WO2008034753A1 - Catalytic low temperature polymerization - Google Patents

Catalytic low temperature polymerization Download PDF

Info

Publication number
WO2008034753A1
WO2008034753A1 PCT/EP2007/059623 EP2007059623W WO2008034753A1 WO 2008034753 A1 WO2008034753 A1 WO 2008034753A1 EP 2007059623 W EP2007059623 W EP 2007059623W WO 2008034753 A1 WO2008034753 A1 WO 2008034753A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
group
derivatives
polymerization
polymerization catalyst
Prior art date
Application number
PCT/EP2007/059623
Other languages
German (de)
French (fr)
Inventor
Atsushi Sudo
Ryoichi Kudoh
Kazuya Arima
Hiroshi Nakayama
Takeshi Endo
Andreas Taden
Thomas Huver
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to CN2007800349330A priority Critical patent/CN101516961B/en
Priority to US12/442,316 priority patent/US20100016504A1/en
Priority to BRPI0717577-9A priority patent/BRPI0717577B1/en
Priority to JP2009528683A priority patent/JP5474551B2/en
Priority to EP07820176.1A priority patent/EP2064259B1/en
Publication of WO2008034753A1 publication Critical patent/WO2008034753A1/en
Priority to US13/557,769 priority patent/US20130266737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0677Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polymerization catalyst, comprising at least two components, wherein at least one of those components is selected from the group of nitrogen containing heterocycles and/or their derivatives and at least one of those components is selected from the group of organic sulfonic acids and/or organic sulfonic acid derivatives, as well to compositions comprising said catalyst and use of said catalysts.
  • Electronic devices such as circuit boards, semiconductors, transistors, and diodes are often coated with materials such as epoxy resins for protection. Such coating materials are often cured on the surface of an electronic device by heat. But electronic devices often are sensitive to heat, and too much heat may adversely affect the performance of a device. It is also a problem in practice that a lot of energy is necessary for heating and/or the time which is necessary for polymerization and curing reaction is too long.
  • the coating material shrinks or expands significantly in response to heat, the device it coats may be warped.
  • Acids may be relatively efficient polymerization catalysts. Depending on their amount it may be possible to reduce the temperature and improve the polymerization step.
  • the polymer For various applications of such polymers to structural materials, sealant and adhesives, the polymer must be thermally stable as much as possible. A further transition step from one structure into another one could cause serious problems in many cases, especially when already applied in practical use. Therefore, efficient and selective formation of one stable product, e.g. the Mannich-type poly(benzoxazine) is extremely desireable.
  • the temperature required for the rearrangement from the ether-type to the Mannich-type structure can be very high, mostly still above 200 0 C.
  • conventional polymerization catalysts such as phenols, carboxylic acids, organic sulfonic acids, amines, imidazoles, and phosphines the polymerization results are not satisfying in regard to specific aspects.
  • organic sulfonic acids those are relatively efficient catalysts, whereas the efficacy strongly depends on the amount of use. If the concentration of the organic sulfonic acid is high enough this can lead to a smooth polymerization process at acceptable temperature. Otherwise it might be that the quality of the polymerization product and/or the cured material would have negative impact on the final product. This might lead to increased corrosion or further negative effects caused by the acid catalyst. Therefore, as already explained, in practical applications, amount of such strong acids must be reduced as much as possible in order to prevent deterioration of chemical resistance and physical properties of the cured material.
  • Lewis acids such as PCI 5 , TiCI 4 , AICI 3 are also known as highly active catalysts and may be used for such low temperature polymerization, too. However they are highly sensitive to moisture and cause formation of volatile, toxic, and corrosive impurities, avoiding their practical use.
  • one subject of the present invention is a polymerization catalyst, comprising at least two components, wherein a) at least one or more of said at least two components is selected from the group of nitrogen containing heterocycles and/or their derivatives, whereas the heterocycles are preferably selected from the group of imidazoles, in particular those having a melting point below 120 0C and b) at least one or more of said at least two components is selected from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids, preferably from organic sulfonic and sulfuric acids and their derivatives and mixtures of them, in particular from organic sulfonic acids and/or organic sulfonic acid derivatives.
  • the molar ratio of said nitrogen containing heterocycles and/or their derivatives to said organic sulfur containing acids and/or derivatives of organic sulfur containing acids in the polymerization catalyst according to the present invention are from 10:1 to 1 :10, preferable from 3:1 to 1 :3.
  • the nitrogen containing heterocycles according to the present invention can be saturated, unsaturated, or aromatic. Besides the above mentioned imidazoles it may also be preferred that the nitrogen containing heterocycles are a thiazole, an oxazole, an imidazole, a pyridine, a piperidine, or a pyrimidine, a piperazine, a pyrrole, an indole or a benzthiazolyl. It is furtheron preferred that there is no acidic functional group present at the nitrogen containing heterocycles. Most preferably, the nitrogen containing heterocyclic moiety is a thiazole and/or an imidazole. In particular it is preferred that the nitrogen containing heterocycles and/or their derivatives according to the present invention are selected from the group of imidazoles and/or imidazole derivatives with formula I
  • R 1 , R 2 , R 3 and R 4 being hydrogen or aliphatic or aromatic hydrocarbons
  • said imidazole is selected from the group of imidazole, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1 ,2-dimethyl imidazole, 2-ethyl-4-methylinnidazole, 2-phenyl-4- methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylinnidazole, i-cyanoethyl-2-methylinnidazole or i-aminoethyl-2-nnethylinnidazole.
  • organic sulfur containing acids and/or derivatives of organic sulfur containing acids according to the present invention are selected from the group of sulfonic acids according to formula Il
  • R 5 is preferably selected from aromatic groups, alkyl groups and fluorinated alkyl groups.
  • organic sulfonic acid of the present invention is selected from the group of sulfonic acids according to formula III, IV, V and Vl.
  • the at least two components of the inventive polymerisation catalyst are stable to moisture and air and most preferably also any potential further components in the polymerization catalyst are stable to moisture and air (or moisture- and air-tolerant).
  • This allows to perform polymerization/curing reactions at lower temperature without decomposition of the catalyst-component upon exposure to moisture and air.
  • the inventive catalyst allows to achieve the thermodynamical stable final product of the polymerization/curing reaction at lower temperature than by usage of only a single catalytic component out of the catalytic components according to the present invention.
  • Another subject of the present invention is a curable composition
  • a curable composition comprising at least one polymerization catalyst according to the present invention in combination with at least one polymerizable component.
  • the curable composition can be used to form a polybenzoxazine (PBO) composition.
  • PBO polybenzoxazine
  • the preferred PBO composition contains a PBO and a catalyst according to the present invention and optionally an epoxy resin and/or a phenolic resin.
  • An example of an epoxy resin is epoxy cresol novalac.
  • the molding composition may include, for example, about 0.5 weight % to about 7.0 weight %, preferably about 1.5 weight % to 3.5 weight %, of the epoxy resin.
  • An example of a phenolic resin is phenolic novalac.
  • the molding composition may include, for example, 0.1 weight % to 3.0 weight %, preferably 0. 3 weight % to 1.5 weight %, of the phenolic resin.
  • the at least one polymerizable component according to the present invention is a benzoxazine component, in particular a component according to formula VII:
  • R 7 is a linear or branched substituted or non substituted alkyl or aromatic group
  • R 8 , R 9 , R 10 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl, preferably with less than 12 C-atoms and aromatic group, whereas R 10 preferably is an aromatic group;
  • R 7 and R 8 or R 8 and R 9 can optionally form a cyclic structure.
  • polybenzoxazines can be used, to provide a coating on electronic devices such as circuit boards and semiconductors.
  • PBO polybenzoxazines
  • the preferred PBO compositions have high glass transition temperature, good electrical properties (e.g., dielectric constant), low flammability, and a near-zero percent shrinkage and expansion upon demolding, postcuring, and cooling.
  • the at least one benzoxazine component according to formula VII with R 7 , R 8 , R 9 , and R 10 comprises a further benzoxazine structure represented as
  • R 6 , R 7 , R 8 , R 9 , and R 10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group. It is furtheron preferred that the inventive composition comprises at least one benzoxazine component selected from
  • R is a linear or branched substituted or non substituted alkyl or aromatic group and preferably R is a aromatic group;
  • the molar ratio between said one or more of the polymerizable component(s) according to the present invention and the polymerisation catalyst(s) according to the present invention is 90:10 to 99.9:0.1 preferably 95:5 to 99.5:0.5.
