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ABSTRACT: Three-dimensional (3D) nanofabrication techniques are of paramount importance 

in nanoscience and nanotechnology as they are prerequisites to realize complex, compact, and 

functional 3D nanodevices. Though several 3D nanofabrication methods have been proposed and 

developed in recent years, it is still a formidable challenge to achieve a balance among resolution, 

accuracy, simplicity, and adaptability. Here we propose a 3D nanofabrication method based on 

electron beam lithography using ice resists (iEBL) and fabricate 3D nanostructures by stacking 
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layered structures and dose-modulated exposing, respectively. The whole process of 3D 

nanofabrication is realized in one vacuum system by skipping spin-coating and developing steps 

required for commonly used resists. This needs much less processing steps and is contamination-

free as compared to conventional methods. With in situ alignment and correction in the iEBL 

process, a pattern resolution of 20 nm and an alignment error below 100 nm can be steadily 

achieved. This 3D nanofabrication technique using ice thus shows great potential in fabrication of 

complicated 3D nanodevices. 

 

Three-dimensional (3D) nanofabrication towards tailoring functional materials with desired 

nanostructures is extremely important in nanoscience, nanotechnology and interdisciplinary fields, 

such as nanophotonics1-3, electronics4,5, bionics6,7, biomedical engineering8,9 and energy 

engineering10-12. Though several 3D nanofabrication methods have been proposed and developed 

in recent years, it is still a great challenge to achieve a balance among resolution, accuracy, 

simplicity, and adaptability. For example, three-dimensional printing (3DP), such as inkjet 

printing13, direct writing14, and dynamic-optical-projection stereolithography15, have advantages 

in custom manufacturing, but the resolution of these methods is usually over 1 μm16. High-

resolution 3DP methods, such as electro-hydrodynamic inkjet printing (e-jetP)17 and two-photon 

polymerization (TPP)18,19, can achieve the spatial resolution down to 50 nm20 and 40 nm21,22, 

respectively. Nevertheless, e-jetP is unstable during ejection and stacking process, while the 

material for TPP is required to be transparent and photopolymerizable23, which undoubtedly 

imposes crucial limitation in its applications. 
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Unlike 3DP methods, electron beam lithography (EBL), focused electron-beam-induced 

deposition (FEBID)24, and scanning probe lithography (SPL)25 have both high resolution and 

material flexibility. However, 3D nanofabrication by stacking layered structures using EBL, where 

each layer obtained through repeating a standard spin-coating – lithography – developing – 

deposition (or etching) – lift-off processes, takes relatively longer overall fabrication time, 

especially for complex 3D nanostructures. The overlay alignment is typically realized through 

alignment masks, and the overall procedures are tedious, expensive and difficult to master. 

Although the direct-write nature of FEBID enables high flexibility in the design of 3D 

nanostructures, the dissociation of precursors usually leaves unwanted carbon fraction in the 

deposit resulting in serious carbon contamination. Moreover, both FEBID and SPL are more time-

consuming than EBL and expensive to carry out in some cases.  

 

Constructing 3D functional polymer brushes is another promising strategy to realize 3D 

nanostructures, where polymer brushes are usually obtained through nanofabrication of surface 

initiators and subsequent polymerization. It has been shown that surface initiators can be patterned 

by EBL26 and SPL27. For instance, dip-pen nanodisplacement lithography (DNL) is a versatile 

scanning-probe-based approach for manipulating polymer brushes at the nanometer scale28, which 

has very high resolution and registration. Other modified lithography methods developed for 3D 

nanofabrication, such as nanoimprint29 and nanotransfer printing30, rely on a pre-generated 

template or stamp. Self-assembly methods, such as colloidal lithography31 and block copolymer 

lithography32, are simple and cost-effective, but the shape and size of products are restricted by the 

additives. 
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Electron beam lithography utilizing ice resists (iEBL), also called ice lithography, has emerged 

for nanofabrication with high resolution33, even on nonplanar and fragile substrates34,35. It has been 

shown that water ice acts as a positive resist while organic ice, such as anisole ice, is usually a 

negative resist36,37. In iEBL, the standard process is greatly simplified and streamlined by skipping 

spin-coating and developing steps38. Notably, ice resists covering substrates maintain the shape of 

substrates or previously fabricated nanostructures, which can be clearly distinguished by SEM 

imaging. Attributing to the very low sensitivity of water ice, iEBL enables in situ alignment and 

correction with the previous layer. This feature is significantly beneficial to the improvement of 

overlay alignment accuracy. Moreover, ice is easily removed without leaving any residue by 

simply raising the temperature during the lift-off step, providing great potential to fabricate 

suspended or hollow structures. These advantages make iEBL an excellent candidate for 3D 

nanofabrication. 

