UCRIVERSITY OF CALIFORNIA

UCR Avocado Rootstock Program Update: Towards Developing Disease and Salinity Resistant Rootstocks

Patricia Manosalva, Peggy Mauk, and Mary Lu Arpaia

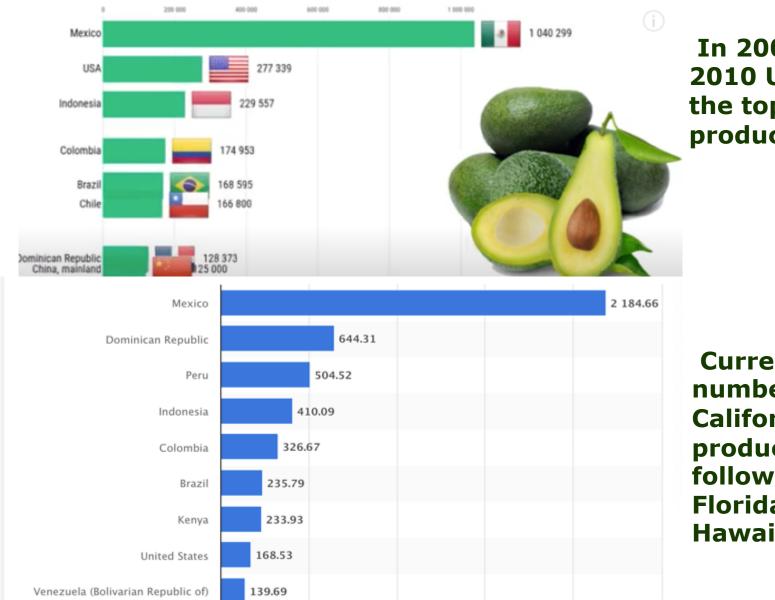
University of California Riverside

June 10th, 2020

Patricia.manosalva@ucr.edu

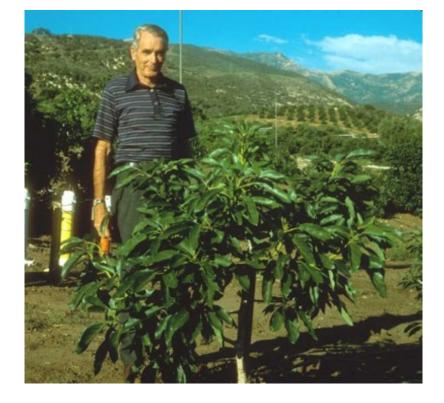
Natasha Jackson, PhD Student (2021)

CALIFORNA


Dr. Rodger Belisle (2018)

Brandon (former SRA)

Dr. Abeysekara, former (2020) Aidan Shands PhD Student (2022)


> Dr. Guangyuan Xu Former Postdoc (2019)

The market share for USA-produced avocado has decrease!!!

In 2006 and 2010 USA was the top 2 global producer.

Currently, USA is number 8. California produces 90% followed by Florida, and Hawaii.

UCR Rootstock Breeding Program

George Zentmyer UCR 1943 - 1983

Mike Coffey John Menge Greg Douhan

Dr. Patricia Manosalva (2015)

Rootstock influences yield, tree size, nutrient uptake and alternate bearing Mickelbart et al, 2007

Martin Grande (G755 seedlings) *P. schiedeana* seedligs (1970s-1980s).

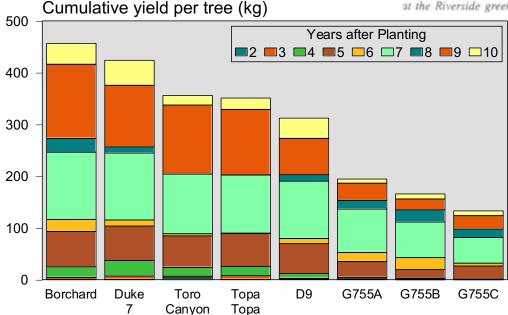


Fig. 2. George Zentmyer and Fred Guillemet observing the Martin Grande rootstock at the Riverside greenhouse (1978). Photo by Schieber, 1978.

Mary Lu Arpaia

The evolution of clonal rootstocks

Thomas Toro Canyon

(Past) Duke 7

> G755 (martin grande) G6 Duke 9

(Present) Most available at **Brokaw** Dusa (SA) Uzi (UCR) Zentmyer (UCR) Steddom (UCR) Tami (VC801), Miriam (VC218), and Ben-Ya' Acov1(Israel)

Califonia and UCR clonal rootstocks

Rootstock	Race	Year	Maternal Parent	Origen	Phenotype
Duke	М	1912s	Unknown	UCR, Zentmyer	Good Phytophthora Root Rot (PRR) resistance (moderate resistance, MR) caused by <i>Phytophthora cinnamomi</i> in CA, cold and wind tolerance, vigorous, productive, large trees.
Duke 7	М	1970s	Duke	UCR, Zentmyer	Good PRR resistance (comparable with Dusa, CA standard), cold and wind tolerance, vigorous, Hass:duke7 is productive, large trees, susceptible to waterlogging. Available at CA, South Africa, Israel, Spain, and Chile.
Duke 9	М	1990s	Duke (gamma irradiation)	UCR, Zentmyer	Good PRR resistance (comparable with Dusa, CA standard), vigorous, poor yield (Hass:Duke 9) in CA but similar to Hass:Duke 7 in South Africa, large trees.
Barr Duke	М	1990s	Duke 6	UCR, Zentmyer	Moderate PRR resistance, susceptible to salinity.
Thomas	М	1980s	Fuerte	UCR, Mike Coffey/Guillemet	Highly resistant when selected back in the 1980s but currently is susceptible to the new PRR pathogen population in CA, highly susceptible to salinity. Susceptible to <i>P. citricola</i> .
Toro Canyon	M x G	1984	Topa Topa seedling	Royden Stauffer	Moderate PRR resistance (CA), tolerant to salinity, vigorous, currently used in CA, good productivity under PRR and high salinity conditions.
Zentmyer	М	2011	Thomas	UCR, Menge et al	Good PRR resistance in some cases better than Dusa, vigorous, highly sensitive to salinity, good yield under PRR conditions but poor yield under no PRR conditions, <i>good tree for replanting situation under high PRR incidence but no high salinity</i> .
Uzi	М	2011	G6	UCR, Menge et al	Good PRR resistance in some cases better than Dusa, extremely vigorous and fast-growing rootstock that is capable of supporting a 'Hass' tree growing to 15 ft. in 2 years. It's yields are generally high and consistent. 'Uzi' leaves exhibit burn due to salt damage, but this does not seem to affect the growth or yield of the 'Hass' variety.
Steddom	M x G	2011	Toro Canyon	UCR, Menge et al	Good PRR resistance in some cases better than Dusa, it is a slow growing rootstock having a heavy yield, has a high yield/canopy volume ratio. 'Steddom' has a small degree of salt tolerance, excellent rootstock with small stature and low vigor, making it desirable for high density or hedge-row avocado plantings.

Table 1. Field distribution of the rootstocks being tested for root rot resistance. PP numbers indicate rootstocks developed from this project. Dates indicate year of planting.