  • the benzoxazine-containing molding compositions can be prepared by any conventional methods.
  • the ingredients including resins and other additives
  • the molding composition as described above, can be used for coating electronic devices such as semiconductors or circuit boards.
  • the prepared compositions can be molded by any suitable molding apparatus.
  • An example of such an apparatus is a transfer press equipped with a multi-cavity mold.
  • a flame retardant such as a brominated epoxy novolac flame retardant (e.g., BREN, available from Nippon Kayaku).
  • BREN brominated epoxy novolac flame retardant
  • the preferred molding composition can contain up to 3.0 wt %, more preferably, 0.1-1.0 wt % of a flame retardant.
  • the preferred molding composition can contain up to 3.0 wt %, more preferably, 0.25- 1.5 wt % of a flame retardant synergist.
  • a filler such as silica, calcium silicate, and aluminum oxide.
  • the preferred molding composition can contain 70-90 wt %, more preferably, 75- 85 wt % of a filler.
  • the preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.1-1.0 wt % of a colorant.
  • a wax or a combination of waxes such as carnauba wax, paraffin wax, S-wax, and E-wax.
  • the preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.3-1.5 wt % of a wax.
  • Funned silica such as aerosil.
  • the preferred molding composition can contain 0.3-5.0 wt %, more preferably, 0.7-3.0 wt % of fumed silica.
  • a coupling agent such as the silane type coupling agent.
  • the preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.3-1. 0 wt % of a coupling agent.
  • composition wherein said composition comprises at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
  • additional solvent preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
  • compositions according to the present invention are curable at a temperature from 100 0 C to 250 0 C, preferably from 130 0 C to 180 0 C, in particular from 130 to 160 0 C.
  • compositions according to the present invention are curable at a pressure between 1 to 100 atm, preferably under atmospheric pressure.
  • compositions according to the present invention preferably are comprising 20 % by weight to 99,9 % by weight, more preferably 40 % by weight to 99,5 % by weight, most preferably 50 % by weight to 99 % by weight of one or more of the accordingly included polymerizable component(s) relative to the total composition.
  • a further subject of the present invention is a copolymerization and/or a polymerization product which is achievable by curing of a composition according to the present invention.
  • a copolymerization and/or a polymerization product by following the present invention, wherein by coming from one or more benzoxazine monomer(s) a greater part of the Mannich-type structure is made available than by usage of a polymerization catalyst, comprising only one catalytic component selected from the group of nitrogen containing heterocycles and/or their derivatives or from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids.
  • the portion of the Mannich-type structure in the copolymerization and/or a polymerization product according to the present invention is higher than 50 weight %, more preferably higher than 70 weight %, most preferably higher than 90 weight % related to the total weight of the copolymerization and/or polymerization product.
  • the copolymerization and/or a polymerization product according to the present invention comprises at least one polymerization catalyst according to the present invention.
  • a copolymerization and/or a polymerization product according to the present invention can preferably be produced by usage of a range of curing temperature from 100 0 C to 200 0 C, more preferably from 130 0 C to 180 0 C, most preferably from 130 0 C to 160 0 C.
  • composition and/or a copolymerization and/or a polymerization product according to the present invention is in the form of an adhesive, in which case one or more of an adhesion promoter, a flame retardant, a filler, a thermoplastic additive, a reactive or non-reactive diluent, and a thixotrope might be included.
  • such an inventive adhesive may be placed in film form, in which case a support constructed from nylon, glass, carbon, polyester, polyalkylene, quartz, polybenzimidazole, polyetheretherketone, polyphenylene sulfide, poly p-phenylene benzobisoaxazole, silicon carbide, phenolformaldehyde, phthalate and napthenoate may be included.
  • a support constructed from nylon, glass, carbon, polyester, polyalkylene, quartz, polybenzimidazole, polyetheretherketone, polyphenylene sulfide, poly p-phenylene benzobisoaxazole, silicon carbide, phenolformaldehyde, phthalate and napthenoate may be included.
  • inventive compositions and/or a copolymerization and/or a polymerization products are particularly useful in bonding of composite and metal parts, core and core-fill for sandwich structures and composite surfacing, and in the manufacture and assembly of composite parts for aerospace and industrial end uses, such as matrix resins for fiber reinforced composite articles, as matrix resins for use in prepregs, or as matrix resins in advanced processes, such as resin transfer molding and resin film infusion.
  • R 7 is a linear or branched substituted or non substituted alkyl or aromatic group
  • R 8 , R 9 , R 10 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl and aromatic group, whereas R 10 preferably is a aromatic group;
  • R 7 and R 8 or R 8 and R 9 can optionally form a cyclic structure.
  • the at least one benzoxazine component according to formula VII with R 7 , R 8 , R 9 , and R 10 comprises a further benzoxazine structure represented as
  • R 6 , R 7 , R8 , R 9 , and R 10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group.
  • composition comprising at least one benzoxazine component selected from
  • R is a linear or branched substituted or non substituted alkyl or aromatic group, preferably R is a aromatic group;
  • a molar ratio between the at least one benzoxazine component according to the inventive use and the at least one catalyst according to the present invention of 90:10 to 99.9:0.1 and preferably from 95:5 to 99.5:0.5.
  • compositions to be used according to the present invention comprise at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
  • additional solvent preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
  • the composition is curable at a temperature from 100 0 C to 250 0 C, more preferably from 130 0 C to 180 0 C, most preferably from 130 to 160 0 C.
  • compositions which are curable at a pressure between 1 to 100 atm, more preferably under atmospheric pressure are also preferred.
  • the composition to be applied in the inventive use it is preferred to have one or more of the accordingly included polymerizable component(s), in particular benzoxazine components in a concentration from 20 % by weight to 99,9 % by weight, more preferably 40 % by weight to 99,5 % by weight, most preferably 50 % by weight to 99 % by weight relative to the total composition.
  • the final compositions for the inventive use comprise additional components selected from the groups of inorganic fillers preferably silica powder, powdery metal oxide, and powdery metal or organic fillers preferably rubber particle and other polymer particles.
  • inorganic fillers preferably silica powder, powdery metal oxide, and powdery metal or organic fillers preferably rubber particle and other polymer particles.
  • the curable compositions according to the present invention or a copolymerization and/or a polymerization product according to the present invention achievable from those inventive compositions are used for a variety of applications including adhesive and molded applications.
  • the inventive use is directed to the application as adhesives where their low flammability is important (e.g. airplane interiors etc.) or where their thermal stability and easily modified physical properties such as modulus, tensile strength, and coefficient of expansion would be of value.
  • they could also be used in filled or unfilled molding applications, as matrix resins for fiber reinforced composite articles, as matrix resins for use in prepregs, or as matrix resins in advanced processes, such as resin transfer molding and resin film infusion.
  • a further subject of the present invention is a method of coating a device by heating a composition according to the present invention to a temperature sufficient to cure the composition, which preferably comprises a benzoxazine monomer, thus forming a polymer which coats a surface of the device, which is preferably an electronic device such as a semiconductor or a circuit board.
  • the composition comprises a benzoxazine monomer it is also preferred that the heating temperature is high enough to result in more than 50 weight %, more preferably more than 70 weight %, most preferably more than 90 weight % of the Mannich type structure related to the total weight of the copolymerization and/or polymerization product.
  • a further subject of the present invention is a device coated with a copolymerization and/or a polymerization product according to the present invention.
  • the device can be an electronic device such as a semiconductor or a circuit board.
  • Figure 1-1 makes it visible how a typical example of 1 H-NMR monitoring of the polymerization works Consequently this allows calculation of monomer conversion and composition ratio [ether-type] [Mannich-type]
  • Figure 1-2 corresponds to the 1 H-NMR monitoring process and documents the conversion time which was necessary to arrive at different concentrations of the polybenzoxazine (PBO) as well as the conversion time which was necessary to arrive at different concentrations of the Mannich-type structure of the PBO.
  • PBO polybenzoxazine
  • PTS p-toluene sulfonic acid
  • EMI 2-ethyl-1-methylimidazole
  • DBA dibenzylamine
  • DMP 3,5-Dimethylpyrazole.