 

Here, we demonstrate experimentally two strategies for 3D nanofabrication using water ice. One 

is stacking layered structures, and the other one is dose-modulated exposing. All experiments are 

performed in a dedicated vacuum system (See Figure S1 in Supporting Information for details) 

consisting of a modified scanning electron microscope (SEM) and a metal deposition chamber. An 

outline of the typical iEBL process is presented in Figure 1. The sample is cooled by a sample 

holder at 130 K (Figure 1a), then saturated water vapor is injected onto the sample to form an 

amorphous ice layer (Figure 1b). The ice thickness is controlled by adjusting the amount of injected 

water vapor. The ice is removed during e-beam exposure (Figure 1c), and a pattern with almost 

vertical side wall can be achieved, which makes it possible to in situ measure the thickness of 

water ice by tilting the sample in SEM (See Figure S2 in Supporting Information for details). After 
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metallization (Figure 1d), the sample is taken out from the system and immediately immersed into 

alcohol for lift-off (Figure 1e). It is known that solid water will experience a volume change when 

a phase change occurs. This is detrimental to iEBL since the volume change of ice mask may 

reshape the fabricated 3D nanostructures. Considering the whole process of iEBL, phase change 

probably occurs only when lift-off, due to the increase of sample temperature and ambient 

pressure. However, we have not noted any significant effect on fabricated samples induced by this 

issue (See Figure S3 in Supporting Information for details). 

 
Figure 1. Process of EBL using water ice resists. (a) Refrigeration: the stage is cooled to 130 K. 

(b) Deposition: water vapor is deposited onto the sample to form ice resist. (c) Exposure: the ice 

resist exposed by e-beam is eliminated. (d) Metallization: the metal film is deposited onto the 

sample. (e) Lift-off: the sample is immersed into alcohol to remove ice resists. 

 

3D nanostructures can be easily fabricated by iEBL through stacking layered structures. The 

process flow of a stepped pyramid is shown in Figure 2. The iEBL processes, including ice 

forming, e-beam patterning, and metal deposition, are repeated three times. At each time, the 

thicknesses of ice resist and Ag deposit are maintained 300 nm and 60 nm, respectively. In situ 

SEM images of the first ice layer on a silicon substrate before and after 20 keV e-beam patterning 

are shown in Figures 2a and 2b, respectively. Ag film is subsequently deposited (Figure 2c), and 

a Ag stepped pyramid surrounded by ice/Ag multilayers is achieved by repeating above mentioned 

processes illustrated in Figures 2d-2i. Due to the limited temperature of our cooling system, the 
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ice layer sublimated slightly and recrystallized on the sample during processing, resulting in 

uneven surfaces of the substrate and subsequent metal structures. This problem may be resolved 

using a sample stage with lower temperature33. Figures 2j-2l show SEM images and an atomic 

force microscope (AFM) line scan of the 3D nanostructure after lift-off. As mentioned before, it 

is an extremely tedious process for fabricating such 3D pyramidal nanostructure by standard EBL, 

where at least 19 processing steps and 8 load-unload operations (in and out of the vacuum system) 

of the sample are required. While for iEBL, only 10 processing steps are needed here (see the 

comparative Figure S4 in Supporting Information), and all in the same vacuum system except the 

final lift-off step. Overall, only single load-unload operation and one-off lift-off step are performed 

during iEBL, regardless of how many layers are fabricated. This technique effectively reduces 

possible contamination to the sample and time consumption caused by repetitive pumping and 

venting of the vacuum chamber. 
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Figure 2. 3D pyramidal nanostructure fabricated by iEBL and in situ cryogenic SEM imaging. (a), 

(d) and (g) In situ cryogenic SEM images of 300-nm-thick ice resists at different stages deposited 

onto the sample. (b), (e) and (h) In situ cryogenic SEM images of 3 μm × 3 μm, 2 μm × 2 μm and 