Southern CA													Northern CA														
Rootstocks	1 (2002)	2 1(2003)	3 2(2005)	4 (2005)	5 (2006)	6 (2005)	7 (2000)	8 (2003)	9 (2002)	10 (2002)	11 (2004)	12 (2003)	Rootstocks	13 (2004)	14 (2004)	15 (2004)	16 (2005)	17 (2003)	18 (2003)	19 (2003)	20 (2006)	21 (2003)	22 (2001)	23 (2006)	24 (2002)	25 (2005)	26 (2005)
Thomas	Х	Х				Х	Х	Х	Х	Х	Х		Thomas		Х	Х		Х	Х	Х	Х	Х	Х		Х		
Merensky II (Dusa)			Х	Х	Х		Х						Merensky II (Dusa)							Х	Х		Х	х		Х	Х
Merensky I (Latas)		Х					Х						Merensky I (Latas)				Х	Х									
Duke 7							Х					Х	Duke 7	X			х										
Parida	Х											Х	Parida														
Topara													Topara											Х			
Toto Canyon		Х						Х					Toro Canyon														
VC44		Х										х	VC44														
VC207		Х		Х							X	X	VC207							Х							
VC218	X		X									\mathbf{X}	VC218														X
VC225		X	_	X						Х			VC225														
VC241		X		X			Χ						VC241							X							
VC801	х		х	Х		X				х		\mathbf{X}	VC801														
VC256						Х				Х			VC256														
Zentmyer PP4	Х						Х		Х				Zentmyer PP4		Х		Х	Х	Х	Х		Х	Х	Х	Х		
Berg PP5			Х	Х								х	Berg PP5														
PP14 Uzi		Х		Х			Х	Х		Х	Х		PP14 Uzi					Х	Х	Х	Х	Х		Х			Х

Douhan et al., 2015

Table 3. Summary table of avocado rootstocks tested during this project.

	Rootstock	Years Tested	Locations Tested	Salt Tolerance	PRR Tolerance	Status	Vigor
	VC207	. 8	10	HT	T	Testing	Strong
Miriam (WI x M)	VC218	5	3	HT	т	Testing	Average
	VC225	7	4	Т	MT	Testing	Average
	VC241	10	6	т	т	Testing	Good
	VC256	12	8	т	т	Testing	Good
	VC44	3	2	HT	S	Testing	Weak
Tami (WI x M)	VC801	8	6	HT	Т	Testing	Strong
	Velvick	4	3	Т	S	Dropped	Weak
	W14	4	1	MT	S	Dropped	Weak
	Witney	8	12	т	MT	Dropped	Average
	Zentmyer	12	30	S	HT	Released	Strong
	Zutano	2	1	MT	S	Dropped	Weak

S = Sensitive, MT = mildly tolerant, T = tolerant, HT = highly tolerant, ND = not enough information to evaluate

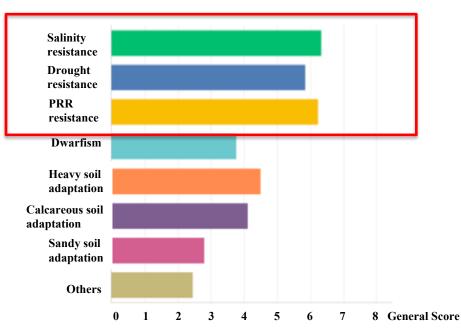
Douhan et al., 2011

"Avocado growers are facing major constrains that affect negatively their profitability and sustainability"

Rootstock attributes

Phytophthora root rot resistance (*Phytophthora cinnamomi*)

Salinity tolerance


Drought tolerance

Heat tolerance

- Alkalinity & high pH tolerance
- Waterlogging/flooding tolerance
- Resistance to other pathogens and pest

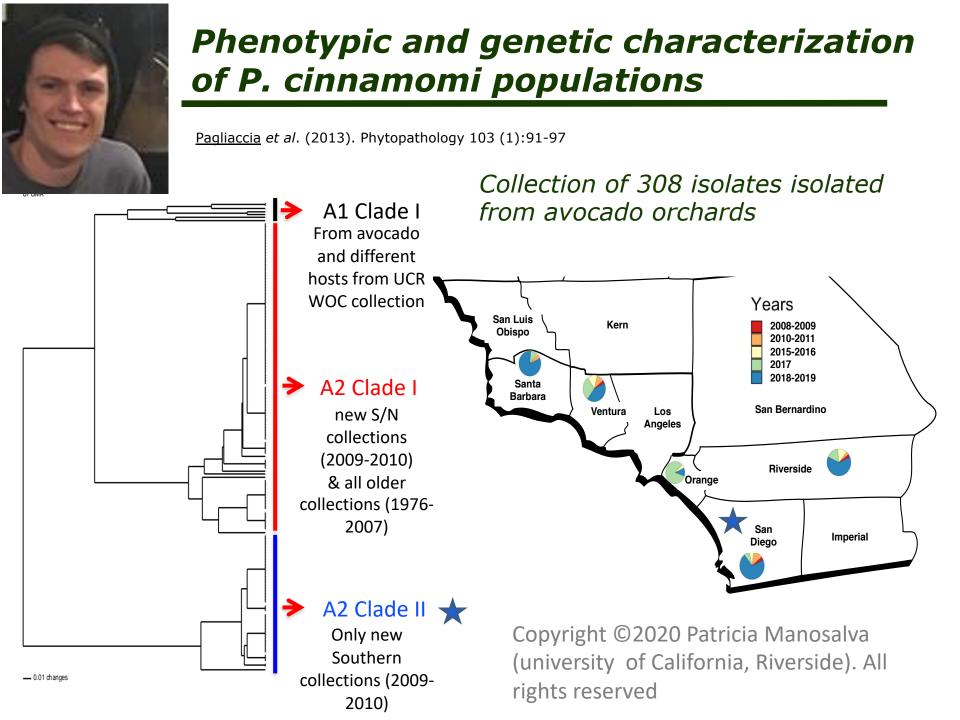
Cold tolerance

Dwarf phenotypes (For high density planting)

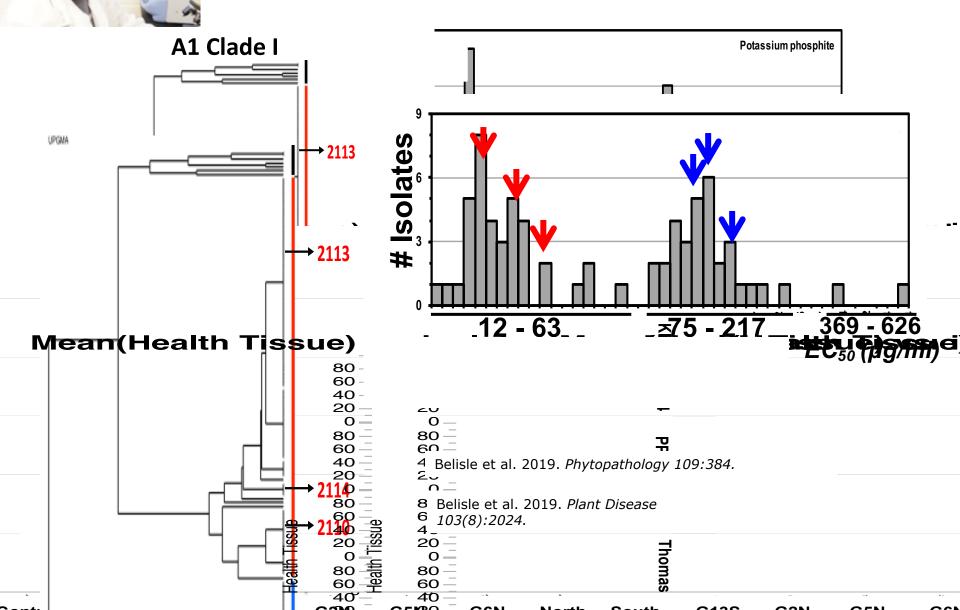
Surveymonkey report for our grower survey conducted in CA. Growers were asked to rate the top priorities for desirable rootstocks traits. From 70 surveyed grower from all regions in CA, resistance to salinity, PRR, and drought were the top 3 priorities in CA (*) with scores of 6.3, 6.2, and 5.8 respectively.

