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Abstract

The European School of High-Energy Physics is intended to give young physicists an introduction to the the-
oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on
the theory of quantum chromodynamics, Higgs physics, Flavour physics and CP violation, and Supersymmetry.
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Preface

The twenty-second event in the series of the European School of High-Energy Physics took place in Garderen,
the Netherlands, from 18 June to 1 July 2014. It was organized jointly by CERN, Geneva, Switzerland, and
JINR, Dubna, Russia, with support from FOM and Nikhef in the Netherlands. The local organization team was
chaired by Dr Olya Igonkina who was greatly assisted by Joan Berger on many practical and administrative
matters. The other members of the local committee were: S. Caron, R. Fleischer, F. Linde, V. Mexner, A.
Mischke, P. Pani, D. Samtleben and L. Wiggers.

A total of 100 students of 32 different nationalities attended the school, mainly from institutes in member
states of CERN and/or JINR, but also a few from other regions. The participants were generally students in
experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the Bilderberg Hotel ’t Speulderbos complex in Garderen, about 70 km from
the centre of Amsterdam. According to the tradition of the school, the students shared twin rooms mixing
participants of different nationalities.

A total of 32 lectures were complemented by daily discussion sessions led by six discussion leaders. The
students displayed their own research work in the form of posters in an evening session in the first week, and
the posters stayed on display until the end of the School. The full scientific programme was arranged in the
on-site conference facilities.

A novel feature in the 2014 School was an element of outreach and media training, complementing the
main scientific programme. This consisted of a course “Broadcasting your messages: Communicating clearly
and concisely with non-specialist audiences” from the iOpener institute. The session was delivered by Nadia
Marchant (facilitator) and Hugh Schofield (journalist and BBC correspondent in Paris). In an optional after-
dinner session, students had the opportunity to act out interviews under realistic conditions based on two hypo-
thetical scenarios. Another outreach-related activity was an entertaining after-dinner show, “HIGGS: Stand Up
Physics” by Jan van den Berg.

Each discussion group subsequently carried out a collaborative project, preparing a talk on a physics-related
topic at a level appropriate for a general audience. The talks were given by student representatives of each group
in an evening session in the second week of the School. Feedback was provided by a jury composed of Jan
van den Berg, Margriet van der Heijden, Gieljan de Vries and Ivo van Vulpen, organised by Vanessa Mexner.
Many thanks are due to these people, all of whom are themselves involved in the communication of science in
one way or another.

Our thanks go to the local-organization team and, in particular, to Olya Igonkina, for all of their work and
assistance in preparing the School, on both scientific and practical matters, and for their presence throughout
the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted the School
organizers and the participants in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, undoubtedly appreciated listening to and discussing with the teaching staff of world
renown. We would like to express our appreciation to Professor Rolf Heuer, Director General of CERN, and
Dr Alexander Olshevskiy representing Professor Victor Matveev, Director General of JINR, for their lectures
on the scientific programmes of the two organizations and for discussing with the School participants.

In addition to the rich academic programme, the participants enjoyed numerous sports, leisure and cultural
activities in and around the Bilderberg Hotel ’t Speulderbos complex. Particularly noteworthy were the very
nice excursions to the Dutch national park Hoge Veluwe and the Kröller-Müller museum, to Amsterdam with
options to visit the Van Gogh museum or the Rijksmuseum, and to the beach and dunes near Zandvoort. Sports
and leisure activities around the hotel, as well as the excursions, provided an excellent environment for informal
interactions between staff and students.
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We are very grateful to Kate Ross and Tatyana Donskova for their untiring efforts in the lengthy preparations
for and the day-to-day operation of the School. Their continuous care of the participants and their needs during
the School was highly appreciated.

The success of the School was to a large extent due to the students themselves. Their poster session was very
well prepared and highly appreciated, their group projects were a great success, and throughout the School they
participated actively during the lectures, in the discussion sessions and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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QCD

E. Laenen
Nikhef, Amsterdam, The Netherlands
Institute for Theoretical Physics, University of Amsterdam, The Netherlands
Institute of Theoretical Physics, Utrecht University, The Netherlands

Abstract
In these lecture notes I describe the theory of QCD and its application, through
perturbation theory, at particle colliders.

1 Introduction
In particle physics, we encounter QCD nearly everywhere. The main collider of our time, the LHC,
collides protons, which are made up of quarks, antiquarks and gluons, collectively called partons. Ev-
ery proton collision involves partons, which readily produce a multitude of further partons, all turning
into hadrons of one type or another. At present we are however mostly interested in rare final states,
faint signals involving Higgs bosons, top quarks, vector bosons, possibly new particles. Hence we
must understand very well how to separate the new from the known, to “remove the foreground”, in
cosmology-speak; particle physicists call it background.

But it would do gross injustice to QCD and its dynamics to see it as merely a background engine.
It really is a beautiful theory by itself. It is the only unbroken non-abelian gauge theory we know exists
in Nature. Its Lagrangian is compact, and elegant

LQCD = −1

4
Tr(GµνG

µν)−
nf∑

f=1

ψf ( /D +mf )ψf . (1)

We shall discuss the meaning of the various symbols in this expression shortly, but one should not forget
to be amazed at the complex outcomes that this relatively simple expression generates 1. For this reason,
QCD dynamics is very interesting to study sui generis. In these lecture notes I shall visit a number 2

of aspects of QCD, as relevant in collider physics. The structure of these notes is as follows. In the
next section the fundamental degrees of freedom and symmetries of QCD are discussed. In section 3 we
discuss aspects of perturbative QCD when going to higher fixed orders. Section 4 contains an exposition
of some modern methods of calculations, focussing in particular on helicity methods. Section 5 discusses
aspects of all-order resummation, the underlying reasons and some applications. I conclude in Section
6. An appendix contains conventions and useful formulae.3

2 Partons and hadrons
In this section we discuss both the spectroscopic evidence for the presence of quarks and gluons in
hadrons, as well as the partonic picture relevant for high-energy collisons.

2.1 Spectroscopy and symmetries of QCD
Six types (or flavours) of quarks are presently known to exist. They are fermions and are denoted by
u, c, t and d, s, b, respectively, abbreviations of the names ‘up’, ‘charm’, ‘top’, and ‘down’, ‘strange’,

1Of course, for that matter, the QED Lagrangian is even simpler, and yet it governs all of atomic physics, chemistry etc.
2Some of the notes correspond to a forthcoming book: Field Theory in Particle Physics, by B. de Wit, E. Laenen and J.

Smith.
3Caveat emptor: though I tried to avoid them, there might be errors and inconsistencies in the equations below. In addition,

I made no effort to be exhaustive in references.
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‘bottom’. Three (u, c, t) have electric charge 2
3 and three (d, s, b) charge −1

3 (measured in units of the
elementary charge). Because quarks are not detected as separate physical particles (they are confined into
hadrons), their masses are not exactly known, but can be estimated from hadron spectroscopy once the
hadron composition in terms of quarks is given. The mass values thus obtained are called "constituent
masses". One commonly introduces quantum numbers such as isospin or strangeness to distinguish the
quark flavour, which then explains the corresponding quantum numbers of the hadronic bound states. Of
course, there are also corresponding antiquarks ū, c̄, t̄ and d̄, s̄, b̄, with opposite charges. The lightest-
mass mesons and baryons are bound states of quarks and/or antiquarks with zero angular momentum.

For the moment let us restrict our attention to a single quark flavour, whose interactions are given
by a non-abelian gauge theory. This choice is motivated by the fact that only such theories have the
property that the interactions become strong at low energies, and can therefore explain confinement. We
shall return to this further below. In order to let a non-abelian gauge group act on the quark field, we
are forced to extend the number of fields. According to QCD, this gauge group is SU(3). We shall
try to justify this choice for the gauge group in a little while and first consider the definition of the
theory. In order that SU(3) can act nontrivially on the quark field q(x), this field must have at least three
components, so we write qα(x) = (q1(x), q2(x), q3(x)). Hence for a given quark flavour, we have three
different fields. These three varieties are called colours and are commonly denoted by ‘red’, ‘green’
and ‘blue’. Of course, at first sight, this assumption seems to make matters worse. We started with one
quark for each flavour, which cannot be observed as a free particle; now we have three times as many
unobservable quarks. Actually, the problem is even more vexing. Because quarks rotate under an SU(3)
symmetry group, one should expect a corresponding degeneracy for the observed bound states. In other
words, each hadronic state should in general be degenerate and carry colour, while all other properties
such as mass, electric charge and the like are independent of colour. We clearly do not observe such an
exact degeneracy in Nature. Nevertheless, let us for now ignore this apparent proliferation of degrees of
freedom and turn to the other ingredients of the model. Because the group SU(3) is eight-dimensional
(SU(3) has eight generators), we must have eight gauge fields, denoted by Vµa. Under SU(3) the quark
fields transform in the fundamental, triplet representation, viz.

q(x) → q′(x) = exp
(
1
2 iλaξ

a(x)
)
q(x) , (2)

where ξa(x) are the eight transformation parameters of SU(3), and q(x) represents the three-component
column vector qα consisting of the three quark colours. The conjugate quark fields are represented by
the row vector q̄α = (q̄1, q̄2, q̄3) and transform according to

q̄(x) → q̄′(x) = q̄(x) exp
(
−1

2 iλaξ
a(x)

)
. (3)

The invariant Lagrangian now takes the form

L = −1
4(Gµν

a)2 − q̄ /Dq −m q̄q , (4)

with

Gµν
a = ∂µVν

a − ∂νVµ
a − gfbc

a Vµ
bVν

c ,

Dµq = ∂µq − 1
2 ig Vµ

aλa q . (5)

The SU(3) generators ta = 1
2 iλa are expressed in terms of a standard set of matrices λa, the Gell-Mann

matrices, which are generalizations of the Pauli matrices τa. The SU(3) structure constants fbca follow
from the commutators of these generators. Note that, we choose our generators to be anti-hermitian.

For other flavours, the QCD Lagrangian takes the same form as in (4), except that the actual
value for the quark-mass parameter is different. The full Lagrangian thus depends on the QCD coupling
constant g and on the mass parametersm, one for each flavour (quarks of different colour but of the same
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flavour should have the same mass in order to conserve the SU(3) gauge symmetry). Here we stress that
the mass parameter in the Lagrangian cannot be identified directly with the constituent mass, which
should follow from solving the full QCD field equations. Obviously, the QCD interactions leave the
flavour of the quarks unchanged, and thus also strangeness and similar quantum numbers. However, with
the exception of the electric charge, these quantum numbers are not conserved by the weak interactions,
and quarks can change their flavour by emitting weak interaction bosons. The gluons do not carry
flavour, but they do carry colour, since they transform under the SU(3) gauge group. We therefore see
that the quark content of the hadrons can be probed by weak and electromagnetic interactions through
deep-inelastic scattering experiments.

Of course, quarks also carry spin indices, as they are normal Dirac spinor fields, so they are quite
rich in indices. One index is the spinor index, which takes four values. Then there is the colour index,
denoted above by α, β, . . ., which takes three values. Finally we can assign a flavour index, which takes
six values corresponding to the different flavours. As we shall discuss colour further below, let us here
explore aspects of quark flavour. By construction the QCD Lagrangian is invariant under local SU(3).
However, depending on the values for the mass parameters, there can also be a number of global flavour
symmetries. The presence of these flavour symmetries has direct consequences for the hadronic bound
states. The flavour symmetries are most relevant for the light quarks. As the mass parameters of the u and
d quarks are comparable in size, the QCD Lagrangian is nearly invariant under global unitary rotations
of the u and d quarks. These rotations form the group U(1) ⊗ SU(2). The invariance under U(1) is
related to the conservation of baryon number (quarks carry baryon number 1

3 , antiquarks −1
3 ). The

SU(2) transformations mix up and down quarks and are called isospin transformations. The breaking
of isospin invariance is thus due to the fact that the u and d mass parameters are not quite equal (an
additional but small breaking is caused by the electroweak interactions, which we do not consider in this
chapter). The u and d mass parameters are not only nearly equal, they are also very small, which implies
that the Lagrangian has in fact even more approximate flavour symmetries. To wit, for vanishing quark
mass the Lagrangian is also invariant under unitary transformations of the u and d fields that contain the
matrix γ5. Such transformations are called chiral transformations. Because of the presence of γ5, these
transformations of the quarks will depend on their spin. We shall discuss these symmetries further below.
These extra transformations involving γ5 actually quite subtle because the chiral symmetry is realized in
a so-called spontaneously broken way. The fact that the pion mass is so small (as compared to the other
hadron masses) can then be explained by an approximate chiral symmetry in Nature. Obviously, we may
follow the same strategy when including the s quark and consider extensions of the flavour symmetry
group. Apart from the phase transformations one then encounters an SU(3) flavour group (not to be
confused with the SU(3) colour group). In view of the fact that the s quark has a much higher mass,
flavour SU(3) is not as good a symmetry as isospin. Symmetry breaking effects are usually of the order
of 10%. Of course one may consider further extensions by including γ5 into the tranformation rules or
by including even heavier quarks. However, these extensions of the flavour symmetries tend to be less
and less useful as they are affected by the large quark masses and thus no longer correspond to usefully
approximate symmetries of Nature.

In order to realize the SU(3) gauge tranformations on the quark fields, we introduce three varieties
of quarks, prosaically denoted by colours. However, it seems inevitable that the observed hadrons, bound
states of quarks and antiquarks, will also exhibit the colour degeneracy. For instance, the pions are
thought of as bound states of a u or a d quark with a ū or a d̄ antiquark. Since quarks and antiquarks
come in three different colours, one has in principle nine types of pions of given electric charge, which
must have equal mass. Altogether there should then be twenty-seven types of pions, rather then the three
found in Nature!

The reason why this colour degeneracy is not observed in Nature is a rather subtle one. To explain
this phenomenon, let us start by considering quarks of a single flavour, say u quarks, and construct
the possible states consisting of three quarks, all at rest. Together they form a state with zero angular

3
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momentum. Depending on the properties of the forces acting between these quarks, the three quarks may
or may not cluster into a hadronic bound state. By comparing the properties of these three-quark states
to those of the low-mass hadrons in Nature (in view of the centrifugal barrier one expects that states with
nonzero angular momentum acquire higher masses) one may hope to unravel the systematics of quark
spectroscopy and understand the nature of the forces that hold the hadrons together.

Hence, when considering the possibility of the three quarks forming a bound state, one may expect
the emergence of a spin-32 bound state and/or one or two spin-12 bound states. Of course, whether or not
they are actually realized as bound states depends on the properties of the interquark forces.

However, the above conclusions are invalidated as we are dealing with bound states of identical
spin-12 particles. Being fermions they satisfy Pauli’s exclusion principle, according to which the resulting
state should be antisymmetric under the exchange of any two such particles. It turns out that the spin-32
bound state is, however, symmetric under the interchange of two fermions. This is easy to see for the
states with Sz = ±3

2 , as they correspond to the situation where all three quark spins are aligned in the
same direction. Hence a spin-32 bound state cannot be realized because of Pauli’s exclusion principle.
However, the spin-12 states cannot be realized either, as they are neither symmetric nor antisymmetric
under the interchange of any two particles, but are of mixed symmetry (i.e., they can be (anti)symmetric
under the exchange of two of the quarks, but not with respect to the third quark). Therefore, bound states
of three identical spin-12 particles with zero angular momentum cannot exist, it would seem.

Surprisingly enough, when comparing the result of such quark model predictions to the low-mass
baryons in Nature, one finds that there is in fact a bound state of three u quarks with spin-32 , namely
the ∆++ baryon with a mass of 1232 MeV c−2, which is unstable and decays primarily into p π+ with
an average lifetime of 0.59 × 10−23 s. On the other hand, no spin-12 bound states of three u quarks are
found. At this point one could of course question the quark interpretation of the ∆++, were it not for the
fact that this phenomenon is universal! When comparing the quark model to the data, it turns out that
the baryons always correspond to bound states of quarks that are symmetric rather than antisymmetric
under the interchange of two quarks. Therefore, one would conclude, the Pauli principle is violated in
the simple quark model.

Before resolving this puzzle, let us once more exhibit this phenomenon, but now for the slightly
more general case of low-mass baryons consisting of u and d quarks. Each quark in the baryon now
comes in four varieties: a u quark with spin ‘up’ or ‘down’ (measured along some direction in space)
or a d quark with spin ‘up’ or ‘down’. Assuming again zero total angular momentum, there are thus
43 = 64 possible spin states, twenty of which are symmetric under the interchange of two particles.
These symmetric states decompose into sixteen states with both isospin and ordinary spin equal to 3

2 ,
and four states with both isospin and ordinary spin equal to 1

2 . The first sixteen states correspond to the
baryons ∆++(uuu), ∆+(uud), ∆0(udd) and ∆−(ddd), which carry spin-32 so that each one of them
appears in four possible spin states (we listed the quark content in parentheses). The latter four states
correspond to the nucleons p(uud) and n(udd), which carry spin-12 and thus appear in two varieties.4 No
other states corresponding to bound states of three u or d quarks can be identified with baryons in Nature
(for higher masses such bound states can be found, but those will have nonzero angular momentum).

Let us now stop exploring in detail the subtleties of the simple quark model, and turn to quantum
chromodynamics. Because the quarks carry colour one can make the three-quark state antisymmetric
by postulating total antisymmetry in the three colour indices. In this way the exclusion principle is
preserved. This conjecture may seem rather ad hoc, and one may wonder whether there is an a priori
reason for assuming antisymmetry in the colour indices. Indeed, it turns out that there is a principle
behind this. When antisymmetrizing over the colour indices of a three-quark state, this state is a singlet

4As explained above, the spin- 1
2

states are of mixed symmetry. However, the mixed symmetry in terms of the spin indices
of the quarks can be combined with the mixed symmetry of the isospin indices in such a way that the resulting state becomes
symmetric.
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Fig. 1: Parton picture of a deep-inelastic collision process. Note that in the diagram time runs from right to left.

under the SU(3) colour group. This follows from the tensor product of three triplets

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 , (6)

which yields a singlet state under colour SU(3) that is fully antisymmetric.5 Assuming that no hadrons
carry colour (so that they are invariant under the colour gauge group) requires the three-quark states to
be antisymmetric in the colour indices. By virtue of Pauli’s exclusion principle, they must therefore be
symmetric with respect to all other quantum numbers, such as spin and isospin.

The principle that hadrons should be colourless can be put to a test when considering the low-mass
mesons. As we mentioned at the beginning of this section, the mesons are bound states of a quark and
an antiquark. Because of the three-fold degeneracy of the quarks associated with colour, each meson
should appear in nine varieties, which differ in colour, but not in electric charge and mass. However, one
particular combination of these states is again colourless. This follows from the tensor product rule

3⊗ 3̄ = 1⊕ 8 , (7)

according to which the nine colour states decompose into a singlet state and eight states belonging to the
octet representation. Only the singlet state is realized as a physical particle, so that the colour degeneracy
is avoided. This turns out to be a universal feature of all hadrons. We simply never observe the colour
degrees of freedom, but only bound states of quarks that are singlets of the colour symmetry group. In
other words if we assign the primary colours to α = 1, 2, 3 then the observed hadrons must be “white”.
Of course, this analogy is mostly picturesque and by no means necessary.

2.2 Parton model
We mentioned above that deep-inelastic scattering reveals the presence of weakly bound point-like par-
ton constituents inside the nucleon, which we will shortly identify as spin-12 fractionally charged quarks
(gluons are neutral with respect to weak and electromagnetic interactions, so they are not directly in-
volved in this process). To see this, we first examine a simple model in which the fast-moving nucleon

5The interpretation of this product rule is as before. The 33 = 27 states formed by all possible products of SU(3) triplet
states decompose under the action of SU(3) in four different representations: the singlet representation, which is completely
antisymmetric, the 10 representation, which is completely symmetric, and two 8 representations, which have mixed symmetry
(the SU(3) representations are denoted by their dimension, unlike the representions of the rotation group, which are denoted
by the value of the spin). To derive such product rules is more complicated for SU(3) than for the SU(2), the relevant group
for spin and isospin.
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consists of a finite number of particles, each carrying a certain fraction of its momentum. These con-
stituents are so weakly bound that they may be regarded as free. For simplicity we assume also that just
one parton is subject to the interaction with the photon that is exchanged in the inelastic process; the
others are neutral and play the role of spectators (see Fig. 1). The charged constituent with momentum
pµ = ξP1µ (we neglect the transverse parton momenta) and mass m = ξM (0 < ξ < 1) changes its
momentum to (ξP1 + Q)µ in the interaction with the virtual boson; the mass-shell condition requires
(ξP1 +Q)2 = (ξP1)

2 or 2ξP1 ·Q+Q2 = 0. We have then

ξ = − Q2

2P1 ·Q
≡ x , (8)

where we have introduced the Bjorken scaling variable x, whose meaning is clear from (8).

Defining also the variable y by the fractional energy loss of the incoming lepton, i.e. in de target
restframe by (E′−E)/E, one may write the differential cross section for deep-inelastic scattering (DIS),
mediated by a photon, in terms of dimensionless structure functions as

( d2σ

dx dy

)γ
=

8πα2ME

(Q2)2

[
1 + (1− y)2

2
2xF γ1 (x,Q

2)

+(1− y)
[
F γ2 (x,Q

2)− 2xF γ1 (x,Q
2)
]
− M

2E
xy F γ2 (x,Q

2)

]
, (9)

where M is the nucleon mass. The accumulated data for this process, mostly from the HERA collider at
DESY, are displayed in Fig. 2. Notice that to first approximation the structure function F2(x,Q

2) only
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Fig. 2: The reduced cross section (corresponding to F2(x,Q
2) up to a small correction due to weak interaction

effects). The data have been taken at the HERA collider [1].

depends on x, a phenomenon known as scaling. The parton model, to which we now turn, provides an
explanation for this phenomenon.

After the interaction with the virtual boson has taken place, the charged constituent will move
in a different direction than the spectator particles. However, during recoil it feels the influence of the
binding mechanism, which forces the constituents to recombine into a new hadronic state, such as an
excited nucleon or a nucleon with one or several pions (on a much longer time scale than that of the
primary collision). Confinement dictates that the nature of this final-state interaction is such that the
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partons cannot be produced as isolated particles, and that the binding force does not interfere with the
primary interaction with the vector bosons.

Because the spectators do not participate in the primary interaction the cross section for inelastic
lepton-nucleon scattering is given directly in terms of the cross section for lepton-parton scattering.
Assuming that the parton is point-like and that the beam energy in the laboratory frame is large compared
to the masses, one can compute, using the rules of QED

(dσ
dy

)γ
=

8πα2ME

(Q2)2
q2

(1− y)2 + 1

2
ξ . (10)

where the factor ξ arises because we have replaced the parton massm byMξ. Comparing (10) to (9), we
conclude that the contribution from elastic parton scattering via photon exchange to the nucleon structure
functions is given by

F γ2 (x) = 2xF γ1 (x) = q2xδ(x− ξ) , (11)

The structure functions thus satisfy the Callan-Gross relation [2]

F2(x) = 2xF1(x) , (12)

which is characteristic for (massless) spin-12 partons Although we have now found structure functions
that depend only on x, in agreement with the phenomenon of scaling discussed above, the model is
clearly unrealistic as x remains restricted to a single value ξ. Therefore, to improve the situation one now
assumes that the nucleon contains many partons interacting with the intermediate photon and carrying a
fraction of the nucleon momentum according to a probability distribution f(ξ). To be precise, fi(ξ)dξ
measures the number of partons of type i (e.g. a u-quark or a gluon) in the momentum range from ξP1

to (ξ + dξ)P1. As the nucleon may also contain anti-partons there is a corresponding distribution f̄i(ξ)
to measure the number of anti-partons in the same momentum range. In doing so we will keep ignoring
the effect of transverse parton momenta. Furthermore we assume that the scattering on the partons is in-
coherent (i.e. quantum-mechanical interference effects between scattering reactions on different partons
are ignored) so that we can simply sum and/or integrate (10) over the various (anti-)parton distributions,

(dσ
dy

)γ
=

8π α2ME

(Q2)2
(1− y)2 + 1

2

∑

i

qi
2

∫ 1

x
dξ ξ fi(ξ) , (13)

where the sum is over (anti-)-quark flavours i having fractional charge qi (either 2
3 or −1

3 ). Let us discuss
a few more consequences of the parton model. Identifying the partons as quarks6 we can directly derive
the following parton model expression for the electromagnetic structure functions

x−1F γ2 (x) = 2F γ1 (x) (14)

= 4
9 [u(x) + ū(x) + c(x) + c̄(x)] + 1

9 [d(x) + d̄(x) + s(x) + s̄(x)] .

One may now also immediately state he charge sum rule

Qnucleon =

∫ 1

0
dx
[
2
3 [u(x)− ū(x) + c(x)− c̄(x)

]

− 1
3 [d(x)− d̄(x) + s(x)− s̄(x)]

]
, (15)

which the parton distribution functions must obey. Furthermore we note that by interchange of u and d
quarks a proton becomes a neutron and vice versa (this interchange can be realized by a special isospin
transformation). Therefore all neutron quark distributions follow from those of the proton: u(x)N =
d(x)P , d(x)N = u(x)P , whereas the s- and c-distributions are equal. Henceforth we will therefore
use the notation where u(x), d(x), s(x) and c(x) refer to the proton structure functions only. In Fig. 3
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Fig. 3: The distributions of x[u(x)− ū(x)] and x[d(x)− d̄(x)] (the valence quarks), as well as those of the anti-up
xū(x) and anti-down xd̄(x) in the proton. The plots correspond to the NNPDF set, version 2.3 [3] for a value of
Q2 = 100 GeV2 [4].

we show some examples of quark distribution functions in the proton. Unlike the quarks, the gluons
are neutral under weak and electromagnetic interactions, so they are not directly observed in the deep-
inelastic process. Their presence can, however, already be inferred from the naive model discussed
above, because the total fraction of the nucleon momentum carried by the quarks (which is given by
the areas under the curves of Fig. 3) is roughly 1

2 . This is an indirect indication that gluons carry the
remaining nucleon momentum.

As stated above, if the nucleon is probed at large Q2 the quarks inside will behave as free point-
like objects. The QCD interactions will dissipate the momentum transfer Q2 to other quarks, and in
this process gluons will be radiated which may again interact with quarks or gluons or annihilate into
quark-anti-quark pairs. This effect becomes more sizeable if the momentum transfer Q2 is shared by
many quarks and gluons, as the average momenta are then smaller so that the effective QCD coupling
grows in strength. The timescale that is relevant for the final state interaction is therefore much larger
than that for the primary interaction. Incorporating these quark-gluon interactions into the naive quark-
parton model leads in principle to a consistent field-theoretic set-up for calculating quantum corrections
in deep-inelastic scattering, and other processes.

We finally remark that the universal nature of the parton distribution functions fi(ξ) should allow
us to apply the parton model also to the Drell-Yan process, in which a quark and an anti-quark inside the
nucleons collide to form a lepton-anti-lepton pair. This we shall do further below in these notes.

2.3 Renormalization and asymptotic freedom
The examination of the quantum corrections in a theory can provide crucial insight into the structure of
the theory, and its consistency. For example, if they break the gauge symmetries of a theory (so that
these symmetries are anomalous), the theory can be inconsistent. It can also teach us about the predictive
power of the theory. If the higher order corrections for some observable are so large that the very concept
of perturbation theory for this case becomes doubtful, we have a crisis of the theory’s predictive power

6We include u,d,s and c quarks here as they can be treated as massless quarks in most high-energy processes. Bottom and
top quarks, being heavier, are often not treated as partons.
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for this observable. Higher order corrections may contain ultraviolet divergences (we will discuss other
divergences later). Here we discuss how one may handle them and account for them.

2.3.1 Regularization
In order to handle divergences one must first regularize the quantum field theory in such a way that
the infinities become temporarily finite (would-be infinities). If done consistently, one can apply the
renormalization procedure, upon which for appropiate quantities the would-be infinities cancel, so that
the regularization can be removed. A number of regularization have been invented in the past, let us
review some of them.

Cut-off

In this method one imposes a uniform upper limit Λ on the loop momenta
∫ Λ dq

q
+ . . . = lnΛ + finite terms (16)

The would-be infinity is represented here by ln Λ. When all would-be infinities have cancelled and only
1/Λp terms are left, one can remove the regulator by Λ → ∞. The advantage of this method is that it is
very intuitive, the (serious) disadvantage is that it is very cumbersome in higher orders, in particular for
gauge theories. It is therefore mostly used in high energy physics for didactical purposes.

Lattice

In this method one discretizes spacetime, and defines fields to live only on the lattice points (or on the
links between them). In this way momenta cannot be larger than 1/a where a is the lattice spacing. A
major advantage of this method is that it can actually be used for computer simulation, so that the full
path integral can be evaluated, without need to expand it in perturbation theory. Among the drawbacks
are difficulties in maintaining continuum symmetries on the lattice. It is however a widely used method,
mostly for lower energy observables, such as hadron masses and decay constants.

Dimensional regularization

This is the regularization that is most powerful in perturbative quantum field theory, and therefore also
most widely used. It consists of the temporary extension of the number of dimensions in spacetime, or
conversely, momentum space, from 4 to 4 + ε

∫
d4xL(x) →

∫
d4+εL(x) (17)

How does this method regularize ultraviolet diverences7? A careful dimensional analysis shows that
(i) momentum space propagators continue to look like 1/(q2 +m2), and (ii) gauge couplings now get
dimension −ε/2. Then a one-loop integral is extended as follows

∫
d4q

1

q4
→
∫
d4+εq

1

q4
(18)

In n = 4 + ε dimensional polar coordinates this may be written as (introducing a lower limit Q on the q
integral) ∫

dΩ3+ε

∫ ∞

Q
dqq3+ε

1

q4
(19)

These d dimensional integrals can be carried out to yield

2π2+ε/2

Γ(2 + ε/2)

−1

ε
Qε (20)

7A more careful treatment of dimensional regularization, including the conditions on the complex parameter ε can be found
in [5].
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The Euler gamma function Γ(2 + ε/2) makes a frequent appearance in this regularization method. The
would-be infinity is 1/ε. Removing the regulator would correspond to taking the limit ε→ 0.

2.3.2 Renormalization
Now that we know how to regularize a quantum field theory we are ready to understand conceptually the
renormalization procedure. At its heart is the question how to have a predictive theory when higher-order
corrections contribute an infinite amount to various Green functions.

Let us first form a physical picture for the case of the QED lagrangian

LQED = −1
4

(
∂µAν − ∂νAµ

)2 − ψ̄ /∂ψ −mψ̄ψ + ieAµψ̄γ
µψ , (21)

with Aµ representation the photon field, ψ the electron field, and e the electric charge. For QCD the
conceptual points are the same, if a bit more complicated. At lowest order, and after gauge-fixing,
the lagrangian provides an electron 2-point function (leading to the electron propagator), a photon 2-
point function (leading to the photon propagator), and a photon-electron 3-point function (leading to the
QED interaction vertex), see Fig. 4. Let us now look at some of their one-loop correction when the

Fig. 4: Lowest order Green’s functions provided by lagrangian

loop-momentum q becomes very large. In Fig. 5 we indicate how these corrections may be viewed. Be-

|q| → ∞

q

⊗ 1
ǫ

q

|q| → ∞

⊗ 1
ǫ

q
|q| → ∞

⊗ 1
ǫ

Fig. 5: One-loop corrections to lowest order Green’s functions and their UV limit.

cause the loop momentum becomes so large, the loop reduces to a very local effect, of would-be infinite
strength. It should be noticed that the result is simply a would-be infinite coefficient times the lowest
order Green function. This is an important result. For example in Fig. 6 we see that the UV limit of
the box graph, while leading to local 4-photon vertex which does not occur in the lagrangian, is also not
would-be infinite. This suggests that we can absorb in this case the 1/ε’s into the couplings and field
normalizations of the lagrangian, without need to introduced new types of interactions. Quantum Elec-
trodynamics is in fact a renormalizable theory. This means that it is sufficient to renormalize e,m, ψ,Aµ
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q

|q| → ∞
(finite)

Fig. 6: UV limit of QED box graph

to absorb/cancel all would-be infinities for any Green function in QED. Let us see how this absorption
works, using dimensional regularization.

First, let us recall that in dimensional regularization the dimension of the gauge coupling is no
longer zero, but rather

[e] =
2− d

2
= −ε

2
(22)

To keep count of such dimensionalities, and to be able to define a dimensionless coupling, we introduce
a mass scale µ, whose value is intrinsically arbitrary, such that

e = e(µ)µ−ε/2 (23)

We now renormalize e by a factor Ze that contains would-be infinities

e = eR(µ)µ
−ε/2Ze

(
1

ε
, eR(µ)

)
=

(
1 + eR(µ)

2 1

ε
z(1)e + eR(µ)

4

[
1

ε2
z(2)e +

1

ε
z(1,1)e

]
+ . . .

)
(24)

The renormalized coupling eR(µ) is finite, and is can be directly related to an actual physical quantity
like the fine-structure constant. How this works when what is supposed to be a number actually depends
on µ we will see below.

We have not yet specified the constants z(1)e , z
(2)
e , z

(1,1)
e etc. Let us now consider an observable O

which we have computed to 1-loop, using the QED Feynman rules

O = eC + e3
[
A
1

ε
(Q2)−ε/2 +B

]
(25)

where Q is the typical energy scale of the observable. We now renormalize the coupling according to
(24) and obtain, to order eR(µ)3 and obtain

O = µ−ε/2
{
eR(µ)C + eR(µ)

3

[
A
1

ε

(
Q2

µ2

)−ε/2
+ C

1

ε
z(1)e +B

]}
(26)

We can now choose z(1)e = −A/C. Then the poles in ε will cancel, and we can expand the result in ε

O =
{
eR(µ)C + eR(µ)

3

[
A ln

(
Q2

µ2

)
+B

]
.
}

(27)

One might think that it is not so hard to cancel divergences if one can simply choose to do so by picking
z
(1)
e = −A/C. The remarkable fact, and the essence of the renormalizability of a theory, is however

that this same choice works for all cases. One would always, for QED, find the same answer for z(1)e .
Similarly for Zψ

(
1
ε , eR(µ)

)
, Zα

(
1
ε , eR(µ)

)
, Zm

(
1
ε , eR(µ)

)
. To find their coefficients in the eR(µ) ex-

pansion one can take some relatively simple observables, and compute them once and for all.