Abstract

The present invention relates to a polymerization catalyst, comprising at least two components, wherein at least one or more of said at least two components are selected from the group of nitrogen containing heterocycles and/or their derivatives and at least one or more of said at least two components is selected from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids.

Description

Catalytic low temperature polymerization
The present invention relates to a polymerization catalyst, comprising at least two components, wherein at least one of those components is selected from the group of nitrogen containing heterocycles and/or their derivatives and at least one of those components is selected from the group of organic sulfonic acids and/or organic sulfonic acid derivatives, as well to compositions comprising said catalyst and use of said catalysts.
Electronic devices such as circuit boards, semiconductors, transistors, and diodes are often coated with materials such as epoxy resins for protection. Such coating materials are often cured on the surface of an electronic device by heat. But electronic devices often are sensitive to heat, and too much heat may adversely affect the performance of a device. It is also a problem in practice that a lot of energy is necessary for heating and/or the time which is necessary for polymerization and curing reaction is too long.
Further, if the coating material shrinks or expands significantly in response to heat, the device it coats may be warped. Thus, it is desirable to develop methods for curing coating materials at relatively low temperatures in short time periods and to develop coating materials that have a near-zero volume change upon heat treatment so as to minimize the possiblities of damaging the coated devices.
Therefore it is an ongoing effort in research departments to look for ways to reduce the temperature and improve the polymerization step.
It is known that acidic catalysts can contribute to solve the above mentioned problems. Acids may be relatively efficient polymerization catalysts. Depending on their amount it may be possible to reduce the temperature and improve the polymerization step.
However, in practical applications, such strong acids also may negatively contribute to the final polymerization result and it's practical properties. For example deterioration of chemical resistance and physical properties of the cured material may appear.
Therefore it is a special intention of the present invention, to achieve good polymerization results with lower amounts of acidic catalysts.
In particular when different polymerization products are possible it is necessary to have means to direct the polymerization reaction into a direction which is of advantage for the practical use.
For example, it has been known that during polymerization of benzoxazine monomers by curing reactions, two types of repeating units are accessible. One is the ether-type repeating unit and the other is the Mannich-type repeating unit. It has been considered that the ether-type is one of the final products and will not undergo any reaction under the polymerization conditions. On the other hand, the inventors discovered that the ether-type is not a stable final product, but an intermediate structure that forms in the first step predominantly and it undergoes a main chain rearrangement in the second step to give the corresponding Mannich-type structure as shown in scheme 1. Scheme 1
Figure imgf000003_0002
Figure imgf000003_0001
Mannich-type structure
For various applications of such polymers to structural materials, sealant and adhesives, the polymer must be thermally stable as much as possible. A further transition step from one structure into another one could cause serious problems in many cases, especially when already applied in practical use. Therefore, efficient and selective formation of one stable product, e.g. the Mannich-type poly(benzoxazine) is extremely desireable.
Depending on the monomer structure the temperature required for the rearrangement from the ether-type to the Mannich-type structure can be very high, mostly still above 200 0C. Even by usage of conventional polymerization catalysts such as phenols, carboxylic acids, organic sulfonic acids, amines, imidazoles, and phosphines the polymerization results are not satisfying in regard to specific aspects.
Looking at the organic sulfonic acids, those are relatively efficient catalysts, whereas the efficacy strongly depends on the amount of use. If the concentration of the organic sulfonic acid is high enough this can lead to a smooth polymerization process at acceptable temperature. Otherwise it might be that the quality of the polymerization product and/or the cured material would have negative impact on the final product. This might lead to increased corrosion or further negative effects caused by the acid catalyst. Therefore, as already explained, in practical applications, amount of such strong acids must be reduced as much as possible in order to prevent deterioration of chemical resistance and physical properties of the cured material.
Lewis acids such as PCI5, TiCI4, AICI3 are also known as highly active catalysts and may be used for such low temperature polymerization, too. However they are highly sensitive to moisture and cause formation of volatile, toxic, and corrosive impurities, avoiding their practical use.
Therefore it is a further target of the present invention to make available moisture- and air-tolerant catalyst-components, by which the polymerization/curing reaction can be carried out without caution to decomposition of the catalyst-component and resulting evolution of toxic and/or corrosive by-products.
Therefore it is an object of the present invention to make available a polymerization catalyst, which is able to catalyze polymeric reactions at acceptable low temperature and at the same time leads to a decrease of negative impacts by the catalyst(s) used in the system. Consequently one subject of the present invention is a polymerization catalyst, comprising at least two components, wherein a) at least one or more of said at least two components is selected from the group of nitrogen containing heterocycles and/or their derivatives, whereas the heterocycles are preferably selected from the group of imidazoles, in particular those having a melting point below 120 0C and b) at least one or more of said at least two components is selected from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids, preferably from organic sulfonic and sulfuric acids and their derivatives and mixtures of them, in particular from organic sulfonic acids and/or organic sulfonic acid derivatives.
In a preferred embodiment the molar ratio of said nitrogen containing heterocycles and/or their derivatives to said organic sulfur containing acids and/or derivatives of organic sulfur containing acids in the polymerization catalyst according to the present invention are from 10:1 to 1 :10, preferable from 3:1 to 1 :3.
These ranges are preferred to achieve the best effect of the catalyst according to the present invention. In particular the main chain rearrangement from ether type to Mannich type structure will be improved in these ranges, giving a polymer product with less contamination by ether-type polybenzoxazine.
The nitrogen containing heterocycles according to the present invention can be saturated, unsaturated, or aromatic. Besides the above mentioned imidazoles it may also be preferred that the nitrogen containing heterocycles are a thiazole, an oxazole, an imidazole, a pyridine, a piperidine, or a pyrimidine, a piperazine, a pyrrole, an indole or a benzthiazolyl. It is furtheron preferred that there is no acidic functional group present at the nitrogen containing heterocycles. Most preferably, the nitrogen containing heterocyclic moiety is a thiazole and/or an imidazole. In particular it is preferred that the nitrogen containing heterocycles and/or their derivatives according to the present invention are selected from the group of imidazoles and/or imidazole derivatives with formula I
R 1 R 2
,N N
R ' \-^
R 4 (I) with
R1, R2, R3 and R4 being hydrogen or aliphatic or aromatic hydrocarbons, whereas it is especialle preferred that said imidazole is selected from the group of imidazole, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1 ,2-dimethyl imidazole, 2-ethyl-4-methylinnidazole, 2-phenyl-4- methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylinnidazole, i-cyanoethyl-2-methylinnidazole or i-aminoethyl-2-nnethylinnidazole.
Furtheron it is preferred, that the organic sulfur containing acids and/or derivatives of organic sulfur containing acids according to the present invention are selected from the group of sulfonic acids according to formula Il
O ς I l
R5_S -O H
I l
0 (ID
wherein R5 is preferably selected from aromatic groups, alkyl groups and fluorinated alkyl groups. In particular the organic sulfonic acid of the present invention is selected from the group of sulfonic acids according to formula III, IV, V and Vl.
Figure imgf000005_0001
(III) (IV) (V) (Vl)
