br />

decrease with increasing specific load. At a<br />

constant specific load, friction is reduced to the<br />

given minimum value as soon as the transfer of<br />

PTFE from the sliding layer to the opposing steel<br />

surface is complete. The frictional moment for<br />

a spherical plain bearing or rod end can be calculated<br />

using<br />

M = 0,5 μ P d m<br />

where<br />

M = frictional moment [Nm]<br />

μ = coefficient of friction († table 1)<br />

P = equivalent dynamic bearing load [kN]<br />

d m = inner ring mean diameter [mm]<br />

d m = d k for radial spherical plain bearings <strong>and</strong><br />

rod ends<br />

d m = 0,9 d k for angular contact spherical plain<br />

bearings<br />

d m = 0,7 d k for thrust spherical plain bearings<br />

d k = inner ring sphere diameter [mm]<br />

Table 1<br />

Coefficient of friction for different sliding contact<br />

surface combinations (guideline values)<br />

Sliding contact surface Coefficient of friction µ<br />

combination min max<br />

Steel/steel 0,08 0,20<br />

Steel/bronze 0,10 0,25<br />

Steel/PTFE sintered bronze 0,05 0,25<br />

Steel/PTFE fabric 0,02 0,15<br />

Steel/PTFE FRP 0,05 0,20<br />

After the bearing has been in operation for an<br />

extended period of time, negative influences<br />

(contamination, inadequate lubrication) may<br />

cause the bearing to approach or exceed the<br />

maximum values for the coefficient of friction<br />

listed in the table. <strong>Bearings</strong> are susceptible to<br />

this phenomenon even under light loads <strong>and</strong><br />

especially under harsh operating conditions. In<br />

applications where friction is particularly important,<br />

<strong>SKF</strong> recommends determining the power<br />

ratings by using the maximum values for the<br />

coefficient of friction that are listed in table 1.<br />

For bearings operating under conditions of<br />

mixed or dry friction, there may be slight differences<br />

between adhesive <strong>and</strong> sliding friction.<br />

Experience has shown that it is not possible to<br />

eliminate stick-slip entirely <strong>and</strong> that it most frequently<br />

occurs when support elements lack<br />

adequate stiffness. In most applications, however,<br />

the effects are negligible.<br />

69


Design of bearing arrangements<br />

Design of bearing<br />

arrangements<br />

Radial location of bearings<br />

The inner <strong>and</strong> outer rings of spherical plain<br />

bearings must be radially secured (located)<br />

to the shaft <strong>and</strong> in the housing so that sliding<br />

movements occur in the bearing <strong>and</strong> do not<br />

result in ring creep. Ring creep occurs when<br />

a ring turns on its seat in the circumferential<br />

direction under load. To locate a bearing in the<br />

radial direction usually requires an interference<br />

fit. However, an interference fit cannot always<br />

be applied, e.g. if easy mounting <strong>and</strong> dismounting<br />

are required, or if the bearing must be able<br />

to be displaced axially without restraint.<br />

The appropriate fit is always determined<br />

by the operating conditions.<br />

1. Type <strong>and</strong> magnitude of the load<br />

The degree of interference must suit the type<br />

<strong>and</strong> magnitude of the load, i.e. the heavier the<br />

load <strong>and</strong> the stronger the shock loads, the tighter<br />

the interference required († fig. 1).<br />

• Under heavy loads, spherical plain bearings<br />

deform elastically, which may affect the interference<br />

fit <strong>and</strong> lead to ring creep.<br />

• The strength of the associated components<br />

must be adequate to accommodate the loads<br />

<strong>and</strong> fully support the bearing.<br />

• If the associated components deform, there is<br />

a risk that through-hardened bearing rings<br />

crack.<br />

• Steel/steel radial spherical plain bearings<br />

require a tighter fit than comparable maintenance-free<br />

bearings, which have a lower<br />

coefficient of friction.<br />

This reduces the initial internal clearance in<br />

the bearing, prior to operation. The operating<br />

clearance († fig. 2) furthermore takes the load<br />

<strong>and</strong> operating temperature into consideration.<br />

The initial radial internal clearance of bearings<br />

differs, depending on the type <strong>and</strong> size of<br />

the bearing. The clearance has been selected so<br />

that if the recommended tolerances for the shaft<br />

<strong>and</strong> housing seats are applied, an appropriate<br />

operating clearance (or preload) remains in the<br />

bearing under normal operating conditions.<br />

If a tight interference fit is used for both bearing<br />

rings, or if the operating temperatures are<br />

unusual, it may be necessary to use a larger<br />

initial internal clearance than “Normal” for<br />

steel/steel bearings.<br />

3. Temperature conditions<br />

In operation, the bearing rings normally have<br />

a higher temperature than their seats. This<br />

means that<br />

• the inner ring fit gets loosen († fig. 3)<br />

• the outer ring fit becomes tighter <strong>and</strong> may<br />

restrict any required axial displacement in the<br />

housing.<br />

If there is a considerable temperature difference<br />

between the inner ring <strong>and</strong> outer ring, there is<br />

a change in the operating clearance. This condition<br />

must be considered when selecting the fit<br />

or the bearing could seize, making it difficult or<br />

impossible for the shaft to turn.<br />

2. Bearing internal clearance<br />

An interference fit on the shaft <strong>and</strong> in the housing<br />

causes the inner ring to exp<strong>and</strong> elastically,<br />

<strong>and</strong> the outer ring to be compressed elastically.<br />

70


For heavier loads a tighter interference fit is needed<br />

Fig. 1<br />

4. Design of associated components<br />

The bearing seats on the shaft <strong>and</strong> in the<br />

housing must not lead to uneven distortion<br />

(out-of-round) of the bearing rings († fig. 4).<br />

Therefore:<br />

• Split housings are not suitable for interference<br />

fits.<br />

• Thin-walled housings, light alloy housings<br />

<strong>and</strong> hollow shafts require a tighter fit than<br />

thick-walled steel or cast iron housings <strong>and</strong><br />

solid shafts – <strong>and</strong> must have sufficient<br />

strength.<br />

• Heavy loads <strong>and</strong> interference fits require<br />

thick-walled one-piece steel or cast iron<br />

housings <strong>and</strong> solid steel shafts.<br />

1<br />

Reduction of the clearance in the bearing<br />

Fig. 2<br />

Bearing initial radial<br />

internal clearance<br />

Operating<br />

clearance<br />

Change to the fit with temperature<br />

Fig. 3<br />

Out-of-round bearing seat<br />

Fig. 4<br />

<strong>SKF</strong><br />

GE 30 ES-2RS<br />

71


Design of bearing arrangements<br />

5. Axial displacement of non-locating bearings<br />

A non-locating bearing provides radial support<br />

only <strong>and</strong> must always be able to be displaced<br />

axially († fig. 5). This is normally achieved by<br />

selecting a loose fit for one of the bearing rings,<br />

generally the inner ring of a spherical plain<br />

bearing. Reasons include the following:<br />

• The shaft seat can be easily <strong>and</strong> economically<br />

hardened <strong>and</strong> ground to facilitate axial displacement.<br />

The hardness of the shaft should<br />

be at least 50 HRC.<br />

• The outer rings of most spherical plain<br />

bearings are axially fractured at one or two<br />

positions, or are radially split. This can make<br />

axial displacement difficult, if not impossible.<br />

• The housing bore should be protected against<br />

wear.<br />

Surface finish of seats<br />

The recommended surface roughness for bearing<br />

seats is in accordance with ISO 4288:1997.<br />

Axial displacement<br />

ISO shaft <strong>and</strong> housing tolerance classes<br />

Fig. 5<br />

Fig. 6<br />

• for shaft seats Rz ≤ 10 μm<br />

• for housing bore seats Rz ≤ 16 μm<br />

Recommended fits<br />

Only a limited number of ISO tolerance classes<br />

are appropriate for spherical plain bearings.<br />

Fig. 6 shows schematically the relative positions<br />

of these in relation to the bore <strong>and</strong> outside<br />

diameter of the bearings. The recommended<br />

tolerance classes for<br />

• the shaft seat are provided in table 1<br />

• the housing bore are provided in table 2<br />

These recommendations are based on the<br />

considerations described above <strong>and</strong> have been<br />

confirmed in a wide variety of bearing applications.<br />

The ISO tolerance limits are listed in<br />

• table 3 on page 74 for shafts<br />

• table 4 on page 74 for housing bores<br />

To facilitate the calculation of the minimum <strong>and</strong><br />

maximum values of the theoretical interference<br />

or clearance, the st<strong>and</strong>ardized bearing bore<br />

diameter deviations (Δ dmp ) <strong>and</strong> the bearing outside<br />

diameter deviations (Δ Dmp ) are listed in<br />

tables 3 <strong>and</strong> 4.<br />

+<br />

0<br />

+<br />

0<br />

H11<br />

H7 J7 K7 M7 N7<br />

g6 h6 k6 m6 n6<br />

72


Shaft fits<br />

Operating conditions<br />

Tolerance classes<br />

Sliding contact surface combination<br />

steel/steel <strong>and</strong> steel/PTFE sintered bronze,<br />

steel/bronze<br />

steel/PTFE fabric <strong>and</strong> steel/PTFE FRP<br />

Table 1<br />

1<br />

Radial spherical plain bearings<br />

Loads of all kinds, interference fit m6 (n6) 1) k6<br />

Loads of all kinds, clearance or transition fit h6 (hardened shaft) h6 or g6 (hardened shaft)<br />

Angular contact spherical plain bearings<br />

Loads of all kinds, interference fit m6 (n6) m6<br />

Thrust spherical plain bearings<br />

Loads of all kinds, interference fit m6 (n6) m6<br />

The tolerance classes in brackets should be selected for very heavily loaded bearings. If selected, be sure that the residual<br />

operating clearance is sufficient for proper performance of the bearing or whether a bearing with larger clearance must<br />

be used.<br />

1) These recommendations do not apply to bearings in the GEG series, which have a bore diameter tolerance class to H7 <strong>and</strong> are<br />

normally mounted on shaft seats machined to tolerance class m7. If, for mounting reasons, the shaft is machined to tolerance<br />

class f7, it should be hardened as movements of the shaft relative to the bearing bore take place <strong>and</strong> wear may result.<br />

Housing fits<br />

Table 2<br />

Operating conditions<br />

Tolerance classes<br />

Sliding contact surface combination<br />

steel/steel<br />

steel/PTFE sintered bronze,<br />

steel/PTFE fabric <strong>and</strong> steel/PTFE FRP<br />

Radial spherical plain bearings<br />

Light loads, axial displacement required H7 H7<br />

Heavy loads M7 (N7) K7<br />

Light alloy housings N7 M7<br />

Angular contact spherical plain bearings<br />

Loads of all kinds, interference fit M7 (N7) M7<br />

Loads of all kinds, can generally be displaced axially J7 J7<br />

Thrust spherical plain bearings<br />

Purely axial loads H11 H11<br />

Combined loads J7 J7<br />

The tolerance classes in brackets should be selected for very heavily loaded bearings. If selected, be sure that the residual<br />

operating clearance of the radial bearing is sufficient for proper performance or whether a bearing with larger clearance<br />

must be used.<br />

73


Design of bearing arrangements<br />

Table 3<br />

ISO tolerance classes for shafts<br />

Shaft Bearing Shaft diameter deviations<br />

Nominal diameter Bore diameter Tolerance classes<br />

tolerance<br />

d D dmp g6 h6 k6 m6 n6<br />

over incl. low high high low high low high low high low high low<br />

mm µm µm<br />

3 6 –8 0 –4 –12 0 –8 +9 +1 +12 +4 +16 +8<br />

6 10 –8 0 –5 –14 0 –9 +10 +1 +15 +6 +19 +10<br />

10 18 –8 0 –6 –17 0 –11 +12 +1 +18 +7 +23 +12<br />

18 30 –10 0 –7 –20 0 –13 +15 +2 +21 +8 +28 +15<br />

30 50 –12 0 –9 –25 0 –16 +18 +2 +25 +9 +33 +17<br />

50 80 –15 0 –10 –29 0 –19 +21 +2 +30 +11 +39 +20<br />

80 120 –20 0 –12 –34 0 –22 +25 +3 +35 +13 +45 +23<br />

120 180 –25 0 –14 –39 0 –25 +28 +3 +40 +15 +52 +27<br />

180 250 –30 0 –15 –44 0 –29 +33 +4 +46 +17 +60 +31<br />

250 315 –35 0 –17 –49 0 –32 +36 +4 +52 +20 +66 +34<br />

315 400 –40 0 –18 –54 0 –36 +40 +4 +57 +21 +73 +37<br />

400 500 –45 0 –20 –60 0 –40 +45 +5 +63 +23 +80 +40<br />

500 630 –50 0 –22 –66 0 –44 +44 0 +70 +26 +88 +44<br />

630 800 –75 0 –24 –74 0 –50 +50 0 +80 +30 +100 +50<br />

800 1 000 –100 0 –26 –82 0 –56 +56 0 +90 +34 +112 +56<br />

1 000 1 250 –125 0 –28 –94 0 –66 +66 0 +106 +40 +132 +66<br />

Table 4<br />

ISO tolerance classes for housings<br />

Housing Bearing Housing bore diameter deviations<br />

Nominal bore Outside Tolerance classes<br />

diameter diameter<br />

tolerance<br />

d D Dmp H11 H7 J7 K7 M7 N7<br />

over incl. high low low high low high low high low high low high low high<br />

mm µm µm<br />

10 18 0 –8 0 +110 0 +18 –8 +10 –12 +6 –18 0 –23 –5<br />

18 30 0 –9 0 +130 0 +21 –9 +12 –15 +6 –21 0 –28 –7<br />

30 50 0 –11 0 +160 0 +25 –11 +14 –18 +7 –25 0 –33 –8<br />

50 80 0 –13 0 +190 0 +30 –12 +18 –21 +9 –30 0 –39 –9<br />

80 120 0 –15 0 +220 0 +35 –13 +22 –25 +10 –35 0 –45 –10<br />

120 150 0 –18 0 +250 0 +40 –14 +26 –28 +12 –40 0 –52 –12<br />

150 180 0 –25 0 +250 0 +40 –14 +26 –28 +12 –40 0 –52 –12<br />

180 250 0 –30 0 +290 0 +46 –16 +30 –33 +13 –46 0 –60 –14<br />

250 315 0 –35 0 +320 0 +52 –16 +36 –36 +16 –52 0 –66 –14<br />

315 400 0 –40 0 +360 0 +57 –18 +39 –40 +17 –57 0 –73 –16<br />

400 500 0 –45 0 +400 0 +63 –20 +43 –45 +18 –63 0 –80 –17<br />

500 630 0 –50 0 +440 0 +70 – – –70 0 –96 –26 –114 –44<br />

630 800 0 –75 0 +500 0 +80 – – –80 0 –110 –30 –130 –50<br />

800 1 000 0 –100 0 +560 0 +90 – – –90 0 –124 –34 –146 –56<br />

1 000 1 250 0 –125 0 +660 0 +105 – – –105 0 –145 –40 –171 –66<br />

1 250 1 600 0 –160 0 +780 0 +125 – – –125 0 –173 –48 –203 –78<br />

1 600 2 000 0 –200 0 +920 0 +150 – – –150 0 –208 –58 –242 –92<br />

74


Axial location of bearings<br />

Locating bearings<br />

An interference fit alone is not sufficient to axially<br />

locate a bearing ring. It is usually necessary to<br />

use a suitable locking device to secure the ring<br />

in place.<br />

Both rings of a locating bearing should be<br />

located axially on both sides. The bearing rings<br />

generally have an interference fit <strong>and</strong> are usually<br />

supported on one side by a shaft or housing<br />

shoulder. Inner rings are axially secured on the<br />

opposite end by<br />

• a plate bolted to the shaft end († fig. 7)<br />

• a spacer sleeve between the ring <strong>and</strong> a neighbouring<br />

machine component († fig. 8)<br />

• a retaining ring (circlip)<br />

Outer rings are generally retained by the cover<br />

of the housing bore († figs. 7 <strong>and</strong> 8).<br />

Fig. 7<br />

Using an end plate <strong>and</strong> cover to locate a bearing axially<br />

Using a spacer sleeve <strong>and</strong> cover to locate a bearing<br />

axially<br />

Fig. 8<br />

1<br />

Non-locating bearings<br />

For non-locating bearings, the outer ring (which<br />

normally has a tight fit) is axially located while<br />

the inner ring is free to move axially on the shaft<br />

(† fig. 5 on page 72).<br />

Note that for bearings in the GEP series<br />

(† fig. 9), which have a radially split outer ring,<br />

expansion forces are produced under purely<br />

radial load; the axial components of these forces<br />

act on the housing cover. The axial load acting on<br />

the cover may be as much as 30% of the radial<br />

load. This must be taken into account when<br />

Fig. 9<br />

Locating a radial spherical plain bearing having a radially split outer ring<br />

75


Design of bearing arrangements<br />

dimensioning the housing cover <strong>and</strong> selecting<br />

the size <strong>and</strong> number of the attachment bolts.<br />

If shaft <strong>and</strong>/or housing shoulders are undesirable<br />

because of manufacturing or assembly<br />

considerations, spacer sleeves or rings can be<br />

inserted between a bearing ring <strong>and</strong> an adjacent<br />

machine component († figs. 10 <strong>and</strong> 11).<br />

Axially locating a non-separable bearing with<br />

locating rings († figs. 10 <strong>and</strong> 11) saves space,<br />

enables quick mounting <strong>and</strong> dismounting <strong>and</strong><br />

simplifies the machining of the seats. If larger<br />

axial forces have to be accommodated, a support<br />

ring († fig. 11) should be placed between<br />

the bearing ring <strong>and</strong> the locating ring, so that<br />

the locating ring is not subjected to excessive<br />

bending moments.<br />

To locate the bearing, retaining rings (also<br />

known as circlips) with a constant radial width in<br />

accordance with DIN 471:1981 or DIN 472:1981<br />

can be used.<br />

Fig. 10<br />

Locating a bearing axially, using retaining rings in the<br />

housing <strong>and</strong> adjacent components on the shaft<br />

Fig. 11<br />

Locating a bearing axially, using adjacent components<br />

in the housing <strong>and</strong> a support ring <strong>and</strong> a retaining ring<br />

on the shaft<br />

Fig. 12<br />

Shaft <strong>and</strong> housing abutment dimensions<br />

r b<br />

r a<br />

D a<br />

d a<br />

76


Shaft <strong>and</strong> housing fillet dimensions, no undercut<br />

r bmax<br />

Fig. 13<br />

Abutment <strong>and</strong> fillet dimensions<br />

The abutment <strong>and</strong> fillet dimensions should be<br />

such that:<br />

• A sufficiently large support surface is available<br />

for the bearing ring.<br />

• Moving parts of the bearing arrangement<br />

cannot contact stationary components.<br />

• The fillet radius should be smaller than the<br />

chamfer of the bearing.<br />

1<br />

r 2min<br />

r 2min<br />

r amax<br />

r 1min<br />

r 1min<br />

Fig. 14<br />

Appropriate abutment dimensions († fig. 12)<br />

are provided for each bearing in the product<br />

tables. The transition from the bearing seat to<br />

the shaft or housing shoulder can be either a<br />

simple fillet († fig. 13) or an undercut<br />

(† fig. 14). Dimensions for r amax <strong>and</strong> r bmax are<br />

listed in the product tables.<br />

Dimensions for undercuts are provided in<br />

table 5.<br />

The larger the fillet radius (for the simple<br />

form) of the transition to the shaft shoulder, the<br />

more favourable is the stress distribution in the<br />

shaft fillet area.<br />

Shaft <strong>and</strong> housing fillet dimensions, with an undercut<br />

b a<br />

r 2min<br />

Table 5<br />

r 2min<br />

h a Undercut dimensions<br />

Chamfer dimensions Fillet dimensions<br />

r 1min , r 2min b a h a r c<br />

h a<br />

r c<br />

r c<br />

r 1min<br />

mm<br />

mm<br />

r 1min<br />

1 2 0,2 1,3<br />

1,1 2,4 0,3 1,5<br />

1,5 3,2 0,4 2<br />

b a<br />

2 4 0,5 2,5<br />

2,5 4 0,5 2,5<br />

3 4,7 0,5 3<br />

4 5,9 0,5 4<br />

5 7,4 0,6 4<br />

6 8,6 0,6 6<br />

7,5 10 0,6 7<br />

77


Design of bearing arrangements<br />

Location of rod ends<br />

The inner rings of rod ends can be axially located<br />

by a shaft shoulder, a nut or a retaining ring.<br />

<strong>Rod</strong> ends mounted on threaded rods or in<br />

extension tubes should be secured by an extra<br />

nut on the rod or the external thread of the rod<br />

end shank. The nut should be securely tightened<br />

against the support surface on the rod end<br />

housing or on the tube († fig. 15).<br />

Fig. 15<br />

Attachment of rod ends<br />

78


Sealing<br />

Most bearing arrangements must be sealed to<br />

prevent contaminants, such as dirt <strong>and</strong> moisture,<br />

from entering the bearing. The efficiency<br />

of the seal has a decisive influence on the service<br />

life of the bearing. In contrast to most other<br />

bearing types, which only move in one plane,<br />

the alignment capabilities of spherical plain<br />

bearings place additional dem<strong>and</strong>s on the seal.<br />

To select appropriate seals, several factors<br />

have to be considered, including:<br />

• the permissible angle of tilt<br />

• the available space<br />

• environmental conditions<br />

• the effectiveness of the seal<br />

• the type of lubricant <strong>and</strong> the frequency of<br />

relubrication<br />

• the justifiable cost<br />

Depending on the application, one or more of<br />

the above factors outweigh the others. It is<br />

therefore not possible to establish general rules<br />

for seal design.<br />

Most <strong>SKF</strong> radial spherical plain bearing series<br />

are available with integral seals. St<strong>and</strong>ard<br />

sealed bearings can increase the service life of<br />

the bearings <strong>and</strong> save space, while reducing<br />

inventory <strong>and</strong> assembly costs. Design characteristics<br />

<strong>and</strong> suitability of the RS seals <strong>and</strong> the<br />

LS heavy-duty seals are provided in table 6.<br />

Table 7 on pages 80 to 81, provides an overview<br />

of external sealing possibilities, their design<br />

characteristics <strong>and</strong> their suitability to meet different<br />

application requirements. <strong>SKF</strong> supplies<br />

most of the external seals introduced in table 7.<br />

NOTE: <strong>SKF</strong> additional information about the<br />

seals referred to in table 7 on pages 80 to 81,<br />

refer to the <strong>SKF</strong> Interactive Engineering Catalogue,<br />

available online at www.skf.com.<br />

<strong>SKF</strong> also supplies sealing strips made of felt<br />

(FS strips) or aluminium-boron silicate (FSB<br />

strips) for high temperature applications.<br />

Table 6<br />

1<br />

<strong>SKF</strong> integral seals for spherical plain bearings<br />

Seal Illustration Design characteristics Suitability<br />

RS design<br />

Double-lip contact seal made of<br />

• polyester elastomer for metric<br />

bearings with a bore diameter<br />

d < 320 mm (–30 to +130 °C)<br />

• acrylonitrile-butadiene rubber<br />

for metric bearings with a<br />

bore diameter d ≥ 320 mm<br />

(–35 to +100 °C)<br />

• polyurethane for inch bearings<br />

(–20 to +80 °C)<br />

• for compact bearing arrangements, mainly<br />

indoors<br />

• for cramped spaces<br />

• for high sealing dem<strong>and</strong>s when combined with<br />

an outboard seal<br />

• for long service life with minimal maintenance<br />

• for arrangements with bearings that rotate<br />

LS design<br />

Triple-lip heavy-duty contact seal<br />

made of acrylonitrile-butadiene<br />

rubber with sheet steel insert<br />

(–55 to +110 °C, for short periods<br />

up to +125 °C)<br />

• for compact bearing arrangements<br />

• for high sealing dem<strong>and</strong>s<br />

• for long service life with minimal maintenance<br />

• for arrangements with bearings that rotate<br />

• for difficult operating conditions in the presence<br />

of s<strong>and</strong> or mud<br />

79


Design of bearing arrangements<br />

Table 7<br />

External seals for spherical plain bearings<br />

Seal Illustration Design characteristics Suitability<br />

Gap-type<br />

Simple <strong>and</strong> economic, no wear,<br />

simple mounting<br />

• for maintenance-free bearings<br />

• for small angles of tilt<br />

• for high temperatures<br />

• for moderately dusty environments<br />

• for arrangements with bearings that rotate<br />

Gap-type<br />

with<br />

grease<br />

Simple <strong>and</strong> efficient with periodic<br />

relubrication<br />

• for bearings <strong>and</strong> rod ends requiring<br />

maintenance<br />

• for small angles of tilt<br />

• for rough conditions in the presence of s<strong>and</strong>,<br />

clay, slush etc.<br />

V-shaped<br />

Simple, lightly preloaded seal<br />

made of polyurethane<br />

(–40 to +100 °C)<br />

Good wear strength <strong>and</strong> resistance<br />

to grease, oil <strong>and</strong> other<br />

environmental influences<br />

• for contaminant exclusion<br />

• for angles of tilt up to 2°<br />

• for bearing arrangements with shaft<br />

diameters up to 300 mm<br />

• for arrangements with bearings that rotate<br />

V-ring<br />

Elastic seal that sits on the shaft<br />

<strong>and</strong> turns with it, axial sealing lip<br />

made of acrylonitrile-butadiene<br />

rubber (–40 to +100 °C) or<br />

fluoro rubber (–40 to +200 °C)<br />

Good wear <strong>and</strong> chemical<br />

resistance<br />

• for contaminant exclusion<br />

• for maintenance-free <strong>and</strong> grease-lubricated<br />

bearings<br />

• for all shaft diameters<br />

• for angles of tilt between 2 <strong>and</strong> 4°, depending<br />

on size<br />

• for arrangements with bearings that rotate<br />

Felt<br />

Simple to install, good resistance<br />

to grease (–40 to +100 °C)<br />

• for dust <strong>and</strong> minor dampness exclusion<br />

• for grease retention<br />

• for large angles of tilt<br />

• for all bearing sizes<br />

• for arrangements with bearings that rotate<br />

Radial<br />

shaft<br />

Steel reinforced (either externally<br />

or internally) elastomer with a<br />

acrylonitrile-butadiene rubber<br />

lip (–40 to +100 °C) or fluoro<br />

rubber lip (–40 to +200 °C)<br />

Good wear resistance, good<br />

resistance to grease, oil <strong>and</strong><br />

other environmental influences<br />

• for contaminant exclusion<br />

• for grease retention<br />

• for oil retention<br />

• for small angles of tilt<br />

• for all bearing sizes<br />

• for arrangements with bearings that rotate<br />

80


Table 7<br />

External seals for spherical plain bearings<br />

Seal Illustration Design characteristics Suitability<br />

1<br />

Radial<br />

shaft with<br />

an auxiliary<br />

dust lip<br />

Steel reinforced (either externally<br />

or internally) elastomer with an<br />

acrylonitrile-butadiene rubber lip<br />

(–40 to +100 °C) or fluoro rubber<br />

lip (–40 to +200 °C)<br />

Good wear resistance, good<br />

resistance to grease, oil <strong>and</strong> other<br />

environmental influences<br />

• for highly contaminated environments<br />

• for oil retention<br />

• for small angles of tilt<br />

• for bearings with a bore diameter d up to<br />

approx. 300 mm<br />

• for arrangements with bearings that rotate<br />

O-ring<br />

Acrylonitrile-butadiene rubber<br />

(–40 to +100 °C) or fluoro rubber<br />

(–40 to +200 °C)<br />

• for reliable moisture exclusion<br />

• for oil <strong>and</strong> grease retention<br />

• for very small angles of tilt<br />

• for slow oscillating movements<br />

Profiled<br />

rubber<br />

with clamp<br />

<strong>and</strong> lock<br />

Elastomer strip (–40 to +100 °C)<br />

Good wear resistance, good<br />

resistance to grease, oil <strong>and</strong> other<br />

environmental influences<br />

• for hermetically sealed bearing<br />

arrangements<br />

• for slow oscillating movements. Initial oiling<br />

or greasing of faces reduces friction<br />

• for small angles of tilt<br />

Mechanical<br />

seals<br />

Stainless steel rings <strong>and</strong> cup<br />

springs of acrylonitrile-butadiene<br />

rubber (–40 to +100 °C)<br />

Good wear resistance, good<br />

resistance to grease, oil <strong>and</strong> other<br />

environmental influences<br />

• for contaminant exclusion<br />

• for oil <strong>and</strong> grease retention<br />

• for small angles of tilt<br />

• for arrangements with bearings that rotate<br />

Spring<br />

steel<br />

washers<br />

Set of washers for high temperatures.<br />

Excellent wear resistance,<br />

good chemical resistance<br />

• for contaminant exclusion<br />

• grease exit vents needed in housing cover if<br />

grease used<br />

• for small angles of tilt<br />

• for arrangements with bearings that rotate<br />

WARNING!<br />

Some of the external seals listed in this table can be made of fluoro rubber. Note that fluoro rubber gives off dangerous fumes<br />

at temperatures above 300 °C <strong>and</strong> can be hazardous if touched. As h<strong>and</strong>ling seals made of fluoro rubber constitutes a potential<br />

safety risk, the safety precautions must always be followed. For detailed information about the safety precautions, refer to the<br />

<strong>SKF</strong> Interactive Engineering Catalogue, available online at www.skf.com, the <strong>SKF</strong> General Catalogue or the publication Industrial<br />

shaft seals.<br />

81


Design of bearing arrangements<br />

Designing a bearing<br />

arrangement for easy<br />

mounting <strong>and</strong> dismounting<br />

Chamfering shaft ends <strong>and</strong> housing bore entrances<br />

Fig. 16<br />

To facilitate mounting, the shaft ends <strong>and</strong> housing<br />

bores should have a 10 to 20 degree lead-in<br />

chamfer († fig. 16). This is particularly important<br />

for applications using larger bearings, as<br />

the rings may skew, causing damage to the<br />

mating surfaces.<br />

To facilitate the use of withdrawal tools when<br />

removing bearings, it can be advantageous to:<br />

• provide recesses in the shaft shoulder<br />

(† fig. 17)<br />

• provide recesses or threaded holes in the<br />

housing bore († fig. 18)<br />

To dismount larger maintenance-free bearings<br />

with a bore diameter d ≥ 80 mm that have a<br />

tight shaft fit, <strong>SKF</strong> recommends using the oil<br />

injection method. With the oil injection method,<br />

oil under high pressure is injected between the<br />

bearing inner ring <strong>and</strong> its shaft seat to form an<br />

oil film. This oil film separates the mating surfaces,<br />

greatly reducing the force required to dismount<br />

the bearing <strong>and</strong> virtually eliminating any<br />

risk of damage to the bearing or shaft.<br />

To use the oil injection method, there must be<br />

an oil supply duct in the shaft as well as an oil<br />

distribution groove in the seat († fig. 19). As a<br />

general rule, the distance between the groove<br />

<strong>and</strong> the bearing side face from which mounting<br />

<strong>and</strong> dismounting are to be performed should<br />

be approximately one third of the seat width<br />

(† fig. 19). Recommended dimensions for the<br />

ducts <strong>and</strong> grooves as well as for the threads for<br />

the oil supply connection are provided in<br />

tables 8 <strong>and</strong> 9.<br />

Shaft shoulder with a recess<br />

Housing shoulder with threaded holes<br />

Fig. 17<br />

Fig. 18<br />

82


Table 8<br />

Recommended dimensions for oil supply ducts <strong>and</strong> distribution<br />

grooves<br />

Design <strong>and</strong> recommended dimensions for threaded<br />

holes for connecting oil supply<br />

Table 9<br />

1<br />

b a<br />

r a<br />

L<br />

L<br />

3<br />

60°<br />

h a<br />

N a<br />

G a<br />

N a<br />

G a<br />

N<br />

Design A<br />

G c<br />

G b<br />

G c<br />

G b<br />

Design B<br />

Bearing seat Dimensions<br />

diameter b a h a r a N<br />

over incl.<br />

mm<br />

mm<br />

Thread<br />

G a<br />

Design Dimensions<br />

G b G 1) c N a<br />

max<br />

– mm<br />

– 100 3 0,5 2,5 2,5<br />

100 150 4 0,8 3 3<br />

150 200 4 0,8 3 3<br />

200 250 5 1 4 4<br />

250 300 5 1 4 4<br />

300 400 6 1,25 4,5 5<br />

400 500 7 1,5 5 5<br />

500 650 8 1,5 6 6<br />

650 800 10 2 7 7<br />

800 1 000 12 2,5 8 8<br />

M6 A 10 8 3<br />

G 1/8 A 12 10 3<br />

G 1/4 A 15 12 5<br />

G 3/8 B 15 12 8<br />

G 1/2 B 18 14 8<br />

G 3/4 B 20 16 8<br />

L = width of bearing seat.<br />

1) Effective threaded length.<br />

Fig. 19<br />

Shaft with oil ducts <strong>and</strong> a distribution groove<br />

to facilitate dismounting<br />

83


Lubrication<br />

Lubrication<br />

The <strong>SKF</strong> traffic light concept<br />

Most grease suppliers indicate the specific<br />

values for the low <strong>and</strong> high temperature limits<br />

in their product information. The <strong>SKF</strong> traffic light<br />

concept is distinctly different from that. <strong>SKF</strong> recognizes<br />

that the really important temperatures<br />

for reliable operation lie within a smaller range.<br />

This range depends largely on the type of base<br />

oil <strong>and</strong> thickener used as well as the additives.<br />

The relevant temperatures are given by the <strong>SKF</strong><br />

traffic light concept. They are schematically<br />

illustrated in diagrams 1 <strong>and</strong> 2 in the form of a<br />

double traffic light.<br />

It is evident that grease in the red zones<br />

should not be applied at all, as damage may<br />

occur. Within the green zone the grease functions<br />

reliably, <strong>and</strong> the grease life can be determined<br />

accurately.<br />

At temperatures in the amber zone above the<br />

high temperature performance limit (HTPL),<br />

grease ages <strong>and</strong> oxidize with increasing rapidity<br />

<strong>and</strong> the by-products of the oxidation have a detrimental<br />

effect on lubrication. An amber zone<br />

also exists for low temperatures. Short periods<br />

in this zone, e.g. during a cold start, are not<br />

harmful since the heat caused by friction brings<br />

the bearing temperature into the green zone.<br />

84


Diagram 1<br />

The <strong>SKF</strong> traffic light concept – general<br />

1<br />

Do not use<br />

Unreliable performance (use only for short periods)<br />

Reliable performance, i.e. with predictable grease life<br />

Temperature<br />

LTL LTPL HTPL HTL<br />

LTL – Low temperature limit<br />

This limit indicates the lowest temperature at which the grease allows the bearing to be started up without difficulty.<br />