Based on the example just discussed it should not be too great a surprise to learn that the generic
structure of the observable, after renormalization, is

O(Q,µ) =eR(µ)
2 [O1] + (28)

11

QCD

11



eR(µ)
4

[
O10 +O11 ln

(
Q2

µ2

)]
+ (29)

eR(µ)
6

[
O20 +O21 ln

(
Q2

µ2

)
+O20 ln

2

(
Q2

µ2

)]
+ . . . (30)

where the Oij are various constants. We note that (i) O(Q,µ) is finite, and (ii) it depends on the de-
termined scale µ both directly, via the logaritms, and implicitly, via the renormalized coupling eR(µ).
The last point is problematic: if we have consistently cancelled the divergences only for O to depend on
an arbitrary scale it seems we have not gained much predictive power. However, the µ dependence is
precisely such that for Eq. (28)

µ
d

dµ
O(Q,µ) = O(e8R(µ)) (31)

i.e. one order beyond the one calculated. Should one add another order to the result in (28) the residual
dependence on µ would be O(e10R (µ)) and therefore progressively less, and the prediction ever more
precise. Some uncertainty will however remain, and it is customary to estimate it by varying µ/Q from
2 to 1/2.

2.3.3 Running coupling, β function
What is the origin of this conspirational µ dependence? It is in fact the renormalization procedure itself.
In the problem sets it was shown that from the relation (24) one can derive (by acting with d/d lnµ on
both side) a first order differential equation for the µ dependence of the finite renormalized coupling

µ
d

dµ
eR(µ) = β0eR(µ)

3 + β1eR(µ)
5 + . . . ≡ β(eR(µ)) (32)

known as the β function equation, or sometimes also as the renormalization group equation for the
running coupling.

The β-function equation plays an important role in the Standard Model. It should be clear that
its occurrence is generic. Because each coupling in the Standard Model requires renormalization, each
will have its own β-function. The β functions are only known in form of a perturbative expansion, as in
Eq. (32). For non-abelian gauge theory no less than the first four terms are known (five for the case of
SU(3) [6]!). The first term

β0 = −11CA − 4TFNF

12π
(33)

was calculated in the early 70’s. The 2004 Nobel Prize was awarded for this calculation, in particular
for the interpretation for the fact that the term is negative, about which more below. From eq. (32) we
can already see that if the function has negative coefficents, as non-abelian gauge theories such as QCD
do, the coupling decreases for a positive increment in the scale µ, i.e. when µ → µ + dµ, leading to
asymptotic freedom in the ultraviolet, and strong binding at low scales µ.

2.3.4 Symmetries of QCD
Before diving further into the perturbative aspects of QCD, let us devote now a bit of space to considering
the fundamental symmetries of QCD. We discussed some of this already qualitatively in section 2.1, here
we discuss these from a field-theoretical point of view. The defining symmetry of QCD is the local SU(3)
symmetry, under which the quark transform as

ψ(x) → ψ′(x) = U(x)ψ(x), U = exp(ξata), (34)

where the matrices ta are called the generators of the group defined in the representation appropriate
to ψ, and the ξa constitute a set of linearly independent real parameters in terms of which the group
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elements can be described. The number of generators is obviously equal to the number of independent
parameters ξa and therefore to the dimension of the group, but is not necessarily related to the dimension
of the matrices U and ta8. Hence, U is a square matrix whose dimension is equal to the number of
components in ψ (3 in the case of QCD). The covariant derivative should be such that when acting on a
field that already transforms covariantly, the result will transform covariantly also

Dµψ(x) → (Dµψ(x))
′ = U(x)Dµψ(x). (35)

To this end one introduces a (set of) gauge field(s)

Dµψ ≡ ∂µψ −Wµ ψ, Wµ =W a
µ ta , (36)

so that also Wµ is matrices, and the number of gauge fields equals the number of generators (8 in the
case of SU(3)). With the property (35) it is easy to construct non-abelian gauge theory. The rule (35)
holds if Wµ transforms as

Wµ →W ′
µ = UWµU

−1 + (∂µU)U−1 , (37)

i.e. inhomogeneously (the second term does not contain Wµ), and non-covariantly (the second term
depends on the derivative of U(x)). With the covariant derivative one can also construct the field strength
tensor

Gµν = −[Dµ, Dν ] = ∂µWν − ∂νWµ − [Wµ,Wν ], (38)

The field strength transforms covariantly and homogenously

Gµν → G′
µν = UGµνU

−1 . (39)

Finally, the QCD coupling constant can be introduced by replacing

W a
µ → gW a

µ , Gaµν → g Gaµν . (40)

With this we can write down the QCD Lagrangian for one quark flavour, with mass m

L =LW + Lψ
= 1

4Tr [Gµν G
µν ]− ψ̄ /Dψ −mψ̄ ψ . (41)

Thanks to the rules in (34,35) and (39), it is straightforward to check its local SU(3) invariance

We now turn to a global symmetry of the QCD Lagrangian, that is relevant because there is more
than one quark flavour. The full QCD Lagrangian reads

LQCD = −1

4
Tr(GµνG

µν)−
nf∑

f=1

ψf ( /D +mf )ψf . (42)

Besides having local symmetry, this Lagrangian has an interesting global symmetry if the masses of the
quarks may be neglected. We can use the chiral projector PL = (1 + γ5)/2 and PR = (1 − γ5)/2 (it is
easy to check that they are idempotent, that PLPR = PRPL = 0 and that they and sum to 1) to define
left- and righthanded quarks

ψL = PLψ, ψR = PRψ . (43)

In these terms, the fermion sector of (42) reads

nf∑

f=1

ψf ( /D +mf )ψf =

nf∑

f=1

(ψL,f /DψL,f + ψR,f /DψR,f )

nf∑

f=1

mf (ψL,fψR,f + ψR,fψL,f ) . (44)

8For instance, for the three SU(2) generators one can choose 2,3,... dimensional matrices, corresponding to (iso)spin
1
2
, 1, . . . .
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When setting mf = 0 one notes that the left- and righthanded quarks have no interactions. We may in
fact mix them independently

ψL,i → ψ′
L,i = UL,ijψL,j , ψR,i → ψ′

R,i = UR,ijψR,j , (45)

with UL and UR independent unitarity matrices. The dimension of these matrices is equal to the number
of quark flavours that is (approximately) massless. This is a good a approximation for the up and down
quarks, in general still reasonable for the strange quark, but for the heavy quarks not anymore. Note that
the chiral symmetry UL ⊗ UR is a global symmetry, we do not make an effort to make this symmetry
local. It relates many properties of pions and kaons.

But this symmetry becomes especially interesting when one accounts for the fact that the QCD
nonperturbative vacuum should have the structure

∑

f

〈ψL,fψR,f 〉+ (L↔ R) . (46)

In words, in the QCD groundstate left- and righthanded projections of quark flavours are coupled, so that
this chiral symmetry is spontaneously broken. By Goldstone’s theorem, the spectrum of QCD (the set
of actually realized particles) should feature massless spinless bosons. They must however be odd under
parity, so that they are in fact pseudoscalar bosons. The obvious candidates for these would be the pions
and kaons of the pseudoscalar meson octet. The reason is that the groundstate (46) is still invariant when
choosing UL = UR (so-called vector rotations), but when transforming left- and righthanded quarks
differently, a γ5 remains, which implies that the goldstone bosons behaves as ψγ5ψ, i.e. as pseudoscalar
mesons.

Though it still an unsolved problem how to compute the non-perturbative QCD spectrum fully
analytically from the Lagrangian (42), one may set up an effective theory, Chiral Perturbation Theory
(χPT), for pions (and kaons) valid for low energy scattering. However, in these notes we shall not go
further into this interesting subject.

2.4 Evidence for colour
Because the QCD colour quantum number is so central to its understanding and functioning, it would be
interesting to verify it. This is not straightforward, as we discussed, since colour is confined (hadrons
are “white”), so that its existence can only be inferred. Let’s see how this might be done. Consider the
total cross section for the production of a fermion-antifermion pair ff̄ in an electron-positron collision,
to lowest order in the electromagnetic coupling. The fermion has e.m. charge Qfe and mass m, and we
approximate the electron to be massless. The answer is in fact quite simple

σf (s) =
4πα2Q2

f

3s
β

(
1 +

2m2
f

s

)
θ(s− 4m2

f ) (47)

where s is the center-of-mass energy squared. Note that we have attached a label f to the mass the type
of fermion f . The factor involving the electric charges also depends on the fermion “flavour”. Thus, for
an electron, muon and tau Qf = −1, for up, charm, and top quarks Qf = 2/3, while for down, strange

and bottom quarks Qf = −1/3. The factor β =
√
1− 4m2

f/s is a phase space volume factor; when s is

just a little bit larger than 4m2 β is close to zero, i.e. near threshold the cross section is small. Far above
threshold β ∼ 1. The theta function ensures that the cross section is only non-zero is the center of mass
energy is large enough to produce the quark pair.

How might we use this result? If the produced fermions are electrons, muons or taus we can
directly confront the result with data, and agreement is in fact very good. There is a more interesting use
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of the formula in Eq. (47). Consider the inclusive quark cross section

σhad(s) =
∑

f=u,d,s,c,...

4πα2Q2
f

3s
β

(
1 +

2m2
f

s

)
θ(s− 4m2

f )Nc (48)

The extra factor Nc at the end accounts for the fact that quarks come in Nc = 3 colours. We may
interpret this in fact as a prediction for the inclusive hadron cross section, because the quark final state
must, before they reach any detector, make a transition to a hadronic final state, see the illustration in
Fig. 7. In Fig. 8 we see the confrontation of this result with data, and that the agreement is very good,

f

f̄

hadrons

Fig. 7: e+e− → hadrons; the blob represents the "hadronization" process. Note that time runs from left to right in
this diagram.

except that we did not anticipate the huge peak near
√
s ≃ 90GeV. That is because we did not include in

our calculation of σf (s) in eq. (47) a second diagram in which not a photon (as in Fig. 7) but a Z-boson
of mass MZ ≃ 90GeV mediates the scattering. Had we done so, we would have more terms in final
answer for σ(s) in Eq. (47), with the factor 1/s replaced 1/(s −M2

Z + Γ2
Z), where ΓZ is the Z-boson

decay width (about 2 GeV). The good agreement also implies that the effect of higher order corrections
to σ(s) should be small, and indeed they turn out to be so, after calculation. We can now define an
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Fig. 8: Total cross section for e+e− to fermions.

observable traditionally called R

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(49)

The benefit of defining such a ratio is that a many common factors cancel in the theoretical prediction,
and that many experimental uncertainties cancel in the experimental measurement. We have then

R(s) =

∑
f=u,d,s,c,... σ(e

+e− → ff̄)

σ(e+e− → µ+µ−)
(50)
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For large center-of-mass energy
√
s we can derive from (48) that

R(s)
s→∞−→ Nc

∑

f=u,d,s,c,...

Q2
fθ(s− 4m2

f ) (51)

In Fig. 9 we confront this result with experiment. We can draw the conclusions that (i) there is again

10
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2

ρ

ω
φ

ρ

J/ψ ψ(2S)
ZR

S    GeV

Fig. 9: R-ratio vs. center of mass energy

fairly good agreement between prediction and measurement; (ii) we see the effects of new quark flavour
f being “turned on” as the energy increases beyond 2mf (mc ≃ 1.5 GeV, mb ≃ 5 GeV); (iii) the larger
step at charm than at bottom (proportional to Q2

c = 4/9 and Q2
b = 1/9, respectively) is well-predicted;

(iv) the value of R(s), say beyond the bottom quark threshold

R(s) = Nc

∑

f=u,d,s,c,b

Q2
fθ(s− 4m2

f ) = 3
(
4
9 + 1

9 + 1
9 + 4

9 + 1
9

)
= 11

3 (52)

agrees with experiment, and indicated that quarks come indeed in 3 colours.

3 Higher orders
In this section we discuss a number of key aspects relevant for computing higher-order effects in QCD.
These are crucial to present-day applications of QCD for collider physics, so we provide a fair amount
of detail.

3.1 Parton distribution functions (PDFs)
Before discussing how to compute higher-order partonic cross sections, let us discuss the quantities
that form the interface of these to the hadronic cross sections: parton distribution functions. A recent,
excellent review can be found in [7]. We already encountered the PDFs in section 2.2 in the context of
the parton model, where they were functions of the momentum fraction variable (“x”) only. However, in
the context of higher-order calculations they play a central role in the cancellation of initial state collinear
divergences, and in that process also acquire (logarithmic) factorization scale dependence. It should be
clear that, being the interface between hadronic and partonic cross sections, they play a crucial role at
the hadron colliders such as the HERA, Tevatron and LHC, and the quality of theoretical predictions is
directly tied to knowing the PDFs well. Thus, we need to understand how to determine the PDFs and
their uncertainties. To be precise, 11 of them: 5 quark, 5 anti-quark and 1 gluon PDF, which we denote
by φi/P (ξ, µF ), the number of partons of type i in the proton with momentum fraction ξ, at factorization
scale µF .

Key to this determination is their universality: the QCD factorization theorems [8] ensure that it is
same set PDFs that occurs in all well-defined partonic cross sections to any fixed order. Therefore, one
may choose (with care) a set of observables (e.g. DIS structure functions, certain hadron collider cross
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sections) to infer the PDFs from. Since each is described as a combination of PDFs and partonic cross
sections we have the set of equations

[On +∆On]
exp =

11∑

i=1

φi/P ⊗ [σ̂n,i ± δσ̂n,i]
theory , (53)

where also the experimental and theoretical uncertainties are indicated. From this set of equations the
PDFs may be inferred. Notice that if the calculations on the rhs are all of order NkLO, then the PDFs
inferred are also labelled NkLO, even though there are intrinsically non-perturbative functions. The
NkLO PDFs can then be consistently used for other NkLO (and of course also for lower k) calculations.

The determination of the PDFs is not a trivial matter, and is performed by various groups, each
taking different approachs. The groups are known by acronyms of various lengths: MSTW, CTEQ,
NNPDF, GJR, HERAPDF, ABKM, etc. Below we shall discuss briefly some features and results of
some of these approaches.

First, a brief aside on the formal aspects of a PDF. Although they cannot yet be computed from
first principles, it is possible to give a precise definition of PDFs in terms of operators. In essence, it is
the expectation value of a parton counting operator (think of a†a for a harmonic oscillator in quantum
mechanices) in a proton state. For the quark case it is

φq/P (ξ, µ) =
1

4π

∫ +∞

−∞
dy−e−ip+y−〈p|q̄(0, y−, 0T )γ+q(0, 0, 0T )|p〉 . (54)

We have introduced here also lightcone notation for 4-vectors

p± =
p0 ± p3√

2
, p · q = −p+q− − p−q+ + pT · qT . (55)

so that γ+ = (γ0 + γ3)/
√
2 in (54). The benefit of having a definition such as (54) is that one can

compute now higher-order corrections to the operator, renormalize it, and then have a renormalization
group equation for it. This is in fact then precisely the DGLAP equation. Note this can all be done in
QCD perturbation theory. For the purposes of such calculations one can replace the proton states with
parton states. Of course, the non-perturbative aspect comes in when evaluating the operator in a proton
state. The DGLAP evolution equation reads

µ
d

dµ
φi/P (ξ, µ) =

∑

j

∫ 1

ξ

dz

z
Pij(z, αs(µ))φj/P

(
ξ

z
, µ

)
, (56)

where the Pij are the Altarelli-Parisi splitting functions, which act here as evolution kernels. With
evolution is meant the change in form of the function as the energy scale µ evolves. They are now known
to NNLO (3-loop) [9, 10]. The logic is thus not unlike that of the running coupling, but now we have
“running functions”.

Returning now to how to extract the actual functional form of the PDFs from the equation (53),
we see how the DGLAP equation is very useful. The data, on the lhs of (53), are taken at various energy
scales. The theoretical description can for each observable be computed at the same energy scale because
the scale evolution of the PDFs is known, so that meaningful comparison can be made.

The selection of observables to be used in eq. (53) must be done with care. Different observables
should be sensitive in different ways to the various PDFs, so that a reliable extraction of a PDF is possible
for each parton type. For instance, in DIS the most important partonic subprocess is γ∗q → q + X
(where the off-shell photon is exchanged with the initial electron), so that associated observables are
particularly sensitive to light quark PDFs. A nice overview of the main processes involved can be found
in table 1, taken from Reference [11], which lists the processes that are included in a typical present-day
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Process Subprocess Partons x range
ℓ± {p, n} → ℓ±X γ∗q → q q, q̄, g x & 0.01
ℓ± n/p→ ℓ±X γ∗ d/u→ d/u d/u x & 0.01
pp→ µ+µ−X uū, dd̄→ γ∗ q̄ 0.015 . x . 0.35
pn/pp→ µ+µ−X (ud̄)/(uū) → γ∗ d̄/ū 0.015 . x . 0.35
ν(ν̄)N → µ−(µ+)X W ∗q → q′ q, q̄ 0.01 . x . 0.5
ν N → µ−µ+X W ∗s→ c s 0.01 . x . 0.2
ν̄ N → µ+µ−X W ∗s̄→ c̄ s̄ 0.01 . x . 0.2

e± p→ e±X γ∗q → q g, q, q̄ 0.0001 . x . 0.1
e+ p→ ν̄ X W+ {d, s} → {u, c} d, s x & 0.01
e±p→ e± cc̄X γ∗c→ c, γ∗g → cc̄ c, g 0.0001 . x . 0.01
e±p→ jet +X γ∗g → qq̄ g 0.01 . x . 0.1

pp̄→ jet +X gg, qg, qq → 2j g, q 0.01 . x . 0.5
pp̄→ (W± → ℓ±ν)X ud→W, ūd̄→W u, d, ū, d̄ x & 0.05
pp̄→ (Z → ℓ+ℓ−)X uu, dd→ Z d x & 0.05

Table 1: The main processes, their dominant subprocesses and the parton types they mostly affect, and the rel-
evant x range. that are included in the MSTW 2008 global PDF analysis. They are partitioned into fixed-target
experiments, HERA and the Tevatron.

global fit (MSTW08), and the PDFs they constrain. A priori, the space of functions is too large to be
constrained through a global fit implied by solving eq. (53) for the PDFs using a finite amount of data, so
some assumptions must be made. The various groups differ in their approaches to this issue to varying
degrees, and, related to this, also in their determination of the errors of the extracted PDFs.

A few constraints are taken along. First, charm and bottom PDF’s can be determined from the
light flavour ones, assuming that such heavy quark arise from gluon splittings in the proton. This can
be done in different ways, known as variable flavour number schemes, see also [7] for further comments
and references. Also, the already mentioned charge and momentum sum rules must be obeyed precisely.

The most common approach is to take a physically motivated form for the PDFs at a low fixed
scale Q0 such as

φi/P (x,Q
2
0 = xαi(1− x)βigi(x) , (57)

with the choice of function gi(x) differing per group (polynomials, exponentials etc). The form at other
scales is found by solving the DGLAP evolution equation (56). Typically about 20-30 parameters are
then to be fitted using χ2 as goodness-of-fit

χ2 =

Ndata∑

i,j=1

(Di − Ti)
(
V −1

)
ij
(Dj − Tj) , (58)

where Di, Ti are data and theoretical prediction, respectively, and V is the experimental covariance
matrix. The uncertainties are determined by varying the parameters such that per variation along certain
directions in parameter space (determined by the Hessian matrix) the χ2 increased by a fixed amount.
In this way, one generates a best-fit PDF set and a collection of one-sigma error sets, from which then
uncertainties for physical observables may be determined.

Another approach is to use, instead of the fixed forms in (57), an approach that does not include
theoretical bias at the outset, using neural networks. The number of free (architecture) parameters in this
case is of order 200-300 and very redundant, but that’s ok. The probability distribution in the space of
function is modelled by a Monte Carlo sample of replica’s, so that averages and standard deviations can
be easily computed using sums over replicas.
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Both approaches agree quite well, and differences are very instructive. A comparison of various
recent sets for the LHC at 8 TeV is shown in Fig. 10 Clearly, the topic of PDF determination is highly
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Fig. 10: Comparison of gluon-gluon luminosity functions for various PDFsets, relative to the MSTW08 set. Taken
from [7].

important, and progress continues as data accumulate and understanding of subtle bias effects improves.
A recent review [12] describes the state of affairs at the start of LHC run 2.

3.2 e+e− collisions and event shapes
Before continuing with aspects of QCD at hadron colliders, let us first have a look at issues in QCD at
e+e− colliders, such as the former LEP collider at CERN. Such colliders are, in a sense, the cleanest
place to study QCD, due to the pointline, non-strongly interacting initial state particles. We already saw
how the number of colours, and the masses of heavy quarks can be seen in in R-ratio. However, the
R-ratio involves the total cross section, and is not sensitive to the particular shape or structure of the final
state.

There are other observables or variables that can be, and were, measured, experimentally. and
are also theoretically consistent (that is, they are infrared-safe, which we discuss in section 3), and are
sensitive to the geometry or structure of the final state. These event shape observables describe properties
of final state configurations differently from the total cross section in e+e− collisions (they have also been
generalized to other collision types).

A well-known example of such an infrared safe event shape is the maximum directed momentum,
or thrust T , in e+e− collisions. The thrust of an event is defined by

T = maxn̂

∑
i |~pi · ~̂n|∑
i |~pi|

, (59)

where the pi are the momenta of the particles and the unit three-vector ~̂n is varied until a maximum value
of T is obtained. It varies between T = 1

2 for a spherical energy flow and T = 1 for a pencil-like linear
energy flow of two very narrow, back-to-back jets. Let us illustrate this discussion by the calculation of
the thrust distribution for the reaction

e+(k1) + e−(k2) → γ(q) → q(p1) + q̄(p2) + g(p3) . (60)

The Feynman diagrams are shown in Fig. 11. The kinematical situation is that of an off-shell photon
decaying into three massless partons, which allows us to use Dalitz plot variables to describe the final
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Fig. 11: Feynman diagrams for e+e− → γ → qq̄g at lowest order in the QCD coupling

state. The Dalitz plot for a decay into 3-particle final state is a scatterplot of events in a plane spanned by
two of the final particle energies. The reason for plotting events this way is that the phase space measure
is “flat” in those variables, so that any clustering of events represents an intermediate resonance in the
decay.

Let us then choose two energies to specify the allowed region in a Dalitz plot, or, more conve-
niently and equivalently, choose invariant mass variables. Hence, using the particle name to represent its
four momentum, we introduce s13 = −(p1+p3)

2, s23 = −(p2+p3)
2 and s12 = −(p1+p2)

2. Since the
three final particles are coplanar, the whole kinematics is specified by s13, s23 and 3 angular variables.
One angular variable θ specifies the polar angle between the beam axis and a line in the three-particle
plane. Another azimuthal angular variable φ specifies the orientation of the plane will respect to this line
and finally there is an overall azimuthal angle χ. The phase space for the final three particles therefore
becomes

1

(2π)5

∫
d3p1
2E1

∫
d3p2
2E2

∫
d3p3
2E3

=
1

(2π)5

∫
1

32q2
ds13ds23dφd sin θdχ . (61)

The expression for the cross-section after squaring the matrix element for e+e− → qq̄g and integrating
over φ and χ turns out to be

d3σ

ds13ds23d sin θ
=
α2
e

8

αs
q2
(
x1

2 + x2
2
) (

2 + cos2 θ
) 1

s13s23
, (62)

where the variables xi = Ei/E, with E =
√
q2/2, are related to the invariant mass variables by s13 =

q2(1 − x2), s23 = q2(1 − x1), s12 = q2(1 − x3). Note that x1 + x2 + x3 = 2. From (62) we see that
the angular distribution of the normal to the plane with respect to the beam line is given by 2+ cos2 θ. A
final integration over sin θ yields the two equivalent expressions.

σ−1
T

d2σ

ds13ds23
=

2

3π
αs
x21 + x22
s13s23

, (63)

or

σ−1
T

d2σ

dx1dx2
=

2

3π
αs

x21 + x22
(1− x1)(1− x2)

, (64)

where we have divided both sides of the equation by σT = 4
3πα

2
e/s, the e+e− → µ+µ− cross section.

These distributions diverge for small invariant masses, or, equivalently as the scaled energies x1,2 of the
quark and antiquark go to one. It is not very difficult to show that the thrust variable T for the present
case is equal to max(x1, x2, x3) for each event, with 2

3 ≤ T ≤ 1. For fixed T the allowed region in
x1, x2 is then shown in Fig. 12. The lines EF, FD and DE are the lines x1 = 1, x2 = 1 and x3 = 1,
respectively. The figure shows the subdivision of the final phase space into three regions depending on
which particle has the largest x value. Consider first the case T = x2. Then we have

σ−1
T

dσ

dT
=

2αs
3π

∫
dx1dx2δ(T − x2)θ(T − x1)θ(T − x3)
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Fig. 12: Contributing regions in x1,2 for a given value of thrust T . On the line DE x3 = 1 (recall that x1+x2+x3 =

2). At the point G all three xi are equal to 2/3. In each of the three triangles that join at G one of the three xi is
largest, as indicated. On the dashed line the value of T is constant.

× x21 + x22
(1− x1)(1− x2)

=
2αs
3π

∫ T

2(1−T )
dx

T 2 + x2

(1− T )(1− x)

=
2αs
3π

{1 + T 2

1− T
ln

2T − 1

1− T
+

3T 2 − 14T + 8

2(1− T )

}
, (65)

with an identical result for T = x1. The T = x3 case is slightly different, and corresponds to integrating
over the dashed line parallel to DE in Fig. 12. On this line we have that x1 = 2 − T − x2, while x2
ranges from 2(1− T ) to T . One then finds

σ−1
T

dσ

dT
=

4αs
3π

{1 + (1− T )2

T
ln

2T − 1

1− T
+ 2− 3T

}
. (66)

Clearly there is different, interesting dependence on T for the various cases.

Note that the thrust distributions for the quark and antiquark are singular as T → 1, signifying the
appearance of soft and/or collinear singularities, where either the gluon is very soft, or the (anti-)quark-
gluon splitting is essentially collinear (in the T = x3 case (66) the distribution is singular but integrable).
In these infared and collinear regions of phase space non-perturbative effects must start playing a role in
order to cure this apparent problem in perturbative QCD.

The different expressions for the thrust dependence for different regions in Fig. 12 allow us to
make an interesting observation. Since the integral of the gluon T distribution in (66) is integrable at
T = 1, we can integrate it from T = 2/3 to T = 1 to find the probability that the gluon is the most
energetic particle. This yields

σ−1
T

∫ 1

2/3

dσ

dT
dT = 0.61

αs
π
. (67)

We can reasonably 9 assume that αs is a function of q2, the center-of-mass energy squared, so that the
9A higher-order calculation of the thrust distribution [13–16], which requires renormalization of the QCD coupling, confirms

this.
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total probability that the gluon is the most energetic particle decreases with increasing q2. The probability
that the quark or the antiquark is the most energetic particle is then given by (1− 0.61αs/π).

The total thrust distribution is twice the result (65) (accounting for the cases T = x1 and T = x2)
added to the result (66), which yields

σ−1
T

dσ

dT
=

2αs
3π

[2(3T 2 − 3T + 2)

T (1− T )
ln

2T − 1

1− T
− 3(3T − 2)(2− T )

1− T

]
. (68)

Because the integrand is integrable at T = 1 we can also compute the average value of (1−T ) from this
formula

〈1− T 〉 ≡ σ−1
T

∫
dT

dσ

dT
(1− T ) = 1.05

αs(q
2)

π
. (69)

We see that this average value of (1− T ) decreases with increasing q2.

A comparison of higher-order calculations for thrust with data is shown in Fig. 13, showing the
good quality of (but also the need for) the NNLO approximation.
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Fig. 13: A comparison of thrust data from the ALEPH collaboration, with LO, NLO and NNLO calculations for
various LEP cm energies. Figure taken from [17].

This concludes our rather detailed look at event-shape variables, where we already saw the ap-
pearance of infrared and collinear singularities. We now turn to a more detailed discussion of these, as
this is a central issue in the application of perturbative QCD for colliders.
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3.3 More on e+e− cross sections, IR divergences, KLN theorem
The ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) was already discussed in section 2.4 when
discussing evidence for colour. In order to compute higher-order QCD corrections to this ratio, i.e. to
the e+e− total cross section, we must deal with infrared and collinear divergences (often collectively
called “infrared”). This can be seen if one would integrate the expression (68) over T ; it would produce
a divergence due to the 1/(1− T ) behaviour.

The Kinoshita-Lee-Nauenberg theorem [18, 19] (KLN) now states that, when summing over all
contributions to the observable at that order (i.e. also the loop-corrections) the divergences cancel if the
sum is over a sufficiently degenerate set of states.

This is a very powerful result, so let us discuss it a bit further. One of the crucial aspects of massless
particles is indeed that one is dealing with degenerate states. For instance, in quantum electrodynam-
ics, it is not meaningful to distinguish between a single electron and an electron accompanied by any
number of zero-momentum photons, as the corresponding states carry the same electric charge, energy
and momentum. An (infinite) degeneracy of states implies that a naive application of perturbation theory
may run into difficulties, a phenomenon that is, for instance, also known from applications in quantum
mechanics. According to the Kinoshita-Lee-Nauenberg (KLN) theorem [18,19] the divergences that are
in principle present in partial transition probabilites, must cancel when averaging over a suitable set of
degenerate states. This theorem encompasses in fact the older Bloch-Nordsieck [20] theorem.

Observables sufficiently inclusive to allow a sum over a sufficiently large ensemble of degenerate
states for the KLN cancellations to occur, are known as infrared safe. How large an ensemble should
be depends on the experimental process that one is considering. Of course in electron-positron annihi-
lation at high energies, the total cross section (where one sums over all possible finite states) certainly
constitutes an infrared safe quantity, so reliable predictions in perturbative QCD should be possible.

Let us, then, examine the first three terms in the perturbation series for R [21], in the limit of zero
fermion mass (owing to the KLN theorem the quark mass could be suppressed without encountering
infrared divergences)

R(t) =
(∑

f Q
2
f

){
1 +

αs(t)

4π
3C2(R)

+

(
αs(t)

4π

)2 [
−1

2C
2
2 (R) +

(
123
2 − 44ζ(3)

)
C2(G)C2(R)

+nf (−22 + 16ζ(3)) C2
2 (R)

3
8

]
}
, (70)

where (
∑

f Q
2
f ) denotes the square of the electric charges of the fermions and C2(G), C2(R) are colour

factors of SU(3), As before, t represents the logarithm of the ratio of two energy scales, one being the
total center-of-mass energy q2 of the incoming electron-positron pair and the other some reference scale.
Obviously, the running coupling constant should be evaluated to the same order as the cross section.
Through αs(t) this result thus depends on the number of quark flavours nf .

The Riemann zeta function invariably appears in higher-loop calculations. It is defined by ζ(z) =∑∞
n=0 1/n

z . The specific value encountered above is ζ(3) ≈ 1.2020569. Using these values, the numer-
ical coefficients for SU(3) with nf = 5 quark flavours yield

R(t) =
(∑

f Q
2
f

)(
1 +

αs(t)

π
+ 1.409

(αs(t)
π

)2)
. (71)

We see that the coefficient in front of the (αs(t)/π)
2 is not too large, and the perturbative description is

well-behaved. As is clear from Fig. 9 the result above should be used with great caution in the vicinity of
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heavy flavour thresholds, because bound states appear in R(t), which are not describable in finite order
perturbation theory.

Let us next discuss two important, technical but generic issues that arise in the derivation of results
such as (71) in the context of dimensional regularization. The first concerns the integration over phase
space. Because the quantities that one calculates are infrared safe, infrared divergences must cancel at
the end of the calculation. This requires one to determine the full cross section in n dimensions and
take the limit n → 4 only at the end. In particular, also the phase-space integrals should be evaluated
in n dimensions. The second issue is that that the mass shell for massless particles poses problems in
perturbative calculations. On-shell massless particles may split into perfectly collinear massless particles
which then remain on their mass shells. This makes the mass shell ill-defined, and singularities appear,
as we will see below. Moreover, there is a conceptual problem in that on-shell massless particles should
correspond to asymptotic states. But in a confined theory such as QCD the massless partons do not
correspond to physical states, which consist of massive hadrons. For infrared safe observables this is in
fact not fatal to predictive power, but for calculations this is at least at an intermediate level a cumbersome
feature. We now discuss these two aspects in turn.

In n dimensions the two-particle phase-space integral is defined by

I(n)(s,m2
3,m

2
4) =

∫
dn−1p3

(2π)n−12ω3

dn−1p4
(2π)n−12ω4

(2π)n δ(n)(p1 + p2 − p3 − p4) , (72)

where s = −(p1+p2)
2 and ω3,4 = (p2

3,4+m
2
3,4)

1/2. We choose the centre-of-mass frame and decompose
the full integral in one over the n− 2 angular variables (which we leave unperformed) and one over the
length of the (n − 1)-dimensional momentum vector p3 = −p4, which contains a delta function, and
which we do perform. It yields

I(n)(s,m2
3,m

2
4) =

1

8π
√
s

[λ(s,m2
3,m

2
4)

16π2s

]n−3
2

∫
dΩCM , (73)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. As usual this expression must be combined with
the square of the invariant amplitude to yield a cross section or decay rate. Assuming that the invariant
amplitude depends only on the deflection angle θCM between p1 and p3, we can integrate over the
remaining n− 3 angles, using the formula

∫
dΩCM =

2π−1+
1
2n

Γ(12n− 1)

∫ π

0
dθCM

[
sin θCM

]n−3
, (74)

where the integral on the left-hand side runs over all n − 2 angles, while the integral on the right-hand
side contains only the deflection angle. Typically one needs the integral for m4 = 0, reflecting emission
of a massless particle. Replacingm3 bym and introducing the variables x = m2/s and y = 1

2(1+cos θ)
the combined result for the phase-space integral reads

I(n)(s,m2, 0) =
1

8π

(m2

4π

)−2+
1
2n x

2−1
2n(1− x)n−3

Γ(12n− 1)

∫ 1

0
dy [y(1− y)]−2+

1
2n , (75)

which has the correct dimension of a mass to the power n − 4. For n > 2 this expression is free of sin-
gularities. Corresponding expressions can be derived for multi-particle phase-space integrals. Formulae
like (75) are obviously needed for calculating decay rates and cross sections in arbitrary dimension, the
squared invariant amplitudes for which are then functions of y. The y-integral can be evaluated by using
the relation ∫ 1

0
dy yp−1(1− y)q−1 = B(p, q) =

Γ(p)Γ(q)

Γ(p+ q)
, (76)
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where B(p, q) is the Euler beta-function. Depending on the invariant amplitude of the process, infrared
divergences can then appear as poles in the Gamma function, just as for virtual corrections.