It is also of advantage in the sense of the present invention, that the at least two components of the inventive polymerisation catalyst are stable to moisture and air and most preferably also any potential further components in the polymerization catalyst are stable to moisture and air (or moisture- and air-tolerant). This allows to perform polymerization/curing reactions at lower temperature without decomposition of the catalyst-component upon exposure to moisture and air. In particular the inventive catalyst allows to achieve the thermodynamical stable final product of the polymerization/curing reaction at lower temperature than by usage of only a single catalytic component out of the catalytic components according to the present invention.
Another subject of the present invention is a curable composition comprising at least one polymerization catalyst according to the present invention in combination with at least one polymerizable component.
It is preferred that the curable composition can be used to form a polybenzoxazine (PBO) composition. The preferred PBO composition contains a PBO and a catalyst according to the present invention and optionally an epoxy resin and/or a phenolic resin.
An example of an epoxy resin is epoxy cresol novalac. The molding composition may include, for example, about 0.5 weight % to about 7.0 weight %, preferably about 1.5 weight % to 3.5 weight %, of the epoxy resin. An example of a phenolic resin is phenolic novalac. The molding composition may include, for example, 0.1 weight % to 3.0 weight %, preferably 0. 3 weight % to 1.5 weight %, of the phenolic resin.
In particular it is preferred, that the at least one polymerizable component according to the present invention is a benzoxazine component, in particular a component according to formula VII:
Figure imgf000006_0001
wherein
R6=H;
R7 is a linear or branched substituted or non substituted alkyl or aromatic group, R8, R9, R10 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl, preferably with less than 12 C-atoms and aromatic group, whereas R10 preferably is an aromatic group;
R7 and R8 or R8 and R9 can optionally form a cyclic structure.
In particular polybenzoxazines (PBO) can be used, to provide a coating on electronic devices such as circuit boards and semiconductors. The preferred PBO compositions have high glass transition temperature, good electrical properties (e.g., dielectric constant), low flammability, and a near-zero percent shrinkage and expansion upon demolding, postcuring, and cooling.
Preferably the at least one benzoxazine component according to formula VII with R7, R8, R9, and R10 comprises a further benzoxazine structure represented as
'
Figure imgf000006_0002
(VIII)
wherein R6 , R7 , R8 , R9 , and R10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group. It is furtheron preferred that the inventive composition comprises at least one benzoxazine component selected from
Figure imgf000007_0001
(IX) (X) (Xl)
wherein R is a linear or branched substituted or non substituted alkyl or aromatic group and preferably R is a aromatic group;
It is furtheron a preferred composition, that the molar ratio between said one or more of the polymerizable component(s) according to the present invention and the polymerisation catalyst(s) according to the present invention is 90:10 to 99.9:0.1 preferably 95:5 to 99.5:0.5. The benzoxazine-containing molding compositions can be prepared by any conventional methods. For example, the ingredients (including resins and other additives) can be finely ground, dry blended, densified on a hot differential roll mill, and then followed by granulation. The molding composition, as described above, can be used for coating electronic devices such as semiconductors or circuit boards. The prepared compositions can be molded by any suitable molding apparatus. An example of such an apparatus is a transfer press equipped with a multi-cavity mold. For more detail on methods for preparing molding compositions and for coating electronic devices, see U.S. Pat. No. 5,476,716.
Below are some examples of other additives that can be included in the molding composition and the preferred ranges of their weight percent in the composition:
(1 ) A flame retardant such as a brominated epoxy novolac flame retardant (e.g., BREN, available from Nippon Kayaku). The preferred molding composition can contain up to 3.0 wt %, more preferably, 0.1-1.0 wt % of a flame retardant.
(2) A flame retardant synergist such as Sb 2 O 5 or WO 3 . The preferred molding composition can contain up to 3.0 wt %, more preferably, 0.25- 1.5 wt % of a flame retardant synergist.
(3) A filler such as silica, calcium silicate, and aluminum oxide. The preferred molding composition can contain 70-90 wt %, more preferably, 75- 85 wt % of a filler.
(4) A colorant such as carbon black colorant. The preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.1-1.0 wt % of a colorant.
(5) A wax or a combination of waxes such as carnauba wax, paraffin wax, S-wax, and E-wax. The preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.3-1.5 wt % of a wax. (6) Funned silica such as aerosil. The preferred molding composition can contain 0.3-5.0 wt %, more preferably, 0.7-3.0 wt % of fumed silica.
(7) A coupling agent such as the silane type coupling agent. The preferred molding composition can contain 0.1-2.0 wt %, more preferably, 0.3-1. 0 wt % of a coupling agent.
Also preferred is a composition wherein said composition comprises at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
When it comes to curing temperatures it is preferred that the compositions according to the present invention are curable at a temperature from 100 0C to 250 0C, preferably from 130 0C to 180 0C, in particular from 130 to 160 0C.
When it comes to curing pressures it is preferred that the compositions according to the present invention are curable at a pressure between 1 to 100 atm, preferably under atmospheric pressure.
Compositions according to the present invention preferably are comprising 20 % by weight to 99,9 % by weight, more preferably 40 % by weight to 99,5 % by weight, most preferably 50 % by weight to 99 % by weight of one or more of the accordingly included polymerizable component(s) relative to the total composition.
A further subject of the present invention is a copolymerization and/or a polymerization product which is achievable by curing of a composition according to the present invention.
In particular it is preferred to arrive at a copolymerization and/or a polymerization product by following the present invention, wherein by coming from one or more benzoxazine monomer(s) a greater part of the Mannich-type structure is made available than by usage of a polymerization catalyst, comprising only one catalytic component selected from the group of nitrogen containing heterocycles and/or their derivatives or from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids.
It is preferred, that the portion of the Mannich-type structure in the copolymerization and/or a polymerization product according to the present invention is higher than 50 weight %, more preferably higher than 70 weight %, most preferably higher than 90 weight % related to the total weight of the copolymerization and/or polymerization product.
Preferably the copolymerization and/or a polymerization product according to the present invention comprises at least one polymerization catalyst according to the present invention. A copolymerization and/or a polymerization product according to the present invention can preferably be produced by usage of a range of curing temperature from 100 0C to 200 0C, more preferably from 130 0C to 180 0C, most preferably from 130 0C to 160 0C.
In a preferred embodiment a composition and/or a copolymerization and/or a polymerization product according to the present invention is in the form of an adhesive, in which case one or more of an adhesion promoter, a flame retardant, a filler, a thermoplastic additive, a reactive or non-reactive diluent, and a thixotrope might be included. In addition, such an inventive adhesive may be placed in film form, in which case a support constructed from nylon, glass, carbon, polyester, polyalkylene, quartz, polybenzimidazole, polyetheretherketone, polyphenylene sulfide, poly p-phenylene benzobisoaxazole, silicon carbide, phenolformaldehyde, phthalate and napthenoate may be included.
The inventive compositions and/or a copolymerization and/or a polymerization products (and pregregs and towpregs prepared therefrom) are particularly useful in bonding of composite and metal parts, core and core-fill for sandwich structures and composite surfacing, and in the manufacture and assembly of composite parts for aerospace and industrial end uses, such as matrix resins for fiber reinforced composite articles, as matrix resins for use in prepregs, or as matrix resins in advanced processes, such as resin transfer molding and resin film infusion.
It is a further subject of the present invention to make use of at least one polymerization catalyst according to the present invention in curable compositions comprising at least one benzoxazine component, which in a preferred embodiment is covered by formula VII:
Figure imgf000009_0001
wherein
R6= H;
R7 is a linear or branched substituted or non substituted alkyl or aromatic group, R8, R9, R10 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl and aromatic group, whereas R10 preferably is a aromatic group;
R7 and R8 or R8 and R9 can optionally form a cyclic structure.
