
t

OB JECT-ORIENTED TECHNOLOGY (OOT) IN CIVIL AVIATION
PROJECTS: CERTIFICATION CONCERNS

Leanna K. Rierson, Federal Aviation Administration, Washington, D. C.

Abstract
Object-Oriented Technology (OOT) has been

extensively utilized throughout the non-safety rated
software development community (e.g., Windows 98
and Internet software). Although the adoption of OOT
has been limited in the airborne civil aviation
community, OOT is being considered by an increasing
number of manufacturers of airborne software.
Application of RTCA DO-178BEUROCAE ED-12B
(“Software Considerations in Airborne systems and
Equipment Certification“) is the primary means of
approving software within these airborne systems.
However, DO- 178BED- 12B was developed prior to
the widespread use of OOT. The application of DO-
178BED-12B to systems developed using OOT is not
well understand in the industry. This paper will
provide an introduction to the issues surrounding the
development of aviation software using OOT within
the context of DO-178BED-12B assessments. This
introduction will demonstrate that DO-178BED-12B
is compatible with OOT but that there are significant
issues that need to be addressed. Other papers will be
developed to address these issues in more depth.

Introduction
Object-Oriented Technology (OOT) is seen

by many in the mainstream software community as the
“silver bullet” that will take us into the new
millennium of software development. OOT is
appealing because of the number of available tools,
the emphasis on reuse, and the appeal to software
designers. It is touted as a technology that saves
money, improves quality, and saves time.

However, to date, few airborne computer
systems in civil aviation have implemented OOT.
Safety-critical designers tend to use proven
technologies and, as a result lag, a few years behind
the mainstream designers of non-safety software.
Since OOT has proven to be cost-effective and
technically sound for many projects, manufacturers of
safety-critical systems are now considering its use.

There are some concerns when using OOT
that must be carefully considered. This paper will
provide an overview of OOT, an overview of RTCA
DO-178BEUROCAE ED- 12B (“Software
Considerations in Airborne Systems and Equipment
Certification”), and some of the concerns of using
OOT in airborne aviation software. This is merely the
beginning of a more in-depth study and will likely be
followed by other papers.

Overview of OOT
OOT is a software development technique

that is centered around “objects.” E E E refers to OOT
as “a software development technique in which a
system or component is expressed in terms of objects
and connections between those objects” [4]. An
object can be compared to a “black box” at the
software level - it sends and receives messages. The
object contains both code (functions) and data
(structures). The user does not have insight into the
internal details of the object, thus giving it the
comparison to a black box. An object can model real
world entities, such as a sensor or hardware controller,
as separate software components with defined
behaviors.

A major concept in OOT is the “class.”
Grady Booch, a champion in OOT methodology,
defines a “class” as “a set of objects that share a
common structure and a common behavior” [2]. A
class contains the attributes and operations that are
required to describe the characteristics and behavior of
a real world entity. Figure 1 illustrates a
representation of a class definition for an object.

Principles of OOT
There are seven principles that form the

foundation for OOT: abstraction, encapsulation,
modularity, hierarchy, typing, concurrency, and
persistence [2]. Not all of these principles are
unique to OOT, but OOT is the only development
methodology that embodies all seven as a consistent
model.

Note: This paper, is not the oficial Federal Aviation Administration (FAA) position. The author is a FAA employee, and
the paper is intended to be consistent with FAA policy; however, it has not been coordinated through the FAA’s approving

oficials and merely represents the opinions of the author.

U.S. Government work 2.C.4-1
not protected by U.S. Copyright.

Abstraction, modularity, concurrency, and
persistence are principles that are commonly used
in other development methodologies. However,
encapsulation (using a technique called information
hiding), hierarchy (using a technique called
inheritance), and typing (using a concept called
polymorphism) are relatively usque to OOT. Each
of the seven principles is described below.

Class Name

Attributes:

I [Operations:

FIGURE 1 - Object-Oriented Class Representation

Abstraction is one of the fundamental ways
that complexity is addressed in software development.
“An abstraction denotes the essential characteristics of
an object that distinguish it from all other kinds of
objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer”
PI.