The second issue involves the definition of the mass shell for massless particles in dimensional
regularization. To this end we let us turn to the evaluation of a typical one-loop self-energy diagram This

k

Fig. 14: A typical one-loop self-energy diagram

involves an integral of the type

I(k2,m2
1,m

2
2) =

1

(2π)n

∫
dnq(

(q + 1
2k)

2 +m2
1

)(
(q − 1

2k)
2 +m2

2

) . (77)

We imagine k to be the momentum of a massless particle that is off-shell and put m1 = m2 = 0. Using
Feynman parameters one obtains

I(k2, 0, 0) =
i

16π2
Γ(2− 1

2n)
( k2
4π

)−2+
1
2n
∫ 1

0
dx [x(1− x)]−2+

1
2n . (78)

The x integral can be evaluated using (76) and becomes (Γ(12n− 1))2/Γ(n− 2), so that

I(k2, 0, 0) =
i

16π2
Γ(2− 1

2n)Γ(
1
2n− 1)2

Γ(n− 2)

( k2
4π

)−2+
1
2n
. (79)

This expression exhibits poles for both large and small values of n, signaling ultraviolet and infrared sin-
gularities respectively. The last factor in (79) shows that the result is in fact ambiguous when approaching
the mass shell, k2 → 0. When considering infrared divergences one assumes n > 4 so that the integral
is in fact zero on the mass shell. Hence, one can omit self-energy loop corrections for massless external
particles. In fact, their zero contribution can be shown to be due to a perfect cancellation between a
UV divergence and a collinear divergence. However, one must still include the UV counterterms on the
external lines. The sum of the two is then in fact the collinear divergence, which in turn will cancel in a
calculation of infrared safe quantities.

3.4 Jets
Besides event shapes there is another important class of infrared safe observables that uses the notion of
a jet. In high-energy e+e− collisions the photon couples directly to a quark-antiquark pair, and the latter
are then produced back-to-back in the e+e− cm frame, with high momentum. As the quarks begin to
fly apart they undergo the complicated fragmentation or hadronization process that leads to colourless
hadronic final states. One could therefore expect the final hadrons to follow the line of flight of the quarks
to produce two streams of back-to-back particles, as depicted in Fig. 15. The angular distribution of the
quarks is 1 + cos2 θ, where θ is the polar angle between a quark and the beam direction. The angular
distribution of the hadrons should then have roughly the same dependence on cos θ. Indeed this is the
case.

In the context of considering the effect of higher orders, one may ask how this angular distribution
is changed by the emission of an additional gluon. Remember that the contribution due to gluon emission
contains soft and collinear divergences, to be cancelled via the KLN theorem. Intuitively, one would
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e+ e–

q

q̄

hadrons

hadrons

Fig. 15: Two jets of hadrons arising from quark-antiquark production in an e+e− collision. The blobs represent
the hadronization process.

think that one does not need to integrate over all possible gluon emission energies and angles; if we
only integrate the gluon emission rate over a small angle close to the quark or antiquark direction the
collinear divergence should already cancel with the divergence contained in the virtual contribution,
leaving a contribution depending on the size of the angular range. Also, if we allow a (very) soft gluon
to be emitted and add this contribution to that from the virtual contribution we expect that the infrared
divergences will cancel too. The result will then still depend on one angle and one energy. One could
therefore define a two-jet event as one where almost all of the energy, namely (1 − ǫ)

√
s, is contained

in two small cones of semi-angle δ, where ǫ and δ are fixed, and can be reasonably large, as shown in
Fig. 16. An explicit calculation of the corrections to the (anti)quark angular distribution shows that the

δ

δ

Fig. 16: Two jets defined by an opening angle δ

angular distribution is still proportional to 1+ cos2 θ but the coefficient in front is modified by the factor

1− αs(q
2)C2(R)

π

[
(4 ln 2ǫ+ 3) ln δ + π2/3− 5/2 + 0(ǫ) + 0(δ)

]
. (80)

As one would expect, if one would take the limit ǫ and δ → 0 divergences the divergences show up again
in this factor, so one must be careful to choose ǫ or δ small but large enough that the αs correction in
(80) is still relatively small. In this way, due to Sterman and Weinberg [22], the jet angular distribution
is well-defined and has been successfully compared with experiment.
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One may now generalize the definition of a jet such that singularities still cancel, but that their
definitions are more easily implemented in both experimental measurements and theoretical calculations,
the latter in the form of a Monte Carlo program. To this end one constructs an iterative algorithm for
combining the measured hadrons (or computed partons) into jets. The starting point of such an algorithm
is a list of particles (hadrons or partons) with their energies and angles. For example, in one algorithm,
for all particle pairs i and j one then calculates the quantity yij = 2EiEj(1 − cos θij)/s. All yij’s
are now compared with a chosen value ycut. For each yij that is smaller than ycut the two momenta of
particles i and j are combined according some chosen prescription, for instance “add the four-momenta”.
Particles i and j are then removed from the list, but their combination is returned to the list as a new
’pseudoparticle’. The procedure is repeated until no two (pseudo)particles have an yij that is smaller
than ycut. This subdivides the experimentally measured or theoretically simulated events into a number
of clustered jets, of which one can study the properties. One should be aware however that not all
algorithms are infrared safe for all collider types.

This concludes our discussion of higher orders for collider processes with quarks and gluons only
in the final state. We now turn to the case where there are strongly interacting particles in the initial state
as well.

3.5 The Drell-Yan process
The Drell-Yan process [23] is, and has been, an important reaction in particle physics. It involves the
production of a lepton-antilepton pair in proton-(anti)proton collisions,

p+ p̄/p→ l + l̄ +X

where X denotes the rest of the final state. Leptons are relatively easy to detect and through this
reaction a number of important discoveries such as of the J/Ψ and the Υ mesons (and therefore of
the charm and bottom quarks), and of the W and Z vector bosons were made. From a theoretical
point of view, its QCD corrections are prototypical for any high-energy cross section with initial state
hadrons, and it is from this perspective that we shall discuss these corrections here. For simplicity we
will only examine the QCD corrections to the single differential cross section in the lepton pair invariant
mass Q, i.e. dσ/dQ2. Therefore the process is inclusive in all the hadron final states, which renders
the KLN theorem for the QCD corrections in principle operative (as we will see, only for the final
state). To calculate the corrections we consider the reaction at the partonic level, where the lowest order
approximation only involves only quark-antiquark annihilation into a virtual photon, which then couples
to the lepton-antilepton pair. The total cross section for quark-antiquark annihilation in the reaction
q(p1) + q̄(p2) → l(q1) + l̄(q2) can be computed as

σ
(0)
qq̄ (ŝ) =

1

4N2
c

1

2ŝ

∫
d3q1

(2π)32ω1

∫
d3q2

(2π)32ω2
(2π)4δ(p1 + p2 − q1 − q2)

∑
|M|2 , (81)

where ŝ = −(p1+p2)
2 = −(q1+q2)

2 = Q2, the sum is over all initial and final spin and colour indices,
and initial state spins and colours are averaged over.

We remind the reader that the hadronic cross section follows by convoluting this result with par-
tonic densities in the incoming hadrons, as in sections 2.2 and 3.1. We write ŝ = ξ1ξ2s, where ξ1,2
are parton momentum fractions and s is the collider cm energy squared. Also we introduce the variable
τ = Q2/s so that

dσ
(0)
pp (τ)

dQ2
=
∑

i,j

∫ 1

ξ1,min

dξ1

∫ 1

ξ2,min

dξ2 fi/p(ξ1)fj/p(ξ2)
dσ

(0)
ij (ξ1, ξ2)

dQ2
, (82)

where the f ’s are the parton distribution functions for the quarks and antiquarks in the proton and antipro-
ton. The sum runs over all quarks and antiquarks in both the proton and antiproton, while ξ1,min = τ ,
and ξ2,min = τ/ξ1. We return to this formula towards the end of this section.
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The only Feynman diagram to compute is the one photon exchange diagram for which the square
of the amplitude yields

∑
|M|2 = e4Q2

fTr(γµ/p1γν/p2)Tr(γµ/q2γν/q1)
1

ŝ2
. (83)

The charge of quark flavour f is Qfe, and the final trace is over the unit Nc-dimensional matrix labelled
by the colour indices. It is not difficult to work out (83). Moverover the integration over the lepton trace
in (81) can be done by applying the so-called Lenard identity (here given in n dimensions)

∫
dnq1 δ(q

2
1)

∫
dnq2 δ(q

2
2) δ

n(q − q1 − q2) q
µ
1 q

ν
2 =

(−q2
4

)(n−4)/2
π(n−1)/2

Γ((n+ 1)/2)

1

32
(q2ηµν + 2qµqν) . (84)

The final result, in 4 dimensions,

σ
(0)
qq̄ (ŝ) =

4πα2

3Ncŝ
, (85)

is only a function of ŝ. The differential cross section with respect to Q2 = −(q1 + q2)
2 can now be

derived using
dσ

(0)
qq̄ (Q

2)

dQ2
=

[
4πα2

3Nc(Q2)2

]
δ

(
1− Q2

ŝ

)
. (86)

Indeed, as a check

σ
(0)
qq̄ (ŝ) =

∫
dσ

(0)
qq̄ (Q

2)

dQ2
dQ2 =

4πα2

3Nc

∫
dQ2

(Q2)2
δ

(
1− Q2

ŝ

)
=

4πα2

3Ncŝ
. (87)

Note that (86) is no longer a function but a distribution as it is proportional to a δ-function with argument
proportional to ŝ − Q2. Therefore as far as the lowest order formula is concerned we can write either
dσ

(0)
qq̄ /dQ

2 or dσ(0)qq̄ /dŝ. The expression in square brackets in (86) we will refer to as σ(0)γ .

For the calculation of the QCD corrections we would prefer not to include the part of the diagram
where the photon decays into leptons, which is common to all diagrams to any order in QCD perturbation
theory. One can account for that by computing the ratio K of the squared amplitude for the process
q(p1) + q̄(p2) → γ∗(q) (q2 = −Q2) and the q(p1) + q̄(p2) → ll̄(q) at lowest order as follows

σ(0)(ll̄) = Kσ(0)(γ∗) . (88)

The factorK can be computed in dimensional regularization. It is valid to all orders in perturbative QCD,
because it only involves the electroweak final state. We shall not give the expression here, but thanks to
(88) we can now suffice with computing the cross section for γ∗ production.

Let us now evaluate the next order corrections to (82). We consider the quark-antiquark channel
and calculate the processes involving the virtual corrections to the Born reaction, and the counterterm
contributions. In Fig. 17 we show these, and also contributions to the quark-gluon channel, which are
typically smaller. The Feynman diagrams must be evaluated in n-dimensions and a colour matrix must
be added at the quark gluon vertex. We split the correction as follows

dσ
(1)
qq̄

dQ2
=
dσ

(1)
qq̄

dQ2
|virtual +

dσ
(1)
qq̄

dQ2
|real . (89)

Incidentally, we use n-dimensional regularization also for infrared divergences, and consider the quark
and anti-quark to be massless and on-shell. To see how this affects the loop integrals, let present the
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(a)

(b)

(c)

Fig. 17: The Feynman diagrams for the first order QCD corrections to the partonic Drell-Yan reaction in the quark-
antiquark collisions producing an off-shell photon. Shown are (a) loop contributions (b) counterterm contributions,
and (c) radiative graphs. The leptons into which the photon decays are not shown. Time runs from right to left in
this figure.

result for J(t, 0, 0), the scalar vertex function, where t = −Q2. It occurs in the first diagram in Fig. 17a
and is defined by

J(t, 0, 0) =
1

(2π)n

∫
dnq

((p+ q)2)((p′ + q)2)(q2)
, (90)

where p2 = p′2 = 0. The integral may be computed using standard methods in dimensional regulariza-
tion. The result is

J(t, 0, 0) = i(4π)−
n
2

(−t
µ2

)n−6
2
(µ2)

n−6
2

Γ(3− n/2)Γ2(n/2− 1)

Γ (n− 3)
× 4

(n− 4)2
, (91)

where we have inserted a mass scale µ to make the integral have the correct dimension in n space-time
dimensions. Notice that the last factor shows a double pole in n − 4, arising from the overlap of an
infrared and a collinear singularity, when the virtual gluon both becomes soft and collinear to either the
incoming quark or anti-quark. Also a two-denominator integral occurs when including numerator factors
in the leftmost graph of Fig. 17a. It reads

I(k2, 0, 0) =
1

(2π)n

∫
dnq

((q + 1
2k)

2)((q − 1
2k)

2)
, (92)

with k2 = Q2, and the result of doing the integral is

I(−t, 0, 0) = i(4π)−
n
2

(−t
µ2

)n−4
2
(µ2)n/2−2Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)
× 2

4− n
. (93)

Again it features a pole in n − 4. Note that it is not always obvious from superficial inspection to see
whether a 1/(n − 4) pole has an ultraviolet, infrared or collinear origin. However, in general, a UV
divergence occurs after the n-dimensional integral over the loop momentum, while the IR and collinear
singularities arise from the integrations over the Feynman parameters. The full result for the vertex graph
in Fig. 17a including numerator factors, reads, after substituting n = 4 + ε

Λ(p′, p) = e3γµi(4π)
−2
( −t
4πµ2

)ε/2
(µ2)ε/2

Γ(1− ε/2)Γ2(1 + ε/2)

Γ(2 + ε)
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×
[
8

ε2
+

2

ε
+ 1

]
. (94)

Besides the vertex graph we should also consider other virtual contributions, namely the one-loop gluon
self-energy corrections to the incoming on-shell quark and anti-quark, as well as contributions from
counterterms. However, none of these contribute to the present calculation. To see this, consider first the
self-energy contribution for an on-shell massless fermion

Σ(p) = −i/p− g2
∫

dnq

(2π)n
(−i/p)(−i/p− i/q)(−i/p)

(p+ q)2q2
. (95)

Using p2 = 0 this reduces to

Σ(p) = −i/p− i/p g2
∫

dnq

(2π)n
2p · q

(p+ q)2q2
. (96)

Writing
2p.q = (q + p)2 − q2 , (97)

we see that the O(g2) correction vanishes, by the rules of dimensional regularization, in which scaleless
loop integrals may be consistently set to zero.

Besides the loop diagrams also the O(αs) counterterms in the Lagrangian must be included in
the virtual contributions, shown in Fig. 17b. This is so even when a loop graph itself is zero, such as
for the quark and antiquark self energy corrections. There are in fact three counterterm diagrams in the
Lagrangian, indicated in Fig. 17b. The quark colours, when including initial quark colour averaging, here
merely lead to a common factor C2(R)/Nc for all three contributions. The counterterm contributions for
the self energy corrections must be included with a factor 1/2 due to the need to normalize the scattering
amplitude using the residue at the pole. When one does this, the counterterm contributions cancel agains
each other.

So, remarkably, in the end only the triangle diagram contributes to the virtual contribution, and we
have the result

dσ
(1)
qq̄

dŝ
|virtual = σ(0)γ Q2

f

1

2π
C2(R)

(4πµ2
ŝ

)−ε/2Γ(1 + ε/2)

Γ(1 + ε)

×
[
− 8

ε2
+

6

ε
− 8 +

2π2

3
+O(ε)

]
δ (1− x) , (98)

where x = ŝ/s. We have used the expansion ℜ(−1)ε/2 = ℜexp(εiπ/2) ≃ 1 − π2ε2/8. (We dropped
the imaginary part εiπ/2 since we only need the real part of the virtual contributions in the interference
with the Born diagram.) The other π2 terms in (98) follow from expansion of the Gamma functions

Γ(1− ε/2)Γ(1 + ε/2) = 1 +
π2

6

ε2

4
+O(ε3) . (99)

Next we must consider the real gluon bremsstrahlung graphs which as far as the partonic channel
is concerned contribute to the two-to-two body scattering cross section for q(p1)+ q̄(p2) → γ(q)+g(k).
Now since ŝ = −(p1+ p2)

2 is the square of the total centre-of-mass energy and Q2 = −q2 = (q1+ q2)
2

is the invariant mass of the dilepton pair then ŝ 6= Q2. It is convenient to rewrite the Mandelstam
invariants in terms of the two variables x = Q2/s and y = (1 + cos θ)/2. This yields the relations
s = Q2/x, t̂ = −Q2(1− x)(1− y)/x, and û = −Q2(1− x)y/x. In this bremsstrahlung correction we
will have contributions from the region x = Q2/s < 1, whereas the virtual and counterterm diagrams
only contribute at x = 1.
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Let us introduce a convenient shorthand notation for an l-particle n-dimensional phase-space mea-
sure ∫

PSl
dq1 · · · dql = (2π)n+l(1−n)

∫
dn−1q1
2q01

· · · d
n−1ql
2q0l

δ(n)(P −
l∑

i

qi) , (100)

where we have left the masses of each particle unspecified. We need to evaluate

dσ
(1)
qq̄

dQ2
|real =

1

8N2
c ŝ

∫

PS3
dkdq1dq2δ

(n)(p1 + p2 − k − q1 − q2)
∑

|M|2 , (101)

where M is the matrix element of the two-to-three body reaction q(p1) + q̄(p2) → l(q1) + l̄(q2) +
g(k). The three-body phase-space integral can be factorized into two two-body phase-space integrals by
inserting

1 =

∫
dQ2

2π

∫
dnqδ(n)(q − q1 − q2)(2π)δ(q

2 −Q2) , (102)

into the integral. Then we write the integral over dq as a n− 1 dimensional integral using δ(q2 −Q2). If
we use the notation p = p1 + p2 then the integrals can be written as

dσ
(1)
qq̄

dQ2
|real =

1

16πN2
c ŝ

∫

PS2
dkdq

∫

PS2
dq1dq2

∑
|M|2 , (103)

where the first phase space-integral has a δ-function δ(n)(p−q−k) and the second one δ(n)(q−q1−q2).
This enables us again to factor off the decay of the γ∗ into the lepton-antilepton pair, leading to the
equation (88) but now also for the real emission contribution.

The square of the partonic matrix element summed over all initial and final spins and polarizations
can then be written in terms of the Mandelstam invariants for the reaction q(p1)+ q̄(p2) → γ(q)+ g(k).
These we will call s = −(p1+p2)

2 , t = −(p1−k)2, and u = −(p2−k)2, which satisfy s+t+u = −Q2

Note that a term involving a new mass scale µ will be required because the QCD coupling constant g has
mass dimension (4 − n)/2 in n-dimensions. There is no need to write an n-dimensional generalization
for the QED coupling constant so we can keep e in four dimensions. The answer in terms of n = 4 + ε
reads

dσ
(1)
qq̄

dŝ
|real = σ(0)γ Q2

f

1

2π
C2(R)

(4πµ2
ŝ

)−ε/2Γ(1 + ε/2)

Γ(1 + ε)

4

ε

×
[
2x1−ε/2(1− x)−1+ε + x−ε/2(1− x)1+ε

]
. (104)

A collinear pole in ε resulting from the angular integral is now explicit. If we integrate over the variable x,
which we must to form the hadronic cross section, a second pole will appear from the region x→ 1. That
is the infrared pole. After integration there are therefore double pole terms from overlapping divergences
and single pole terms from the either soft or the collinear singularities. Using the KLN theorem to cancel
these pole terms against the contributions from the virtual graphs, which only exist for x = 1 would be
convenient, especially before doing the integration over x. So, we would need a way of combining the
contributions from the virtual and bremsstrahlung graphs as functions of x.

One way to do this is to split off a small piece in (104) between x = 1− δ and x = 1 and call this
the "soft" bremsstrahlung piece. In this small range near unity one can substitute x = 1 whenever this is
allowed and simply do the x integral yielding terms in ln δ as well as poles in ε. These pieces can then be
added to the contributions from the virtual graphs. The remaining "hard" bremsstrahlung integral over
the range 0 to 1 − δ is finite, and can be take in n = 4 dimensions., Integration will then yield a term
involving ln δ which should cancel with the corresponding ln δ term in the virtual graphs. This method
is called the phase-space slicing method.
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We will employ another method. We would like a relation that expresses the double pole terms
immediately in terms of δ(1−x). Such a relation does exist but in the sense of distributions, namely when
multiplied by a smooth function F (x) and integrated between 0 and 1 (like the δ-function itself). Assume
the function F (x) has a Taylor expansion near x = 1 so we can write F (x) = F (1) + F (x) − F (1),
where the difference between the last two terms is proportional to the finite derivative of F (x) at x = 1.
Let us consider therefore

∫ 1

0
dx

F (x)

(1− x)1−ε
= F (1)

∫ 1

0
dx

1

(1− x)1−ε
+

∫ 1

0
dx

F (x)− F (1)

(1− x)1−ε
.

(105)

The first integral yields F (1)ε−1. We can rewrite this again as an integral over dx with the argument
δ(1− x). In the second integral we can expand the denominator so it yields

∫ 1

0
dx

F (x)− F (1)

(1− x)1−ε
=

∫ 1

0
dx

F (x)− F (1)

(1− x)

+ε

∫ 1

0
dx [F (x)− F (1)]

ln(1− x)

(1− x)
+O(ε2) , (106)

near ε = 0. Therefore we have the identity
∫ 1

0
dx

F (x)

(1− x)1−ε
=

1

ε

∫ 1

0
dxF (x)δ(1− x) +

∫ 1

0
dx

F (x)− F (1)

1− x

+ε

∫ 1

0
dx[F (x)− F (1)]

ln(1− x)

1− x
+O(ε2) . (107)

This we will write in shorthand notation as

1

(1− x)1−ε
=

1

ε
δ(1− x) +

[
1

1− x

]

+

+ ε

[
ln(1− x)

1− x

]

+

+O(ε2) , (108)

where on the right hand side we see so-called "plus" distributions. Note that this result is exact for
a lower integration limit x = 0. If the lower limit is not zero then there are additional finite terms
involving logarithms of this lower limit.

Our final result for the gluon radiation graphs therefore follows by expanding the terms in the
square bracket in (104) in powers of ε and using (108). We find

dσ
(1)
qq̄

dŝ
|real = σ(0)γ Q2

f

1

2π

(4πµ2
ŝ

)−ε/2Γ(1 + ε/2)

Γ(1 + ε)

[
8

ε2
δ(1− x)

+
4

ε
(1 + x2)

[
1

1− x

]

+

+ 4(1 + x2)

[
ln 1− x

1− x

]

+

−2(1 + x2)
lnx

1− x
+O(ε)

]
. (109)

Now we have isolated the term in δ(1 − x) containing the double pole we see that it cancels the
corresponding term from the virtual graphs in (98). These are the overlap terms containing both soft
and collinear divergences and they cancel as expected from the KLN theorem. The single pole term
in ε however cannot possibly cancel against a virtual contribution, as it is not purely a δ(1 − x) term.
Therefore we are left with an uncancelled collinear singularity.

Finally we can finally sum (98) and (109) and find

dσ
(1)
qq̄

dŝ
= σ(0)γ Q2

f

1

2π
C2(R)

(4πµ2
ŝ

)−ε/2Γ(1 + ε/2)

Γ(1 + ε)
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×
{4
ε

(
(1 + x2)

[
1

1− x

]

+

+
3

2
δ(1− x)

)
+ 4(1 + x2)

[
ln(1− x)

1− x

]

+

−2(1 + x2)
lnx

1− x
+ (4ζ(2)− 8)δ(1− x) +O(ε)

}
, (110)

with ζ(2) = π2/6. The remaining pole term in ε implies that the KLN theorem is inoperable when there
are collinear singularities in the initial partonic state. How are we then going to make sense of this result?

First, let us observe that if one expands all functions in (110) in ε one finds

dσ
(1)
qq̄

dŝ
= σ(0)γ Q2

f

1

2π
C2(R)2

(
2

ε
− ln 4π + γE

)(
(1 + x2)

[
1

1− x

]

+

+
3

2
δ(1− x)

)
+O(ε0)

= σ(0)γ Q2
f

1

2π
C2(R)2

(
2

ε
− ln 4π + γE

)[
1 + x2

1− x

]

+

+O(ε0) . (111)

Next, we realize that this expression should be substituted into the convolution (82). At this point one
may, in a sense, renormalize (or rather: factorize) the parton distributions in (82) as

fq/A(ξ) =

∫ 1

0
dz

∫ 1

0
dyfq/A(y, µF )Φ

−1
qq (z, µF )δ(ξ − zy) , (112)

with µF the factorization scale, introduced in the previous section, and Φqq a transition function. This
fucntion is analogous to the Z-factors for UV renormalization in section 2.3.2.

To first order, the above relation can be written as

fq/A(ξ) = fq/A(ξ, µF )−
∫ 1

ξ

dz

z
fq/A

(
ξ

z
, µF

)

×
{
αs(µ)C2(R)

2π

1

ε

(
4πµ2

µ2F

)−ε/2 [
1 + z2

1− z

]

+

}
. (113)

Collecting terms we see indeed, as we announced, the collinear singularities cancel after renormalization
of the parton distribution by the transition functions, leaving a finite remainder. The final result is

dσ
(1)
qq̄

dŝ
= σ(0)γ Q2

f

1

2π
C2(R)

×
{
2 ln

(
Q2

µ2F

)[
1 + z2

1− z

]

+

+ 4(1 + x2)

[
ln(1− x)

1− x

]

+

−2(1 + x2)
lnx

1− x
+ (4ζ(2)− 8)δ(1− x)

}
. (114)

This result we can now insert into (82), use NLO PDF’s and predict the Drell-Yan cross section.

3.6 Factorization
The fact that the initial state divergences cancel through a renormalization/factorization of the PDFs,
as in (112) is a one-loop manifestation of the QCD factorization theorem [8]. This is the full QCD
generalization of the parton model formula, and states that for IR safe cross sections, the initital state
collinear divergences can be consistently removed in this way. The consistency lies in the fact that
this factorization does not depend on the process, i.e. that it is always the same set of Φij functions,
computed to the appropriate order. This aspect is the one that preserves predictive power: indeed if we
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devote certain set of observables to infer the PDF’s, as we discussed extensively in section 3.1, we can
use these for any other reaction and predict the outcome. To cover the details of the factorization proof
for the inclusive Drell-Yan cross section would take us too far. However, it is worthwhile to point out
that factorization proofs for other observables (differential cross sections, cross sections near phase space
edges, or with vetoed phase space regions) are an active and important area of research [24, 25].

4 Modern methods
In this section I discuss a number of modern methods in the application of perturbative QCD, focussing
mostly on spinor helicity techniques, and the essence of the recent “NLO revolution”. For lack of space
I shall not discuss the enormous strides made in Monte Carlo methods and applications in recent years.

4.1 Spinor methods, recursion relations
At high center-of-mass energies, final states produced in particle colliders usually contain many more
than two particles. Calculations of such processes are long and complicated because one must write down
the individual amplitudes for the Feynman graphs and then square the result, which involves all the cross
products between them. In this section we describe methods to shorten these calculations by using clever
choices for external line polarizations and simplifications owing to the masslessness of the particles. We
also note that at high energies most of the final state particles can be considered massless, so that in order
to represent fermions we may make use of a chiral spinor basis because at large momenta chirality and
helicity are related. In that case many external helicities configurations are in fact simply not allowed by
parity invariance. There are moreover many relations among the amplitudes so the number of amplitudes
to compute is not overly large. An interesting thing to note is that by specifying all external line quantum
numbers, the expression for each helicity amplitude is simply a complex number. This can then obviate
the need for analytically spin-summing over the absolute value squared of the invariant amplitudes, and
allow this task to be handled by a computer, reducing the amount of laborious computation further.

Let us see how the use of spinors of definite chirality or helicity can significantly simplify the cal-
culation of Feynman diagrams with massless fermions and gauge bosons. We will also use the freedom
of gauge choice for external gauge fields to maximal advantage. I try to give a reasonably explicit and
self-contained presentation of these helicity spinor methods. We shall need the Dirac gamma matrices
γµ, γ5 and the charge conjugation matrix C in the Weyl basis:

γk =

(
0 σk

σk 0

)
, k = 1, 2, 3; γ0 =

(
0 1

−1 0

)
,

γ5 = γ5 = −iγ0γ1γ2γ3 =

(
1 0

0 −1

)
, C = iγ1γ3 =

(
σ2 0

0 σ2

)
. (115)

The explicit form of the u and v spinors in this basis is

u(P , ξ) =
eiπ/4√

2(m+ ω(P ))



[
(m+ ω(P ))1− P · σ

]
ξ

−i
[
(m+ ω(P ))1+ P · σ

]
ξ


 ,

v(P , ξ̄) =
eiπ/4√

2(m+ ω(P ))




−
[
(m+ ω(P ))1− P · σ

]
ξ̄

−i
[
(m+ ω(P ))1+ P · σ

]
ξ̄


 , (116)

with ξ̄ = iσ2ξ
∗. The momentum Pµ = ω(P ),P ) is the on-shell momentum of the fermion, and the

charge conjugation matrix is used to define the charge conjugate spinor

ψc ≡ C−1ψ̄T . (117)
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Having this explicit form will allow us to derive a number of useful identities which make calcu-
lations with massless particle must more efficient. The following identity,

[
(m+ ω(P ))1± P · σ

]2
= 2
(
m+ ω(P )

) [
ω(P )1± P · σ

]
(118)

suggests that there is a more systematic way to write these spinors. To see this let us define σµ and σ̄µ as
four-vector arrays of 2× 2 hermitian matrices,

σµ = (−1,σ), σ̄µ = (−1,−σ), (P · σ)(P · σ̄) = −P 2 = m2 . (119)

In terms of these matrices one has the identities

(i /P ±m) =

(
±m1 iP · σ
−iP · σ̄ ±m1

)
,

−Pµσµ =ω(P )1− P · σ ,
−Pµσ̄µ =ω(P )1+ P · σ . (120)

Observe that −P · σ and −P · σ̄ are hermitian positive definite matrices with eigenvalues equal to
ω(P )± |P |.

Let us now consider the case of massless spinors. In that case the matrices −P · σ and −P · σ̄
have one zero eigenvalue and become equal to 2ω(P ) times a projection operator, as follows from (118).
Indeed, the massless limit of (116) equals

u(P , ξ) =
eiπ/4√
2ω(P )




(−P · σ) ξ

−i(−P · σ̄) ξ


 ,

v(P , ξ̄) =
eiπ/4√
2ω(P )




−(−P · σ) ξ̄

−i(−P · σ̄) ξ̄


 . (121)

Before proceeding, let us introduce the light-cone basis for a generic massless momentum pµ. In this
basis the components p0 and p3 are replaced by

p+ =
p0 + p3√

2
, p− =

p0 − p3√
2

, (122)

where the two remaining components are denoted by the two-component vector p⊥ = (p1, p2). In this
basis

p2 = −2 p+p− + p⊥
2 . (123)

The advantage of this basis is clear when considering a massless particle moving along the 3-axis. In the
standard basis the momentum four-vector has two non-zero components, namely p0 and p3, but in the
light-cone basis there is only one non-vanishing component (i.e. either p+ or p−), which helps with the
calculations as we will see below.

The positive frequency solution is degenerate and can be further classified using the chirality pro-
jectors PL = (1+ γ5)/2 and PR = (1− γ5)/2, which project onto the upper and lower two components
of the spinor, respectively. Thus we have the left- and right-handed solutions

uL(P , ξ) =
eiπ/4√
2ω(P )

(
(−P · σ) ξ

0

)
, uR(P , ξ) =

e−iπ/4

√
2ω(P )

(
0

(−P · σ̄) ξ

)
, (124)
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and likewise for the spinors vL and vR. We can specify further the two-component spinors ξ. We note
that −P ·σ and −P · σ̄ project onto negative and positive helicity eigenstates, respectively. For instance,
from

(−P · σ)ξ = (|~P | − ~P · ~σ)ξ , (125)

we see that the right hand side is only non-zero for ξ a negative helicity, ξ−. Because −P · σ and
−P · σ̄ are projectors, we can, without loss of generality, choose a convenient basis for the ξ± spinors
independent of momentum. We choose ξ− (ξ+) such that, in the frame where ~P is along the z-axis, uL
(uR) has j3 eigenvalue −1

2 (+1
2 ), in correspondence with the helicity-chirality relation 2h = −γ5. We

thus choose

ξ− =

(
0
1

)
, ξ+ =

(
1
0

)
. (126)

In this case we have for uL(P, ξ) and uR(P, ξ)

uL(P , ξ) =
eiπ/4√
2P 0




−P ∗
T√

2P+

0
0


 , uR(P , ξ) =

e−iπ/4

√
2P 0




0
0√
2P+

PT


 . (127)

For the rest of this section we change from chirality to helicity labels, and allow for a change in normal-
ization

uL ≡ 1

c−
u− , uR ≡ 1

c+
u+ . (128)

Once can show that in order to have u±(P )†u±(P ) = 2P 0 one must, up to phases, choose c− =
21/4

√
P 0/P+ and c+ = 21/4

√
P 0/P−. We choose the phases of u± now such that

u−(P , ξ) = 21/4




−
√
P−e−iφp√
P+

0
0


 , u+(P , ξ) = 21/4




0
0√
P+√

P−eiφp


 . (129)

where the phase φp is defined through

PT = eiφp
√
2P+P− . (130)

Having constructed quite explicit forms for helicity spinors we now use them to derive useful computa-
tional rules. Arguments of spinors we now indicate with lower-case four-momenta. To begin, we define
spinor products together with bra-ket notation, as follows

iu−(k)u+(p) ≡ 〈k−|p+〉 ≡ 〈kp〉 , (131)

and
iu+(k)u−(p) ≡ 〈k+|p−〉 ≡ [kp] . (132)

One may show that
〈kp〉 = (eiφk

√
2k−p+ − eiφp

√
2k+p−) , (133)

and
[kp] = 〈kp〉 = (e−iφk

√
2k−p+ − e−iφp

√
2k+p−) , (134)

so that
〈kp〉 = −〈pk〉, [kp] = −[pk], 〈kp〉∗ = [kp] , (135)

and
〈kp〉[kp] = −2k · p . (136)
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The real benefits of working with helicity spinors come to the fore when also the polarization vectors
εµ(k, λ) of massless spin-1 particles with momentum k and helicity λ are expressed in terms of them.
To see how this works, we first choose the frame in which the on-shell massless gauge boson momentum
has only a + component. In this frame only the ε1 and ε2 components are meaningful, corresponding to
the two helicity states of the massless vector field. For the chosen frame the third component of the spin
is identical to the helicity, and the transversality condition k · ε(k) = 0 becomes

k+ε−(k, λ) = 0 , (137)

which implies that ε0 = ε3. From this explicit solution one observes that (εµ(k,+))∗ has negative
helicity. Our normalization is such that

(εµ(k,+))∗ = εµ(k,−) . (138)

and
ε(k,+) · ε(k,−) = −1 . (139)

We will also use the notation
εµ(k,±) = εµ±(k) . (140)

Let us now demonstrate that we may write the polarization vector indeed in terms of spinors of fixed
helicity, as follows

εµ+(k, p) = A+u+(k,+)γµu(p,+) ≡ −iA+〈k+|γµ|p+〉 , (141)

and similarly for negative helicity. Note the extra momentum p, called the reference momentum, of the
second u spinor. It is in fact arbitrary, with p2 = 0, we will discuss it further below. From the explicit
form of the helicity spinors in (129) and the form of the solutions one may derive

A+ =
−i√
2〈kp〉

, A− =
−i√
2[kp]

. (142)

Recall that any multiple of kµ may be added to the expressions for the photon polarizations without
changing the amplitude, as this is just a gauge transformation.

