WO2016041166A1 - Scheme of finite power transmission statuses for low cost wireless broadband communication system - Google Patents

Scheme of finite power transmission statuses for low cost wireless broadband communication system Download PDF

Info

Publication number
WO2016041166A1
WO2016041166A1 PCT/CN2014/086781 CN2014086781W WO2016041166A1 WO 2016041166 A1 WO2016041166 A1 WO 2016041166A1 CN 2014086781 W CN2014086781 W CN 2014086781W WO 2016041166 A1 WO2016041166 A1 WO 2016041166A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
power level
target
transceiver
interference
Prior art date
Application number
PCT/CN2014/086781
Other languages
French (fr)
Inventor
Rongzhen Yang
Po-Kai Huang
Hujun Yin
Robert Stacey
Yongsen MA
Peng MENG
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to CN201480081269.5A priority Critical patent/CN106664661A/en
Priority to EP14901827.7A priority patent/EP3195667A4/en
Priority to US15/501,385 priority patent/US9924474B2/en
Priority to PCT/CN2014/086781 priority patent/WO2016041166A1/en
Priority to TW104125650A priority patent/TWI605725B/en
Publication of WO2016041166A1 publication Critical patent/WO2016041166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • An exemplary aspect is directed toward communications systems. More specifically an exemplary aspect is directed toward wireless communications systems and even more specifically to power control in wireless communications systems.
  • Wireless networks are ubiquitous and are commonplace indoors and becoming more frequently installed outdoors. Wireless networks transmit and receive information utilizing varying techniques. For example, but not by way of limitation, two common and widely adopted techniques used for communication are those that adhere to the Institute for Electronic and Electrical Engineers (IEEE) 802.11 standards such as the 802.11n standard and the IEEE 802.11ac standard.
  • IEEE Institute for Electronic and Electrical Engineers
  • the 802.11 standard specifies a common Medium Access Control (MAC) Layer which provides a variety of functions that support the operation of 802.11-based wireless LANs (WLANs) .
  • the MAC Layer manages and maintains communications between 802.11 stations (such as between radio network cards (NIC) in a PC or other wireless devices or stations (STA) and access points (APs) ) by coordinating access to a shared radio channel and utilizing protocols that enhance communications over a wireless medium.
  • NIC radio network cards
  • STA wireless devices or stations
  • APs access points
  • 802.11n was introduced in 2009 and improved the maximum single-channel data rate from 54 Mbps of 802.11g to over 100 Mbps.
  • 802.11n also introduced MIMO (multiple input/multiple output or spatial streaming) , where, according to the standard, up to 4 separate physical transmit and receive antennas carry independent data that is aggregated in a modulation/demodulation process in the transceiver.
  • MIMO multiple input/multiple output or spatial streaming
  • up to 4 separate physical transmit and receive antennas carry independent data that is aggregated in a modulation/demodulation process in the transceiver.
  • SU-MIMO single-user multiple input/multiple output.
  • the IEEE 802.11ac specification operates in the 5GHz band and adds channel bandwidths of 80 MHz and 160 MHz with both contiguous and non-contiguous 160 MHz channels for flexible channel assignment. 802.11ac also adds higher order modulation in the form of 256 quadrature amplitude modulation (QAM) , providing a 33-percent improvement in throughput over 802.11n technologies. A further doubling of the data rate in 802.11ac is achieved by increasing the maximum number of spatial streams to eight.
  • QAM quadrature amplitude modulation
  • IEEE 802.11ac further supports multiple concurrent downlink transmissions (“multi-user multiple-input, multiple-output” (MU-MIMO) ) , which allows transmission to multiple spatial streams to multiple clients simultaneously.
  • MU-MIMO multiple concurrent downlink transmissions
  • MU-MIMO enables more efficient spectrum use, higher system capacity and reduced latency by supporting up to four simultaneous user transmissions. This is particularly useful for devices with a limited number of antennas or antenna space, such as smartphones, tablets, small wireless devices, and the like.
  • 802.11ac streamlines the existing transmit beamforming mechanisms which significantly improves coverage, reliability and data rate performance.
  • IEEE 802.11ax is the successor to 802.11ac and is proposed to increase the efficiency of WLAN networks, especially in high density areas like public hotspots and other dense traffic areas. 802.11ax will also use orthogonal frequency-division multiple access (OFDMA) .
  • OFDMA orthogonal frequency-division multiple access
  • the High Efficiency WLAN Study Group (HEW SG) within the IEEE 802.11 working group is considering improvements to spectrum efficiency to enhance system throughput per area in high density scenarios of APs (Access Points) and/or STAs (Stations) .
  • interference mitigation and system performance improvement have been designed and included as an essential part of the key wireless communications standards, such as 3GPP LTE, IEEE 802.16, and the like.
  • Wi-Fi and 802.11 have the following requirements:
  • a low cost power amplifier is strongly preferred. However, with low cost power amplifiers, power adjustment may not be able to be accurately controlled.
  • the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more” .
  • the terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, circuits, or the like.
  • a plurality of stations may include two or more stations.
  • Fig. 1 illustrates an exemplary communications environment
  • Fig. 2 illustrates an exemplary transceiver
  • Fig. 3 illustrates an exemplary test environment
  • Fig. 4 is a flowchart illustrating an exemplary power control state technique.
  • the exemplary embodiments will be described in relation to communications systems, as well as protocols, techniques, means and methods for performing communications, such as in a wireless network, or in general in any communications network operating using any communications protocol (s) . Examples of such are home or access networks, wireless home networks, wireless corporate networks, and the like. It should be appreciated however that in general, the systems, methods and techniques disclosed herein will work equally well for other types of communications environments, networks and/or protocols.
  • a Domain Master can also be used to refer to any device, system or module that manages and/or configures or communicates with any one or more aspects of the network or communications environment and/or transceiver (s) and/or stations and/or access point (s) described herein.
  • the components of the system can be combined into one or more devices, or split between devices, such as a transceiver, an access point, a station, a Domain Master, a network operation or management device, a node or collocated on a particular node of a distributed network, such as a communications network.
  • devices such as a transceiver, an access point, a station, a Domain Master, a network operation or management device, a node or collocated on a particular node of a distributed network, such as a communications network.
  • the components of the system can be arranged at any location within a distributed network without affecting the operation thereof.
  • the various components can be located in a Domain Master, a node, a domain management device, such as a MIB (Management Information Base) , a network operation or management device, a transceiver (s) , a station, an access point (s) , or some combination thereof.
  • a domain management device such as a MIB (Management Information Base)
  • MIB Management Information Base
  • a network operation or management device such as a MBB (Management Information Base)
  • transceiver s
  • station such as a station
  • an access point s
  • one or more of the functional portions of the system could be distributed between a transceiver and an associated computing device/system.
  • the various links 5, including the communications channel (s) 10, connecting the elements can be wired or wireless links or any combination thereof, or any other known or later developed element (s) capable of supplying and/or communicating data to and from the connected elements.
  • module as used herein can refer to any known or later developed hardware, circuitry, software, firmware, or combination thereof, that is capable of performing the functionality associated with that element.
  • determine, calculate, and compute and variations thereof, as used herein are used interchangeable and include any type of methodology, process, technique, mathematical operational or protocol.
  • An exemplary aspect addresses at least the above issues by providing a new power control technique to meet or exceed the above requirements by introducing selectable finite power transmission states and power control algorithms to improve overall system performance, and take into consideration low cost and robustness for pathloss measurement errors.
  • Wi-Fi wireless communications environments
  • an exemplary aspect is directed toward a finite state power control algorithm and technique that, while designed for next generation Wi-Fi standards, such as 802.11ax, can in general be used with any wireless communication protocol or standard.
  • new transmission power states can be defined, where 0 dBm is a low power transmission state, and 15 dBm is a high power transmission state.
  • the devices can select one suitable transmission power state by evaluating the environment and executing power control algorithms/techniques based on that evaluation.
  • devices can exchange this power state information in a message, such as in a header of a packet or elsewhere in a packet.
  • the power state can optionally be agreed upon, for example using standard ACK and NACK techniques, before the power state is utilized for communications.
  • more transmission power states such as four transmission power states, eight power transmission states, or even more, can be included in the finite state power control techniques discussed herein.
  • an exemplary advantage of the techniques disclosed herein are that they do not require an accurate power adjustment and/or pathloss measurement.
  • the solution disclosed herein at least meets the requirements of enabling use of a low cost power amplifier with inaccurate power adjustment, and a low cost system with inaccurate pathloss measurements.
  • FIG. 1 One exemplary usage scenario is illustrated in accordance with Fig. 1.
  • Fig. 1 which includes in a communication environment 100, an access point 120 (AP) and a plurality of stations (STA1-STA4) (104-116) .
  • AP access point 120
  • STA1-STA4 stations
  • 104-116 a 2-state transmission power control technique is defined.
  • a fixed low transmission power level is defined, such as 0 dBm, illustrated between the AP 120 and Station 4 116, and also illustrated between Station 2 108 and Station 3 112.
  • a fixed high transmission power level is also defined as the maximum device transmission power, such as 15 dBm, which is shown between Station 1 104 and access point 120 and Station 2 108 and access point 120.
  • a native state is also defined to assist with implementation and algorithm design, with that state being State 0, where there is no transmission power and/or a scenario where no transmission is performed.
  • State 0 where there is no transmission power and/or a scenario where no transmission is performed.
  • three transmission power levels are defined as:
  • Wi-Fi wireless broadband communication systems
  • STA1-STA4 Wi-Fi, or other comparable low cost wireless broadband communication systems
  • State 2 For the connection between STA1 104 to/from the access point 120, and for STA2 108 to/from the access point 120, due to the long distance with large channel propagation loss, State 2 was selected by the power control scheme (as described herein) to support the transmission of this type of communication connection or link.
  • State 1 For the connections between STA2 108 to/from STA3 112 and from STA4 116 to/from the access point 120, due to the short distance with small channel propagation loss between the devices, State 1 was selected by the power control scheme (as described herein) to support the transmission over this type of link. When there is no transmission in each link, State 0, being no transmission power, is assigned.
  • An evaluation scenario was arbitrarily selected from the IEEE 802.11ax evaluation documentation as illustrated in Fig. 3 to test the techniques proposed herein.
  • scenario 3 environment in Fig. 3, evaluation was performed on an indoor small BSS (Basic Service Set) hotspot.
  • BSS Basic Service Set
  • Scenario 3 is a managed environment with an indoor channel model, flat homogeneity, and both enterprise and mobile traffic modelling.
  • this indoor small BSS Hotspot (dense) scenario has the objective to capture the issues and be representative of real-world deployments with a high density of APs and STAs.
  • the infrastructure network (ESS) is planned.
  • ESS infrastructure network
  • a hexagonal cell layout is considered with a frequency reuse pattern. This frequency reuse pattern is defined and fixed, as part of the parameters that can't be modified in this scenario.
  • BSS channel allocation can be evaluated in simulation scenarios where there are is not a planned network (ESS) , as in the residential one.
  • ESS planned network
  • this OBSS Overlapping Basic Service Set