LTPL – Low temperature performance limit<br />

Below this limit, the supply of grease to the contact surfaces becomes insufficient.<br />

HTPL – High temperature performance limit<br />

Above this limit, the grease ages <strong>and</strong> oxidize in an uncontrolled way, so that grease life cannot be determined accurately.<br />

HTL – High temperature limit<br />

When exceeding this limit, the grease loses its structure permanently.<br />

The <strong>SKF</strong> traffic light concept – temperature limits for <strong>SKF</strong> greases when used in spherical plain bearings requiring<br />

maintenance<br />

Diagram 2<br />

<strong>SKF</strong> greases<br />

Designation<br />

Temperature, °C<br />

–50 0 50 100 150 200 250<br />

LGHB 2<br />

LGMT 3<br />

LGEP 2<br />

LGGB 2<br />

85


Lubrication<br />

Relubricating the bearing via the outer ring<br />

Relubricating the bearing via the inner ring<br />

Relubricating the bearing from the side<br />

Fig. 1<br />

Fig. 2<br />

Fig. 3<br />

<strong>Spherical</strong> plain bearings<br />

requiring maintenance<br />

Steel/steel radial spherical plain bearings must<br />

be relubricated to:<br />

• reduce friction<br />

• reduce wear<br />

• extend bearing service life<br />

• protect against corrosion <strong>and</strong> contaminants<br />

The sliding contact surfaces are phosphated <strong>and</strong><br />

treated with a “running-in” lubricant. This special<br />

surface treatment has a favourable influence<br />

during the running-in phase. The bearings<br />

must be greased prior to use <strong>and</strong> relubricated<br />

on a regular basis.<br />

To reliably relubricate the bearings, grease<br />

ducts should be provided in the housing<br />

(† fig. 1) or shaft († fig. 2) so that fresh<br />

grease can be supplied directly to the bearing.<br />

All <strong>SKF</strong> steel/steel radial spherical plain bearings<br />

(with the exception of the smallest E <strong>and</strong> ESA<br />

design bearings) have an annular groove <strong>and</strong><br />

lubrication holes in both the inner <strong>and</strong> outer<br />

rings to facilitate lubricant distribution to the<br />

sliding surfaces of the bearing.<br />

If the arrangement is appropriately designed,<br />

the bearing can also be supplied with grease<br />

from the side. To facilitate the passing of grease<br />

through the bearing, the grease should be prevented<br />

from exiting the bearing arrangement<br />

from the side it is supplied, e.g. by an end cover,<br />

<strong>and</strong> to provide an opening for the grease to exit<br />

on the opposite side, e.g. a V-ring seal that can<br />

open if there is pressure from the inside<br />

(† fig. 3).<br />

Generally, where possible, the free space surrounding<br />

the bearing should be filled with<br />

grease.<br />

86


<strong>SKF</strong> recommends using <strong>SKF</strong> LGHB 2 grease<br />

to lubricate steel/steel spherical plain bearings.<br />

Its properties include:<br />

1<br />

• excellent performance under heavy loads<br />

• very good rust inhibitor<br />

• very good resistance to ageing<br />

• good water resistance<br />

• a wide operating temperature range.<br />

If operating temperatures exceed the temperature<br />

range limits, special grease should be used<br />

(† table 1).<br />

For additional information, contact the <strong>SKF</strong><br />

application engineering service.<br />

Table 1<br />

<strong>SKF</strong> grease recommendations<br />

Property<br />

<strong>SKF</strong> greases (designation)<br />

LGHB 2 LGMT 3 LGEP 2 LGGB 21)<br />

for sliding contact surface combinations<br />

steel/steel steel/bronze steel/PTFE FRP steel/PTFE FRP<br />

Thickener Calcium sulphonate Lithium soap Lithium soap Lithium/calcium soap<br />

complex soap<br />

Base oil Mineral oil Mineral oil Mineral oil Ester oil<br />

Colour Brown Yellowish brown Light brown White<br />

Temperature range 2) , °C<br />

LTL to HTPL –20 to +150 –30 to +120 –20 to +110 –40 to +120<br />

Kinematic viscosity<br />

of base oil, mm 2 /s<br />

at +40 °C 400 to 450 120 to 130 200 110<br />

at +100 °C 26,5 12 16 13<br />

Consistency<br />

(to NLGI Scale) 2 3 2 2<br />

1) Grease biologically degradable, for use in applications where strict ecological dem<strong>and</strong>s must be met <strong>and</strong> where lubrication<br />

cannot be dispensed with.<br />

2) Refer to the <strong>SKF</strong> traffic light concept, starting on page 84.<br />

87


Lubrication<br />

Maintenance-free spherical<br />

plain bearings<br />

Steel/PTFE sintered bronze <strong>and</strong> steel/<br />

PTFE fabric sliding contact surface<br />

combinations<br />

During operation, PTFE is transferred from the<br />

dry sliding contact surface of the outer ring to<br />

the hard chromium plated steel surface of the<br />

inner ring. Any external lubricant on the sliding<br />

contact surfaces would disturb this self-lubrication<br />

<strong>and</strong> shorten bearing service life.<br />

As a result, these bearings must not be lubricated<br />

<strong>and</strong> do not have any relubrication facility.<br />

Steel/PTFE FRP sliding contact surface<br />

combination<br />

<strong>Bearings</strong> with this sliding contact surface combination<br />

are also self-lubricating <strong>and</strong> can be<br />

operated grease-free.<br />

However, initial lubrication followed by occasional<br />

relubrication of steel/PTFE FRP bearings<br />

can extend the service life of the bearing by a<br />

factor of two or more. The inner rings of radial<br />

bearings or shaft washers of angular contact<br />

<strong>and</strong> thrust bearings are coated with a lithium<br />

base grease before leaving the factory.<br />

If operating conditions are such that protection<br />

against corrosion <strong>and</strong> enhanced sealing are<br />

required, the free space surrounding the bearing<br />

(† fig. 4) can be filled with the same grease<br />

that was used to lubricate the bearing. The<br />

appropriate time to replenish or renew the<br />

grease in the bearing arrangement is determined<br />

by the operating conditions <strong>and</strong> the ageing<br />

of the grease.<br />

Rust inhibiting, water-repellent lithium base<br />

greases with a consistency of 2 on the NGLI<br />

scale should be used. <strong>SKF</strong> recommends <strong>SKF</strong><br />

LGEP 2 grease († table 1 on page 87). Greases<br />

containing molybdenum disulphide or other<br />

solid lubricants should never be used.<br />

CAUTION: Depending on their design, <strong>SKF</strong><br />

spherical plain bearings are either completely or<br />

partially coated with an oily preservative or filled<br />

with grease. Avoid skin contact as these substances<br />

may cause skin irritation or an allergic<br />

reaction.<br />

Fig. 4<br />

Relubricating the bearing from the side<br />

88


<strong>Rod</strong> ends requiring<br />

maintenance<br />

Steel/steel <strong>and</strong> steel/bronze rod ends require<br />

lubrication. To facilitate this:<br />

Relubrication facilities for steel/steel rod ends<br />

Fig. 5<br />

1<br />

• All <strong>SKF</strong> steel/steel rod ends, with the exception<br />

of small-sized E <strong>and</strong> ESA design rod ends,<br />

can be relubricated via a lubrication hole or<br />

grease fitting in the rod end housing as well<br />

as via the pin <strong>and</strong> the inner ring († fig. 5).<br />

• All <strong>SKF</strong> steel/bronze rod ends can be<br />

relubricated via a lubrication hole or grease<br />

fitting in the rod end housing († fig. 6).<br />

The general recommendations for steel/steel<br />

radial spherical plain bearings also apply to<br />

steel/steel rod ends as well as steel/bronze rod<br />

ends.<br />

For steel/bronze rod ends in the SIKAC .. M <strong>and</strong><br />

SAKAC .. M series, <strong>SKF</strong> recommends <strong>SKF</strong> LGMT 3<br />

grease († table 1 on page 87). Lithium based<br />

greases with a normal consistency without solid<br />

lubricant additives can also be used.<br />

Lubrication hole<br />

Grease fitting<br />

Relubrication facilities for steel/bronze rod ends<br />

(sizes 6 <strong>and</strong> larger)<br />

Fig. 6<br />

Maintenance-free rod ends<br />

Maintenance-free, self-lubricating rod ends are<br />

designed to be used as dry sliding bearings <strong>and</strong><br />

must not be lubricated. Consequently, these rod<br />

ends do not have a relubrication facility in their<br />

housings.<br />

Steel/PTFE FRP rod ends are an exception.<br />

They can be used without additional lubricant,<br />

but their service life can be extended appreciably<br />

if they are lubricated prior to use.<br />

CAUTION: Depending on their design, <strong>SKF</strong> rod<br />

ends are either completely or partially coated<br />

with an oily preservative or filled with grease.<br />

Avoid skin contact as these substances may<br />

cause skin irritation or an allergic reaction.<br />

SIKAC .. M series<br />

SAKAC .. M series<br />

89


Relubrication<br />

Relubrication<br />

To maximize the service life of spherical plain<br />

bearings <strong>and</strong> rod ends requiring maintenance,<br />

they must be relubricated on a regular basis.<br />

This also applies to maintenance-free bearings<br />

with a steel/PTFE FRP sliding contact surface.<br />

Used grease containing wear debris <strong>and</strong> contaminants<br />

should be removed from the contact<br />

zone <strong>and</strong> replaced with fresh grease.<br />

Determining the proper relubrication interval<br />

is extremely important because the attainable<br />

service life depends on several factors including:<br />

• the magnitude of the load<br />

• the type of load<br />

• the angle of oscillation<br />

• the frequency of oscillation<br />

• the operating temperature<br />

• the sealing arrangement<br />

• other environmental conditions<br />

Storage<br />

<strong>SKF</strong> spherical plain bearings <strong>and</strong> rod ends are<br />

treated with a preservative before they are<br />

packaged. They can, therefore, be stored in their<br />

original packages for several years. However,<br />

the relative humidity in the storeroom should<br />

not exceed 60%.<br />

NOTE: <strong>SKF</strong> also supplies a comprehensive<br />

assortment of greases for various application<br />

requirements. For additional information, refer<br />

to the catalogue <strong>SKF</strong> Maintenance <strong>and</strong> Lubrication<br />

Products or online at www.mapro.skf.com.<br />

Long bearing service life can be attained when<br />

the following basic relubrication rules are<br />

observed:<br />

• the same type of grease is always used<br />

(† table 1 on page 87)<br />

• the lubricant is applied at operating<br />

temperature<br />

• the lubricant is applied before a long<br />

interruption, e.g. before construction or<br />

agricultural equipment is stored<br />

Relubrication of non-locating bearings<br />

Non-locating bearings, where axial displacement<br />

takes place along the shaft or pin, should<br />

always be relubricated via the shaft <strong>and</strong> bearing<br />

inner ring († fig 2 on page 86). By supplying<br />

lubricant in this way, grease also enters between<br />

the mating surfaces of the inner ring <strong>and</strong> shaft<br />

seat. This reduces friction <strong>and</strong> induced axial<br />

loads when axial displacement occurs.<br />

90


1<br />

<strong>SKF</strong> has the appropriate greases for<br />

spherical plain bearings <strong>and</strong> rod ends,<br />

including the biologically degradable<br />

<strong>SKF</strong> LGGB 2 grease<br />

91


Mounting<br />

Mounting<br />

Skill <strong>and</strong> cleanliness when mounting are necessary<br />

if spherical plain bearings <strong>and</strong> rod ends are<br />

to achieve maximum service life <strong>and</strong> not fail<br />

prematurely.<br />

<strong>Bearings</strong> <strong>and</strong> rod ends should only be<br />

removed from their packages immediately<br />

prior to mounting so that they do not become<br />

contaminated. Bearing components that could<br />

have become dirty as a result of improper h<strong>and</strong>ling<br />

or damaged packaging should be wiped<br />

clean with a lint-free cloth.<br />

The sliding contact surfaces of spherical<br />

plain bearings are matched to provide favourable<br />

friction <strong>and</strong> wear characteristics. Therefore,<br />

any alteration of the sliding surfaces can reduce<br />

bearing service life. Alterations in this context<br />

also include washing or exposing the sliding<br />

surfaces to solvents, cleaners, oils or similar<br />

media.<br />

All associated components should be clean <strong>and</strong><br />

free of any burrs. Also make sure to check each<br />

associated component for dimensional accuracy<br />

before the installation process is started.<br />

<strong>Spherical</strong> plain bearings<br />

Mechanical mounting<br />

The following tools are suitable for mounting<br />

spherical plain bearings:<br />

• a mounting dolly († fig. 2) or length of tubing;<br />

the ring with an interference fit should<br />

generally be mounted first<br />

• a dolly having two abutment surfaces<br />

(† fig. 3) for simultaneously mounting the<br />

bearing on the shaft <strong>and</strong> in the housing<br />

• for larger numbers of bearings, suitable tools<br />

can be used in combination with a press<br />

(† fig. 4)<br />

When mounting spherical plain bearings, consider<br />

the following:<br />

• Never use a hammer or pin punch to drive<br />

a bearing in place, as either could damage the<br />

rings († fig. 5).<br />

• The mounting force should never be directed<br />

through the sliding contact surfaces († fig. 6).<br />

This could damage the sliding contact surfaces<br />

<strong>and</strong>/or exp<strong>and</strong> fractured or split bearing outer<br />

rings, which can cause an increase in the<br />

mounting force required.<br />

When mounting spherical plain bearings with<br />

a fractured or split outer ring, it is essential that<br />

the joint is positioned at 90° to the direction of<br />

load († fig. 1), otherwise service life is reduced.<br />

Steel or plastic b<strong>and</strong>s that hold together<br />

spherical plain bearing outer rings must not be<br />

removed prior to mounting. They are positioned<br />

in an annular groove <strong>and</strong> do not protrude from<br />

the outside diameter surface.<br />

<strong>Spherical</strong> plain bearing outer rings that are<br />

axially split <strong>and</strong> bolted together must be mounted<br />

as such, without loosening the bolts.<br />

92


Plane of fracture or split <strong>and</strong> main direction of load<br />

Fig. 1<br />

Mounting with the aid of a dolly<br />

Fig. 2<br />

1<br />

Fig. 3<br />

Simultaneous mounting in the housing <strong>and</strong> on the shaft<br />

Mounting using a press<br />

Fig. 4<br />

Never hit the bearing rings directly<br />

Fig. 5<br />

Fig. 6<br />

Never apply the mounting force via the sliding contact<br />

surfaces<br />

93


Mounting<br />

Hot mounting<br />

As a rule, larger bearings cannot be mounted<br />

cold because the force required to press a bearing<br />

into position increases considerably with its<br />

size. Therefore, <strong>SKF</strong> recommends the following:<br />

• heat the bearing before it is mounted on the<br />

shaft († fig. 7)<br />

• heat non-split housings before inserting the<br />

bearing<br />

To mount a bearing on a shaft, a temperature<br />

differential of 60 to 80 °C between ambient<br />

temperature <strong>and</strong> the heated inner ring, is usually<br />

sufficient. For housings, the appropriate differential<br />

depends on the degree of interference<br />

<strong>and</strong> the seat diameter. However, a moderate<br />

Mounting a heated bearing<br />

Fig. 7<br />

increase in temperature is usually sufficient.<br />

When heating the bearing, do not exceed the<br />

temperature limit of any associated components,<br />

such as the seals.<br />

For an even <strong>and</strong> risk-free heat source, an<br />

induction heater should be used. The use of an<br />

<strong>SKF</strong> induction heater has a number of advantages.<br />

It heats the bearing rapidly <strong>and</strong> a built-in<br />

thermostat prevents overheating. The non-metallic<br />

components, such as the seals or PTFE<br />

fabric, remain cold as does the heater itself. <strong>SKF</strong><br />

induction heaters automatically demagnetize<br />

the bearing after it has been heated.<br />

Mounting bearings by cooling the shaft or the<br />

bearing is not recommended, as the very low<br />

temperatures required inevitably cause condensation,<br />

thus creating the risk of corrosion.<br />

To ease the mounting of large bearings, particularly<br />

if they have been heated, it is possible<br />

to use slings <strong>and</strong> a hoist. Metal or textile slings<br />

placed around the outer ring can be used. A<br />

spring between the hoist hook <strong>and</strong> the sling also<br />

facilitates bearing h<strong>and</strong>ling († fig. 8).<br />

Mounting a heated large bearing<br />

Fig. 8<br />

Warning!<br />

Maintenance-free spherical plain bearings<br />

<strong>and</strong> rod ends must never be subjected to<br />

temperatures in excess of +280 °C due to<br />

the PTFE content. PTFE is completely inert<br />

below this temperature but at higher temperatures<br />

(from approx. 320 °C) it rapidly<br />

decomposes. The fluorine compounds<br />

released during this process are extremely<br />

toxic, even in small quantities, <strong>and</strong> can cause<br />

serious injury. It should also be remembered<br />

that the material is dangerous to h<strong>and</strong>le<br />

once it has been overheated, even after it<br />

has cooled.<br />

Heat-resistant gloves should be worn<br />

when h<strong>and</strong>ling hot components.<br />

94


<strong>Rod</strong> ends<br />

<strong>Rod</strong> ends are fitted on pins <strong>and</strong> shafts in the<br />

same way as spherical plain bearings. Slight<br />

heating reduces the force required for mounting<br />

<strong>and</strong> reduce the risk of damaging associated<br />

components.<br />

When attaching rod ends to threaded rods or<br />

extension tubes († fig. 9) a counter lock nut<br />

should be used on the rod or on the external<br />

thread of the rod end. It should be securely<br />

tightened against the abutment surface on the<br />

rod end or tube.<br />

1<br />

NOTE: <strong>SKF</strong> supplies a comprehensive range<br />

of mechanical <strong>and</strong> hydraulic tools as well as<br />

heating equipment for bearing mounting <strong>and</strong><br />

dismounting. For additional information, refer to<br />

the catalogue <strong>SKF</strong> Mainten ance <strong>and</strong> Lubrication<br />

Products or online at www.mapro.skf.com.<br />

Fig. 9<br />

Securing a rod end with a right-h<strong>and</strong> thread<br />

95


Dismounting<br />

Dismounting<br />

<strong>Spherical</strong> plain bearings<br />

If bearings are to be re-used after dismounting,<br />

the same care <strong>and</strong> attention are required during<br />

dismounting as when mounting. The requisite<br />

withdrawal force should always be applied to the<br />

ring which is being dismounted.<br />

<strong>SKF</strong> offers an assortment of different pullers<br />

to accommodate many applications. If the shaft<br />

is pre-machined to accommodate the arms of a<br />

jaw puller, then a two- or three-armed puller<br />

can be used († fig. 1).<br />

In other cases where there is enough space<br />

behind the ring, a strong back puller such as the<br />

<strong>SKF</strong> TMBS series can be used († fig. 2).<br />

For large bearings with an interference fit,<br />

dismounting is considerably facilitated if the <strong>SKF</strong><br />

oil injection method is used († fig. 3). The oil<br />

ducts <strong>and</strong> distributor grooves should be provided<br />

when designing the bearing arrangement<br />

(† page 82).<br />

Small bearings can be dismounted using a<br />

mounting dolly or a length of tubing applied to<br />

the outer ring. For larger bearings with an interference<br />

fit, a mechanical or hydraulic press<br />

should be used when possible.<br />

It is also possible to dismount a bearing from<br />

the housing bore by quickly heating the housing<br />

without heating the bearing outer ring to any<br />

extent.<br />

Removing a bearing with a jaw puller<br />

Fig. 1<br />

Fig. 2<br />

A strong back puller facilitates dismounting of the inner<br />

ring<br />

<strong>Rod</strong> ends<br />

To dismount rod ends, the lock nut securing the<br />

shank should be loosened <strong>and</strong>, if possible, the<br />

rod end should be unscrewed from its rod or<br />

tube. The rod end can then be removed from the<br />

pin or shaft in the same way as a bearing, e.g.<br />

using a puller or a press.<br />

96


Fig. 3<br />

Dismounting a bearing using the <strong>SKF</strong> oil injection<br />

method<br />

1<br />

97


Radial spherical plain<br />

bearings requiring<br />

maintenance<br />

2<br />

Dimensions..................................................................................................................................... 100<br />

Tolerances....................................................................................................................................... 101<br />

Radial internal clearance................................................................................................................ 102<br />

Materials......................................................................................................................................... 102<br />

Permissible operating temperature range.................................................................................... 102<br />

Product tables......................................................................................................... 104<br />

2.1 Radial spherical plain plain bearings, steel/steel, metric sizes................................................ 104<br />

2.2 Radial spherical plain plain bearings, steel/steel, inch sizes.................................................... 110<br />

2.3 Radial spherical plain plain bearings with an extended inner ring, steel/steel, metric sizes... 116<br />

2.4 Radial spherical plain plain bearings with an extended inner ring, steel/steel, inch sizes...... 120<br />

99


Radial spherical plain bearings requiring maintenance<br />

A characteristic feature of <strong>SKF</strong> steel/steel radial<br />

spherical plain bearings is the outer ring, which<br />

is intentionally fractured so that it can be sprung<br />

apart to enable the inner ring to be inserted<br />

(† fig. 1). The bearings are therefore nonseparable<br />

<strong>and</strong> easy to h<strong>and</strong>le.<br />

The bearings are manganese phosphated <strong>and</strong><br />

the sliding contact surface is then treated with<br />

a running-in lubricant. This reduces friction <strong>and</strong><br />

wear during the running-in period. To facilitate<br />

lubrication, all bearings, with the exception of<br />

some small sizes, have an annular groove <strong>and</strong><br />

two lubrication holes in both the inner <strong>and</strong><br />

outer rings. Metric bearings with an outside<br />

diameter D ≥ 150 mm also have the <strong>SKF</strong> multigroove<br />

system († page 17) in the outer ring<br />

sliding contact surface as st<strong>and</strong>ard († fig. 2).<br />

Upon request, <strong>SKF</strong> can also supply smaller<br />

metric <strong>and</strong> inch size bearings with the multigroove<br />

system.<br />

With the multi-groove system, <strong>SKF</strong> solved<br />

the problem of lubricant starvation in steel/steel<br />

bearings. Lubricant starvation is a common<br />

cause of premature bearing failure in applications<br />

where minor alignment movements are<br />

made under heavy, constant direction loads.<br />

The multi-groove system improves lubricant<br />

distribution in the heavily loaded zone to extend<br />

bearing service life <strong>and</strong>/or maintenance<br />

intervals.<br />

The fractured outer ring enables the bearing to be<br />

assembled<br />

Fig. 1<br />

Fig. 2<br />

<strong>Spherical</strong> plain bearing with the multi-groove system in<br />

the outer ring<br />

Dimensions<br />

The dimensions of spherical plain bearings in<br />

the GE, GEH <strong>and</strong> GEG series are in accordance<br />

with ISO 12240-1:1998.<br />

<strong>Bearings</strong> in the GEM series, which have an<br />

extended inner ring, have a non-st<strong>and</strong>ard inner<br />

ring width, but otherwise have the same dimensions<br />

as GE series bearings.<br />

Inch spherical plain bearings in the GEZ series<br />

are in accordance with the American St<strong>and</strong>ard<br />

ANSI/ABMA Std. 22.2-1988.<br />

Fig. 3<br />

<strong>Spherical</strong> plain bearing with the multi-groove system,<br />

fitted with LS heavy-duty seals<br />

100


Tolerances<br />

The dimensional tolerances for metric radial<br />

spherical plain bearings requiring maintenance<br />

in the GE, GEG, GEH <strong>and</strong> GEM series are listed in<br />

table 1. The dimensional tolerances for inch<br />

radial spherical plain bearings in the GEZ,<br />

GEZH <strong>and</strong> GEZM series are listed in table 2 on<br />

page 103. Outer ring tolerances apply to conditions<br />

before fracture <strong>and</strong> surface treatment.<br />

Accordingly, inner ring tolerances apply to rings<br />

before surface treatment.<br />

The tolerances are in accordance with<br />

ISO 12240-1:1998 (metric bearings) <strong>and</strong><br />

ANSI/ABMA Std. 22.2-1988 (inch bearings).<br />

The symbols used in the tolerance tables are<br />

explained in the following:<br />

2<br />

d nominal bore diameter<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D nominal outside diameter<br />

D Dmp deviation of the mean outside diameter<br />

from the nominal<br />

D Bs deviation of the single inner ring width<br />

from the nominal<br />

D Cs deviation of the single outer ring width<br />

from the nominal<br />

Table 1<br />

Dimensional tolerances for metric radial spherical plain bearings requiring maintenance<br />

Nominal diameter GE, GEH <strong>and</strong> GEM series GEG series All series<br />

Inner ring Inner ring Outer ring<br />

d, D D dmp D Bs D dmp D Bs D Dmp D Cs<br />

over incl. high low high low high low high low high low high low<br />

mm µm µm µm µm µm µm<br />

– 6 0 –8 0 –120 – – – – – – – –<br />

6 10 0 –8 0 –120 – – – – 0 –8 0 –240<br />

10 18 0 –8 0 –120 +18 0 0 –180 0 –8 0 –240<br />

18 30 0 –10 0 –120 +21 0 0 –210 0 –9 0 –240<br />

30 50 0 –12 0 –120 +25 0 0 –250 0 –11 0 –240<br />

50 80 0 –15 0 –150 +30 0 0 –300 0 –13 0 –300<br />

80 120 0 –20 0 –200 +35 0 0 –350 0 –15 0 –400<br />

120 150 0 –25 0 –250 +40 0 0 –400 0 –18 0 –500<br />

150 180 0 –25 0 –250 +40 0 0 –400 0 –25 0 –500<br />

180 250 0 –30 0 –300 +46 0 0 –460 0 –30 0 –600<br />

250 315 0 –35 0 –350 – – – – 0 –35 0 –700<br />

315 400 – – – – – – – – 0 –40 0 –800<br />

400 500 – – – – – – – – 0 –45 0 –900<br />

101


Radial spherical plain bearings requiring maintenance<br />

Radial internal clearance<br />

Steel/steel radial spherical plain bearings are<br />

produced with Normal radial internal clearance<br />

as st<strong>and</strong>ard. The actual values are listed in<br />

tables 3 <strong>and</strong> 4. Prior to ordering, check availability<br />

of bearings with a smaller (C2) or larger (C3)<br />

radial internal clearance than Normal.<br />

The clearance values for metric bearings are<br />

in accordance with ISO 12240-1:1998.<br />

Materials<br />

The inner <strong>and</strong> outer rings of <strong>SKF</strong> steel/steel<br />

radial spherical plain bearings are made of<br />

bearing steel. They are through-hardened,<br />

ground <strong>and</strong> phosphated. The sliding contact<br />

surfaces are treated with a running-in lubricant.<br />

Depending on the bore diameter, metric<br />

bearings with a 2RS suffix have a double-lip<br />

seal made of a polyester elastomer or acrylonitrile-butadiene<br />

rubber on both sides of the<br />

bearing († table 6 on page 79). Inch bearings<br />

with a 2RS suffix have a double-lip seal made of<br />

polyurethane on both sides of the bearing.<br />

Metric <strong>and</strong> inch bearings with the designation<br />

suffix -2LS have a sheet steel reinforced,<br />

triple-lip heavy-duty seal made of acrylonitrilebutadiene<br />

on both sides of the bearing.<br />

Permissible operating temperature<br />

range<br />

Open steel/steel radial spherical plain bearings<br />

have a permissible operating temperature range<br />

of –50 to +200 °C, but their load carrying capacity<br />

is reduced at temperatures above +120 °C.<br />

<strong>Bearings</strong> for higher temperature applications up<br />

to 300 °C, can be produced on request.<br />

For sealed bearings, the permissible operating<br />

temperature range is limited by the seal<br />

material:<br />

• –20 to +80 °C for inch RS seals<br />

• –30 to +130 °C for metric RS seals with a<br />

bore diameter d < 320 mm<br />

• –35 to +100 °C for metric RS seals with a<br />

bore diameter d ≥ 320 mm<br />

• –55 to +110 °C for LS seals<br />

The operating temperature range of the grease<br />

used to lubricate the bearings must also be taken<br />

into consideration.<br />

102


Table 2<br />

Dimensional tolerances for inch bearings<br />

Nominal diameter GEZ, GEZH <strong>and</strong> GEZM series<br />

Inner ring<br />

Outer ring<br />

d, D D dmp D Bs D Dmp D Cs<br />

over incl. high low high low high low high low<br />

in µm<br />

– 2 0 –13 0 –130 0 –13 0 –130<br />

2 3 0 –15 0 –130 0 –15 0 –130<br />

3 3.1875 0 –20 0 –130 0 –15 0 –130<br />

2<br />

3.1875 4.75 0 –20 0 –130 0 –20 0 –130<br />

4.75 6 0 –25 0 –130 0 –25 0 –130<br />

6 7 – – – – 0 –25 0 –130<br />

7 8.75 – – – – 0 –30 0 –130<br />

Table 3<br />

Radial internal clearance for steel/steel radial spherical plain bearings, metric sizes<br />

Bore diameter<br />

Radial internal clearance<br />

d C2 Normal C3<br />

over incl. min max min max min max<br />

mm µm<br />

– 12 8 32 32 68 68 104<br />

12 20 10 40 40 82 82 124<br />

20 35 12 50 50 100 100 150<br />

35 60 15 60 60 120 120 180<br />

60 90 18 72 72 142 142 212<br />

90 140 18 85 85 165 165 245<br />

140 200 18 100 100 192 192 284<br />

200 240 18 110 110 214 214 318<br />

240 300 18 125 125 239 239 353<br />

<strong>Bearings</strong> in the GEH series, with a bore diameter d = 20, 35, 60 <strong>and</strong> 90 mm, have a radial internal clearance range<br />

corresponding to the next larger diameter range.<br />

Table 4<br />

Radial internal clearance for steel/steel radial spherical plain bearings, inch sizes<br />