From the explicit form of the u and v spinors (129), one can prove the following series of identities

〈k+|p+〉 = 0 , (143)

〈k+|γµ|p−〉 = 〈k+|γ5|p+〉 = 0 , (144)

〈k+|γµ|k+〉 = 2kµ , (145)

〈k+|γµ|p+〉 = 〈p−|γµ|k−〉 , (146)

and similarly with all helicities reversed. These identities are remarkably useful in practical calculations
with helicity spinors. Another very important property for this is Fierz reordering, with which one may
“recouple” the spinors. Consider the following expression

〈1+|γµ|2+〉〈3−|γµ|4−〉 , (147)

where we have abbreviated |k1+〉 = |1+〉 etc. This is in fact the most general form for such a contraction
of spinor products. Let us define the following complete set of 16 matrices

OI = {1, γ5, γµ, iγµγ5, σµν} , (148)

with the orthogonality property

1

4
Tr [OIOJ ] = δIJ , I = 1 . . . 5 . (149)
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We can insert this relation into (147), which may then be written as

1

4

∑

I

〈1+|γµOIγµ|4−〉〈3−|OI |2+〉 . (150)

Because of the chirality properties of the bra’s and kets, only the two diagonalOI yield a non-zero result,
1 and γ5, and they moreover yield the same result. Hence the Fierz recoupling identity reads simply

〈1+|γµ|2+〉〈3−|γµ|4−〉 = 2〈1+|4−〉〈3−|2+〉 , (151)

where e.g. 〈1+| has been recoupled to |4−〉 in the spinor product. With this identity we can now check
the normalization of the polarization vectors and find

ε+(k, p) · ε−(k, p) = −A+A−〈k+|γµ|p+〉〈k−|γµ|p−〉 = 1 , (152)

and similarly that ε±(k, p) · ε±(k, p) = 0. The identities involving the sum over spin polarizations read
in terms of helicity spinors

/k = |k+〉〈k+|+ |k−〉〈k−| . (153)

One can derive the completeness relation for the polarization vectors in the representation (141)

∑

λ=±
εµλ(k, p) (ε

ν
λ(k, p))

∗ = ηµν − pµkν + pνkµ

p · k , (154)

and that a change in reference momentum amounts to a different gauge choice

εµ+(k, p)− εµ+(k, q) =

√
2〈pq〉

〈kp〉〈kq〉k
µ . (155)

We have now sufficient ingredients to demonstrate the efficiency of using helicity spinors in computing
invariant amplitudes for a few examples. For each amplitude we shall discuss the result for various sets
of helicities for the external particles. We shall also take each external particle as massless so that helicity
is a conserved quantum number. For convenience we choose momenta of the external particles outgoing,
and express possible anti-fermion spinors in terms of u spinors using v+ = u− and v− = u+.

The reaction e+e− → µ+µ−

We first consider the reaction

e−(k1) + e+(k2) → µ−(k3) + µ+(k4) , (156)

mediated via a photon. The invariant amplitude may be represented as

M(1λ1 , 2λ2 , 3λ3 , 4λ4) , (157)

where we have indicated only the label of each external line momentum, and the associated helicity.
Using the rules derived in this section we have

M(1+, 2−, 3+, 4−) = (ie)2〈2−|γµ|1−〉 −i

s12
〈3+|γµ|4+〉 , (158)

where we used the notation sij = −(ki+kj)
2. Using the Fierz identity (151) and the shorthand notation

of (131) and (132) this can be written as

M(1+, 2−, 3+, 4−) = 2ie2
[24]〈31〉
〈12〉[12] . (159)
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Using momentum conservation this may be further rewritten as

M(1+, 2−, 3+, 4−) = 2ie2
[13]2

[12][34]
. (160)

It may be readily verified that

M(1−, 2+, 3−, 4+) = 2ie2
〈13〉2

〈12〉〈34〉 . (161)

The expressions in (160) and (161) are quite compact, and can be transformed into each other by either a
parity transformation or a charge conjugation. For any other helicity configuration the amplitude actually
vanishes.

The reaction e+e− → µ+µ−γ

In this second example we study the production of a muon pair together with a photon in electron positron
annihilation

e−(k1) + e+(k2) → µ−(k3) + µ+(k4) + γ(k5) (162)

The photon can be radiated off any of the four external fermion lines, leading to the four diagrams shown
in Fig. 18. Let us list another useful identity, not difficult to prove, for a positive helicity massless vector

(a) (b)

(c) (d)

1+

2–

3+

4–

5+

Fig. 18: Feynman diagrams contributing a particular helicity amplitude, indicated in diagram (a), for e+e− →
µ+µ−γ at lowest order. All momenta are outgoing, and time runs from right to left.

boson with polarization εµ+(k, p) emitted from a fermion by

/ε+(k, p) =
i
√
2

〈kp〉 (|p+〉〈k+|+ |k−〉〈p−|) . (163)

For the negative helicity case one has, in analogy

/ε−(k, p) =
−i

√
2

[kp]
(|k+〉〈p+|+ |p−〉〈k−|) . (164)

The invariant amplitude reads
M(1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) . (165)
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Given that each external line can have two helicity values, it might seem that this process allows thirty-
two different independent helicity amplitudes. However, helicity conservation and invariance under
charge conjugation and parity transformation ensure that there is in fact only one independent ampli-
tude. We thus consider the helicity amplitude

M(1+, 2−, 3+, 4−, 5+) , (166)

and choose as k4 as reference momentum for the outgoing photon. Diagram (a) then reads

Ma(1
+, 2−, 3+, 4−, 5+) = (ie)3〈2−|γµ−i(/1 + /5)

−s15
/ε+(k5, k4)|1−〉 × −i

s34
〈3+|γµ|4+〉 . (167)

Using the results in eqs. (163) and (164) we find

Ma(1
+, 2−, 3+, 4−, 5+) = −2

√
2e3

〈24〉2[23]
〈15〉〈45〉〈34〉[34] . (168)

For diagram (b) we find similarly

Mb(1
+, 2−, 3+, 4−, 5+) = 2

√
2e3

〈24〉2[13]
〈25〉〈45〉〈34〉[34] , (169)

while for (c) we have

Mc(1
+, 2−, 3+, 4−, 5+) = 2

√
2e3

〈24〉2
〈12〉〈35〉〈45〉 . (170)

Notice that with our choice of reference momentum we have

Md(1
+, 2−, 3+, 4−, 5+) = 0 . (171)

Adding up the contributions we find

M(1+, 2−, 3+, 4−, 5+) = 2
√
2e3

〈24〉2
〈12〉

(
[34]

〈15〉〈45〉[12] +
1

〈35〉〈45〉

)
. (172)

Again this is a nice, compact result, a complex number fully expressed in terms of helicity spinors.

Without further proof we can list what is perhaps the most famous result in tree-level QCD ampli-
tudes calculations [26]: the so-called maximal helicity violating (MHV) amplitudes (aka. Parke-Taylor
amplitudes) for n-gluon scattering. One may first organize the full tree-level invariant amplitude in the
colour quantum number as

Mn(pi, λi, ai) = gn−2
∑

σ∈Sn/Zn

(
Tσ(a1) . . . Tσ(an)

)
An

(
σ(pλ11 ), . . . , σ(pλnn )

)
. (173)

where the sum is over all permutations σ modulo the cyclic ones. The amplitudes An are called “colour-
ordered”. Such amplitudes [27–29] are considerably easier to calculate. First, if all gluons have the same
helicity, say +, then the amplitude is zero. The same holds if one of them has helicity −. With two
helicities −, we have the MHV amplitude. The stunningly simple expression (a result of millions of
Feynman diagrams if n is large enough ) for the colour-ordered amplitude reads

An(1
+, . . . , i−, . . . , j−, . . . n+) = i

〈ij〉4
〈12〉〈23〉 . . . 〈n− 1, n〉〈n1〉 . (174)

When flipping all − to + and vice versa, all one has to do is replace the angled brackets by squared ones.

Helicity spinor methods are now a standard tool in the computation of QCD scattering amplitudes
for the LHC. It is worth mentioning that among the very interesting developments in QCD in recent years
has been the realization of recursion relations among these amplitudes [30,31], after new insights where
gained after phrasing them in terms of so-called twistors [32, 33]. Such recursion relations, besides the
still very powerful, and often faster [34,35], earlier ones by Berends and Gield [28] have been important
in extending analytical and numerical computational power to high-multiplicity amplitudes.
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Fig. 19: Expansion of n-leg one-loop amplitude in sum of tadpoles, bubbles, triangles and boxes.

4.2 The NLO revolution
I will here briefly touch upon recent ideas that have spurred what is sometimes referred to as the NLO
revolution. An extensive and clear review by some of the instigators is Ref. [36]. For many years the
bottleneck in computing NLO cross sections for many external lines were the one-loop diagrams for
the virtual part of the cross section. They become increasingly hard to calculate when the number of
external lines grows from 4 to 5, 6 etc. Because of similar arguments just mentioned for the case of high-
multiplicity tree-level amplitudes one can restrict oneself to a smaller set of diagrams having a particular
colour order. The objects to compute have, besides the denominator factors due to the propagators in the
loop, a numerator containing dot products among external momenta, polarization vectors, and the loop
momentum. Hence, the integral over the loop momentum has possibly a number of loop momenta in the
numerator, with open Lorentz- indices.

Such tensor integrals can be reduced to scalar integrals in a well-defined procedure [37]. New
stable and efficient reduction techniques for tensor integrals have been proposed in Refs. [38, 39], and
have found much use.

One may also express external vectors in terms of a basis set of four. In this procedure also de-
nominators are cancelled, reducing the n-point function to lower-point ones. This leads to an expansion
of the amplitude in terms of scalar functions down from n-point ones. Furthermore, up to (here irrele-
vant) O(ǫ) terms, five- and higher point functions can be expressed in terms of four-point functions and
lower [40–42]. The price to pay is that for these lower point functions the external momenta are not
subsets but rather combinations of the original, massless external momenta. These combinations then
are not massless. The upshot is that one has, schematically

Aone−loop
n =

∑

j∈B
cjIj (175)

where B is a basis set that consists of a certain set of box-, triangle and bubble integrals with or without
massive external legs [43], and the cj are rational functions of dot products of external momenta and
polarization vectors, see Fig. 19. With a generic representation (175) in hand, the task of calculating
Aone−loop
n is then mapped to the task of find the coefficients cj .

For this one may use unitarity methods [44]. In Eq. (175) the elements of the basis set on the
right hand side may have branchcuts in the invariants on which the logarithms and dilogarithms in the
Ij depend. For instance, a particular integral may have terms of the type ln(−sij/µ2), with sij = p2ij =

(pi + pj)
2 = 2pi · pj , which clearly has a branchcut in the sij variable.

On the other hand, one can also examine a particular discontinuity across a particular branch cut
for a particular invariant, or channel, for the left-hand side in Eq. (175), which is done by cutting the
amplitude and replacing cut propagators in the loop by delta functions.

1

p2 + iǫ
→ −i2π δ(p2) (176)

This amounts to taking the imaginary part. From the comparison of both sides the coefficients cj can
then be determined. Essentially, one thus determines the functionAone−loop

n from its poles and cuts. This
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Fig. 20: Generalized unitarity

is vastly more efficient than computing every term fully by itself, and is the key insight that spurred the
NLO revolution.

However, there are important subtleties. Using four-dimensional momenta in the cuts leaves an
ambiguity in the form of a rational function. Using a n = 4 + ε version of the unitary method [45, 46]
avoids this, but this is somewhat more cumbersome to use. A number of other methods have been devised
to fix this ambiguity, such as using recursion relations [30,31], or usingD-dimensional unitarity [47,48].
Particularly fruitful is the use of complex kinematics, which allows non-vanishing, non-trivial three-
point amplitudes. This allows taking multiple cuts of a box integral, such as in Fig. 20, which goes
under the name “generalized unitarity”. By so doing, one may determine the coefficients cj purely
algebraically [49], since the four delta-functions fix the loop momentum.

An effective way of solving Eq. (175) was proposed in Ref. [50], and is known as the OPP method.
Writing the equivalent of Eq. (175) at the integrand level, the coefficients of the box etc integral can then
be extracted by choosing different values of the loop momentum, and perform the inversion numerically.

Furthermore, numerical [51, 52] and semi-numerical [53] techniques for loop integrals have pro-
gressed to the level where much work is taken care of for the user through programs like Blackhat [54],
Cuttools [55], or Rocket [56] and MCFM [57]. The level of automation, including the matching to
parton showers, has now been stepped up tremendously, with the POWHEG Box [58] and aMC@NLO-
MadGraph5 [59] framework. They have brought NLO calculations now to the general user.

As this snaphot of the NLO revolution suggests, the area of NLO calculations was a very lively
marketplace of ideas and methods. Although it is still a bustling place, attention is now shifting to
exporting the revolution to NNLO.

4.3 Aspects of NNLO
Here I will not say much, as this falls out of the scope of the lectures. Many of the conceptual issues in
earlier sections play a role here as well. The accounting of singularities in a flexible way is much harder
at this order. An equation as (175) does not yet fully exist for this order, though impressive progress is
being made [60]. Nevertheless, results were obtained first already many years ago for DIS [61], Drell-
Yan [62] and some time later for Higgs production [63–65]. Recently the latter was even computed to
NNNLO using powerful and clever methods involving threshold expansions [66].

Essential for any NNLO calculation for hadron colliders are the NNLO (3-loop) Altarelli-Parisi
splitting functions. These were calculated some time ago [9,10] thanks also to the powers of the computer
algebra program FORM [67, 68].

For top quark pair production [69] the first full two-to-two QCD process calculated to NNLO was
completed recently (more about this below). Many other results are now appearing (see e.g. [70] for
NNLO results on jet cross sections), the review of which would take us too far afield, and would anyway
be out of date in very short order.

This concludes our discussions of finite order QCD methods and results. Let us now turn to aspects
of QCD resummation, and all-order results.
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5 All orders
“Resummation” is shorthand for all-order summation of classes of potentially large terms in quantum
field perturbation theory. To review status and progress in a field defined so generally is an impossibly
wide scope, and I will restrict myself to certain types in QCD, related of course to observables at high-
energy hadron colliders.

Let us first form an impression of what resummation is and what it does. Let dσ be a (differential)
cross section with the schematic perturbative expansion

dσ = 1 + αs(L
2 + L+ 1) + α2

s(L
4 + L3 + L2 + L+ 1) + . . . (177)

where αs is the coupling, also serving as expansion parameter, L is some logarithm that is potentially
large. In our discussion we focus on gauge theories, and on the case with at most two extra powers of L
per order, as Eq. (177) illustrates. An extra order corresponds to an extra emission of a gauge boson, the
two (“Sudakov”) logs resulting from the situation where the emission is simultaneously soft and collinear
to the parent particle direction.

Denoting L = lnA, we can next ask what A is. In fact, A will in general depend on the cross
section at hand. For example, for a thrust (T ) distribution A = 1− T , while for dσ(pp̄→ Z +X)/dpZT
A =MZ/p

Z
T . It should be pointed out already here thatA is not necessarily constructed out of measured

variables but can also be a function of unobservable partonic momenta that are to be integrated over. E.g.
for inclusive heavy quark production A could be 1 − 4m2/(x1x2S) in hadron collisions with energy√
S, where x1, x2 are partonic momentum fractions. When L is numerically large so that even for small

αs, the convergent behaviour of the series is endangered, resummation of the problematic terms into an
analytic form might provide a remedy, and thereby extend the theory’s predictive power to the range of
large L. In general the resummed form of dσ may be written schematically as

dσres = C(αs) exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + . . .] +R(αs) (178)

where g1,2,... are computable functions. The series C(αs) multiplies the exponential, and R(αs) denotes
the remainder.

The key aspect of resummation is finding the functions gi. With only g1 one has leading logarith-
mic resummation (LL), with also g2 NLL etc. For NNLL resummation the matching function C must
also be known to next order in αs.

5.1 Resummation basics, eikonal approximation, webs
Well-developed arguments exist for the exponentation properties of the Drell-Yan cross section near
threshold [71, 72]. Some are based on identifying further evolutions equations [71, 73] based on refac-
torizations of the cross section into different regions only sensitive to either collinear, soft or hard cor-
rections. This has been made into a formidable systematic programme based on effective field the-
ory [74–77].

The connection between refactorization and resummation is already illustrated by perturbative
renormalization, in which the general relation of unrenormalized and renormalized Green functions of
fields φi carrying momenta pi is

Gun(pi,M, g0) =
∏

i

Z
1/2
i (µ/M, g(µ)) Gren(pi, µ, g(µ)) . (179)

M is an ultraviolet cutoff, and g(µ) and g0 are the renormalized and bare couplings respectively. The
independence of Gun from µ and Gren from M may be used to derive renormalization group equations,

µ
d ln Gren

dµ
= −

∑

i

γi(g(µ)) , (180)
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Fig. 21: Soft photon emission from an energetic line

in which the anomalous dimensions γi = (1/2)(µd/dµ) lnZi appear as constants in the separation of
variables, free of explicit dependence on either µ or M . The solution to (180)

Gren(pi, 1, g(M)) = Gren(pi,M/µ0, g(µ0)) exp

[
−
∑

i

∫ M

µ0

dµ

µ
γi(g(µ))

]
, (181)

is clearly an exponential. While in this example the factorization involves separation of UV modes from
finite energy ones, for the resummation we discuss in this section one (re)factorizes collinear modes from
soft-, anticollinear and hard modes. In a manner similar to this example differential equations may be set
up whose solution, in terms of appropiate exponentials of (double) integrals over anomalous dimensions,
is the resummed cross section [73].

To see the appearance of exponentials in a different way we can observe that in the refactorization
approach the soft or eikonal part of the observable is isolated in a well-defined way. One may then use the
property that moments of the eikonal DY cross section exponentiate at the level of integrands [72,78–80],
with exponents consisting of so-called webs. These are selections of cut diagrams under criteria defined
by graphical topology (irreducibility under cuts of the eikonal lines) and with possibly modified colour
weights. Each web is a cut diagram, and can be integrated over the momentum k that it contributes to
the final state.

To see how webs work, let us first consider the abelian case10. Webs are phrased in terms of
eikonal Feynman rules. In order to derive these one may consider a single hard massless external line
of final on-shell momentum p, originating from some unspecified hard interaction described by M0(p).
The hard line may emit a number n of soft photons with momenta ki, as depicted in Fig. 21, where k1
is emitted closest to the hard interaction. We shall take the emitting particle to be a scalar (the argument
for fermions is very similar). For this case the hard interaction is dressed according to

Mµ1...µn(p, ki) = M0(p)
1

(p+K1)2
(2p+K1 +K2)

µ1 . . .
1

(p+Kn)2
(2p+Kn)

µn , (182)

where we have introduced the partial momentum sums Ki =
∑n

m=i km.

The eikonal approximation in this case can simply be defined as the leading-power contribution to
the amplitude when the photon momenta kµii → 0, ∀i, in both numerator and denominator. In this limit,
eq. (182) becomes

Mµ1...µn(p, ki) = M0(p)
pµ1 . . . pµn

(p ·K1) . . . (p ·Kn)
. (183)

The eikonal factor is insensitive to the spin of the emitting particles. One may also notice that the eikonal
factor does not depend on the energy of the emitter, since it is invariant under rescalings of the hard
momentum pµ: at leading power in the soft momenta, one is effectively neglecting the recoil of the hard
particle against soft radiation.

The eikonal factor can be further simplified by employing Bose symmetry. Indeed for the physical
quantity depending on the amplitude Mµ1...µn(p, ki), one must sum over all diagrams corresponding to

10This text is derived from section 2 in [81].
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Fig. 22: A process involving two eikonal lines A and B, interacting through the exchange of soft gluons forming
diagram G.

permutations of the emitted photons along the hard line. Having done this, the eikonal factor multiplying
M0(p) on the r.h.s. of (183) will be replaced by the symmetrized expression

Eµ1...µn(p, ki) =
1

n!
pµ1 . . . pµn

∑

π

1

p · kπ1
1

p · (kπ1 + kπ2)
. . .

1

p · (kπ1 + . . .+ kπn)
, (184)

where the sum is over all permutations of the photon momenta, and kπi is the ith momentum in a given
permutation. There are n! permutations, and each gives the same contribution to any physical observable.
This becomes manifest using the eikonal identity

∑

π

1

p · kπ1
1

p · (kπ1 + kπ2)
. . .

1

p · (kπ1 + . . . kπn)
=
∏

i

1

p · ki
. (185)

Using (185), the eikonal factor Eµ1...µn(p, ki) arising from n soft emissions on an external hard line
becomes simply

Eµ1...µn(p, ki) =
∏

i

pµi

p · ki
, (186)

which is manifestly Bose symmetric and invariant under rescalings of the momenta {pi}. In practice,
each eikonal emission can then be expressed by the effective Feynman rule

p

k

= pµ

p·k
(187)

These Feynman rules can be obtained by replacing the hard external line with a Wilson line along the
classical trajectory of the charged particle. In abelian quantum field theories this is given by the expres-
sion

Φβ(0,∞) = exp

[
ie

∫ ∞

0
dλβ ·A(λβ)

]
, (188)

where β is the dimensionless four-velocity corresponding to the momentum p. (For non-abelian gauge
theory the gauge field is a matrix Aµ = AaµTa with Ta matrices that represent the generators of the
group. Because the exponent is an integral over a matrix-valued function, the exponential is a path-
ordered expression. ) This expresses the fact that soft emissions affect the hard particle only by dressing
it with a gauge phase. Having constructed the effective Feynman rules, one may proceed to demonstrate
the exponentiation of soft photon corrections as follows. As an example, we consider graphs of the form
shown in Fig. 22, at a fixed order in the perturbative expansion. Fig. 22 consists of two eikonal lines,
labelled A and B, each of which emits a number of soft photons. One may envisage lines A and B
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as emerging from a hard interaction, and one may consider the graph G either as a contribution to an
amplitude, or to a squared amplitude (in which case some of the propagators in G will be cut).

DiagramG can be taken as consisting only of soft photons and fermion loops. Photons originating
from one of the two eikonal lines must land on the other one, or on a fermion loop inside G. Indeed, a
photon cannot land on the same eikonal line, as in that case the diagram is proportional to pµpµ = 0.

Using eikonal Feynman rules, one finds that graphs of the form of Fig. 22 contribute to the corre-
sponding (squared) amplitude a factor

FAB =
∑

G

[∏

i

pµiA
pA · ki

]
∏

j

p
νj
B

pB · lj


Gµ1...µn;ν1...νm(ki, lj) , (189)

where ki, lj are the momenta of the photons emitted from lines A and B respectively, with i = 1, . . . , n
and j = 1, . . . ,m.

Given that we have already summed over permutations in order to obtain the eikonal Feynman
rules, each diagram G can be uniquely specified by the set of connected subdiagrams it contains, as
indicated schematically in Fig. 23, where each possible connected subdiagram G

(i)
c occurs Ni times.

According to the standard rules of perturbation theory, diagram G has a symmetry factor corresponding
to the number of permutations of internal lines which leave the diagram invariant. This symmetry factor
is given by

SG =
∏

i

SNi
i (Ni)! , (190)

where Si is the symmetry factor associated with each connected subdiagram G
(i)
c , and the factorials

account for permutations of identical connected subdiagrams, which must be divided out. Contracting
Lorentz indices as in (189), the eikonal factor FAB may be written as

FAB =
∑

{Ni}

∏

i

1

Ni!

[
F (i)
c

]Ni

, (191)

where

F (i)
c =

1

Si

(∏

q

p
µq
A

pA · kq

)(∏

r

pνrB
pB · lr

)
G(i)
µ1...µnq ;ν1...νmr

(kq, lr) , (192)

is the expression for each connected subdiagram, including the appropriate symmetry factor. Recognis-
ing (191) as an exponential series, it follows that

FAB = exp

[∑

i

F (i)
c

]
. (193)

We conclude that soft photon corrections exponentiate in the eikonal approximation, and the exponent is
given by the sum of all connected subdiagrams. Having seen the abelian case, the non-abelian case for
the eikonal cross section is not all that much more difficult, though we shall not treat it here.

Following arguments similar to that for the abelian case [79] [78,80,82–84] one may in fact arrive
at the result that the eikonal cross section is a sum over eikonal diagrams D

σ(eik) = exp


∑

W

∑

D,D′
F(D)R

(W )
DD′C(D

′)


 , (194)

where a mixing matrix R connects the momentum space parts of the diagrams F(D) and their colour
factors C(D) in an interesting way. A very recent, pedagogical review of this and other aspects of webs
can be found in [85].
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Fig. 23: Decomposition of a soft photon graph into connected subdiagrams G(i)
c , each of which occurs Ni times.

The functions gi that constitute the resummation are usually not only defined by the eikonal cross
section. Hard collinear modes in the higher-order corrections can be resummed in different ways, through
so-called jet functions. These are in fact also universal, so that by now constructing a resummed cross
section is often a matter of putting the right set of all-order functions together. Some automation of this
has already been undertaken [86, 87] and is at present being worked on further by various groups.

5.2 Some applications in threshold resummation: heavy quark production, Higgs production
The very general arguments in the previous section can be applied to transverse momentum resummation
and threshold resummation. Here we focus on the latter. An illuminating study of the effects of threshold
resummation was given in Ref. [88]. One can representing the partonic resummed cross section in
moment space as

σDY (N,Q
2) = H(Q) exp [GDY (N,Q)] (195)

GDY = 2 lnNg1(2λ) + g2(2λ) + αsg3(2λ) + . . . (196)

λ = β0αs lnN , (197)

which was already more schematically given in (178), and where

g1(λ) =
CF
β0λ

[λ+ (1− λ) ln(1− λ)] . (198)

In Fig. 24 [88] convergence properties for both the exponent and the resummed cross section are shown
(for toy PDF’s) when increasing the logarithmic accuracy of the exponent, and of the hadronic K factor.
One observes good convergence as the logarithmic accuracy of the resummation is increased. For the
inverse Mellin transform, required to compute the hadronic cross section in momentum space, one may
use the so-called minimal prescription [89].

Very similar to Drell-Yan is Higgs production, in the large top mass limit where there is essentially
a pointlike gluon-gluon-Higgs coupling. A recent N3LL threshold resummed result [90] is shown in
Fig. 25.

We conclude this section with the already mentioned NNLO top quark cross section results,
matched to a NNLL threshold resummed calculation for this observable [91]. For the resummed part
an added complication is the accounting for colour, as all four external particles are coloured. This issue
was solved in Refs. [73, 92, 93], we shall not go into the technical aspects of this. The result of the very
impressive, and important calculation [69] is shown in Fig. 26

6 Conclusions
In these lectures I have discussed many aspects of QCD, from the conceptual to the practical, that are
relevant for understanding and appreciating its role in the physics of particle colliders. These aspects
are often quite technical in nature, and no doubt I have done poor justice to them in the limited space
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Fig. 25: A recent result [90] for the N3LL cross section for Higgs production. One observes the notably less
dependence of the result on the renormalization scale µR.

available. Nevertheless, some attention must be given to these, in order to assess the strengths and
weaknesses of theoretical results. This is of crucial importance when confronting these results with data.
With the focus of theory and measurement turning towards precision, having paid this attention should
be all the more valuable.

Nevertheless I hope that readers are not blinded by the technicalities, but are able to sharpen their
intuition regarding how QCD behaves a bit further. Both technical understanding and intuition will be
fruitful in the theory-experiment collaborations, joint workshops etc in which they may find themselves
at times, and upon which much of the success of the LHC research programme depends.
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Fig. 26: Theoretical prediction for the LHC as a function of the collider c.m. energy, compared to available
measurement from ATLAS and/or CMS at 7 and 8 TeV.
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Appendices
A Conventions and useful formulae
Units
We use here ~ = 1 and c = 1. Energy can be converted to inverse distance and vice versa by the relation
1 = 197.3MeV fm, with 1 fm (“fermi” or “femtometer”) equal to 10−15m, and c = 2.998 · 108 m/s.

Cross sections are expressed in nanobarns (nb), picobarns (pb) etc, where 1 b = 10−24cm2.

The metric tensor we use in this course is

ηµν = diag(−1, 1, 1, 1) (A.1)

Cross sections and decay rates
The cross section for the scattering of two incoming massless particles with momenta k1 and k2 to n
particles with momenta {pi} is given by

σ =
1

2s

∑

spins

∫
|M|2 dPS(n) (A.2)

where the bar indicates initial spin averaging and

dPS(n) =
n∏

j=1

d3pj
(2π)3 2Ej

× (2π)4δ

(
k1 + k2 −

n∑

i

pi

)
(A.3)

If there are j identical particles among the n, there is an extra factor 1/j!. For the case n = 2, in the
center of momentum frame, and with both outgoing particles having equal mass m

dPS(2) =
1

16π

√
1− 4m2

s
d cos θ , (A.4)
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where θ is the polar angle of one of the outgoing particles with respect to the collision axis.

The width for the decay of a particle with mass Q and 4-momentum k to n particles with 4-
momenta {pi} reads

Γ =
1

2Q

∑
spins,(colours..)

∫
|M|2 dPS(n) . (A.5)

If there are j identical particles among the n, there is an extra factor 1/j!. For the case n = 2, in the
center of momentum frame

dPS(2) =
1

16πQ2

√
λ(Q2,m2

1,m
2
2)d cos θ , (A.6)

where θ is the polar angle of one of the outgoing particles with respect to some arbitrary axis, and
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

Dirac algebra
Dirac equation in x-space:

(/∂ +m)ψ(x) = 0 (A.7)

Dirac equation in momentum space for u and v spinors:

(i/p+m)u(p, s) = 0, (i/p−m) v(p, s) = 0 (A.8)

{γµ, γν} = 2ηµν (A.9)

where on the right hand side the 4 by 4 unit matrix in spinor space is implied. An often-used identity
based on this is

/p/p = p2 . (A.10)

Other useful relations:

γ0 = −i
(

1 0
0 −1

)
, ~γ = −i

(
0 ~σ
−~σ 0

)
, (A.11)

(γµ)† = γ0γµγ0 , (A.12)

γ5 = iγ0γ1γ2γ3 , (A.13)

γ5 =

(
0 1
1 0

)
, (A.14)

{γ5, γµ} = 0 , (A.15)

γµ/aγµ = −2/a, γµ/a/bγµ = 4a · b, γµ/a/b/cγµ = −2/c/b/a , (A.16)

Tr(γµ) = Tr(γ5) = 0 , Tr(γµγνγρ) = 0 ,

Tr(γ5γµ) = Tr(γ5γµγν) = Tr(γ5γµγνγρ) = 0 , (A.17)

Tr(γµγν) = 4 ηµν , Tr(γµγνγργσ) = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ) , (A.18)

Tr(γµγνγργσγ5) = −4iǫµνρσ , ǫ0123 = +1 . (A.19)

Conjugate spinor:
ψ̄ = iψ†γ0 . (A.20)

With this definition the term
ψ̄ψ (A.21)
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is hermitean, since γ0 is anti-hermitean. The chiral (left- and righthanded) projections of a fermion are
defined by

ψL =

(
1 + γ5

2

)
ψ ,

ψR =

(
1− γ5

2

)
ψ . (A.22)

A parity transform on a spinor is defined by

P : ψ(x) → γ0ψ(x̃) , (A.23)

with x̃ = (x0,−~x). Complex-conjugation of general spinor-trace:

(ū(p)γµ1 · · · γµnu(p′))∗ = (−)n (ū(p′)γµn · · · γµ1u(p)) , (A.24)

(ū(p)γµ1 · · · γµnγ5u(p′))∗ = −(−)n (ū(p′)γ5γµn · · · γµ1u(p)) . (A.25)

Unitary groups and their Lie algebras
The U(1) Lie algebra has only 1 generator t, which we choose hermitean. Acting on a d-dimensional
vector t may be represented as the d-dimensional unit matrix. The group elements are then

exp (iα t) . (A.26)

The SU(2) Lie algebra has 3 generators ti, i = 1, 2, 3. If we choose the ti hermitean, then in the
fundamental representation t(F )

i = σi/2, with σi the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A.27)

The group elements are
U = exp

(
iξi ti

)
. (A.28)

Note that for the fundamental representation

σ2Uσ2 = U∗ = (U †)T . (A.29)

Note that the SU(2) Lie-algebra is isomorphic to the SO(3) Lie-algebra, whose generators ti = −iSi
read, in the fundamental representation:

S1 =




0 0 0
0 0 1
0 −1 0


 S2 =




0 0 −1
0 0 0
1 0 0


 S3 =




0 1 0
−1 0 0
0 0 0


 . (A.30)

The SU(3) Lie algebra has 8 generators ti, i = 1, . . . 8, which are not needed explicitly. Lie
algebra generators in general obey the commutation relations

[ti, tj ] = i fijk tk , (A.31)

with the fijk the structure constants for the given group. The kj matrix element of the generator t(A)i in
the adjoint representation is defined as

[
t
(A)
i

]
kj

= i fijk . (A.32)
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Note that we can always choose anti-hermitean generators t′ by multiplying the hermitean versions
t by i. In that case the group elements for SU(2) e.g. are

exp
(
ξi t′i

)
. (A.33)

Representations of SU(2), etc. groups are often indicated by 2, . . . indicating the size of the matri-
ces of that representation. Trivial or singlet representation are then indicated with 1.

Some other group theory factors (the so-called Casimir factors):

SU(2) : CA = 2, CF =
3

4
,

SU(3) : CA = 3, CF =
4

3
.