Encapsulation is the process of hiding the
design details in the object implementation.
Encapsulation can be described as “the mechanism
that binds together code and the data it manipulates,
and keeps both safe from outside interference and
misuse” [1 I]. Encapsulation is generally achieved
through information hiding, which is the process of
hiding the aspects of an object that are not essential
for the user to see. Typically, both the structure and
the implementation methods of the object are hidden
(21.

Modularity is the process of partitioning a
program into logically separated and defined
components that possess defined interactions and
limited access to data. Booch writes that modularity is

a “property of a system that has been decomposed into
a set of cohesive and loosely coupled modules” [2].

Hierarchy is simply the ordering of
abstractions. Examples of hierarchy are single
inheritance and multiple inheritance. In OOT, when a
sub-class is created, this new class “inherits” all of the
existing attributes and operations of the original class,
called the “parent” or “superclass” [8]. Inheritance is
a relationship between classes where one class is the
“parent” (also called “base,” “superclass,” or
“ancestor”) class of another [6]. One author puts it
this way, “Inheritance is a relationship among classes
where a child class can share the structure and
operations of a parent class and adapt it for its own
use” [5].

Inheritance is one of the key differences
between OOT and conventional software
development. There are two types of inheritance:
single inheritance and multiple inheritance. In single
inheritance, the sub-class inherits the attributes and
operations from a single superclass. In multiple
inheritance, the sub-class inherits some attributes
from one class and others from another class.
Multiple inheritance is controversial, because it
complicates the class hierarchy and configuration
control [9].

Typing is a principle that is used in OOT that
has many definitions. Booch presents one of the most
clear and concise definitions by stating, “Typing is the
enforcement of the class of an object, such that objects
of different types may not be interchanged, or at the
most, they may be interchanged only in very restricted
ways” [2]. Examples of OOT typing are strong
typing, weak typing, static typing, and dynamic
typing. Each OOT programming language varies in
its implementation of typing.

Another OOT concept closely related to
typing is polymorphism. Polymorphism comes from
the Greek meaning “many forms.” It allows one name
to be used for two or more related but different
purposes [ll]. It is the ability of an object to assume
or become many different forms of object.
Polymorphism specifies slightly different or additional
structure or behavior for an object, when assuming or
becoming an object [6]. This allows different
underlying implementations for the same command.
For example, assume there exists a vehicle class that
includes a steer-left command. If a boat object was
created from the vehicle class, the steer-left command
would be implemented by a push to the right on a
tiller. However, if a car object was created from the
same class, it might use a counter-clockwise rotation
to achieve the same command.

U.S. Government work 2.C.4-2
not protected by U.S. Copyright.

Concurrency is the process of carrying out
several events simultaneously.

Persistence is “the property of an object
through which its existence transcends time (i.e., the
object continues to exist after its creator ceases to
exist) and/or space (i.e., the object’s locations moves
from the address space in which it was created)” [2].

Identify user
requirements

(use cases) +
Identify classes
(attributes &

operations) (CRC) +
Specify class

hierarchy
(CRC) +

Identify object-
to-object

relationships (OR) +

OOT Methodology
Everyone seems to have a slightly different

perspective of what OOT actually entails. OOT can be
described in four phases: Object-Oriented Analysis
(OOA), Object-Oriented Design (OOD), Object-
Oriented Programming (OOP), and Object-Oriented
Verificatioflest (OOV/T). The implementation of
these phases is typically iterative or evolutionary. An
overview of each phase will be addressed below.

OOA is the process of defining all classes that
are relevant to solye the problem and the relationships
and behavior associated with them [9]. A number of
tasks occur to carry out the OOA as shown in Figure
2. The tasks are reapplied until the model is
completed. As shown in Figure 2, use cases, class-
responsibility-collaborator (CRC) models, object-
relationship (OR) models, and object-behavior (OB)
models are methods typically used to carry out the
OOA. The use case is a method utilized to identify
the user’s requirements. The CRC model is used to
identify the class attributes, operations, and hierarchy.
The OR model is used to illustrate the relationship
between the numerous objects. And, the OB model is
used to model the behavior of each object.

OOD transforms the OOA into a blueprint for
software construction. Four layers of design are
usually defined: subsystem layer, class and object
layer, message layer, and responsibilities layer. The
subsystem design layer represents each subsystem that
enables software to achieve the requirements. The
class and object design layer contains class
hierarchies and object designs. The message design
layer contains the internal and external interfaces to
communicate between objects. The responsibilities
design layer contains the algorithm design and data
structures for attributes and operations of each object.