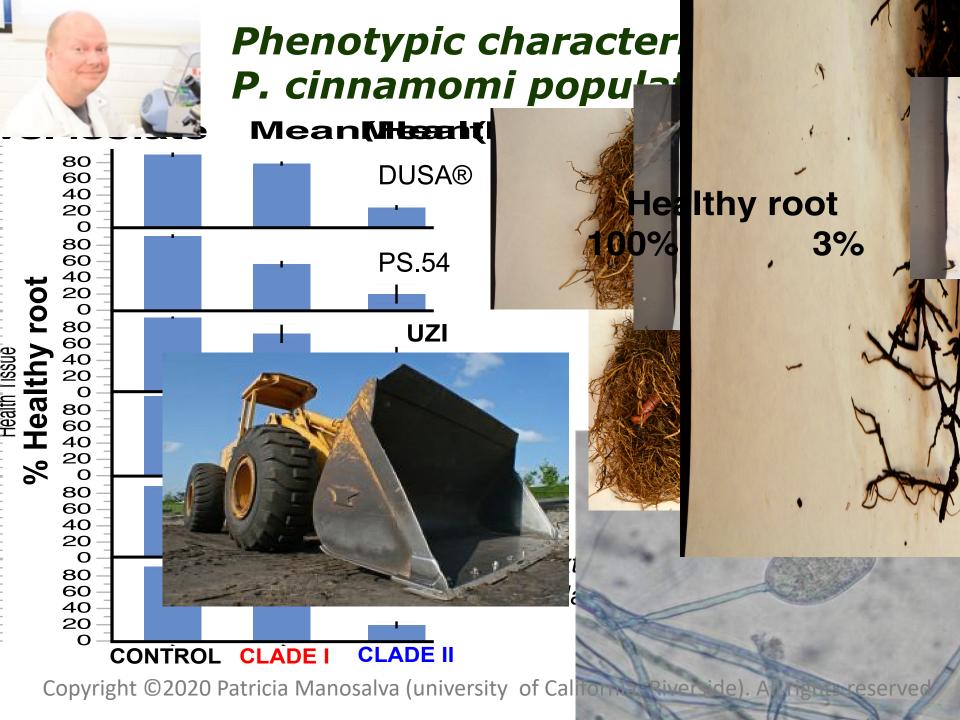
The UCR rootstock avocado breeding program aim to improve avocado production by reducing yield losses and production inputs

UCR Rootstock Genetic Diversity


- Genetic diversity is the foundation (Heart) of ANY genetic improvement program.
- Identify genetic sources for different traits that will aid growers face current and future challenges: diseases, pests, environmental, etc.

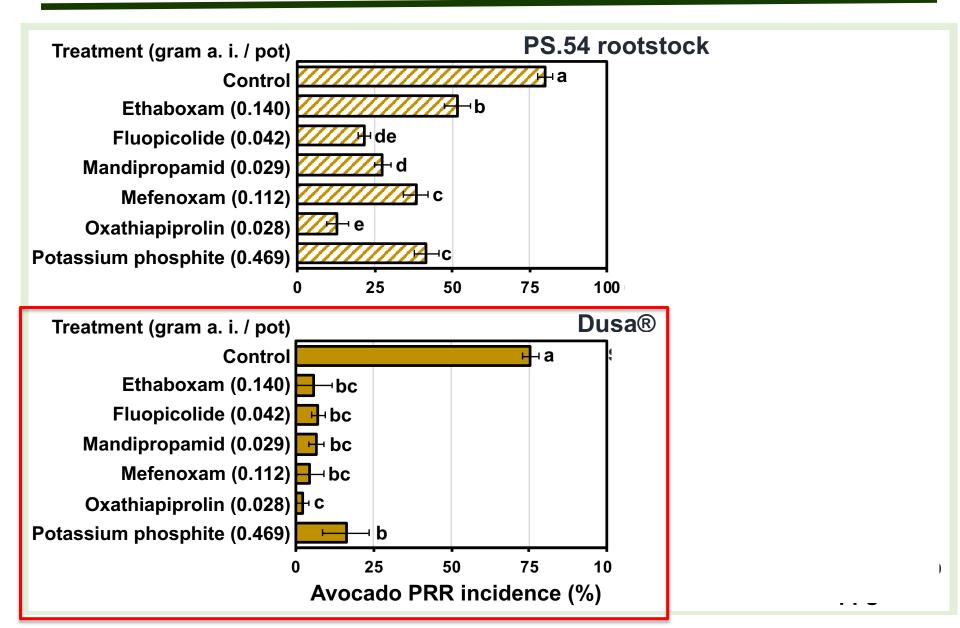
General traits


		Mexican	Guatemalan	West Indian
	Native Region	Mexican Highlands	Guatemalan Highlands	Tropical lowlands
	Climate Adaptation	Subtropical	Subtropical	Tropical
	Cold Tolerance	Most	Intermediate	Least
	Salinity	Least	Intermediate	Most
FR	UIT TRAITS			


	Mexican	Guatemalan	West Indian		
Size	Tiny-Medium	Small-Large	Medium-V. Large		
Peel Color	Usually purple	Black or green	Green/maroon		
Peel Thickness	Very thin	Thick	Medium		
Seed Coat	Thin	Usually thin	Thick		
Seed Tightness	Often loose	Tight	Often loose		
Flavor	"Anise", spicy	Often rich	Sweet, mild		
Oil Content	Highest	High	Low		