For the fundamental representation of SU(N) we have

Tr
[
t
(F )
i t

(F )
j

]
=

1

2
δij . (A.34)

Standard Model quantities
The amount of electric charge (in units of e) Q, the hypercharge Y and the third component of weak
isospin t3 are related by

Y = 2(Q− t3) . (A.35)

In the Standard Model the generator of the U(1) of hypercharge is conventionally written as

1

2
Y , (A.36)

and is then represented on d-dimensional vectors as 1/2 times the hypercharge eigenvalue times the unit
matrix.

The gauge couplings associated with the SUIW (2) and UY (1) gauge groups are traditionally de-
noted g and g′ respectively. In terms of these couplings the unit of electric charge is

e =
g g′√
g2 + g′2

= g sin θW = g′ cos θW , (A.37)

with sin2 θW ≃ 0.226.

The gauge fields are mixed as follows:

Bµ = cos θWAµ − sin θWZµ, W 3
µ = cos θWZµ + sin θWAµ, (A.38)

W 1
µ − iW 2

µ =
√
2W+

µ , W 1
µ + iW 2

µ =
√
2W−

µ . (A.39)

The Fermi constant is defined by

GF =
g2

4
√
2m2

W

=
1√
2v2

≃ 1.2× 10−5GeV2 . (A.40)

Vector boson masses in GeV:

mZ =
gv

2 cos θW
= 91.1876± 0.0021, mW =

gv

2
= 80.385± 0.015 . (A.41)

The photon and gluon are massless.
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Heavy quark masses in GeV:

mc = 1.5, mb = 5, mt = 175 . (A.42)

u, d, s are massless.

Lepton masses in GeV:

mτ = 1.7, mµ = 0.105, me = 0.0005 . (A.43)

QCD scale in GeV:
ΛQCD ≃ 0.2 . (A.44)

Assorted Feynman rules
All momenta in vertex Feynman rules are incoming here.

– Fermion propagator
−→ p

α β

1

i(2π)4
(−i/p+m)βα
p2 +m2 − iǫ

(A.45)

– Electron-electron photon vertex

p3

p1 p2

α β

µ

i(2π)4δ(p1 + p2 + p3)(−ie) γµβα (A.46)

where the three momentum vectors (not drawn) are pointing to the vertex.

– Outgoing fermion:
p

u(p, s) Row spinor

– Outgoing anti-fermion:
p

v(p, s) Column spinor

– Incoming fermion: u(p, s)

p

Column spinor

– Incoming antifermion: v(p, s)

p

Row spinor

– Outgoing vector boson:
k

ǫ∗µ(k, λ)

– Incoming vector boson: ǫµ(k, λ)
k

In Feynman diagrams, always start where the charge vector top of the fermion lines ends (i.e. start
with a row spinor), and work your way back against the charge flow.
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Integrate over internal momenta:
∫
d4ki

Completeness relations for spin sums over polarization spinors and polarization vectors, associated
with external particles ∑

s

uα(p, s)uβ(p, s) = (−i/p+m)αβ , (A.47)

∑

s

vα(p, s)vβ(p, s) = (−i/p−m)αβ , (A.48)

with m the fermion mass, α, β are spinor indices.

For photons the sum over the two physical polarizations gives

∑

λ

ǫµ(k, λ)ǫ∗ ν(k, λ) = ηµν − kµk̄ν + kν k̄µ

k · k̄ , (A.49)

where the sum is over the physical spin only, and we define

kµ = (k0,~k), k̄µ = (−k0,~k) . (A.50)

The photon propagator is (κ is the gauge parameter here)

∆µν(k) =
1

i(2π)4
1

k2 − iǫ

(
ηµν −

(
1− 1

κ2

)
kµkν
k2

)
. (A.51)

The scalar field propagator is simply

∆(p) =
1

i(2π)4
1

p2 +m2 − iǫ
. (A.52)

For massive vector bosons the sum over the three physical polarizations gives

∑

λ

ǫµ(k, λ)ǫ∗ ν(k, λ) = ηµν +
kµkν

M2
. (A.53)

Loop integrals
1

A1A2
=

∫ 1

0
dx1

∫ 1

0
dx2

δ(1− x1 − x2)

[x1A1 + x2A2]
2 . (A.54)

The result for the integral

I(n, α) =

∫
dnq

1

(q2 +m2 − iǫ)α
(A.55)

is

I(n, α) = iπn/2
Γ(α− (n/2))

Γ(α)

(
m2
)(n/2)−α

. (A.56)

The Euler gamma function Γ(z) has the following relevant properties:

Γ(z + 1) = zΓ(z), Γ(1) = 1 , (A.57)

ln Γ(1 + z) ≃ −zγE +O(z2), γE = 0.577 . . . (A.58)
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Abstract
With the discovery of the Higgs, we have access to a plethora of new physical
processes that allow us to further test the SM and beyond. We show a con-
venient way to parametrize these physics using an effective theory for Higgs
couplings, discussing the importance of the basis selection, predictions from a
SM effective field theory, and possible ways to measure these couplings with
special attention to the high-energy regime. Predictions from the MSSM and
MCHM, with the comparison with data, are also provided.

1 Motivation
The 4th of July of 2012 marked a milestone in particle physics, as CERN announced the discovery of
a new particle whose properties were in accordance with the sought-after Higgs boson [1]. Since then,
we have been accumulating more and more data and measuring more decay channels, increasing the
significance of the discovery while keeping at the same time a good agreement with the predictions
from the Standard Model (SM) Higgs [2, 3]. To appreciate this agreement, it is convenient to plot the
experimental fit to Higgs couplings in the coupling–mass plane, as shown in Fig. 1 by courtesy of CMS
[2]. Were this new particle not the SM Higgs, we would have expected its couplings to lay on any point of
this plane, and therefore differing significantly from the SM predictions. As an example, let us consider a
scalar coming from a weak-doublet not being (the main) responsible for electroweak symmetry breaking
(EWSB). This scalar could have couplings to fermions as large as O(1), but very small couplings to
Z/W . These predictions are shown in red in Fig. 1. Data clearly disfavours this type of scalars as
compared with the SM Higgs whose predictions lay on a straight line. We can then say today that the
SM Higgs is significantly supported by the experimental data, leaving most competitors far behind.

Having discovered the Higgs, we have now experimental access to new processes that will help
us to test the SM and beyond. There is a fundamental aspect that makes Higgs physics very special:
the Higgs is the only particle of the SM that its lightness (mh ∼ 125 GeV � MP ) is not expected on
theoretical grounds, requiring the presence of new physics beyond the SM (BSM) at the TeV. This is
referred as the hierarchy problem. This makes the Higgs boson one of the most sensitive SM particle to
BSM effects, and therefore the measurement of its properties one of the best ways to indirectly discover
new physics and help to discriminate between different BSMs. As an example, two of the most well-
motivated BSM scenarios, the minimal supersymmetric SM and the composite Higgs, predict, as we
will see below, sizeable corrections to the Higgs couplings. In few words, natural theories explaining
the lightness of the Higgs demand the Higgs to be SM-like only in a first approximation, predicting
departures from the SM predictions to be seen in the near future.

2 Effective Higgs couplings
To characterize the most interesting Higgs processes, it is convenient to parametrize, in the most general
way possible, the couplings of the Higgs to the SM particles. For this purpose we will write an effective
theory for the Higgs couplings, Lh. We will define Lh in position-space, as it makes it simpler to
eliminate redundancies. Our only approximation at this point will be to assume that the momenta q
in the Higgs form-factors are smaller than a heavy scale Λ associated with the BSM physical scale,
q/Λ� 1. This is equivalent to say that we can make an expansion in derivatives Dµ/Λ in Lh. We leave
for later the implications when an expansion of SM fields over Λ can be also carried out. We assume that
the interactions preserve SU(3)c×U(1)EM, with the Higgs defined as a neutral CP-even scalar field.
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Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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Fig. 1: Fit of the Higgs couplings, ghff and
√
ghV V /2v, and predictions from the SM [2]. A generic scalar would

have couplings to the SM particles laying in any point of this plane, as the example shown in red. The experimental
data clearly favors a SM Higgs.

We split the Higgs couplings in two sets. One set that consists of what we call primary Higgs cou-
plings and the other set containing the rest. These primaries, as we will explain later, play an important
role, both theoretically and phenomenologically. We then write

Lh = Lprimary
h + ∆Lh . (1)

We will only keep interactions up to order O(h3), O(h∂2V 2) and O(hV f2) since they are the most
relevant for Higgs phenomenology (adding more derivatives will be suppressed by inverse powers of Λ,
and adding more fields makes the interactions harder to be observed at colliders since they will be further
suppressed by phase space). Then, for CP-conserving couplings, we have without loss of generality 1

Lprimary
h = ghV V h

[
W+µW−µ +

1

2c2θW
ZµZµ

]
+

1

6
g3h h

3 + ghff
(
hf̄LfR + h.c.

)

+ κGG
h

2v
GAµνGAµν + κγγ

h

2v
AµνAµν + κZγ

h

v
AµνZµν , (2)

and

∆Lh = δghZZ h
ZµZµ
2c2θW

+ ghZff
h

2v

(
ZµJ

µ
N + h.c.

)
+ ghWff ′

h

v

(
W+
µ J

µ
C + h.c.

)

+ κWW
h

v
W+µνW−µν + κZZ

h

2v
ZµνZµν , (3)

where JµN = f̄γµf (for f = fL, fR) and JµC = f̄γµf ′ are respectively the neutral and charged cur-
rents. Flavour indices are implicit. We also defined cθW ≡ cos θW where θW is the weak-angle,
and GAµν ≡ ∂µG

A
ν − ∂νG

A
µ for gluons, and similarly for the photon, Aµ, the Zµ and W+

µ . We can
use field redefinitions to rewrite the couplings in Eq. (2) and Eq. (3) in a different way. For example,
some linear combinations of the contact-interactions hVµJµ could be written as interactions of the type
hVµ∂νF

µν [4] by the redefinition Vµ → (1 + αh)Vµ, with an appropriate α, in the full Lagrangian (and
using integration by parts). Nevertheless, we consider that Eq. (2) and Eq. (3) are the most convenient

1From here and on, all Higgs-coupling coefficients are defined real.
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way to write the Higgs couplings. Our parametrization of Higgs couplings gives priority to operators
with the largest number of fields (as opposed to operators with more derivatives), as this is important
when estimating the size of the couplings or looking for the dominant effects in the high-energy regime,
as we will show later.

For CP-violating couplings we have

Lprimary
h = δg̃hff

(
ihf̄LfR + h.c.

)
+ κ̃GG

h

2v
GAµνG̃Aµν + κ̃γγ

h

2v
AµνÃµν + κ̃Zγ

h

v
AµνZ̃µν , (4)

∆Lh = g̃hZff
h

2v

(
iZµJ

µ
N + h.c.

)
+ g̃hWff ′

h

v

(
iW+

µ J
µ
C + h.c.

)

+ κ̃WW
h

v
W+µνW̃−µν + κ̃ZZ

h

2v
ZµνZ̃µν , (5)

where G̃Aµν = εµνρσGAρσ/2 and similarly for other gauge bosons.

It is important to understand the implications of global symmetries in the Higgs couplings. In
particular, if the Higgs couplings are induced from BSMs that respect a custodial SU(2) symmetry [5]
only weakly broken by the gauging of U(1)Y and fermions masses, and responsible for m2

W = m2
Zc

2
θW

at tree-level, we have the relations [6] 2

κWW = c2θW κZZ + s2θW κZγ + s2θW κγγ , (6)

cθW g
h
Zff =

√
2T3f g

h
Wff ′V

†
CKM − Yf δghZZ/mW for f= up-type fermion ,

cθW g
h
Zf ′f ′ =

√
2T3f ′ V

†
CKMg

h
Wff ′ − Yf ′ δghZZ/mW for f ′= down-type fermion , (7)

where T3f and Yf are respectively the 3-component isospin and hypercharge of the fermion f , with
Qf = T3f + Yf the electric charge, and VCKM the CKM quark-mixing matrix [7]. Eq. (6) was first
derived in [8]. A left-right parity PLR [9] can further restrict the coefficients [6]:

κZγ =
c2θW
s2θW

κγγ . (8)

Similar expressions are derived for the CP-violating counterparts.

We can also have a reduction of Higgs couplings due to dynamical reasons. For example, in
BSMs with a strongly-interacting Higgs, we can neglect κZZ,WW in comparison with ghV V and δghZZ ,
as the formers are associated to interactions that contain more derivatives and therefore are expected to
be smaller in our Dµ/Λ expansion (see later a power counting for these couplings). Also in "universal"
BSMs (as those in which the BSM states only couple to SM bosons and not to fermions) we only have
three relevant contact-interactions hVµJµ:

ghZJ3
h

v
ZµJ

µ
3 , ghZJY

h

v
ZµJ

µ
Y , ghWJ

h

v

(
W+
µ J

µ
W + h.c.

)
, (9)

where Jµ3 , JµY and JµW are respectively the 3-component isospin, hypercharge and charged SM currents
[7]. Demanding also custodial invariance, we obtain

ghZJ3 =
ghWJ
cθW

, ghZJY = − δghZZ
cθWmW

, (10)

that is equivalent to

ghWff ′ = ghWJVCKM , ghZff = T3f

√
2ghWJ

cθW
− Yf

δghZZ
cθWmW

. (11)

Eq. (11), together with Eq. (6), show that universality and custodial symmetry reduce Eq. (3) to only 3
independent Higgs couplings, that we can take to be δghZZ , κZZ and ghWJ . This is in accordance with [8].

2The terms proportional to Yf arise from the operator ∂µhZνg′Bµν that, after field redefinitions, can be rewritten as
interactions in Eq. (2) and Eq. (3). One has to have this in mind when estimating the size of the coefficients.
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3 The SM predictions for Higgs couplings
In the SM the Higgs sector is given by

LSMh = |DµH|2 − (yuQ̄LH̃uR + ydQ̄LHdR + yeL̄LHeR + h.c.) + µ2|H|2 − λ|H|4 , (12)

where the complex Higgs field H is a 21/2 of SU(2)L×U(1)Y , H̃ = iσ2H∗, and

QL =

(
uL
dL

)
, LL =

(
νL
eL

)
. (13)

When the Higgs gets a vacuum expectation value (VEV), 〈H〉 = (0 v/
√

2)T , where v ' 246 GeV, the
gauge bosons W/Z and fermions get a mass proportional to their coupling to the Higgs field. Out of
the 4 degrees of freedom in H , 3 corresponds to the would-be Nambu-Golstone bosons that become the
longitudinal component of the W and Z, and the 4th is the Higgs particle h. In the SM all couplings of
the Higgs are predicted as a function of particle masses. We have, at tree-level, that the only nonzero
couplings are

ghff = − gmf

2mW
, ghV V = gmW , g3h = −3gm2

h

2mW
, (14)

that lead to the straight line of Fig. 1. The rest of the Higgs couplings arise at the loop level; κGG is
mainly induced by the top loop, while κγγ and κZγ are generated by W and top loops, as can be found
for example in [10].

4 Higgs couplings in an Effective Field Theory approach to the SM
Let us consider BSMs characterized by a mass-scale Λ much larger than the electroweak scalemW , such
that, after integrating out the BSM sector, we can make an expansion not only in derivatives Dµ over Λ,
as we did in previous sections, but also an expansion of SM fields over Λ. In this way we can obtain an
Effective Field Theory (EFT) made of local operators: 3

LEFT =
Λ4

g2∗
L
(
Dµ

Λ
,
g∗H

Λ
,
g∗fL,R
Λ3/2

,
gFµν
Λ2

)
' L4 + L6 + · · · . (15)

Here Ld denotes the term in the expansion made of local operators of dimension d, while g∗ denotes a
generic coupling, and g and Fµν represent respectively the SM gauge couplings and field-strengths. The
Lagrangian in Eq. (15) is based on dimensional analysis and the dependence on the coupling g∗ is easily
obtained when the Planck constant ~ is put back in place. Indeed, working with units ~ 6= 1, the couplings
have dimensions [g∗] = [~]−1/2, while [H] = L−1 · [~]1/2 and the Lagrangian mass-terms [Λ] = L−1.
This dictates the dimensionless expansion-parameters to be g∗H/Λ and Dµ/Λ, and that terms in the
Lagrangian that contains n fields must carry n− 2 couplings to have the right dimensions. This counting
is therefore valid even if g∗ is not small. Although we are using a generic coupling and mass-scale, g∗
and Λ, it is clear that this ought not to be always the case. For example, for a strongly-interacting light
Higgs (SILH) [4] only the couplings of the Higgs to the strong BSM sector are large (g∗ � 1 for the
Higgs), while SM fermions are assumed to have small couplings (g∗ ∼ √yf for fermions).

The Lagrangian terms of L4 redefine the SM (and have no physical impact), while L6 encodes
the dominant BSM effects. Therefore the study of the physical implications of L6 in the physics of the
SM is of great importance. There are different bases used in the literature for the set of independent
d = 6 operators in L6. Although physics is independent of the choice of basis, it is clear that some
bases are better suited than others in order to extract the relevant information, e.g., for Higgs physics.

3This EFT also contains operators of dimension five, L5, but these induce neutrino masses and therefore their coefficients
must be very small (or their suppression scale Λ very large). For this reason we neglect them here since they cannot play any
role for Higgs physics at the TeV.
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The first complete and non-redundant basis of dimension-6 operators was given in [11]. The virtue
of that basis is that it is constructed with the maximum number of operators made of fields instead of
using derivatives, following our approach for Eq. (2) and Eq. (3). As we mentioned, this can be useful
when estimating the size of the coefficients (see section below) or looking for the dominant effects
at high-energies. Nevertheless, from a model-building point of view, it can be more advantageous to
define bases that capture in few operators the impact of the most interesting BSM scenarios. With this
philosophy, the SILH basis was constructed in [4], and generalised to a complete L6 basis in [8,9]. In this
basis "universal" BSMs are encoded in few operators made only of SM bosons. This has the virtue of, for
example, having a more direct connection between operator coefficients and the S and T parameters [12]
that characterize the main electroweak effects of these BSMs. This simplicity is not present in the basis
of [11] in which the equivalent of the S and T parameters involve vertex corrections [13] and then
a less direct connection with the operator coefficients. Another useful basis is given in [14] with the
interesting property of having a one-to-one correspondence between operators and the most relevant
physical interactions measured at experiments.

In all the above mentioned bases it is possible to separate the operators into the following two
groups: those that could (in principle) be induced at tree-level from integrating out heavy states with
spin ≤ 1 in renormalizable weakly-interacting BSMs, and those operators that can only be induced at
the one-loop level from these BSMs [9,15]. This property is, however, not respected for bases constructed
with the operators of [16] where tree and loop operators are mixed.

The coefficients of L6, referred as Wilson coefficients, are generated at the scale Λ where they
are generated after integrating out the BSM heavy states. The renormalization group evolution (RGE)
from Λ down to the electroweak scale, where they are supposed to be measured, can give important
corrections to the Wilson coefficients and mix them [9,17,18]. For example, in supersymmetric theories
or composite Higgs models, where the Wilson coefficients can be determined (see below), the RGE
give us the leading-log corrections to the predictions for the Higgs couplings at low-energy that can be
significant in certain cases [9].

The full set of physical implications of L6 was given in [13], where it was shown that not all type
of interactions can be obtained from L6 and, of the possible ones, not all of them are independent. The
set of independent couplings that are, at present, the experimentally best tested ones, were called primary
couplings. The ones of the Higgs are presented below.

4.1 Primary Higgs couplings
Among all dimension-6 operators present in L6, there are few of them that contribute only to Higgs
couplings and not to other couplings (such as V ff ) [9]. These are the set of independent dimension-6
operators constructed with |H|2. The CP-conserving ones are 4

|H|2Q̄LH̃uR + h.c. , |H|2Q̄LHdR + h.c. , |H|2L̄LHeR + h.c. ,

|H|2|DµH|2 , |H|6 , |H|2GAµνGAµν , |H|2BµνBµν , |H|2W aµνW a
µν , (16)

where W a
µ , Bµ are the SU(2)L×U(1)Y gauge bosons. To see that, indeed, the above operators can only

be probed by measuring Higgs couplings, we just have to put the Higgs field in the EWSB vacuum,
|H|2 → v2/2, and realize that the resulting terms are operators already present in the SM, i.e., their only
effect is a redefinition of the SM parameters.

The set of Higgs couplings that can be independently generated from Eq. (16) are the primary
Higgs couplings [13]. Their measurements provide new probes to new physics only accessible by Higgs
physics. The number of primary Higgs couplings must obviously coincide with the number of Wilson
coefficients associated with the operators of Eq. (16) (for the CP-conserving case). We have chosen
as primary Higgs couplings those in Eq. (2), as all of them can be independently generated from the

4Notice that the operator |H|2f 6Df can always be eliminated from the Lagrangian by field redefinitions.
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operators of Eq. (16). We must be aware however that the correspondence is not one-to-one [9, 19].
There is a certain freedom to choose the set of primary Higgs couplings. For example, instead of κγγ
and κZγ , we could have taken κZZ,WW , as these latter can also receive independent contributions from
Eq. (16). The reason to choose Eq. (2) as primary Higgs couplings it is just experimental: they are the
set of primary Higgs couplings best measured at the LHC.

Similarly, the CP-violating dimension-6 operators constructed with |H|2 are

i|H|2Q̄LH̃uR + h.c. , i|H|2Q̄LHdR + h.c. , i|H|2L̄LHeR + h.c. ,

|H|2GAµνG̃Aµν , |H|2BµνB̃µν , |H|2W aµνW̃ a
µν , (17)

that can independently generate the set of primary Higgs couplings of Eq. (4). Again, all these operators
for |H|2 → v2/2 generate SM terms (that redefine SM parameters) and therefore their physical effects
can only be seen in Higgs physics.

The primary Higgs couplings can enter at the quantum level in other non-Higgs observables. For
example, the CP-violating Higgs couplings can contribute at the loop-level to the neutron and electron
electric dipole moment (EDM). The fact that we have excellent bounds on these EDMs, place indirect
bounds on these Higgs couplings. We must be aware however that these bounds are model-dependent,
as there can be, in principle, other BSM effects entering in the EDMs.

4.2 Beyond the primaries
The rest of CP-conserving Higgs couplings, beyond the primaries, are those of Eq. (3) at the order we
mentioned before. They can in principle be generated from operators in L6. 5 Nevertheless, it can be
proven [9, 19] that contributions from L6 to Eq. (3) are not independent from contributions to primary
Higgs couplings and other electroweak couplings. Therefore they can, in principle, be constrained by
other experimental measurements. As an example, consider the operator H†DµHēRγ

µeR. This gives
a contribution to the Higgs coupling ghZff , but it also contributes to the coupling ZēReR that has been
very-well measured at LEP, putting strong bounds on possible BSM effects.

The explicit relations between the L6-contributions to Eq. (3) and to other couplings were explic-
itly calculated in [13, 14, 19] assuming family universality. Here we give these relations for the general
case (derived at the tree-level) [6]:

δghZZ = 2gt2θWmW

(
c2θW δg

Z
1 − δκγ

)
,

ghZff = 2δgZff − 2δgZ1 (gZffc2θW + gγffs2θW ) + 2δκγYf
esθW
c3θW

, ghWff ′ = 2δgWff ′ − 2δgZ1 g
W
ff ′c

2
θW

, (18)

κZZ =
1

c2θW
δκγ + 2

c2θW
s2θW

κZγ + κγγ , κWW = δκγ + κZγ + κγγ , (19)

with
δgWff ′ =

cθW√
2

(
δgZffVCKM − VCKMδg

Z
f ′f ′
)

for f = fL , (20)

and where

gγff = eQf , gZff =
g

cθW

(
T3f −Qfs2θW

)
, gWff ′ =

g√
2
VCKM, 0 resp. for f = fL, fR , (21)

are the γ, Z and W couplings to fermions in the SM. Flavor indices are again implicit. We have also
defined by δgZff (δgWff ′) the BSM corrections to the Z (W ) couplings to fermions:

∆LVff =
δgZff

2

(
ZµJ

µ
N + h.c.

)
+ δgWff ′

(
W+
µ J

µ
C + h.c.

)
, (22)

5AtO(hFff) we also have dipole-type interactions that can arise from L6. Their Wilson coefficients are however expected
to be suppressed by SM Yukawa-couplings (otherwise could largely contribute at the loop level to the SM fermion masses).
These couplings are related to fermion EDMs as can be found in [13].
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while δgZ1 is the correction to the ZWW coupling and δκγ parametrizes BSM contributions to the EDM
of the W , following the notation of [16] for anomalous triple gauge couplings (TGC):

∆L3V = igcθW δg
Z
1

[
Zµ
(
W+ νW−µν − h.c.

)
+ ZµνW+

µ W
−
ν

]
+ ieδκγ

[
(Aµν − tθWZµν)W+

µ W
−
ν

]
.

(23)
Following [13], we have chosen to work in the mass-eigenstate basis within a parametrization in which
kinetic terms and masses do not receive corrections and then take the SM values. All BSM effects are in
couplings. We think this is the most convenient parametrization of BSM effects due to the straightforward
connection between couplings and physical processes, that in most of the cases is a one-to-one corre-
spondence. The SM input parameters can be taken to be αEM, mZ and mW that, in our parametrization,
do not have BSM corrections, as opposed to GF that receive corrections from 4-fermion interactions.
We remark again that the predictions Eq. (18) and Eq. (19) are derived at the tree-level and only apply to
BSM effects coming from L6. There are also SM contributions to these couplings at the loop level, that
can be as important as new-physics contributions, and must be incorporated accordingly.

Eq. (18) and Eq. (19) are important results. They show that all Higgs couplings of Eq. (3) can be
written as a function of BSM effects to two primary Higgs couplings (κγγ , κZγ), Z/W couplings to SM
fermions (δgZff , δgWfRf ′R

), and two TGC (δgZ1 , δκγ). Experimental bounds on κγγ,Zγ are already at the
per-cent level [19], while Z/W couplings have also been experimentally contrained, mostly from LEP
and SLC [20, 21] (with Tevatron providing an accurate measurement of the W -mass). One finds that
bounds on δgZff are quite strong, at the per mille-level in most of the cases, but bounds on δgZ1 and δκγ
are much weaker [22]. Therefore, at present, we can already derive, using Eq. (18) and Eq. (19), relevant
model-independent bounds on the Higgs couplings of Eq. (3) [19].

In the case of custodial-invariant universal BSMs, Eq. (18) reduces to

δghZZ = 2gt2θWmW

(
c2θW δg

Z
1 − δκγ + Ŝ

)
,

ghZff = −2T3f δg
Z
1 gcθW − Yf

δghZZ
cθWmW

, ghWff ′ = −2δgZ1 g
W
ff ′c

2
θW

, (24)

where Ŝ is, up to a normalization constant [23], the S-parameter [12]. As expected, Eq. (24) and Eq. (18)
fulfill Eq. (6) and Eq. (11), and ghZff is fully determined by the custodial symmetry as a function of ghWff ′
and δghZZ .

The CP-violating non-primary Higgs couplings, Eq. (5), are also not independent but related to
other couplings. We have

g̃hZff = 2δg̃Zff , g̃hWff ′ = 2δg̃Wff ′ ,

κ̃ZZ =
1

c2θW
δκ̃γ + 2

c2θW
s2θW

κ̃Zγ + κ̃γγ , κ̃WW = δκ̃γ + κ̃Zγ + κ̃γγ , (25)

where
δg̃Wff ′ =

cθW√
2

(
δg̃ZffVCKM − VCKMδg̃

Z
f ′f ′
)

for f = fL , (26)

with δg̃Zff and δg̃Wff ′ defined as

∆L̃Vff =
δg̃Zff

2

(
iZµJ

µ
N − h.c.

)
+ δg̃Wff ′

(
iW+

µ J
µ
C − h.c.

)
, (27)

and κ̃γ being the CP-violating TGC:

∆L
3Ṽ

= ieδκ̃γ

[
(Ãµν − tθW Z̃µν)W+

µ W
−
ν

]
. (28)
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The predictions Eq. (18), Eq. (19) and Eq. (25) rely on the (quite plausible) hypothesis that the leading
SM deviations arise from L6. Finding experimental evidence for deviations from these predictions,
would mean that nature does not fulfil this hypothesis: either because there are light BSM states (Λ .
mh), the composite-scale of the Higgs is low (Λ ∼ g∗v), that is equivalent to say that h cannot be
identified within the SM doublet, or that there are other sources of EWSB independent of 〈H〉 [24].

4.3 Power counting for Higgs couplings
It can be useful to estimate the size of the contributions to the effective Higgs couplings arising from
generic BSMs. As it is clear from the expansion in Eq. (15), the coefficients in Eq. (2) and Eq. (3) can
have different dependence with g∗. The Higgs couplings that can receive the largest power of g∗ are g3h
and ghff where

δg3h ∼
g4∗v

3

Λ2
, δghff ∼

g3∗v
2

Λ2
. (29)

For g∗ � 1, Eq. (29) can give O(1) corrections to g3h and ghff , even after demanding g2∗v
2/Λ2 � 1 nec-

essary to make the expansion Eq. (15) valid. Nevertheless, in theories where the Higgs mass is protected
by a symmetry, as it happens in theories that solve the hierarchy problem such as supersymmetry or
composite Higgs models, the contributions to g3h are also expected to be protected and then proportional
to m2

h/v
2 ∼ λ. Also it is natural to expect that chirality protects terms proportional to f̄LfR, at least by

a Yukawa coupling yf ∼ mf/v, otherwise corrections to fermion masses would be too large. For this
reason, it is more natural to assume that the corrections to these Higgs couplings are of order

δg3h ∼ λv
g2∗v

2

Λ2
, δghff ∼ yf

g2∗v
2

Λ2
, (30)

that potentially give relative corrections of O(g2∗v
2/Λ2). At the same order, we also have

δghV V ∼ g2v
g2∗v

2

Λ2
, (31)

and

δgZff , δg
Z
1 ∼ g

g2∗v
2

Λ2
. (32)

Finally, couplings coming from a derivative (or field-strength) expansion, the κi, are expected to scale as

κi ∼
g2v2

Λ2
. (33)

Nevertheless, in renormalizable BSMs these coefficients can only be induced at the loop-level and there-
fore expected to be

κi ∼
g2∗

16π2
g2v2

Λ2
. (34)

Indeed, it can be shown [4, 9] that the κi cannot be generated at tree-level from integrating out scalars,
fermions and vector bosons in renormalizable theories.

The above estimates are useful to determine which are the most sizeable BSM corrections to the
Higgs couplings. For example, in theories in which the Higgs is strongly coupled, the largest corrections
are those of Eq. (30) and Eq. (31) that depend quadratically in the strong coupling g∗ � 1 [4]. If also the
SM fermions are strongly-coupled, Eq. (32) can also give similar size corrections. It is also important to
remark that even for theories in which the field expansion in Eq. (15) is not valid (e.g., when g∗v ∼ Λ),
the power counting for Higgs couplings given here is expected to be correct. In particular, the above
estimates are in accordance with the NDA analysis of [25] proposed for QCD.
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Fig. 2: Predictions for the main Higgs production cross-sections and Higgs BR in the SM [26].

For the non-primary Higgs couplings we have the estimates

δghZZ
g2v

,
ghZff
g
,
ghWff ′

g
∼ g2∗v

2

Λ2
and κZZ , κWW ∼

g2v2

Λ2
, (35)

in agreement with the relations in Eq. (18). Similar estimates follow for CP-violating Higgs couplings.

5 Experimental determination of the effective Higgs couplings
The primary Higgs couplings can be determined by searching for the Higgs through the different pro-
duction mechanisms and decays. The main Higgs production mechanisms at the LHC are

Gluon fusion: GG→ h ,

V h-associated production: qq̄ → V h ,

Vector boson fusion (VBF): qq → qqV V ∗ → qqh ,

htt-associated production: GG→ tt̄h , (36)

while the most important Higgs branching ratios (BR) are

BR(h→ bb̄) , BR(h→ τ τ̄) , BR(h→ V ff̄) , BR(h→ γγ) , BR(h→ Zγ) . (37)

The predictions for a SM Higgs are given in Fig. 2. The Higgs mass can be mainly determined from the
Higgs decay to γγ and Zff that allows to obtain

mh = 125.03
+0.26
−0.27

(stat.)
+0.13
−0.15

(syst.) GeV from CMS ,

mh = 125.36± 0.37 (stat.)± 0.18 (syst.) GeV from ATLAS . (38)

At the LHC one can combine the different Higgs production mechanisms and BR of Eq. (36) and Eq. (37)
to determine 7 primary Higgs couplings: ghff (f = t, b, τ), ghV V , κGG, κγγ and κZγ . 6 The CMS
fit of six of the primary Higgs couplings is shown in Fig. 3, where other Higgs couplings have been
set to zero. 7 The fit shows a good agreement with the SM predictions and no sing of new-physics.
The implications of these measurements in particular BSMs will be discussed in the next section. The

6We note that ghtt and ghV V also affect BR(h→ γγ/Zγ) and σ(GG→ h) at the one-loop level [4].
7The ATLAS results are not shown here since the fit is performed only for few primaries at each time instead of a global fit

to all of them [3]. For a combination of ATLAS and CMS data see, for example, [28, 29] .

9

HIGGS PHYSICS

67



Fig. 3: Fit of 6 primary Higgs couplings from CMS [2]. Notation: κV ≡ ghV V /g
h SM
V V , κf ≡ ghff/g

h SM
ff , κg ≡

κGG/κ
SM
GG and κγ ≡ κγγ/κSMγγ ; loop effects in κGG and κγγ are not included [2].

primary coupling κZγ has not been included in the fit of Fig. 3, but one can use the experimental bound
BR(h → Zγ)/BR(h → Zγ)SM . 10 [27] to derive the constraint −0.01 . κZγ . 0.02 [19]. The
fact that in the SM h → Zγ arises at the one-loop level, and therefore has a small branching fraction
BR(h → Zγ) ∼ 0.15%, makes this BR very sensitive to new-physics; it probably provides the last
chance to find large BSM effects in SM Higgs couplings.