  • this OBSS interference is captured in this scenario (note that this OBSS interference is touching STAs in high SNR conditions (close to their serving APs, while in outdoor large BSS scenarios, the OBSS interference will be touching STAs in low SNR conditions (for from their serving APs)) ;
  • Interference with unmanaged networks P2P links: this OBSS interference is captured in this scenario by the definition of interfering networks, defined here as random unmanaged short-range P2P links, representative of Soft APs and tethering;
  • this OBSS interference is currently not captured in this scenario, but in the hierarchical indoor/outdoor scenario.
  • this OBSS interference is currently not captured in this scenario, but in the outdoor large BSS scenario.
  • the channel model is considered as a large indoor model.
  • an exemplary error model can be built as follows:
  • MaxFixedError is a parameter set for study, such as 0dB, 5dB, 10dB, etc. ,
  • the offset value of each STA can be generated at the simulation start stage and then fixed for the simulation,
  • MaxDynamicError is a parameter set for study, such as 0dB, 5dB, 10dB, etc.
  • the offset value of each STA can be generated at each time of usage for each link.
  • Fig. 2 illustrates an exemplary transceiver, such as that found in a station or an access point adapted to implement the techniques herein.
  • the transceiver 200 includes one or more antennas 204, an interleaver/deinterleaver 208, an analog front end 212, memory/storage 216, controller/microprocessor 220, interference mitigation/system performance module 224, transmitter 228, modulator/demodulator 232, encoder/decoder 236, MAC Circuitry 240, receiver 242, power control state storage 246, power control module 250 and the power control state selection module 254.
  • the various elements in the transceiver 200 are connected by one or more links (not shown again for sake of clarity) .
  • the transceiver 200 could also include, for example, a host or application processor, a user interface (s) , power supply (ies) , a non-transitory storage medium to store one or more applications, and optionally one or more radios such as a cellular radio/ low energy radio.
  • the transceiver 200 (as well as access point 120) can have one more antennas 204, for use in wireless communications such as multi-input multi-output (MIMO) communications, , etc.
  • MIMO multi-input multi-output
  • the antennas 204 can include, but are not limited to directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other suitable for communication transmission.
  • transmission using MIMO may require particular antenna spacing.
  • MIMO transmission can enable spatial diversity allowing for different channel characteristics at each of the antennas.
  • MIMO transmission can be used to distribute resources to multiple users.
  • the interference mitigation/system performance module 224 in cooperation with the power control module 250, the controller 220 and memory 216 determine a suitable transmission power level for the purposes of interference mitigation and improving system performance. As will be appreciated, this can be a front-end process and in general can use any power control algorithm that is compatible with the systems described herein.
  • three alternative power control algorithms that can work with the systems and methods disclosed herein include a first algorithm that is a SINR (Signal-to-Interference-plus-Noise Ratio) based power control algorithm, a second power control algorithm that is an SNR (Signal-to-Noise Ratio) based power control algorithm and a third power control algorithm described in related application PCT/CN2014/086532.
  • SINR Signal-to-Interference-plus-Noise Ratio
  • the algorithm outputs which is the decided transmission power level for achieving a target signal-to-inference-plus-noise-ratio.
  • this algorithm is based on a target SNR value, and is the white noise power level with all other parameters being the same as the first alternative discussed above.
  • SINR Target is the target SINR value (expressed as dB) to be achieved by the transmission power level
  • L is an estimated pahtloss value (expressed as dB) from transmitter to receiver at the time of transmission
  • NI is the estimated noise and interference power level (express as dBm) on the receiver side
  • SNR Target is the target SNR value (expressed as dB) to be achieved by the transmission power level
  • N is the white noise power level (express as dBm) at the receiver side, with all other parameters being the same as in alternative #1 above.
  • the maximum allowed transmission power in Tx/Rx sides of a slave candidate pair are:
  • P state (O) there is one no transmission power state, as discussed above, defined as P state (O) .
  • the transceiver 200 next performs a power control state selection process based on, for example, one of the following alternatives.
  • This first option for determining the finite power control state selection is based on a transmission power limitation formulation. More specifically, an exemplary algorithm that performs its functionality is represented utilizing the following simple pseudo-code:
  • the algorithm will select the one state that is the highest transmission power level within the transmission power level decided by the power control algorithm selected above.
  • State i is selected from the index of the minimum value in absoluteDistance(i) .
  • the technique will select the one state that is the closest transmission power level compared to the transmission power level decided by the power control algorithm selected above.
  • the power control state selection module 254 stores, in the power control state storage 246, an indication of the power control state that will be utilized. This power control state will be used by various other transceiver components, such as the transmitter 228, when communicating information to one or more other wireless devices.
  • an exemplary embodiment provides an excellent mechanism for performance gain with robustness from pathloss measurement dynamic error.
  • lower cost devices can be produced but enjoy wide adoption for high-speed wireless LAN applications such as, for example, Wi-Fi, Wi-Di, (wireless display) , D2D (Device-2-Device) communications, and the like, as discussed herein.
  • Fig. 4 outlines an exemplary methodology that outlines power control in a transceiver.
  • control begins in step S400 and continues to step S404.
  • step S404 a power control algorithm is applied to determine a suitable transmission power level that accomplishes interference mitigation and improves system performance.
  • a power control algorithm is applied to determine a suitable transmission power level that accomplishes interference mitigation and improves system performance.
  • a suitable transmission power level that accomplishes interference mitigation and improves system performance.
  • a maximum allowed transmission power level or target transmission power level is determined.
  • a finite power control state selection algorithm determines one or more transmission power states, which can then be stored in memory.
  • These various power levels will be referred to as power transmission states, with the system capable of storing an indication of one or more of these power transmission states in memory.
  • these power transmission states can be identified by one or more identifiers, and can be stored in, for example, table form, in a field, in a database, in a schema, and the like. These power transmission states and/or the corresponding identifiers can also be shared with one or more other devices.
  • step S416 the selected transmission power state is stored and utilized for communications. Control then continues to step S420 where the control sequence ends.
  • a system comprising:
  • an interference mitigation module adapted to determine a maximum allowed transmission power level or a target transmission power level
  • a power control module adapted to select a transmission power level
  • a power control state selection module adapted to determine a number of total transmission power states for a transceiver based on the transmission power level.
  • the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  • SINR Signal-to-Interference-plus-Noise Ratio
  • the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  • SNR Signal-to-Noise Ratio
  • a method comprising:
  • the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  • SINR Signal-to-Interference-plus-Noise Ratio
  • the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  • SNR Signal-to-Noise Ratio
  • a system comprising:
  • the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  • SINR Signal-to-Interference-plus-Noise Ratio
  • the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  • SNR Signal-to-Noise Ratio
  • the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  • SINR Signal-to-Interference-plus-Noise Ratio
  • the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  • SNR Signal-to-Noise Ratio
  • the various components of the system can be located at distant portions of a distributed network, such as a communications network and/or the Internet, or within a dedicated secure, unsecured and/or encrypted system.
  • a distributed network such as a communications network and/or the Internet
  • the components of the system can be combined into one or more devices, such as an access point or station, or collocated on a particular node/element (s) of a distributed network, such as a telecommunications network.
  • the components of the system can be arranged at any location within a distributed network without affecting the operation of the system.
  • the various components can be located in a transceiver, an access point, a station, a management device, or some combination thereof.
  • one or more functional portions of the system could be distributed between a transceiver, such as an access point (s) or station (s) and an associated computing device.
  • the various links including communications channel (s) 10, connecting the elements (which may not be shown) can be wired or wireless links, or any combination thereof, or any other known or later developed element (s) that is capable of supplying and/or communicating data and/or signals to and from the connected elements.
  • module as used herein can refer to any known or later developed hardware, software, firmware, or combination thereof that is capable of performing the functionality associated with that element.
  • determine, calculate and compute, and variations thereof, as used herein are used interchangeably and include any type of methodology, process, mathematical operation or technique.
  • the above-described system can be implemented on a wireless telecommunications device (s) /system, such an 802.11 transceiver, or the like.
  • wireless protocols that can be used with this technology include 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, WiFi, LTE, 4G, WirelessHD, WiGig, WiGi, 3GPP, Wireless LAN, WiMAX, and the like.
  • transceiver as used herein can refer to any device that comprises hardware, software, circuitry, firmware, or any combination thereof and is capable of performing any of the methods, techniques and/or algorithms described herein.
  • the systems, methods and protocols can be implemented on one or more of a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element (s) , an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device such as PLD, PLA, FPGA, PAL, a modem, a transmitter/receiver, any comparable means, or the like.
  • any device capable of implementing a state machine that is in turn capable of implementing the methodology illustrated herein can be used to implement the various communication methods, protocols and techniques according to the disclosure provided herein.
  • Examples of the processors as described herein may include, but are not limited to, at least one of 800 and 801, 610 and 615 with 4G LTE Integration and 64-bit computing, A7 processor with 64-bit architecture, M7 motion coprocessors, series, the Core TM family of processors, the family of processors, the Atom TM family of processors, the Intel family of processors, i5-4670K and i7-4770K 22nm Haswell, i5-3570K 22nm Ivy Bridge, the FX TM family of processors, FX-4300, FX-6300, and FX-8350 32nm Vishera, Kaveri processors, Texas Jacinto C6000 TM automotive infotainment processors, Texas OMAP TM automotive-grade mobile processors, Cortex TM -M processors, Cortex-A and ARM926EJ-S TM processors, AirForce BCM4704/BCM4703 wireless networking processors, the AR7100 Wireless Network Processing Unit, other industry-equi
  • the disclosed methods may be readily implemented in software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms.
  • the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with the embodiments is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
  • the communication systems, methods and protocols illustrated herein can be readily implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the functional description provided herein and with a general basic knowledge of the computer and telecommunications arts.
  • the disclosed methods may be readily implemented in software and/or firmware that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like.
  • the systems and methods can be implemented as program embedded on personal computer such as an applet, JAVA. RTM. or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated communication system or system component, or the like.
  • the system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system, such as the hardware and software systems of a communications transceiver.