In another preferred embodiment of the inventive use according to the present invention the at least one benzoxazine component according to formula VII with R7, R8, R9, and R10 comprises a further benzoxazine structure represented as
Figure imgf000010_0001
wherein R6 , R7 , R8 , R9 , and R10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group.
In particular the inventive use is fulfilled with a composition comprising at least one benzoxazine component selected from
Figure imgf000010_0002
(IX) (X) (Xl)
Wherein R is a linear or branched substituted or non substituted alkyl or aromatic group, preferably R is a aromatic group;
In regard to the inventive use it is also preferred to have a molar ratio between the at least one benzoxazine component according to the inventive use and the at least one catalyst according to the present invention of 90:10 to 99.9:0.1 and preferably from 95:5 to 99.5:0.5.
It is also preferred, that the compositions to be used according to the present invention comprise at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols, in particular selected from ester-type solvents and ketone-type solvents.
In another preferred embodiment of the inventive use the composition is curable at a temperature from 100 0C to 250 0C, more preferably from 130 0C to 180 0C, most preferably from 130 to 160 0C.
It is also preferred in connection with the inventive use to have compositions which are curable at a pressure between 1 to 100 atm, more preferably under atmospheric pressure. In the composition to be applied in the inventive use it is preferred to have one or more of the accordingly included polymerizable component(s), in particular benzoxazine components in a concentration from 20 % by weight to 99,9 % by weight, more preferably 40 % by weight to 99,5 % by weight, most preferably 50 % by weight to 99 % by weight relative to the total composition.
Preferably the final compositions for the inventive use comprise additional components selected from the groups of inorganic fillers preferably silica powder, powdery metal oxide, and powdery metal or organic fillers preferably rubber particle and other polymer particles.
It is a further subject of the present invention to use curable compositions according to the present invention or a copolymerization and/or a polymerization products according to the present invention achievable from those inventive compositions, in the preparation of and/or as sealants, adhesives and/or coatings, preferably in electronic chip bonding and electronic chip underfills, whereby the sealants, adhesives and/or coatings are preferably applied to and hardened on or between substrates selected from the group comprising metals, silicates, metal oxides, concrete, wood, electronic chip material, semiconductor material and organic polymers.
In particular the curable compositions according to the present invention or a copolymerization and/or a polymerization product according to the present invention achievable from those inventive compositions are used for a variety of applications including adhesive and molded applications. Preferably the inventive use is directed to the application as adhesives where their low flammability is important (e.g. airplane interiors etc.) or where their thermal stability and easily modified physical properties such as modulus, tensile strength, and coefficient of expansion would be of value. As mentioned they could also be used in filled or unfilled molding applications, as matrix resins for fiber reinforced composite articles, as matrix resins for use in prepregs, or as matrix resins in advanced processes, such as resin transfer molding and resin film infusion.
A further subject of the present invention is a method of coating a device by heating a composition according to the present invention to a temperature sufficient to cure the composition, which preferably comprises a benzoxazine monomer, thus forming a polymer which coats a surface of the device, which is preferably an electronic device such as a semiconductor or a circuit board. In case the composition comprises a benzoxazine monomer it is also preferred that the heating temperature is high enough to result in more than 50 weight %, more preferably more than 70 weight %, most preferably more than 90 weight % of the Mannich type structure related to the total weight of the copolymerization and/or polymerization product.
A further subject of the present invention is a device coated with a copolymerization and/or a polymerization product according to the present invention.
In a preferred embodiment the device can be an electronic device such as a semiconductor or a circuit board.
The present invention is exemplified in more detail by means of Examples, which follow below. EXAMPLES
Example 1
A benzoxazine according to scheme 1 , formula 1a (10 g, 44 mmol) and p-toluenesulfonic acid monohydrate [PTS] (76 mg, 0 40 mmol) as well as 2-ethyl-4-methylιmιdazole [EMI] (44 mg, 0 40 mmol) were brought together in a reaction vessel and heated at 40 C for 1 h under vacuum, resulting in a homogeneous mixture
The resulting mixture was then heated at 150 C The progress of the reaction according to scheme 1 was observed by continuous 1H-NMR analysis Looking into Figure 1-1 gives a good explanation how the 1 H-NMR monitoring of the polymerization works the change of the amount and/or the disappearance of the characteristic peaks corresponds directly to the amount of the different chemical ingredients in the mixture In other words this monitoring allows the calculation of monomer conversion and composition ratio between [ether-type] and [Mannich-type] structure
Regarding to example 1 the 1H-NMR spectra revealed, that the complete monomer was transformed into polymeric structure after 2 h heated at 150 C
After that the heating of the mixture was continued to observe ongoing main chain rearrangement
Scheme 1
Figure imgf000012_0001
The following Figure 1-1 makes it visible how a typical example of 1 H-NMR monitoring of the polymerization works Consequently this allows calculation of monomer conversion and composition ratio [ether-type] [Mannich-type] Figure 1-2 corresponds to the 1 H-NMR monitoring process and documents the conversion time which was necessary to arrive at different concentrations of the polybenzoxazine (PBO) as well as the conversion time which was necessary to arrive at different concentrations of the Mannich-type structure of the PBO.
Further data are also incorporated in scheme 2 last line.
Comparative Example 1:
In a first comparative example the same conditions like in example 1 were used, with the only difference, that instead of a catalyst according to the present invention PTS (1 mol%)-EMI (1mol%) a single catalyst was used, in detail 2 mol% PTS was used. Data are also incorporated in scheme 2. From 1H-NMR-Monitoring it can be seen that the conversion of the monomer is quite rapid, as can be expected from the strong acidity of PTS (Figure 2). One can expect that 2 mol% PTS would be more powerful than the PTS (1 mol%)-EMI (1mol%) catalyst, because acidity of the former is much higher than the latter. However, if one compares the results at least the main chain rearrangement is more promoted by the PTS-EMI hybrid catalyst By this example it also can be shown that the amount of acidic component can be reduced by the inventive catalyst without loosing catalytic efficacy. In other words, replacement of a part of PTS with EMI allows not only reduction of the total acidity of the catalyst but also further improvement of the efficiency in main chain rearrangement.
Comparative Example 2:
In another comparative example also the same conditions like in example 1 were used, with the only difference, that instead of the inventive catalyst combination PTS (1 mol%)-EMI (1mol%) a single catalyst 2 mol% EMI was used. Data are also incorporated in scheme 2.
It can easily be seen from the results compiled in figure 3 that both the monomer conversion as well as the main chain rearrangement were much slower than the polymerization using PTS as a catalyst.
Looking at these results, the skilled man in the art would have expected no improvement by a combination of PTS and EMI, in opposite these results bring the man skilled in the art to the conclusion that the addition of such a low active and basic catalyst (=EMI) to PTS would result in just only deactivation of PTS. From this assumption, it was very surprising to see high catalytic activity of the PTS-EMI hybrid catalyst according to the present invention.
Further examples:
Further examples can be seen from scheme 2 and table 1. In ref 3-5, PTS was combined with several nitrogen-containing compounds. The combination PTS+EMI lead to best results regarding main chain rearrangement. However also the combinations of PTS+DMP (ref 4) and PTS+Triazole (ref 5) gave good results regarding main chain rearrangement. Scheme 2 monomer main chain conversion step ether tvne rearran9ement steP „
1 1aa + c caattaallvyςstt -*■ e s t t n ru e c M tuyrePe „ s Mtaruncntiucrhe-type
Table 1. Polymerization of benzoxazine 1a at 1500C
conversion content of Mannich-type structure entry catalyst at2h at6h at4h atδh at24h
ref1 PTS (2 mol%) 99 100 17 47 79 ref2 EMI (2 mol%) 29 94 0 14 52
ref3 PTS + DBA 93 100 20 27 35
ref4 PTS + DMP 96 100 30 48 68
refδ PTS + Triazole 99 100 17 43 66
Example PTS + EMI 100 100 40 61 89
PTS=p-toluene sulfonic acid, EMI=2-ethyl-1-methylimidazole, DBA=dibenzylamine, DMP= 3,5-Dimethylpyrazole.