Among the remaining primary Higgs couplings to be measured we have g3h. Its determination
however will be very difficult since it requires to search for double-Higgs production pp → hh that
has small rates [30]. Also Higgs couplings to light fermions ghff (beyond the 3rd family) are going to
be difficult to measure since we expect these couplings to be proportional to mf/mW (see Eq. (14)
and Eq. (30)), giving then very small BR. For example, for the case of the muon, that is probably the
most accessible, we have in the SM BR(h → µµ) ∼ 0.02%. Therefore a high luminosity at the
LHC run 2 will be needed to measure this coupling. Flavour-violating Higgs couplings in ghff can also
be accessible through Higgs decays. This is particularly interesting for theories of flavour in which
Yukawas are generated from the mixing of the SM fermions with heavy BSM states. The strength
of these mixings are expected to be ∼

√
mfi/v, and therefore predicting ghfifj ∼

√
mfimfj/v that

can lead to sizeable flavour-violating Higgs decays. In particular, one has BR(h → τµ) ∼ mµ/mτ ×
BR(h→ ττ) ∼ 0.4% that is quite close to the present experimental boundBR(h→ τµ) < 1.57% [31].
Finally, most of the CP-violating Higgs couplings are poorly measured since they appear quadratically
in production rates and BR since the interference terms with the SM contributions vanish. 8 Kinematical
differential distributions can be used to measure these couplings [32], and alternative methods have been
recently proposed in [33]. Nevertheless, indirect bounds on most of these couplings are very strong (see
for example [34] for bounds on κ̃γγ from EDMs), making difficult to believe that Higgs CP-violating
couplings are sizeable. The exception is probably δg̃hττ whose bounds are not so strong and could have
possible impact in CP-violating Higgs decays.

The experimental full extraction of all Higgs couplings, including the non-primary ones, Eq. (3)
and Eq. (5), is a difficult task. The best way to disentangle the effects of δghZZ , κZZ,WW and ghVff
(V = Z,W ), as well as their CP-violating counterparts, is by looking for modifications in differential

8Since in the SM the hGG, hγγ and hZγ couplings are small (as they arise at the one-loop level), the interference terms
are also small, and the corresponding bounds on CP-conserving and CP-violating couplings, κi and κ̃i, are comparable.
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2.  Beyond the primary Higgs couplings

h ZμZμ ,  h ZμνZμν ,  hWμνWμν ,  h Zμ f γμf ,  hWμ f γμf  , …
 ➥ no large deviations expected in these couplings

BUT worth to explore.  Some interesting physical effects in:

VH associated production

Higgs
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Fig. 4: The form-factor hV ff , that as a function of the effective Higgs couplings is given in Eq. (39), can be tested
in three different Higgs processes at the LHC: either in Higgs decays h → V ff , in V h-associated production or
in the VBF-like process pp→ qqV/qqV V ∗ → qqh.

distributions in Higgs processes. The most relevant ones are the Higgs decays h → V ff , the V h-
associated production and the VBF-like process pp → qqV/qqV V ∗ → qqh. All of them arise from the
hV ff amplitude (see Fig. 4) given by (neglecting fermion masses)

MhVff (q, p) =
1

v
ε∗µ(q) JνV (p)

[
AV ηµν + BV (p · q ηµν − pµ qν) + CV εµνρσp

ρqσ
]
, (39)

where q and p are respectively the total 4-momentum of V and the fermion pair in JµV = JµN , J
µ
C for

V = Z,W , and εµ is the polarization 4-vector of V . We have defined

AV = aV + âV
m2
V

p2 −m2
V

, BV = bV
1

p2 −m2
V

+ b̂V
1

p2
, CV = cV

1

p2 −m2
V

+ ĉV
1

p2
, (40)

with b̂W , ĉW = 0, and where

aZ = δghZff + iδg̃hZff , aW = δghWff ′ + iδg̃hWff ′ ,

âZ = 2gZff

(
1 +

δghV V + δghZZ
gmW

)
, âW = 2gWff ′

(
1 +

δghV V
gmW

)
,

bZ = −2gZffκZZ , bW = −2gWff ′κWW ,

b̂Z = −2eQfκZγ ,

cZ = −2gZff κ̃ZZ , cW = −2gWff ′ κ̃WW ,

ĉZ = −2eQf κ̃Zγ . (41)

From the differential distributions of the decay products in h → V ff , one can put bounds on the
coefficients of Eq. (40) and, consequently, on non-primary Higgs couplings. Nevertheless, we still have
poor statistics and bounds on Higgs couplings are almost irrelevant unless we turn on one by one [32]. At
present, the most promising way to obtain significant bounds in some of the Higgs couplings of Eq. (3)
is, as we will discuss below, by measuring them at the LHC high-energy regime, for example in the
V h-associated Higgs production where the effects of some of these couplings are enhanced.

Since primary Higgs couplings predict equal deviations in the hZff and hWff physical am-
plitudes (normalized to their SM values), measuring a relative deviation between these two would pro-
vide evidence for non-primary Higgs couplings. At the LHC this relative deviation is parametrized by
λWZ − 1 [2,3] that at present does not show any evidence of being different from zero; from the experi-
mental data we have−0.35 < λWZ−1 < 0.08 [3]. This quantity is predicted in the SM EFT of Eq. (15)
to be [19]

λ2WZ − 1 ' 0.6δgZ1 − 0.5δκγ − 0.7κZγ , (42)
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where we have used Eqs. (18)-(19), neglecting κγγ and δgZ,Wff , since they are experimentally constrained
to be less than 10−2 − 10−3.

5.1 Towards the high-energy regime
One of the most interesting perspectives at the LHC run 2 is the access to physical processes at much
higher energies. This can be used to probe Higgs production mechanism or off-sell Higgs mediated
processes in a regime in which the effects of some anomalous Higgs couplings can be enhanced by
factors E2/Λ2. As an example, let us consider the associated Higgs production, pp → V h. As it is
clear from Eq. (40), at high-energies, E � mV , the coefficient aV dominates the amplitude. Thanks
to our parametrization for Higgs couplings, this coefficient is in one-to-one correspondence with the
contact-interaction ghVff . Indeed, at the partonic level, we have

σ(qq → hV )
∣∣∣
ŝ�m2

h

= σ(qq → hVL)SM

(
1 +

ghVff

gVff

ŝ

m2
V

+ . . .

)
. (43)

By looking at high invariant-masses for hV , it is possible to put important bounds on ghVff [35, 36].
Nevertheless, one has to be careful that one is not probing these couplings at energies above Λ where
an expansion in ŝ/Λ2 would not be valid. To address this issue, the power-counting of section 4.3 is
crucial. Using Eq. (35), we can write ghVff ≡ gchVffg

2
∗v

2/Λ2 where chVff is a coefficient O(1). Now,
experimentally, due to the lack of experimental accuracy in the measurement of pp → V h at the LHC,
we can only bound at present high-energy deviations from the SM to be less than O(1) [35, 36], that is
equivalent to say, using Eq. (43),

ghVff

gVff

ŝ

m2
V

< O(1) → chVff . Λ2

ŝ

g2

g2∗
. (44)

To guarantee the validity of the expansion in Lh, we must stay in the regime Λ2/ŝ � 1. Therefore the
experimental bound Eq. (44) can only be restrictive (and useful) for strongly-interacting BSMs in which
g∗ � g. In these scenarios we can safely use the hV -production high-energy data to obtain bounds on
ghVff at the per-cent level [36]. In models in which, in addition, the expansion of Eq. (15) is valid, bounds
on ghVff can be translated into bounds on δgZ1 . Indeed, we have from Eq. (18), after neglecting δgZff due
to the strong constraints from LEP, and neglecting δκγ since this does not grow with g2∗ [13],

δgZ1 ' −
gchZff

2(gZffc2θW + eQfs2θW )

g2∗v
2

Λ2
' −

gchWff ′

2gWff ′c
2
θW

g2∗v
2

Λ2
. (45)

From the experimental data at the high-energy regime of the hV -associated production we obtain [36]

−0.01 < δgZ1 < 0.04 (95% CL) . (46)

This is as competitive as the one obtained from anomalous TGC at LEP [21] and at the LHC [37].

5.2 Invisible Higgs decay
We have assumed so far that there are no more light particles than those of the SM. If there were new
light states to which the Higgs could decay to, all the Higgs BRs would be reduced, changing the fit
of the Higgs couplings [38]. There are well-motivated BSMs where the Higgs can decay invisibly. An
example is given in [39] where the Higgs can decay to a gravitino and neutrino that interact so weakly
that escape from detection. Also in certain models the Higgs can decay to dark matter that, being stable
and EM neutral, also escape from detection. 9 There are direct searches for Higgs decaying invisibly
based on looking for missing energy plus a Z/W/γ/jet. The CMS bound is given in Fig. 3.

9Alternative effects from new light physics can be found in [40].
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6 Predictions for the Higgs couplings from BSM solutions to the hierarchy problem
The simplicity of the SM Higgs-mechanism is at odds with its quantum stability. The fact that the
Higgs is a scalar, a spin zero state, makes it difficult to keep it light (mh � MP ). This problematic
can be easily understood just by looking at the degrees of freedom (DOF) of a massless and massive
state of spin 0, and compare them with those of a state of spin 1/2, 1, or higher. Indeed, a massless
vector, as the photon, has two polarizations (2 DOF), while a massive vector has 3 polarizations. The
2 6= 3 guarantees that a massless vector can never get a mass by continuous variations of parameters
(or quantum fluctuations); only a discrete change in the theory, increasing the DOF, can make vector
massive. Similarly for fermions, we have that a charged massless fermion has 2 DOF, while a massive
one has the double (left- and right-handed states), and therefore, for the same reason, massless fermions
are safe from getting masses under fluctuations. 10 Now, massless scalars have the same DOF as massive
scalars: 1 DOF for neutral ones. Even if we start with a massless scalar at tree-level, it is not guaranteed
that quantum corrections will not give it a mass.

A possible solution to keep the Higgs stable from getting a large mass is to upgrade the SM to
include a symmetry relating the Higgs, a scalar, to a fermion whose mass can be stable, as we explained
above. This is the case of supersymmetry. An alternative option is to assume that the Higgs is not
an elementary state but a state made of elementary fermions, as pions in QCD. In this case, the Higgs
arises as a composite state from a new strong-sector at the TeV. It is interesting to point out that both
scenarios predicted a light Higgs. While in minimal supersymmetric versions of the SM (MSSM) the
lightest-Higgs mass was expected to be in the rangemh . 135 GeV [41], minimal versions of composite
Higgs (MCHM) predicted 115 GeV . mh . 185 GeV [42]. The connection between the Higgs mass
and the mass spectrum of resonances is of crucial phenomenological interest, since allows to obtain
predictions, from the present experimental value mh ' 125 GeV, for the heavy spectrum, either stops
for the MSSM [43] or fermionic resonances for the MCHM [44, 45].

In the following, we will centre in the predictions of these models to Higgs couplings. As we
emphasized in the introduction, the Higgs is usually the SM particle whose couplings are most sensitive
to BSM corrections. Indeed, as we will see below, in supersymmetric theories Higgs couplings can be
affected at tree-level [46], while other SM couplings are affected at the loop level. Similarly, in strongly-
interacting theories in which the Higgs is composite, effects on Higgs couplings can be enhanced by a
factor g2∗ [4], that can be as large as∼ 16π2, with respect to effects in other couplings. It is also important
to remark that in BSMs trying to solve the hierarchy problem the main BSM effects in Higgs physics are
captured by the primary Higgs couplings, as contributions to non-primary Higgs couplings are usually
negligible. This shows once more the importance of the primaries.

6.1 The Minmal Supersymmetric SM (MSSM)
We will work in the limit in which the supersymmetric spectrum is heavier than mh. This covers most of
the parameter space of the MSSM, after LHC searches have pushed the superpartner masses towards the
TeV regime, and none deviation from the SM has been observed. Also to accommodate mh ' 125 GeV
requires large stop masses in the MSSM [43].

The only tree-level corrections to the lightest-Higgs couplings come from the extra heavy Higgs
doublet of the MSSMH ′. This is due to theR-parity of the MSSM that only allowR-even field tree-level
corrections. At order v2/M2

H′ (i.e., keeping only 1/Λ2-suppressed effects where now Λ = MH′), only
the Higgs couplings to fermions are affected, since corrections to hV V appear at order v4/M4

H′ as can
be easily understood from Feynman diagrams –see Fig. 5. Deviations from the SM values for the hff

10If a fermion has no charge, it can get a Majorana-type mass without increasing the DOF, as probably is the case for the SM
neutrinos. For this reason, to keep naturally massless fermions, we must assume that the fermion has some type of charge.
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Fig. 5: Feynman diagrams contributing to ghV V and ghff from integrating the heavy MSSM Higgs H ′.

Fig. 6: Relative modifications of the Higgs couplings to fermions with respect to their SM values at tree-level
(dashed line), and after including RGE effects from Λ to the electroweak scale (solid lines), as a function of tanβ

in a MSSM scenario with Λ = MH′ = 600 GeV and unmixed stops heavy enough to reproduce mh = 125 GeV.
Left plot: Higgs coupling to tops. Right plot: Higgs coupling to bottoms (upper solid line) and taus (lower solid
line) [9].

couplings, including also one-loop RGE effects coming from the top, are given by [9]

δghtt
ghSMtt

=
v2

M2
H′

(
λ′

tβ

[
1− 21y2t

16π2
log

MH′

mh

]
+

3y4t
4π2t2β

log
MH′

mh

)
,

δghbb
ghSMbb

= − v2

M2
H′

(
λ′tβ

[
1− y2t

2π2
log

MH′

mh

]
+

y2t
16π2

[
5
λ′

tβ
− 14y2t

]
log

MH′

mh

)
,

δghττ
ghSMττ

= − v2

M2
H′

(
λ′tβ

[
1− 3y2t

8π2
log

MH′

mh

]
+

3y2t
8π2

[
λ′

tβ
− 2y2t

]
log

MH′

mh

)
, (47)

with tβ ≡ tanβ and 11

λ′ =
1

8
(g2 + g′2) sin 4β − 3y4t

8π2tβ
log

M2
t̃

M2
H′
, (48)

where Mt̃ is the value of the stop masses taking, for simplicity, zero stop left-right mixing. To illustrate
the impact of these corrections, let us take Mt̃ large enough to get mh ' 125 GeV through the well-
known loop corrections to the Higgs quartic coupling, which at one-loop and neglecting stop left-right

mixings read: λ = 1
8(g2 + g′2) cos2 2β +

3y4t
16π2 log

M2
t̃

M2
t

. This gives the value of λ′ as a function of tβ

11In Eq. (48) we are also including RGE effects from Mt̃ to MH′ proportional to the top-Yukawa yt.
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Fig. 7: Regions of the mA − tanβ plane excluded by Higgs physics in a MSSM with heavy partners [47].

and MH′ that we can then plug in Eq. (47) to obtain the RGE-improved corrections for ghff induced by
integrating out the heavy Higgs. The results are shown in Fig. 6. The experimental bounds on the Higgs
couplings can be translated into a bound on MH′ as a function of tβ . This is given in Fig. 7 where mA

is the mass of the heavy MSSM CP-odd scalar that, at the order we are working at, is equal to MH′ .
12 Stop left-right mixing effects or extra D-term effects can be easily included along the lines of [48].
Corrections to g3h can also arise at order O(v2/M2

H′), but we already said that this coupling is difficult
to measure as it requires double Higgs production.

6.2 The Minimal Composite Higgs Model (MCHM)
For models in which the Higgs is a pseudo Goldstone boson (PGB) arising from a new strong-sector
at the TeV [49], similar to a pion in QCD, the Higgs couplings must depart from their SM value. This
was studied in generality in [4]. The main effects are expected to arise in the Higgs coupling to Z/W
and fermions. The minimal model is the MCHM [50], where the global symmetry-breaking pattern is
SO(5)→ SO(4) with an "order parameter" f , that give the following predictions [4]:

ghV V
ghSMV V

=

√
1− v2

f2
,

ghff

ghSMff

=
1− (1 + n)v2/f2√

1− v2/f2
, (49)

where n = 0, 1, 2, ... depends on how fermions are implemented in the model. In particular, for the
MCHM4 (MCHM5) we have n = 0 (1) [45]. From the minimization of the Higgs potential, we expect
f & v [4], but constraints from the Ŝ parameter give v2/f2 . 0.1 [49]. The Higgs coupling predictions
of the MCHM are shown in Fig. 8 and compared with a fit of the ATLAS data. The fact that the exper-
imental data does not favour smaller Higgs couplings than those of the SM, as predicted from Eq. (49),
implies that we can derive an upper bound on ξ ≡ v2/f2, and consequently on the composite scale,
Λ ' g∗f , where g∗ is here the coupling among the resonances of the strong sector, expected to be in the
range, 1� g∗ . 4π. ATLAS [47] gives the observed (expected) 95% CL upper limit of ξ < 0.12 (0.29)
for the MCHM4 and ξ < 0.15 (0.20) for the MCHM5 that start being as competitive as the ones coming
from LEP [49].

12Mass splittings among the heavy Higgs-doublet components are O(v2/M2
H′), and then their effects are of higher-order in

our expansion.
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Fig. 8: Two-dimesional fit of the Higgs couplings κV ≡ ghV V /g
h SM
V V and κF ≡ ghff/g

h SM
ff and predictions from

the MCHM4 and MCHM5 as a function of ξ ≡ v2/f2 [47].

Contributions to κγγ and κGG are suppressed in the MCHM due to the PGB nature of the Higgs
[4]. Nevertheless, this suppression is not present in κZγ that can receive significant contributions [51]
that could be even larger than those of the SM, providing a strong motivation for searching for h→ Zγ.

7 Conclusions
With the Higgs discovery, the full SM has been experimentally established. Nevertheless, the presence
of the Higgs, a zero-spin state, demands new physics at the TeV to make the SM a natural theory. The
Higgs is the most sensitive SM particle to new physics, and for this reason an accurate measurement of
its couplings provides an excellent way to indirectly discover new phenomena.

At the LHC (and in future colliders) we can have access to a large variety of Higgs couplings.
We have argued that the most relevant Higgs couplings are the primary ones, given in Eq. (2) for CP-
conservation. These couplings probe new directions in the parameter space of BSMs. We have showed
the predictions for two of the most well-motivated BSMs, the MSSM and the MCHM. These analysis
can be extended to other BSMs, such as the non-minimal MSSM (NMSSM), or other possibilities for
composite Higgs, for example those in which the Higgs is lighter than the composite scale Λ not because
of its PGB nature, as in the MCHM, but due to an "accidental" supersymmetry (SUSY Composite Higgs)
or scale symmetry (Higgs as a dilaton) [49]. Supersymmetry can also allow for partly-composite Higgs
where the TeV strong-sector could also break the electroweak symmetry (bosonic TC) [24]. A brief
summary of the largest effects in the primary Higgs coupling arising from these scenarios is giving in
Table 1. If in the future departures from the SM Higgs couplings are observed, the analysis of the pattern
of these deviations will be extremely useful to discriminate between different BSM scenarios.
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ghff ghV V κGG κγγ κZγ g3h

MSSM X X
NMSSM X X X X X X
MCHM X X X X

SUSY Composite Higgs X X X X X X
Higgs as a Dilaton X X X X

Partly-Composite Higgs X X X X
Bosonic TC X

Table 1: Largest contributions to Higgs couplings (relative to the SM one) expected from different BSM scenarios.
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Flavour Physics and CP Violation

J. F. Kamenik
J. Stefan Institute, Ljubljana, Slovenia
Department of Physics, University of Ljubljana, Ljubljana, Slovenia

Abstract
These notes represent a summary of three lectures on flavour and CP violation,
given at the CERN’s European School of High Energy Physics in 2014. They
cover flavour physics within the standard model, phenomenology of CP viola-
tion in meson mixing and decays, as well as constraints of flavour observables
on physics beyond the standard model. In preparing the lectures (and con-
sequently this summary) I drew heavily from several existing excellent and
exhaustive sets of lecture notes and reviews on flavour physics and CP vio-
lation [1]. The reader is encouraged to consult those as well as the original
literature for a more detailed study.

1 What is flavour?
In the standard model (SM) the basic constituents of matter are excitations of fermionic fields with spin
1/2. In this context matter flavours refers to several copies of the same gauge representation. Under the
unbroken SM gauge group SU(3)c × U(1)EM these are

– up-type quarks: (3)2/3 : u, c, t,
– down-type quarks: (3)−1/3 : d, s, b,
– chrged leptons: (1)−1 : e, µ, τ ,
– neutrinos: (1)0 : ν1, ν2, ν3,

where the colour representations are given in the brackets, while the electric charges are written as
subscripts. The different flavours of the same gauge representation differ only in their masses.

Ordinary matter is essentially made up of the first generation: u and d quarks are bound within
protons and neutrons, while the electrons form atoms; finally “electron neutrinos", which are an admix-
ture of ν1,2,3, are produced in reactions inside stars. Second and third generation families are produced
only in high-energy particle collisions. They all decay via weak interactions into first generation parti-
cles. One of the big open questions in fundamental physics is why there are thee almost identical replicas
of quarks and leptons and which is the origin of their different masses?

Flavour physics refers to interactions that distinguish between flavours. Within the SM these are
weak and Yukawa (Higgs boson) interactions.

Flavour parameters are those that carry flavour indices. Within the SM these are the nine masses
of charged fermions and four mixing parameters (three angles and one complex CP violating phase).1

Flavour universal interactions are those with couplings proportional to the identity in flavour
space. Within the SM these are strong and electromagnetic interactions (and also weak interactions
in the so-called interactions basis, see below). Such interactions are sometimes also called flavour blind.

Flavour diagonal interactions are those whose couplings are diagonal (in the matter mass basis),
but not necessarily universal. Within the SM these are the Yukawa interactions of the Higgs boson.

Flavour changing processes are those where the initial and final flavour-numbers are different (a
flavour number is the number of particles with a certain flavour minus the number of anti-particles of

1Adding Majorana mass terms for neutrinos introduces three additional neutrino masses plus six mixing parameters (three
mixing angles and three phases).
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the same flavour). We can further specify flavour changing charged currents which involve both up- and
down-type quark flavours or both charged lepton and neutrino flavours. Examples of such processes are
the muon decay µ− → e−νiν̄j or the muonic charged kaon decay K− → µ−ν̄i (which corresponds to
the quark-level transition sū → µ−ν̄i). Within the SM such processes are mediated already by a single
W exchange at the tree level (the amplitudes being proportional to the Fermi constant GF ). On the other
hand, flavour changing neutral currents (FCNCs) involve either up- or down- type flavours but not both;
and/or either charged lepton flavours or neutrino flavours but not both. Examples of such processes are
the radiative muon decay µ− → e−γ and the muonic decays of the neutral kaons, KL → µ+µ− (sd̄ →
µ+µ− at the quark level). Within the SM these processes occur at higher orders in the weak expansion
(i.e. via loops) and are often highly suppressed. In connection with flavour changing interactions, one
often speaks also of flavour violation.

1.1 Why is flavour interesting?
Flavour physics can discover new physics (NP) or probe it before it is directly observed in high-energy
experiments. Historical examples of this include:

– The smallness of the ratio Γ(KL → µ+µ−)/Γ(K− → µ−ν̄i) lead to the prediction of the charmed
quark.

– Furthermore, the measurement of the mass difference between the two neutral kaons ∆mK ≡
mKL

−mKS
lead to the prediction of the charm quark mass.

– Similarly, the mass difference between the two neutral B mesons ∆mB ≡ mB0
H
−mB0

L
inferred

a prediction of the top quark mass almost two decades before top quarks (or more precisely, their
decay products) were directly observed in experiments.

– Finally, the observation of the CP violating decay KL → π+π− (i.e the measurement of εK) lead
to the prediction of the third generation of matter.

CP violation: Within the SM there is a single CP violating parameter determining the amount of
CP violation in all flavour changing processes. Successful baryogenesis would require new CP violating
sources.

Solutions of the electroweak (EW) hierarchy problem (in the form of a quadratic sensitivity of
the EW scale to UV physics) require NP to appear at or below the TeV scale. On the other hand, such
NP with a generic flavour structure would predict FCNCs orders of magnitude above the observed rates.
Conversely, flavour physics can probe NP scales up to O(105 TeV). The resulting NP flavour puzzle
refers to the fact that NP at the TeV scale needs to exhibit approximate flavour symmetries.

The SM flavour parameters are both hierarchical (i.e. mu � mc � mt) and mostly very small
(mf 6=t � mW,Z,h) . The question whether this points to some unknown underlying flavour dynamics is
sometimes called the SM flavour puzzle.

2 Flavour in the standard model
Any (local) quantum field theory model is specified by both (i) symmetries and the pattern of their
spontaneous breaking; as well as (ii) representations of fermions and scalars. The SM Lagrangian (LSM)
is thus completely determined by specifying the local (gauge) symmetry GSM

local = SU(3)c × SU(2)L ×
U(1)Y which is spontaneously broken to GSM

local → SU(3)c × U(1)EM ; plus the relevant fermionic

QiL ∼ (3, 2)1/6 , U iR ∼ (3, 1)2/3 , Di
R ∼ (3, 1)−1/3 , LiL ∼ (1, 2)−1/2 , (1)

(where i = 1, 2, 3) and scalar

φ ∼ (1, 2)1/2 , 〈φ0〉 ≡ v√
2
' 174GeV , (2)

2
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representations. Above, the first (second) entries in the brackets denote the SU(3)c (SU(2)L) represen-
tations, while the U(1)Y charges are given in the subscripts. Also, 〈. . .〉 denotes a vacuum condensate
value. LSM can be conveniently split into three parts

LSM = LSM
kinetic + LSM

EWSB + LSM
Yukawa . (3)

The sum of the gauge-kinetic terms LSM
kinetic is simple and symmetric. It is completely specified by the

SM local symmetry and its matter representations. The three physical parameters associated with this
part of the theory are conventionally chosen to be the three gauge couplings (gs, g and g′) . The EW
symmetry breaking (EWSB) part LSM

EWSB contains two additional parameters. They can be chosen to
correspond to v and the physical Higgs boson mass mh. Finally, all flavour dynamics is contained in
LSM

Yukawa which also involves all the SM flavour parameters.

2.1 Interaction basis
It is convenient to start our discussion in a flavour basis where all the gauge-kinetic terms are diagonal.
This can always be achieved by applying suitable unitary rotations on the matter fields. In this basis

LSM
kinetic = (Dµφ)†(Dµφ) +

∑

i,j=1,2,3

∑

ψ=QL,...,ER

ψ̄ii /Dδijψj

− 1

4

∑

a=1,...,8

GaµνG
a,µν − 1

4

∑

a=1,2,3

W a
µνW

a,µν − 1

4
BµνB

µν , (4)

where G, W, and B denote the field strengths of the SU(3)c, SU(2)L and U(1)Y gauge interactions,
respectively. The covariant derivatives Dµ are defined as Dµ = ∂µ + igsG

a
µL

a + igW b
µT

b + ig′BµY ,
where La, T a and Y denote the SU(3)c, SU(2)L generators and the U(1)Y charges, respectively. Note
that in this basis, LSM

kinetic is manifestly flavour universal and CP conserving. Similarly

LSM
EWSB = µ2φ†φ− λ(φ†φ)2 , (5)

is also CP and flavour conserving.2 Thus bothLSM
kinetic and triviallyLSM

EWSB have a large flavour symmetry
corresponding to the independent unitary rotations in the flavour space of the five fermionic fields

GSM
flavour = U(3)5 = SU(3)3

q × SU(3)2
` × U(1)5 ,

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D ,

SU(3)2
` = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (6)

Among the U(1) factors, U(1)B,L are the baryon and lepton number, respectively. U(1)Y is gauged and
broken spontanouesly by 〈φ0〉 . On the other hand U(1)PQ can be defined such that only the Higgs and
Di
R, E

i
R are charged under it and with opposite charges. It is thus broken only by the up-quark Yukawas.

Finally U(1)E refers to flavour universal phase rotations of EiR alone and is thus broken by the charged
lepton Yukawas.

The Yukawa Lagrangian of the SM

−LSM
Yukawa = Y ij

d Q̄
i
LφD

j
R + Y ij

u Q̄
i
Lφ̃U

j
R + Y ij

e L̄
iφEjR + h.c. , (7)

where φ̃ = iσ2φ, is in general flavour dependent (if Yf /∝ I) and CP violating. The pattern of explicit
GSM

flavour breaking by Yf 6= 0 is as follows:
2It is also symmetric under SO(4) rotations of the four real scalar fields φ1,2,3,4 contained in φ = (φ1 + iφ2, φ3 + iφ4)

T .
This approximate symmetry of the SM is sometimes called the custodial symmetry.
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– U(1)E is broken by Ye 6= 0 ,
– U(1)PQ is broken by Yu · Yd 6= 0 and Yu · Ye 6= 0 ,
– SU(3)Q × SU(3)U → U(1)u × U(1)c × U(1)t is due to Yu /∝ I ,
– SU(3)Q × SU(3)D → U(1)d × U(1)s × U(1)b is due to Yd /∝ I ,
– the remaining U(1) factors in the quark sector are broken by the fact that [Yu, Yd] 6= 0 down to
U(1)B ,

– finally, SU(3)L×SU(3)E → U(1)e×U(1)µ×U(1)τ due to Ye /∝ I . The remaining factor group
also contains the global U(1)L .

Thus, the global symmetry of the SM in presence of the Yukawas is GSM
global(Yf 6= 0) = U(1)B×U(1)e×

U(1)µ×U(1)τ . In this language, flavour physics refers to interactions which break the SU(3)3
q×SU(3)2

`

and are thus flavour violating.

Commonly, a spurion analysis is useful for parameter counting, identification of suppression fac-
tors, and for the idea of minimal flavour violation (MFV) [2]. In this approach we promote the SM
Yukawas to non-dynamical fields with well-defined transformation properties under GSM

flavour

Yu ∼ (3, 3̄, 1)SU(3)3
q
, Yd ∼ (3, 1, 3̄)SU(3)3

q
, Ye ∼ (3, 3̄)SU(3)2

`
. (8)

In the following we will focus on the quark sector.

2.2 Counting the standard model quark flavour parameters
The flavour symmetry breaking pattern described above is useful in counting the number of physical
flavour parameters in the theory. In particular:

1. Consider a theory with a global symmetry group Gf with Ntotal generators.
2. Add interactions with Ngeneral parameters, breaking Gf → Hf with Ntotal −Nbroken generators.
3. Then the Nbroken generators can be used to rotate away Nbroken number of symmetry breaking

parameters.
4. The number of remaining physical parameters is thus Nphysical = Ngeneral −Nbroken .

We can apply this recipe to the SM breaking of U(3)Q×U(3)U×U(3)D → U(1)B . In this case the three
U(3) group rotations are described by unitary 3× 3 matrices containing three real angles and six phases
each. Thus schematicallyNtotal = 3×(3+6i) . ConsequentlyNbroken = Ntotal−1i = 9+17i . The two
quark Yukawas are general 3×3 matrices containing nine complex parameters (Ngeneral = 2× (9+9i)).
Finally, the number of physical parameters is Nphysical = Ngeneral −Nbroken = 9 + 1i, representing six
quark masses, three mixing angles and a single CP violating phase.

2.3 Discrete symmetries of the standard model
Any local Lorentz invariant quantum field theory conserves CPT [3]. It follows that in these theories
(including the SM) T violation equals CP violation. There is no reason, a priori, for C, P and CP to be
related to flavour physics. However, in the SM (and apparently in Nature) this is so. In the SM C and P are
violated maximally: left-handed and right-handed fermion fields furnish different gauge representations,
while C and P both change the chirality of fermion fields. This maximal C and P violation within the SM
is also independent of the values of the SM parameters. On the other hand, the CP violation within the
SM does depend on the (Yukawa) parameters. The hermiticity of the Lagrangian namely implies

Yijψ̄
i
Lφψ

j
R + Y ∗ijψ̄

j
Rφ
†ψiL

CP→ Yijψ̄
j
Rφ
†ψiL + Y ∗ijψ̄

i
Lφψ

j
R . (9)

Thus, the Yukawa Lagrangian will be CP symmetric if Yij = Y ∗ij . More precisely, the requirement for
CP conservation can be written in terms of the Jarlskog invariant (J) [4] as

J ≡ Im[det(YdY
†
d , YuY

†
u )] = 0 . (10)

4
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2.4 Mass basis
Upon replacing Re(φ0)→ (v + h)/

√
2, Yukawa interactions give rise to fermion mass matrices

Mq =
v√
2
Yq . (11)

The mass bassis corresponds, by definition, to diagonal mass matrices. The unitary transformations
between any two bases which leave the gauge-kinetic terms invariant are

QL → VQQL , UR → VUUR , DR → VDDR . (12)

The Yukawa matrices on the other hand transform as

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (13)

The diagonalization of MQ requires bi-unitary transformations

V u
QMuV

†
U = Mdiag

u =
v√
2
λu ; λu = diag(yu, yc, yt) ,

V d
QMdV

†
D = Mdiag

d =
v√
2
λd ; λd = diag(yd, ys, yb) . (14)

While VU,D are unphysical (they leave the gauge-kinetic terms invariant), V u,d
Q produce a physical effect.

In particular, since [Mu,Md] 6= 0, a nontrivial mixing matrix V u
QV

d†
Q ≡ VCKM 6= 1 (due to Cabibbo,

Kobayashi and Maskawa [5]) modifies the charged weak gauge interactions. The resulting SM flavour
Lagrangian in the mass basis is thus

LFm =
(
q̄i /Dq

jδij
)

NC
+

g√
2
ūiL /W

+
V ij

CKMd
j
L + ūiLλ

ij
u u

j
R

(
v + h√

2

)
+ d̄iLλ

ij
d d

j
R

(
v + h√

2

)
+ h.c. , (15)

where (uiL, d
i
L) ≡ QTL and NC refers to neutral currents (interactions with gluons, the photon and the Z

boson).

3 Testing the CKM description of flavour
Let us recap the main features of quark flavour conversion in the SM: (i) it only proceeds via the three
CKM angles; (ii) is mediated by charged current electroweak interactions; and (iii) these charged current
interactions involve exclusively left-handed fermion fields.

3.1 Parametrisation of the CKM matrix
We start by fixing the permutation of quark generations via mass ordering. The resulting CKM matrix
has the form

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (16)

Experimentally, VCKM exhbits a strong hierarchical pattern in off-diagonal elements [6]

|Vud| ' |Vcs| ' |Vtb| ' 1 , |Vus| ' |Vcd| ' 0.22 ,

|Vcb| ' |Vts| ' 4× 10−2 , |Vub| ' |Vtd| ' 5× 10−3 . (17)

Such structure can be made explicit in the Wolfenstein expansion [7] in λ ≡ |Vus| ' 0.22

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (18)

5

FLAVOUR PHYSICS AND CP VIOLATION

83



The four parameters in this parametrisation λ, A, ρ and η can be mapped exactly to the four physical
CKM parameters at any order in the λ expansion. All are of the order O(0.1 − 1) and the CP violating
phase is encoded in the imaginary contribution proportional to η. Current experimental precision already
requires that in phenomenological applications, expansion at least to order O(λ4) should be taken into
account.