Abstract

Some wireless communications environments, such as Wi-Fi, may include inexpensive power amplifiers where the power adjustment may not be accurate, and may also include pathloss measurement errors that are high enough to degrade performance of a power control algorithm. To address this issue, an exemplary aspect is directed toward a finite state power control algorithm and technique that, while designed for next generation Wi-Fi standards, such as 802.11ax, can in general be used with any wireless communication protocol or standard.

Description

THE SCHEME OF FINITE POWER TRANSMISSION STATUSES FOR LOW COST WIRELESS BROADBAND COMMUNICATION SYSTEM TECHNICAL FIELD
An exemplary aspect is directed toward communications systems. More specifically an exemplary aspect is directed toward wireless communications systems and even more specifically to power control in wireless communications systems.
BACKGROUND
Wireless networks are ubiquitous and are commonplace indoors and becoming more frequently installed outdoors. Wireless networks transmit and receive information utilizing varying techniques. For example, but not by way of limitation, two common and widely adopted techniques used for communication are those that adhere to the Institute for Electronic and Electrical Engineers (IEEE) 802.11 standards such as the 802.11n standard and the IEEE 802.11ac standard.
The 802.11 standard specifies a common Medium Access Control (MAC) Layer which provides a variety of functions that support the operation of 802.11-based wireless LANs (WLANs) . The MAC Layer manages and maintains communications between 802.11 stations (such as between radio network cards (NIC) in a PC or other wireless devices or stations (STA) and access points (APs) ) by coordinating access to a shared radio channel and utilizing protocols that enhance communications over a wireless medium.
802.11n was introduced in 2009 and improved the maximum single-channel data rate from 54 Mbps of 802.11g to over 100 Mbps. 802.11n also introduced MIMO (multiple input/multiple output or spatial streaming) , where, according to the standard, up to 4 separate physical transmit and receive antennas carry independent data that is aggregated in a modulation/demodulation process in the transceiver. (Also known as SU-MIMO (single-user multiple input/multiple output. ) )
The IEEE 802.11ac specification operates in the 5GHz band and adds channel bandwidths of 80 MHz and 160 MHz with both contiguous and non-contiguous 160 MHz channels for flexible channel assignment. 802.11ac also adds higher order modulation in the form of 256 quadrature amplitude modulation (QAM) , providing a 33-percent improvement in throughput over 802.11n technologies. A further doubling of the data rate in 802.11ac is achieved by increasing the maximum number of spatial streams to eight.
IEEE 802.11ac further supports multiple concurrent downlink transmissions (“multi-user multiple-input, multiple-output” (MU-MIMO) ) , which allows transmission to multiple spatial streams to multiple clients simultaneously. By using smart antenna technology, MU-MIMO enables more efficient spectrum use, higher system capacity and reduced latency by supporting up to four simultaneous user transmissions. This is particularly useful for devices with a limited number of antennas or antenna space, such as smartphones, tablets, small wireless devices, and the like. 802.11ac streamlines the existing transmit beamforming mechanisms which significantly improves coverage, reliability and data rate performance.
IEEE 802.11ax is the successor to 802.11ac and is proposed to increase the efficiency of WLAN networks, especially in high density areas like public hotspots and other dense traffic areas. 802.11ax will also use orthogonal frequency-division multiple access (OFDMA) . Related to 802.11ax, the High Efficiency WLAN Study Group (HEW SG) within the IEEE 802.11 working group is considering improvements to spectrum efficiency to enhance system throughput per area in high density scenarios of APs (Access Points) and/or STAs (Stations) .
In current wireless broadband communications standards and systems development, transmission power control protocols have played a key role for interference mitigation and system performance improvement. These interference mitigation and system perform improvements have been designed and included as an essential part of the key wireless communications standards, such as 3GPP LTE, IEEE 802.16, and the like.
However, many cost sensitive wireless broadband communications systems, such as Wi-Fi and 802.11, have the following requirements:
1) A low cost power amplifier is strongly preferred. However, with low cost power amplifiers, power adjustment may not be able to be accurately controlled.
2) Due to the low cost of the system, pathloss measurement errors in Wi-Fi may reach 5 to 10dB -which may greatly degrade the performance of the conventional power control algorithms’ gain.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the disclosed techniques. However, it will be understood by those skilled in the art that the present embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present disclosure.
Although embodiments are not limited in this regard, discussions utilizing terms such as, for example, “processing, ” “computing, ” “calculating, ” “determining, ” “establishing” , “analyzing” , “checking” , or the like, may refer to operation (s) and/or process (es) of a computer, a computing platform, a computing system, a communication system or subsystem, or other electronic computing device, that manipulate and/or transform data represented as physical (e. g. , electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information storage medium that may store instructions to perform operations and/or processes.
Although embodiments are not limited in this regard, the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more” . The terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, circuits, or the like. For example, “a plurality of stations” may include two or more stations.
Before undertaking the description of embodiments below, it may be advantageous to set forth definitions of certain words and phrases used throughout this document: the terms “include” and “comprise, ” as well as derivatives thereof, mean inclusion without limitation; the term “or, ” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith, ” as well as derivatives thereof, may mean to include, be included within, interconnect with, interconnected with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation,  such a device may be implemented in hardware, circuitry, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this document and those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
Fig. 1 illustrates an exemplary communications environment;
Fig. 2 illustrates an exemplary transceiver;
Fig. 3 illustrates an exemplary test environment; and
Fig. 4 is a flowchart illustrating an exemplary power control state technique.
DESCRIPTION OF EMBODIMENTS
The exemplary embodiments will be described in relation to communications systems, as well as protocols, techniques, means and methods for performing communications, such as in a wireless network, or in general in any communications network operating using any communications protocol (s) . Examples of such are home or access networks, wireless home networks, wireless corporate networks, and the like. It should be appreciated however that in general, the systems, methods and techniques disclosed herein will work equally well for other types of communications environments, networks and/or protocols.
For purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present techniques. It should be appreciated however that the present disclosure may be practiced in a variety of ways beyond the specific details set forth herein. Furthermore, while the exemplary embodiments illustrated herein show various components of the system collocated, it is to be appreciated that the various components of  the system can be located at distant portions of a distributed network, such as a communications network, node, within a Domain Master, and/or the Internet, or within a dedicated secured, unsecured, and/or encrypted system and/or within a network operation or management device that is located inside or outside the network. As an example, a Domain Master can also be used to refer to any device, system or module that manages and/or configures or communicates with any one or more aspects of the network or communications environment and/or transceiver (s) and/or stations and/or access point (s) described herein.
Thus, it should be appreciated that the components of the system can be combined into one or more devices, or split between devices, such as a transceiver, an access point, a station, a Domain Master, a network operation or management device, a node or collocated on a particular node of a distributed network, such as a communications network. As will be appreciated from the following description, and for reasons of computational efficiency, the components of the system can be arranged at any location within a distributed network without affecting the operation thereof. For example, the various components can be located in a Domain Master, a node, a domain management device, such as a MIB (Management Information Base) , a network operation or management device, a transceiver (s) , a station, an access point (s) , or some combination thereof. Similarly, one or more of the functional portions of the system could be distributed between a transceiver and an associated computing device/system.
Furthermore, it should be appreciated that the various links 5, including the communications channel (s) 10, connecting the elements can be wired or wireless links or any combination thereof, or any other known or later developed element (s) capable of supplying and/or communicating data to and from the connected elements. The term module as used herein can refer to any known or later developed hardware, circuitry, software, firmware, or combination thereof, that is capable of performing the functionality associated with that element. The terms determine, calculate, and compute and variations thereof, as used herein are used interchangeable and include any type of methodology, process, technique, mathematical operational or protocol.