Bore diameter<br />

Radial internal clearance<br />

d C2 Normal C3<br />

over incl. min max min max min max<br />

in µm<br />

– 0.625 15 75 50 150 150 200<br />

0.625 2 25 105 80 180 180 260<br />

2 3 30 130 100 200 200 300<br />

3 6 40 160 130 230 230 350<br />

103


Radial spherical plain bearings, steel/steel, metric sizes<br />

d 4 – 40 mm<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

D d k d<br />

b 1<br />

GE .. E GE .. ES GE .. ES-2RS<br />

GE .. ES-2LS<br />

GEH .. ES-2RS<br />

GEH .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations 2)<br />

of tilt 1) dynamic static without seals suffix for<br />

with st<strong>and</strong>ards seals heavy-duty seals<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

4 12 5 3 16 2,04 10,2 0,003 GE 4 E –<br />

5 14 6 4 13 3,4 17 0,004 GE 5 E –<br />

6 14 6 4 13 3,4 17 0,004 GE 6 E –<br />

8 16 8 5 15 5,5 27,5 0,008 GE 8 E –<br />

10 19 9 6 12 8,15 40,5 0,012 GE 10 E –<br />

12 22 10 7 10 10,8 54 0,017 GE 12 E –<br />

15 26 12 9 8 17 85 0,032 GE 15 ES –<br />

26 12 9 8 17 85 0,032 GE 15 ES-2RS –<br />

17 30 14 10 10 21,2 106 0,050 GE 17 ES –<br />

30 14 10 10 21,2 106 0,050 GE 17 ES-2RS –<br />

20 35 16 12 9 30 146 0,065 GE 20 ES –<br />

35 16 12 9 30 146 0,065 GE 20 ES-2RS -2LS<br />

42 25 16 17 48 240 0,16 GEH 20 ES-2RS -2LS<br />

25 42 20 16 7 48 240 0,12 GE 25 ES –<br />

42 20 16 7 48 240 0,12 GE 25 ES-2RS -2LS<br />

47 28 18 17 62 310 0,20 GEH 25 ES-2RS -2LS<br />

30 47 22 18 6 62 310 0,16 GE 30 ES –<br />

47 22 18 6 62 310 0,16 GE 30 ES-2RS -2LS<br />

55 32 20 17 80 400 0,35 GEH 30 ES-2RS -2LS<br />

35 55 25 20 6 80 400 0,23 GE 35 ES –<br />

55 25 20 6 80 400 0,23 GE 35 ES-2RS -2LS<br />

62 35 22 15 100 500 0,47 GEH 35 ES-2RS -2LS<br />

40 62 28 22 7 100 500 0,32 GE 40 ES –<br />

62 28 22 6 100 500 0,32 GE 40 ES-2RS -2LS<br />

68 40 25 17 127 640 0,61 GEH 40 ES-2RS -2LS<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be made larger than d a max .<br />

2) <strong>Bearings</strong> with an outside diameter D ≥ 150 mm have the multi-groove system in the outer ring as st<strong>and</strong>ard. <strong>Bearings</strong> with an<br />

outside diameter D < 150 mm can be supplied with the multi-groove system on request (designation suffix ESL).<br />

104


105<br />

r a<br />

D a<br />

d a<br />

2.1<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

4 8 – – – 0,3 0,3 5,5 6,2 7,6 10,7 0,3 0,3<br />

5 10 – – – 0,3 0,3 6,6 8 9,5 12,6 0,3 0,3<br />

6 10 – – – 0,3 0,3 7,5 8 9,5 12,6 0,3 0,3<br />

8 13 – – – 0,3 0,3 9,6 10,2 12,3 14,5 0,3 0,3<br />

10 16 – – – 0,3 0,3 11,7 13,2 17,5 15,2 0,3 0,3<br />

12 18 – – – 0,3 0,3 13,8 15 17,1 20,4 0,3 0,3<br />

15 22 2,3 2,3 1,5 0,3 0,3 16,9 18,4 20,9 24,3 0,3 0,3<br />

22 2,3 2,3 1,5 0,3 0,3 16,9 18,4 22,8 24,3 0,3 0,3<br />

17 25 2,3 2,3 1,5 0,3 0,3 19 20,7 23,7 28,3 0,3 0,3<br />

25 2,3 2,3 1,5 0,3 0,3 19 20,7 26 28,3 0,3 0,3<br />

20 29 3,1 3,1 2 0,3 0,3 22,1 24,2 27,6 33,2 0,3 0,3<br />

29 3,1 3,1 2 0,3 0,3 22,1 24,2 30,9 33,2 0,3 0,3<br />

35,5 3,1 3,1 2 0,3 0,6 22,7 25,2 36,9 39,2 0,3 0,6<br />

25 35,5 3,1 3,1 2 0,6 0,6 28,2 29,3 33,7 39,2 0,6 0,6<br />

35,5 3,1 3,1 2 0,6 0,6 28,2 29,3 36,9 39,2 0,6 0,6<br />

40,7 3,1 3,1 2 0,6 0,6 28,6 29,5 41,3 44 0,6 0,6<br />

30 40,7 3,1 3,1 2 0,6 0,6 33,3 34,2 38,7 44 0,6 0,6<br />

40,7 3,1 3,1 2 0,6 0,6 33,3 34,2 41,3 44 0,6 0,6<br />

47 3,9 3,9 2,5 0,6 1 33,7 34,4 48,5 50,9 0,6 1<br />

35 47 3,9 3,9 2,5 0,6 1 38,5 39,8 44,6 50,9 0,6 1<br />

47 3,9 3,9 2,5 0,6 1 38,5 39,8 48,5 50,9 0,6 1<br />

53 3,9 3,9 2,5 0,6 1 38,8 39,8 54,5 57,8 0,6 1<br />

40 53 3,9 3,9 2,5 0,6 1 43,6 45 50,3 57,8 0,6 1<br />

53 3,9 3,9 2,5 0,6 1 43,6 45 54,5 57,8 0,6 1<br />

60 4,6 4,6 3 0,6 1 44,1 44,7 61 63,6 0,6 1


Radial spherical plain bearings, steel/steel, metric sizes<br />

d 45 – 120 mm<br />

B<br />

C<br />

r 2<br />

b<br />

M<br />

a<br />

r 1<br />

b 1<br />

D<br />

d<br />

d k<br />

GE .. ES GEH .. ES-2RS<br />

GE .. ES-2RS<br />

GE .. ES-2LS<br />

GEH .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations 2)<br />

of tilt 1) dynamic static without seals suffix for<br />

with st<strong>and</strong>ard seals heavy-duty seals<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

45 68 32 25 7 127 640 0,46 GE 45 ES –<br />

68 32 25 7 127 640 0,46 GE 45 ES-2RS -2LS<br />

75 43 28 14 156 780 0,80 GEH 45 ES-2RS -2LS<br />

50 75 35 28 6 156 780 0,56 GE 50 ES –<br />

75 35 28 6 156 780 0,56 GE 50 ES-2RS -2LS<br />

90 56 36 17 245 1 220 1,60 GEH 50 ES-2RS -2LS<br />

60 90 44 36 6 245 1 220 1,10 GE 60 ES –<br />

90 44 36 6 245 1 220 1,10 GE 60 ES-2RS -2LS<br />

105 63 40 17 315 1 560 2,40 GEH 60 ES-2RS -2LS<br />

70 105 49 40 6 315 1 560 1,55 GE 70 ES –<br />

105 49 40 6 315 1 560 1,55 GE 70 ES-2RS -2LS<br />

120 70 45 16 400 2 000 3,40 GEH 70 ES-2RS -2LS<br />

80 120 55 45 6 400 2 000 2,30 GE 80 ES –<br />

120 55 45 5 400 2 000 2,30 GE 80 ES-2RS -2LS<br />

130 75 50 14 490 2 450 4,10 GEH 80 ES-2RS -2LS<br />

90 130 60 50 5 490 2 450 2,75 GE 90 ES –<br />

130 60 50 5 490 2 450 2,75 GE 90 ES-2RS -2LS<br />

150 85 55 15 610 3 050 6,30 GEH 90 ES-2RS -2LS<br />

100 150 70 55 7 610 3 050 4,40 GE 100 ES –<br />

150 70 55 6 610 3 050 4,40 GE 100 ES-2RS -2LS<br />

160 85 55 13 655 3 250 6,80 GEH 100 ES-2RS -2LS<br />

110 160 70 55 6 655 3 250 4,80 GE 110 ES –<br />

160 70 55 6 655 3 250 4,80 GE 110 ES-2RS -2LS<br />

180 100 70 12 950 4 750 11,0 GEH 110 ES-2RS -2LS<br />

120 180 85 70 6 950 4 750 8,25 GE 120 ES –<br />

180 85 70 6 950 4 750 8,25 GE 120 ES-2RS -2LS<br />

210 115 70 16 1 080 5 400 15,0 GEH 120 ES-2RS -2LS<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be made larger than d a max .<br />

2) <strong>Bearings</strong> with an outside diameter D ≥ 150 mm have the multi-groove system in the outer ring as st<strong>and</strong>ard. <strong>Bearings</strong> with an<br />

outside diameter D < 150 mm can be supplied with the multi-groove system on request (designation suffix ESL).<br />

106


107<br />

r a<br />

D a<br />

d a<br />

2.1<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

45 60 4,6 4,6 3 0,6 1 49,4 50,8 57 63,6 0,6 1<br />

60 4,6 4,6 3 0,6 1 49,4 50,8 61 63,6 0,6 1<br />

66 4,6 4,6 3 0,6 1 49,8 50,1 66,2 70,5 0,6 1<br />

50 66 4,6 4,6 3 0,6 1 54,6 56 62,7 70,5 0,6 1<br />

66 4,6 4,6 3 0,6 1 54,6 56 66,2 70,5 0,6 1<br />

80 6,2 6,2 4 0,6 1 55,8 57,1 79,7 84,2 0,6 1<br />

60 80 6,2 6,2 4 1 1 66,4 66,8 76 84,2 1 1<br />

80 6,2 6,2 4 1 1 66,4 66,8 79,7 84,2 1 1<br />

92 7,7 7,7 4 1 1 67 67 92 99 1 1<br />

70 92 7,7 7,7 4 1 1 76,7 77,9 87,4 99 1 1<br />

92 7,7 7,7 4 1 1 76,7 77,9 92 99 1 1<br />

105 7,7 7,7 4 1 1 77,5 78,3 104,4 113,8 1 1<br />

80 105 7,7 7,7 4 1 1 87,1 89,4 99,7 113,8 1 1<br />

105 7,7 7,7 4 1 1 87,1 89,4 104,4 113,8 1 1<br />

115 9,5 9,5 5 1 1 87,2 87,2 112,9 123,5 1 1<br />

90 115 9,5 9,5 5 1 1 97,4 98,1 109,3 123,5 1 1<br />

115 9,5 9,5 5 1 1 97,4 98,1 112,9 123,5 1 1<br />

130 11,3 11,3 5 1 1 98,2 98,4 131 143,2 1 1<br />

100 130 11,3 11,3 5 1 1 107,8 109,5 123,5 143,2 1 1<br />

130 11,3 11,3 5 1 1 107,8 109,5 131 143,2 1 1<br />

140 11,5 11,5 5 1 1 108,1 111,2 141,5 153,3 1 1<br />

110 140 11,5 11,5 5 1 1 118 121 133 153 1 1<br />

140 11,5 11,5 5 1 1 118 121 141,5 153 1 1<br />

160 13,5 13,5 6 1 1 119,5 124,5 157,5 172 1 1<br />

120 160 13,5 13,5 6 1 1 129,5 135,5 152 172 1 1<br />

160 13,5 13,5 6 1 1 129,5 135,5 157,5 172 1 1<br />

180 13,5 13,5 6 1 1 130 138,5 180 202,5 1 1


Radial spherical plain bearings, steel/steel, metric sizes<br />

d 140 – 300 mm<br />

B<br />

C<br />

r 2<br />

b<br />

M<br />

a<br />

r 1<br />

b 1<br />

D<br />

d k<br />

d<br />

GE .. ES<br />

GE .. ES-2RS<br />

GE .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations 2)<br />

of tilt 1) dynamic static without seals suffix for<br />

with st<strong>and</strong>ard seals heavy-duty seals<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

140 210 90 70 7 1 080 5 400 11,0 GE 140 ES –<br />

210 90 70 7 1 080 5 400 11,0 GE 140 ES-2RS -2LS<br />

160 230 105 80 8 1 370 6 800 14,0 GE 160 ES –<br />

230 105 80 8 1 370 6 800 14,0 GE 160 ES-2RS -2LS<br />

180 260 105 80 6 1 530 7 650 18,5 GE 180 ES –<br />

260 105 80 6 1 530 7 650 18,5 GE 180 ES-2RS -2LS<br />

200 290 130 100 7 2 120 10 600 28,0 GE 200 ES –<br />

290 130 100 7 2 120 10 600 28,0 GE 200 ES-2RS -2LS<br />

220 320 135 100 8 2 320 11 600 35,5 GE 220 ES-2RS -2LS<br />

240 340 140 100 8 2 550 12 700 40,0 GE 240 ES-2RS -2LS<br />

260 370 150 110 7 3 050 15 300 51,5 GE 260 ES-2RS -2LS<br />

280 400 155 120 6 3 550 18 000 65,0 GE 280 ES-2RS -2LS<br />

300 430 165 120 7 3 800 19 000 78,5 GE 300 ES-2RS -2LS<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be made larger than d a max .<br />

2) <strong>Bearings</strong> with an outside diameter D ≥ 150 mm have the multi-groove system in the outer ring as st<strong>and</strong>ard.<br />

108


109<br />

r a<br />

D a<br />

d a<br />

2.1<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

140 180 13,5 13,5 6 1 1 149 155,5 171 202,5 1 1<br />

180 13,5 13,5 6 1 1 149 155,5 180 202,5 1 1<br />

160 200 13,5 13,5 6 1 1 169,5 170 190 222 1 1<br />

200 13,5 13,5 6 1 1 169,5 170 197 222 1 1<br />

180 225 13,5 13,5 6 1,1 1,1 191 199 214 250,5 1 1<br />

225 13,5 13,5 6 1,1 1,1 191 199 224,5 250,5 1 1<br />

200 250 15,5 15,5 7 1,1 1,1 212,5 213,5 237,5 279,5 1 1<br />

250 15,5 15,5 7 1,1 1,1 212,5 213,5 244,5 279,5 1 1<br />

220 275 15,5 15,5 7 1,1 1,1 232,5 239,5 271 309,5 1 1<br />

240 300 15,5 15,5 7 1,1 1,1 252,5 265 298 329,5 1 1<br />

260 325 15,5 15,5 7 1,1 1,1 273 288 321,5 359 1 1<br />

280 350 15,5 15,5 7 1,1 1,1 294 313,5 344,5 388,5 1 1<br />

300 375 15,5 15,5 7 1,1 1,1 314 336,5 371 418,5 1 1


Radial spherical plain bearings, steel/steel, inch sizes<br />

d 0.5 – 2 in<br />

B<br />

C<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

b<br />

M<br />

GEZH .. ES GEZH .. ES-2RS<br />

D<br />

d k<br />

d<br />

GEZ .. ES<br />

GEZ .. ES-2RS<br />

GEZ .. ES-2LS<br />

GEZH .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt 1) dynamic static without seals suffix for seal variants<br />

st<strong>and</strong>ard heavy-duty<br />

d D B C a C C 0<br />

in/mm degrees lbf/kN lb/kg –<br />

0.5 0.8750 0.437 0.375 6 3 150 9 340 0.044 GEZ 008 ES – –<br />

12,700 22,225 11,10 9,53 14 41,5 0,020<br />

0.625 1.0625 0.547 0.469 6 4 840 14 740 0.077 GEZ 010 ES – –<br />

15,875 26,988 13,89 11,91 21,5 65,5 0,035<br />

0.75 1.2500 0.656 0.562 6 7 090 20 930 0.12 GEZ 012 ES -2RS –<br />

19,050 31,750 16,66 14,28 31,5 93 0,055<br />

0.875 1.4375 0.765 0.656 6 9 560 28 580 0.19 GEZ 014 ES – –<br />

22,225 36,513 19,43 16,66 42,5 127 0,085<br />

1 1.6250 0,875 0,750 6 12 600 37 350 0.26 GEZ 100 ES -2RS -2LS<br />

25,400 41,275 22,23 19,05 56 166 0,12<br />

1.25 2.0000 1.093 0.937 6 19 460 58 500 0.51 GEZ 104 ES -2RS -2LS<br />

31,750 50,800 27,76 23,80 86,5 260 0,23<br />

2.4375 1.390 1.125 8 28 125 84 375 1.20 GEZH 104 ES -2RS -2LS<br />

61,913 35,31 28,58 125 375 0,54<br />

1.375 2.1875 1.187 1.031 6 23 400 69 750 0.77 GEZ 106 ES -2RS -2LS<br />

34,925 55,563 30,15 26,19 104 310 0,35<br />

1.5 2.4375 1.312 1.125 6 28 130 84 380 0.93 GEZ 108 ES -2RS -2LS<br />

38,100 61,913 33,33 28,58 125 375 0,42<br />

2.8125 1.580 1.312 7 38 250 114 750 1.75 GEZH 108 ES -2RS -2LS<br />

71,438 40,13 33,33 170 510 0,79<br />

1.75 2.8125 1.531 1.312 6 38 250 114 750 1.40 GEZ 112 ES -2RS -2LS<br />

44,450 71,438 38,89 33,33 170 510 0,64<br />

3.1875 1.820 1.500 7 50 400 150 750 2.50 GEZH 112 ES -2RS -2LS<br />

80,963 46,23 38,10 224 670 1,13<br />

2 3.1875 1.750 1.500 6 50 400 150 750 2.05 GEZ 200 ES -2RS -2LS<br />

50,800 80,963 44,45 38,10 224 670 0,93<br />

3.5625 2.070 1.687 8 63 000 191 250 3.50 GEZH 200 ES -2RS -2LS<br />

90,488 52,58 42,85 280 850 1,60<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

110


r a<br />

D a<br />

d a<br />

2.2<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

r 1) 1 r 2) 2 d a d a D a D a sealed D a r a r b<br />

d d k b b 1 M min min min max min min max max max<br />

in/mm<br />

in/mm<br />

0.5 0.7190 0.102 0.098 0.059 0.006 0.024 0.54 0.57 0.68 – 0.78 0.006 0.024<br />

12,700 18,263 2,6 2,5 1,5 0,2 0,6 13,7 14,5 17,3 – 19,9 0,2 0,6<br />

0.625 0.8990 0.126 0.118 0.098 0.006 0.039 0.67 0.71 0.85 – 0.93 0.006 0.039<br />

15,875 22,835 3,2 3 2,5 0,2 1 17 18,1 21,7 – 23,6 0,2 1<br />

0.75 1.0800 0.126 0.118 0.098 0.012 0.039 0.82 0.86 1.03 1.1 1.11 0.012 0.039<br />

19,050 27,432 3,2 3 2,5 0,3 1 20,9 21,8 26,1 27,9 28,3 0,3 1<br />

0.875 1.2580 0.126 0.118 0.098 0.012 0.039 0.95 1 1.2 – 1.3 0.012 0.039<br />

22,225 31,953 3,2 3 2,5 0,3 1 24,2 25,4 30,4 – 33 0,3 1<br />

1 1.4370 0.126 0.118 0.098 0.012 0.039 1.08 1.14 1.37 1.39 1.48 0.012 0.039<br />

25,400 36,500 3,2 3 2,5 0,3 1 27,5 29 34,7 35,2 37,7 0,3 1<br />

1.25 1.7950 0.189 0.197 0.157 0.024 0.039 1.37 1.43 1.7 1.76 1.85 0.024 0.039<br />

31,750 45,593 4,8 5 4 0,6 1 34,8 36,2 43,3 44,8 47 0,6 1<br />

2.1550 0.189 0,197 0.157 0.039 0.039 1.43 1.65 2.05 2.06 2.28 0.039 0.039<br />

54,737 4,8 5 4 1 1 36,2 41,8 52 52,3 58 1 1<br />

1.375 1.9370 0.189 0.197 0.157 0.024 0.039 1.5 1.53 1.84 1.85 2.035 0.024 0.039<br />

34,925 49,200 4,8 5 4 0,6 1 38,1 38,9 46,7 47,1 51,7 0,6 1<br />

1.5 2.1550 0.189 0.197 0.157 0.024 0.039 1.63 1.71 2.05 2.06 2.28 0.024 0.039<br />

38,100 54,737 4,8 5 4 0,6 1 41,4 43,4 52 52,3 58 0,6 1<br />

2.5150 0.189 0.197 0.157 0.039 0.039 1.69 1.96 2.39 2.41 2.65 0.039 0.039<br />

63,881 4,8 5 4 1 1 42,8 49,7 60,7 61,3 67,4 1 1<br />

1.75 2.5150 0.189 0.197 0.157 0.024 0.039 1.91 2 2.39 2.41 2.65 0.024 0.039<br />

44,450 63,881 4,8 5 4 0,6 1 48,5 50,7 60,7 61,3 67,4 0,6 1<br />

2.8750 0.189 0.197 0.157 0.059 0.039 2.00 2.22 2.73 2.85 2.99 0.059 0.039<br />

73,025 4,8 5 4 1,5 1 50,9 56,5 69,4 72,4 75,9 1,5 1<br />

2 2.8750 0.189 0.197 0.157 0.024 0.039 2.17 2.28 2.73 2.85 2.99 0.024 0.039<br />

50,800 73,025 4,8 5 4 0,6 1 55,1 57,9 69,4 72,4 75,9 0,6 1<br />

3.2350 0.224 0.197 0.157 0.059 0.039 2.26 2.48 3.07 3.11 3.36 0.059 0.039<br />

82,169 5,7 5 4 1,5 1 57,5 63,1 78,1 79 85,3 1,5 1<br />

1) Equal to maximum shaft fillet radius r a max .<br />

2) Equal to maximum housing fillet radius r b max .<br />

111


Radial spherical plain bearings, steel/steel, inch sizes<br />

d 2.25 – 4 in<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

D<br />

d k<br />

d<br />

GEZ .. ES<br />

GEZ .. ES-2RS<br />

GEZ .. ES-2LS<br />

GEZH .. ES<br />

GEZH .. ES-2RS<br />

GEZH .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt 1) dynamic static without seals suffix for seal variants<br />

st<strong>and</strong>ard heavy-duty<br />

d D B C a C C 0<br />

in/mm degrees lbf/kN lb/kg –<br />

2.25 3.5625 1.969 1.687 6 63 000 191 250 2.85 GEZ 204 ES -2RS -2LS<br />

57,150 90,488 50,01 42,85 280 850 1,30<br />

3.9375 2.318 1.875 8 77 625 234 000 4.65 GEZH 204 ES -2RS -2LS<br />

100,013 58,88 47,63 345 1 040 2,10<br />

2.5 3.9375 2.187 1.875 6 77 630 234 000 4.10 GEZ 208 ES -2RS -2LS<br />

63,500 100,013 55,55 47,63 345 1 040 1,85<br />

4.3750 2.545 2.062 8 95 625 285 750 6.30 GEZH 208 ES -2RS -2LS<br />

111,125 64,64 52,38 425 1 270 2,85<br />

2.75 4.3750 2.406 2.062 6 95 630 285 750 5.30 GEZ 212 ES -2RS -2LS<br />

69,850 111,125 61,11 52,38 425 1 270 2,40<br />

4.7500 2.790 2.250 8 112 500 337 500 8.05 GEZH 212 ES -2RS -2LS<br />

120,650 70,87 57,15 500 1 500 3,65<br />

3 4.7500 2.625 2.250 6 112 500 337 500 6.85 GEZ 300 ES -2RS -2LS<br />

76,200 120,650 66,68 57,15 500 1 500 3,10<br />

5.1250 3.022 2.437 8 131 625 396 000 10.0 GEZH 300 ES -2RS -2LS<br />

130,175 76,76 61,90 585 1 760 4,55<br />

3.25 5.1250 2.844 2.437 6 131 630 396 000 8.40 GEZ 304 ES -2RS -2LS<br />

82,550 130,175 72,24 61,90 585 1 760 3,80<br />

5.5000 3.265 2.625 9 153 000 459 000 12.3 GEZH 304 ES -2RS -2LS<br />

139,700 82,93 66,68 680 2 040 5,60<br />

3.5 5.5000 3.062 2.625 6 153 000 459 000 10.5 GEZ 308 ES -2RS -2LS<br />

88,900 139,700 77,78 66,68 680 2 040 4,80<br />

5.8750 3.560 2.812 9 175 500 531 000 15.0 GEZH 308 ES -2RS -2LS<br />

149,225 90,42 71,43 780 2 360 6,80<br />

3.75 5.8750 3.281 2.812 6 175 500 531 000 13.0 GEZ 312 ES -2RS -2LS<br />

95,250 149,225 83,34 71,43 780 2 360 5,80<br />

6.2500 3.738 3.000 9 202 500 596 250 17.9 GEZH 312 ES -2RS -2LS<br />

158,750 94,95 76,20 900 2 650 8,10<br />

4 6.2500 3.500 3.000 6 202 500 596 250 15.5 GEZ 400 ES -2RS -2LS<br />

101,600 158,750 88,90 76,20 900 2 650 7,00<br />

7.0000 4.225 3.375 9 252 000 765 000 30.0 GEZH 400 ES -2RS -2LS<br />

177,800 107,32 85,73 1 120 3 400 13,5<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

112


113<br />

r a<br />

D a<br />

d a<br />

2.2<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

r 1<br />

1) r 2<br />

2 ) d a d a D a D a sealed D a r a r b<br />

d d k b b 1 M min min min max min min max max max<br />

in/mm<br />

in/mm<br />

2.25 3.2350 0.224 0.197 0.157 0.024 0.039 2.43 2.57 3.07 3.11 3.36 0.024 0.039<br />

57,150 82,169 5,7 5 4 0,6 1 61,7 65,2 78,1 79 85,3 0,6 1<br />

3.5900 0.354 0.315 0.256 0.059 0.039 2.52 2.74 3.41 3.43 3.73 0.059 0.039<br />

91,186 9 8 6,5 1,5 1 64,1 69,6 86,6 87 94,7 1,5 1<br />

2.5 3.5900 0.354 0.315 0.256 0.024 0.039 2.69 2.85 3.41 3.43 3.73 0.024 0.039<br />

63,500 91,186 9 8 6,5 0,6 1 68,3 72,3 86,6 87 94,7 0,6 1<br />

3.9500 0.354 0.315 0.256 0.079 0.039 2.84 3.02 3.75 3.78 4.16 0.079 0.039<br />

100,330 9 8 6,5 2 1 72 76,7 95,3 96 105,7 2 1<br />

2.75 3.9500 0.354 0.315 0.256 0.024 0.039 2.95 3.13 3.75 3.78 4.16 0.024 0.039<br />

69,850 100,330 9 8 6,5 0,6 1 74,9 79,6 95,3 96 105,7 0,6 1<br />

4.3120 0.354 0.315 0.256 0.079 0.039 3.09 3.29 4.09 4.13 4.53 0.079 0.039<br />

109,525 9 8 6,5 2 1 78,6 83,5 104 104,8 115 2 1<br />

3 4.3120 0.354 0.315 0.256 0.024 0.039 3.2 3.42 4.09 4.13 4.53 0.024 0.039<br />

76,200 109,525 9 8 6,5 0,6 1 81,4 86,9 104 104,8 115 0,6 1<br />

4.6750 0.366 0.315 0.256 0.079 0.039 3.35 3.57 4.44 4.5 4.90 0.079 0.039<br />

118,745 9,3 8 6,5 2 1 85,1 90,6 112,8 114,2 124,4 2 1<br />

3.25 4.6750 0.366 0.315 0.256 0.024 0.039 3.46 3.71 4.44 4.5 4.9 0.024 0.039<br />

82,550 118,745 9,3 8 6,5 0,6 1 88 94,2 112,8 114,2 124,4 0,6 1<br />

5.0400 0.413 0.315 0.256 0.079 0.039 3.65 3.84 4.79 4.83 5.27 0.079 0.039<br />

128,016 10,5 8 6,5 2 1 92,7 97,5 121,6 122,8 133,8 2 1<br />

3.5 5.0400 0.413 0.315 0.256 0.024 0.039 3.72 4 4.79 4.83 5.27 0.024 0.039<br />

88,900 128,016 10,5 8 6,5 0,6 1 94,6 101,7 121,6 122,8 133,8 0,6 1<br />

5.3900 0.413 0.315 0.256 0.079 0.039 3.91 4.04 5.12 5.17 5.63 0.079 0.039<br />

136,906 10,5 8 6,5 2 1 99,3 102,5 130,1 131,4 143,1 2 1<br />

3.75 5.3900 0.413 0.315 0.256 0.024 0.039 3.98 4.28 5.12 5.17 5.63 0.024 0.039<br />

95,250 136,906 10,5 8 6,5 0,6 1 101,2 108,6 130,1 131,4 143,1 0,6 1<br />

5.7500 0.413 0.394 0.315 0.079 0.039 4.17 4.37 5.47 5.49 6.00 0.079 0.039<br />

146,050 10,5 10 8 2 1 105,8 110,9 139 139,5 152,5 2 1<br />

4 5.7500 0.413 0.394 0.315 0.024 0.039 4.25 4.55 5.47 5.49 6 0.024 0.039<br />

101,600 146,050 10,5 10 8 0,6 1 108 115,5 139 139,5 152,5 0,6 1<br />

6.4750 0.433 0.394 0.315 0.079 0.043 4.45 4.9 6.16 6.18 6.73 0.079 0.043<br />

164,465 11 10 8 2 1,1 113 124,5 156,5 157 171 2 1,1<br />

1) Equal to maximum shaft fillet radius r a max .<br />

2) Equal to maximum housing fillet radius r b max .


Radial spherical plain bearings, steel/steel, inch sizes<br />

d 4.5 – 6 in<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

D<br />

d k<br />

d<br />

GEZ .. ES<br />

GEZ .. ES-2RS<br />

GEZ .. ES-2LS<br />

GEZH .. ES<br />

GEZH .. ES-2RS<br />

GEZH .. ES-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt 1) dynamic static without seals suffix for seal variants<br />

st<strong>and</strong>ard heavy-duty<br />

d D B C a C C 0<br />

in/mm degrees lbf/kN lb/kg –<br />

4.5 7.0000 3.937 3.375 6 252 000 765 000 21.5 GEZ 408 ES -2RS -2LS<br />

114,300 177,800 100,00 85,73 1 120 3 400 9,80<br />

7.7500 4.690 3.750 9 315 000 933 750 36.0 GEZH 408 ES -2RS -2LS<br />

196,850 119,17 95,25 1 400 4 150 16,5<br />

4.75 7.3750 4.156 3.562 6 281 250 843 750 25.5 GEZ 412 ES -2RS -2LS<br />

120,650 187,325 105,56 90,48 1 250 3 750 11,5<br />

5 7.7500 4.375 3.750 6 315 000 933 750 30.0 GEZ 500 ES -2RS -2LS<br />

127,000 196,850 111,13 95,25 1 400 4 150 13,5<br />

5.5 8.7500 4.950 4.125 7 389 250 1 170 000 45.5 GEZH 508 ES -2RS -2LS<br />

139,700 222,250 125,73 104,78 1 730 5 200 20,5<br />

6 8.7500 4.750 4.125 5 389 250 1 170 000 38.5 GEZ 600 ES -2RS -2LS<br />

152,400 222,250 120,65 104,78 1 730 5 200 17,5<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

114


115<br />

r a<br />

D a<br />

d a<br />

2.2<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

r 1<br />

1) r 2<br />

2) d a d a D a D a sealed D a r a r b<br />

d d k b b 1 M min min min max min min max max max<br />

in/mm<br />

in/mm<br />

4.5 6.4750 0.433 0.394 0.315 0.039 0.043 4.82 5.14 6.16 6.18 6.73 0.039 0,043<br />

114,300 164,465 11 10 8 1 1,1 122,5 130,5 156,5 157 171 1 1,1<br />

7.1900 0.433 0.394 0.315 0.079 0.043 4.96 5.45 6.83 6.91 7.42 0.079 0,043<br />

182,626 11 10 8 2 1,1 126 138,4 173,5 175,5 188,5 2 1,1<br />

4.75 6.8250 0.433 0.394 0.315 0.039 0.043 5.08 5.41 6.5 6.56 7.05 0.039 0,043<br />

120,650 173,355 11 10 8 1 1,1 129 137,5 165 166,5 179 1 1,1<br />

5 7.1900 0.433 0.394 0.315 0.039 0.043 5.33 5.69 6.83 6.91 7.42 0.039 0,043<br />

127,000 182,626 11 10 8 1 1,1 135,5 144,5 173,5 175,5 188,5 1 1,1<br />

5.5 8.1560 0.591 0.433 0.315 0.079 0.043 5.98 6.46 7.76 7.78 8.41 0.079 0,043<br />

139,700 207,162 15 11 8 2 1,1 152 164 197 197,5 213,5 2 1,1<br />

6 8.1560 0.591 0.433 0.315 0.039 0.043 6.34 6.61 7.76 7.78 8.41 0.039 0,043<br />

152,400 207,162 15 11 8 1 1,1 161 168 197 197,5 213,5 1 1,1<br />

1) Equal to maximum shaft fillet radius r a max .<br />

2) Equal to maximum housing fillet radius r b max .