3.2 Unitarity of the CKM
Being a unitary matrix, one can derive unitarity conditions on the rows and columns of the CKM matrix,
in particular

∑

k

V ∗ikVjk = δij ,
∑

k

V ∗kiVkj = δij . (19)

Phenomenologically, the most interesting condition applies for i = 1 and j = 3

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (20)

simply because all the three terms on the left hand side are of the same order in λ. The equation defines
a triangle in the complex plane. Normalizing one of the sides to unity

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 , (21)

one can re-express it in terms of the Wolfenstein parameters (up to O(λ5))

[ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0 , (22)

where ρ̄ = ρ(1 − λ2/2) + O(λ4) and η̄ = η(1 − λ2/2) + O(λ4) . The angles (denoted by α, β and
γ in Fig. 1) and sides of this triangle are invariant under phase transformations of quark fields and are
observable quantities.

3.3 Self consistency of the CKM assumption
The CKM description of quark flavour conversion has been tested experimentally to great precision. In
particular

– |Vus| (λ) can be extracted from the semileptonic kaon decay K → π`ν with a precision of three
per-mille: λ = 0.2253(9) [6] .

– |Vcb| (A) can be determined from semileptonic B meson decay width measurements B → Xc`ν
to a precision of two percent: A = 0.822(12) [6, 8] .

– Then, |Vub| ∝
√
ρ̄2 + η̄2 can be extracted using charmless semileptonic decays of B mesons

B → Xu`ν .
– The time-dependent CP asymmetry in the decay B → ψKS (SψKS

' sin 2β = 2η̄(1− ρ̄)/[(1−
ρ̄)2 + η̄2]) has been measured to great precision at the B factory experiments Belle and BaBar.

– The rates B → DK decays depend on the phase exp(iγ) = (ρ+ iη)/(ρ2 + η2) .
– Similarly, the rates of B → ππ, ρπ, ρρ depend on the angle α = π − β − γ .
– The ratio of neutralB andBs meson mass diferences ∆md/∆ms ∝ |Vtd/Vts|2 = λ2

[
(1− ρ̄)2 + η̄2

]

exhibits another non-trivial constraint in the (ρ̄, η̄) plane.
– Finally, CP violation in K → ππ decays (εK) depends in a complicate way on (ρ̄, η̄).
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Fig. 1: Result of the SM CKM fit projected onto the ρ̄− η̄ plane, as obtained by the CKMfitter [8] collaboration.
Shown shaded are the 95% C.L. regions selected by the given observables.

Combined, these measurements lead to an impressive agreement with the best fit ranges for ρ and η (see
also Fig. 1 and Ref. [9]) [8]

ρ = 0.130± 0.024 , η = 0.362± 0.014 . (23)

Note that |η| & |ρ| implies that the CKM phase defined in this way isO(1) . We can also conclude
that, very likely, CP violation in flavour changing processes is dominated by the CKM phase and that the
Kobayashi-Maskawa mechanism of CP violation is at work. Again one can define a reparametrisation
invariant measure of CP violation

Im[VijV
∗
kjVklV

∗
il ] = JKM

∑
εikmεjln , (24)

where JKM = λ6A2η = O(10−5) . Written in this form it is clear the CP violation in the SM is
suppressed by small mixing among the quark generations. The Jarlskog determinant in the SM can then
be written compactly as

J = JKM
∏

i>j

m2
i −m2

j

v2
= O(10−22) . (25)

We see that compared to JKM , J is further suppressed by the large quark mass hierarchies.

4 Closer look at CP violation in neutral meson mixing and decays
For simplicity, we will focus on the neutral B meson sistem with the flavour eigenstates B0 ∼ b̄d and
B̄0 ∼ bd̄. Since in general, these are not CP eigenstates, we have

CP |B0〉 = eiξB |B̄0〉 ,
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CP |B̄0〉 = e−iξB |B0〉 . (26)

Stating from an initial superposition state at t = 0 |ψ(0)〉 = a(0)|B0〉+ b(0)|B̄0〉, the time evolution of
such a system can in general be described as

|ψ(t)〉 = a(t)|B0〉+ b(t)|B̄0〉+ c1(t)|f1〉+ c2(t)|f2〉+ . . . , (27)

where f1,2,... denote the B0 and B̄0 decay products. If we are only interested in a(t) and b(t), we can
construct an effective description of the time evolution in terms of a non-hermition Hamiltonian

H = M + i
Γ

2
, (28)

where M and Γ are time-independent, Hermitian 2 × 2 matrices, describing possible oscillations and
decays, respectively. The dispersive part M recieves contributions from off-shell intermediate states,
while Γ is the absorptive part and given by a sum over possible on-shell intermediate states. The time-
evolution is then described by

i
d

dt

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
, (29)

with the eigenvectors |BL,H〉 = pL,H |B0〉 ± qL,H |B̄0〉 , and where |pL,H |2 + |qL,H |2 = 1 . Imposing
CPT, one obtains M11 = M22, Γ11 = Γ22, and consequently pL = pH ≡ p and qL = qH ≡ q . If CP is
conserved one furthermore obtains that Arg(M12) = Arg(Γ12) and thus |q/p| = 1 .

Conventionally, on defines the following CP conserving oscillation parameters

m ≡ ML +MH

2
, Γ ≡ ΓL + ΓH

2
,

∆m ≡MH −ML , ∆Γ ≡ ΓH − ΓL , (30)

or equivalently x ≡ ∆m/Γ and y ≡ ∆Γ/2Γ .

The time evolution of the neutral meson system can finally be parametrized in terms of states
|B0(t)〉 corresponding to |B0〉 at initial time t = 0, and |B̄0(t)〉 corresponding to |B̄0〉 at t = 0

|B0(t)〉 = g+(t)|B0〉 − q

p
g−(t)|B̄0〉 ,

|B̄0(t)〉 = g+(t)|B̄0〉 − q

p
g−(t)|B0〉 , (31)

where
g± ≡

1

2

(
e−mH t−ΓH t/2 ± e−mLt−ΓLt/2

)
. (32)

The decay of the two mass eigenstates to some some final state f after time t is described by the decay
amplitudes

〈f |H|B0〉 ≡ Af ,
〈f̄ |H|B0〉 ≡ Af̄ . (33)

The time-dependent decay rates are then given by

dΓ(|B0(0)〉)→ |f(t)〉
dt

= N0e
−Γ t|Af |2×

{
1 + |λf |2

2
cosh

∆Γ t

2
+

1− |λf |2
2

cos ∆mt

+Reλf sinh
∆Γ t

2
− Imλf sin ∆mt

}
,
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dΓ(|B̄0(0)〉)→ |f(t)〉
dt

= N0e
−Γ t|Āf |2×

{
1 + |λ̄f |2

2
cosh

∆Γ t

2
+

1− |λ̄f |2
2

cos ∆mt

+Reλ̄f sinh
∆Γ t

2
− Imλ̄f sin ∆mt

}
, (34)

where N0 is the overall flux normalization,

λf ≡
q

p

Āf
Af

, λ̄f ≡
p

q

Af
Āf

=
1

λf
, (35)

and analogously for decays to f̄ . The various terms in the above tiem-evolution can be understood as
follwing

– Terms proportional to |Af |2, |Āf |2 describe a decay without net oscillation.
– Terms proportional to |λf |2, |λ̄f |2 describe a decays following net oscillations.
– Terms proportional to sin ∆mt, sinh ∆Γt/2 describe interference between the above two cases.
– CP violation in interference is possible only if Im(λf ) 6= 0 .

Such effects can be observed in neutral B meson decays to CP eigenstates via a time-dependent CP
asymmetry

AfCP
(t) ≡

dΓ
dt

[
B̄0(0)→ fCP (t)

]
− dΓ

dt

[
B0(0)→ fCP (t)

]

dΓ
dt

[
B̄0(0)→ fCP (t)

]
+ dΓ

dt [B0(0)→ fCP (t)]
. (36)

In the B (and also Bs) system experimentally ∆Γ � ∆m and so |q/p| ' 1 . In this limit, the full
expression for Af greatly simplifies and can be written as

Af (t) = Sf sin(∆mt)− Cf cos(∆mt) , (37)

where

Sf ≡
2 Im(λf )

1 + |λf |2
, Cf ≡

1− |λf |2
1 + |λf |2

. (38)

4.1 Phases in decay amplitudes
Consider the decay B → f described by the amplitude Af and its CP conjugate process B̄ → f̄
associated with the amplitude Āf̄ . Any complex parameter in the theory Lagrangian entering the two
amplitudes will appear complex conjugated after CP and will thus appear with opposite signs in Af and
Āf̄ . The associated CP odd phases are conventionally called weak phases. In the SM they are induced
via W exchanges. Note that single amplitude phases are convention dependent and thus not physical.
Only differences between phases of different amplitudes are physical.

On the other hand, on-shell intermediate states in scattering or decay ampitudes can produce phase
changes even if the relevant Lagrangian is real. These are thus independent of CP. They will appear with
same signs in both Af and Āf̄ . These CP even phases are often reffered to as strong phases. In the SM
they are due to strong interaction induced re-scattering. Again, only relative phases between amplitudes
are physical.

In general, one can thus write both decay amplitudes as

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) + . . . ,

Āf̄ = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) + . . . , (39)

where a1,2,... are contributions to the amplitude with different phases, δ1,2... are the strong phases and
φ1,2... are the weak phases.
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4.2 CP violation inB → ψKS

To a good approximation, the B → ψKS decays are described by a just single weak decay amplitude to
a CP eigenstate (with CP eigenvalue ηf )

Af = |af |ei(δf+φf ) ,

Āf = |af |ei(δf−φf )ηf , (40)

so that λf = ηf (q/p) exp(−2iφf ) . In the neutral B system |Γ12| � |M12|, since it is due to O(G2
F )

long distance effects, which are suppressed by small CKM elements (a fact also verified experimentally
since ∆Γ� ∆m). Then one can write

(
q

p

)2

=
M∗12 − i

2Γ∗12

M12 − i
2Γ12

' e2iξB , (41)

and thus λf ' ηf exp[i(ξB−2φf )], leading to a simple expression for the time-dependent CP asymmetry
Af (t), in particular

SfCP
' ηf sin(ξB − 2φf ) . (42)

In the SM, ξB and φf are exactly computable in terms of the CKM elements. In particular

ξB = −Arg(M12) ' −Arg[(V ∗tbVtd)
2] = −Arg

(
V ∗tbVtd
VtbV

∗
td

)
, (43)

while

−e−2iφf =
Ā

(B)
ψKS

A
(B)
ψKS

= −VcbV
∗
cs aT + . . .

V ∗cbVcs aT + . . .
eiξK ' −VcbV

∗
cs

V ∗cbVcs

V ∗cdVcs
VcdV ∗cs

. (44)

In the above equation, the dots denote additional amplitudes suppressed by small coefficients and CKM
elements. Also, in the second step we have taken into account the phase projection of the neutral kaon
flavour eigenstates onto the mass eigenstate KS due to K − K̄ oscillations (analogous to Eq. (43)).
Combining Eqs. (43) and (44) we thus obtain

λ
(B)
ψKS

' V ∗tbVtd
VtbV

∗
td

VcbV
∗
cd

V ∗cbVcd
= −e−2iβ . (45)

The observable S(B)
ψKS

' sin 2β (note that C(B)
ψKS

' 0) demonstrates CP violation in interference between
the mixing and decay amplitudes. Experimentally, it has been measured to an accuracy of ∼ 1% at the
B factories [6].

4.3 CP violation inBs mixing
Establishing CP violation in the Bs system is considerably more challenging. The golden channel is
the decay Bs → ψφ . Since it is an admixture of different CP eigenestates (represented by the different
polarizations of the two vector mesons in the final state), an angular analysis is required for the extraction
of the CP violating phase. In addition, Bs oscillations are much faster than those of Bd, namely

∆ms

∆md
∼ |M

s
12

|Md
12|
∝
∣∣∣∣
Vts
Vtd

∣∣∣∣
2

∼ 30 . (46)

Finally, ∆Γs effects in the time evolution cannot be neglected compared to ∆ms. In the SM λ
(Bs)
ψφ =

− exp[i(ξBs − 2φψφ)] evaluates to [10]
[
S

(Bs)
ψφ

]
SM

= 2Arg
V ∗tbVts
V ∗cbVcs

= 0.036(1) , (47)

which is still small compared to the currently attainable experimental precision of S(Bs)
ψφ = −0.02(4) [11].
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4.4 CP violation inB decays to CP conjugate states
This form of measurements is interesting if B0 → f̄ and B̄0 → f transitions are forbidden. In this case
|Af | = |Āf̄ | and |Af̄ | = |Āf | = 0 and one can define a CP asymmetry

dΓ
dt

[
B̄0(0)→ f(t)

]
− dΓ

dt

[
B0(0)→ f̄(t)

]

dΓ
dt

[
B̄0(0)→ f(t)

]
+ dΓ

dt

[
B0(0)→ f̄(t)

] =

∣∣∣pq
∣∣∣
2
−
∣∣∣ qp
∣∣∣
2

∣∣∣pq
∣∣∣
2

+
∣∣∣ qp
∣∣∣
2 ' Im

(
Γ12

M12

)
+O

(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)
, (48)

where in the last step we have again used the fact the |Γ12| � |M12| in the B system. Note that the
above asymmetry is accessible with a time-independent measurement. It also represents CP violation in
mixing, simetimes termed indirect CP violation . An illustrative example is the wrong sign semileptonic
decay asymmetry

a
(d)
SL =

Γ(B̄0 → X`+ν)− Γ(B0 → X`−ν̄)

Γ(B̄0 → X`+ν) + Γ(B0 → X`−ν̄)
, (49)

with the SM expectation of a(d)
SL = −8(2)× 10−4 [10] .

4.5 CP violation in chargedB decays
The possibility of CP violation in charged B decays is of special interest in the case of B± → DK±,
since D − D̄ oscillations allow for interference of two tree-level dominated decay amplitudes, in partic-
ular

B− → D0K− : b→ cūs ,

B− → D̄0K− : b→ c̄us . (50)

The resulting phenomenology is particularly transparent by focusing on subsequent D decays to CP
eigenstates [12]

D0 → fCP : c→ dd̄u , ss̄u ,

D̄0 → fCP : c̄→ dd̄ū , ss̄ū . (51)

In the SM the ratio of the two decay amplitudes is then

AB(D→f)K

AB
(D̄→f)K

=
V ∗cbVusa

B
DK

V ∗ubVcsa
B
D̄K

ei(δ
B
DK−δBD̄K

)ηf
VcdV

∗
ud

V ∗cdVud

aDf

aD̄f
ei(δ

D
f −δD̄f ) ' ηfrBei(δB−γ) , (52)

where we have used the definition of the angle γ ≡ Arg(−VudV ∗ub/VcdV ∗cb) ' 70◦ [6] and have collected
the hadronic amplitude ratios into rB and the associated strong phases in δB .

The virtue of these modes is that in principle all unknown parameters can be determined by mea-
suring several available decay rates only, which are CP even quantities. In particular

A(B− → f+K
−) = A0

[
1 + rBe

i(δB−γ)
]
,

A(B− → f−K−) = A0

[
1− rBei(δB−γ)

]
,

A(B+ → f+K
−) = A0

[
1 + rBe

i(δB+γ)
]
,

A(B+ → f−K−) = A0

[
1− rBei(δB+γ)

]
. (53)

can be used to extract the three hadronic parameters (A0, rB and δB) as well as γ . Since no B mixing
is involved, these measurements are sensitive to CP violation in decay also termed direct CP violation.
The determination of γ in this way is theoretically extremely clean, in particular, since CP violation in
D − D̄ mixing is negligible. Experimentally, it is advantageous to have both a large rB and large δB .
Therefore, it is welcome that such approach can be adapted also for D-decay products, which are non CP
eigenstates [13].
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5 Flavour and New Physics
Let us first consider how much NP can still contribute to flavour observables, given the current exper-
imental and theoretical precision. For example, given the good agreement of SM tree-level mediated
processes with experiment, one can perform basic tests of CKM unitarity. Taking only the moduli of the
first row CKM elements:

– |Vud| which can be extracted from 0+ → 0+eν super-allowed nuclear β decays, yielding |Vud| =
0.97425(22) [6] ;

– |Vus| which is determined from the semileptonic kaon decays K+ → π+`ν, yielding |Vus| =
0.2237(13) [6] ;

– finally, |Vub| which is measured using charmless semileptonic B decays B → Xu`ν, yelding
|Vub| = 4.2(5)× 10−3 [6] ;

one can form the following CKM unitarity constraint [14]

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(7) . (54)

Using the measurements of the Fermi constant from the muon life-time, one can further reinterpret these
constraints as tests of the charged current universality between leptonic and semileptonic weak processes
at the per-mille level. In light of this, it is reasonable to consider NP contributions to observables which
are (loop, CKM) suppressed in the SM. Then one can use the CKM determination from tree-level ob-
servables, in particular |Vud|, |Vus|, |Vcb| and |Vub| as well as γ from B → DK decays (and/or α from
tree-level dominated B → ππ decays) . This finally allows to predict SM contributions also to loop
suppressed observables, greatly enhancing their sensitivity to NP.

5.1 New physics inB − B̄ mixing
In the following we will assume a presence of heavy NP – such that it would only contribute to dispersive
B − B̄ amplitudes. In that case, the most general modification of M12 can be parametrised as

M12 = MSM
12 r2

de
2iθd (55)

where the NP parameters rd and θd signify a change of the magnitude and phase with respect to the
SM prediction, respectively. Such effects of NP can then be easily translated to all relevant B mixing
observables as

∆mB = r2
d (∆mB)SM ,

S
(B)
ψKS

' sin(2β + 2θd) ,

a
(d)
SL = −Re

(
Γ12

M12

)SM sin 2θd
r2
d

+ Im

(
Γ12

M12

)SM cos 2θd
r2
d

. (56)

One can compare these expectations to the current experimental measurements of [6]

∆mB = 51.0(4)× 1010/s , S
(B)
ψKS

= 0.671(24) , a
(d)
SL = −0.2(7)× 10−3 , (57)

where the SM expectation with tree-level CKM inputs for [S
(B)
ΨKS

]SM
tree = 0.76(4) [8] . We can immedi-

ately draw the following conclusions

– NP in M12 with a large phase relative to β is constrained to 20% − 30% of the SM contribution.
Thus, CKM clearly dominates CP violation in B − B̄ mixing. (A similar conclusion can be made
for the case of K0 − K̄0 system: the measured value of εK = 1.596(13) × 10−3 constrains
CP violating NP in kaon mixing amplitudes to be subdominant. The power of this constraint is
however presently limited by theory uncertainties.)
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– NP inM12 with a phase that is aligned to β is constrained to be at most comparable to the SM con-
tribution. (Again a similar conclusion can be made for the case of K0− K̄0 system: the measured
value of ∆mK = 52.93(9) × 108/s constrains CP conserving NP in kaon mixing amplitudes
to be comparable to SM estimates, which however contrary to the B case carry sizable theory
uncertainties.)

As a comparison, in the case of Bs mixing, NP can be at most comparable to the SM contribution
regardless of the phase since SSM

ψφ . δSexp
ψφ .

5.2 The new physics flavour puzzle
The SM is not a complete theory of Nature.

1. It does not include a (quantum) description of gravity. Thus its validity is limited below the Planck
scale mPlanck ' 1019 GeV.

2. It does not include neutrino masses. This further limits its validity down to below the maxi-
mal scale at which new degrees of freedom can accommodate at least two massive neutrinos
msee−saw . 1015 GeV.

3. The fine-tuning of the EW symmetry breaking scale compared to the large scales in the above
points 1. and 2. suggests NP already at scales of the order 4πv ∼ 1 TeV .3

Given the SM is merely an effective field theory valid below a cut-off energy scale Λ, one needs to
consider additional terms in the theory Lagrangian consisting of SM field operators with canonical di-
mensions d > 4:

L = LSM +
∑

d>4

∑

n

c
(d)
n

Λd−4
O(d)
n . (58)

In a natural theory one expects c(d)
n ∼ O(1) unless the relevant operators are forbidden or suppressed by

symmetries. For Λ ∼ TeV and without imposing additional symmetries beyond the gauged SM ones, the
above condition is severely violated for several O(6)

n , which contribute to flavour changing processes.
This constitutes the so-called NP flavour puzzle , which can be articulated through the following question:
If there is NP at the TeV scale, why haven’t we seen its effects in flavour observables? Naively, one
could argue, that the same it true for NP violating baryon and lepton numbers. However, B and L are
(classically) exact accidental symmetries of the SM, while in the SM the flavour symmetry is already
broken explicitly.

5.3 Bounds on new physics from ∆F = 2 processes
The NP flavour puzzle can be demonstrated perhaps most dramatically in the case ∆F = 2 FCNCs.
In the SM the dispersive contributions to ∆F = 2 processes of down-quarks are typically dominated
by box diagrams with the top quarks appearing in the loop. These contributions can be schematically
written as

MSM
12 =

G2
Fm

2
t

16π2
(V ∗tiVtj)

2 〈M̄ |(d̄iLγµdjL)2|M〉F
(
m2
t

m2
W

)
+ . . . , (59)

where M = K0, B0, Bs, di,j denote meson valence quarks, F (x) ∼ O(1) is the relevant loop function
normalized to F (∞) = 1 , while the dots denote corrections due to charm quark contributions, which
are numerically relevant only in the case of K − K̄ mixing. Note that the prefactor can be rewritten
completely in terms of the fundamental flavour parameters (Yukawas) in the unbroken theory

G2
Fm

2
t

16π2
(V ∗tiVtj)

2 =
(YuY

∗
u )ij

128π2m2
t

, (60)

3Incidentally, the TeV mass scale can also be associated with the explanation of the cosmological dark matter, if the later is
in the form of a thermal particle relic.
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which can be interpreted as due to Goldstone Higgs exchanges in the gaugeless (g → 0) limit of the SM.

The relevant hadronic matrix elements between the external M and M̄ mesons can be written as

〈M̄ |(d̄iLγµdjL)(d̄iLγ
µdjL)|M〉 =

2

3
f2
Mm

2
M B̂M , (61)

where the relevant meson decay constant fM is defined via 〈0|diγµγ5d
j |M(p)〉 ≡ ipµfM , while B̂M ∼

O(1) is called the bag parameter. These two hadronic quantities can be computed numerically using
lattice QCD methods.The tremendous progress in these calculations over the past 30 years is reflected in
the precise values of [15]

fB = 0.186(4) GeV , B̂B = 1.27(10) ,

fBs = 0.224(5) GeV , B̂Bs = 1.33(6) ,

fK = 0.1563(9) GeV , B̂K = 0.7661(99) . (62)

With these inputs we can use the experimental measurements of neutral meson mixing observables to
constrain possible NP contributions of the form

L∆F=2
NP =

csd
Λ2

(
d̄Lγ

µsL
)2

+
cbd
Λ2

(
b̄Lγ

µsL
)2

+
cbs
Λ2

(s̄Lγ
µbL)2

+
ccu
Λ2

(ūLγ
µcL)2 +

ctu
Λ2

(ūLγ
µtL)2 +

ctc
Λ2

(c̄Lγ
µtL)2 . (63)

The effects of such NP on neutral meson oscillations can namely be completely encoded into

MM
12

mM
∼ cij

(
fM
Λ

)2

, (64)

which leads to the following set of current experimental constraints [9, 16]

∆mK

mK
∼ 7× 10−15 ⇒ Λ√

|csd|
& 103 TeV or |csd| . 10−6

(
Λ

TeV

)2

,

∆mD

mD
∼ 9× 10−15 ⇒ Λ√

|ccu|
& 103 TeV or |ccu| . 10−6

(
Λ

TeV

)2

,

∆mB

mB
∼ 6× 10−14 ⇒ Λ√

|cbd|
& 4× 102 TeV or |cbd| . 5× 10−6

(
Λ

TeV

)2

,

∆mBs

mBs

∼ 2× 10−12 ⇒ Λ√
|cbs|

& 70 TeV or |cbs| . 2× 10−4

(
Λ

TeV

)2

. (65)

Furthermore, in case of maximal CP violating phases in cij , one obtains even stronger constraints

εK ∼ 0.0023 ⇒ Λ√
|Im(csd)|

& 2× 104 TeV or |Im(csd)| . 6× 10−10

(
Λ

TeV

)2

,

AΓ

yCP
. 0.2 ⇒ Λ√

|Im(ccu)|
& 3× 103 TeV or |Im(ccu)| . 10−7

(
Λ

TeV

)2

,

SψKS
∼ 0.67 ⇒ Λ√

|Im(cbd)|
& 8× 102 TeV or |Im(cbd)| . 10−6

(
Λ

TeV

)2

,

Sψφ ∼ 0.1 ⇒ Λ√
|Im(cbs)|

& 70 TeV or |Im(cbs)| . 2× 10−4

(
Λ

TeV

)2

. (66)

The two main messages one can draw from such an analysis are that (1) NP with a generic flavour
structure is irrelevant for EW hierarchy, since flavour measurements in this case require Λ � TeV; and
(2) in case of TeV NP, its flavour structure needs to be far from generic.
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6 Conclusions
The absence of significant deviations from the SM in quark flavour physics is a key constraint on any ex-
tension of the SM. At the same time there are still various open questions regarding the flavour structure
of the standard model itself that can be possibly addressed only at low energies, using flavour phyiscs
measurements. The set of flavour observables to be measured with higher precision in the search for indi-
rect hints of NP is limited, but not necessarily small. For example, we still have only limited knowledge
about CP violation in theBs andD systems. In addition, despite significant recent progress, new-physics
effects could still be hidden in certain rare kaon, D and B decays [17]. The experimental progress on
these, as expected from the LHCb [18] in LHC run II, Belle II [19] and other upcoming flavour experi-
ments will thus be invaluable.
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Introduction to Supersymmetry

Y. Shadmi
Technion—Israel Institute of Technology, Haifa 32100, Israel

Abstract
These lectures are a brief introduction to supersymmetry.

1 Introduction
You have probably heard in the past about the motivation for supersymmetry. Through these lectures,
this will (hopefully) become clear and more concrete. But it’s important to state at the outset: There is no
experimental evidence for supersymmetry. The amount of effort that has been invested in supersymmetry,
in both theory and experiment, may thus be somewhat surprising. In this respect, supersymmetry is no
different from any other “new physics” scenario. There is no experimental evidence for any underlying
theory of electroweak symmetry breaking, which would give rise to the (fundamental scalar) Higgs
mechanism as an effective description. There is of course experimental evidence for physics beyond the
standard model (SM): dark matter, the baryon asymmetry—CP violation.

Why so much effort on supersymmetry? It is a very beautiful and exciting idea because it’s con-
ceptually different from anything we know in Nature. It’s a symmetry that relates particles of different
spins—bosons and fermions. In fact, we are now in a very special era from the point of view of spin:
The Higgs was discovered. As far as we know, it is a fundamental particle. So for the first time, we have
a spin-0 fundamental particle. It would be satisfying to have some unified understanding of the spins we
observe. Supersymmetry would be a step in this direction. Given the SM fermions, it predicts spin-0
particles. Beyond this purely theoretical motivation, the fact that the Higgs is a scalar poses a more
concrete (yet purely theoretical) puzzle. Scalar fields (unlike vector bosons or fermions) have quadratic
divergences. This leads to the fine-tuning problem, as we will review in the next Section. Supersymmetry
removes these divergences. We will see that in some sense Supersymmetry makes a scalar behave like
a fermion.

Supersymmetry is not a specific model. Rather, there is a wide variety of supersymmetric ex-
tensions of the SM. These involve different superpartner spectra, and therefore different experimental
signatures. In thinking about these, we have developed a whole toolbox for collider searches, including
different triggers and analyses. In particular, supersymmetry supplies many concrete examples with new
scalars (same charges as SM fermions), new fermions (same charges as SM gauge bosons), potentially
leading to missing energy, displaced vertices, long lived charged particles, or disappearing tracks, to
name just some of the possible signatures.. For discovery, spin is a secondary consideration. So even if
we are misguided in thinking about supersymmetry, and Nature is not supersymmetric, the work invested
in supersymmetry searches may help us discover something else.

1.1 Plan
In Section 2 of these lectures we will see the basics of supersymmetry through a few simple toy models.
These toy models can be thought of as “modules” for building the supersymmetrized standard model. In
the process, we will try to de-mystify supersymmetry and understand the following questions about it:

– In what sense is it a space-time symmetry (extending translations, rotations and boosts)?
– Why does it remove UV divergences (thus solving the fine-tuning, or Naturalness problem)?
– Why do we care about it even though it’s clearly broken?
– Why is the gravitino relevant for LHC experiments?
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In Section 3 we will describe the Minimal Supersymmetric Standard Model (MSSM). Here we will put
to use what we learned in Section 2. We will discuss:

– Motivation (now that you can appreciate it)
– The field content
– The interactions: we will see that there is (almost) no freedom in these
– The supersymmetry-breaking terms: this is where we have freedom, and these determine experi-

mental signatures.
– EWSB and the Higgs mass
– Spectra (the general structure of superpartner masses)

We will conclude in Section 5 with general considerations for LHC searches.

The aim of these lectures is to provide a conceptual understanding of supersymmetry and the
supersymmetrized standard model. Therefore, we will start with a pretty technical review of what sym-
metries are and their derivation from Lagrangians. This is necessary so that you get a clear idea of what
supersymmetry is. As we go on however, we will take a more qualitative approach. For more details, I
refer you to the many excellent books and reviews of the subject, including, for example [1–3]. I cannot
do justice to the vast literature on the subject in these short lectures. For original references, I refer you
again to the books and reviews above.

2 Supersymmetry basics
2.1 Spacetime symmetry
The symmetry we are most familiar with is Poincare symmetry. It contains

– Translations: xµ → xµ + aµ (generators: Pµ)
– Lorentz transformations: xµ → xµ + wµνxν , where wµν is antisymmetric (generators: Jµν)

Throughout we will only consider global, infinitesimal transformations, so aµ andwµν are small, coordinate-
independent numbers.

These transformations contain rotations. For a rotation around the axis xk (with angle θk): wij =
εijkθk. Thus for example for rotations around z:

x0 → x0 ; x1 → x1 − θx2 ; x2 → x2 + θx1 ; x3 → x3

The Lorentz transformations also contain boosts. For a boost along the axis xk (with speed βk):
−w0k = wk0 = βk. Thus for example for a boost along z,

x0 → x0 + βx3 ; ; x1 → x1 ; x2 → x2 ; x3 → x3 + βx0 .

The Lorentz algebra is:
[Pµ, P ν ] = 0

[Pµ, Jρσ] = 0 (1)

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) .

Here Pµ are the momenta—the generators of translations, Jµν contain the angular momenta, which
generate rotations (with µ, ν = 1, 2, 3) and the generators of boosts (with µ = 0, ν = 1, 2, 3).

Let’s recall where all this is coming from. To do that, let’s “discover” all the above in a simple
field theory, namely a field theory of a single free complex scalar field. The Lagrangian is,

L = ∂µφ∗ ∂µφ−m2 |φ|2 . (2)
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What’s a symmetry? It’s a transformation of the fields which leaves the Equations of Motion
(EOMs) invariant. The EOMs follow from the action, so this tells us that the action is invariant under
the symmetry transformation. Since the action is the integral of the Lagrangian, it follows that the
Lagrangian can change by a total derivative,

L → L+ α∂µJ µ , (3)

where α is the (small) parameter of the transformation.

What’s the symmetry of our toy theory? First, there’s a U(1) symmetry:

φ(x)→ eiαφ(x) . (4)

Under this transformation, L is invariant. This is an example of an internal symmetry, that is, a symmetry
which is not a space-time symmetry (it does not do anything to the coordinates).

But our toy theory also has spacetime symmetries:
Translations:

xµ → xµ + aµ (5)

φ(x)→ φ(x− a) = φ(x)− aµ∂µφ(x) (6)

or
δaφ(x) = aµ∂µφ(x) (7)

and Lorentz transformations:

xµ → xµ + wµνxν (8)

φ(xµ) → φ(xµ − wµνxν) (9)

so
δwφ(x) = wµνxµ∂νφ(x) =

1

2
wµν(xµ∂ν − xν∂µ)φ(x) (10)

The Lagrangian only changes by a total derivative under these, so the action is invariant.

Now let’s see how the algebra arises. Consider performing two translations. First we do a trans-
lation with xµ → xµ + aµ. Then we do a translation with xµ → xµ + bµ. Alternatively, we could first
perform the translation with bµ and then the one with aµ. Obviously, this should not make any difference.
Mathematically, this translates to the fact that the commutator of two translations vanishes. Indeed,

[δa, δb]φ ≡ δa(δbφ)− δb(δaφ) = 0 . (11)

With rotations and boosts, the order does matter. Consider the commutator of two Lorentz transforma-
tions with parameters wµν and λρσ:

[δwµν , δλρσ ]φ = iwµνλρσ · i {gνρ(xµ∂σ − xµ∂σ) + permutations} (12)

So we derived the algebra of spacetime symmetry transformations (=the Poincare algebra) in this toy
example. Now let’s do the same in a supersymmetric theory.

2.2 A simple supersymmetric field theory
Our example will be a free theory with one massive (Dirac) fermion of mass m, which we will denote by
ψ(x), and two complex scalars of mass m which we will denote by φ+(x) and φ−(x). The Lagrangian
is,

L = ∂µφ∗+ ∂µφ+ −m2 |φ+|2 + ∂µφ∗− ∂µφ− −m2 |φ−|2 + ψ̄(i/∂ −m)ψ (13)
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The labels +, − are just names, we’ll see the reason for this choice soon. This isn’t the most minimal
supersymmetric 4d field theory. “Half of it” is: a 2-component (Weyl) fermion plus one complex scalar.
But Dirac spinors are more familiar so we start with this example.

Just as in the previous example, this theory has spacetime symmetry, including translations, rota-
tions, and boosts. The only difference is that ψ(x) itself is a spinor, so it transforms nontrivially,

ψ(x)→ ψ′(x′) . (14)

Actually, the L-handed and R-handed parts of the spinor transform differently under Lorentz. Write
(
ψL
ψR

)
(15)

where ψL and ψR are 2-component spinors. Then under Lorentz transformations,

ψL → ψ′L = (1− iθiσ
i

2
− βiσ

i

2
) (16)

ψR → ψ′R = (1− iθiσ
i

2
+ βi

σi

2
) (17)

so it will be useful to write everything in terms of 2-component spinors.