1 μm × 1 μm squares formed in the ice resists by a 20 keV, 150 pA electron beam. The e-beam 

patterning dose is 0.8 C/cm2. (c), (f) and (i) In situ cryogenic SEM images of 60-nm-thick Ag films 

deposited onto the sample. (j) and (l) Room-temperature SEM images of the fabricated 3D 

pyramidal nanostructure after final lift-off. Squares indicate full and partial areas of each Ag layer 
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in the 3D pyramidal nanostructure. (k) SEM image of the fabricated 3D multilayered nanostructure 

with the shape of eagle logo. Note that the SEM images in (c), (e), (f), (h), (j), (k) and (l) are false 

colored for enhancing visual illustration. (m) Central line scan of the 3D pyramidal nanostructure 

(l) by atom force microscope (AFM). The root-mean-square surface roughness is ~5 nm. (n) SEM 

image of premade checkerboard structures consisting of 1 μm × 1 μm squares. (o) Checkerboard 

structures covered by ice resist. (p) Patterned 3 × 3 square arrays overlap underneath checkerboard 

structures completely. (q) An additional exposed area within the red circle reveals the premade 

square structures under the ice. Dot-dash lines indicate the outline of premade square. All scale 

bars are 1 μm. 

 

As a lithography technique, an important parameter that needs to be discussed is the speed of 

iEBL. Like conventional EBL, it is a serial lithography process and therefore inherently slow. We 

have to recognize that iEBL will take much longer time than conventional EBL to expose the 

same-sized area, as the dose using water ice is roughly 3 orders of magnitude higher than the 

typical dose using popular PMMA resist. For iEBL, the production throughput using a beam 

current of 100 pA is 0.12 μm2/min. However, much more time will be wasted on loading and 

unloading steps during conventional EBL. Considering the process time for repetitive development 

and lift-off steps, we estimate iEBL is less time-consuming in this case. The solution for efficiently 

improving the throughput of iEBL is to using multiple electron beams simultaneously. Advances 

in multi-e-beam technology promise to produce high throughput with 600000 parallel e-beams39. 

 

Generally, alignment process is necessary for overlaying patterns on the previously fabricated 

layers in 3D nanofabrication. For standard EBL processing, alignment marks should be fabricated 
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together with the first layer structure and used as the reference to provide a universal coordinate 

among different layers. Unfortunately, alignment error is usually large (~µm)40, which seriously 

affects the fabrication accuracy of 3D nanostructures. In contrast, iEBL allows clear recognition 

of the shapes and locations of previously fabricated structures covered by ice resist, thus use them 

as alignment marks. In this way, we are able to reduce the alignment error to sub-100 nm (Figures 

2a-2i). Figure 2n-2q gives a better demonstration for the registration ability of iEBL. Figure 2n 

shows premade checkerboard structures consisting of 1 μm × 1 μm squares. After covered with 

ice resist (Figure 2o), this sample is exposed by e-beam to produce a 3 × 3 square array encircled 

by the premade squares (Figure 2p). The outline of our exposed square is perfectly matched with 

the premade square (Figure 2q). As a fair comparison, the alignment error is typically about 500 

nm using PMMA resist in our EBL system. 

 

Due to the particular interaction between electron beam and water ice, it is possible to remove 

only the top part of ice resist within the exposure area during iEBL, meanwhile, the bottom part 

survives. This paves the way for iEBL to fabricate another kind of 3D nanostructure by carefully 

designing the dose distribution in the layout. The basic idea of this fabrication strategy is shown 

in Figure 3a, where T-shape cross-section appears in the ice resist after a single exposure step. The 

thickness of resist after exposure is controlled by e-beam dose (Figure 3b), which is similar to the 

gray-scale lithography method41. For a 600-nm-thick ice resist exposed by a 20 keV e-beam, a 

dose of 0.4 C/cm2 can be used to remove around 40% ice within the exposure area, and 25% ice 

will survive if the dose of 0.6 C/cm2 is employed. The ice gets totally eliminated with dose over 

0.7 C/cm2. Here, the calculated contrast γ is 2.24 at 20 keV (for PMMA, γ = 5-10), indicating water 

ice is a low contrast resist. Figure 3b also shows the contrast curve at 5 keV and its slope becomes 
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much sharper. A 3D mushroom-shaped Ag nanostructure is realized after metal deposition and 

lift-off (Figure 3c), where a top-layer disk with 3-μm diameter is supported on a 2 μm bottom-

layer pillar with 170 nm height. In the same way, a bridge-shaped Ag nanostructure with a height 

of 250 nm, a span of 1.8 µm and a width of 300 nm, is fabricated (Figure 3d). This iEBL fabrication 

strategy is self-aligned instead of overlay alignment by standard EBL, and much easier than that 

of using two or more kinds of polymer resists to transfer patterns and protect the substrate. 