Radial spherical plain bearings with an extended inner ring, steel/steel, metric sizes<br />

d 12 – 125 mm<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

D<br />

d k d d 1<br />

GEG .. ES<br />

GEM .. ES-2RS<br />

GEM .. ES-2LS<br />

GEG .. ESA<br />

Principal dimensions Angle Basic load ratings Mass Designations 1)<br />

of tilt dynamic static without seals suffix for<br />

with st<strong>and</strong>ard seals heavy-duty seals<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

12 22 12 7 4 10,8 54 0,020 GEG 12 ESA 2) –<br />

16 28 16 9 4 17,6 88 0,035 GEG 16 ES –<br />

20 35 20 12 4 30 146 0,070 GEG 20 ES –<br />

35 24 12 6 30 146 0,073 GEM 20 ES-2RS -2LS<br />

25 42 25 16 4 48 240 0,13 GEG 25 ES –<br />

42 29 16 4 48 240 0,13 GEM 25 ES-2RS -2LS<br />

30 47 30 18 4 62 310 0,17 GEM 30 ES-2RS -2LS<br />

32 52 32 18 4 65,5 325 0,17 GEG 32 ES –<br />

35 55 35 20 4 80 400 0,25 GEM 35 ES-2RS -2LS<br />

40 62 38 22 4 100 500 0,35 GEM 40 ES-2RS -2LS<br />

62 40 22 4 100 500 0,34 GEG 40 ES –<br />

45 68 40 25 4 127 640 0,49 GEM 45 ES-2RS -2LS<br />

50 75 43 28 4 156 780 0,60 GEM 50 ES-2RS -2LS<br />

75 50 28 4 156 780 0,56 GEG 50 ES –<br />

60 90 54 36 3 245 1 220 1,15 GEM 60 ES-2RS -2LS<br />

63 95 63 36 4 255 1 270 1,25 GEG 63 ES –<br />

70 105 65 40 4 315 1 560 1,65 GEM 70 ES-2RS -2LS<br />

80 120 74 45 4 400 2 000 2,50 GEM 80 ES-2RS -2LS<br />

120 80 45 4 400 2 000 2,40 GEG 80 ES –<br />

100 150 100 55 4 610 3 050 4,80 GEG 100 ES –<br />

125 180 125 70 4 950 4 750 8,50 GEG 125 ES –<br />

1) <strong>Bearings</strong> with an outside diameter D ≥ 150 mm have the multi-groove system in the outer ring as st<strong>and</strong>ard. <strong>Bearings</strong> with an<br />

outside diameter D < 150 mm can be supplied with the multi-groove system on request (designation suffix ESL).<br />

2) Can only be relubricated via the outer ring.<br />

116


117<br />

r a<br />

D a<br />

d a<br />

2.3<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k d 1 b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

12 18 15,5 2,3 – 1,5 0,3 0,3 14,5 15,5 17,1 20,4 0,3 0,3<br />

16 23 20 2,3 2,3 1,5 0,3 0,3 18,7 20 21,9 26,3 0,3 0,3<br />

20 29 25 3,1 3,1 2 0,3 0,3 23,1 25 27,6 33,2 0,3 0,3<br />

29 24 3,1 3,1 2 0,3 0,3 23 24 30,9 33,2 0,3 0,3<br />

25 35,5 30,5 3,1 3,1 2 0,6 0,6 29,2 30,5 33,7 39,2 0,6 0,6<br />

35,5 29 3,1 3,1 2 0,3 0,6 28,3 29 36,9 39,2 0,3 0,6<br />

30 40,7 34 3,1 3,1 2 0,3 0,6 33,5 34 41,3 44 0,3 0,6<br />

32 43 38 3,9 3,9 2,5 0,6 1 36,3 38 40,9 48,1 0,6 1<br />

35 47 40 3,9 3,9 2,5 0,6 1 38,8 40 48,5 50,9 0,6 1<br />

40 53 45 3,9 3,9 2,5 0,6 1 44 45 54,5 57,8 0,6 1<br />

53 46 3,9 3,9 2,5 0,6 1 44,8 46 50,3 57,8 0,6 1<br />

45 60 52 4,6 4,6 3 0,6 1 49,6 52 61 63,6 0,6 1<br />

50 66 57 4,6 4,6 3 0,6 1 54,8 57 66,2 70,5 0,6 1<br />

66 57 4,6 4,6 3 0,6 1 55,9 57 62,7 70,5 0,6 1<br />

60 80 68 6,2 6,2 4 0,6 1 65,4 68 79,7 84,2 0,6 1<br />

63 83 71,5 6,2 6,2 4 1 1 69,7 71,5 78,9 89,2 1 1<br />

70 92 78 7,7 7,7 4 0,6 1 75,7 78 92 99 0,6 1<br />

80 105 90 7,7 7,7 4 0,6 1 86,1 90 104,4 113,8 0,6 1<br />

105 91 7,7 7,7 4 1 1 88,7 91 99,7 113,8 1 1<br />

100 130 113 11,3 11,3 5 1 1 110,1 113 123,5 143,2 1 1<br />

125 160 138 13,5 13,5 6 1 1 136,5 138 152 172 1 1


Radial spherical plain bearings with an extended inner ring, steel/steel, metric sizes<br />

d 160 – 200 mm<br />

B<br />

C<br />

r 2<br />

r 1<br />

D<br />

d k d d 1<br />

GEG .. ES<br />

Principal dimensions Angle Basic load ratings Mass Designation 1)<br />

of tilt dynamic static without seals<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

160 230 160 80 4 1 370 6 800 16,5 GEG 160 ES<br />

200 290 200 100 4 2 120 10 600 32,0 GEG 200 ES<br />

1) <strong>Bearings</strong> with an outside diameter D ≥ 150 mm have the multi-groove system in the outer ring as st<strong>and</strong>ard.<br />

118


119<br />

r a<br />

D a<br />

d a<br />

2.3<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k d 1 b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

160 200 177 13,5 13,5 6 1 1 172 177 190 222 1 1<br />

200 250 221 15,5 15,5 7 1,1 1,1 213 221 237,5 279,5 1 1


Radial spherical plain bearings with an extended inner ring, steel/steel, inch sizes<br />

d 0.5 – 2.5 in<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

D<br />

d k d d 1<br />

GEZM .. ES<br />

GEZM .. ES-2RS<br />

GEZM .. ES-2LS<br />

Principal dimensions Angle of tilt 1) Basic load ratings Mass Designations<br />

dynamic static without seals suffix for seal variants<br />

st<strong>and</strong>ard heavy-duty<br />

d D B C a a C C 0<br />

sealed<br />

in/mm degrees lbf/kN lb/kg –<br />

0.5 0.8750 0.750 0.375 9 – 3 150 9 340 0.051 GEZM 008 ES – –<br />

12,700 22,225 19,05 9,53 14 41,5 0,023<br />

0.625 1.0625 0.937 0.469 9 – 4 840 14 738 0.090 GEZM 010 ES – –<br />

15,875 26,988 23,80 11,91 21,5 65,5 0,041<br />

0.75 1.2500 1.125 0.562 9 5 7 090 20 925 0.15 GEZM 012 ES -2RS –<br />

19,050 31,750 28,58 14,28 31,5 93 0,068<br />

0.875 1.4375 1.312 0.656 9 – 9 560 28 575 0.23 GEZM 014 ES – –<br />

22,225 36,513 33,33 16,66 42,5 127 0,11<br />

1 1.6250 1.500 0.750 9 5 12 600 37 350 0.34 GEZM 100 ES -2RS -2LS<br />

25,400 41,275 38,10 19,05 56 166 0,15<br />

1.25 2.0000 1.875 0.937 9 5 19 460 58 500 0.63 GEZM 104 ES -2RS -2LS<br />

31,750 50,800 47,63 23,80 86,5 260 0,29<br />

1.375 2.1875 2.062 1.031 9 5 23 400 69 750 0.81 GEZM 106 ES -2RS -2LS<br />

34,925 55,563 52,38 26,19 104 310 0,37<br />

1.5 2.4375 2.250 1.125 9 5 28 130 84 380 1.15 GEZM 108 ES -2RS -2LS<br />

38,100 61,913 57,15 28,58 125 375 0,51<br />

1.75 2.8125 2.625 1.312 9 5 38 250 114 750 1.80 GEZM 112 ES -2RS -2LS<br />

44,450 71,438 66,68 33,33 170 510 0,81<br />

2 3.1875 3.000 1.500 9 5 50 400 150 750 2.65 GEZM 200 ES -2RS -2LS<br />

50,800 80,963 76,20 38,10 224 670 1,20<br />

2.25 3.5625 3.375 1.687 9 5 63 000 191 250 3.65 GEZM 204 ES -2RS -2LS<br />

57,150 90,488 85,73 42,85 280 850 1,65<br />

2.5 3.9375 3.750 1.875 9 5 77 625 234 000 4.95 GEZM 208 ES -2RS -2LS<br />

63,500 100,013 95,25 47,63 350 1 040 2,25<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

120


121<br />

r a<br />

D a<br />

d a<br />

2.4<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k d 1 b b 1 M r 1<br />

1) r 2<br />

2) d a d a D a D a sealed D a r a r b<br />

min min min max min min max max max<br />

in/mm<br />

in/mm<br />

0.5 0.7190 0.625 0.102 0.098 0.059 0.012 0.024 0.56 0.63 0.68 – 0.78 0.012 0.024<br />

12,700 18,263 15,9 2,6 2,5 1,5 0,3 0,6 14,3 15,9 17,3 – 19,9 0,3 0,6<br />

0.625 0.8990 0.780 0.126 0.118 0.098 0.024 0.039 0.72 0.78 0.85 – 0.93 0.024 0.039<br />

15,875 22,835 19,8 3,2 3 2,5 0,6 1,0 18,4 19,8 21,7 – 23,6 0,6 1<br />

0.75 1.0800 0.920 0.126 0.118 0.098 0.024 0.039 0.85 0.92 1.03 1.1 1.11 0.024 0.039<br />

19,050 27,432 23,4 3,2 3 2,5 0,6 1,0 21,7 23,4 26,1 27,9 28,3 0,6 1<br />

0.875 1.2580 1.070 0.126 0.118 0.098 0.024 0.039 0.98 1.07 1.2 – 1.30 0.024 0.039<br />

22,225 31,953 27,2 3,2 3 2,5 0,6 1,0 24,9 27,2 30,4 – 33 0,6 1<br />

1 1.4370 1.220 0.126 0.118 0.098 0.024 0.039 1.11 1.22 1.37 1.39 1.48 0.024 0.039<br />

25,400 36,500 31,0 3,2 3 2,5 0,6 1,0 28,2 31 34,7 35,2 37,7 0,6 1<br />

1.25 1.7950 1.525 0.189 0.197 0.157 0.039 0.039 1.41 1.53 1.7 1.76 1.85 0.039 0.039<br />

31,750 45,593 38,7 4,8 5 4 1,0 1,0 35,8 38,7 43,3 44,8 47 1 1<br />

1.375 1.9370 1.670 0.189 0.197 0.157 0.039 0.039 1.54 1.67 1.84 1.85 2.04 0.039 0.039<br />

34,925 49,200 42,4 4,8 5 4 1,0 1,0 39,1 42,4 46,7 47,1 51,7 1 1<br />

1.5 2.1550 1.850 0.189 0.197 0.157 0.039 0.039 1.71 1.85 2.05 2.06 2.28 0.039 0.039<br />

38,100 54,737 47,0 4,8 5 4 1,0 1,0 43,3 47 52 52,3 58 1 1<br />

1.75 2.5150 2.165 0.189 0.197 0.157 0.039 0.039 1.97 2.17 2.39 2.41 2.65 0.039 0.039<br />

44,450 63,881 55,0 4,8 5 4 1,0 1,0 49,9 55 60,7 61,3 67,4 1 1<br />

2 2.8750 2.460 0.189 0.197 0.157 0.039 0.039 2.22 2.46 2.73 2.85 2.99 0.039 0.039<br />

50,800 73,025 62,5 4,8 5 4 1,0 1,0 56,5 62,5 69,4 72,4 75,9 1 1<br />

2.25 3.2350 2.760 0.224 0.197 0.157 0.039 0.039 2.48 2.76 3.07 3.11 3.36 0.039 0.039<br />

57,150 82,169 70,1 5,7 5 4 1,0 1,0 63,1 70,1 78,1 79 85,3 1 1<br />

2.5 3.5900 3.060 0.354 0.315 0.256 0.039 0.039 2.74 3.06 3.41 3.43 3.73 0.039 0.039<br />

63,500 91,186 77,7 9 8 6,5 1,0 1,0 69,6 77,7 86,6 87 94,7 1 1<br />

1) Equal to maximum shaft fillet radius r a max .<br />

2) Equal to maximum housing fillet radius r b max .


Radial spherical plain bearings with an extended inner ring, steel/steel, inch sizes<br />

d 2.75 – 6 in<br />

B<br />

C<br />

b<br />

M<br />

a<br />

r 2<br />

r 1<br />

b 1<br />

D<br />

d k d d 1<br />

GEZM .. ES<br />

GEZM .. ES-2RS<br />

GEZM .. ES-2LS<br />

Principal dimensions Angle of tilt 1) Basic load ratings Mass Designations<br />

dynamic static without seals suffix for seal variants<br />

st<strong>and</strong>ard heavy-duty<br />

d D B C a a C C 0<br />

sealed<br />

in/mm degrees lbf/kN lb/kg –<br />

2.75 4.3750 4.125 2.062 9 5 95 625 285 750 6.85 GEZM 212 ES -2RS -2LS<br />

69,850 111,125 104,78 52,38 430 1 270 3,10<br />

3 4.7500 4.500 2.250 9 5 112 500 337 500 8.80 GEZM 300 ES -2RS -2LS<br />

76,200 120,650 114,30 57,15 500 1 500 4,00<br />

3.25 5.1250 4.875 2.437 9 5 131 625 396 000 11.0 GEZM 304 ES -2RS -2LS<br />

82,550 130,175 123,83 61,90 590 1 760 5,00<br />

3.5 5.5000 5.250 2.625 9 5 153 000 459 000 14.0 GEZM 308 ES -2RS -2LS<br />

88,900 139,700 133,35 66,68 680 2 040 6,25<br />

3.75 5.8750 5.625 2.812 9 5 175 500 531 000 17.0 GEZM 312 ES -2RS -2LS<br />

95,250 149,225 142,88 71,43 780 2 360 7,60<br />

4 6.2500 6.000 3.000 9 5 202 500 596 250 20.0 GEZM 400 ES -2RS -2LS<br />

101,600 158,750 152,40 76,20 900 2 650 9,10<br />

4.5 7.0000 6.750 3.375 7 5 252 000 765 000 28.5 GEZM 408 ES -2RS -2LS<br />

114,300 177,800 171,45 85,73 1 120 3 400 13,0<br />

5 7.7500 7.500 3.750 7 5 315 000 933 750 38.5 GEZM 500 ES -2RS -2LS<br />

127,000 196,850 190,50 95,25 1 400 4 150 17,5<br />

6 8.7500 8.250 4.125 7 5 389 250 1 170 000 47.5 GEZM 600 ES -2RS -2LS<br />

152,400 222,250 209,55 104,78 1 730 5 200 21,5<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

122


r a<br />

D a<br />

d a<br />

2.4<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k d 1 b b 1 M r 1<br />

1) r 2<br />

2) d a d a D a D a sealed D a r a r b<br />

min min min max min min max max max<br />

in/mm<br />

in/mm<br />

2.75 3.9500 3.380 0.354 0.315 0.256 0.039 0.039 3.00 3.38 3.75 3.78 4.16 0.039 0.039<br />

69,850 100,330 85,9 9 8 6,5 1,0 1,0 76,2 85,9 95,3 96 105,7 1 1<br />

3 4.3120 3.675 0.354 0.315 0.256 0.039 0.039 3.26 3.68 4.09 4.13 4.53 0.039 0.039<br />

76,200 109,525 93,3 9 8 6,5 1,0 1,0 82,8 93,3 104 104,8 115 1 1<br />

3.25 4.6750 3.985 0.366 0.315 0.256 0.039 0.039 3.52 3.99 4.44 4.5 4.90 0.039 0.039<br />

82,550 118,745 101,2 9,3 8 6,5 1,0 1,0 89,4 101,2 112,8 114,2 124,4 1 1<br />

3.5 5.0400 4.300 0.413 0.315 0.256 0.039 0.039 3.78 4.3 4.79 4.83 5.27 0.039 0.039<br />

88,900 128,016 109,2 10,5 8 6,5 1,0 1,0 95,9 109,2 121,6 122,8 133,8 1 1<br />

3.75 5.3900 4.590 0.413 0.315 0.256 0.039 0.039 4.04 4.59 5.12 5.17 5.63 0.039 0.039<br />

95,250 136,906 116,6 10,5 8 6,5 1,0 1,0 102,5 116,6 130,1 131,4 143,1 1 1<br />

4 5.7500 4.905 0.413 0.394 0.315 0.059 0.039 4.33 4.91 5.47 5.49 6.00 0.059 0.039<br />

101,600 146,050 124,6 10,5 10 8 1,5 1,0 110 124,6 139 139,5 152,5 1,5 1<br />

4.5 6.4750 5.525 0.433 0.394 0.315 0.079 0.043 4.94 5.53 6.16 6.18 6.73 0.079 0.043<br />

114,300 164,465 140,3 11 10 8 2,0 1,1 125,5 140,3 156,5 157 171 2 1,1<br />

5 7.1900 6.130 0.433 0.394 0.315 0.079 0.043 5.45 6.13 6.83 6.91 7.42 0.079 0.043<br />

127,000 182,626 155,7 11 10 8 2,0 1,1 138,5 155,7 173,5 175,5 188,5 2 1,1<br />

6 8.1560 7.020 0.591 0.433 0.315 0.079 0.043 6.46 7.02 7.76 7.78 8.41 0.079 0.043<br />

152,400 207,162 178,3 15 11 8 2,0 1,1 164 178,3 197 197,5 213,5 2 1,1<br />

1) Equal to maximum shaft fillet radius r a max .<br />

2) Equal to maximum housing fillet radius r b max .<br />

123


Maintenance-free radial<br />

spherical plain bearings<br />

Dimensions..................................................................................................................................... 126<br />

Tolerances....................................................................................................................................... 126<br />

Radial internal clearance, preload.................................................................................................. 130<br />

Materials......................................................................................................................................... 130<br />

Permissible operating temperature range.................................................................................... 130<br />

3<br />

Product tables......................................................................................................... 132<br />

3.1 Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze,<br />

metric sizes.............................................................................................................................. 132<br />

3.2 Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes............. 134<br />

3.3 Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes................. 140<br />

3.4 Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes................ 144<br />

125


Maintenance-free radial spherical plain bearings<br />

<strong>SKF</strong> manufactures maintenance-free radial<br />

spherical plain bearings in a variety of designs<br />

<strong>and</strong> a wide range of sizes. Three sliding contact<br />

surface combinations are available:<br />

• Steel/PTFE sintered bronze, designation<br />

suffix C<br />

• Steel/PTFE fabric, designation suffix TX<br />

• Steel/PTFE FRP, designation suffix F<br />

All three sliding contact surface combinations<br />

are self-lubricating. <strong>Bearings</strong> with a steel/PTFE<br />

sintered bronze or steel/PTFE fabric sliding<br />

contact surface combinations must not be lubricated.<br />

<strong>Bearings</strong> with a steel/PTFE FRP (fibre<br />

reinforced polymer) sliding contact surface<br />

combination are also maintenance-free; however,<br />

occasional relubrication is beneficial to<br />

help maximize bearing service life. To facilitate<br />

relubrication, steel/PTFE FRP bearings are<br />

equipped with lubrication facilities.<br />

The different designs of <strong>SKF</strong> maintenancefree<br />

radial spherical plain bearings are listed in<br />

table 3 on pages 128 to 129. Their design<br />

depends on the size <strong>and</strong> series, with the main<br />

differences being the material or the design of<br />

the outer ring.<br />

Tolerances<br />

The dimensional tolerances for metric maintenance-free<br />

radial spherical plain bearings are in<br />

accordance with ISO 12240-1:1998 <strong>and</strong> listed<br />

in table 1.<br />

The dimensional tolerances for inch bearings<br />

in the GEZ series are in accordance with ANSI/<br />

ABMA Std. 22.2-1988 <strong>and</strong> listed in table 2. The<br />

symbols used are explained in the following:<br />

d nominal bore diameter<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D nominal outside diameter<br />

D Dmp deviation of the mean outside diameter<br />

from the nominal<br />

D Bs deviation of the single inner ring width<br />

from the nominal<br />

D Cs deviation of the single outer ring width<br />

from the nominal<br />

For the TX <strong>and</strong> TXG3 designs, outer ring tolerances<br />

apply to dimensions before fracture.<br />

Dimensions<br />

The dimensions of metric maintenance-free<br />

radial spherical plain bearings are in accordance<br />

with ISO 12240-1:1998. The dimensions of<br />

inch bearings in the GEZ series are in accordance<br />

with ANSI/ABMA Std. 22.2-1988.<br />

126


Table 1<br />

Dimensional tolerances for metric maintenance-free radial spherical plain bearings<br />

Nominal diameter Inner ring Outer ring<br />

d, D D dmp D Bs D Dmp D Cs<br />

over incl. high low high low high low high low<br />

mm µm µm µm µm<br />

– 18 0 –8 0 –120 0 –8 0 –240<br />

18 30 0 –10 0 –120 0 –9 0 –240<br />

30 50 0 –12 0 –120 0 –11 0 –240<br />

50 80 0 –15 0 –150 0 –13 0 –300<br />

80 120 0 –20 0 –200 0 –15 0 –400<br />

120 150 0 –25 0 –250 0 –18 0 –500<br />

150 180 0 –25 0 –250 0 –25 0 –500<br />

180 250 0 –30 0 –300 0 –30 0 –600<br />

250 315 0 –35 0 –350 0 –35 0 –700<br />

315 400 0 –40 0 –400 0 –40 0 –800<br />

400 500 0 –45 0 –450 0 –45 0 –900<br />

500 630 0 –50 0 –500 0 –50 0 –1 000<br />

630 800 0 –75 0 –750 0 –75 0 –1 100<br />

800 1 000 0 –100 0 –1 000 0 –100 0 –1 200<br />

1 000 1 250 0 –125 0 –1 250 0 –125 0 –1 300<br />

1 250 1 600 – – – – 0 –160 0 –1 600<br />

1 600 2 000 – – – – 0 –200 0 –2 000<br />

3<br />

Table 2<br />

Dimensional tolerances for inch maintenance-free radial spherical plain bearings<br />

Nominal diameter Inner ring Outer ring<br />

d, D D dmp D Bs D Dmp D Cs<br />

over incl. high low high low high low high low<br />

in µm µm µm µm<br />

– 2 0 –13 0 –130 0 –13 0 –130<br />

2 3 0 –15 0 –130 0 –15 0 –130<br />

3 3.1875 0 –20 0 –130 0 –15 0 –130<br />

3.1875 4.75 0 –20 0 –130 0 –20 0 –130<br />

4.75 6 0 –25 0 –130 0 –25 0 –130<br />

6 7 – – – – 0 –25 0 –130<br />

7 8.75 – – – – 0 –30 0 –130<br />

127


Maintenance-free radial spherical plain bearings<br />

Table 3<br />

Design of maintenance-free radial spherical plain bearings<br />

Sliding contact<br />

surface<br />

combination<br />

Lining<br />

Steel/PTFE sintered bronze Steel/PTFE fabric Steel/PTFE FRP<br />

1 PTFE<br />

2 Tin bronze<br />

3 Sheet steel backing<br />

1<br />

2<br />

3<br />

1 PTFE fibres<br />

2 Reinforcement fibres<br />

3 Resin<br />

4 Steel backing<br />

1<br />

2<br />

3<br />

4<br />

1 Fibres<br />

2 Polymer <strong>and</strong> PTFE<br />

3 Steel backing<br />

1<br />

2<br />

3<br />

Inner ring<br />

C <strong>and</strong> CJ2 designs<br />

Bearing steel, throughhardened<br />

<strong>and</strong> ground, sliding<br />

surface hard chromium<br />

plated<br />

TXA <strong>and</strong> TXE designs<br />

Bearing steel, through-hardened<br />

<strong>and</strong> ground, sliding surface hard<br />

chromium plated<br />

TXGR, TXG3E <strong>and</strong> TXG3A<br />

designs<br />

Stainless steel<br />

X 46 Cr 13/1.4034, hardened,<br />

ground<br />

Series GEP <strong>and</strong> GEC<br />

Bearing steel, through-hardened,<br />

ground, sliding surface<br />

hard chromium plated<br />

Outer ring<br />

C design<br />

Steel backing with PTFE<br />

sintered bronze layer pressed<br />

around the inner ring, with<br />

a butt joint<br />

CJ2 design<br />

Steel backing with PTFE<br />

sintered bronze sleeve<br />

pressed around the inner<br />

ring, without a butt joint<br />

TXA <strong>and</strong> TXE designs<br />

Bearing steel, through-hardened<br />

<strong>and</strong> ground<br />

TXA: axially split, held together<br />

by one or two b<strong>and</strong>s or<br />

bolted together<br />

TXE: fractured at one point<br />

TXG3A <strong>and</strong> TXG3E design<br />

Stainless steel<br />

X 46 Cr 13/1.4034,<br />

hardened, ground,<br />

TXG3A: axially split, held<br />

together by one or two<br />

b<strong>and</strong>s<br />

TXG3E: fractured at one point<br />

Series GEP <strong>and</strong> GEC<br />

Hardenable steel, ground,<br />

FRP shells are retained by side<br />

flanges <strong>and</strong> also glued to the<br />

outer ring<br />

Series GEP:<br />

radially split, separable<br />

Series GEC:<br />

axially split, held together by<br />

two b<strong>and</strong>s (d ≤ 400 mm) or<br />

bolted together (d > 400 mm)<br />

TXGR design<br />

Unhardened stainless steel<br />

X 17 CrNi 16-2 or equivalent,<br />

pressed around the inner ring,<br />

no butt joint<br />

128


Table 3<br />

Design of maintenance-free radial spherical plain bearings<br />

Sliding contact<br />

surface<br />

combination<br />

Steel/PTFE sintered bronze Steel/PTFE fabric Steel/PTFE FRP<br />

Seals<br />

RS design<br />

Available on request<br />

<strong>Bearings</strong> with designation<br />

suffix -2RS or -2LS (depending<br />

on bearing size) have a doubleor<br />

triple-lip seal on both sides<br />

(† page 79)<br />

None<br />

LS design<br />

3<br />

Permissible<br />

operating<br />

temperature<br />

range<br />

°C<br />

–50 to +150 °C,<br />

for short periods<br />

up to +280 °C<br />

<strong>Bearings</strong> without seals:<br />

–50 to +150 °C<br />

<strong>Bearings</strong> with RS seals:<br />

with a bore diameter<br />

d < 320 mm: –30 to +130 °C<br />

with a bore diameter<br />

d ≥ 320 mm: –35 to +100 °C<br />

–40 to +75 °C,<br />

for short periods<br />

up to +110 °C<br />

<strong>Bearings</strong> with LS seals:<br />

–50 to +110 °C<br />

Reduced carrying<br />

capacity above 80 °C<br />

Reduced carrying capacity above<br />

65 °C for both sealed <strong>and</strong><br />

unsealed bearings<br />

Reduced carrying capacity<br />

above 50 °C<br />

Lubrication<br />

(refer to<br />

the section<br />

Lubrication,<br />

starting on<br />

page 84)<br />

Self-lubricating; the bearings<br />

must not be lubricated<br />

Self-lubricating; the bearings<br />

must not be lubricated<br />

Greased before leaving factory,<br />

self-lubricating capability,<br />

however occasional relubrication<br />

extends service life<br />

129


Maintenance-free radial spherical plain bearings<br />

Radial internal clearance, preload<br />

Maintenance-free radial spherical plain<br />

bearings with a bore diameter d ≤ 90 mm either<br />

have an internal clearance or a slight preload<br />

(negative clearance) depending on their design.<br />

Therefore, these bearings can only be provided<br />

with an upper limit for bearing internal clearance.<br />

The lower limit must be assessed by the<br />

frictional moment, resulting from the preload<br />

(negative clearance).<br />

The radial internal clearance <strong>and</strong> the upper<br />

limit of the permissible frictional moment of<br />

bearings with a steel/PTFE sintered bronze<br />

sliding contact surface are listed in table 4. The<br />

values for the clearance limits of bearings with<br />

a steel/PTFE fabric <strong>and</strong> a steel/PTFE FRP sliding<br />

contact surface combination are listed in<br />

tables 5 to 8.<br />

Materials<br />

The materials for the inner ring, outer ring, sliding<br />

layer <strong>and</strong> seals, where applicable, are listed<br />

in table 3 on pages 128 to 129.<br />

Permissible operating temperature<br />

range<br />

The permissible operating temperature range<br />

of maintenance-free radial spherical plain bearings<br />

depends on the sliding contact surface<br />

combination <strong>and</strong> the material of the seals<br />

(† table 3 on pages 128 to 129). However, if<br />

the load carrying capacity of the bearings is to<br />

be fully exploited, the temperature range must<br />

be narrowed. Depending on the application, it is<br />

possible to operate at temperatures above the<br />

upper limit for brief periods. For additional<br />

information, contact the <strong>SKF</strong> application<br />

engineering service.<br />

Radial internal clearance <strong>and</strong> frictional moment of<br />

steel/PTFE sintered bronze bearings, metric sizes<br />

Nominal diameter Radial internal Frictional<br />

d clearance moment<br />

over incl. max max<br />

mm µm Nm<br />

Table 4<br />

Table 5<br />

Radial internal clearance for steel/PTFE fabric bearings,<br />

metric sizes<br />

Nominal diameter Radial internal<br />

d<br />

clearance<br />

over incl. min max<br />

mm µm<br />

Series GE .. C, CJ2<br />

2,5 12 28 0,15<br />

12 20 35 0,25<br />

20 30 44 0,40<br />

30 60 53 0,75<br />

Series GEH .. C<br />

2,5 10 28 0,15<br />

10 17 35 0,25<br />

17 25 44 0,40<br />

Series<br />

GE .. TXA, TXE, TXGR, TXG3A, TXG3E<br />

GEH 1) .. TXA, TXE, TXG3A, TXG3E<br />

GEC .. TXA<br />

12 – 50<br />

12 20 – 50<br />

20 30 – 50<br />

30 60 – 50<br />

60 90 – 50<br />

90 140 50 130<br />

140 180 50 140<br />

180 300 80 190<br />

300 460 100 230<br />

460 530 100 245<br />

530 670 100 260<br />

670 800 100 270<br />

1) <strong>Bearings</strong> in the GEH .. TX.. series with a bore diameter<br />

d = 90 mm have a radial clearance corresponding to the<br />

values quoted for the next larger diameter.<br />

130


Table 6<br />

Radial internal clearance for steel/PTFE fabric bearings,<br />

inch sizes<br />

Nominal diameter Radial internal<br />

d<br />

clearance<br />

over incl. min max<br />

in µm<br />

Series GEZ .. TXE, TXA<br />

– 3 – 50<br />

3 4.75 50 130<br />

4.75 50 140<br />

3<br />

Table 7<br />

Radial internal clearance for steel/PTFE FRP bearings,<br />

metric sizes<br />

Bore diameter<br />

Radial internal<br />

d<br />

clearance<br />

over incl. min max<br />

mm µm<br />

Table 8<br />

Radial internal clearance for steel/PTFE FRP bearings,<br />

metric sizes<br />

Nominal diameter Radial internal<br />

d<br />

clearance<br />

over incl. min max<br />

mm µm<br />

Series GEP .. FS<br />

90 120 85 285<br />

120 180 100 335<br />

180 220 100 355<br />

220 240 110 365<br />

240 280 110 380<br />

280 300 135 415<br />

300 380 135 490<br />

380 400 135 510<br />

400 480 145 550<br />

480 500 145 570<br />

500 600 160 610<br />

600 630 160 640<br />

630 750 170 670<br />

750 800 170 700<br />

800 950 195 770<br />

950 1 000 195 820<br />

Series GEC .. FBAS<br />

300 340 135 350<br />

340 400 135 360<br />

400 500 145 390<br />

500 530 160 420<br />

530 630 160 440<br />

630 670 170 460<br />

670 800 170 490<br />

800 850 195 530<br />

850 1 000 195 560<br />

131


Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze, metric sizes<br />

d 4 – 60 mm<br />

B<br />

C<br />

r 2<br />

a<br />

D<br />

d k<br />

r 1<br />

d<br />

GE .. C<br />

GE .. CJ2<br />

GEH .. C<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt 1) dynamic static<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