Claims

Claims
1. A polymerization catalyst, comprising at least two components, wherein at least one or more of said at least two components are selected from the group of nitrogen containing heterocycles and/or their derivatives and at least one or more of said at least two components is selected from the group of organic sulfur containing acids and/or derivatives of organic sulfur containing acids.
2. A polymerization catalyst according to claim 1, wherein the organic sulfur containing acids and/or derivatives of organic sulfur containing acids are selected from the group of organic sulfonic and sulfuric acids and their derivatives and mixtures of them.
3. A polymerization catalyst according to claim 2, wherein the organic sulfur containing acids and/or derivatives of organic sulfur containing acids are selected from the group of organic sulfonic acids and/or organic sulfonic acid derivatives.
4. A polymerization catalyst according to any preceding claim, wherein the molar ratio of said nitrogen containing heterocycles and/or their derivatives to said organic sulfur containing acids and/or derivatives of organic sulfur containing acids is from 10:1 to 1 :10, preferable from 3:1 to 1:3.
5. A polymerization catalyst according to any preceding claim, wherein said nitrogen containing heterocycles and/or their derivatives are selected from the group of imidazoles and/or imidazole derivatives with formula I
R 1 R 2
R 3 -N ^ N
R 4
(D with
R1, R2, R3 and R4 are hydrogen or aliphatic or aromatic hydrocarbons,
6. A polymerization catalyst according to claim 5, wherein said imidazole is selected from the group of imidazole, 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1 -benzyl-2-phenylimidazole, 1 -benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole or 1-aminoethyl-2-methylimidazole. A polymerization catalyst according to any preceding claim, wherein said organic sulfur containing acids and/or derivatives of organic sulfur containing acids are selected from the group of sulfonic acids according to formula Il
R5_S_O H
I l
° (H) A polymerization catalyst according to claim 7, wherein R5 is selected from aromatic group, alkyl group, and fluoπnated alkyl group
A polymerization catalyst according to claim 7, wherein said organic sulfonic acid is selected from the group of sulfonic acids according to formula III, IV, V and Vl
Figure imgf000016_0001
(III) (IV) (V) (Vl)
A polymerization catalyst according to any preceding claim, wherein said at least two components are stable to moisture and air
A polymerization catalyst according to any preceding claim, wherein said at least two components as well as any potential additive components are stable to moisture and air (or moisture- and air-tolerant)
A curable composition comprising at least one polymerization catalyst according to claims 1 to 10 in combination with at least one polymeπzable component
A curable composition according to claim 12, wherein the at least one polymeπzable component is a benzoxazine component
A composition according to claim 13, comprising at least one benzoxazine component according to formula VII
Figure imgf000017_0001
wherein
R6=H,
R7 is a linear or branched substituted or non substituted alkyl or aromatic group, preferably R1D is a aromatic group,
R8, R8, R9 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl and aromatic group,
Whereas R7 and R8 or R8 and R9 can optionally form a cyclic structure
A composition according to claim 14, comprising at least one benzoxazine component according to formula VII with R7, R8, R9, and R10 comprising a further benzoxazine structure represented as
Figure imgf000017_0002
wherein R6, R7 , R8 , R9 , and R10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group
A composition according to claim 14, comprising at least one benzoxazine component selected from
Figure imgf000017_0003
(IX) (X) (Xl) Wherein R is a linear or branched substituted or non substituted alkyl or aromatic group and preferably R is a aromatic group;
17. A composition according to any of claim 11 to 16, wherein the molar ratio between said one or more polymerizable component(s) and said polymerization catalyst(s) according to claims 1 to 5 is 90:10 to 99 9 0.1 preferably 95:5 to 99 5.0.5.
18 A composition according to claim 11 to 17, wherein said composition comprises at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols.
19 A composition according to claim 18, wherein said solvent is selected from ester-type solvents and ketone-type solvents.
20 A composition according to any of claim 11 to 19, wherein said composition is curable at a temperature from 100 0C to 250 0C, preferably from 130 0C to 180 0C, more preferably from 130 °C to 160 0C.
21 A composition according to any of claim 11 to 20, wherein said composition is curable at a pressure between 1 to 100 atm, preferably under atmospheric pressure.
22 A composition according to any of claim 11 to 21 , comprising 20 % by weight to 99,9 % by weight of said one or more polymerizable component(s) relative to the total composition.
23 A copolymerization and/or a polymerization product achievable by curing of a composition according to any of claims 11 to 21.
24 A copolymerization and/or a polymerization product according to claim 23, wherein a greater part of the Mannich-type structure of the copolymerization and/or a polymerization product is made available than by usage of a polymerization catalyst, comprising only one catalytic component selected from the group of nitrogen containing heterocycles and/or their derivatives or from the group of sulfonic acids and/or sulfonic acid derivatives.
25 A copolymerization and/or a polymerization product according to any of claim 23 or 24, comprising more than 50 weight %, preferably more than 70 weight % of the Mannich-type structure related to the total weight of the copolymerization and/or polymerization product.
26. A copolymerization and/or a polymerization product according to any of claim 23 to 25, comprising at least one polymerization catalyst according to claims 1 to 11.