OOP is the coding phase of the design
project, using an object-oriented (00) language.
There are dozens of 00 languages. Three of the
most well known are C++, Smalltalk, and Java. C++
and Java are of particular interest for designers of
embedded software. Java’s platform independence
and C++’s tool support make these two languages
very appealing to the developers of airborne systems.

.....................

i p
i %
i P , ; m

: j g
i s
i g
i s

ia

Model object ’ (OB) t
I I

FIGURE 2 - OOA Tasks

There have been a few C++ applications on
aviation products-mostly in less safety-critical
systems. One area of great concern for these
programs was the use of certain built-in C++
functions. For example, the use of “new” and “delete”
functions was prohibited because of non-deterministic
behavior due to dynamic memory management
functions. Assuring the lack of memory leakage was
another issue that was addressed. The developers on
these programs found that the use of C++ functions
and built-in libraries required extensive verification
and testing in order to understand their behavior.

In 1996 David Binkley of the National
Institute of Standards and Technology (NIST)
published a paper entitled “C++ in Safety Critical
Systems.” The paper outlined guidelines for using
C++ to create safe software. Adherence to these
guidelines can lead to safer and more maintainable
C++ programs. The paper also outlined a series of
techniques and examples for creating safer C++
programs. The paper is available on the world wide
web [l].

An article in Computer Design stated, “For
embedded systems, a language generating a great
deal of interest today is Embedded C++, a subset of
ANSI C+ + that offers certain advantages for real-time
development. ” Embedded C++ (EC++) omits some of
the “problematic” features of ANSI C++. For
example, multiple inheritance, virtual base classes,

U.S. Government work 2.C.4-3
not protected by U.S. Copyright.

run-time identification, templates, exceptions, and
namespaces are deleted [131.

Brian Wichmann recently conducted a web-
site discussion entitled “Moderated Discussion on
C++ and Safety.” This discussion attracted world-
wide input about C++ applicability to safety-critical
projects. The discussion demonstrated how
controversial the use of C++ is for safety-critical
applications.

Wichmann began the discussion with this
thought: “Although the major problem with safety-
critical software is getting the requirements correct,
the impact of the language is significant ... The main
problems I see with C++ arise from its ‘high-level’
nature. For instance, it is hard to show that there is no
storage leak or bound the storage requirements
statically. Another problem is that in several cases,
the order in which an execution is performed is not
defined, making it effectively impossible to guarantee
predictable execution ” [141.

The discussion to Wichmann’s question goes
on for eight pages. Some of the more enlightening and
relevant discussions are included below in order to
illustrate the controversy of this subject. Peter
Fenelon stated the following regarding sub-sets of
C++: I’d be highly reluctant to see C++ in any safety-
related or critical environment. By the time “unsafe”
or “difficult” features are ruled out -- I‘m referring
particularly to exception handling, the use of
templates and Standard Template Library (STL),
multiple inheritance, and so on -- what’s lefi isn’t
much more than ANSI C (a language I have far fewer
quibbles with, if sensible guidelines are followed).. . ’’

Another interesting comment by Bob Gorman
endorsed the possibility of using C++ on safety-
critical systems: “It seems to me that many people
here are evaluating C++ only as a sum of its features.
Of course we can pick apart any language if we only
focus its features or lack of them. However, it’s the
real world implementation of the features that makes
the application safe and robust.. . ” [141.

Jim Jaskol wrote: “ ... The tools, knowledge
base, and experience surrounding C/C++ gives it
tremendous advantages in many areas over other
languages--advantages that can translate into safer
systems. C++ has too much of a following to be
ignored ... ” [14].

[141.

Because of its platform independence and
widespread use by the mainstream software
development community, Java has recently become a
desirable language for developers of safety-critical
systems. Java was originally developed for embedded

systems on cable television boxes. Since most safety-
critical systems are embedded, Java has some
potential. Some aviation companies are currently
performing studies to determine the feasibility of
using Java in safety-critical systems.