4 12 5 3 16 2,16 5,4 0,003 GE 4 C<br />

6 14 6 4 13 3,6 9 0,004 GE 6 C<br />

8 16 8 5 15 5,85 14,6 0,008 GE 8 C<br />

10 19 9 6 12 8,65 21,6 0,012 GE 10 C<br />

22 12 7 18 11,4 28,5 0,020 GEH 10 C<br />

12 22 10 7 10 11,4 28,5 0,017 GE 12 C<br />

26 15 9 18 18 45 0,030 GEH 12 C<br />

15 26 12 9 8 18 45 0,032 GE 15 C<br />

30 16 10 16 22,4 56 0,050 GEH 15 C<br />

17 30 14 10 10 22,4 56 0,050 GE 17 C<br />

35 20 12 19 31,5 78 0,090 GEH 17 C<br />

20 35 16 12 9 31,5 78 0,065 GE 20 C<br />

42 25 16 17 51 127 0,16 GEH 20 C<br />

25 42 20 16 7 51 127 0,12 GE 25 C<br />

47 28 18 17 65,5 166 0,20 GEH 25 C<br />

30 47 22 18 6 65,5 166 0,16 GE 30 C<br />

35 55 25 20 6 80 200 0,23 GE 35 CJ2<br />

40 62 28 22 7 100 250 0,32 GE 40 CJ2<br />

45 68 32 25 7 127 320 0,46 GE 45 CJ2<br />

50 75 35 28 6 156 390 0,56 GE 50 CJ2<br />

60 90 44 36 6 245 610 1,10 GE 60 CJ2<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

132


r a<br />

D a<br />

d a<br />

3.1<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

4 8 0,3 0,3 5,4 6,2 7,6 10,7 0,3 0,3<br />

6 10 0,3 0,3 7,4 8 9,5 12,7 0,3 0,3<br />

8 13 0,3 0,3 9,4 10,2 12,3 14,6 0,3 0,3<br />

10 16 0,3 0,3 11,5 13,2 15,2 17,6 0,3 0,3<br />

18 0,3 0,3 11,6 13,4 17,1 20,6 0,3 0,3<br />

12 18 0,3 0,3 13,5 15 17,1 20,6 0,3 0,3<br />

22 0,3 0,3 13,7 16,1 20,9 24,5 0,3 0,3<br />

15 22 0,3 0,3 16,6 18,4 20,9 24,5 0,3 0,3<br />

25 0,3 0,3 16,7 19,2 23,7 28,5 0,3 0,3<br />

17 25 0,3 0,3 18,7 20,7 23,7 28,5 0,3 0,3<br />

29 0,3 0,3 18,9 21 27,6 33,4 0,3 0,3<br />

20 29 0,3 0,3 21,8 24,2 27,6 33,4 0,3 0,3<br />

35,5 0,3 0,6 22,1 25,2 33,7 39,5 0,3 0,6<br />

25 35,5 0,6 0,6 27,7 29,3 33,7 39,5 0,6 0,6<br />

40,7 0,6 0,6 27,9 29,5 38,7 44,4 0,6 0,6<br />

30 40,7 0,6 0,6 32,8 34,2 38,7 44,4 0,6 0,6<br />

35 47 0,6 1 37,9 39,8 44,7 51,4 0,6 1<br />

40 53 0,6 1 42,9 45 50,4 58,3 0,6 1<br />

45 60 0,6 1 48,7 50,8 57 64,2 0,6 1<br />

50 66 0,6 1 53,9 56 62,7 71,1 0,6 1<br />

60 80 1 1 65,4 66,8 76 85,8 1 1<br />

133


Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes<br />

d 12 – 90 mm<br />

B<br />

C<br />

a<br />

r 2<br />

r 1<br />

D<br />

d<br />

d k<br />

GE .. TXGR GE .. TX(G3)E-2LS GE .. TX(G3)A-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt 1) dynamic static Material<br />

Bearing steel<br />

d D B C a C C 0<br />

Stainless steel<br />

mm degrees kN kg –<br />

12 22 10 7 10 30 50 0,017 – GE 12 TXGR<br />

15 26 12 9 8 47,5 80 0,032 – GE 15 TXGR<br />

17 30 14 10 10 60 100 0,050 – GE 17 TXGR<br />

20 35 16 12 9 83 140 0,065 GE 20 TXE-2LS GE 20 TXG3E-2LS<br />

42 25 16 17 137 228 0,15 GEH 20 TXE-2LS GEH 20 TXG3E-2LS<br />

25 42 20 16 7 137 228 0,12 GE 25 TXE-2LS GE 25 TXG3E-2LS<br />

47 28 18 17 176 290 0,19 GEH 25 TXE-2LS GEH 25 TXG3E-2LS<br />

30 47 22 18 6 176 290 0,16 GE 30 TXE-2LS GE 30 TXG3E-2LS<br />

55 32 20 17 224 375 0,29 GEH 30 TXE-2LS GEH 30 TXG3E-2LS<br />

35 55 25 20 6 224 375 0,23 GE 35 TXE-2LS GE 35 TXG3E-2LS<br />

62 35 22 15 280 465 0,39 GEH 35 TXE-2LS GEH 35 TXG3E-2LS<br />

40 62 28 22 6 280 465 0,32 GE 40 TXE-2LS GE 40 TXG3E-2LS<br />

68 40 25 17 360 600 0,52 GEH 40 TXE-2LS GEH 40 TXG3E-2LS<br />

45 68 32 25 7 360 600 0,46 GE 45 TXE-2LS GE 45 TXG3E-2LS<br />

75 43 28 14 440 735 0,69 GEH 45 TXE-2LS GEH 45 TXG3E-2LS<br />

50 75 35 28 6 440 735 0,56 GE 50 TXE-2LS GE 50 TXG3E-2LS<br />

90 56 36 17 695 1 160 1,41 GEH 50 TXE-2LS GEH 50 TXG3E-2LS<br />

60 90 44 36 6 695 1 160 1,10 GE 60 TXE-2LS GE 60 TXG3E-2LS<br />

105 63 40 17 880 1 460 2,06 GEH 60 TXE-2LS GEH 60 TXG3A-2LS<br />

70 105 49 40 6 880 1 460 1,55 GE 70 TXE-2LS GE 70 TXG3A-2LS<br />

120 70 45 16 1 140 1 900 2,99 GEH 70 TXE-2LS GEH 70 TXG3A-2LS<br />

80 120 55 45 5 1 140 1 900 2,30 GE 80 TXE-2LS GE 80 TXG3A-2LS<br />

130 75 50 14 1 370 2 320 3,55 GEH 80 TXE-2LS GEH 80 TXG3A-2LS<br />

90 130 60 50 5 1 370 2 320 2,75 GE 90 TXE-2LS GE 90 TXG3A-2LS<br />

150 85 55 15 1 730 2 850 5,40 GEH 90 TXA-2LS GEH 90 TXG3A-2LS<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

134


r a<br />

D a<br />

d a<br />

3.2<br />

GEH .. TX(G3)E-2LS<br />

GEH .. TX(G3)A-2LS<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

12 18 0,3 0,3 13,8 15 17,1 20,4 0,3 0,3<br />

15 22 0,3 0,3 16,9 18,4 20,9 24,3 0,3 0,3<br />

17 25 0,3 0,3 19 20,7 23,7 28,3 0,3 0,3<br />

20 29 0,3 0,3 22,1 24,2 27,6 33,2 0,3 0,3<br />

35,5 0,3 0,6 22,9 25,2 36,9 39,2 0,3 0,6<br />

25 35,5 0,6 0,6 28,2 29,3 36,9 39,2 0,6 0,6<br />

40,7 0,6 0,6 28,7 29,5 41,3 44 0,6 0,6<br />

30 40,7 0,6 0,6 33,3 34,2 41,3 44 0,6 0,6<br />

47 0,6 1 33,8 34,4 48,5 51 0,6 1<br />

35 47 0,6 1 38,5 39,8 48,5 51 0,6 1<br />

53 0,6 1 39 39,7 54,5 57,5 0,6 1<br />

40 53 0,6 1 43,5 45 54,5 57,5 0,6 1<br />

60 0,6 1 44,2 44,7 61 63,5 0,6 1<br />

45 60 0,6 1 49,5 50,8 61 63,5 0,6 1<br />

66 0,6 1 50 50 66,5 70,5 0,6 1<br />

50 66 0,6 1 54,5 56 66,5 70,5 0,6 1<br />

80 0,6 1 56 57,1 80 84 0,6 1<br />

60 80 1 1 66,5 66,8 80 84 1 1<br />

92 1 1 67 67 92 99 1 1<br />

70 92 1 1 76,5 77,9 92 99 1 1<br />

105 1 1 77,8 78,2 105 113 1 1<br />

80 105 1 1 87 89,4 105 113 1 1<br />

115 1 1 87,1 87,1 113 123 1 1<br />

90 115 1 1 97,5 98,1 113 123 1 1<br />

130 1 1 98,3 98,3 131 144 1 1<br />

135


Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes<br />

d 100 – 300 mm<br />

r 2<br />

B<br />

C<br />

a<br />

D<br />

d k<br />

r 1<br />

d<br />

GE .. TX(G3)A-2LS<br />

GEH .. TX(G3)A-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt 1) dynamic static Material<br />

Bearing steel<br />

d D B C a C C 0<br />

Stainless steel<br />

mm degrees kN kg –<br />

100 150 70 55 6 1 730 2 850 4,40 GE 100 TXA-2LS GE 100 TXG3A-2LS<br />

160 85 55 13 1 860 3 100 5,90 GEH 100 TXA-2LS GEH 100 TXG3A-2LS<br />

110 160 70 55 6 1 860 3 100 4,80 GE 110 TXA-2LS GE 110 TXG3A-2LS<br />

180 100 70 12 2 700 4 500 9,50 GEH 110 TXA-2LS GEH 110 TXG3A-2LS<br />

120 180 85 70 6 2 700 4 500 8,25 GE 120 TXA-2LS GE 120 TXG3A-2LS<br />

210 115 70 16 3 000 5 000 14,90 GEH 120 TXA-2LS GEH 120 TXG3A-2LS<br />

140 210 90 70 7 3 000 5 000 11,0 GE 140 TXA-2LS GE 140 TXG3A-2LS<br />

160 230 105 80 8 3 800 6 400 14,0 GE 160 TXA-2LS GE 160 TXG3A-2LS<br />

180 260 105 80 6 4 300 7 200 18,5 GE 180 TXA-2LS GE 180 TXG3A-2LS<br />

200 290 130 100 7 6 000 10 000 28,0 GE 200 TXA-2LS GE 200 TXG3A-2LS<br />

220 320 135 100 8 6 550 11 000 35,5 GE 220 TXA-2LS –<br />

240 340 140 100 8 7 200 12 000 40,0 GE 240 TXA-2LS –<br />

260 370 150 110 7 8 650 14 300 51,5 GE 260 TXA-2LS –<br />

280 400 155 120 6 10 000 16 600 65,0 GE 280 TXA-2LS –<br />

300 430 165 120 7 10 800 18 000 78,5 GE 300 TXA-2LS –<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

136


r a<br />

d a<br />

3.2<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

D a<br />

137<br />

100 130 1 1 108 109,5 131 144 1 1<br />

140 1 1 108,5 111,2 141,5 153 1 1<br />

110 140 1 1 118 121 141,5 153 1 1<br />

160 1 1 120 124,5 157,5 172 1 1<br />

120 160 1 1 130 135,5 157,5 172 1 1<br />

180 1 1 130,5 138 180 202 1 1<br />

140 180 1 1 149 155,5 180 202 1 1<br />

160 200 1 1 170 170 197 222 1 1<br />

180 225 1,1 1,1 191 199 224,5 250 1 1<br />

200 250 1,1 1,1 213 213,5 244,5 279 1 1<br />

220 275 1,1 1,1 233 239,5 271 309 1 1<br />

240 300 1,1 1,1 253 265 298 329 1 1<br />

260 325 1,1 1,1 273 288 321,5 359 1 1<br />

280 350 1,1 1,1 294 313,5 344,5 388 1 1<br />

300 375 1,1 1,1 314 336,5 371 418 1 1


Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes<br />

d 320 – 800 mm<br />

B<br />

C<br />

a<br />

r 2<br />

r 1<br />

D<br />

d k<br />

d<br />

GEC .. TXA-2RS<br />

d ≤ 400 mm<br />

GEC .. TXA-2RS<br />

d ≥ 420 mm<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt 1) dynamic static<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

320 440 160 135 4 14 000 23 200 75 GEC 320 TXA-2RS<br />

340 460 160 135 3 14 600 24 500 82,5 GEC 340 TXA-2RS<br />

360 480 160 135 3 15 300 25 500 84 GEC 360 TXA-2RS<br />

380 520 190 160 4 19 300 32 500 125 GEC 380 TXA-2RS<br />

400 540 190 160 3 20 400 34 000 130 GEC 400 TXA-2RS<br />

420 560 190 160 3 21 200 35 500 140 GEC 420 TXA-2RS<br />

440 600 218 185 3 26 000 43 000 195 GEC 440 TXA-2RS<br />

460 620 218 185 3 27 000 45 000 200 GEC 460 TXA-2RS<br />

480 650 230 195 3 30 000 50 000 235 GEC 480 TXA-2RS<br />

500 670 230 195 3 31 000 51 000 245 GEC 500 TXA-2RS<br />

530 710 243 205 3 34 500 57 000 290 GEC 530 TXA-2RS<br />

560 750 258 215 3 38 000 63 000 340 GEC 560 TXA-2RS<br />

600 800 272 230 3 43 000 72 000 405 GEC 600 TXA-2RS<br />

630 850 300 260 3 52 000 86 500 525 GEC 630 TXA-2RS<br />

670 900 308 260 3 55 000 91 500 590 GEC 670 TXA-2RS<br />

710 950 325 275 3 62 000 102 000 685 GEC 710 TXA-2RS<br />

750 1 000 335 280 3 65 500 110 000 770 GEC 750 TXA-2RS<br />

800 1 060 355 300 3 75 000 125 000 910 GEC 800 TXA-2RS<br />

1) To fully utilize the angle of tilt, the shaft shoulder should not be larger than d a max .<br />

138


r a<br />

d a<br />

3.2<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

D a<br />

139<br />

320 380 1,1 3 337 344 376 414 1 3<br />

340 400 1,1 3 357 366 396 434 1 3<br />

360 420 1,1 3 376 388 416 454 1 3<br />

380 450 1,5 4 400 407 445 490 1,5 4<br />

400 470 1,5 4 420 429 465 510 1,5 4<br />

420 490 1,5 4 439 451 485 530 1,5 4<br />

440 520 1,5 4 461 472 514 568 1,5 4<br />

460 540 1,5 4 482 494 534 587 1,5 4<br />

480 565 2 5 504 516 559 613 2 5<br />

500 585 2 5 524 537 579 633 2 5<br />

530 620 2 5 555 570 613 672 2 5<br />

560 655 2 5 585 602 648 711 2 5<br />

600 700 2 5 627 644 692 760 2 5<br />

630 740 3 6 662 676 732 802 3 6<br />

670 785 3 6 702 722 776 853 3 6<br />

710 830 3 6 744 763 821 901 3 6<br />

750 875 3 6 784 808 865 950 3 6<br />

800 930 3 6 835 859 920 1008 3 6


Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes<br />

d 1 – 3.75 in<br />

B<br />

C<br />

a<br />

D<br />

d k<br />

r 2<br />

r 1<br />

d<br />

GEZ .. TXE-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D B C a C C 0<br />

in/mm degrees lbf/kN lb/kg –<br />

1 1.6250 0.875 0.750 6 18 680 37 350 0.26 GEZ 100 TXE-2LS<br />

25,400 41,275 22,23 19,05 83 166 0,12<br />

1.25 2.0000 1.093 0.937 6 29 030 58 500 0.51 GEZ 104 TXE-2LS<br />

31,750 50,800 27,76 23,80 129 260 0,23<br />

1.375 2.1875 1.187 1.031 5 35 100 69 750 0.77 GEZ 106 TXE-2LS<br />

34,925 55,563 30,15 26,19 156 310 0,35<br />

1.5 2.4375 1.312 1.125 6 41 850 84 380 0.93 GEZ 108 TXE-2LS<br />

38,100 61,913 33,33 28,58 186 375 0,42<br />

1.75 2.8125 1.531 1.312 6 57 380 114 750 1.40 GEZ 112 TXE-2LS<br />

44,450 71,438 38,89 33,33 255 510 0,64<br />

2 3.1875 1.750 1.500 6 75 380 150 750 2.05 GEZ 200 TXE-2LS<br />

50,800 80,963 44,45 38,10 335 670 0,93<br />

2.25 3.5625 1.969 1.687 6 95 630 191 250 2.85 GEZ 204 TXE-2LS<br />

57,150 90,488 50,01 42,85 425 850 1,30<br />

2.5 3.9375 2.187 1.875 6 117 000 234 000 4.10 GEZ 208 TXE-2LS<br />

63,500 100,013 55,55 47,63 520 1 040 1,85<br />

2.75 4.3750 2.406 2.062 6 141 750 285 750 5.30 GEZ 212 TXE-2LS<br />

69,850 111,125 61,11 52,38 630 1 270 2,40<br />

3 4.75 2.625 2.25 6 168 750 337 500 6.84 GEZ 300 TXE-2LS<br />

76,200 120,650 66,68 57,15 750 1500 3,1<br />

3.25 5.125 2.844 2.437 6 198 000 396 000 8.38 GEZ 304 TXE-2LS<br />

82,550 130,175 72,24 61,9 880 1760 3,8<br />

3.5 5.5 3.062 2.625 6 229 500 459 000 10.58 GEZ 308 TXE-2LS<br />

88,900 139,700 77,78 66,68 1020 2040 4,8<br />

3.75 5.875 3.281 2.812 6 265 500 531 000 12.79 GEZ 312 TXE-2LS<br />

95,250 149,225 83,34 71,43 1180 2360 5,8<br />

140


r a<br />

D a<br />

d a<br />

3.3<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

in/mm<br />

in/mm<br />

1 1.4370 0.012 0.039 1.09 1.14 1.45 1.46 0.012 0.039<br />

25,400 36,500 0,3 1 27,6 28,9 36,8 37,1 0,3 1<br />

1.25 1.7950 0.024 0.039 1.38 1.42 1.81 1.83 0.024 0.039<br />

31,750 45,593 0,6 1 35 36,1 45,9 46,4 0,6 1<br />

1.375 1.9370 0.024 0.039 1.51 1.53 1.93 2.01 0.024 0.039<br />

34,925 49,200 0,6 1 38,3 38,8 49 51 0,6 1<br />

1.5 2.1550 0.024 0.039 1.64 1.71 2.17 2.25 0.024 0.039<br />

38,100 54,737 0,6 1 41,6 43,4 55,1 57,2 0,6 1<br />

1.75 2.5150 0.024 0.039 1.92 1.99 2.52 2.62 0.024 0.039<br />

44,450 63,881 0,6 1 48,8 50,6 64,1 66,5 0,6 1<br />

2 2.8750 0.024 0.039 2.18 2.28 2.85 2.95 0.024 0.039<br />

50,800 73,025 0,6 1 55,4 57,9 72,4 74,9 0,6 1<br />

2.25 3.2350 0.024 0.039 2.44 2.56 3.22 3.31 0.024 0.039<br />

57,150 82,169 0,6 1 62 65,1 81,9 84,1 0,6 1<br />

2.5 3.5900 0.024 0.039 2.7 2.85 3.56 3.68 0.024 0.039<br />

63,500 91,186 0,6 1 68,6 72,3 90,4 93,4 0,6 1<br />

2.75 3.9500 0.024 0.039 2.96 3.13 3.95 4.1 0.024 0.039<br />

69,850 100,330 0,6 1 75,2 79,5 100,4 104,2 0,6 1<br />

3 4.3120 0.024 0.039 3.220 3.417 4.299 4.469 0.024 0.039<br />

76,200 109,525 0,6 1 81,8 86,8 109,2 113,5 0,6 1<br />

3.25 4.675 0.024 0.039 3.480 3.709 4.677 4.831 0.024 0.039<br />

82,550 118,745 0,6 1 88,4 94,2 118,8 122,7 0,6 1<br />

3.5 5.04 0.024 0.039 3.740 4.000 5.024 5.197 0.024 0.039<br />

88,900 128,016 0,6 1 95 101,6 127,6 132 0,6 1<br />

3.75 5.39 0.024 0.039 4.000 4.276 5.362 5.559 0.024 0.039<br />

95,250 136,906 0,6 1 101,6 108,6 136,2 141,2 0,6 1<br />

141


Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes<br />

d 4 – 6 in<br />

r 2<br />

B<br />

C<br />

a<br />

D<br />

d k<br />

r 1<br />

d<br />

GEZ .. TXA-2LS<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D B C a C C 0<br />

in/mm degrees lbf/kN lb/kg –<br />

4 6.25 3.5 3 6 301 500 596 250 15.435 GEZ 400 TXA-2LS<br />

101,600 158,750 88,9 76,2 1340 2650 7<br />

4.5 7 3.937 3.375 6 382 500 765 000 21.609 GEZ 408 TXA-2LS<br />

114,300 177,800 100 85,725 1700 3400 9,8<br />

4.75 7.375 4.156 3.562 6 427 500 843 750 25.358 GEZ 412 TXA-2LS<br />

120,650 187,325 105,56 90,48 1900 3750 11,5<br />

5 7.75 4.375 3.75 6 468 000 933 750 29.768 GEZ 500 TXA-2LS<br />

127 196,850 111,13 95,25 2080 4150 13,5<br />

6 8.75 4.75 4.125 5 585 000 1 170 000 38.588 GEZ 600 TXA-2LS<br />

152,400 222,250 120,65 104,78 2600 5200 17,5<br />

142


r a<br />

d a<br />

3.3<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

in/mm<br />

in/mm<br />

D a<br />

143<br />

4 5.75 0.024 0.039 4.272 4.547 5.709 5.925 0.024 0.039<br />

101,600 146,050 0,6 1 108,5 115,5 145 150,5 0,6 1<br />

4.5 6.475 0.039 0.043 4.843 5.138 6.358 6.634 0.039 0.043<br />

114,300 164,465 1 1,1 123 130,5 161,5 168,5 1 1,1<br />

4.75 6.825 0.039 0.043 5.098 5.413 6.850 6.969 0.039 0.043<br />

120,650 173,355 1 1,1 129,5 137,5 174 177 1 1,1<br />

5 7.19 0.039 0.043 5.354 5.689 7.106 7.323 0.039 0.043<br />

127 182,626 1 1,1 136 144,5 180,5 186 1 1,1<br />

6 8.156 0.039 0.043 6.358 6.614 8.012 8.307 0.039 0.043<br />

152,400 207,162 1 1,1 161,5 168 203,5 211 1 1,1


Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes<br />

d 100 – 420 mm<br />

B<br />

C<br />

r 2<br />

b<br />

M<br />

a<br />

b1<br />

r 1<br />

D<br />

d k<br />

d<br />

GEP .. FS<br />

GEC .. FBAS<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

100 150 71 67 2 600 900 4,5 GEP 100 FS<br />

110 160 78 74 2 720 1 080 5,35 GEP 110 FS<br />

120 180 85 80 2 850 1 270 7,95 GEP 120 FS<br />

140 210 100 95 2 1 200 1 800 13 GEP 140 FS<br />

160 230 115 109 2 1 600 2 400 16,5 GEP 160 FS<br />

180 260 128 122 2 2 080 3 100 24,5 GEP 180 FS<br />

200 290 140 134 2 2 450 3 650 33,5 GEP 200 FS<br />

220 320 155 148 2 3 050 4 550 46 GEP 220 FS<br />

240 340 170 162 2 3 550 5 400 53,5 GEP 240 FS<br />

260 370 185 175 2 4 250 6 400 69,5 GEP 260 FS<br />

280 400 200 190 2 5 000 7 500 89,5 GEP 280 FS<br />

300 430 212 200 2 5 600 8 300 110 GEP 300 FS<br />

320 440 160 135 4 3 000 4 500 69,0 GEC 320 FBAS<br />

460 230 218 2 6 400 9 650 135 GEP 320 FS<br />

340 460 160 135 3 3 150 4 750 73,0 GEC 340 FBAS<br />

480 243 230 2 7 100 10 800 150 GEP 340 FS<br />

360 480 160 135 3 3 250 4 900 77,0 GEC 360 FBAS<br />

520 258 243 2 8 150 12 200 200 GEP 360 FS<br />

380 520 190 160 4 4 300 6 550 116 GEC 380 FBAS<br />

540 272 258 2 9 150 13 700 220 GEP 380 FS<br />

400 540 190 160 3 4 500 6 700 120 GEC 400 FBAS<br />

580 280 265 2 9 650 14 600 275 GEP 400 FS<br />

420 560 190 160 3 4 650 6 950 126 GEC 420 FBAS<br />

600 300 280 2 10 600 16 000 300 GEP 420 FS<br />

144


145<br />

r a<br />

D a<br />

d a<br />

3.4<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

100 135 7,5 7,5 4 1 1 107 114 125,6 141,9 1 1<br />

110 145 7,5 7,5 4 1 1 117 122 135 151 1 1<br />

120 160 7,5 7,5 4 1 1 128 135 149 171 1 1<br />

140 185 7,5 7,5 4 1 1 148 155 173 200 1 1<br />

160 210 7,5 7,5 4 1 1 169 175 195 218 1 1<br />

180 240 7,5 7,5 4 1,1 1,1 191 203 224 246 1 1<br />

200 260 11,5 11,5 5 1,1 1,1 211 219 242 276 1 1<br />

220 290 13,5 13,5 6 1,1 1,1 232 245 270 304 1 1<br />

240 310 13,5 13,5 6 1,1 1,1 253 259 289 323 1 1<br />

260 340 15,5 15,5 7 1,1 1,1 274 285 317 352 1 1<br />

280 370 15,5 15,5 7 1,1 1,1 294 311 345 381 1 1<br />

300 390 15,5 15,5 7 1,1 1,1 315 327 363 411 1 1<br />

320 380 21 21 8 1,1 3 328 344 370 426 1 3<br />

414 21 21 8 1,1 3 335 344 385 434 1 3<br />

340 400 21 21 8 1,1 3 348 366 391 446 1 3<br />

434 21 21 8 1,1 3 356 359 404 453 1 3<br />

360 420 21 21 8 1,1 3 368 388 412,5 466 1 3<br />

474 21 21 8 1,1 4 377 397 441 490 1 4<br />

380 450 21 21 8 1,5 4 389 407 435,5 503 1,5 4<br />

494 21 21 8 1,5 4 398 412 460 508 1,5 4<br />

400 470 21 21 8 1,5 4 409 429 457 523 1,5 4<br />

514 21 21 8 1,5 4 418 431 478 549 1,5 4<br />

420 490 21 21 8 1,5 4 429 451 478,5 543 1,5 4<br />

534 21 21 8 1,5 4 439 441 497 568 1,5 4


Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes<br />

d 440 – 850 mm<br />

B<br />

C<br />

r 2<br />

b<br />

M<br />

a<br />

b1<br />

r 1<br />

D<br />

d k<br />

d<br />

GEP .. FS<br />

GEC .. FBAS<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

440 600 218 185 3 5 850 8 800 176 GEC 440 FBAS<br />

630 315 300 2 12 200 18 600 360 GEP 440 FS<br />

460 620 218 185 3 6 000 9 000 182 GEC 460 FBAS<br />

650 325 308 2 12 900 19 600 380 GEP 460 FS<br />

480 650 230 195 3 6 700 10 000 216 GEC 480 FBAS<br />

680 340 320 2 14 300 21 200 435 GEP 480 FS<br />

500 670 230 195 3 6 800 10 200 224 GEC 500 FBAS<br />

710 355 335 2 15 300 23 200 500 GEP 500 FS<br />

530 710 243 205 3 7 650 11 400 266 GEC 530 FBAS<br />

750 375 355 2 17 000 25 500 585 GEP 530 FS<br />

560 750 258 215 4 8 500 12 700 313 GEC 560 FBAS<br />

800 400 380 2 19 600 29 000 730 GEP 560 FS<br />

600 800 272 230 3 9 800 14 600 378 GEC 600 FBAS<br />

850 425 400 2 22 000 33 500 860 GEP 600 FS<br />

630 850 300 260 3 11 800 18 000 494 GEC 630 FBAS<br />

900 450 425 2 24 500 37 500 1 040 GEP 630 FS<br />

670 900 308 260 3 12 500 18 600 551 GEC 670 FBAS<br />

950 475 450 2 27 500 41 500 1 210 GEP 670 FS<br />

710 950 325 275 3 14 000 21 200 643 GEC 710 FBAS<br />

1 000 500 475 2 31 000 46 500 1 400 GEP 710 FS<br />

750 1 000 335 280 3 15 000 22 400 727 GEC 750 FBAS<br />

1 060 530 500 2 34 500 52 000 1 670 GEP 750 FS<br />

800 1 060 355 300 3 17 300 26 000 861 GEC 800 FBAS<br />

1 120 565 530 2 39 000 58 500 1 940 GEP 800 FS<br />

850 1 120 365 310 3 18 600 28 000 983 GEC 850 FBAS<br />

1 220 600 565 2 45 000 67 000 2 600 GEP 850 FS<br />

146


147<br />

r a<br />

D a<br />

d a<br />

3.4<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max max min max max<br />

mm<br />

mm<br />

440 520 27 27 10 1,5 4 450 472 502 583 1,5 4<br />

574 27 27 10 1,5 4 460 479 534 596 1,5 4<br />

460 540 27 27 10 1,5 4 470 494 524,5 603 1,5 4<br />

593 27 27 10 1,5 5 481 496 552 612 1,5 5<br />

480 565 27 27 10 2 5 491 516 547,5 629 2 5<br />

623 27 27 10 2 5 503 522 580 641 2 5<br />

500 585 27 27 10 2 5 511 537 571 650 2 5<br />

643 27 27 10 2 5 523 536 598 670 2 5<br />

530 620 27 27 10 2 5 541 570 605 689 2 5<br />

673 27 27 10 2 5 554 558 626 709 2 5<br />

560 655 27 27 10 2 5 572 602 639 729 2 5<br />

723 27 27 10 2 5 585 602 673 758 2 5<br />

600 700 27 27 10 2 5 612 644 683 779 2 5<br />

773 27 27 10 2 6 627 645 719 801 2 6<br />

630 740 35 35 13 3 6 646 676 716 824 3 6<br />

813 35 35 13 3 6 661 677 757 850 3 6<br />

670 785 35 35 13 3 6 686 722 765 874 3 6<br />

862 35 35 13 3 6 702 719 802 898 3 6<br />

710 830 35 35 13 3 6 726 763 810 924 3 6<br />

912 35 35 13 3 6 743 762 849 946 3 6<br />

750 875 35 35 13 3 6 766 808 856 974 3 6<br />

972 35 35 13 3 6 784 814 904 1 005 3 6<br />

800 930 35 35 13 3 6 817 859 907 1 033 3 6<br />

1 022 35 35 13 3 6 836 851 951 1 062 3 6<br />

850 985 35 35 13 3 6 867 914 963 1 093 3 6<br />

1 112 35 35 13 3 7,5 888 936 1 035 1 156 3 7,5


Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes<br />

d 900 – 1 000 mm<br />

B<br />

C<br />

r 2<br />

b<br />

M<br />

a<br />

b1<br />

r 1<br />

D<br />

d k<br />

d<br />

GEP .. FS<br />

GEC .. FBAS<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D B C a C C 0<br />

mm degrees kN kg –<br />

900 1 180 375 320 3 20 400 31 000 1 120 GEC 900 FBAS<br />

1 250 635 600 2 49 000 73 500 2 690 GEP 900 FS<br />

950 1 250 400 340 3 23 200 34 500 1 340 GEC 950 FBAS<br />

1 360 670 635 2 56 000 85 000 3 620 GEP 950 FS<br />

1 000 1 320 438 370 3 27 000 40 000 1 650 GEC 1000 FBAS<br />

1 450 710 670 2 63 000 95 000 4 470 GEP 1000 FS<br />

148


r a<br />

D a<br />

d a<br />

3.4<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k b b 1 M r 1 r 2 d a d a D a D a r a r b<br />

min min min max min max max max<br />

mm<br />

mm<br />

900 1 040 35 35 13 3 6 917 970 1 017 1 153 3 6<br />

1 142 35 35 13 3 7,5 938 949 1 063 1 183 3 7,5<br />

950 1 100 40 40 15 4 7,5 969 1 024 1 074 1 217 4 7,5<br />

1 242 40 40 15 4 7,5 993 1 045 1 156 1 290 4 7,5<br />

1 000 1 160 40 40 15 4 7,5 1 020 1 074 1 128 1 287 4 7,5<br />

1 312 40 40 15 4 7,5 1 045 1 103 1 221 1 378 4 7,5<br />

149


Angular contact spherical<br />

plain bearings<br />

Dimensions..................................................................................................................................... 152<br />