Moreover, while some of the exemplary embodiments described herein are directed toward a transmitter portion of a transceiver performing certain functions, this  disclosure is intended to include corresponding and complementary receiver-side functionality in both the same transceiver and/or another transceiver (s) , and vice versa.
An exemplary aspect addresses at least the above issues by providing a new power control technique to meet or exceed the above requirements by introducing selectable finite power transmission states and power control algorithms to improve overall system performance, and take into consideration low cost and robustness for pathloss measurement errors.
As discussed above, some wireless communications environments, such as Wi-Fi, may include inexpensive power amplifiers where the power adjustment may not be accurate, and may also include pathloss measurement errors that are high enough to degrade performance of a power control algorithm. To address this issue, an exemplary aspect is directed toward a finite state power control algorithm and technique that, while designed for next generation Wi-Fi standards, such as 802.11ax, can in general be used with any wireless communication protocol or standard.
For example, new transmission power states can be defined, where 0 dBm is a low power transmission state, and 15 dBm is a high power transmission state. With these two states, the devices can select one suitable transmission power state by evaluating the environment and executing power control algorithms/techniques based on that evaluation.
In accordance with one exemplary embodiment, devices can exchange this power state information in a message, such as in a header of a packet or elsewhere in a packet. The power state can optionally be agreed upon, for example using standard ACK and NACK techniques, before the power state is utilized for communications.
In addition to the two states illustrated above, more transmission power states, such as four transmission power states, eight power transmission states, or even more, can be included in the finite state power control techniques discussed herein. Compared to conventional power control algorithm/techniques, an exemplary advantage of the techniques disclosed herein are that they do not require an accurate power adjustment and/or pathloss measurement.
Even more specifically, and compared to conventional power control techniques and algorithms, the solution disclosed herein at least meets the requirements of enabling use  of a low cost power amplifier with inaccurate power adjustment, and a low cost system with inaccurate pathloss measurements.
One exemplary usage scenario is illustrated in accordance with Fig. 1. As illustrated in Fig. 1, which includes in a communication environment 100, an access point 120 (AP) and a plurality of stations (STA1-STA4) (104-116) , a 2-state transmission power control technique is defined.
In State 1, a fixed low transmission power level is defined, such as 0 dBm, illustrated between the AP 120 and Station 4 116, and also illustrated between Station 2 108 and Station 3 112. A fixed high transmission power level is also defined as the maximum device transmission power, such as 15 dBm, which is shown between Station 1 104 and access point 120 and Station 2 108 and access point 120.
A native state is also defined to assist with implementation and algorithm design, with that state being State 0, where there is no transmission power and/or a scenario where no transmission is performed. Thus, in Fig. 1, three transmission power levels are defined as:
State 1: Fixed low transmission power level,
State 2: Fixed high transmission power level, and
State 0: No transmission power and/or no transmission.
As illustrated in Fig. 1, there are four Wi-Fi, or other comparable low cost wireless broadband communication systems (STA1-STA4) . For the connection between STA1 104 to/from the access point 120, and for STA2 108 to/from the access point 120, due to the long distance with large channel propagation loss, State 2 was selected by the power control scheme (as described herein) to support the transmission of this type of communication connection or link. For the connections between STA2 108 to/from STA3 112 and from STA4 116 to/from the access point 120, due to the short distance with small channel propagation loss between the devices, State 1 was selected by the power control scheme (as described herein) to support the transmission over this type of link. When there is no transmission in each link, State 0, being no transmission power, is assigned.
An evaluation scenario was arbitrarily selected from the IEEE 802.11ax evaluation documentation as illustrated in Fig. 3 to test the techniques proposed herein. In the scenario 3 environment in Fig. 3, evaluation was performed on an indoor small BSS  (Basic Service Set) hotspot. As for the topology in Fig. 3, there are dense small BSS’s 310 that are uniform, with approximately 10-20 meters inter-AP distance with approximately hundreds of stations/APs, and P2P pairs. Scenario 3 is a managed environment with an indoor channel model, flat homogeneity, and both enterprise and mobile traffic modelling.
In Scenario 3 in the 802.11ax planning meetings, this indoor small BSS Hotspot (dense) scenario has the objective to capture the issues and be representative of real-world deployments with a high density of APs and STAs. In such environments, the infrastructure network (ESS) is planned. For simulation complexity simplifications, a hexagonal cell layout is considered with a frequency reuse pattern. This frequency reuse pattern is defined and fixed, as part of the parameters that can't be modified in this scenario. (Note that BSS channel allocation can be evaluated in simulation scenarios where there are is not a planned network (ESS) , as in the residential one. ) In such environments, the "traffic condition"described in the usage model document mentions:
i. Interference between APs belonging to the same managed ESS due to high density deployment: this OBSS (Overlapping Basic Service Set) interference is captured in this scenario (note that this OBSS interference is touching STAs in high SNR conditions (close to their serving APs, while in outdoor large BSS scenarios, the OBSS interference will be touching STAs in low SNR conditions (for from their serving APs)) ;
iii. Interference with unmanaged networks (P2P links) : this OBSS interference is captured in this scenario by the definition of interfering networks, defined here as random unmanaged short-range P2P links, representative of Soft APs and tethering;
iv. Interference with unmanaged stand-alone APs: this OBSS interference is currently not captured in this scenario, but in the hierarchical indoor/outdoor scenario; and
v. Interference between APs belonging to different managed ESS due to the presence of multiple operators: this OBSS interference is currently not captured in this scenario, but in the outdoor large BSS scenario.
Other important real-world conditions representative of such environments are also captured in this scenario that include existence of unassociated clients, with regular probe request broadcasts. 
In order to focus this scenario on the issues related to high density, the channel model is considered as a large indoor model.
Some details of key evaluation parameters for scenario 3 are:
Figure PCTCN2014086781-appb-000001
*International Mobile Telecommunications‐Advanced
For pathloss measurement error evaluation, an exemplary error model can be built as follows:
Lerror=Lerror_fixed+Lerror_dynamic
where Lerror_fixed is:
a value with uniform distribution between [-MaxFixedError, +MaxFixedError] , where MaxFixedError is a parameter set for study, such as 0dB, 5dB, 10dB, etc. ,
The offset value of each STA can be generated at the simulation start stage and then fixed for the simulation,
and Lerror_dynamic is:
a value with uniform distribution between [-MaxDynamicError, +MaxDynamicError] , where MaxDynamicError is a parameter set for study, such as 0dB, 5dB, 10dB, etc, The offset value of each STA can be generated at each time of usage for each link.
Through the previous evaluation results analysis, it can observed that fixed pathloss error Lerror_fixed would not contribute significantly to impacts on performance, so, as a  result, attention can be focused on the impact of dynamic pathloss in the design of the solution.
Figure PCTCN2014086781-appb-000002
*DL = Downlink, UL = Uplink
** No Power Control
Table 1 - Summary of Evaluation Results
Through evaluation of the above results, one can observe two merits of the techniques disclosed herein:
1) By using the solution defined herein with finite states of transmission power, such as 4 states, one can achieve almost the same benefits from transmission power control as those found in very accurate adjustment steps, such as 16 states with one dB per step,
2) The solution is also very robust for pathloss dynamic measurement error, (Note that pathloss measurement dynamic error less than 5dB will not significantly reduce the relative gain from power control versus the conventional methodology) .
These two exemplary advantages are very suitable, for example, in a low cost wireless broadband communication system and/or standard, such as 802.11, and in particular, IEEE 802.11ax -slated to be the next generation Wi-Fi standard.
Fig. 2 illustrates an exemplary transceiver, such as that found in a station or an access point adapted to implement the techniques herein. In addition to well-known componentry (which has been omitted for clarity) , the transceiver 200 includes one or more antennas 204, an interleaver/deinterleaver 208, an analog front end 212, memory/storage 216, controller/microprocessor 220, interference mitigation/system performance module 224, transmitter 228, modulator/demodulator 232, encoder/decoder 236, MAC Circuitry 240, receiver 242, power control state storage 246, power control module 250 and the power control state selection module 254. The various elements in the transceiver 200 are connected by one or more links (not shown again for sake of clarity) . Also, while the memory/storage 216 and power control state storage 246 are shown separately, it should be appreciated that these elements could be combined. The transceiver 200 could also include, for example, a host or application processor, a user interface (s) , power supply (ies) , a non-transitory storage medium to store one or more applications, and optionally one or more radios such as a cellular radio/