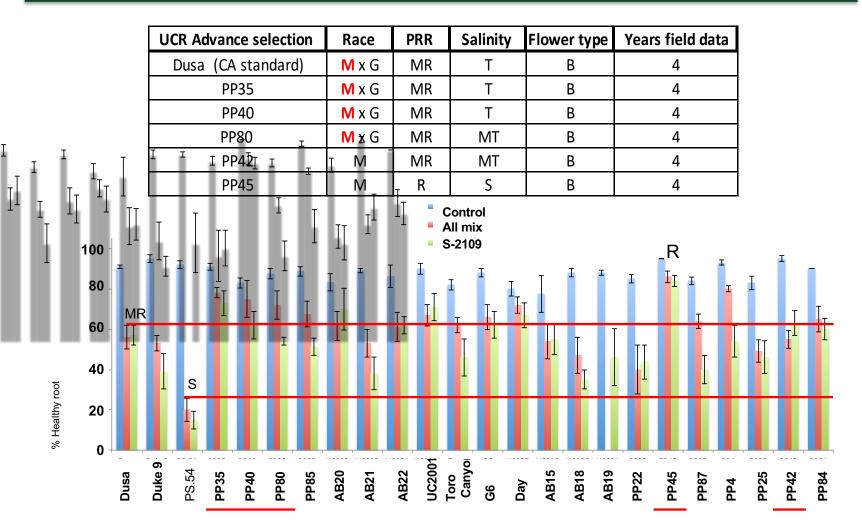
Mary Lu Arapia

Phenotypic characterization of P. cinnamomi populations in CA


Oxathiapiprolin (Orondis) exhibited the best activity against P. cinnamomi isolates

*Fungicide EC*₅₀ (μg/ml)

Belisle et al. 2019. Plant Disease 103(8):2024.


Fungicide	All is	olates (n=71)		iern iso (n=47) ^v		North (ern iso n=24) [×]	Southern vs. northern means	
	Range	Mean	Tukey	Range	Mean	Tukey	Range	Mean	Tukey	<i>P</i> -Value
Ethaboxam	0.017- 0.069	0.035	d	0.018- 0.066	0.034	d A	0.017- 0.069	0.037	d A	0.362
Fluopicolide	0.046- 0.330	0.133	b	0.046- 0.330	0.131	b A	0.069- 0.257	0.135	b A	0.637
Mandipropamid	0.003- 0.011	0.005	е	0.003- 0.011	0.005	еA	0.003- 0.011	0.006	еA	0.217
Oxathiapiprolin	0.0002- 0.0007	0.0004	f	0.0002- 0.0006	0.0003	fA	0.0002- 0.0007	0.0004	fA	0.053
Mefenoxam	0.023- 0.138	0.061	С	0.026- 0.138	0.061	сA	0.023- 0.100	0.062	сA	0.866
Potassium phosphite	12.9- 361.2	81.5	а	12.9- 316.2	98.9	аA	16.6- 266.2	47.3	a B	0.001

Fungicide efficacy using clonal rootstocks under greenhouse conditions Belisle et al. 2019. *Plant Disease 103(8):2024.*

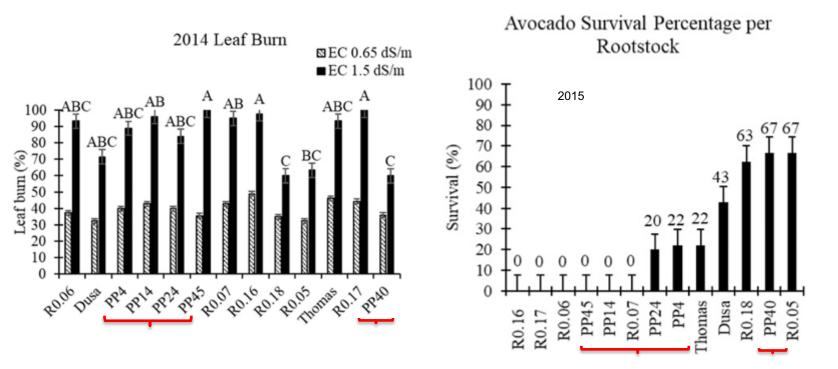
Copyright ©2020 Patricia Manosalva (university of California, Riverside). All rights reserved

Re-screen/screen new rootstock for resistance to the current *P. cinnamomi* population

Confirmation of resistance: PRR incidence, PPg/soil, pathogen biomass
using qPCR

AgOPs field salinity experiments (Dr. Peggy Mauk) "Evaluation of rootstocks for salinity tolerance"

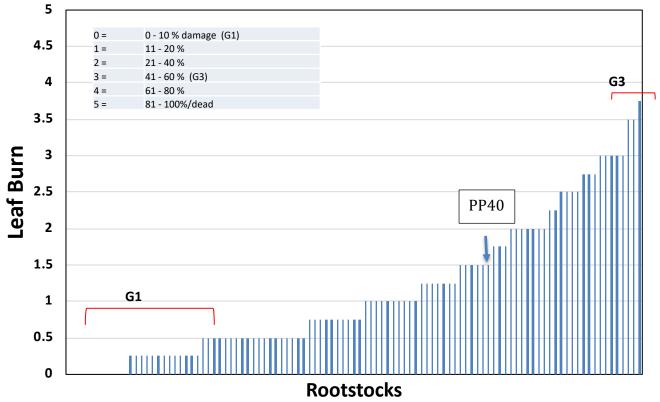
HORTSCIENCE 53(12):1737-1745. 2018. https://doi.org/10.21273/HORTSCI13198-18


Salt Tolerance and Growth of 13 Avocado Rootstocks Related Best to Chloride Uptake

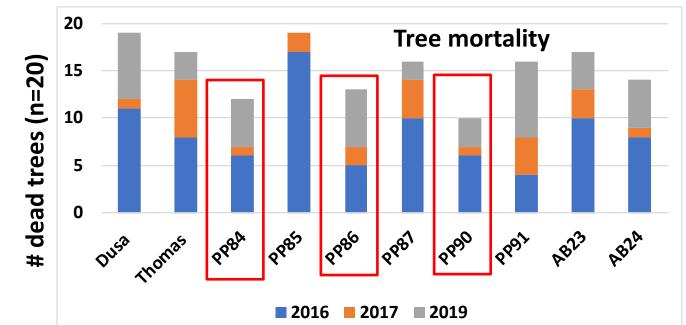
Nydia Celis¹ and Donald L. Suarez

U.S. Department of Agriculture–Agricultural Research Service, U.S. Salinity Laboratory, 450 W. Big Springs Road, Riverside, CA 92507

Laosheng Wu, Rui Li, Mary Lu Arpaia, and Peggy Mauk


University of California, Riverside, 900 University Avenue, Riverside, CA 92507

Field Evaluation for selection of heat resistant rootstock


G1= UC2001 and seedlings including PP80 and PP35, Duke 9 and seedlings, VC207 G3= Spencer, Spencer seedlings, and VC804.

PP40 intermediate phenotype

Leaf burn rating (August 2018) in Field 7 SCREC. Ratings were done using a score system of 0 = no heat or salinity damage to 5 = Dead. Rating occurred after severe heat spell. Rootstocks were grafted on Dusa.