Tolerances....................................................................................................................................... 152<br />

Radial internal clearance, preload.................................................................................................. 153<br />

Materials......................................................................................................................................... 154<br />

Permissible operating temperature range.................................................................................... 154<br />

Special designs............................................................................................................................... 154<br />

Product tables......................................................................................................... 156<br />

4.1 Maintenance-free angular contact spherical plain bearings, steel/PTFE FRP.................... 156<br />

4<br />

151


Angular contact spherical plain bearings<br />

As their name implies, the sliding contact surfaces<br />

of angular contact spherical plain bearings<br />

are spherical in shape <strong>and</strong> inclined at an angle to<br />

the bearing axis († fig. 1). Consequently, these<br />

bearings are well suited for accommodating<br />

combined (radial <strong>and</strong> axial) loads. Single angular<br />

contact spherical plain bearings can only<br />

accommodate axial loads acting in one direction.<br />

These bearings can be separated, enabling the<br />

rings to be mounted separately.<br />

<strong>SKF</strong> manufactures steel/PTFE FRP (fibre<br />

reinforced polymer containing PTFE) maintenance-free<br />

angular contact spherical plain<br />

bearings as st<strong>and</strong>ard. Designs with other sliding<br />

surface combinations are available on request<br />

(† Special designs, starting on page 154).<br />

Dimensions<br />

The boundary dimensions of <strong>SKF</strong> angular contact<br />

spherical plain bearings are in accordance<br />

with ISO 12240-2:1998.<br />

Tolerances<br />

The dimensional tolerances for <strong>SKF</strong> angular<br />

contact spherical plain bearings are listed<br />

in table 1 <strong>and</strong> are in accordance with<br />

ISO 12240-2:1998.<br />

The symbols used in the tolerance table are<br />

explained in the following:<br />

d nominal bore diameter<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D nominal outside diameter<br />

D Dmp deviation of the mean outside diameter<br />

from the nominal<br />

D Bs deviation of the single inner ring width<br />

from the nominal<br />

D Cs deviation of the single outer ring width<br />

from the nominal<br />

D Ts deviation of the single bearing width from<br />

the nominal<br />

Table 1<br />

Dimensional tolerances for angular contact spherical plain bearings<br />

Nominal diameter Inner ring Outer ring Bearing width<br />

d, D D dmp D Bs D Dmp D Cs D 1) Ts<br />

over incl. high low high low high low high low high low<br />

mm µm µm µm µm µm<br />

18 50 0 –12 0 –240 0 –14 0 –240 +250 –400<br />

50 80 0 –15 0 –300 0 –16 0 –300 +250 –500<br />

80 120 0 –20 0 –400 0 –18 0 –400 +250 –600<br />

120 150 – – – – 0 –20 0 –500 – –<br />

150 180 – – – – 0 –25 0 –500 – –<br />

1) The tolerance of the bearing width depends on d.<br />

152


Radial internal clearance, preload<br />

The internal clearance of a single angular<br />

contact spherical plain bearing is only obtained<br />

after mounting <strong>and</strong> depends on the adjustment<br />

against a second bearing that provides axial<br />

location in the opposite direction. Angular<br />

contact spherical plain bearings are generally<br />

mounted as pairs in a back-to-back († fig. 2)<br />

or face-to-face arrangement († fig. 3). The<br />

bearings are adjusted against each other by<br />

axially displacing one bearing ring until a specific<br />

bearing load of 10 N/mm 2 is obtained. The<br />

preload prevents some of the deformations that<br />

typically occur under load <strong>and</strong> after a brief running-in<br />

period. When adjusting a new bearing<br />

arrangement for the first time, the specific<br />

bearing load of 10 N/mm 2 is achieved when the<br />

frictional moment <strong>and</strong> the axial preload force<br />

are in the ranges listed in table 2.<br />

Load line through an angular contact spherical plain<br />

bearing<br />

Fig. 1<br />

Fig. 2<br />

Angular contact spherical plain bearings, back-to-back<br />

arrangement<br />

4<br />

Frictional moment <strong>and</strong> axial preload force<br />

Bearing Frictional Axial<br />

moment<br />

preload<br />

for<br />

force<br />

10 N/mm 2 for<br />

min max 10 N/mm 2<br />

– Nm N<br />

GAC 25 F 7 9 5 600<br />

GAC 30 F 12 14 7 500<br />

GAC 35 F 16 19 9 300<br />

GAC 40 F 21 25 10 600<br />

GAC 45 F 26 32 13 600<br />

GAC 50 F 31 38 12 900<br />

GAC 60 F 51 62 17 800<br />

GAC 70 F 76 92 21 000<br />

GAC 80 F 105 126 30 000<br />

GAC 90 F 153 184 41 700<br />

GAC 100 F 180 216 39 500<br />

GAC 110 F 273 328 54 500<br />

GAC 120 F 317 380 69 500<br />

Table 2<br />

Fig. 3<br />

Angular contact spherical plain bearings, face-to-face<br />

arrangement<br />

153


Angular contact spherical plain bearings<br />

Materials<br />

The inner <strong>and</strong> outer rings of <strong>SKF</strong> angular<br />

contact spherical plain bearings are made of<br />

bearing steel that has been through-hardened<br />

<strong>and</strong> ground. The sliding layer of fibre reinforced<br />

polymer, containing PTFE, is injection moulded<br />

onto the outer ring († fig. 4). The sliding surface<br />

of the inner ring is hard chromium plated<br />

<strong>and</strong> coated with a lithium base grease.<br />

Maintenance-free angular contact spherical plain<br />

bearing, steel/PTFE FRP<br />

Fig. 4<br />

Permissible operating temperature<br />

range<br />

<strong>Spherical</strong> plain bearings with a steel/PTFE FRP<br />

sliding contact surface combination can be used<br />

for operating temperatures ranging from –40<br />

to +75 °C. For brief periods, temperatures up to<br />

110 °C can be tolerated. However, keep in mind<br />

that the load carrying capacity of the bearing is<br />

reduced at temperatures that exceed 50 °C. For<br />

additional information, contact the <strong>SKF</strong><br />

application engineering service.<br />

Maintenance-free angular spherical plain bearing,<br />

steel/PTFE fabric<br />

Fig. 5<br />

Special designs<br />

Special operating conditions may require angular<br />

contact spherical plain bearings with a steel/<br />

PTFE fabric or steel/steel sliding contact surface<br />

combination. These bearings are available on<br />

request.<br />

<strong>Bearings</strong> with a maintenance-free steel/PTFE<br />

fabric sliding contact surface combination<br />

(† fig. 5) should be used when lubricant-free<br />

operation is specified. These bearings can<br />

accommodate heavy loads, preferably in a constant<br />

direction.<br />

Steel/steel bearings († fig. 6) are typically<br />

used in applications where operating temperatures<br />

or load frequencies are high, or where<br />

heavy or shock loads occur. To operate properly,<br />

steel/steel bearings must be provided with an<br />

adequate supply of lubricant. Depending on the<br />

operating conditions, the sliding surface of the<br />

outer ring may be equipped with various multigroove<br />

patterns († figs. 7 <strong>and</strong> 8). For additional<br />

information, contact the <strong>SKF</strong> application engineering<br />

service.<br />

Upon request, inch steel/steel angular contact<br />

spherical plain bearings are also available as<br />

double direction angular contact spherical plain<br />

bearings. Double direction bearings can be used<br />

instead of two angular contact bearings in a<br />

face-to face arrangement, or as a high capacity<br />

Angular contact spherical plain bearing, steel/steel,<br />

requiring maintenance<br />

Fig. 6<br />

154


Angular contact spherical plain bearing<br />

with “waffle” grooves, steel/steel<br />

Fig. 7<br />

radial bearing. Double direction angular contact<br />

spherical plain bearings consist of two outer<br />

rings <strong>and</strong> a st<strong>and</strong>ard inner ring. <strong>SKF</strong> supplies<br />

these bearings with (GEZPR .. S series) or without<br />

(GEZP .. S series) a shim between the two<br />

outer rings. The shim simplifies installation <strong>and</strong><br />

optimizes axial internal clearance within the<br />

bearing († fig. 9).<br />

Fig. 8<br />

Angular contact spherical plain bearing<br />

with “diamond thread” grooves, steel/steel<br />

4<br />

Fig. 9<br />

Double direction angular contact spherical plain bearing<br />

in the GEZPR .. S series, steel/steel<br />

155


Maintenance-free angular contact spherical plain bearings, steel/PTFE FRP<br />

d 25 – 120 mm<br />

T<br />

C<br />

r 1 r 2<br />

s<br />

r 2 r 1<br />

d k<br />

B<br />

D<br />

d<br />

a<br />

GAC .. F<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D T a C C 0<br />

mm degrees kN kg –<br />

25 47 15 3,5 21,6 34,5 0,14 GAC 25 F<br />

30 55 17 3,5 27 43 0,21 GAC 30 F<br />

35 62 18 3,5 32,5 52 0,27 GAC 35 F<br />

40 68 19 3,5 39 62 0,33 GAC 40 F<br />

45 75 20 3 45,5 73,5 0,42 GAC 45 F<br />

50 80 20 3 53 85 0,46 GAC 50 F<br />

60 95 23 3 69,5 112 0,73 GAC 60 F<br />

70 110 25 2,5 88 143 1,05 GAC 70 F<br />

80 125 29 2,5 110 176 1,55 GAC 80 F<br />

90 140 32 2,5 134 216 2,10 GAC 90 F<br />

100 150 32 2 170 270 2,35 GAC 100 F<br />

110 170 38 2 200 320 3,70 GAC 110 F<br />

120 180 38 1,5 240 380 4,00 GAC 120 F<br />

156


a<br />

r a<br />

D a d a<br />

d b D b<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k B C r 1 r 2 s d a d b D a D b r a<br />

min min max max min min max<br />

4.1<br />

mm<br />

mm<br />

25 42 15 14 0,6 0,3 0,6 29 39 34 43 0,6<br />

30 49,5 17 15 1 0,3 1,3 35 45 39 50,5 1<br />

35 55,5 18 16 1 0,3 2,1 40 50 45 56,5 1<br />

40 62 19 17 1 0,3 2,8 45 54 50 63 1<br />

45 68,5 20 18 1 0,3 3,5 51 60 55 69 1<br />

50 74 20 19 1 0,3 4,3 56 67 60 74,5 1<br />

60 88,5 23 21 1,5 0,6 5,7 68 77 70 90 1,5<br />

70 102 25 23 1,5 0,6 7,2 78 92 85 103 1,5<br />

80 115 29 25,5 1,5 0,6 8,6 88 104 95 116 1,5<br />

90 128,5 32 28 2 0,6 10,1 101 118 105 129 2<br />

100 141 32 31 2 0,6 11,6 112 128 120 141 2<br />

110 155 38 34 2,5 0,6 13 124 145 130 156 2,5<br />

120 168 38 37 2,5 0,6 14,5 134 155 140 169 2,5<br />

157


Thrust spherical plain<br />

bearings<br />

Dimensions..................................................................................................................................... 160<br />

Tolerances....................................................................................................................................... 160<br />

Materials......................................................................................................................................... 161<br />

Permissible operating temperature range.................................................................................... 161<br />

Special designs............................................................................................................................... 162<br />

Product tables......................................................................................................... 164<br />

5.1 Maintenance-free thrust spherical plain bearings, steel/PTFE FRP.................................... 164<br />

5<br />

159


Thrust spherical plain bearings<br />

Thrust spherical plain bearings have a convex<br />

spherical surface on the shaft washer <strong>and</strong> a<br />

corresponding concave spherical surface in the<br />

housing washer († fig. 1). They are intended to<br />

accommodate primarily axial loads but can also<br />

accommodate combined (radial <strong>and</strong> axial) loads.<br />

The radial load component of a combined load<br />

should not exceed 50% of the axial load component.<br />

When radial loads are larger, it is advisable<br />

to combine thrust bearings with radial bearings<br />

in the GE dimension series († fig. 2). Thrust<br />

spherical plain bearings are separable, e.g. shaft<br />

<strong>and</strong> housing washers can be mounted<br />

separately.<br />

<strong>SKF</strong> manufactures thrust spherical plain<br />

bearings with the maintenance-free steel/<br />

PTFE FRP (fibre reinforced polymer containing<br />

PTFE) sliding contact surface combination as<br />

st<strong>and</strong>ard. Other sliding surface combinations<br />

are available on request († Special designs,<br />

page 162).<br />

Tolerances<br />

The dimensional tolerances for <strong>SKF</strong> thrust<br />

spherical plain bearings are listed in table 1 <strong>and</strong><br />

are in accordance with ISO 12240-3:1998.<br />

The symbols used in the tolerance table are<br />

explained in the following:<br />

d nominal bore diameter (shaft washer)<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D nominal outside diameter (housing<br />

washer)<br />

D Dmp deviation of the mean outside diameter<br />

from the nominal<br />

D Bs deviation of the single shaft washer height<br />

from the nominal<br />

D Cs deviation of the single housing washer<br />

height from the nominal<br />

D Ts deviation of the single thrust bearing<br />

height from the nominal<br />

Dimensions<br />

The principal dimensions of <strong>SKF</strong> thrust<br />

spherical plain bearings are in accordance<br />

with ISO 12240-3:1998.<br />

St<strong>and</strong>ard thrust spherical plain bearing,<br />

steel/PTFE FRP<br />

Fig. 1<br />

Combination of a radial <strong>and</strong> a thrust spherical plain<br />

bearing<br />

Fig. 2<br />

160


Materials<br />

Shaft <strong>and</strong> housing washers for <strong>SKF</strong> thrust<br />

spherical plain bearings are made of bearing<br />

steel that has been through-hardened <strong>and</strong><br />

ground. The sliding surface of the shaft washer<br />

is hard chromium plated <strong>and</strong> coated with a lithium<br />

base grease. The sliding layer of fibre reinforced<br />

polymer, containing PTFE, is injection moulded<br />

onto the housing washer.<br />

Permissible operating temperature<br />

range<br />

Thrust spherical plain bearings with a steel/<br />

PTFE FRP sliding contact surface combination<br />

can be used for operating temperatures ranging<br />

from –40 to +75 °C. For brief periods, temperatures<br />

up to 110 °C can be tolerated. However,<br />

keep in mind that the load carrying capacity of<br />

the bearing is reduced at temperatures that<br />

exceed 50 °C. For additional information,<br />

contact the <strong>SKF</strong> application engineering service.<br />

5<br />

Table 1<br />

Dimensional tolerances for thrust spherical plain bearings<br />

Nominal diameter Shaft washer Housing washer Bearing height<br />

d, D D dmp D Bs D Dmp D Cs D 1) Ts<br />

over incl. high low high low high low high low high low<br />

mm µm µm µm µm µm<br />

– 18 0 –8 0 –240 – – – – +250 –400<br />

18 30 0 –10 0 –240 – – – – +250 –400<br />

30 50 0 –12 0 –240 0 –11 0 –240 +250 –400<br />

50 80 0 –15 0 –300 0 –13 0 –300 +250 –500<br />

80 120 0 –20 0 –400 0 –15 0 –400 +250 –600<br />

120 150 – – – – 0 –18 0 –500 – –<br />

150 180 – – – – 0 –25 0 –500 – –<br />

180 230 – – – – 0 –30 0 –600 – –<br />

1) The tolerance of the bearing height is dependent on d.<br />

161


Special designs<br />

Special operating conditions may require thrust<br />

spherical plain bearings with a steel/steel or<br />

steel/PTFE fabric sliding contact combination,<br />

which are available on request.<br />

Steel/steel bearings († fig. 3) are typically<br />

used in applications where operating temperatures<br />

or load frequencies are high, or where<br />

heavy loads or shock loads occur. Steel/steel<br />

bearings must be provided with an adequate<br />

supply of lubricant. Depending on the operating<br />

conditions, the sliding surface of the outer ring<br />

may be equipped with various multi-groove<br />

patterns.<br />

<strong>Bearings</strong> with a maintenance-free<br />

steel/PTFE fabric sliding contact surface<br />

(† fig. 4) should be used when lubricant-free<br />

operation is specified. These bearings can<br />

accommodate heavy loads, preferably in<br />

a constant direction.<br />

Thrust spherical plain bearing, steel/steel, requiring<br />

maintenance<br />

Maintenance-free thrust spherical plain bearing,<br />

steel/PTFE fabric<br />

Fig. 3<br />

Fig. 4<br />

162


163<br />

5


Maintenance-free thrust spherical plain bearings, steel/PTFE FRP<br />

d 17 – 120 mm<br />

d 1<br />

s<br />

d k<br />

r 1<br />

T C<br />

D 1<br />

B<br />

a<br />

r 1<br />

d<br />

D<br />

GX .. F<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d D T a C C 0<br />

mm degrees kN kg –<br />

17 47 16 5 36,5 58,5 0,14 GX 17 F<br />

20 55 20 5 46,5 73,5 0,25 GX 20 F<br />

25 62 22,5 5 69,5 112 0,42 GX 25 F<br />

30 75 26 5 95 153 0,61 GX 30 F<br />

35 90 28 6 134 216 0,98 GX 35 F<br />

40 105 32 6 173 275 1,50 GX 40 F<br />

45 120 36,5 6 224 355 2,25 GX 45 F<br />

50 130 42,5 6 275 440 3,15 GX 50 F<br />

60 150 45 6 375 600 4,65 GX 60 F<br />

70 160 50 5 475 750 5,40 GX 70 F<br />

80 180 50 5 570 915 6,95 GX 80 F<br />

100 210 59 5 735 1 180 11,0 GX 100 F<br />

120 230 64 4 880 1 430 14,0 GX 120 F<br />

164


d a<br />

r a<br />

r a<br />

D a<br />

Dimensions<br />

Abutment <strong>and</strong> fillet dimensions<br />

d d k d 1 D 1 B C r 1 s d a D a r a<br />

min min max max<br />

mm<br />

mm<br />

17 52 43,5 27 11,8 11,2 0,6 11 34 37 0,6<br />

20 60 50 31 14,5 13,8 1 12,5 40 44 1<br />

25 68 58,5 34,5 16,5 16,7 1 14 45 47 1<br />

30 82 70 42 19 19 1 17,5 56 59 1<br />

35 98 84 50,5 22 20,7 1 22 66 71 1<br />

40 114 97 59 27 21,5 1 24,5 78 84 1<br />

45 128 110 67 31 25,5 1 27,5 89 97 1<br />

50 139 120 70 33 30,5 1 30 98 105 1<br />

60 160 140 84 37 34 1 35 109 120 1<br />

70 176 153 94,5 42 36,5 1 35 121 125 1<br />

80 197 172 107,5 43,5 38 1 42,5 135 145 1<br />

100 222 198 127 51 46 1 45 155 170 1<br />

120 250 220 145 53,5 50 1 52,5 170 190 1<br />

5.1<br />

165


<strong>Rod</strong> ends requiring<br />

maintenance<br />

Dimensions..................................................................................................................................... 168<br />

Tolerances....................................................................................................................................... 168<br />

Radial internal clearance................................................................................................................ 169<br />

Materials......................................................................................................................................... 169<br />

Permissible operating temperature range.................................................................................... 170<br />

Fatigue strength.............................................................................................................................. 171<br />

Relubrication facilities..................................................................................................................... 171<br />

Product tables......................................................................................................... 172<br />

6.1 <strong>Rod</strong> ends with a female thread, steel/steel............................................................................ 172<br />

6.2 <strong>Rod</strong> ends with a female thread, for hydraulic cylinders, steel/steel...................................... 174<br />

6.3 <strong>Rod</strong> ends with a male thread, steel/steel............................................................................... 178<br />

6.4 <strong>Rod</strong> ends with a cylindrical section welding shank, steel/steel............................................. 180<br />

6.5 <strong>Rod</strong> ends with a rectangular section welding shank, steel/steel........................................... 182<br />

6.6 <strong>Rod</strong> ends with a female thread, steel/bronze........................................................................ 184<br />

6.7 <strong>Rod</strong> ends with a male thread, steel/bronze........................................................................... 186<br />

6<br />

167


<strong>Rod</strong> ends requiring maintenance<br />

<strong>SKF</strong> manufactures rod ends requiring maintenance<br />

with a steel/steel or a steel/bronze sliding<br />

contact surface combination.<br />

Steel/steel rod ends consist of a rod end<br />

housing <strong>and</strong> a steel/steel radial spherical plain<br />

bearing from the st<strong>and</strong>ard assortment, where<br />

the outer ring is secured in the housing. These<br />

rod ends are available with a female thread<br />

(† fig. 1), male thread († fig. 2) or a welding<br />

shank († fig. 3).<br />

Steel/bronze rod ends consist of a rod end<br />

housing <strong>and</strong> a steel/bronze spherical plain bearing.<br />

These bearings have an inner ring made of<br />

steel <strong>and</strong> an outer ring made of bronze. The<br />

bearing is held in position by staking the housing<br />

on both sides of the outer ring. These rod<br />

ends are available with a male or female thread.<br />

<strong>SKF</strong> supplies rod ends with a threaded shank<br />

with a right-h<strong>and</strong> thread as st<strong>and</strong>ard. With the<br />

exception of rod ends with the designation suffix<br />

VZ019, all rod ends are also available with a<br />

left-h<strong>and</strong> thread. They are identified by the designation<br />

prefix L.<br />

<strong>Rod</strong> end with a female thread<br />

<strong>Rod</strong> end with a male thread<br />

Fig. 1<br />

Fig. 2<br />

Dimensions<br />

The dimensions of <strong>SKF</strong> rod ends requiring<br />

maintenance are in accordance with the st<strong>and</strong>ards<br />

listed in table 1.<br />

Male <strong>and</strong> female threads of <strong>SKF</strong> rod ends are<br />

in accordance with ISO 965-1:1998, except for<br />

rod ends with female thread having the designation<br />

suffix /VZ019, which is in accordance<br />

with ISO 8139:2009.<br />

Tolerances<br />

<strong>SKF</strong> rod end inner ring dimensional tolerances<br />

are in accordance with ISO 12240-4:1998. The<br />

tolerances for the steel/steel rod end inner rings<br />

are listed in table 3 <strong>and</strong> the tolerances for steel/<br />

bronze rod end inner rings are listed in table 2.<br />

The symbols used in these tables are<br />

explained in the following:<br />

d nominal bore diameter<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D Bs deviation of the single inner ring width<br />

from the nominal<br />

<strong>Rod</strong> ends with a welding shank<br />

Fig. 3<br />

cylindrical<br />

section<br />

rectangular<br />

section<br />

168


Radial internal clearance<br />

The clearance values for steel/steel rod ends are<br />

in accordance with dimension series E <strong>and</strong> EH of<br />

ISO 12240-4:1998, as far as they have been<br />

st<strong>and</strong>ardized. The values are listed in table 4 on<br />

page 170.<br />

The clearance values for steel/bronze rod<br />

ends are in accordance with dimensions series K<br />

of ISO 12240-4:1998 <strong>and</strong> are listed in table 5<br />

on page 170.<br />

Materials<br />

<strong>SKF</strong> rod end housings for bearings that require<br />

maintenance are made of the materials listed in<br />

table 6 on page 170.<br />

The materials used for steel/steel radial<br />

spherical plain bearings incorporated in <strong>SKF</strong> rod<br />

ends are provided in the section Materials on<br />

page 102.<br />

The bearings incorporated in the steel/bronze<br />

rod ends have an outer ring made of bronze <strong>and</strong><br />

an inner ring made of bearing steel which has<br />

been hardened <strong>and</strong> ground.<br />

St<strong>and</strong>ards<br />

Series<br />

St<strong>and</strong>ards<br />

Table 1<br />

SA(A) ISO 12240-4:1998 dimension series E, EH<br />

SI(A) ISO 12240-4:1998 dimension series E, EH<br />

SC<br />

ISO 12240-4:1998 dimension series E<br />

SCF –<br />

SIJ ISO 8133:2006<br />

SIR –<br />

SIQG ISO 8132:2006<br />

SAKAC ISO 12240-4:1998 dimension series K<br />

SIKAC ISO 12240-4:1998 dimension series K<br />

SIKAC/VZ019 ISO 8139:2009, ISO 12240-4:1998<br />

Table 2<br />

Inner ring dimensional tolerances for steel/bronze rod<br />

ends<br />

Bore SIKAC <strong>and</strong> SAKAC series<br />

diameter<br />

d D dmp D Bs<br />

over incl. high low high low<br />

mm µm µm<br />

– 6 12 0 0 –120<br />

6 10 15 0 0 –120<br />

10 18 18 0 0 –120<br />

18 30 21 0 0 –120<br />

6<br />

Table 3<br />

Inner ring dimensional tolerances for steel/steel rod ends<br />

Bore diameter SA(A), SI(A), SIJ, SIR, SIQG series<br />

SC <strong>and</strong> SCF series<br />

d D dmp D Bs D dmp D Bs<br />

over incl. high low high low high low high low<br />

mm µm µm µm µm<br />

– 10 0 –8 0 –120 – – – –<br />

10 18 0 –8 0 –120 18 0 0 –180<br />

18 30 0 –10 0 –120 21 0 0 –210<br />

30 50 0 –12 0 –120 25 0 0 –250<br />

50 80 0 –15 0 –150 30 0 0 –300<br />

80 120 0 –20 0 –200 35 0 0 –350<br />

120 180 0 –25 0 –250 40 0 0 –400<br />

180 250 0 –30 0 –300 46 0 0 –460<br />

169


<strong>Rod</strong> ends requiring maintenance<br />

Permissible<br />

operating temperature range<br />

The permissible operating temperature range<br />

for <strong>SKF</strong> rod ends requiring maintenance<br />

depends on the rod end housing, the bearing,<br />

the bearing seals <strong>and</strong> the grease used for lubrication.<br />

The values for the permissible operating<br />

temperature range are listed in table 7.<br />

The load carrying capacity of the rod end is<br />

reduced at temperatures above 100 °C. For<br />

temperatures below 0 °C, check to be sure that<br />

the fracture toughness of the rod end housing is<br />

adequate for the intended application.<br />

Table 4<br />

Radial internal clearance for steel/steel rod ends<br />

Bore<br />

Radial internal<br />

diameter<br />

clearance<br />

d<br />

Normal<br />

over incl. min max<br />

mm µm<br />

Table 5<br />

Radial internal clearance for steel/bronze rod ends<br />

Bore<br />

Radial internal<br />

diameter<br />

clearance<br />

d<br />

Normal<br />

over incl. min max<br />

mm µm<br />

– 12 16 68<br />

12 20 20 82<br />

20 35 25 100<br />

35 60 30 120<br />

60 90 36 142<br />

90 140 42 165<br />

140 240 50 192<br />

– 6 5 50<br />

6 10 7 61<br />

10 18 8 75<br />

18 30 10 92<br />

Table 6<br />

Housing materials for rod ends requiring maintenance<br />

Series Size Material Material No.<br />

SA(A) 6 to 80 Heat treatable steel C45V 1.0503<br />

zinc coated <strong>and</strong> chromatized<br />

SI(A) 6 to 80 Heat treatable steel C45V 1.0503<br />

zinc coated <strong>and</strong> chromatized<br />

SC 20 to 80 Construction steel S 355 J2G3 (St 52-3 N) 1.0570<br />

SCF 20 to 80 Construction steel S 355 J2G3 (St 52-3 N) 1.0570<br />

SIQG 12 to 63 Heat treatable steel C45 1.0503<br />

70 to 200 EN-GJS-400-15 –<br />

SIJ 12 to 50 Heat treatable steel C45 1.0503<br />

60 to 100 EN-GJS-400-15 –<br />

SIR 25 to 80 Heat treatable steel C45 1.0503<br />

90 to 120 EN-GJS-400-15 –<br />

SAKAC 5 to 12 Free-machining steel 9 SMnPb 28 K 1.0718<br />

zinc coated <strong>and</strong> chromatized<br />

14 to 30 Heat treatable steel C35N 1.0501<br />

zinc coated <strong>and</strong> chromatized<br />

SIKAC 5 to 12 Free-machining steel 9 SMnPb 28 K 1.0718<br />

zinc coated <strong>and</strong> chromatized<br />

14 to 30 Heat treatable steel C35N 1.0501<br />

zinc coated <strong>and</strong> chromatized<br />

<strong>SKF</strong> reserves the right to use similar material or material of higher strength.<br />