Figure PCTCN2014086781-appb-000003
low energy radio. The transceiver 200 (as well as access point 120) can have one more antennas 204, for use in wireless communications such as multi-input multi-output (MIMO) communications, 
Figure PCTCN2014086781-appb-000004
, etc. The antennas 204 can include, but are not limited to directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other suitable for communication transmission. In an exemplary embodiment, transmission using MIMO may require particular antenna spacing. In another exemplary embodiment, MIMO transmission can enable spatial diversity allowing for different channel characteristics at each of the antennas. In yet another embodiment, MIMO transmission can be used to distribute resources to multiple users.
In addition to well-known operational steps, the interference mitigation/system performance module 224, in cooperation with the power control module 250, the controller 220 and memory 216 determine a suitable transmission power level for the purposes of interference mitigation and improving system performance. As will be appreciated, this can be a front-end process and in general can use any power control algorithm that is compatible with the systems described herein. 
As an example, three alternative power control algorithms that can work with the systems and methods disclosed herein include a first algorithm that is a SINR (Signal-to-Interference-plus-Noise Ratio) based power control algorithm, a second power control algorithm that is an SNR (Signal-to-Noise Ratio) based power control algorithm and a third power control algorithm described in related application PCT/CN2014/086532.
For the first exemplary power control algorithm, which is the SINR based power control algorithm, the algorithm outputs
Figure PCTCN2014086781-appb-000005
which is the decided transmission power level for achieving a target signal-to-inference-plus-noise-ratio.
In the second power control algorithm, which is the SNR based power control algorithm, this algorithm is based on a target SNR value, and is the white noise power level with all other parameters being the same as the first alternative discussed above.
More specifically:
Alternative #1: (SINR Based Power Control Algorithm) 
Ptx dBm=L+SINRTarget+NI
Where,
SINRTarget is the target SINR value (expressed as dB) to be achieved by the transmission power level,
L is an estimated pahtloss value (expressed as dB) from transmitter to receiver at the time of transmission,
NI is the estimated noise and interference power level (express as dBm) on the receiver side, and
Figure PCTCN2014086781-appb-000006
is the decided transmission power level output by the algorithm for achieving the target SINR.
Alternative #2: (SNR Based Power Control Algorithm) 
Ptx dBm=L+SNRTarget+N
Where,
SNRTarget is the target SNR value (expressed as dB) to be achieved by the transmission power level, and
N is the white noise power level (express as dBm) at the receiver side, with all other parameters being the same as in alternative #1 above.
For the third power control algorithm, as described in related application PCT/CN2014/086532, where a master pair and a slave pair have been established, the maximum allowed transmission power in Tx/Rx sides of a slave candidate pair are:
Figure PCTCN2014086781-appb-000007
Figure PCTCN2014086781-appb-000008
Where,
Figure PCTCN2014086781-appb-000009
is the maximum allowed transmission power on a Tx side of the slave candidate pair, expressed as dBm;
Figure PCTCN2014086781-appb-000010
is the maximum allowed transmission power on a Rx side of the slave candidate pair expressed as dBm;
Figure PCTCN2014086781-appb-000011
is the maximum allowed interference threshold on a Tx side of the master pair, expressed as dBm;
Figure PCTCN2014086781-appb-000012
is the maximum allowed transmission power on a Rx side of the master pair, expressed as dBm; and
Figure PCTCN2014086781-appb-000013
is the propagation loss between 2 Wi-Fi devices.
Once the transmission power level has been decided by one of the above power control algorithms as
Figure PCTCN2014086781-appb-000014
, one can assume N total transmission power states as defined by Pstate (i),i=1~N. In addition, there is one no transmission power state, as discussed above, defined as Pstate (O) .
With the transmission power level having been decided in cooperation with the power control module 250, interference mitigation module 224, controller 220 and memory 216, the transceiver 200 next performs a power control state selection process based on, for example, one of the following alternatives.
Alternative #1: (
Figure PCTCN2014086781-appb-000015
determined as a transmission power limitation) 
This first option for determining the finite power control state selection is based on a transmission power limitation formulation. More specifically, an exemplary algorithm that performs its functionality is represented utilizing the following simple pseudo-code:
Figure PCTCN2014086781-appb-000016
By using this simple code loop, the algorithm will select the one state that is the highest transmission power level within the transmission power level decided by the power control algorithm selected above.
Alternative #2: (
Figure PCTCN2014086781-appb-000017
determined as approaching target power level) 
In the second alternative, which is based on approaching a target power level, the algorithm can be described again in conjunction with the following pseudo-code example:
for i = 0 to N
Figure PCTCN2014086781-appb-000018
end
State i is selected from the index of the minimum value in absoluteDistance(i) .
By using this simple code loop, the technique will select the one state that is the closest transmission power level compared to the transmission power level decided by the power control algorithm selected above. Upon selection of this state, the power control state selection module 254 stores, in the power control state storage 246, an indication of the power control state that will be utilized. This power control state will be used by various other transceiver components, such as the transmitter 228, when communicating information to one or more other wireless devices.
As discussed, an exemplary embodiment provides an excellent mechanism for performance gain with robustness from pathloss measurement dynamic error. With some of  the exemplary performance benefits, lower cost devices can be produced but enjoy wide adoption for high-speed wireless LAN applications such as, for example, Wi-Fi, Wi-Di, (wireless display) , D2D (Device-2-Device) communications, and the like, as discussed herein.
Fig. 4 outlines an exemplary methodology that outlines power control in a transceiver. In particular, control begins in step S400 and continues to step S404. In step S404, a power control algorithm is applied to determine a suitable transmission power level that accomplishes interference mitigation and improves system performance. As shown above, there are several exemplary power control techniques that can be used with the systems described herein.
As a result of using one of these exemplary processes, a maximum allowed transmission power level or target transmission power level is determined. Next, in step S408, a finite power control state selection algorithm determines one or more transmission power states, which can then be stored in memory. As an example, there can be a plurality of transmission power states ranging from a 0 power level, as illustrated in step S412, up to a maximum transmission power level, with one or more intervening power levels as illustrated in Fig. 4. These various power levels will be referred to as power transmission states, with the system capable of storing an indication of one or more of these power transmission states in memory. As will be appreciated, these power transmission states can be identified by one or more identifiers, and can be stored in, for example, table form, in a field, in a database, in a schema, and the like. These power transmission states and/or the corresponding identifiers can also be shared with one or more other devices.
Next, in step S416, the selected transmission power state is stored and utilized for communications. Control then continues to step S420 where the control sequence ends.
Aspects are thus directed toward:
1. A system comprising:
an interference mitigation module adapted to determine a maximum allowed transmission power level or a target transmission power level;
a power control module adapted to select a transmission power level; and
a power control state selection module adapted to determine a number of total transmission power states for a transceiver based on the transmission power level. 
2. The system of aspect 1, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
3. The system of aspect 1, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
4. The system of aspect 1, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
5. The system of aspect 1, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
6. The system of aspect 1, wherein the transceiver utilizes a transmission power state for transmission.
7. The system of aspect 6, wherein the transmission power state is determined each time a link is utilized.
8. The system of aspect 1, wherein performance gain is improved while maintaining robustness from pathloss measurement dynamic error.
9. The system of aspect 1, further comprising storage adapted to store information about each of the transmission power states.
10. A method comprising:
determining a maximum allowed transmission power level or a target transmission power level; 
selecting a transmission power level; and
determining a number of total transmission power states for a transceiver based on the transmission power level.
11. The method of aspect 10, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
12. The method of aspect 10, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
13. The method of aspect 10, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
14. The method of aspect 10, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