Field Evaluation of rootstocks

Limoneria 3, Santa Paula (2019)

Field Evaluation of UCR rootstocks (small trials)

Field location (# plots)	County	Conditions
Santa Paula (5)	Ventura	<i>Phytophthora cinnamomi</i> , high pH (7.9-8.7), alkalinity (as CaCO3), high salinity and chloride.
Temecula (3)	Riverside	<i>P. cinnamomi</i> , high pH and alkalinity (as CaCO3), high salinity and chloride.
Ramona (2)	San Diego	High pH, alkalinity (as CaCO3), high salinityand chloride.
Fallbrook (1)	San Diego	P. cinnamomi, high salinity and chloride. 10' x 10' planting, organic

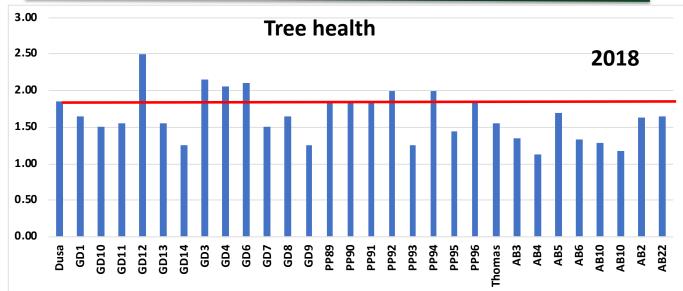
- Canopy measurements.
- Overall tree health (0 best 5).
- Leaf necrosis: tip burn and heat burn (0 best -5).
- Tree mortality.
- Individual tree yield data (weight and fruit number).

rootstock breeding program.

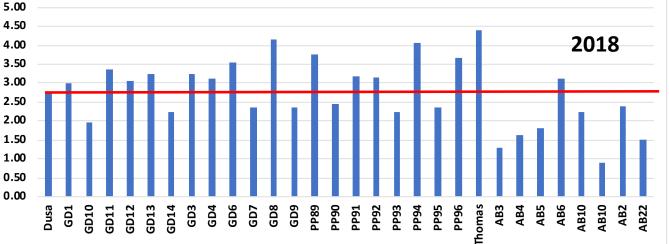
Score	Overall Health	Salinity/Heat
0	Perfect looking tree	0 - 5 % damage, perfect/healthy
0.5	Slightly off (less leaves/small leaves, lack of flush)	5 - 10 %
1	Yellow leaves and or small leaves	11 - 20 %
2	Exposed branches, wilting leaves, small yellow leaves	21 - 40 %
3	Branch dieback, very few leaves remaining, starting to die	41 - 60 %
4	Almost dead, won't last long	61 - 80 %
5	Dead	81 - 100 %

Fig. 5. Overall tree health and leaf necrosis scoring system developed and used by the UCR avocado

Overall tree health and leaf necrosis = 0 Overall tree health = 4 Leaf necrosis = 0 Overall tree health = 3.5 Salinity damage = 4


Overall tree health (0 best - 5). Leaf necrosis (salinity), heat damage (0 best - 5)

• No Pc detection

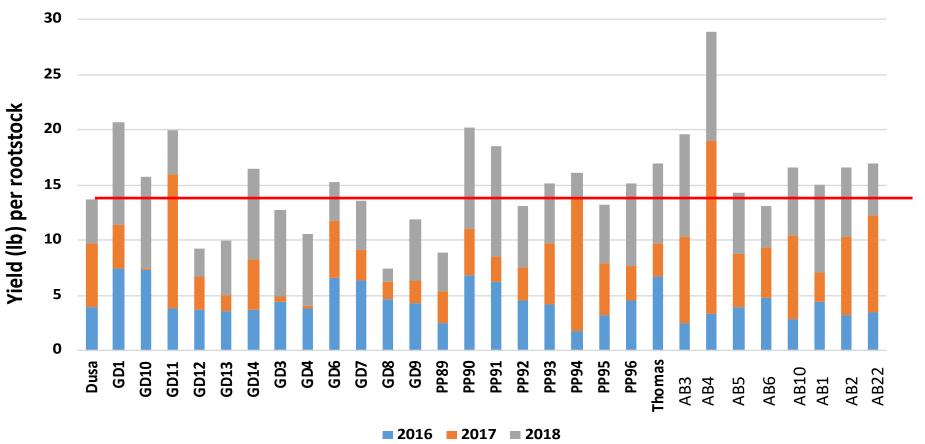
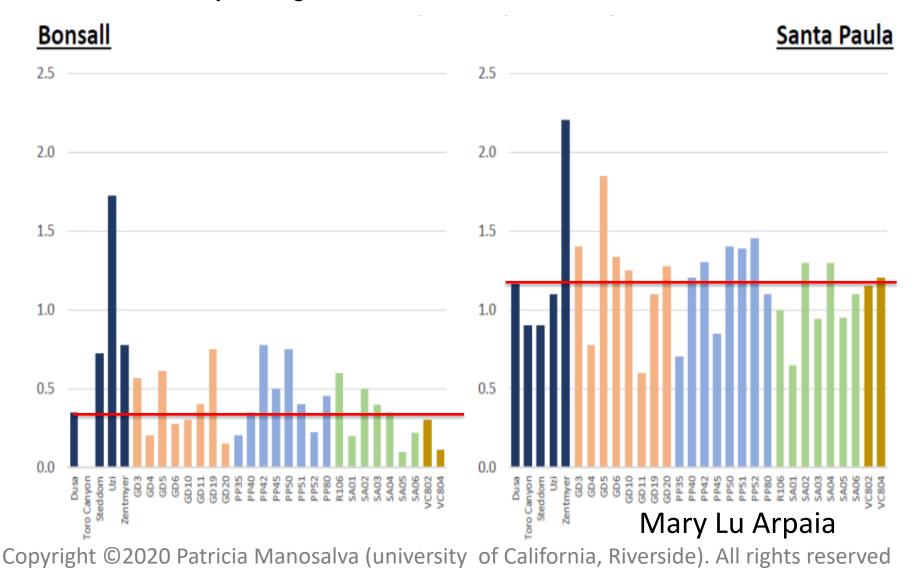

- High pH
- High CaCO₃
- E.C 1.74 dS/m

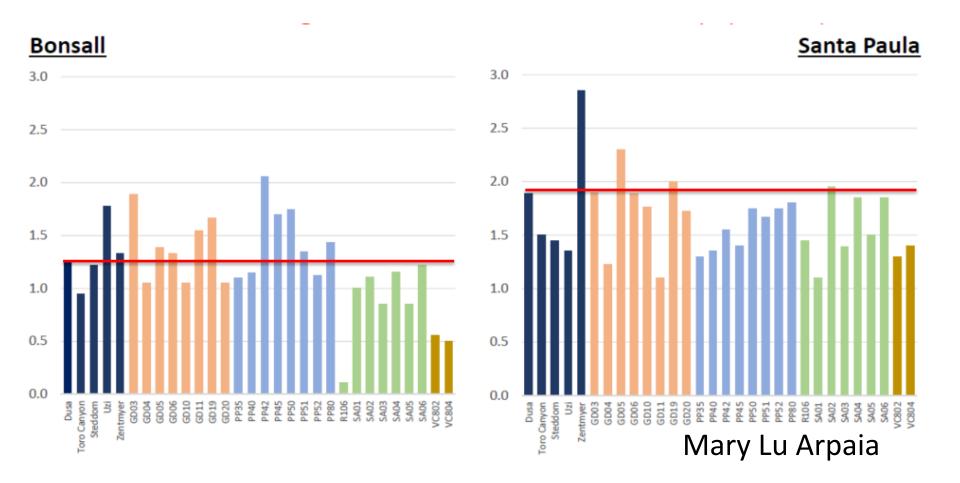
High Chloride
(275 mg/L)

New selections evaluated in Ramona (2014). Tom Royden and Kozy

Copyright ©2020 Patricia Manosalva (university of California, Riverside). All rights reserved

New selections evaluated in
RamonaTom Royden and Kozy


Fig. 68. Cumulative yield (Lb) per rootstock accession in Tom Royden #1 plot, Ramona.