There are currently many concerns regarding
the use of this language. Java is an extremely
powerful language; however, it lacks robustness.
There are new releases of Java every few months; this
fast production of the language does not allow it to
become robust. One software developer who uses
Java for browsers claims that the browsers “crash” a
lot. Frequent crashing may be tolerable for non-safety
applications; however, it is not acceptable for a safety-
critical system, such as an airplane or a nuclear power
plant.

An article in Computer Design explored the
use of Java in safety-critical systems. A positive
aspect of the language is that the absence of pointers
and automatic checking for common errors reduces
the potential for memory errors. However, Java’s use
of garbage collection is problematic, because it is a
non-deterministic memory management technique

Java has matured rapidly in the last two years.
Despite a few problems, the power and potential of
Java is impressive. With improvements and further
investigation, it could become a language appropriate
for use in safety-critical systems.

~ 3 1 .

OOV7T is the process of detecting errors and
verifying correctness of the OOA, OOD, and OOP.
OOVE includes reviews, analyses, and tests of the
software design and implementation. OOV/T requires
slightly different strategies and tactics than the
traditional structured approach. The variance in the
approach is driven by characteristics like inheritance,
encapsulation, and polymorphism. Most developers
use a “design for testability” approach to begin
addressing any verificatiodtest issues early in the
program.

Overview of DO-178B/ED-l2B
DO-178BED-12B is the guidance document

that most civil aviation manufacturers use for
certification approval of their airborne software. In
order to assess how DO-178BED-12B applies to
OOT, it is important to understand the background
and basics of the document.

DO-178ED-12 (no revision) was first
developed by the international civil aviation
community in 1982. It was revised in 1985 to add
more detail. In 1992, DO-178BED-12B was
completed and has become the software “standard” for

U.S. Government work 2.C.4-4
not protected by U.S. Copyright.

airborne software in civil aviation products. The DO-
178ED-12 document and all of its revisions were
sponsored by RTCA and EUROCAE, with the
involvement of aviation, software, and certification
experts from across the world.

DO-178BED-12B focuses on the software
aspects of system development. As part of the
systems engineering task, a system safety assessment
must be performed before DO-178BED-12B can be
applied to the software development effort. A system
safety assessment is a process to identify the hazards,
failure conditions leading to these hazards, and the
effects of mitigation strategies. The safety assessment
task determines a software level based upon the
contribution of the software to the potential failure
conditions defined in the system safety assessment
process. The five software levels, A to E, are
summarized in Table 1 [lo].

These software levels define differing degrees
of rigor for the software development process. Annex
A in DO-178BED-12B lists the objectives that must
be met for each specific software level. These
software levels define a number of desirable attributes
for the software development and verification
processes. The differences in rigor are determined by
the number of objectives which need to be satisfied,
whether a specific objective is satisfied with
independence, and the formality of configuration
control of the software data produced during
development. For example, the number of objectives
for each software level is listed below:

LevelA: 66 objectives
0 LevelB: 65 objectives
0 LevelC: 58 objectives
0 LevelD: 28 objectives
0 LevelE: 0 objectives

DO-178BED-12B is divided into
development activities and integral processes. The
development activities include planning, requirements,
design, code, and integration. The integral processes
include verification, configuration management,
quality assurance, and certification liaison. The
integral processes are overlaid on each of the
development activities (i.e., verification, configuration
management, quality assurance, and certification
liaison are applied to each development activity).

Failure
Condition
Catezory

Catastrophic

Hazardous

Major

Minor

No Effect

Description

Failure conditions which would prevent
continued safe flight and landing of the
aircraft.
Failure condition which would reduce the
capability of the aircraft or the ability of
the crew to cope with adverse operation
conditions to the extent that there would
be: I

(1) a large reduction in safety'

(2) physical distress or higher,
margins or functional capabilities,

workload such that the flight crew
could not be relied on to perform
their tasks accurately or
completely, or

(3) adverse effects on occupants
including serious or potential fatal
injuries to a small number of
occupants.

Failure conditions which would reduce the
capability of the aircraft or the ability of
the crew to cope with adverse operation
conditions to the extent that there would
be, for example, a significant reduction in
safety margins or functional capabilities,
as significant increase in crew workload or
in conditions impairing crew efficiency, or
discomfort to occupants, possibly
including injuries.
Failure conditions which would not
significantly reduce aircraft safety, and
which would involve crew actions that are
well within their capabilities.
Failure conditions which do not affect the
operational capability of the aircraft or
increase crew workload.