Furthermore, this strategy can be conveniently combined with the stacking layer strategy  to 

achieve complex 3D nanodevices, such as optical resonator42 and optical modulator43. 

 

Figure 3. 3D mushroom-shaped and bridge-shaped Ag nanostructures fabricated by iEBL. (a) 

Typical dose distribution in the designed exposure layout and T-shape cross-section in ice resist 

after exposure. (b) Contrast curves with error bars in 600-nm-thick ice resist at 5 keV and 20 keV. 
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(c) False colored SEM images of 3D mushroom-shaped Ag nanostructure. (d) False colored SEM 

images of bridge-shaped Ag nanostructure. All scale bars are 1 μm. 

Finally, we show the potential of iEBL on the fabrication of high-aspect-ratio nanostructures, 

dense lines, and metallic nanoparticles on a single nanowire. The minimum linewidth of 20 nm 

has been achieved for ice resists with different thickness. It is clearly observed that 20-nm-wide 

line patterns penetrate through a 300-nm-thick ice resist layer in Figure 4b (i.e., an aspect ratio of 

15). Excluding the influence of the vibration in our system, the minimum linewidth has the 

potential to be reduced to sub-10 nm33. We also expose dense line arrays to demonstrate the high-

resolution capability of iEBL. Dense lines with a period of 90 nm are exposed over 5 μm × 5 μm 

area in 340-nm-thick ice (Figure 4c). The dose is 0.75 μC/cm at 10 keV. Due to low contrast of 

water ice, the exposed pattern will become deformed when further shrinking the distance between 

adjacent lines. This ice mask of high aspect ratio could be further processed through integrating a 

cryogenic etching instrument with our system. In order to explore more possibilities of 3D 

nanofabrication using iEBL, metallic nanoparticle arrays on a single Ag nanowire with a diameter 

of 160 nm are demonstrated in Figure 4d. This structure could be hardly obtained by conventional 

EBL, as the nanowire might move away and be totally lost under PMMA resist during spin-

coating. Here, it is very conspicuous that nanoholes after e-beam exposure and metallic particles 

after metallization are neatly arranged onto the nanowire, which not only evidence the powerful 

registration ability of iEBL again, but also provide a new way to realize nanowire photonic devices. 
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Figure 4. Potential high-aspect-ratio nanostructures, dense lines, and metallic nanoparticles on a 

single nanowire fabricated by iEBL. (a) Top-view and (b) cross-sectional SEM images (60-degree 

tilt) of 20-nm-wide line patterns formed in ice resists with thickness of 100 nm and 300 nm, 

respectively. The e-beam patterning dose is 0.96 μC/cm at 20 keV. (c) Top and tilted views (inset) 

of dense lines with period of 90 nm exposed in 340-nm-thick ice. The dose is 0.75 μC/cm at 10 

keV. (d) Top (green frame) and tilted views (blue frame) of metallic nanoparticle arrays on a single 

Ag nanowire with diameter of 160 nm. The SEM image with red frame shows the nanowire after 

e-beam exposure but before metallization. All scale bars are 300 nm. 

 

In summary, we have developed a 3D nanofabrication method using water ice. As a modified 

technique based on EBL, iEBL can hardly fabricate arbitrary structures, but it works certainly 

better than conventional EBL in position registration, especially for the structures need overlayer 

exposure. Here, two types of 3D nanostructures are realized to demonstrate features of this 
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approach. One is the stepped pyramid nanostructure fabricated by stacking layers. Due to the low 

sensitivity of water ice, it spends more time on e-beam exposure than using PMMA, meanwhile, 

this low sensitivity enables in situ alignment with previous layers or examination of exposed 

patterns, which is impossible for both organic ice and conventional EBL resists since SEM imaging 

will seriously expose them. The other one is mushroom-shaped nanostructure (as well as bridge-

shaped nanostructure) realized by dose-modulated exposure. It shows water ice is suitable for 

grayscale lithography as it has low contrast, but not good for patterning very dense structures. 

Overall, the iEBL technique needs much fewer processing steps and is almost contamination-free 

compared to conventional EBL techniques for 3D nanofabrication. It shows great potential in the 

fabrication of complicated 3D nanodevices for almost all applications, and the only boundary left 

is our imagination. 
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