Field Evaluation in Bonsall and Pine Tree_2017

Tree health ratings (0-5) for both sites in July 2018 following the severe heat event. A score of 0 = healthy and vigorous and 5 = dead

Heat/Salinity rating on a 0-5 scale for both sites in July 2018 following the severe heat event. A score of 0 = no apparent damage, 3 = moderate leaf damage and some shoot dieback, 5 = moderate to severe leaf damage throughout the tree with extensive shoot tip dieback.

First harvest at Bonsall (May 2019)

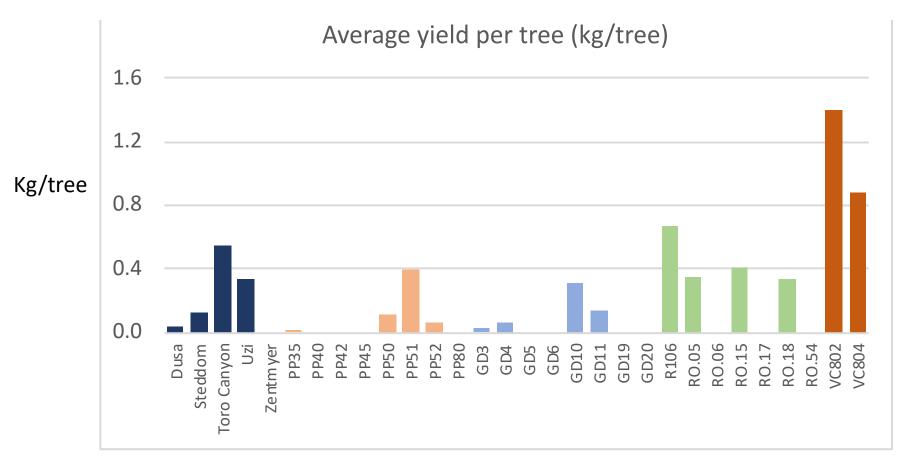
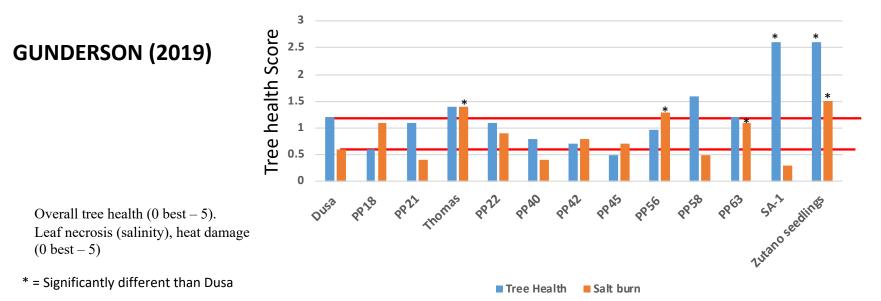


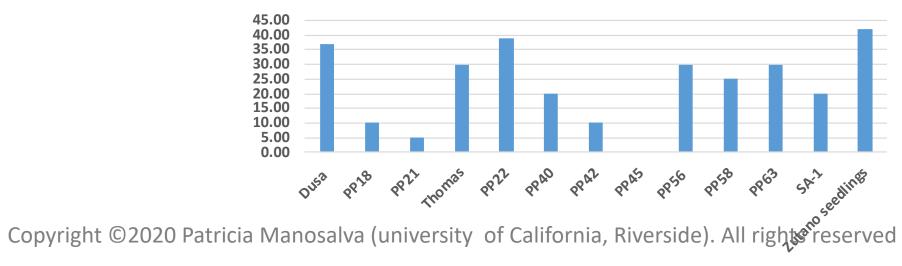
Figure 6C. Bonsall Research Site. Average kg/tree yield for trees harvested on May 16, 2019.

Mary Lu Arpaia

October 2017

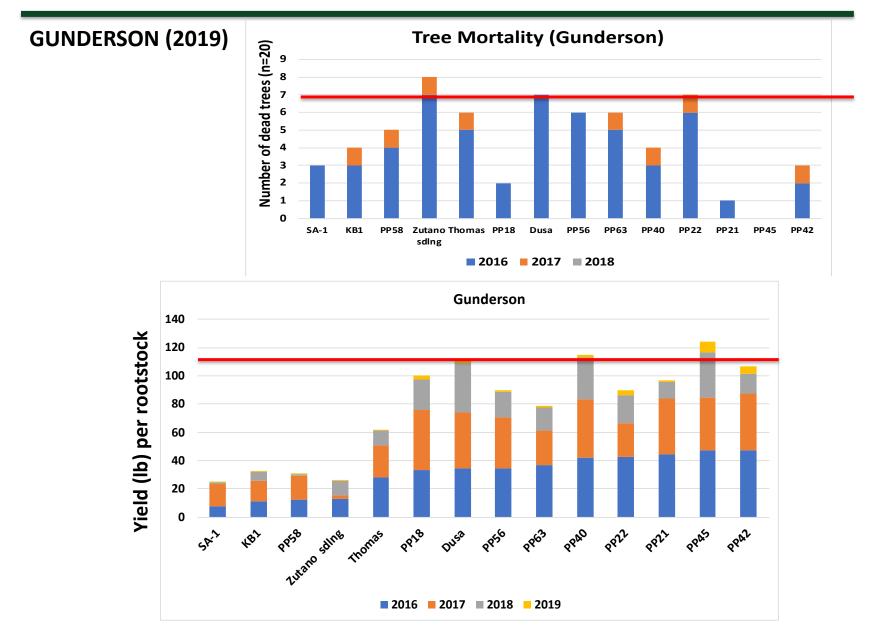

Pine Tree, Santa Paula

Krnich Plot, Fallbrook



Mary Lu Arpaia

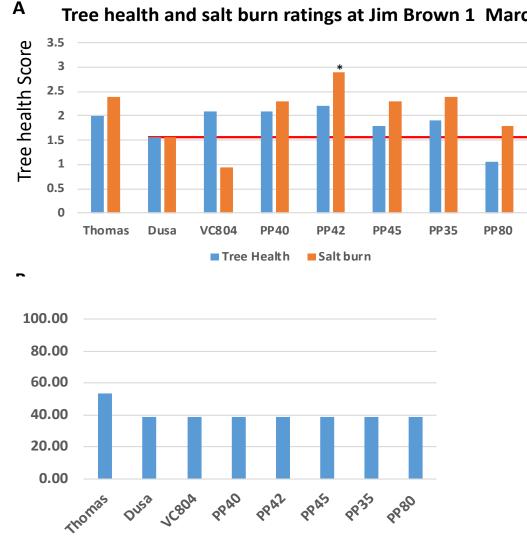
Field Evaluation of PP40, PP35, PP42, PP45, PP80