27. A copolymerization and/or a polymerization product according to any of claim 23 to 26, produced by usage of a range of curing temperature from 100 CC to 200 0C, preferably from 130 0C to 180 0C, more preferably from 130 0C to 160 0C.
28. Use of at least one polymerization catalyst according to claims 1 to 11 in curable compositions comprising at least one benzoxazine component.
29. Use according to claim 28, wherein the at least one catalyst is stable to moisture and air.
30. Use according to any of claim 28 or 29, wherein the at least one catalyst as well as any potential further catalysts are stable to moisture and air (or moisture- and air-tolerant).
31. Use according to any of claim 28 to 30, wherein said composition comprises at least one benzoxazine component which is covered by formula VII:
Figure imgf000019_0001
wherein
R6=H;
R7 is a linear or branched substituted or non substituted alkyl or aromatic group, preferably R10 is a aromatic group;
R7, R8, R9 are independently selected from hydrogen, linear or branched substituted or non substituted alkyl and aromatic group;
Whereas R6 and R7 or R8 and R9 can optionally form a cyclic structure.
32. Use according to claim 31 , wherein there is at least one benzoxazine component according to formula VII with R7, R8, R9, and R10 comprises a further benzoxazine structure represented as
Figure imgf000020_0001
wherein R6, R7, R8 , Rff, and R10 are selected from hydrogen, linear or branched substituted or non substituted alkyl group and aromatic group
Use according to any of claim 28 to 31, wherein said composition comprises at least one benzoxazme component selected from
Figure imgf000020_0002
Wherein R is a linear or branched substituted or non substituted alkyl or aromatic group, preferably R is a aromatic group,
Use according to any of claim 28 to 33 wherein the molar ratio between the at least one benzoxazme component and the at least one catalyst represented by formula I is 90 10 to 99 9 0 1 and preferable ratio is 95 5 to 99 5 0 5
Use according to any of claim 28 to 34, wherein said composition comprises at least one additional solvent, preferably selected from ethers, ketones, esters, chlorinated hydrocarbons, aromatics, amides, alcohols
Use according to claim 35, wherein said solvent is selected from ester-type solvents and ketone-type solvents
Use according to any of claim 28 to 36, wherein said composition is curable at a temperature from 1000C to 2500C, preferably from 1300C to 1800C, more preferably from 1300C to 160 0C 38 Use according to any of claim 28 to 37, wherein said composition is curable at a pressure between 1 to 100 atm, preferably under atmospheric pressure
39. Use according to any of claim 28 to 38, wherein the benzoxazine component makes 20 % by weight to 99,9 % by weight, based on the total composition.
40. Use according to any of claim 28 to 39, wherein the final composition comprises additional components selected from the groups of inorganic fillers preferably silica powder, powdery metal oxide, and powdery metal or organic fillers preferably rubber particle and other polymer particles.
41. Use of a curable composition, which is defined according to any of claims 12 to 22 or a copolymerization and/or a polymerization product achievable from said composition according to claim 23 to 27, in the preparation of and/or as sealants, adhesives and/or coatings, preferably in electronic chip bonding and electronic chip underfills.
42. Use according to claim 41 , whereby the sealants, adhesives and/or coatings are applied to and hardened on or between substrates selected from the group comprising metals, silicates, metal oxides, concrete, wood, electronic chip material, semiconductor material and organic polymers
43. Method of coating a device by heating a composition according to one or more of claims 12 to 22 to a temperature sufficient to cure the composition, thus forming a polymer which coats a surface of the device, which is preferably an electronic device such as a semiconductor or a circuit board.
44. Method according to claim 43, whereby the composition comprises a benzoxazine monomer.
45. Method according to claim 44, whereby the heating temperature is sufficient to result in more than 50 weight %, preferably more than 70 weight %, more preferably more than 90 weight % of the Mannich type product related to the total weight of the copolymerization and/or polymerization product
46 Device coated with a copolymerization and/or a polymerization product according to any of claim 23 to 27
PCT/EP2007/059623 2006-09-21 2007-09-13 Catalytic low temperature polymerization WO2008034753A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2007800349330A CN101516961B (en) 2006-09-21 2007-09-13 Catalytic low temperature polymerization
US12/442,316 US20100016504A1 (en) 2006-09-21 2007-09-13 Catalytic low temperature polymerization
BRPI0717577-9A BRPI0717577B1 (en) 2006-09-21 2007-09-13 CURABLE COMPOSITION, COPOLYMERIZATION AND POLYMERIZATION PRODUCT, USE OF POLYMERIZATION CATALYST IN THE CURABLE COMPOSITION, METHOD OF COATING A DEVICE AND DEVICE
JP2009528683A JP5474551B2 (en) 2006-09-21 2007-09-13 Low temperature polymerization with catalyst
EP07820176.1A EP2064259B1 (en) 2006-09-21 2007-09-13 LOW TEMPERATURE curable composition comprising a benzoxazine component
US13/557,769 US20130266737A1 (en) 2006-09-21 2012-07-25 Catalytic low temperature polymerization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06019841.3 2006-09-21
EP06019841 2006-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/557,769 Division US20130266737A1 (en) 2006-09-21 2012-07-25 Catalytic low temperature polymerization

Publications (1)

Publication Number Publication Date
WO2008034753A1 true WO2008034753A1 (en) 2008-03-27

Family

ID=38757362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/059623 WO2008034753A1 (en) 2006-09-21 2007-09-13 Catalytic low temperature polymerization

Country Status (5)