15. The method of aspect 10, wherein the transceiver utilizes a transmission power state for transmission.
16. The method of aspect 15, wherein the transmission power state is determined each time a link is utilized.
17. The method of aspect 10, wherein performance gain is improved while maintaining robustness from pathloss measurement dynamic error.
18. The method of aspect 10, further comprising storing information about each of the transmission power states. 
19. A system comprising:
means for determining a maximum allowed transmission power level or a target transmission power level;
means for selecting a transmission power level; and
means for determining a number of total transmission power states for a transceiver based on the transmission power level.
20. The system of aspect 19, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
21. The system of aspect 19, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
22. The system of aspect 19, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
23. The system of aspect 19, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
24. The system of aspect 19, wherein the transceiver utilizes a transmission power state for transmission.
25. The system of aspect 24, wherein the transmission power state is determined each time a link is utilized.
26. A non-transitory computer-readable information storage media having stored thereon instruction, that when executed, perform a method comprising: 
determining a maximum allowed transmission power level or a target transmission power level;
selecting a transmission power level; and
determining a number of total transmission power states for a transceiver based on the transmission power level.
27. The media of aspect 26, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
28. The media of aspect 26, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
29. The media of aspect 26, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
30. The media of aspect 26, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
31. The media of aspect 26, wherein the transceiver utilizes a transmission power state for transmission.
32. The media of aspect 31, wherein the transmission power state is determined each time a link is utilized.
33. The media of aspect 26, wherein performance gain is improved while maintaining robustness from pathloss measurement dynamic error.
34. The media of aspect 26, further comprising storing information about each of the transmission power states.
The exemplary embodiments are described in relation to finite power transmission states in a wireless transceiver. However, it should be appreciated, that in general, the systems and methods herein will work equally well for any type of communication system in any environment utilizing any one or more protocols including wired communications, wireless communications, powerline communications, coaxial cable communications, fiber optic communications and the like.
The exemplary systems and methods are described in relation to 802.11 transceivers and associated communication hardware, software and communication channels. However, to avoid unnecessarily obscuring the present disclosure, the following description omits well-known structures and devices that may be shown in block diagram form or otherwise summarized.
For purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present embodiments. It should be appreciated however that the techniques herein may be practiced in a variety of ways beyond the specific details set forth herein.
Furthermore, while the exemplary embodiments illustrated herein show the various components of the system collocated, it is to be appreciated that the various components of the system can be located at distant portions of a distributed network, such as a communications network and/or the Internet, or within a dedicated secure, unsecured and/or encrypted system. Thus, it should be appreciated that the components of the system can be combined into one or more devices, such as an access point or station, or collocated on a particular node/element (s) of a distributed network, such as a telecommunications network. As will be appreciated from the following description, and for reasons of computational efficiency, the components of the system can be arranged at any location within a distributed network without affecting the operation of the system. For example, the various components can be located in a transceiver, an access point, a station, a management device, or some combination thereof. Similarly, one or more functional portions of the system could be  distributed between a transceiver, such as an access point (s) or station (s) and an associated computing device.
Furthermore, it should be appreciated that the various links, including communications channel (s) 10, connecting the elements (which may not be shown) can be wired or wireless links, or any combination thereof, or any other known or later developed element (s) that is capable of supplying and/or communicating data and/or signals to and from the connected elements. The term module as used herein can refer to any known or later developed hardware, software, firmware, or combination thereof that is capable of performing the functionality associated with that element. The terms determine, calculate and compute, and variations thereof, as used herein are used interchangeably and include any type of methodology, process, mathematical operation or technique.
While the above-described flowcharts have been discussed in relation to a particular sequence of events, it should be appreciated that changes to this sequence can occur without materially effecting the operation of the embodiment (s) . Additionally, the exact sequence of events need not occur as set forth in the exemplary embodiments, but rather the steps can be performed by one or the other transceiver in the communication system provided both transceivers are aware of the technique being used for initialization. Additionally, the exemplary techniques illustrated herein are not limited to the specifically illustrated embodiments but can also be utilized with the other exemplary embodiments and each described feature is individually and separately claimable.
The above-described system can be implemented on a wireless telecommunications device (s) /system, such an 802.11 transceiver, or the like. Examples of wireless protocols that can be used with this technology include 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, WiFi, LTE, 4G, 
Figure PCTCN2014086781-appb-000019
WirelessHD, WiGig, WiGi, 3GPP, Wireless LAN, WiMAX, and the like.
The term transceiver as used herein can refer to any device that comprises hardware, software, circuitry, firmware, or any combination thereof and is capable of performing any of the methods, techniques and/or algorithms described herein.
Additionally, the systems, methods and protocols can be implemented on one or more of a special purpose computer, a programmed microprocessor or microcontroller and  peripheral integrated circuit element (s) , an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device such as PLD, PLA, FPGA, PAL, a modem, a transmitter/receiver, any comparable means, or the like. In general, any device capable of implementing a state machine that is in turn capable of implementing the methodology illustrated herein can be used to implement the various communication methods, protocols and techniques according to the disclosure provided herein.
Examples of the processors as described herein may include, but are not limited to, at least one of
Figure PCTCN2014086781-appb-000020
800 and 801, 
Figure PCTCN2014086781-appb-000021
610 and 615 with 4G LTE Integration and 64-bit computing, 
Figure PCTCN2014086781-appb-000022
A7 processor with 64-bit architecture, 
Figure PCTCN2014086781-appb-000023
M7 motion coprocessors, 
Figure PCTCN2014086781-appb-000024
series, the
Figure PCTCN2014086781-appb-000025
CoreTM family of processors, the
Figure PCTCN2014086781-appb-000026
family of processors, the
Figure PCTCN2014086781-appb-000027
AtomTM family of processors, the Intel
Figure PCTCN2014086781-appb-000028
family of processors, 
Figure PCTCN2014086781-appb-000029
i5-4670K and i7-4770K 22nm Haswell, 
Figure PCTCN2014086781-appb-000030
i5-3570K 22nm Ivy Bridge, the
Figure PCTCN2014086781-appb-000031
FXTM family of processors, 
Figure PCTCN2014086781-appb-000032
FX-4300, FX-6300, and FX-8350 32nm Vishera, 
Figure PCTCN2014086781-appb-000033
Kaveri processors, Texas
Figure PCTCN2014086781-appb-000034
Jacinto C6000TM automotive infotainment processors, Texas 
Figure PCTCN2014086781-appb-000035
OMAPTM automotive-grade mobile processors, 
Figure PCTCN2014086781-appb-000036
CortexTM -M processors, 
Figure PCTCN2014086781-appb-000037
Cortex-A and ARM926EJ-STM processors, 
Figure PCTCN2014086781-appb-000038
AirForce BCM4704/BCM4703 wireless networking processors, the AR7100 Wireless Network Processing Unit, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
Furthermore, the disclosed methods may be readily implemented in software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with the embodiments is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized. The communication systems, methods and protocols illustrated herein can be readily implemented in hardware and/or software using any known or later developed systems or structures, devices and/or  software by those of ordinary skill in the applicable art from the functional description provided herein and with a general basic knowledge of the computer and telecommunications arts.
Moreover, the disclosed methods may be readily implemented in software and/or firmware that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods can be implemented as program embedded on personal computer such as an applet, JAVA. RTM. or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated communication system or system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system, such as the hardware and software systems of a communications transceiver.
It is therefore apparent that there has been provided systems and methods for providing finite power transmission states in a wireless communications environment. While the embodiments have been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, it is intended to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this disclosure.