A Tree Health and salt burn ratings at Gunderson April 2019

Copyright ©2020 Patricia Manosalva (university of California, Riverside). All rights reserved

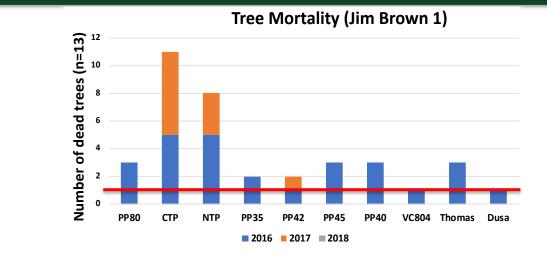
Field Evaluation of PP40, PP35, PP42, PP45, PP80



Field Evaluation of PP40, PP35, PP42, PP45, PP80

Jim Brown 1 (2019)

Overall tree health (0 best - 5). Leaf necrosis (salinity), heat damage (0 best - 5)



Tree health and salt burn ratings at Jim Brown 1 March 2019

Copyright ©2020 Patricia Manosalva (university of California, Riverside). All rights reserved

Field Evaluation of PP40, PP35, PP42, PP45, PP80

Jim Brown 1 (2019)

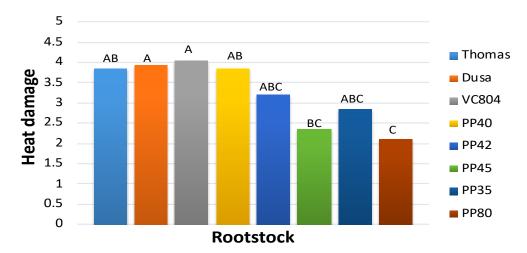
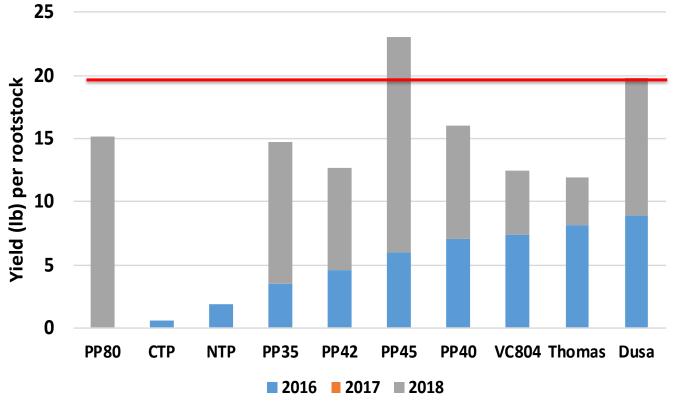
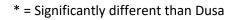
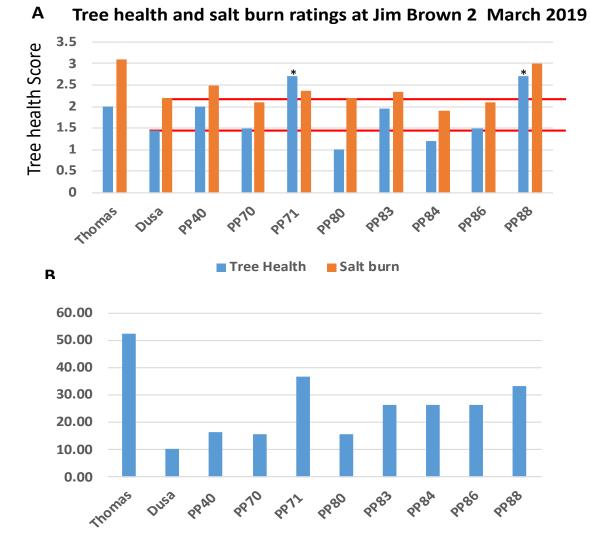


Fig. 66. Heat damage rated in July 2018 at Jim Brown ranch in Southern CA. Trees were score from 0 - 5: 0 = 0.10% heat damage, 1 = 11.20%, 2 = 21-40%, 3 = 41-60%, 4 = 61-80%, and 5 = 81-100%. Statistical analyses were done using ANOVA and significantly differences among rootstocks were tested using HSD test. Levels not connected by the same letter are significant different.

Field Evaluation of PP40, PP35, PP42, PP45, PP80

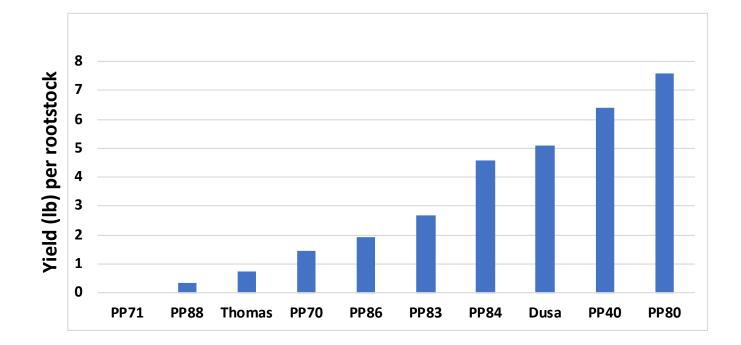
Jim Brown 1 (2019)


Fig. 64. Cumulative yield (Lb) per rootstock accession in Jim Brown #1, Temecula.

Field Evaluation of PP40, PP35, PP42, PP45, PP80

Jim Brown 2 (2019)



Overall tree health (0 best - 5). Leaf necrosis (salinity), heat damage (0 best - 5)

Field Evaluation of PP40,PP35, PP42, PP45, PP80 (old plots)

Jim Brown 2 (2018)

PP40: Good resistance to PRR and tolerant to salinity

Pictures: Peggy Mauk, AgOPs UCR Copyright ©2020 Patricia Manosalva (university of California, Riverside). All rights reserved

RO.05 (South African Selection) and PP35 exhibited similar levels of salinity tolerance. PP35 is smaller than RO.05.

RO.05

PP35

Pictures: Peggy Mauk, AgOPs UCR

2019: Santa Paula (Ventura) under PRR, high pH, and high alkalinity as CaCO₃ conditions

Dusa

PP45

2019: Santa Paula (Ventura) under PRR, high pH, and high alkalinity as CaCO₃ conditions

Dusa

PP42

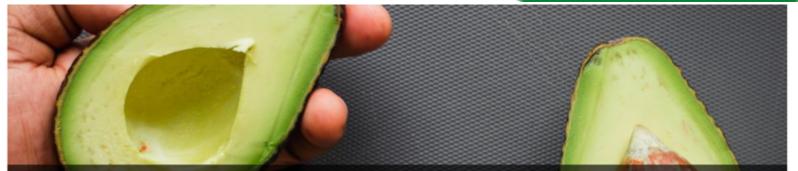
PP80: PRR resistant, salinity and heat tolerant

2019: Temecula plot under PRR, high salinity, high pH and high alkalinity as CaCO₃ conditions

Dusa

PP80

Semi-commercial trials with 5 most advanced UCR rootstocks (UCR and CAC)