Country Link
US (2) US20100016504A1 (en)
EP (1) EP2064259B1 (en)
JP (1) JP5474551B2 (en)
CN (1) CN101516961B (en)
WO (1) WO2008034753A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115488A1 (en) * 2008-03-19 2009-09-24 Henkel Ag & Co. Kgaa Copolymerization method
WO2011047939A1 (en) * 2009-10-22 2011-04-28 Henkel Ag & Co. Kgaa Curable composition comprising a benzoxazine compound and a sulfonic acid ester having a cyclic structure as a heat-activatable catalyst
US20120097437A1 (en) * 2010-10-21 2012-04-26 Taiwan Union Technology Corporation Resin Composition, and Prepreg and Printed Circuit Board Prepared Using the Same
WO2017196805A1 (en) 2016-05-10 2017-11-16 Huntsman Advanced Materials Americas Llc Benzothiazoles as latent catalysts for benzoxazine resins
KR20170128412A (en) * 2015-03-04 2017-11-22 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 Benz photo low temperature curable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781308B (en) * 2012-09-28 2016-12-21 3M创新有限公司 Polyphenyl * piperazine compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602559A2 (en) * 1992-12-15 1994-06-22 Basf Corporation Chip-resistant composite coating
WO2001096440A1 (en) * 2000-06-10 2001-12-20 Lg Chemical Co., Ltd. Epoxy resin composition and laminate using the same
US6376080B1 (en) * 1999-06-07 2002-04-23 Loctite Corporation Method for preparing polybenzoxazine
US20050272911A1 (en) * 2002-11-22 2005-12-08 Mitsubishi Chemical Corporation Method for producing polyether polyol

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476719A (en) * 1994-08-17 1995-12-19 Trw Inc. Superconducting multi-layer microstrip structure for multi-chip modules and microwave circuits
US6225440B1 (en) * 1998-06-26 2001-05-01 Edison Polymer Innovation Corporation Cationic ring-opening polymerization of benzoxazines
US6207786B1 (en) * 1998-11-10 2001-03-27 Edison Polymer Innovation Corporation Ternary systems of benzoxazine, epoxy, and phenolic resins
JP2000191775A (en) * 1998-12-24 2000-07-11 Shikoku Chem Corp Thermosetting resin composition and curing of the same
JP4207101B2 (en) * 1999-05-25 2009-01-14 日立化成工業株式会社 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP2002047391A (en) * 2000-07-31 2002-02-12 Hitachi Chem Co Ltd Thermosetting resin composition for sealing and electronic component device
JP2004103495A (en) * 2002-09-12 2004-04-02 Sansho Kako:Kk Fuel cell separator, its manufacturing method, and fuel cell using the fuel cell separator
JP2004182974A (en) * 2002-11-22 2004-07-02 Mitsubishi Chemicals Corp Producing method of polyether polyol
JP3946626B2 (en) * 2002-12-03 2007-07-18 住友ベークライト株式会社 Resin composition, prepreg and printed wiring board using the same
EP1646054A4 (en) * 2003-07-11 2010-05-19 Ube Industries Acid-base mixture and ion conductor composed of such mixture
US7649060B2 (en) * 2005-12-02 2010-01-19 Henkel Corporation Curable compositions
JP2006233188A (en) * 2005-01-31 2006-09-07 Toray Ind Inc Prepreg for composite material and composite material
EP1647576A1 (en) * 2005-04-01 2006-04-19 Huntsman Advanced Materials (Switzerland) GmbH Composition comprising benzoxazine and epoxy resin
JP5658457B2 (en) * 2006-09-21 2015-01-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Low temperature polymerizable / curable benzoxazine-containing formulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602559A2 (en) * 1992-12-15 1994-06-22 Basf Corporation Chip-resistant composite coating
US6376080B1 (en) * 1999-06-07 2002-04-23 Loctite Corporation Method for preparing polybenzoxazine
WO2001096440A1 (en) * 2000-06-10 2001-12-20 Lg Chemical Co., Ltd. Epoxy resin composition and laminate using the same
US20050272911A1 (en) * 2002-11-22 2005-12-08 Mitsubishi Chemical Corporation Method for producing polyether polyol

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115488A1 (en) * 2008-03-19 2009-09-24 Henkel Ag & Co. Kgaa Copolymerization method
WO2011047939A1 (en) * 2009-10-22 2011-04-28 Henkel Ag & Co. Kgaa Curable composition comprising a benzoxazine compound and a sulfonic acid ester having a cyclic structure as a heat-activatable catalyst
US8748563B2 (en) 2009-10-22 2014-06-10 Henkel Ag & Co. Kgaa Curable compositions
US20120097437A1 (en) * 2010-10-21 2012-04-26 Taiwan Union Technology Corporation Resin Composition, and Prepreg and Printed Circuit Board Prepared Using the Same
KR20170128412A (en) * 2015-03-04 2017-11-22 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 Benz photo low temperature curable composition
EP3265447A4 (en) * 2015-03-04 2018-10-31 Huntsman Advanced Materials Americas LLC Benzoxazine low temperature curable composition
US10494520B2 (en) 2015-03-04 2019-12-03 Huntsman Advanced Materials Americas Llc Benzoxazine low temperature curable composition
KR102616984B1 (en) 2015-03-04 2023-12-26 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 Benzoxazine low temperature curable composition
WO2017196805A1 (en) 2016-05-10 2017-11-16 Huntsman Advanced Materials Americas Llc Benzothiazoles as latent catalysts for benzoxazine resins
US10889686B2 (en) 2016-05-10 2021-01-12 Huntsman Advanced Materials Americas Llc Benzothiazoles as latent catalysts for benzoxazine resins

Also Published As

Publication number Publication date
EP2064259A1 (en) 2009-06-03
CN101516961B (en) 2012-09-05
US20100016504A1 (en) 2010-01-21
JP5474551B2 (en) 2014-04-16
US20130266737A1 (en) 2013-10-10
CN101516961A (en) 2009-08-26
JP2010504382A (en) 2010-02-12
BRPI0717577A2 (en) 2013-10-22
EP2064259B1 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
EP2064260B1 (en) Benzoxazine-containing formulations polymerizable/curable at low temperature
US20130266737A1 (en) Catalytic low temperature polymerization
KR102340610B1 (en) Composition of alkoxysilyl-functionalized epoxy resin and composite thereof
WO2017209236A1 (en) Substituted or unsubstituted allyl group-containing maleimide compound, production method therefor, and composition and cured product using said compound
US8193297B2 (en) Catalyst for curing epoxides
CN113348195B (en) Resin composition, varnish, laminate, and printed wiring board
KR101474648B1 (en) Insulating resin composition for printed circuit board, insulating film, prepreg and printed circuit board
US6822341B1 (en) Latent catalysts for molding compounds
JP2010504382A5 (en)
JP2002194057A (en) Thermosetting resin composition
JP5752574B2 (en) Phenol novolac resin and epoxy resin composition using the same
JP6760815B2 (en) Resin varnish, its manufacturing method and laminated board manufacturing method
US8158719B2 (en) Benzoxazine-formulations with reduced outgassing behaviour
KR102601953B1 (en) Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof
BRPI0717577B1 (en) CURABLE COMPOSITION, COPOLYMERIZATION AND POLYMERIZATION PRODUCT, USE OF POLYMERIZATION CATALYST IN THE CURABLE COMPOSITION, METHOD OF COATING A DEVICE AND DEVICE
JP6767236B2 (en) Maleimide hardener, its manufacturing method, thermosetting molding material and semiconductor encapsulant
Pearson Thermosetting plastics
WO2022039121A2 (en) Thermosetting resin composition
KR20190081987A (en) Thermosetting resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JPH1045859A (en) Thermosetting resin compound
JPS58198524A (en) Heat-resistant resin molding
JP2013185034A (en) Benzoxazine resin composition, method for producing the same, and molded article and hardened body thereof
JPH08198924A (en) Thermosetting resin molding material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034933.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007820176

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009528683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12442316

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0717577

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090318