Claims (25)

  1. A system comprising:
    an interference mitigation module adapted to determine a maximum allowed transmission power level or a target transmission power level;
    a power control module adapted to select a transmission power level; and
    a power control state selection module adapted to determine a number of total transmission power states for a transceiver based on the transmission power level.
  2. The system of claim 1, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  3. The system of claim 1, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  4. The system of claim 1, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
  5. The system of claim 1, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
  6. The system of claim 1, wherein the transceiver utilizes a transmission power state for transmission.
  7. The system of claim 6, wherein the transmission power state is determined each time a link is utilized.
  8. The system of claim 1, wherein performance gain is improved while maintaining robustness from pathloss measurement dynamic error.
  9. The system of claim 1, further comprising one or more of: storage adapted to store information about each of the transmission power states, one or more antennas, and an interleaver/deinterleaver.
  10. A method comprising:
    determining a maximum allowed transmission power level or a target transmission power level;
    selecting a transmission power level; and
    determining a number of total transmission power states for a transceiver based on the transmission power level.
  11. The method of claim 10, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  12. The method of claim 10, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  13. The method of claim 10, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
  14. The method of claim 10, wherein the number of total transmission power states for the transceiver is based on approaching a target level.
  15. The method of claim 10, wherein the transceiver utilizes a transmission power state for transmission.
  16. The method of claim 15, wherein the transmission power state is determined each time a link is utilized.
  17. The method of claim 10, wherein performance gain is improved while maintaining robustness from pathloss measurement dynamic error.
  18. The method of claim 10, further comprising storing information about each of the transmission power states.
  19. A system comprising:
    means for determining a maximum allowed transmission power level or a target transmission power level;
    means for selecting a transmission power level; and
    means for determining a number of total transmission power states for a transceiver based on the transmission power level.
  20. The system of claim 10, wherein the target transmission power level is determined based on a Signal-to-Interference-plus-Noise Ratio (SINR) power control algorithm which is based on a target Signal-to-Interference-plus-Noise Ratio value, an estimated pathloss value and an estimated noise and interference power level.
  21. The system of claim 10, wherein the target transmission power level is determined based on a Signal-to-Noise Ratio (SNR) power control algorithm which is based on an estimated pathloss value, a target SNR value and a white noise power level.
  22. The system of claim 10, wherein the number of total transmission power states for the transceiver is based on a transmission power limitation where one state is selected that is a highest transmission power level within the transmission power level.
  23. The system of claim 10, wherein the number of total transmission power states for the transceiver is based on approaching a target level. 
  24. The system of claim 10, wherein the transceiver utilizes a transmission power state for transmission.
  25. The system of claim 15, wherein the transmission power state is determined each time a link is utilized. 
PCT/CN2014/086781 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system WO2016041166A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480081269.5A CN106664661A (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system
EP14901827.7A EP3195667A4 (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system
US15/501,385 US9924474B2 (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system
PCT/CN2014/086781 WO2016041166A1 (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system
TW104125650A TWI605725B (en) 2014-09-18 2015-08-06 The scheme of finite power transmission statuses for low cost wireless broadband communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086781 WO2016041166A1 (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system

Publications (1)

Publication Number Publication Date
WO2016041166A1 true WO2016041166A1 (en) 2016-03-24

Family

ID=55532453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086781 WO2016041166A1 (en) 2014-09-18 2014-09-18 Scheme of finite power transmission statuses for low cost wireless broadband communication system

Country Status (5)

Country Link
US (1) US9924474B2 (en)
EP (1) EP3195667A4 (en)
CN (1) CN106664661A (en)
TW (1) TWI605725B (en)
WO (1) WO2016041166A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3094019B1 (en) * 2015-05-11 2018-03-07 Rohde & Schwarz GmbH & Co. KG Rf test device and method for testing a d2d-capable mobile radio terminal
PT3466159T (en) * 2016-05-31 2019-12-24 Teleste Oyj Method and system for dynamic management of multimedia content in vehicles
US10462752B2 (en) * 2017-12-01 2019-10-29 At&T Intellectual Property I, L.P. Transmitting content using guard band frequencies at reduced power
CN108959934B (en) * 2018-06-11 2023-08-22 平安科技(深圳)有限公司 Security risk assessment method, security risk assessment device, computer equipment and storage medium
US11133698B2 (en) 2019-09-01 2021-09-28 Wen Cai Wireless charging systems and methods for controlling the same
CN111818495B (en) * 2020-06-23 2023-05-23 敖冬兵 Control method, system, device and medium of wireless communication terminal
CN115209440A (en) * 2021-04-09 2022-10-18 华为技术有限公司 Network topology identification method and device and wireless communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197252A1 (en) * 2006-02-21 2007-08-23 Fujitsu Limited Power control apparatus for wireless telecommunication system
CN102404837A (en) * 2011-12-07 2012-04-04 华为技术有限公司 Method, device and system for controlling transmitting power of equipment
US20130010704A1 (en) * 2011-07-06 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Controlling uplink and downlink transmission power during asynchronous switching of control states by user equipment
CN103052148A (en) * 2011-10-13 2013-04-17 联发科技股份有限公司 communications apparatus and control method of multiple levels of transmission power
CN103379608A (en) * 2013-04-07 2013-10-30 东南大学 Method for configuring multilevel transmitting power in wireless sensor network
CN103874179A (en) * 2012-12-11 2014-06-18 中国电信股份有限公司 Household gateway and WLAN transmitting power adjusting method thereof