- sw
Level

Table 1 - DO-178B/ED-l2B Software Levels

The objectives of DO-178BED-12B are
listed in Annex A of the document and are organized
around the development activities and integral
processes previously described. There are ten tables
in Annex A with objectives-the subject of each table
is listed below:

0 Table A-1 : Software Planning Process
Table A-2: Software Development Processes
Table A-3: Verification of Outputs of Software
Requirements Process
Table A-4: Verification of Outputs of Software
Design Process
Table A-5: Verification of Outputs of Software
Coding & Integration Processes
Table A-6: Testing of Outputs of Integration
Process
Table A-I: Verification of Verification Process
Results
Table A-8: Software Configuration Management
Process
Table A-9: Software Quality Assurance Process

U.S. Government work
not protected by US. Copyright.

2.C.4-5

Table A-10: Certification Liaison Process

Table A-4 objective 1 is used in Figure 3 to
illustrate the Annex A table layout and structure. The
first set of columns contains information about the
DO-178BED-12B objectives: objective number,
description, apd reference to DO- 178BED- 12B
paragraph where that objective is further detailed.
The next set of columns with headers A, B, C, D show
the applicability of that particular objective to the
software level. For example, objective 1 is applicable
for levels A, B, and C; however, it does not need to be
satisfied for software level D. If the circle indicating
applicability is filled in, then that objective must be
satisfied with independence. The next series of
columns describe the outputs produced as evidence
that the objective is satisfied. The “Description”
column lists where that data is found. The “Ref.”
Column identifies the paragraph within Chapter 11 of
DO-178BED-12B that details the attributes of that
software data. The last 4 columns correlate the rigor
of configuration management of the particular output
with the associated software level. Control category 1
requires more configuration management activities
than control category 2. For instance, control category
1 requires problem reporting and change control,
where as control category 2 requires only change
control.

Objective

Appllcablllty Control
Category
y SW level by SW Level output , i Description i Ref. j A i B i C i D i Descrlptlon

1 Low-level 6.3.2a 0 Software
requirements Verification
comply with high- Results
level
requirements.

11.14 2 2 2 m
Figure 3 - Portion of Table A-4 in DO-178B

Assessment to DO-178BED-12B is performed
through on-site reviews and/or desk-top (data) reviews
by FAA personnel, Designated Engineering
Representatives, andlor software developer’s team
members. The assessment evaluates the data to
determine if the objectives listed in Annex A of DO-
178BED-12B are met. In June of 1998, the FAA
released a job aid entitled, “Conducting Software
Review Prior to Certification”. The job aid outlines a
process for assuring compliance to the objectives of
DO-178BED-12B. The job aid is available
electronically and is designed to be tailored to meet
the specific needs of the evaluator or project.

This section has provided a very high level
overview of DO-178BED-12B. More information
may be obtained by reading DO-178BED-12B itself,

U.S. Government work 2.C.4-6
not protected by U.S. Copyright.

by participating in related RTCA and EUROCAE
activities, and by reviewing the FAA job aid.

Concerns in Use of OOT in Airborne
Software

For most software projects seeking FAA
approval, the objectives of DO-178BED-12B should
be satisfied, as appropriate for the software level.
This section will look at some of the issues to be
addressed by a software development team using OOT
in airborne civil aviation software in order to meet the
objectives of DO-178BED-12B. This should not be
considered a comprehensive study of the issues - there
are likely additional issue to be addressed, depending
on the specific project details (for example, each 00
language andlor compiler may have different
certification issues).

Planning. The OOT software development
process should be carefully planned and documented.
In particular, the Plan for Software Aspects of
Certification document should address any special
certification issues in order to get the certification
authority’s “buy-in.’’ Additionally, the development
standards should address any special limitations for
the development team to consider (e.g., no multiple
inheritance, etc.).

Traceability. DO- 178BED- 12B requires
traceability from requirements to design to code to test
cases/results. When inheritance is used in the design,
special care must be taken to maintain traceability.
This is particularly a concern, if multiple inheritance
is used. Overall, multiple inheritance is a concern to
certification authorities. If used, it should be very
carefully applied and addressed in the development
standards for the project.