100 trees/rootstock Hass grafted

Grower	County	Year	Rootstocks	Conditions
Leo McGuire	Riverside	2019	PP35, PP40	PRR and high chloride levels
John Lamb	Ventura	2019	PP35, PP40	PRR, high chloride and pH
Massod Sohaili (Rick and CJ Shade)	Ventura	2020	PP35, PP40, PP45, PP42 (28), PP80 (39)	High PRR (replanting)
Andrew Gabryszak	Riverside	2020	PP35, PP40, PP45	PRR and high chloride levels
Pete Miller	Santa Barbara	2020	PP35, PP40, PP45, PP42 (28), PP80 (39)	High PRR, high chloride, high EC, clay soils.
Chris Sayer	Ventura	2020	PP35, PP40, PP45	High salinity (EC) and high alkalinity
Dr. Lauren Garner (Cal Poly State University, SLO)	San Luis Obispo	2020	PP35, PP40, PP45	Pending water analyses and PRR analyses a. Riverside). All rights reserved

Field trials with 5 most advanced UCR rootstocks in other countries

https://news.ucr.edu/articles/2020/06/09/ucriverside-and-eurosemillas-partner-bring-nextgeneration-avocados-market

UC Riverside and Eurosemillas partner to bring the next generation of avocados to market

Eurosemillas will test some of UCR's avocado scion and advanced rootstock selections on other continents

June 9, 2020

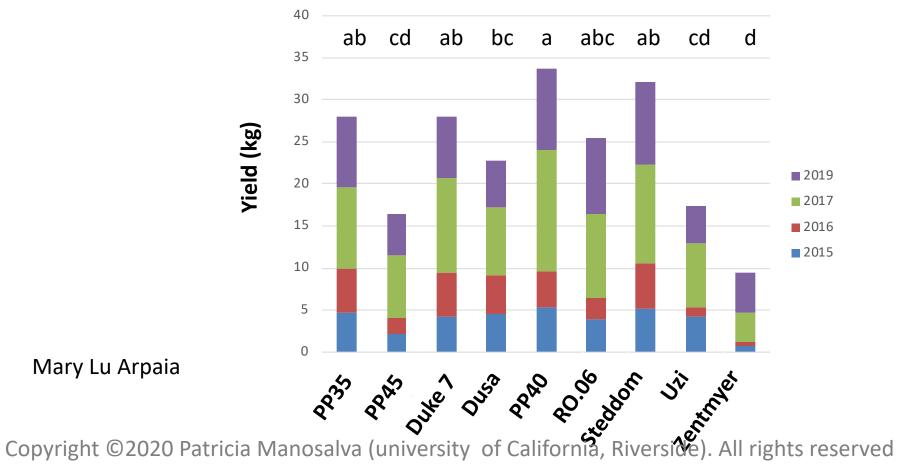
C Riverside has entered into a \$2.25 million partnership with Spain-based Eurosemillas S.A., a global leader in the commercialization of agriculture innovations, to help the university bring to market the most promising and advanced avocado scions and rootstocks in its collection.

If successful, these varieties would meet diverse regional growing requirements, exhibit better post-harvest characteristics, increase yields, provide resistance against disease, and expand consumer market diversity.

"Eurosemillas has successfully commercialized citrus varieties developed at UC Riverside in the past. They have the global network and expertise to do the same with the next generation of avocados," said <u>Brian Suh</u> [2], director of technology commercialization in the Office of Technology Partnerships at UC Riverside, who worked with a team on this initiative for the past four years.

Scion yield by rootstocks

Trees planted 12 x 15 feet

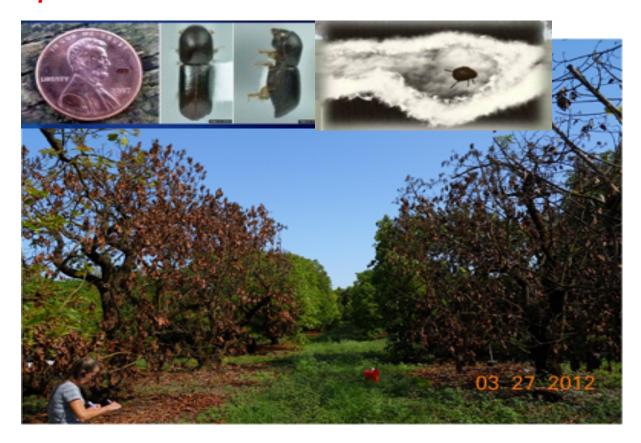

Randomized Complete Block Design

Trees planted June 2012

Zentmyer, Steddom, Uzi, PP35, PP40, and PP45 grafted to

Hass, Carmen, GEM, Lamb, and Reed scions.

There is no variety x rootstock interaction for tree size currently



Mary Lu Arpaia

AVOCADOS IN DANGER!!

Laurel Wilt Disease

Ambrosia beetle-*Raffaelea lauricola* 60% avocado crop lost in FL

http://www.freshfromflorida.com/Divisions-Offices/Plant-Industry/Agriculture-Industry/Pests-Diseases/Laurel-Wilt-Disease

10/01/2019

DUSA IS SUSCEPTIBLE TO WHITE ROOT ROT

Martínez-Ferri *et al. BMC Plant Biology* (2019) 19:458 https://doi.org/10.1186/s12870-019-2016-3

RESEARCH ARTICLE

Mild water stress-induced priming enhance tolerance to *Rosellinia necatrix* in susceptible avocado rootstocks

E. Martínez-Ferri¹, G. Moreno-Ortega¹, N. van den Berg^{2,3} and C. Pliego^{1*}

RESEARCH ARTICLE

Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks

Adela Zumaquero¹, Elsa Martínez-Ferri², Antonio J. Matas³, Bianca Reeksting^{4,5}, Nicholas A. Olivier^{5,6}, Fernando Pliego-Alfaro³, Araceli Barceló¹, Nöelani van den Berg^{4,5}, Clara Pliego¹*

"WE NEED MORE VARIETIES, ROOTSTOCKS, AND SCION X ROOTSTOCK COMBINATIONS FOR A COMPETITIVE AND SUSTAINABLE AVOCADO INDUSTRY"

<u>Acknowledgements</u>

Manosalva Lab (UCR)

Natasha Jackson (Ph.D Student) Dr. Rodger Belisle (former Ph.D Student) Aidan Shands (Ph.D Student) Dr. Nilwalla Abeysakara (Asst Spec) Brandon McKee (Research Assistant) Angela Buelhman (Undergraduate) Valentina Valencia (Undergraduate)

Pathogen Biology and Genomics

James Adaskaveg (UCR) Bruce Schaffer (University of Florida) Liliana Cano (University of Florida) Sylvia Fernandez Pavia (U San Nicolas de Hidalgo) Noelani Van den Berg – University of Pretoria (SA)

California Avocado Society (CAS) Our grower cooperators UC MEXUS-CONACYT Brokaw Nursery

Avocado Breeding and Genomics

Mary Lu Arpaia – UCR Peggy Mauk – UCR Ben Faber – UC ANR David Kunh- USDA-ARS Florida Barbara Freeman-USDA-ARS Florida Aureliano Bombarely - University of Milan (Italy) Noelani Van den Berg – University of Petroria (SA) Antonio Matas -Universidad de Malaga (Spain)

Pest and beneficial

NIFA

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE **UCR CNAS Delfino funds**