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492482B1 (en) * 1990-12-28 1996-10-23 Mitsubishi Denki Kabushiki Kaisha Non contact type IC-card
US6118767A (en) * 1997-11-19 2000-09-12 Metawave Communications Corporation Interference control for CDMA networks using a plurality of narrow antenna beams and an estimation of the number of users/remote signals present
US6765531B2 (en) * 1999-01-08 2004-07-20 Trueposition, Inc. System and method for interference cancellation in a location calculation, for use in a wireless location system
US6414955B1 (en) * 1999-03-23 2002-07-02 Innovative Technology Licensing, Llc Distributed topology learning method and apparatus for wireless networks
US6631124B1 (en) * 1999-11-03 2003-10-07 Ericsson Inc. Methods and apparatus for allocating resources in hybrid TDMA communication systems
JP4385489B2 (en) * 2000-03-03 2009-12-16 ソニー株式会社 COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND COMMUNICATION DEVICE
US6643322B1 (en) * 2000-09-20 2003-11-04 Aperto Networks, Inc. Dynamic wireless link adaptation
JP2004511849A (en) * 2000-09-22 2004-04-15 バダルネー、ジアド Means for a handheld functional device
US7110349B2 (en) * 2001-03-06 2006-09-19 Brn Phoenix, Inc. Adaptive communications methods for multiple user packet radio wireless networks
US9632503B2 (en) * 2001-04-18 2017-04-25 Space Data Corporation Systems and applications of lighter-than-air (LTA) platforms
ATE385359T1 (en) * 2001-06-07 2008-02-15 Aware Inc METHOD AND SYSTEM FOR VARIABLE LENGTH STATE INITIALIZATION FOR DSL SYSTEMS
US7570922B2 (en) * 2002-08-08 2009-08-04 Rf Check, Inc. System and method for automated radio frequency safety and regulatory compliance at wireless transmission sites
US7330732B2 (en) * 2003-08-07 2008-02-12 Qualcomm Incorporated Scheduling neighbor cell measurements for multiple wireless communication systems
KR100460299B1 (en) * 2003-12-01 2004-12-09 하나 마이크론(주) Portable terminal having single extended screen for dual display panels, method of controlling screen display thereof and control device thereof
US7310380B1 (en) * 2004-05-28 2007-12-18 Rockwell Collins, Inc. Generic transmission parameter configuration
CN1744453B (en) * 2004-08-31 2010-05-26 诺基亚西门子通信系统技术(北京)有限公司 Adaptive uplink closed ring power control method in CDMA system
US7577411B2 (en) * 2005-02-17 2009-08-18 Kyocera Corporation Mobile station access and idle state antenna tuning systems and methods
JP4701018B2 (en) * 2005-06-22 2011-06-15 キヤノン株式会社 Communication apparatus and communication method
US20070118671A1 (en) * 2005-11-18 2007-05-24 Ganti Sastry K Lightweight handheld electronic notebook for reading
US7966033B2 (en) * 2006-01-05 2011-06-21 Qualcomm Incorporated Serving sector directed power control
EP1841092B1 (en) * 2006-03-28 2012-01-25 Sony Deutschland Gmbh Wireless communication method and system
US7508657B1 (en) * 2006-05-10 2009-03-24 Smith Steven R Privacy-enhancing, glare-reducing display screen shield
US8156353B2 (en) * 2007-09-17 2012-04-10 Intel Corporation Techniques for communications power management based on system states
KR101439549B1 (en) * 2008-04-07 2014-11-03 엘지전자 주식회사 Apparatus for providing of search picture and the method thereof
US8521206B2 (en) * 2008-04-22 2013-08-27 Qualcomm Incorporated Interference management with reduce interference requests and interference indicators
US20100011291A1 (en) * 2008-07-10 2010-01-14 Nokia Corporation User interface, device and method for a physically flexible device
US8866840B2 (en) * 2008-09-08 2014-10-21 Qualcomm Incorporated Sending a parameter based on screen size or screen resolution of a multi-panel electronic device to a server
US8933874B2 (en) * 2008-09-08 2015-01-13 Patrik N. Lundqvist Multi-panel electronic device
KR20100038008A (en) * 2008-10-02 2010-04-12 삼성전자주식회사 Three-dimensional multi foldable device
CN101729102A (en) * 2008-10-20 2010-06-09 华为技术有限公司 Communication equipment, communication system and method for controlling uplink transmission power
KR101517082B1 (en) * 2008-11-10 2015-04-30 엘지전자 주식회사 Mobile terminal using flexible display and operation method thereof
KR20100088518A (en) * 2009-01-30 2010-08-09 엘지전자 주식회사 Method for transmitting reference signals in downlink multiple input multiple output
AU2010262768B2 (en) * 2009-06-19 2016-02-11 Cohda Wireless Pty Ltd Environment estimation in a wireless communication system
EP2282591B1 (en) * 2009-07-01 2012-09-12 Ntt Docomo, Inc. Mobile and base station transceiver apparatus for communicating
WO2011004989A2 (en) * 2009-07-08 2011-01-13 한국전자통신연구원 Uplink receiving method for a base station and uplink transmitting method for a terminal using a shared wireless resource
US20110053628A1 (en) * 2009-08-27 2011-03-03 Electronics And Telecommunications Research Institute Service providing system and method in satellite communication system
AU2010324545A1 (en) * 2009-11-27 2012-07-19 Cohda Wireless Pty Ltd Extracting parameters from a communications channel
KR101294021B1 (en) * 2009-12-17 2013-08-09 한국전자통신연구원 Apparatus and method for receiving data in wireless communication system
US8442142B2 (en) * 2010-02-19 2013-05-14 Broadcom Corporation Method and system for beamforming signal transmission under a per-antenna power constraint
GB2478591A (en) * 2010-03-12 2011-09-14 Gideon Cube-Sherman Articulated sub-units
KR20120007345A (en) * 2010-07-14 2012-01-20 아주대학교산학협력단 Apparatus and method for transmitting signal in a communication system
US8588840B2 (en) * 2010-09-30 2013-11-19 Futurewei Technologies, Inc. System and method for distributed power control in a communications system
US8811918B2 (en) * 2010-11-26 2014-08-19 Broadcom Corporation Distribution of transmit signal to multiple transmit antennas for reduction of measured specific absorption rate
US9295006B2 (en) * 2011-02-09 2016-03-22 Qualcomm Incorporated Real-time calibration of an air to ground communication system
US9319172B2 (en) * 2011-10-14 2016-04-19 Qualcomm Incorporated Interference mitigation techniques for air to ground systems
KR20130059233A (en) * 2011-11-28 2013-06-05 삼성전자주식회사 Device and method for displaying application in wireless terminal
CN103369582B (en) * 2012-04-06 2016-08-03 中兴通讯股份有限公司 The Physical Downlink Control Channel qualitative forecasting method of long evolving system and device
US9780956B2 (en) * 2012-05-03 2017-10-03 Kenneth Kerpez Apparatus, systems and methods for DSM energy management
WO2014196906A1 (en) * 2013-06-03 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for d2d communication
CN105917730B (en) 2014-02-25 2019-09-03 英特尔Ip公司 Access point auxiliary space is used again
KR102204784B1 (en) * 2014-03-10 2021-01-19 엘지전자 주식회사 Mobile terminal and method for controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197252A1 (en) * 2006-02-21 2007-08-23 Fujitsu Limited Power control apparatus for wireless telecommunication system
US20130010704A1 (en) * 2011-07-06 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Controlling uplink and downlink transmission power during asynchronous switching of control states by user equipment
CN103052148A (en) * 2011-10-13 2013-04-17 联发科技股份有限公司 communications apparatus and control method of multiple levels of transmission power
CN102404837A (en) * 2011-12-07 2012-04-04 华为技术有限公司 Method, device and system for controlling transmitting power of equipment
CN103874179A (en) * 2012-12-11 2014-06-18 中国电信股份有限公司 Household gateway and WLAN transmitting power adjusting method thereof
CN103379608A (en) * 2013-04-07 2013-10-30 东南大学 Method for configuring multilevel transmitting power in wireless sensor network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3195667A4 *

Also Published As

Publication number Publication date
EP3195667A1 (en) 2017-07-26
CN106664661A (en) 2017-05-10
EP3195667A4 (en) 2018-04-04
TW201613393A (en) 2016-04-01
US20170238265A1 (en) 2017-08-17
TWI605725B (en) 2017-11-11
US9924474B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
US9924474B2 (en) Scheme of finite power transmission statuses for low cost wireless broadband communication system
US10903888B2 (en) Configuration method and configuration device for reference signal and communication node
TWI618434B (en) Dynamic cca scheme with interface control for 802.11 hew standard and system
US20180084506A1 (en) Methods of multi-user transmit power control and mcs selection for full duplex ofdma 802.11
US20170170946A1 (en) Selective participation on full-duplex communications
US9686071B2 (en) Opportunistic full-duplex communications
US20150382338A1 (en) Method and apparatus for space division multiple access for wireless local area network system
US10432330B2 (en) Base station wireless channel sounding
US10638340B2 (en) Base station wireless channel sounding
US20180184409A1 (en) Methods of triggering simultaneous multi-user uplink and downlink ofdma transmissions for full- duplex communications
TWI625062B (en) Dynamic cca scheme with legacy device coexistance
US20210058880A1 (en) Base station wireless channel sounding
WO2017154739A1 (en) Wireless communication system and management device
JP2017103553A (en) Radio communication system, radio communication method, centralized control station, and radio base station
US20180035387A1 (en) Frame structure design for ofdma based power control in 802.11ax standards and system
Zeng et al. Throughput, energy efficiency and interference characterisation of 802.11 ac
US20180176921A1 (en) Report for inter-bss interference avoidance
US11343124B2 (en) Base station wireless channel sounding
US20180176954A1 (en) Clear channel assessment for simultaneous transmision and reception
US20180139761A1 (en) Method of coexistance for narrowband transmissions in 2.4/5 ghz bands
US20180184385A1 (en) IEEE 802.11ax POWER LIMIT NEGOTIATION
WO2017154558A1 (en) Base station
Mohammed Adaptive Power Control in Peer to Peer Networks
Bharadwaj et al. A simulation framework for radio resource management in WiFi networks
WO2023211363A1 (en) Communication apparatus and communication method for enhanced client discovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15501385

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014901827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901827

Country of ref document: EP