Traceability is made more difficult because
there is often a lack of 00 methods or tools for the
full software lifecycle. For example, tools/methods
often cover OOA or OOD but not both. New tools are
beginning to address this gap 131.

A number of DO-
178BED-12B objectives address the topic of target
compatibility. Using classes, instantiation, and
automatic memory management typically implies the
use of dynamic memory allocation. In typical
implementations, dynamic memory algorithms require
periodic reorganization of the memory to reduce the
inevitable fragmentation. This leads to indeterminate
execution profiles. As an alternative to the typical
implementation provided by most 00 languages, the
developer might consider the feasibility of designing a
deterministic memory allocation subsystem. Another

Target Compatibility.

approach which might be feasible, is to pre-allocate
objects during program initialization and avoid
creating or deleting them after that. Dynamic memory
allocation must be verified in terms of both space
(available memory) and execution time in order to
determine compatibility with the target.

Structural Coverage. DO-178BED-12B has
three forms of structural coverage, which are
applicable depending on the software level: statement
coverage (Levels A, B, & C); decision coverage
(Levels A & Bk and modified conditioddecision
coverage (MC/DC) (Level A only). The use of
inheritance and polymorphism might cause difficulties
in obtaining strucFura1 coverage, particularly decision
coverage and MCDC. Source to object code
correspondence will vary between compilers for
inheritance and polymorphism.

DeadDeactivated Code. DO- 178BED-12B
defines dead and deactivated code as follows:

“Dead code - Executable object code (or data)
which, as a result of a design error cannot be executed
(code) or used (data) in a operational configuration of
the target computer environment and is not traceable to
a system or software requirement. An exception is
embedded identifiers” [lo].

“Deactivated code - Executable object code (or
data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a
previously developed software component, or (b) is only
executed (code) or used (data) in certain configurations
of the target computer environment, for example, code
that is enabled by a hardware pin selection or software
programmed options” [lo].

DO-178BED-12B basically requires any
dead code to be removed and deactivated code to be
analyzed to prove that it is not dead.

When superclass methods are replaced by
sub-class methods (i.e., overridden methods), there is
a possibility that dead or deactivated code could be
introduced. Structural coverage analysis is intended to
address the deaddeactivated code. However, any
such occurrences would need to be addressed.

Veriflcetion/Testing. Test coverage of high-
level and low-level 00 requirements will likely
require different testing strategies and tactics than the
traditional structured approach. The characteristics of
inheritance, encapsulation, and polymorphism drive
the need for the different strategies and tactics. Most
developers are using a “design for testability”
approach to begin addressing any test issues early in
the program.

Overuse of Inheritance. Overuse of
inheritance, particularly multiple inheritance, can lead
to unintended connections among classes [3]. This

could lead to difficulty in meeting the DO-178BED-
12B objective of data and control coupling.

Ambiguity. Inheritance, polymorphism, and
operator overloading through dynamic or run-time
linkage can lead to ambiguity. Polymorphic and
overloaded functions may make tracing and verifying
the code difficult [3]. Since DO-178BED-12B
requires that the source code be verifiable, attention
should be paid to such issues.

Some 00 languages have
“features” that could make it extremely difficult or
impossible to satisfy the objectives of DO-178BED-
12B. In many cases, a well-defined Sub-set of the
language may be identified and documented in the
coding standards that will allow compliance to
objectives for a given software level. As an example,
ANSI C++ has some “features” that might make
meeting the objectives of DO-178BED-12B
impossible. These obstacles might be addressed by
including the following restrictions in the coding
standards:

I

Coding Issues.

+ Minimize dynamic binding
+ Minimize operator overloading
+ Minimize control flow complexity
+ Use “new” only at initialization
+ Avoid using “delete”
+ Avoid use of exception handling
+ Avoid multiple inheritance
+ Avoid type-cast pointers

Library Dependence. The dependence on
libraries is a concern for safety-critical systems-it is
often unclear as to what is happening in the object
libraries. Libraries may not have been ,developed with
safety-critical applications in mind and may not have
the integrity required for such applications. Use of
libraries must be carefully considered and verified for
proper functionality.