170


Fatigue strength<br />

In all applications where a rod end is subjected<br />

to alternating loads, loads that vary in magnitude<br />

or where failure of a rod end is dangerous,<br />

make sure that the selected rod end has sufficient<br />

fatigue strength.<br />

Relubrication facilities<br />

<strong>SKF</strong> rod ends requiring maintenance are provided<br />

with a grease fitting or a lubrication hole<br />

in the rod end housing. Relubrication via the pin<br />

is also possible. Exceptions are steel/steel rod<br />

ends in the SA .. E <strong>and</strong> SI .. E series <strong>and</strong> a few<br />

smaller rod ends as indicated in the product<br />

tables. The type <strong>and</strong> design of relubrication<br />

facilities in the rod end housing are listed in<br />

table 8.<br />

Table 7<br />

Permissible operating temperature range for rod ends<br />

requiring maintenance<br />

Series<br />

Permissible operating<br />

temperature range 1)<br />

from incl.<br />

– °C<br />

Steel/steel rod ends<br />

SA .. E(S) –50 +200<br />

SA(A) .. ES-2RS –30 +130<br />

SI .. E(S) –50 +200<br />

SI(A) .. ES-2RS –30 +130<br />

SIQG .. ES –50 +200<br />

SIJ .. ES –50 +200<br />

SIR .. ES –50 +200<br />

SC(F) .. ES –50 +200<br />

Steel/bronze rod ends<br />

SAKAC .. M –30 +180<br />

SIKAC .. M (/VZ 019) –30 +180<br />

1) Permissible operating temperature range of the grease<br />

must be considered.<br />

Table 8<br />

Relubrication facilities for rod ends requiring maintenance<br />

Series Size Relubrication facilities<br />

Design<br />

6<br />

Steel/steel rod ends<br />

SA .. ES 15 to 20 Lubrication hole<br />

SI .. ES 15 to 20 diameter 2,5 mm<br />

SI .. ES 15 to 20<br />

SIJ .. ES 16 to 20<br />

SC .. ES 20<br />

SA(A) .. ES(-2RS) 25 to 80 Grease fitting in accordance<br />

SI(A) .. ES(-2RS) 25 to 80 with DIN 71412: 1987<br />

SIJ .. ES 25 to 100<br />

SIR .. ES 25 to 120<br />

SIQG .. ES(A) 12 to 200<br />

SC .. ES 25 to 80<br />

SCF .. ES 20 to 80<br />

Steel/bronze rod ends<br />

SAKAC .. M 6 to 30 Grease fitting in accordance<br />

SIKAC .. M(/VZ 019) 6 to 30 with DIN 3405: 1986<br />

171


<strong>Rod</strong> ends with a female thread, steel/steel<br />

d 6 – 80 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

l 4<br />

d k d<br />

r 1<br />

l 3<br />

G<br />

w<br />

SI(L) .. E<br />

d 4<br />

l 5<br />

l 7<br />

h 1<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

6 22 M 6 6 4,5 30 13 3,4 8,15 0,023 SI 6 E 1) SIL 6 E 1)<br />

8 25 M 8 8 6,5 36 15 5,5 12,9 0,036 SI 8 E 1) SIL 8 E 1)<br />

10 30 M 10 9 7,5 43 12 8,15 19 0,065 SI 10 E 1) SIL 10 E 1)<br />

12 35 M 12 10 8,5 50 10 10,8 25,5 0,11 SI 12 E 1) SIL 12 E 1)<br />

15 41 M 14 12 10,5 61 8 17 37,5 0,18 SI 15 ES SIL 15 ES<br />

17 47 M 16 14 11,5 67 10 21,2 44 0,25 SI 17 ES SIL 17 ES<br />

20 54 M 20¥1,5 16 13,5 77 9 30 57 0,36 SI 20 ES SIL 20 ES<br />

25 65 M 24¥2 20 18 94 7 48 90 0,65 SI 25 ES SIL 25 ES<br />

30 75 M 30¥2 22 20 110 6 62 116 1,00 SI 30 ES SIL 30 ES<br />

35 84 M 36¥3 25 22 130 6 80 134 1,40 SI 35 ES-2RS SIL 35 ES-2RS<br />

40 94 M 39¥3 28 24 142 6 100 166 2,20 SIA 40 ES-2RS SILA 40 ES-2RS<br />

94 M 42¥3 28 24 145 6 100 166 2,30 SI 40 ES-2RS SIL 40 ES-2RS<br />

45 104 M 42¥3 32 28 145 7 127 224 2,90 SIA 45 ES-2RS SILA 45 ES-2RS<br />

104 M 45¥3 32 28 165 7 127 224 3,20 SI 45 ES-2RS SIL 45 ES-2RS<br />

50 114 M 45¥3 35 31 160 6 156 270 4,10 SIA 50 ES-2RS SILA 50 ES-2RS<br />

114 M 52¥3 35 31 195 6 156 270 4,50 SI 50 ES-2RS SIL 50 ES-2RS<br />

60 137 M 52¥3 44 39 175 6 245 400 6,30 SIA 60 ES-2RS SILA 60 ES-2RS<br />

137 M 60¥4 44 39 225 6 245 400 7,10 SI 60 ES-2RS SIL 60 ES-2RS<br />

70 162 M 56¥4 49 43 200 6 315 530 9,50 SIA 70 ES-2RS SILA 70 ES-2RS<br />

162 M 72¥4 49 43 265 6 315 530 10,5 SI 70 ES-2RS SIL 70 ES-2RS<br />

80 182 M 64¥4 55 48 230 5 400 655 15,0 SIA 80 ES-2RS SILA 80 ES-2RS<br />

182 M 80¥4 55 48 295 5 400 655 19,0 SI 80 ES-2RS SIL 80 ES-2RS<br />

1) No relubrication facilities.<br />

172


SI(L) .. ES<br />

d ≤ 20 mm<br />

d ≥ 25 mm<br />

SI(L)A .. ES-2RS<br />

SI(L) .. ES-2RS<br />

Dimensions<br />

d d k d 4 l 3 l 4 l 5 l 7 r 1 w<br />

≈ min max ≈ min min h14<br />

mm<br />

6 10 11 11 43 8 10 0,3 9<br />

8 13 13 15 50 9 11 0,3 11<br />

10 16 16 15 60 11 13 0,3 14<br />

12 18 19 18 69 12 17 0,3 17<br />

15 22 22 21 83 14 19 0,3 19<br />

17 25 25 24 92 15 22 0,3 22<br />

20 29 28 30 106 16 24 0,3 24<br />

25 35,5 35 36 128 18 30 0,6 30<br />

30 40,7 42 45 149 19 34 0,6 36<br />

35 47 49 60 174 25 40 0,6 41<br />

40 53 58 65 191 25 46 0,6 50<br />

53 58 65 194 25 46 0,6 50<br />

45 60 65 65 199 30 50 0,6 55<br />

60 65 65 219 30 50 0,6 55<br />

50 66 70 68 219 30 58 0,6 60<br />

66 70 68 254 30 58 0,6 60<br />

60 80 82 70 246 35 73 1 70<br />

80 82 70 296 35 73 1 70<br />

70 92 92 80 284 40 85 1 80<br />

92 92 80 349 40 85 1 80<br />

80 105 105 85 324 45 98 1 90<br />

105 105 85 389 45 98 1 90<br />

6.1<br />

173


<strong>Rod</strong> ends with a female thread, for hydraulic cylinders, steel/steel<br />

d 12 – 70 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

l 4<br />

d k d<br />

r 1<br />

l 3<br />

l 7<br />

h 1<br />

A<br />

B<br />

N 1<br />

G<br />

d 4<br />

N<br />

A - B<br />

SI(L)J .. ES<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread 1)<br />

max 6H max<br />

mm degrees kN kg –<br />

12 36 M 10¥1,25 10 8 42 3 10,8 21,2 0,14 SIJ 12 E 2) SILJ 12 E 2)<br />

33 M 12¥1,25 12 11 38 4 10,8 22 0,11 SIQG 12 ESA 3) SILQG 12 ESA 3)<br />

16 45 M 12¥1,25 14 11 48 3 21,2 23,5 0,25 SIJ 16 ES SILJ 16 ES<br />

41 M 14¥1,5 16 14 44 4 17,6 32,5 0,21 SIQG 16 ES SILQG 16 ES<br />

20 55 M 14¥1,5 16 13 58 3 30 51 0,40 SIJ 20 ES SILJ 20 ES<br />

48 M 16¥1,5 20 17,5 52 4 30 43 0,40 SIQG 20 ES SILQG 20 ES<br />

25 65 M 16¥1,5 20 17 68 3 48 73,5 0,68 SIJ 25 ES SILJ 25 ES<br />

57 M 16¥1,5 20 23,5 50 7 48 52 0,49 SIR 25 ES SILR 25 ES<br />

59 M 20¥1,5 25 22 65 4 48 69,5 0,66 SIQG 25 ES SILQG 25 ES<br />

30 80 M 20¥1,5 22 19 85 3 62 112 1,35 SIJ 30 ES SILJ 30 ES<br />

65 M 22¥1,5 22 28,5 60 6 62 78 0,77 SIR 30 ES SILR 30 ES<br />

32 71 M 27¥2 32 28 80 4 65,5 100 1,20 SIQG 32 ES SILQG 32 ES<br />

35 79 M 28¥1,5 25 30,5 70 6 80 118 1,20 SIR 35 ES SILR 35 ES<br />

40 98 M 27¥2 28 23 105 3 100 146 2,40 SIJ 40 ES SILJ 40 ES<br />

95 M 35¥1,5 28 35,5 85 7 100 200 2,10 SIR 40 ES SILR 40 ES<br />

90 M 33¥2 40 34 97 4 100 176 2,00 SIQG 40 ES SILQG 40 ES<br />

50 122 M 33¥2 35 30 130 3 156 216 3,80 SIJ 50 ES SILJ 50 ES<br />

118 M 45¥1,5 35 40,5 105 6 156 280 3,60 SIR 50 ES SILR 50 ES<br />

110 M 42¥2 50 42 120 4 156 270 3,50 SIQG 50 ES SILQG 50 ES<br />

60 160 M 42¥2 44 38 150 3 245 405 8,50 SIJ 60 ES SILJ 60 ES<br />

132 M 58¥1,5 44 50,5 130 6 245 325 6,00 SIR 60 ES SILR 60 ES<br />

63 134 M 48¥2 63 53,5 140 4 255 375 6,80 SIQG 63 ES SILQG 63 ES<br />

70 156 M 65¥1,5 49 55,5 150 6 315 450 9,40 SIR 70 ES SILR 70 ES<br />

1) Check availability of rod ends with left-h<strong>and</strong> thread.<br />

2) No relubrication facilities.<br />

3) Can only be relubricated via the outer ring.<br />

174


B<br />

C1<br />

a<br />

d 2<br />

C 1<br />

B<br />

a<br />

d k d<br />

r 1<br />

l 7<br />

h 1<br />

l 4<br />

d<br />

r 1<br />

l 7<br />

h 1<br />

l 4<br />

l 3<br />

G<br />

d 4<br />

N<br />

d k<br />

l 3<br />

G<br />

d 4<br />

d 2<br />

175<br />

N<br />

SI(L)QG .. ES<br />

SI(L)R .. ES<br />

Dimensions<br />

Cylinder bolt<br />

with internal hexagon<br />

(ISO 4762:1998)<br />

d d k d 4 l 3 l 4 l 7 N N 1 r 1 Size Tightening<br />

max min max min max max min torque<br />

mm – Nm<br />

12 18 17 15 62 16 40 13 0,3 M 6 10<br />

18 17 17 55 13 33 11 0,3 M 5 5,5<br />

16 25 21 17 70,5 20 45 13 0,3 M 6 10<br />

23 22 19 64,5 17 41 14 0,3 M 6 9,5<br />

20 29 25 19 85,5 25 55 17 0,3 M 8 25<br />

29 26,5 23 77 21 48 18 0,3 M 8 23<br />

25 35,5 30 23 100,5 30 62 17 0,6 M 8 25<br />

35,5 26 17 79,5 27 42 23,5 0,6 M 8 23<br />

35,5 31 29 97 26 55 18 0,6 M 8 23<br />

30 40,7 36 29 125 35 80 19 0,6 M 10 45<br />

40,7 33 23 93,5 29 47 28,5 0,6 M 8 23<br />

32 43 38 37 116,5 31 67 23 0,6 M 10 46<br />

35 47 41,5 29 110,5 37 59 30,5 0,6 M 10 46<br />

40 53 45 37 155 45 90 23 0,6 M 10 45<br />

53 50,5 36 133,5 44 67 35,5 0,6 M 10 46<br />

53 47 46 143 40 81 28 0,6 M 10 46<br />

50 66 55 46 192,5 58 105 30 0,6 M 12 80<br />

66 62,5 46 164,5 54 89 40,5 0,6 M 12 1) 79 1)<br />

66 58 57 175,5 49 97,5 33 0,6 M 12 79<br />

60 80 68 57 230 68 134 38 1 M 16 160<br />

80 76,5 59 202,5 64 91 50,5 1 M 16 1) 46 1)<br />

63 83 70 64 213,5 61 116 40 1 M 16 1) 195 1)<br />

70 92 87,5 66 234,5 74 101 55,5 1 M 16 1) 79 1)<br />

6.2<br />

1) Bolts, position of bolts, <strong>and</strong> tightening torque may vary.


<strong>Rod</strong> ends with a female thread, for hydraulic cylinders, steel/steel<br />

d 80 – 200 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

l 4<br />

d k d<br />

r 1<br />

l 3<br />

l 7<br />

h 1<br />

A<br />

B<br />

N 1<br />

G<br />

d 4<br />

N<br />

A - B<br />

SI(L)J .. ES<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

80 205 M 48¥2 55 47 185 3 400 610 14,5 SIJ 80 ES SILJ 80 ES<br />

178 M 80¥2 55 60,5 170 6 400 560 13,0 SIR 80 ES SILR 80 ES<br />

170 M 64¥3 80 68 180 4 400 600 14,5 SIQG 80 ES SILQG 80 ES<br />

100 240 M 64¥3 70 57 240 3 610 780 29,5 SIJ 100 ES SILJ 100 ES<br />

232 M 110¥2 70 70,5 235 7 610 950 30,0 SIR 100 ES SILR 100 ES<br />

212 M 80¥3 100 85,5 210 4 610 930 28,0 SIQG 100 ES SILQG 100 ES<br />

120 343 M 130¥3 85 90,5 310 6 950 2 450 84,0 SIR 120 ES SILR 120 ES<br />

125 268 M 100¥3 125 105 260 4 950 1 430 43,0 SIQG 125 ES SILQG 125 ES<br />

160 328 M 125¥4 160 133 310 4 1 370 2 200 80,0 SIQG 160 ES SILQG 160 ES<br />

200 420 M 160¥4 200 165 390 4 2 120 3 400 165 SIQG 200 ES SILQG 200 ES<br />

176


B<br />

C1<br />

a<br />

d 2<br />

C 1<br />

B<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 7<br />

h 1<br />

l 4<br />

d<br />

r 1<br />

l 7<br />

h 1<br />

l 4<br />

l 3<br />

G<br />

d 4<br />

N<br />

d k<br />

l 3<br />

G<br />

d 4<br />

N<br />

SI(L)QG .. ES<br />

SI(L)R .. ES<br />

Dimensions<br />

Cylinder bolt<br />

with internal hexagon<br />

(ISO 4762:1998)<br />

d d k d 4 l 3 l 4 l 7 N N 1 r 1 Size Tightening<br />

max min max min max max min torque<br />

mm – Nm<br />

80 105 90 64 287,5 92 156 47 1 M 20 310<br />

105 103,5 81 267,5 79 126 60,5 1 M 20 1) 195 1)<br />

105 91 86 272,5 77 150 50 1 M 20 1) 390 1)<br />

100 130 110 86 360 116 190 57 1 M 24 530<br />

130 140 111 362,5 103 167 70,5 1 M 24 1) 390 1)<br />

130 110 96 324 97 180 65 1 M 24 1) 670 1)<br />

120 160 175 135 493 138 257 86 1 M 24 1) 670 1)<br />

125 160 135 113 407 118 202 75 1 M 24 1) 670 1)<br />

160 200 165 126 490 148 252 85 1 M 24 1) 670 1)<br />

200 250 215 161 623 193 323 106 1,1 M 30 1) 1 350 1)<br />

6.2<br />

1) Bolts, position of bolts, <strong>and</strong> tightening torque may vary.<br />

177


<strong>Rod</strong> ends with a male thread, steel/steel<br />

d 6 – 80 mm<br />

B<br />

C 1<br />

d k d<br />

r 1<br />

l 1<br />

a<br />

d 2<br />

l 7<br />

h<br />

l 2<br />

G<br />

SA(L) .. E<br />

SA(L) .. ES<br />

d ≤ 20 mm<br />

d ≥ 25 mm<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h a C C 0 thread thread<br />

max 6g max<br />

mm degrees kN kg –<br />

6 22 M 6 6 4,5 36 13 3,4 8,15 0,017 SA 6 E 1) SAL 6 E 1)<br />

8 25 M 8 8 6,5 42 15 5,5 12,9 0,029 SA 8 E 1) SAL 8 E 1)<br />

10 30 M 10 9 7,5 48 12 8,15 18,3 0,053 SA 10 E 1) SAL 10 E 1)<br />

12 35 M 12 10 8,5 54 10 10,8 24,5 0,078 SA 12 E 1) SAL 12 E 1)<br />

15 41 M 14 12 10,5 63 8 17 28 0,13 SA 15 ES SAL 15 ES<br />

17 47 M 16 14 11,5 69 10 21,2 31 0,19 SA 17 ES SAL 17 ES<br />

20 54 M 20¥1,5 16 13,5 78 9 30 42,5 0,32 SA 20 ES SAL 20 ES<br />

25 65 M 24¥2 20 18 94 7 48 78 0,53 SA 25 ES SAL 25 ES<br />

30 75 M 30¥2 22 20 110 6 62 81,5 0,90 SA 30 ES SAL 30 ES<br />

35 84 M 36¥3 25 22 130 6 80 110 1,30 SA 35 ES-2RS SAL 35 ES-2RS<br />

40 94 M 39¥3 28 24 150 6 100 140 1,85 SAA 40 ES-2RS SALA 40 ES-2RS<br />

94 M 42¥3 28 24 145 6 100 140 1,90 SA 40 ES-2RS SAL 40 ES-2RS<br />

45 104 M 42¥3 32 28 163 7 127 200 2,45 SAA 45 ES-2RS SALA 45 ES-2RS<br />

104 M 45¥3 32 28 165 7 127 200 2,55 SA 45 ES-2RS SAL 45 ES-2RS<br />

50 114 M 45¥3 35 31 185 6 156 245 3,30 SAA 50 ES-2RS SALA 50 ES-2RS<br />

114 M 52¥3 35 31 195 6 156 245 3,90 SA 50 ES-2RS SAL 50 ES-2RS<br />

60 137 M 52¥3 44 39 210 6 245 360 5,70 SAA 60 ES-2RS SALA 60 ES-2RS<br />

137 M 60¥4 44 39 225 6 245 360 6,25 SA 60 ES-2RS SAL 60 ES-2RS<br />

70 162 M 56¥4 49 43 235 6 315 490 7,90 SAA 70 ES-2RS SALA 70 ES-2RS<br />

162 M 72¥4 49 43 265 6 315 490 10,0 SA 70 ES-2RS SAL 70 ES-2RS<br />

80 182 M 64¥4 55 48 270 5 400 585 12,0 SAA 80 ES-2RS SALA 80 ES-2RS<br />

182 M 80¥4 55 48 295 5 400 585 14,5 SA 80 ES-2RS SAL 80 ES-2RS<br />

1) No relubrication facilities.<br />

178


SA(L)A .. ES-2RS<br />

Dimensions<br />

d d k l 1 l 2 l 7 r 1<br />

min max min min<br />

mm<br />

6 10 16 49 10 0,3<br />

8 13 21 56 11 0,3<br />

10 16 26 65 13 0,3<br />

12 18 28 73 17 0,3<br />

15 22 34 85 19 0,3<br />

17 25 36 94 22 0,3<br />

20 29 43 107 24 0,3<br />

25 35,5 53 128 30 0,6<br />

30 40,7 65 149 34 0,6<br />

35 47 82 174 40 0,6<br />

40 53 86 199 46 0,6<br />

53 90 194 46 0,6<br />

45 60 92 217 50 0,6<br />

60 95 219 50 0,6<br />

50 66 104 244 58 0,6<br />

66 110 254 58 0,6<br />

60 80 115 281 73 1<br />

80 120 296 73 1<br />

70 92 125 319 85 1<br />

92 132 349 85 1<br />

80 105 140 364 98 1<br />

105 147 389 98 1<br />

6.3<br />

179


<strong>Rod</strong> ends with a cylindrical section welding shank, steel/steel<br />

d 20 – 80 mm<br />

B<br />

C 1<br />

d k d<br />

r 1<br />

d 5<br />

a<br />

l 8<br />

d 2<br />

d 6<br />

45°<br />

l 7<br />

h2<br />

6<br />

l 6<br />

SC .. ES<br />

d = 20 mm<br />

d ≥ 25 mm<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d d 2 B C 1 h 2 a C C 0<br />

max<br />

max<br />

mm degrees kN kg –<br />

20 54 16 13,5 38 9 30 46,5 0,20 SC 20 ES<br />

25 65 20 18 45 7 48 73,5 0,45 SC 25 ES<br />

30 75 22 20 51 6 62 96,5 0,65 SC 30 ES<br />

35 84 25 22 61 6 80 112 1,00 SC 35 ES<br />

40 94 28 24 69 7 100 134 1,30 SC 40 ES<br />

45 104 32 28 77 7 127 180 1,90 SC 45 ES<br />

50 114 35 31 88 6 156 220 2,50 SC 50 ES<br />

60 137 44 39 100 6 245 335 4,60 SC 60 ES<br />

70 162 49 43 115 6 315 455 6,80 SC 70 ES<br />

80 182 55 48 141 6 400 550 9,70 SC 80 ES<br />

180


Dimensions<br />

d d k d 5 d 6 l 6 l 7 r 1 l 8<br />

max max min min<br />

mm<br />

20 29 29 4 66 24 0,3 2<br />

25 35,5 35 4 78 30 0,6 3<br />

30 40,7 42 4 89 34 0,6 3<br />

35 47 49 4 104 40 0,6 3<br />

40 53 54 4 118 46 0,6 4<br />

45 60 60 6 132 50 0,6 4<br />

50 66 64 6 150 58 0,6 4<br />

60 80 72 6 173 73 1 4<br />

70 92 82 6 199 85 1 5<br />

80 105 97 6 237 98 1 5<br />

6.4<br />

181


<strong>Rod</strong> ends with a rectangular section welding shank, steel/steel<br />

d 20 – 80 mm<br />

C 1<br />

a<br />

B<br />

d k d<br />

r 1<br />

d 2<br />

h 2<br />

l 6<br />

SCF .. ES<br />

Principal dimensions Angle Basic load ratings Mass Designation<br />

of tilt dynamic static<br />

d d 2 B C 1 h 2 a C C 0<br />

max max js13<br />

mm degrees kN kg –<br />

20 51,5 16 20 38 9 30 63 0,35 SCF 20 ES<br />

25 56,5 20 24 45 7 48 65,5 0,53 SCF 25 ES<br />

30 66,5 22 29 51 6 62 110 0,87 SCF 30 ES<br />

35 85 25 31 61 6 80 183 1,55 SCF 35 ES<br />

40 102 28 36,5 69 7 100 285 2,45 SCF 40 ES<br />

45 112 32 41,5 77 7 127 360 3,40 SCF 45 ES<br />

50 125,5 35 41,5 88 6 156 415 4,45 SCF 50 ES<br />

60 142,5 44 51,5 100 6 245 530 7,00 SCF 60 ES<br />

70 166,5 49 57 115 6 315 680 10,0 SCF 70 ES<br />

80 182,5 55 62 141 6 400 750 15,0 SCF 80 ES<br />

90 228,5 60 67 150 5 490 1 290 23,5 SCF 90 ES<br />

100 252,5 70 72 170 7 610 1 430 31,5 SCF 100 ES<br />

110 298 70 83 185 6 655 2 200 48,0 SCF 110 ES<br />

120 363 85 92,5 210 6 950 3 250 79,5 SCF 120 ES<br />

182


Dimensions<br />

d d k l 6 r 1<br />

max min<br />

mm<br />

20 29 64 0,3<br />

25 35,5 73,5 0,6<br />

30 40,7 85 0,6<br />

35 47 103,5 0,6<br />

40 53 120 0,6<br />

45 60 133 0,6<br />

50 66 151 0,6<br />

60 80 171,5 1<br />

70 92 198,5 1<br />

80 105 232,5 1<br />

90 115 264,5 1<br />

100 130 296,5 1<br />

110 140 334 1<br />

120 160 391,5 1<br />

6.5<br />

183


<strong>Rod</strong> ends with a female thread, steel/bronze<br />

d 5 – 30 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k<br />

d<br />

r 1<br />

l 3<br />

l 7<br />

h 1<br />

l 4<br />

l 5<br />

G<br />

w<br />

d 3<br />

d 4<br />

SI(L)KAC .. M(/VZ019)<br />

d ≥ 6 mm<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

5 19 M 5 8 7,5 27 13 3,25 5,4 0,017 SIKAC 5 M 1) SILKAC 5 M 1)<br />

19 M 4 8 7,5 27 13 3,25 5,4 0,017 SIKAC 5 M/VZ019 1) –<br />

6 21 M 6 9 7,5 30 13 4,3 5,4 0,025 SIKAC 6 M SILKAC 6 M<br />

8 25 M 8 12 9,5 36 14 7,2 9,15 0,043 SIKAC 8 M SILKAC 8 M<br />

10 29 M 10 14 11,5 43 13 10 12,2 0,072 SIKAC 10 M SILKAC 10 M<br />

29 M 10¥1,25 14 11,5 43 13 10 12,2 0,072 SIKAC 10 M/VZ019 –<br />

12 33 M 12 16 12,5 50 13 13,4 14 0,11 SIKAC 12 M SILKAC 12 M<br />

33 M 12¥1,25 16 12,5 50 13 13,4 14 0,11 SIKAC 12 M/VZ019 –<br />

14 37 M 14 19 14,5 57 16 17 20,4 0,16 SIKAC 14 M SILKAC 14 M<br />

16 43 M 16 21 15,5 64 15 21,6 29 0,22 SIKAC 16 M SILKAC 16 M<br />

43 M 16¥1,5 21 15,5 64 15 21,6 29 0,22 SIKAC 16 M/VZ019 –<br />

18 47 M 18¥1,5 23 17,5 71 15 26 35,5 0,30 SIKAC 18 M SILKAC 18 M<br />

20 51 M 20¥1,5 25 18,5 77 14 31,5 35,5 0,40 SIKAC 20 M SILKAC 20 M<br />

22 55 M 22¥1,5 28 21 84 15 38 45 0,50 SIKAC 22 M SILKAC 22 M<br />

25 61 M 24¥2 31 23 94 15 47,5 53 0,65 SIKAC 25 M SILKAC 25 M<br />

30 71 M 30¥2 37 27 110 17 64 69,5 1,15 SIKAC 30 M SILKAC 30 M<br />

71 M 27¥2 37 27 110 17 64 69,5 1,15 SIKAC 30 M/VZ019 –<br />

1) No relubrication facilities.<br />

184


Dimensions<br />

d d k d 3 d 4 l 3 l 4 l 5 l 7 r 1 w<br />

ª max min max ª min min h14<br />

mm<br />

5 11,1 9 12 8 38 4 9 0,3 9<br />

11,1 9 12 10 38 4 9 0,3 9<br />

6 12,7 10 14 9 42 5 10 0,3 11<br />

8 15,8 12,5 17 12 50 5 12 0,3 14<br />

10 19 15 20 15 59 6,5 14 0,3 17<br />

19 15 20 20 59 6,5 14 0,3 17<br />

12 22,2 17,5 23 18 68 6,5 16 0,3 19<br />

22,2 17,5 23 22 68 6,5 16 0,3 19<br />

14 25,4 20 27 21 77 8 18 0,3 22<br />

16 28,5 22 29 24 87 8 21 0,3 22<br />

28,5 22 29 28 87 8 21 0,3 22<br />

18 31,7 25 32 27 96 10 23 0,3 27<br />

20 34,9 27,5 37 30 105 10 25 0,3 30<br />

22 38,1 30 40 33 114 12 27 0,3 32<br />

25 42,8 33,5 44 36 127 12 30 0,3 36<br />

30 50,8 40 52 45 148 15 35 0,3 41<br />

50,8 40 52 51 148 15 35 0,3 41<br />

6.6<br />

185


<strong>Rod</strong> ends with a male thread, steel/bronze<br />

d 5 – 30 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 1<br />

h<br />

I 2<br />

G<br />

SA(L)KAC .. M<br />

d ≥ 6 mm<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h a C C 0 thread thread<br />

max 6g max<br />

mm degrees kN kg –<br />

5 19 M 5 8 6 33 13 3,25 4,8 0,013 SAKAC 5 M 1) SALKAC 5 M 1)<br />

6 21 M 6 9 6,75 36 13 4,3 4,8 0,020 SAKAC 6 M SALKAC 6 M<br />

8 25 M 8 12 9 42 14 7,2 8 0,032 SAKAC 8 M SALKAC 8 M<br />

10 29 M 10 14 10,5 48 13 10 10,8 0,054 SAKAC 10 M SALKAC 10 M<br />

12 33 M 12 16 12 54 13 12,2 12,2 0,085 SAKAC 12 M SALKAC 12 M<br />

14 37 M 14 19 13,5 60 16 17 17,3 0,13 SAKAC 14 M SALKAC 14 M<br />

16 43 M 16 21 15 66 16 21,6 23,2 0,19 SAKAC 16 M SALKAC 16 M<br />

18 47 M 18¥1,5 23 16,5 72 16 26 29 0,26 SAKAC 18 M SALKAC 18 M<br />

20 51 M 20¥1,5 25 18 78 16 29 29 0,34 SAKAC 20 M SALKAC 20 M<br />

22 55 M 22¥1,5 28 20 84 16 38 39 0,44 SAKAC 22 M SALKAC 22 M<br />

25 61 M 24¥2 31 22 94 15 46,5 46,5 0,60 SAKAC 25 M SALKAC 25 M<br />

30 71 M 30¥2 37 25 110 17 61 61 1,05 SAKAC 30 M SALKAC 30 M<br />

1) No relubrication facilities.<br />

186


Dimensions<br />

d d k l 1 l 2 r 1<br />

min max min<br />

mm<br />

5 11,1 19 44 0,3<br />

6 12,7 21 48 0,3<br />

8 15,8 25 56 0,3<br />

10 19 28 64 0,3<br />

12 22,2 32 72 0,3<br />

14 25,4 36 80 0,3<br />

16 28,5 37 89 0,3<br />

18 31,7 41 97 0,3<br />

20 34,9 45 106 0,3<br />

22 38,1 48 114 0,3<br />

25 42,8 55 127 0,3<br />

30 50,8 66 148 0,3<br />

6.7<br />

187


Maintenance-free rod ends<br />

Dimensions..................................................................................................................................... 190<br />

Tolerances....................................................................................................................................... 191<br />

Radial internal clearance, preload.................................................................................................. 191<br />

Materials......................................................................................................................................... 192<br />

Permissible operating temperature range.................................................................................... 192<br />

Fatigue strength.............................................................................................................................. 192<br />

Product tables......................................................................................................... 194<br />

7.1 Maintenance-free rod ends with a female thread, steel/PTFE sintered bronze ................. 194<br />

7.2 Maintenance-free rod ends with a male thread, steel/PTFE sintered bronze..................... 196<br />

7.3 Maintenance-free rod ends with a female thread, steel/PTFE fabric .................................. 198<br />

7.4 Maintenance-free rod ends with a male thread, steel/PTFE fabric ..................................... 200<br />

7.5 Maintenance-free rod ends with a female thread, steel/PTFE FRP..................................... 202<br />

7.6 Maintenance-free rod ends with a male thread, steel/PTFE FRP........................................ 204<br />

7<br />

189


Maintenance-free rod ends<br />

<strong>SKF</strong> manufactures maintenance-free rod ends<br />

with three different sliding contact surface combinations<br />

in different series:<br />

Fig. 1<br />

Maintenance-free rod end, steel/PTFE sintered bronze<br />

• Steel/PTFE sintered bronze († fig. 1):<br />

– SI(L) .. C series<br />

– SA(L) .. C series<br />

• Steel/PTFE fabric († fig. 2):<br />

– SI(L) .. TXE-2LS series<br />

– SI(L)A .. TXE-2LS series<br />

– SA(L) .. TXE-2LS series<br />

– SA(L)A .. TXE-2LS series<br />

• Steel/PTFE FRP († fig. 3):<br />

– SI(L)KB .. F series<br />

– SA(L)KB .. F series<br />

<strong>Rod</strong> ends with either a steel/PTFE sintered<br />

bronze or steel/PTFE fabric sliding contact surface<br />

combination contain a bearing from the<br />

st<strong>and</strong>ard assortment. The outer ring is staked in<br />

place in the housing.<br />

<strong>Rod</strong> ends with a steel/PTFE FRP sliding contact<br />

surface combination consist of a rod end<br />

housing <strong>and</strong> a spherical plain bearing inner ring.<br />

Between the housing <strong>and</strong> the inner ring, a sliding<br />

layer of fibre reinforced polymer, containing<br />

PTFE, is moulded to the housing.<br />

<strong>SKF</strong> supplies maintenance-free rod ends with<br />

a threaded shank with a right-h<strong>and</strong> thread as<br />

st<strong>and</strong>ard. With the exception of rod ends with<br />

the designation suffix VZ019, all rod ends are<br />

also available with a left-h<strong>and</strong> thread. They are<br />

identified by the designation prefix L.<br />

Maintenance-free rod end, steel/PTFE fabric<br />

Fig. 2<br />

Dimensions<br />

The dimensions of <strong>SKF</strong> maintenance-free rod<br />

ends are in accordance with ISO 12240-4:1998.<br />

Male <strong>and</strong> female threads of <strong>SKF</strong> rod ends are<br />

in accordance with ISO 965-1:1998, except for<br />

rod ends with female thread having the designation<br />

suffix /VZ019, which is in accordance<br />

with ISO 8139:2009.<br />

Maintenance-free rod end, steel/PTFE FRP<br />

Fig. 3<br />

190


Tolerances<br />

<strong>SKF</strong> rod end inner ring dimensional tolerances<br />

are in accordance with ISO 12240-1:1998. The<br />

tolerances are listed in table 1.<br />

The symbols used in table 1 are explained in<br />

the following:<br />

d nominal bore diameter<br />

D dmp deviation of the mean bore diameter from<br />

the nominal<br />

D Bs deviation of the single inner ring width<br />

from the nominal<br />

Radial internal clearance, preload<br />

Depending on their design, <strong>SKF</strong> maintenancefree<br />

rod ends may have a radial internal clearance<br />

or a light preload. Table 2 lists maximum<br />

values for the radial internal clearance as well as<br />

for the frictional moment in the circumferential<br />

direction caused by preload.<br />

Radial internal clearance <strong>and</strong> frictional moment for<br />

maintenance-free rod ends<br />

Bore diameter Radial Frictional<br />

d internal moment<br />

clearance<br />

over incl. max max<br />

mm µm Nm<br />

Sliding surface steel/PTFE sintered bronze<br />

(designation suffix C)<br />

– 12 28 0,15<br />

12 20 35 0,25<br />

20 30 44 0,40<br />

Sliding surface steel/PTFE fabric<br />

(designation suffix TXE-2LS)<br />

35 80 50 –<br />

Sliding surface steel/PTFE FRP<br />

(designation suffix F)<br />

5 50 0,20<br />

6 50 0,25<br />

8 50 0,30<br />

10 75 0,40<br />

12 75 0,50<br />

14 75 0,60<br />

16 75 0,70<br />

18 85 0,80<br />

20 100 1<br />

22 100 1,2<br />

Table 2<br />

Table 1<br />

Inner ring dimensional tolerances for maintenance-free rod ends<br />

Bore diameter SA(A) <strong>and</strong> SI(A) series SAKB <strong>and</strong> SIKB series<br />

d D dmp D Bs D dmp D Bs<br />

over incl. high low high low high low high low<br />

mm µm µm µm µm<br />

7<br />

– 6 0 –8 0 –120 12 0 0 –120<br />

6 10 0 –8 0 –120 15 0 0 –120<br />

10 18 0 –8 0 –120 18 0 0 –120<br />

18 30 0 –10 0 –120 21 0 0 –120<br />

30 50 0 –12 0 –120 _ _ _ _<br />

50 80 0 –15 0 –150 _ _ _ _<br />

191


Maintenance-free rod ends<br />

Materials<br />

<strong>SKF</strong> rod end housings for maintenance-free<br />

bearings are made of materials as listed in<br />

table 3.<br />

Details of the materials used for the maintenance-free<br />

radial spherical plain bearings incorporated<br />

in the rod ends are listed in table 3 on<br />

pages 128 to 129.<br />

The inner ring of rod ends with a steel/PTFE<br />

FRP sliding contact surface combination is made<br />

of bearing steel. The ring is through-hardened<br />

<strong>and</strong> ground. The sliding contact surface of the<br />

inner ring is hard chromium plated. The sliding<br />

layer consists of a fibre reinforced polymer, containing<br />

PTFE.<br />

Table 3<br />

Housing materials for maintenance-free rod ends<br />

Series Size Material Material No.<br />

SA(A) 6 to 80 Heat treatable 1.0503<br />

SI(A)<br />

steel C45V,<br />

zinc coated <strong>and</strong><br />

chromatized<br />

SAKB 5 to 12 Free-machining steel, 1.0718<br />

SIKB<br />

zinc coated <strong>and</strong><br />

chromatized<br />

14 to 22 Heat treatable 1.0501<br />

steel C35N,<br />

zinc coated <strong>and</strong><br />

chromatized<br />

Permissible operating temperature<br />

range<br />

The permissible operating temperature range<br />

for <strong>SKF</strong> maintenance-free rod ends depends on<br />

the rod end housing, the incorporated bearing<br />

<strong>and</strong> the bearing seals. The values for the permissible<br />

operating temperature range are listed<br />

in table 4.<br />

The load carrying capacity of the rod end is<br />

reduced at temperatures above 100 °C. For<br />

temperatures below 0 °C, check to be sure that<br />

the fracture toughness of the rod end housing is<br />

adequate for the intended application.<br />

Fatigue strength<br />

In all applications where a rod end is subjected<br />

to alternating loads, loads that vary in magnitude<br />

or where failure of a rod end is dangerous,<br />

make sure that the selected rod end has sufficient<br />

fatigue strength.<br />

Table 4<br />

Permissible operating temperature range for<br />

maintenance-free rod ends<br />

<strong>Rod</strong> end sliding Permissible Reduced<br />

contact surface operating load carrying<br />

combination temperature capacity<br />

range 1)<br />

from incl. from<br />

– °C °C<br />

Steel/PTFE –50 +150 +80<br />

sintered bronze<br />

Steel/PTFE fabric –40 +110 +65<br />

Steel/PTFE FRP –40 +75 +50<br />

1) For temperatures below 0 °C, make sure that the fracture<br />

toughness of the rod end housing is adequate for the<br />

intended application.<br />

192


193<br />

7


Maintenance-free rod ends with a female thread, steel/PTFE sintered bronze<br />

d 6 – 30 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 3<br />

l 5<br />

l 7<br />

h 1<br />

l 4<br />

G<br />

w<br />

SI(L) .. C<br />

d 4<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

6 22 M 6 6 4,5 30 13 3,6 8,15 0,023 SI 6 C SIL 6 C<br />

8 25 M 8 8 6,5 36 15 5,8 12,9 0,036 SI 8 C SIL 8 C<br />

10 30 M 10 9 7,5 43 12 8,65 19 0,065 SI 10 C SIL 10 C<br />

12 35 M 12 10 8,5 50 10 11,4 25,5 0,11 SI 12 C SIL 12 C<br />

15 41 M 14 12 10,5 61 8 18 37,5 0,18 SI 15 C SIL 15 C<br />

17 47 M 16 14 11,5 67 10 22,4 46,5 0,25 SI 17 C SIL 17 C<br />

20 54 M 20¥1,5 16 13,5 77 9 31,5 57 0,35 SI 20 C SIL 20 C<br />

25 65 M 24¥2 20 18 94 7 51 90 0,65 SI 25 C SIL 25 C<br />

30 75 M 30¥2 22 20 110 6 65,5 118 1,05 SI 30 C SIL 30 C<br />

194


Dimensions<br />

d d k d 4 l 3 l 4 l 5 l 7 r 1 w<br />

ª min max ª min min h14<br />

mm<br />

6 10 11 11 43 8 10 0,3 9<br />

8 13 13 15 50 9 11 0,3 11<br />

10 16 16 15 60 11 13 0,3 14<br />

12 18 19 18 69 12 17 0,3 17<br />

15 22 22 21 83 14 19 0,3 19<br />

17 25 25 24 92 15 22 0,3 22<br />

20 29 28 30 106 16 24 0,3 24<br />

25 35,5 35 36 128 18 30 0,6 30<br />

30 40,7 42 45 149 19 34 0,6 36<br />

7.1<br />

195


Maintenance-free rod ends with a male thread, steel/PTFE sintered bronze<br />

d 6 – 30 mm<br />

B<br />

C 1<br />

d k d<br />

r 1<br />

l 1<br />

a<br />

d 2<br />

l 7<br />

h<br />

l 2<br />

G<br />

SA(L) .. C<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h a C C 0 thread thread<br />

max 6g max<br />

mm degrees kN kg –<br />

6 22 M 6 6 4,5 36 13 3,6 8,15 0,017 SA 6 C SAL 6 C<br />

8 25 M 8 8 6,5 42 15 5,85 12,9 0,030 SA 8 C SAL 8 C<br />

10 30 M 10 9 7,5 48 12 8,65 18,3 0,053 SA 10 C SAL 10 C<br />

12 35 M 12 10 8,5 54 10 11,4 24,5 0,078 SA 12 C SAL 12 C<br />

15 41 M 14 12 10,5 63 8 18 34,5 0,13 SA 15 C SAL 15 C<br />

17 47 M 16 14 11,5 69 10 22,4 42,5 0,19 SA 17 C SAL 17 C<br />

20 54 M 20¥1,5 16 13,5 78 9 31,5 51 0,32 SA 20 C SAL 20 C<br />

25 65 M 24¥2 20 18 94 7 51 78 0,57 SA 25 C SAL 25 C<br />

30 75 M 30¥2 22 20 110 6 65,5 104 0,90 SA 30 C SAL 30 C<br />

196


Dimensions<br />

d d k l 1 l 2 l 7 r 1<br />

min max min min<br />

mm<br />

6 10 16 49 10 0,3<br />

8 13 21 56 11 0,3<br />

10 16 26 65 13 0,3<br />

12 18 28 73 17 0,3<br />

15 22 34 85 19 0,3<br />

17 25 36 94 22 0,3<br />

20 29 43 107 24 0,3<br />

25 35,5 53 128 30 0,6<br />

30 40,7 65 149 34 0,6<br />

7.2<br />

197


Maintenance-free rod ends with a female thread, steel/PTFE fabric<br />

d 35 – 80 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 3<br />

l 5<br />

l 7<br />

h 1<br />

l 4<br />

G<br />

w<br />

SI(L) .. TXE-2LS<br />

d 4<br />

SI(L)A .. TXE-2LS<br />

Principal dimensions Angle Basic load ratings 1) Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

35 84 M 36¥3 25 22 130 6 224 134 1,40 SI 35 TXE-2LS SIL 35 TXE-2LS<br />

40 94 M 39¥3 28 24 142 7 280 166 2,20 SIA 40 TXE-2LS SILA 40 TXE-2LS<br />

94 M 42¥3 28 24 145 7 280 166 2,30 SI 40 TXE-2LS SIL 40 TXE-2LS<br />

45 104 M 42¥3 32 28 145 7 360 224 2,90 SIA 45 TXE-2LS SILA 45 TXE-2LS<br />

104 M 45¥3 32 28 165 7 360 224 3,20 SI 45 TXE-2LS SIL 45 TXE-2LS<br />

50 114 M 45¥3 35 31 160 6 440 270 4,10 SIA 50 TXE-2LS SILA 50 TXE-2LS<br />

114 M 52¥3 35 31 195 6 440 270 4,50 SI 50 TXE-2LS SIL 50 TXE-2LS<br />

60 137 M 52¥3 44 39 175 6 695 400 6,30 SIA 60 TXE-2LS SILA 60 TXE-2LS<br />

137 M 60¥4 44 39 225 6 695 400 7,10 SI 60 TXE-2LS SIL 60 TXE-2LS<br />

70 162 M 72¥4 49 43 265 6 880 530 10,5 SI 70 TXE-2LS SIL 70 TXE-2LS<br />

80 182 M 80¥4 55 48 295 5 1 140 655 19,0 SI 80 TXE-2LS SIL 80 TXE-2LS<br />

1) Dynamic load rating of the bearing to be used for basic rating life calculation only. Check suitability of the rod end against its static<br />

load rating in all cases. The dynamic load applied on the rod end must not exceed its static load rating.<br />

198


Dimensions<br />

d d k d 4 l 3 l 4 l 5 l 7 r 1 w<br />

ª min max ª min min h14<br />

mm<br />

35 47 49 60 174 25 40 0,6 41<br />

40 53 58 65 191 25 46 0,6 50<br />

53 58 65 194 25 46 0,6 50<br />

45 60 65 65 199 30 50 0,6 55<br />

60 65 65 219 30 50 0,6 55<br />

50 66 70 68 219 30 58 0,6 60<br />

66 70 68 254 30 58 0,6 60<br />

60 80 82 70 246 35 73 1 70<br />

80 82 70 296 35 73 1 70<br />

70 92 92 80 349 40 85 1 80<br />

80 105 105 85 389 40 98 1 90<br />

7.3<br />

199


Maintenance-free rod ends with a male thread, steel/PTFE fabric<br />

d 35 – 80 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 7<br />

l 2<br />

h<br />

I 1<br />

G<br />

SA(L) .. TXE-2LS<br />

SA(L)A .. TXE-2LS<br />

Principal dimensions Angle Basic load ratings 1) Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h a C C 0 thread thread<br />

max 6g max<br />

mm degrees kN kg –<br />

35 84 M 36¥3 25 22 130 6 224 110 1,30 SA 35 TXE-2LS SAL 35 TXE-2LS<br />

40 94 M 39¥3 28 24 150 6 280 140 1,85 SAA 40 TXE-2LS SALA 40 TXE-2LS<br />

94 M 42¥3 28 24 145 6 280 140 1,90 SA 40 TXE-2LS SAL 40 TXE-2LS<br />

45 104 M 42¥3 32 28 163 7 360 200 2,45 SAA 45 TXE-2LS SALA 45 TXE-2LS<br />

104 M 45¥3 32 28 165 7 360 200 2,55 SA 45 TXE-2LS SAL 45 TXE-2LS<br />

50 114 M 45¥3 35 31 185 6 440 245 3,30 SAA 50 TXE-2LS SALA 50 TXE-2LS<br />

114 M 52¥3 35 31 195 6 440 245 3,90 SA 50 TXE-2LS SAL 50 TXE-2LS<br />

60 137 M 52¥3 44 39 210 6 695 360 5,70 SAA 60 TXE-2LS SALA 60 TXE-2LS<br />

137 M 60¥4 44 39 225 6 695 360 6,25 SA 60 TXE-2LS SAL 60 TXE-2LS<br />

70 162 M 72¥4 49 43 265 6 880 490 10,0 SA 70 TXE-2LS SAL 70 TXE-2LS<br />

80 182 M 80¥4 55 48 295 5 1 140 585 14,5 SA 80 TXE-2LS SAL 80 TXE-2LS<br />

1) Dynamic load rating of the bearing to be used for basic rating life calculation only. Check suitability of the rod end against its static<br />

load rating in all cases. The dynamic load applied on the rod end must not exceed its static load rating.<br />

200


Dimensions<br />

d d k l 1 l 2 l 7 r 1<br />

min max min min<br />

mm<br />

35 47 82 174 40 0,6<br />

40 53 86 199 46 0,6<br />

53 90 194 46 0,6<br />

45 60 92 217 50 0,6<br />

60 95 219 50 0,6<br />

50 66 104 244 58 0,6<br />

66 110 254 58 0,6<br />

60 80 115 281 73 1<br />

80 120 296 73 1<br />

70 92 132 349 85 1<br />

80 105 147 389 98 1<br />

7.4<br />

201


Maintenance-free rod ends with a female thread, steel/PTFE FRP<br />

d 5 – 22 mm<br />

B<br />

C 1<br />

a<br />

d 2<br />

d k d<br />

r 1<br />

l 7<br />

h 1<br />

l 4<br />

l 3<br />

G<br />

w<br />

SI(L)KB .. F<br />

l 5<br />

d 3<br />

d 4<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h 1 a C C 0 thread thread<br />

max 6H max<br />

mm degrees kN kg –<br />

5 19 M 5 8 6 27 13 3,25 5,3 0,019 SIKB 5 F SILKB 5 F<br />

6 21 M 6 9 6,75 30 13 4,25 6,8 0,028 SIKB 6 F SILKB 6 F<br />

8 25 M 8 12 9 36 14 7,1 11,4 0,047 SIKB 8 F SILKB 8 F<br />

10 29 M 10 14 10,5 43 13 9,8 14,3 0,079 SIKB 10 F SILKB 10 F<br />

29 M 10¥1,25 14 10,5 43 13 9,8 14,3 0,079 SIKB 10 F/VZ019 –<br />

12 33 M 12 16 12 50 13 13,2 17 0,12 SIKB 12 F SILKB 12 F<br />

33 M 12¥1,25 16 12 50 13 13,2 17 0,12 SIKB 12 F/VZ019 –<br />

14 37 M 14 19 13,5 57 16 17 27,5 0,16 SIKB 14 F SILKB 14 F<br />

16 43 M 16 21 15 64 15 21,4 34,5 0,23 SIKB 16 F SILKB 16 F<br />

43 M 16¥1,5 21 15 64 15 21,4 34,5 0,23 SIKB 16 F/VZ019 –<br />

18 47 M 18¥1,5 23 16,5 71 15 26 41,5 0,33 SIKB 18 F SILKB 18 F<br />

20 51 M 20¥1,5 25 18 77 14 31 50 0,38 SIKB 20 F SILKB 20 F<br />

22 55 M 22¥1,5 28 20 84 15 38 61 0,52 SIKB 22 F SILKB 22 F<br />

202


Dimensions<br />

d d k d 3 d 4 l 3 l 4 l 5 l 7 r 1 w<br />

ª max min max ª min min h14<br />

mm<br />

5 11,1 9 12 8 37 4 9 0,3 9<br />

6 12,7 10 14 9 41 5 10 0,3 11<br />

8 15,8 12,5 17 12 49 5 12 0,3 14<br />

10 19 15 20 15 58 6,5 14 0,3 17<br />

19 15 20 20 58 6,5 14 0,3 17<br />

12 22,2 17,5 23 18 67 6,5 16 0,3 19<br />

22,2 17,5 23 22 67 6,5 16 0,3 19<br />

14 25,4 20 27 21 76 8 18 0,3 22<br />

16 28,5 22 29 24 86 8 21 0,3 22<br />

28,5 22 29 28 86 8 21 0,3 22<br />

18 31,7 25 32 27 95 10 23 0,3 27<br />

20 34,9 27,5 37 30 103 10 25 0,3 30<br />

22 38,1 30 40 33 114 12 27 0,3 32<br />

7.5<br />

203


Maintenance-free rod ends with a male thread, steel/PTFE FRP<br />

d 5 – 22 mm<br />

B<br />

C 1<br />

d k d<br />

r 1<br />

l 1<br />

a<br />

d 2<br />

h<br />

l 2<br />

G<br />

SA(L)KB ..F<br />

Principal dimensions Angle Basic load ratings Mass Designations<br />

of tilt dynamic static <strong>Rod</strong> end with<br />

right-h<strong>and</strong> left-h<strong>and</strong><br />

d d 2 G B C 1 h a C C 0 thread thread<br />

max 6g max<br />

mm degrees kN kg –<br />

5 19 M 5 8 6 33 13 3,25 5,3 0,015 SAKB 5 F SALKB 5 F<br />

6 21 M 6 9 6,75 36 13 4,25 6,8 0,021 SAKB 6 F SALKB 6 F<br />

8 25 M 8 12 9 42 14 7,1 10 0,035 SAKB 8 F SALKB 8 F<br />

10 29 M 10 14 10,5 48 13 9,8 12,5 0,059 SAKB 10 F SALKB 10 F<br />

12 33 M 12 16 12 54 13 13,2 15 0,10 SAKB 12 F SALKB 12 F<br />

14 37 M 14 19 13,5 60 16 17 25,5 0,13 SAKB 14 F SALKB 14 F<br />

16 43 M 16 21 15 66 15 21,4 34,5 0,20 SAKB 16 F SALKB 16 F<br />

18 47 M 18¥1,5 23 16,5 72 15 26 41,5 0,26 SAKB 18 F SALKB 18 F<br />

20 51 M 20¥1,5 25 18 78 14 31 50 0,37 SAKB 20 F SALKB 20 F<br />

22 55 M 22¥1,5 28 20 84 15 38 58,5 0,46 SAKB 22 F SALKB 22 F<br />

204


Dimensions<br />

d d k l 1 l 2 r 1<br />

min max min<br />

mm<br />

5 11,1 19 44 0,3<br />

6 12,7 21 48 0,3<br />

8 15,8 25 56 0,3<br />

10 19 28 64 0,3<br />

12 22,2 32 72 0,3<br />

14 25,4 36 80 0,3<br />

16 28,5 37 89 0,3<br />

18 31,7 41 97 0,3<br />

20 34,9 45 106 0,3<br />

22 38,1 48 114 0,3<br />

7.6<br />

205


Other <strong>SKF</strong> plain bearings <strong>and</strong><br />

special solutions<br />

<strong>Spherical</strong> plain bearings for road vehicles..................................................................................... 208<br />

<strong>Plain</strong> bearings for railway vehicles................................................................................................. 208<br />

Bushing units for off highway vehicles.......................................................................................... 208<br />

<strong>Spherical</strong> plain bearings <strong>and</strong> rod ends for the aircraft industry................................................... 209<br />

Bushings, thrust washers <strong>and</strong> strips............................................................................................. 209<br />

<strong>Rod</strong> ends for the food industry....................................................................................................... 210<br />

8<br />

207


Other <strong>SKF</strong> plain bearings <strong>and</strong> special solutions<br />

<strong>Spherical</strong> plain bearings for road<br />

vehicles<br />

<strong>SKF</strong> spherical plain bearings or bearing units<br />

are also available for special applications. Therefore,<br />

<strong>SKF</strong> works closely with the customer to<br />

develop customized products, e.g. solutions for<br />

centring propeller shafts or gear shifts.<br />

<strong>Plain</strong> bearings for railway vehicles<br />

The <strong>SKF</strong> assortment of plain bearings for railway<br />

vehicles includes bogie swivel bearings for<br />

trams <strong>and</strong> heavy-duty goods wagons as well as<br />

spherical plain bearings <strong>and</strong> rod ends for transverse<br />

stabilizers, tilting mechanisms etc.<br />

Bushing units for off-highway vehicles<br />

Many off-highway vehicles have bushings made<br />

of steel or bronze that require relubrication. <strong>SKF</strong><br />

has developed state-of-the-art bushing units<br />

with seals. As these units do not require grease,<br />

costs are reduced <strong>and</strong> product ivity is increased.<br />

208


<strong>Spherical</strong> plain bearings <strong>and</strong> rod ends<br />

for the aircraft industry<br />

<strong>SKF</strong> supplies a wide assortment of special<br />

spherical plain bearings <strong>and</strong> rod ends in various<br />

designs <strong>and</strong> materials for aerospace applications<br />

worldwide. The main applications are airframe<br />

bearings for the transmission of rotating,<br />

tilting <strong>and</strong> oscillating movements as used in<br />

undercarriages, spoilers, height <strong>and</strong> side<br />

rudders, wing flaps etc.<br />

Bushings, thrust washers <strong>and</strong> strips<br />

<strong>SKF</strong> offers a wide assortment of bushings available<br />

from stock. Bushings are suitable for rotating,<br />

oscillating <strong>and</strong> linear movements <strong>and</strong> are<br />

available as cylindrical or flanged designs.<br />

Thrust washers are intended for applications<br />

where axial space is limited, maintenance is not<br />

possible <strong>and</strong> where lubricant starvation can<br />

occur.<br />

<strong>SKF</strong> also supplies strips made of the same<br />

materials as thrust washers. They can be bent,<br />

pressed or coined to form flat linear guides, e.g.<br />

L-shaped or V-shaped profiles, or other types<br />

of dry sliding components.<br />

Different materials meet different<br />

requirements:<br />

• solid bronze, the traditional robust material<br />

• sintered bronze with oil impregnation,<br />

for high sliding velocities<br />

• wrapped bronze with lubrication pockets,<br />

for contaminated environments<br />

• PTFE composite with reduced friction,<br />

for long service life<br />

• POM composite, for minimal maintenance<br />

under arduous conditions<br />

• PTFE polyamide, cost-effective <strong>and</strong><br />

maintenance-free<br />

• filament wound, for extreme conditions<br />

8<br />

209


Other <strong>SKF</strong> plain bearings <strong>and</strong> special solutions<br />

<strong>Rod</strong> ends for the food industry<br />

The food <strong>and</strong> beverage processing industries<br />

have unique requirements. Depending on the<br />

application, equipment has to withst<strong>and</strong> the<br />

following influences:<br />

• hot, cold or wet environments<br />

• frequent wash downs<br />

• exposure to harsh cleaning agents<br />

• food <strong>and</strong> liquid contaminants<br />

• a variety of chemicals<br />

To deal with these challenging operating conditions,<br />

<strong>SKF</strong> offers rod ends with a stainless steel<br />

housing or with a composite housing. Both<br />

series are equipped with a stainless steel inner<br />

ring <strong>and</strong> an injection moulded PTFE FRP dry<br />

sliding layer. The used materials provide the<br />

following properties:<br />

• corrosion resistant<br />

• good wear resistance<br />

• low friction<br />

• cost-effective<br />

210


211<br />

8


Product index<br />

Designation Product Product Page<br />

table<br />

GAC .. F ............Maintenance-free angular contact spherical plain bearings, steel/PTFE FRP ............ 4.1 156<br />

GE .. C .............Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze, metric sizes . . 3.1 132<br />

GE .. CJ2 ...........Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze, metric sizes . . 3.1 132<br />

GE .. E .............Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GE .. ES ............Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GE .. ES-2LS ........Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GE .. ES-2RS ........Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GE .. TXA-2LS .......Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GE .. TXE-2LS .......Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GE .. TXG3A-2LS ....Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GE .. TXG3E-2LS ....Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GE .. TXGR ..........Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEC .. FBAS .........Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes .......... 3.4 144<br />

GEC .. TXA-2RS. . . . . . Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEG .. ES ...........Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, metric sizes ........................................ 2.3 116<br />

GEG .. ESA ..........Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, metric sizes ........................................ 2.3 116<br />

GEH .. C ............Maintenance-free radial spherical plain bearings, steel/PTFE sintered bronze, metric sizes . . 3.1 132<br />

GEH .. ES-2LS ......Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GEH .. ES-2RS ......Radial spherical plain bearings requiring maintenance, steel/steel, metric sizes .......... 2.1 104<br />

GEH .. TXA-2LS .....Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEH .. TXE-2LS .....Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEH .. TXG3A-2LS ...Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEH .. TXG3E-2LS ...Maintenance-free radial spherical plain bearings, steel/PTFE fabric, metric sizes ......... 3.2 134<br />

GEM .. ES-2LS<br />

Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, metric sizes ........................................ 2.3 116<br />

GEM .. ES-2RS ......Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, metric sizes ........................................ 2.3 116<br />

GEP .. FS ...........Maintenance-free radial spherical plain bearings, steel/PTFE FRP, metric sizes .......... 3.4 144<br />

GEZ .. ES ...........Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZ .. ES-2LS .......Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZ .. ES-2RS. . . . . . . Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZ .. TXA-2LS ......Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes ........... 3.3 140<br />

GEZ .. TXE-2LS ......Maintenance-free radial spherical plain bearings, steel/PTFE fabric, inch sizes ........... 3.3 140<br />

GEZH .. ES .........Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZH .. ES-2LS .....Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZH .. ES-2RS .....Radial spherical plain bearings requiring maintenance, steel/steel, inch sizes ............ 2.2 110<br />

GEZM .. ES .........Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, inch sizes .......................................... 2.4 120<br />

GEZM .. ES-2LS .....Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, inch sizes .......................................... 2.4 120<br />

GEZM .. ES-2RS .....Radial spherical plain bearings requiring maintenance, steel/steel,<br />

with an extended inner ring, inch sizes .......................................... 2.4 120<br />

GX .. F .............Maintenance-free thrust spherical plain bearings, steel/PTFE FRP ................... 5.1 164<br />

SA .. C .............Maintenance-free rod ends, male thread, steel/PTFE sintered bronze ................. 7.2 196<br />

SA .. E .............<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SA .. ES ............<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SA .. ES-2RS ........<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SA .. TXE-2LS .......Maintenance-free rod ends, male thread, steel/PTFE fabric ......................... 7.4 200<br />

SAA .. ES-2RS .......<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SAA .. TXE-2LS ......Maintenance-free rod ends, male thread, steel/PTFE fabric ......................... 7.4 200<br />

SAKAC .. M .........<strong>Rod</strong> ends requiring maintenance, male thread, steel/bronze ......................... 6.7 186<br />

SAKB .. F ...........Maintenance-free rod ends, male thread, steel/PTFE FRP .......................... 7.6 204<br />

SAL .. C ............Maintenance-free rod ends, male thread, steel/PTFE sintered bronze ................. 7.2 196<br />

SAL .. E ............<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

9<br />

213


Product index<br />

Designation Product Product Page<br />

table<br />

SAL .. ES ...........<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SAL .. ES-2RS .......<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SAL .. TXE-2LS ......Maintenance-free rod ends, male thread, steel/PTFE fabric ......................... 7.4 200<br />

SALA .. ES-2RS .....<strong>Rod</strong> ends requiring maintenance, male thread, steel/steel ........................... 6.3 178<br />

SALA .. TXE-2LS .....Maintenance-free rod ends, male thread, steel/PTFE fabric ......................... 7.4 200<br />

SALKAC .. M ........<strong>Rod</strong> ends requiring maintenance, male thread, steel/bronze ......................... 6.7 186<br />

SALKB .. F ..........Maintenance-free rod ends, male thread, steel/PTFE FRP .......................... 7.6 204<br />

SC .. ES ............<strong>Rod</strong> ends requiring maintenance, cylindrical section welding shank, steel/steel .......... 6.4 180<br />

SCF .. ES ...........<strong>Rod</strong> ends requiring maintenance, rectangular section welding shank, steel/steel ......... 6.5 182<br />

SI .. C ..............Maintenance-free rod ends, female thread, steel/PTFE sintered bronze ................ 7.1 194<br />

SI .. E ..............<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SI .. ES. . . . . . . . . . . . . <strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SI .. ES-2RS ........<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SI .. TXE-2LS .......Maintenance-free rod ends, female thread, steel/PTFE fabric ........................ 7.3 198<br />

SIA .. ES-2RS .......<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SIA .. TXE-2LS ......Maintenance-free rod ends, female thread, steel/PTFE fabric ........................ 7.3 198<br />

SIJ .. E .............<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SIJ .. ES ............<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SIKAC .. M ..........<strong>Rod</strong> ends requiring maintenance, female thread, steel/bronze. . . . . . . . . . . . . . . . . . . . . . . . 6.6 184<br />

SIKAC .. M/VZ019 ....<strong>Rod</strong> ends requiring maintenance, female thread,<br />

steel/bronze, thread differs from st<strong>and</strong>ard ....................................... 6.6 184<br />

SIKB .. F Maintenance-free rod ends, female thread, steel/PTFE FRP ......................... 7.5 202<br />

SIKB .. F/VZ019<br />

Maintenance-free rod ends, female thread, steel/PTFE FRP,<br />

thread differs from st<strong>and</strong>ard .................................................. 7.5 202<br />

SIL .. C .............Maintenance-free rod ends, female thread, steel/PTFE sintered bronze ................ 7.1 194<br />

SIL .. E .............<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SIL .. ES ...........<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SIL .. ES-2RS .......<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SIL .. TXE-2LS ......Maintenance-free rod ends, female thread, steel/PTFE fabric ........................ 7.3 198<br />

SILA .. ES-2RS ......<strong>Rod</strong> ends requiring maintenance, female thread, steel/steel ......................... 6.1 172<br />

SILA .. TXE-2LS .....Maintenance-free rod ends, female thread, steel/PTFE fabric ........................ 7.3 198<br />

SILJ .. E ............<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SILJ .. ES ..........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SILKAC .. M .........<strong>Rod</strong> ends requiring maintenance, female thread, steel/bronze. . . . . . . . . . . . . . . . . . . . . . . . 6.6 184<br />

SILKB .. F ..........Maintenance-free rod ends, female thread, steel/PTFE FRP ......................... 7.5 202<br />

SILQG .. ES .........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SILQG .. ESA ........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SILR .. ES ..........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SIQG .. ES ..........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SIQG .. ESA .........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

SIR .. ES ...........<strong>Rod</strong> ends requiring maintenance for hydraulic cylinders, female thread, steel/steel ....... 6.2 174<br />

214


skf.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!