Conclusions
An article in ComDuter Design, entitled

“Building Tomorrow’s Embedded Software,” stated,
“Size, complexity, and time-to-market issues are
causing fundamental changes in how embedded
software is written. While there are solutions to
borrow from desktop development, they have to be
chosen judiciously” [12]. Such is the case with safety-
critical systems’ development. The use of OOT in
aviation systems is being considered by many
developers of airborne software. The jury is still out
with respect to its use. There are advantages and

U.S. Government work 2.C.4-7
not protected by U.S. Copyright.

disadvantages for software all development methods -
OOT is no exception.

Developers should carefully weigh their
program needs with the benefits and risks of OOT.
There are a number of potential certification concerns,
as discussed in this paper. The author intends to
further investigate each of the certification concerns in
more depth in order determine potential risk
mitigation strategies.

References
[13 Binkley, David. “C++ in Safety Critical

Systems,” National Institute of Standards and
Technology, February 29, 1996. Web-site:
http://hissa.ncsl.nist.gov/sw develou/ir5769/ir579.l.ht
- ml.

[2] Booch, Grady. Obiect-Oriented Analysis
and Design. Addison-Wesley, 2”* edition, 1994.

[3] Cuthill, Barbara. “Applicability of
Object-Oriented Design Methods and C++ to Safety-
Critical Systems” from Proceedings of the Digital
Systems Reliability and Safety Workshop (1 993).

Terminology.” ANSYIEEE Standard, 1983.

Methods for Concurrent and Real-time Systems.
Addison-Wesley, 1993.

[6] Hathaway, Bob. “Frequently Asked
Questions on Object-Oriented.” Web-site:
ht tp ://www . cs . cmu .edu/Grouus/AIhtmllfaq snan doop
/facl-doc-0. html.

[7] Meyer, Bertrand. Obiect-Oriented
Software Construction. Prentice Hall, 2”d edition,
1997.

Oriented Software?” Web-site: http://www.soft-
desinn.com/softinfo/obiects.html

[9] Pressman, Roger, Software EngineerinK
A Practitioner’s Approach. McGraw Hill, 4* edition,
1997.

[lo] RTCA, document DO-178B/ED-l2B,
“Software Considerations in Airborne Systems and
Equipment Certification”, dated December 1, 1992.

[111 Schildt, Herbert. Teach Yourself C++.
McGraw Hill, 1998.

[121 Varhol, Peter. “Building Tomorrow’s
Embedded Software,” Computer Design, April, 1998.
Web-site: http://www.comuuter-
design.com/Editorial/1998/04//Embedded
/49 8DESRP. HTM .

Life-Critical Systems”, Computer Design, July, 1998.
Web-site: http://www.computer-design.com/
Editorial/1998/07//Wang/ 798JULFEAT.htm.

[4] “Glossary of Software Engineering

[5] Gomaa, Hassan. Software Design

[8] Montlick, Terry. “What is Object-

[131 Varhol, Peter, “Software Design for

[141 Wichmann, Brian. “Moderated
Discussion on C++ and Safety,” March 20, 1998.
Web-site: httu://www.cs.york.ac.uW-idrd
cplussafety. html.

About the Author
Leanna K. Rierson is a Software Program

Manager and Technical Specialist for the FAA
Aircraft Certification Service’s Avionics branch in
Washington, D.C. She has previous experience as a
software engineer at NCR, Cessna Aircraft Company,
and the Wichita Aircraft Certification Office. Leanna
graduated sume cum laude, with a bachelor’s degree
in electrical engineering. She is currently completing
a Master’s in software engineering and plans to
continue work toward a PhD. Leanna is the leader for
FAA’s Software Grand Design program, Streamlining
Software Aspects of Certification program, Flight
Critical Digital Systems Research effort, and
Technical Reusable Software Team. She is also the
chair of the international Certification Authorities
Software Team and is the editorial leader of RTCA’s
Special Committee #190.

Acknowledgements
Much thanks to Michael DeWalt of

Certification Services Incorporated and Uma Ferrell of
MITRE for their review and input on this paper.

U.S. Government work
not protected by U.S. Copyright.

2.C.4-8

http://hissa.ncsl.nist.gov/sw
http://www.soft
http://www.comuuter
http://www.computer-design.com