Recall that we can write any R-handed spinor in terms of a L-handed one:

ψR = −εχ∗L (18)

where

ε ≡ −iσ2 =

(
0 −1
1 0

)
(19)

Exercise: prove eq. (18)

We can then write our Dirac spinor in terms of two L-handed spinors ψ+ and ψ−: ψL = ψ+,
ψR = −εψ∗− so that,

ψ =

(
ψ−
−εψ∗+

)
(20)

Let’s write the Lagrangian in terms of these 2-component spinors,

L = ∂µφ∗+ ∂µφ+ + ψ†+iσ̄
µ∂µψ+

+ ∂µφ∗− ∂µφ− + ψ†−iσ̄
µ∂µψ− (21)

− m2 |φ−|2 −m2 |φ+|2 −m(ψT+εψ− + hc)

Exercise: Derive this. Show also that ψT+εψ− = ψT−εψ+, where ψ± are any 2-component spinors.

All we’ve done so far is to re-discover spacetime symmetry in this simple field theory. Now comes
the big question: Can this spacetime symmetry be extended?

The answer is YES: there’s more symmetry hiding in our theory! Take a constant (anti-commuting)
2-component L-spinor ξ. Consider the following transformations,

δξφ+ =
√

2 ξT εψ+

δξψ+ =
√

2 iσµεξ∗∂µφ+ (22)
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and similarly for +→ −.

Exercise: Check that this is a symmetry of our theory: 1. Show that the massless part of the
Lagrangian is invariant. 2. Show that the rest of the Lagrangian is invariant too if the masses of the
fermion and scalars are the same. Here you will have to use the EOMs.

We see that the symmetry transformations take a boson into a fermion and vice versa. THIS IS
SUPERSYMMETRY.

As an (important) aside, we note that the symmetry separately relates φ− − ψ− and φ+ − χ+.
Thus, if m = 0, the two halves of the theory decouple, and each one is symmetric separately. Therefore,
as mentioned above, this theory is not the most minimal supersymmetric theory, but half of it is. This is
very handy if we’re to implement supersymmetry in the SM, because the SM is a chiral theory.

Is the symmetry we found indeed an extension of Poincare? It’s surely a spacetime symmetry
since it takes a fermion into a boson (the transformation parameters carry spinor indices). Furthermore,
let’s consider the algebra. Take the commutator of two new transformations with parameters ξ, η:

[δξ, δη]φL = aµ∂µφL with aµ = 2i
(
ξ†σ̄µη − η†σ̄µξ

)
(23)

This is a translation! We see that the commutator of two new transformations gives a translation. So
indeed, the new symmetry is an extension of the “usual” spacetime symmetry.

Exercise: Check eq. (23). You will have to use the EOMs.

Let’s summarize: Our simple theory is supersymmetric. We have an extension of spacetime sym-
metry that involves anti-commuting generators. The supersymmetry transformations relate bosons and
fermions.

There are a couple of features of this simple example that are worth stressing because they hold
quite generally: (i) If the bosons and fermions had different masses, we would not have this symmetry.
That is, the theory would not be supersymmetric. (ii) Let’s count the physical degrees of freedom (dof’s):
on-shell we have 2 + 2 = 4 fermions, 2 + 2 = 4 bosons. Thus we have equal numbers of fermionic and
bosonic dof’s. (Off shell, the bosons are the same, but the fermions have 2× 4.)

2.3 The vacuum energy
Recall that global symmetries lead to Noether currents. For each global symmetry there is a current jµ,
with ∂µjµ = 0, so that there is a conserved charge:

Q =

∫
d3x j0(x) with

d

dt
Q = 0 . (24)

For translations in time, the conserved charge is the Hamiltonian H .

Thus, what we found above in eqn. (23) means that the anti-commutator of two supersymmetry
transformations gives the Hamiltonian. Schematically,

{SUSY, SUSY} ∝ H , (25)

where SUSY stands for the generator of a supersymmetry transformation.

Now consider the vacuum expectation value (VEV) of this last relation,

〈0| {SUSY,SUSY} |0〉 ∝ 〈0|H|0〉 . (26)

If supersymmetry is unbroken, the ground state is supersymmetric. Therefore it is annihilated by the
SUSY generator,

SUSY|0〉 = 0 . (27)
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Using eqn (26) we find
〈0|H|0〉 = 0 . (28)

In a supersymmetric theory, the ground state energy is zero.

As you probably heard many times (and as we will review soon), one of the chief motivations for
supersymmetry is the fine-tuning problem, that is, the fact that supersymmetry removes the quadratic
divergence in the Higgs mass. Here you can already see the power of supersymmetry in removing
UV divergences. The vacuum energy usually diverges. (This should remind you of your first quantum
mechanics class, where you saw that there’s an infinite constant in the energy of the harmonic oscillator.
In QM, we just set this infinite constant to zero, by choosing the zero of the energy.) This is in fact the
worst divergence we encounter in field theory, a quartic divergence. Now we see that supersymmetry
completely removes this divergence: in a supersymmetric theory, the ground state energy is zero. This
gives us hope that supersymmetry can help with other UV divergences.

The next worst divergence you can have in field theory is a quadratic divergence. Where does it
show up? In the mass-squared of scalar fields:

δm2 ∝ Λ2 (29)

where Λ is the cutoff. This is why we are worried about fine tuning in the Higgs mass. You could ask
yourself why no one ever worries about the electron mass. It too is much smaller than the Planck scale.
The reason this is not a problem, is that fermion masses have no quadratic divergences, only logarithmic
divergences. This is a very important result so we will see it in three ways.
(1) Consider a fermion Lagrangian with a mass term m0,

L = ψ̄(i/∂ −m0)ψ = ψ̄(i/∂)ψ −m0(ψ†LψR + ψ†RψL) (30)

Note that the mass term is the only term that couples ψL and ψR. So if m0 = 0, ψL, ψR don’t talk
to each other. A mass term (L-R coupling) is never generated. Therefore, even if we include quantum
corrections,

δm ∝ m0 , (31)

(Here m is the full, physical mass including quantum corrections.) We see that with m0 = 0 we have
two different species: ψL—call it,say, a “blue” fermion, and ψR, a “red fermion”, and they don’t interact
at all.

(2) Consider m0 6= 0. Take a L-fermion (spin along p̂). This is our “blue fermion”. We can run
very fast alongside. If our speed is greater than the fermion’s speed, p̂→ −p̂, but the spin stays the same.
Thus the fermion helicity (which is the projection of the spin along the direction of motion) changes. L
becomes R. The “blue” fermion turns into a “red” fermion. (We see that helicity is not a good quantum
number for a massive fermion.) But if m0 = 0, the “blue” fermion is massless. It travels at the speed of
light—we can never run fast enough. The blue fermion does not change into a red fermion. Thus, L and
R are distinct in this case, and the blue fermion and the red fermion are decoupled. We thus learn that
any correction to the bare mass m0 must be proportional to m0,

δm ≡ m−m0 ∝ m0 (32)

How can the UV cutoff Λ enter? On dimensional grounds,

δm ∝ m0 log
m0

Λ
, (33)

so
δm = 0 · Λ + #m0 log

m0

Λ
. (34)

Indeed, there is no quadratic divergence in the fermion mass. The worst divergence that can appear is a
logarithmic divergence. This is why no one ever worries about fine-tuning in the electron mass.
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(3) Again, the question we’re asking is: why is there no quadratic divergence in the fermion mass?
We’ll now see this using a global symmetry—the chiral symmetry. Let’s consider the fermion Lagrangian
again,

L = ψ̄(i/∂)ψ −m0(ψ†LψR + ψ†RψL) (35)

if m0 = 0, we have two independent U(1) symmetries, U(1)L×U(1)R. This symmetry forbids the mass
term. We again conclude (33).

We saw that supersymmetry implies that the boson mass equals the fermion mass. We also saw that
chiral symmetry implies that there is no quadratic divergence in the fermion mass. Putting these together
we conclude that in a supersymmetric theory: there is no quadratic divergence in the boson mass.
This is how supersymmetry solves the fine-tuning problem.

But there’s more that we can learn just based on dimensional analysis. We know there is no
supersymmetry in Nature. We know for example that there is no spin-0 particle whose mass equals the
electron mass. So why should we care about supersymmetry? The reason is that supersymmetry is so
powerful that even when it’s broken by mass terms, the quadratic divergence does not reappear! All we
need in order to see this is dimensional analysis. Suppose we take a supersymmetric theory and change
the scalar mass (squared) 1

m0
2
scalar = m0

2
fermion + m̃2 (36)

where m̃2 is some constant. Will there be a quadratic divergence in the scalar mass?

δm2
scalar = #Λ2 + #m0

2
scalar log

m0
2
scalar

Λ2
?? (37)

No. For m̃2 = 0, supersymmetry is restored, and therefore there shouldn’t be a quadratic divergence. So
the Λ2 term (which is the quadratic divergence) must be proportional to m̃2. But there’s nothing we can
write in perturbation theory that would have the correct dimension.

We conclude that, if supersymmetry is broken by

m0
2
scalar 6= m0

2
fermion (38)

the scalar mass-squared has only log divergences. In other words, the supersymmetry breaking (given
by the fact that the scalar mass is different from the fermion mass) does not spoil the cancellation of the
quadratic divergence. This type of breaking is called soft-supersymmetry breaking. (This is what we
have in the Minimal Supersymmetric Standard Model (MSSM).)

Parenthetically, we note that one can also have hard supersymmetry breaking. Take a supersym-
metric theory, and change some dimension-less number, eg, the coupling of the boson compared to the
coupling of the fermion. This will reintroduce the quadratic divergences.

We derived all these results based on dimensional analysis. Now let’s see them concretely. To get
something non-trivial we must add interactions. Let’s go back to our simple theory,

L = ∂µφ∗+ ∂µφ+ + ψ†+iσ̄
µ∂µψ+ (39)

+ ∂µφ∗− ∂µφ− + ψ†−iσ̄
µ∂µψ− (40)

− m2 |φ−|2 −m2 |φ+|2 −m(ψT+εψ− + hc) (41)

Our two fermions look like the two pieces of an electron or a quark. For example, you can think of ψ−
as the SM SU(2)-doublet quark, and of the ψ+ as the SM SU(2)-singlet quark. To get interactions, let’s
add a complex scalar h, with the “Yukawa” interaction:

δL = −y hψT+εψ− + hc (42)

1For scalar fields, the physical parameter is the mass-squared. This is what appears in the Lagrangian.
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here y is a coupling. To make a supersymmetric theory we also need a (L) fermion h̃ (their supersym-
metry transformations are just like φ+ and ψ+) 2. Finally, just for simplicity, let’s set m = 0.

It’s easy to see that if we just add this Yukawa interaction, the Lagrangian is not invariant under
supersymmetry. So we must add more interactions,

L = ∂µφ∗+ ∂µφ+ + ∂µφ∗− ∂µφ− + ∂µh∗ ∂µh

+ ψ†+iσ̄
µ∂µψ+ + ψ†−iσ̄

µ∂µψ− + h̃†iσ̄µ∂µh̃

+ Lint , (43)

with

Lint = − y (hψT+εψ− + φ+h̃
T εψ− + φ−h̃T εψ+ + hc)

− |y|2[|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2] . (44)

Now that we have an interacting supersymmetric theory, we are ready to consider the UV diver-
gence in the scalar mass-squared. Consider δm2

h. It gets contributions from a φ+ loop, a φ− loop and a
fermion loop.

To calculate the fermion loop, let’s convert to Dirac fermion language,

y hψT+εψ− + hc = yhψ̄PLψ + hc . (45)

So the fermion loop is

−|y|2
∫

d4p

(2π)4
TrPL

i

/p
PR

i

/p
= 2|y|2

∫
d4p

(2π)4

1

p2
. (46)

(In the MSSM, the analog of this is the top contribution to the Higgs mass).

The boson loop is,

2× i|y|2
∫

d4p

(2π)4

i

p2
= −2|y|2

∫
d4p

(2π)4

1

p2
, (47)

(in the MSSM, the analog of this is the stop contribution to the Higgs mass).

Before we argued that the cancellation is not spoiled by soft supersymmetry breaking. Let’s see
this in this example. Suppose we change the φ± masses-squared to m̃2

±. Indeed there is no quadratic
divergence,

δm2
h ∝ |y|2

∫
d4p

(2π)4

[
2

p2
− 1

p2 − m̃2
+

− 1

p2 − m̃2
−

]
(48)

= |y|2 m̃2
1

∫
d4p

(2π)4

1

p2(p2 − m̃2
+)

+ (m̃2
+ → m̃2

−) .

We see that when supersymmetry is softly broken, the scalar mass squared is log divergent, and the
divergence is proportional to the supersymmetry breaking m̃2. In contrast to “hard” supersymmetry
breaking: if we change one of the 4-scalar couplings from |y|2, the quadratic divergence is not cancelled.

We now know a lot of supersymmetry basics. Let’s recap and add some language:

– Supersymmetry is an extension of the Poincare symmetry: it’s a spacetime symmetry.

2If h and h̃ remind you of the Higgs and Higgsino that’s great, but here they have nothing to do with generating mass, we
are just interested in the interactions.
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– The basic supersymmetry “module” we know is a complex scalar + a 2-component spinor of the
same mass. eg,

(φ+, ψ+) (49)

These transform into each other under supersymmetry. Together they form a representation, or a
multiplet of supersymmetry. For obvious reasons, we call this the “chiral supermultiplet”.

– The number of fermionic dof’s equals the number of bosonic dof’s. (This is true generally.)
– Supersymmetry dictates not just the field content but also the interactions. The couplings of

fermions, bosons of the same supermultiplets are related. (Again, this is true generally.) Start-
ing from a scalar1–fermion2–fermion3 vertex, supersymmetry requires also a fermion1–scalar2–
fermion3 vertex and a fermion1–fermion2–scalar3 vertex all with same coupling, as well as 4-
scalar vertices (with the same coupling squared).

You see that the structure of supersymmetric theories is very constrained, and that as a result it’s less
divergent. (This is the real reason theorists like supersymmetry, it’s easier.. In fact, the more supersym-
metry, the easier it gets. There are less divergences, more constraints, one can calculate many things,
even at strong coupling. By the time you get to maximal supersymmetry in 4d you have a finite, scale
invariant theory.)

We also know a great deal about supersymmetry breaking, so let’s summarize that too.

– With unbroken supersymmetry the vacuum energy is zero. Thus the vacuum energy is an order
parameter for supersymmetry breaking, and supersymmetry breaking always involves a scaleEvac.

– Supersymmetry (breaking) and UV divergences: With unbroken supersymmetry we have only log
divergences. Even in the presence of soft supersymmetry breaking (ie, supersymmetry is broken
by dimensionful quantities only), there are only log divergences. In contrast, hard supersymmetry
breaking (ie when pure numbers, such as couplings, break supersymmetry) reintroduces quadratic
divergences, so it’s not that interesting from the point of view of the fine-tuning problem.

Let’s pause and talk about language. This will be useful when we supersymmetrize the SM. Our
simple example of eqn (21) has two chiral supermultiplets, each contains one complex scalar and one
L-handed fermion,

(φ+ ψ+) , (φ− ψ−) (50)

In the SM each fermion, eg the top quark, comes from a fusion of 2 Weyl fermions: one originating
from an SU(2) doublet and the other from an SU(2) singlet. These are the analogs of ψ+, ψ−. When
we supersymmetrize the SM we must add two scalars (the stops, or top squarks) these are the analogs of
φ+, φ−. One often refers to the doublet and singlet fermions as “L-handed” and “R-handed”. This is bad
language (remember we can always write a left handed spinor using a right-handed spinor). If we used
this bad language anyway, we could call our fermions ψL, ψR, and the accompanying scalars: φL, φR.
This is why you hear people talk about the stop-left and stop-right, or left squarks and right squarks. Of
course the stops are scalars, and have no chirality, but the names just refer to their fermionic partners.

2.4 Spontaneous supersymmetry breaking: the vacuum energy, UV divergences
If supersymmetry is realized in Nature it’s realized as a broken symmetry. We already saw that even
explicit (soft) supersymmetry breaking can be powerful. But the picture we had is not very satisfying:
we don’t want to put in the parameter m̃2 by hand. We want it to be generated by the theory itself: we
want the theory to break supersymmetry spontaneously.

We also saw that with unbroken supersymmetry the vacuum energy vanishes, and the potential
V ≥ 0. Thus, supersymmetry is unbroken if there are solution(s) of the EOMs with V = 0. Recall that
this followed from

〈0| {SUSY, SUSY} |0〉 ∝ 〈0|H|0〉 (51)
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and with unbroken SUSY,
SUSY|0〉 = 0 (52)

However, if supersymmetry is spontaneously broken:

SUSY|0〉 6= 0 (53)

and the ground state has nonzero (positive) energy!

In the SM, the only scalar is the Higgs, so the only potential is the Higgs potential, and we’re
not that used to thinking about scalar potentials. But in supersymmetric theories, fermions are always
accompanied by scalars and any fermion interaction results in a scalar potential, eg

V (φ+, φ−, h) = |y|2
[
|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2

]
(54)

Note that indeed: V ≥ 0—unbroken supersymmetry.

To break supersymmetry spontaneously all we need is to find a supersymmetric theory with a
potential which is always above zero. So we need a scale. Classically, we can just put in scale by hand.
This brings us to the simplest example of spontaneous supersymmetry breaking.

2.4.1 The O’Raifeartaigh model
The simplest supersymmetric theory with chiral supermultiplets that breaks supersymmetry sponta-
neously has three chiral supermultiplets,

(φ, ψ) , (φ1, ψ1) , (φ2, ψ2) (55)

and two mass parameters. We will only write the scalar potential3,

V = |yφ2
1 − f |2 +m2|φ1|2 + |2φ1φ+mφ2|2 (56)

Here m is a mass, f has dimension mass2, and y is a dimensionless coupling. It is easy to see that there
is no supersymmetric minimum. The first two terms cannot vanish simultaneously. Supersymmetry is
broken! Note that we need f 6= 0 for that (we must push some field away from the origin) as well as
m 6= 0.

Finding the ground state requires more effort. Let’s assume f < m2/(2y). The ground state is at
φ1 = φ2 = 0 with φ arbitrary (φ is a flat direction of the potential),

V0 = |f |2 (57)

Expanding around the VEVs, one finds the following spectrum: One massless Weyl fermion, one Dirac
fermion of mass m, and several real bosons of which two are massless, two have mass m, one has mass√
m2 + 2yf , and one

√
m2 − 2yf . Indeed, for f = 0 supersymmetry is restored, and the fermions and

bosons become degenerate.

Why are there massless bosons in the spectrum? Recall that φ is arbitrary, it’s a flat direction (2
real dof’s). Why is there a massless Weyl fermion? Normally a spontaneously broken global symmetry
implies the existence of a massless Goldstone boson (or pion). Here we have spontaneously broken
supersymmetry, which is a “fermionic” symmetry, so we have a massless Goldstone fermion. Since
supersymmetry is broken spontaneously, the supersymmetry generator does not annihilate the vacuum,

SUSY|0〉 6= 0 (58)

3The kinetic terms and fermion-fermion-scalar interactions are there too, but there’s nothing instructive in them at this point.

10

Y. SHADMI

104



where SUSY stands for the supersymmetry generator. Since this generator carries a spinor index, this
state is a fermion state, which is precisely the Golsdtone fermion (sometimes called a Goldstino).

Recall that we needed a scale, or a dimensionful parameter in order to break supersymmetry.
Above we simply put it in by hand. But suppose we started with no scale in the Lagrangian. Then
classically, supersymmetry would remain unbroken. This suggest that, since no scale can be generated
perturbatively, if supersymmetry is unbroken at the tree-level, it remains unbroken to all orders in pertur-
bation theory. This is actually true, and it is a very powerful result. It’s a consequence of the constrained
structure of supersymmetry. So if supersymmetry is unbroken at tree level, it can only be broken by
non-perturbative effects, with a scale that’s generated dynamically, just like the QCD scale,

Λ = MUV exp

(−8π2

bg2

)
(59)

which is exponentially suppressed compared to the cutoff scale.

This type of supersymmetry breaking is called, for obvious reasons, dynamical supersymmetry
breaking. We will come back to this when we discuss the standard model. It leads to a beautiful scenario:
The supersymmetry breaking scale can naturally be 16 or so orders of magnitude below the Planck scale.

2.5 The chiral and vector multiplets
We have the chiral supermultiplet:

(φ, ψ) (60)

with φ a complex scalar, ψ a 2-component fermion. In the real world we also have spin-1 gauge bosons,
Aaµ, where a denotes the gauge group index. So in order to supersymmetrize the SM we also need vector
supermultiplets,

(Aaµ, λ
a) (61)

namely, a gauge field + a “gaugino”. On-shell Aaµ has 2 dof’s (2 physical transverse polarizations), so
λa is a 2-component spinor. Aaµ is real, so if we want to write λa as a 4-component spinor it must be a
Majorana spinor4,

(
λ
−ελ∗

)
(63)

Under a supersymmetry transformation, Aaµ λa transform into each other, and we can construct super-
symmetric Lagrangians for them as we did for the chiral supermultiplet.

2.6 Supersymmetric Lagrangians
We now have the gauge module (gauge field + gaugino) and the chiral module (scalar + fermion). What
are the Lagrangians we can write down? With a theory of such a constrained structure, you expect to
have many limitations. Indeed, all the theories we can write down are encoded by two functions, the
Kähler potential (K), which gives the kinetic and gauge interactions5, and the superpotential (W), which
gives the non-gauge (Yukawa like) interactions of chiral fields.

Let’s start with the gauge part: after all, gauge interactions are almost all we measure.
4As opposed to the Dirac fermion which consists of two distinct 2-component fermions,

ψ =

(
ψ−

−εψ∗
+

)
(62)

.
5As we will see, there is no freedom there at the level of 4d terms so we won’t even write it down.
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2.7 A pure supersymmetric gauge theory
We want a gauge-invariant supersymmetric Lagrangian for

(Aaµ, λ
a) (64)

Gauge symmetry (and supersymmetry) determine it completely up to higher-dimension terms. It is

Lgauge = −1

4
F aµνF aµν + λa†iσ̄ · Dλa (65)

Exercise: Check that this Lagrangian is supersymmetric.

2.8 A supersymmetric theory with matter fields and only gauge interactions
We also want to couple “matter fields” to the gauge field. So we add our chiral modules (φi, ψi). Here
too, there is no freedom because of gauge symmetry plus supersymmetry,

L = Lgauge +Dµφ∗i Dµφi + ψ†i iσ̄
µDµψi

−
√

2g (φ∗iλ
aTT aεψi − ψ†i ελa∗T aφi)−

1

2
DaDa (66)

where
Da = −gφ†iT aφi (67)

As in the chiral theory, supersymmetry dictates a “new” coupling. In non-supersymmetric theories we
have a coupling

gauge field—fermion—fermion
Now we also have,

gaugino—fermion—scalar,
and of course there’s also

gauge field—scalar—scalar.

In addition, there is a scalar potential with a 4-scalar interaction,

V =
1

2
DaDa (68)

with
Da = −gφ†iT aφi (69)

This is a quartic scalar potential, but the quartic coupling isn’t arbitrary, it’s the gauge coupling. This
will be very important when we discuss the Higgs!

Note what happened here. Starting from a non-supersymmetric gauge theory with a gauge field
Aaµ and a fermion ψ, and an interaction g Aµ − ψ − ψ, when we supersymmetrize the theory, the field
content is gauge field + gaugino, fermion + scalar. The interactions are Aµ − φ − φ (nothing new, φ
is charged), but also, λ − φ − ψ (gaugino-scalar-fermion) all with same coupling g. In addition there
is a 4-scalar interaction, with coupling g2. We had no freedom in the process. The field content and
couplings of the supersymmetric theory were dictated by (i) the original non-supersymmetric theory we
started from (ii) the gauge symmetry (iii) supersymmetry.

2.9 Yukawa like interactions
We also want Yukawa-like interactions of just the chiral scalars and fermions (φi, ψi). There is a simple
recipe for writing down the most general supersymmetric interaction Lagrangian. Choose an analytic
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functionW (φ1, . . . , φn)—the “superpotential”. Analytic means thatW is not a function of the conjugate
fields (no daggers!). All the allowed interactions are given by

Lint = −1

2

∂2W

∂φi∂φj
ψTi εψj + hc−

∑

i

|Fi|2 (70)

where
F ∗i = −∂W

∂φi
(71)

This Lagrangian is guaranteed to be supersymmetric! (There is an elegant way to see this.)

Let’s write our previous examples in this language. Start with the theory containing h, φ+, φ−:
Take

W = y hφ+ φ− (72)

so

F ∗h = −∂W
∂h

= yφ+φ−

∂2W

∂h∂φ+
= yφ− (73)

and similarly for the remaining fields. We indeed recover

Lint = − y (hψT+εψ− + φ+ h̃
T εψ− + φ− h̃T εψ+ + hc)

− |y|2(|φ+|2 |φ−|2 + |h|2 |φ−|2 + |h|2 |φ+|2) (74)

Exercise: Check that the massive theory with φ± is obtained from

W = mφ+φ− (75)

Exercise: Check that the O‘Raifeartaigh model is obtained from

W = φ (yφ2
1 − f) +mφ1φ2 (76)

2.10 R-symmetry
We now know how to write the most general supersymmetric theory in 4d (with minimal supersymme-
try). Note that the theory has a global U(1) symmetry. Under this U(1), the gauge boson has charge 0,
the gaugino has charge +1, the chiral fermion has charge 0 and the scalar −1. Alternatively we could
take the fermion to have charge −1 and the scalar to be 0. This is called a U(1)R symmetry. It does not
commute with supersymmetry: members of the same supermultiplet have different charges.

This symmetry (or its remanent) is crucial in LHC supersymmetry searches!

2.11 F -terms andD-terms
In writing the theory, we defined F -terms and D-terms. For each vector multiplet (λa, Aaµ) we have

Da = −gφ†iT aφi (dim− 2) (77)

(to which all the charged scalars contribute).

For each chiral multiplet (φi, ψi) we have a

F ∗i = −∂W
∂φi

(dim− 2) (78)
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and the scalar potential is

V = F ∗i Fi +
1

2
DaDa (79)

With this language, we can revisit supersymmetry breaking. First we immediately see that indeed V ≥ 0.
Second, supersymmetry is broken if some Fi 6= or Da 6= 0. So the Fi’s and Da’s are order parameters
for supersymmetry breaking.

2.12 Local supersymmetry: the gravitino mass and couplings
So far we thought about supersymmetry as a global symmetry. Translations and Lorentz transformations
are however local symmetries. The “gauge theory” of local spacetime symmetry is gravity. We therefore
have no choice: supersymmetry is a local symmetry too. The theory of local (spacetime and) super-
symmetry is called supergravity. The spin-2 graviton must have a supersymmetric partner, the gravitino,
which has spin-3/2. Since supersymmetry is broken the gravitino should get mass.

If you’re only interested in collider experiments, should you care about this? Normally, the effects
of gravity are suppressed by the Planck scale and we can forget about them when discussing HEP exper-
iments. However, the gravitino mass is related to a broken local symmetry (supersymmetry), so just as in
the usual Higgs mechanism of electroweak symmetry breaking, it gets mass by “eating” the Goldstone
fermion. Thus, a piece of the gravitino (the longitudinal piece), is some “ordinary” field (which par-
ticipates in supersymmetry breaking), and the gravitino couplings to matter are not entirely negligible.
Furthermore, they are dictated by the supersymmetry breaking. If supersymmetry is broken by some
non-zero F term, the gravitino mass is

m3/2 = #
F

MP
(80)

3 The Supersymmetrized Standard Model
3.1 The Supersymmetrized SM: motivation and structure
Now that we understand what supersymmetry is, we can supersymmetrize the SM. Let’s review first the
motivations for doing that. Before 2012, all fundamental particles we knew had spin-1 or spin-1/2. We
now have the Higgs, which is spin 0. This is the source of the fine-tuning problem, or the naturalness
problem. Since the Higgs is spin-0, its mass is quadratically divergent

δm2 ∝ Λ2
UV , (81)

unlike fermions, whose masses are protected by the chiral symmetry as we saw, or gauge bosons, whose
masses are protected by gauge symmetry.

In the case of the Higgs mass, there are one loop corrections that are quadratically divergent. The
dominant one is from the top quark. This is not a practical problem. We can calculate any physical
observable by including a counter term that cancels this divergent contribution. Rather, the problem is
of a theoretical nature. We believe that ΛUV is a concrete physical scale, such as the mass scale of new
fields, or the scale of new strong interactions. Then at the low-scale µ

m2(µ) = m2(ΛUV ) + # Λ2
UV (82)

m2(ΛUV ) determined by the full UV theory, and the number is # determined by the SM. We know the
LHS of eqn. (82): m2 ∼ 100 GeV2. So if ΛUV is the Planck scale ∼ 1018 GeV we need m2(ΛUV ) ∼
1036 GeV2 and the two terms on the RHS must be tuned to 32 orders of magnitude.. Such dramatic
tunings do not seem natural. In general, for a cutoff scale ΛUV , the parameters of the two theories must
be tuned to TeV2/Λ2

UV .
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As we saw above, with supersymmetry (even softly broken), scalar masses-squared have only log
divergences:

m2(µ) = m2(ΛUV )

[
1 + # log

(
m2(ΛUV )

Λ2
UV

)]
(83)

just as for fermions! The reason is that supersymmetry ties the scalar mass to the fermion mass.

The way this happens in practice is that the quadratic divergence from fermion loops is cancelled
by the quadratic divergence from scalar loops. The cutoff scale then only enters in the log, andm2(ΛUV )
can be order (100 GeV)2. This is the main motivation for supersymmetric extensions of the SM. There
are further motivations too. Supersymmetric extensions of the SM often supply dark matter candidates,
new sources of CP violation etc. Finally, extending space time symmetry is theoretically appealing.

So let’s supersymmetrize the SM. Each gauge field is now part of a vector supermultiplet: for the
gluon we have,

Gaµ → (g̃a, Gaµ) +Da , (84)

where the physical fields are the gluon and the spin-1/2 gluino. Similarly for the W ,

W I
µ → (w̃I ,W I

µ) +DI (85)

where the physical fields are the W and the wino, and for B

Bµ → (b̃, Bµ) +DY , (86)

where the physical fields are the B and the bino.

Each fermion is now part of a chiral supermultiplet of the form

(φ, ψ) + F . (87)

Taking all the SM fermions q, uc, dc, l, ec to be L-fermions, we have

q → (q̃, q) + Fq all transforming as (3, 2)1/6 (88)

with the physical fields being the (doublet) quark q and a spin-0 squark q̃. Similarly,

uc → (ũc, uc) + Fu all transforming as (3̄, 1)−2/3 (89)

with the physical fields being the (singlet) up-quark uc + up squark ũc,

dc → (d̃c, dc) + Fd all transforming as (3̄, 1)1/3 (90)

with the physical fields being the (singlet) down-quark dc + down squark d̃c,

l→ (l̃, l) + Fl all transforming as (1, 2)−1/2 (91)

with the physical fields being the (doublet) lepton l + a slepton l̃, and finally

ec → (ẽc, ec) + Fe all transforming as (1, 1)1 (92)

with the physical fields being the (singlet) lepton ec + a slepton ẽc.

Once electroweak symmetry is broken the doublets split:

q =

(
u
d

)
q̃ =

(
ũ

d̃

)
(93)
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and

l =

(
ν
l

)
l̃ =

(
ν̃

l̃

)
(94)

Now let’s move on to the interactions, staring with the gauge interactions. There is nothing we
have to do here. As we saw above, these interactions are completely dictated by supersymmetry and the
gauge symmetry. We wrote the Lagrangian for a general gauge theory in the previous lecture:

L = Lgauge +Dµφ∗i Dµφi + ψ†i iσ̄
µDµψi

−
√

2g (φ∗iλ
aTT aεψi − ψ†i ελa∗T aφi)−

1

2
DaDa (95)

where
Da = −gφ†iT aφi (96)

Applying this to the SM,
ψi = qi, u

c
i , d

c
i , li, e

c
i φi = q̃i, ũ

c
i , d̃

c
i , l̃i, ẽ

c
i (97)

The covariant derivatives now contain the SU(3), SU(2) and U(1) gauge fields, λa sums over the SU(3),
SU(2), U(1) gauginos

λa → g̃a, w̃I , b̃ (98)

and there are D terms for SU(3), SU(2), U(1)

Da → Da, DI , DY (99)

In addition there is of course the pure gauge Lagrangian that I didn’t write (we saw it in the previous
lecture).

The Lagrangian above contains the scalar potential,

V =
1

2
DaDa +

1

2
DIDI +

1

2
DYDY (100)

where for SU(3): (recall T3̄ = −T ∗3 and we will write things in terms of the fundamental generators)

Da = g3 (q̃†T aq̃ − ũc†T a∗uc − d̃c†T a∗uc) (101)

similarly for the SU(2) and
DY = gY

∑

i

Yif̃
†
i f̃i (102)

We see that we get 4-scalar interactions with the quartic couplings equal to the gauge couplings.

Again we emphasize that there was no freedom so far, and no new parameters. We also didn’t put
in the Higgs field yet, so let’s do this now. The SM Higgs is a complex scalar, so it must be part of a
chiral module

H → (H, H̃) + FH all transforming as (1, 2)−1/2 (103)

We immediately see a problem (in fact, many problems, which are all related): First, there is a problem
with having a single Higgs scalar. We want the Higgs (and only the Higgs) to get a VEV. However, the
Higgs is charged under SU(2), U(1), so its VEV gives rise to nonzero D terms:

V ∼ DIDI +D2
Y (104)

where
DI = g2 〈H†〉T I〈H〉 DY = g1

1

2
〈H〉†〈H〉 (105)
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that is, EWSB implies supersymmetry breaking! You might think this is good, but it’s not (for many
reasons). For one, the non-zero D-terms would generate masses for the squarks and sleptons. Consider
DY for example:

DY =
1

2
v2 +

∑

i

Yi|f̃i|2 (106)

where f̃ sums over all squarks, sleptons and Yi is their hypercharge. Recall the scalar potential V ∼ D2.
Therefore some of the squarks will get negative masses-squared of order v2. This is a disaster: SU(3)
and EM are broken at v! The solution is to add a second Higgs scalar, with opposite charges. The two
Higgs scalars can then get equal VEVs with all < D >= 0.

A second problem is that H̃ is a Weyl fermion. If this is all there is, we will have a massless
fermion around—the Higgsino. In the presence of massless fermions, gauge symmetries can become
anomalous, that is, the gauge symmetry can be broken at the loop level. In the SM, the fermion rep-
resentations and charges are such that there are no anomalies. Before discussing the Higgs, we only
added scalars to the SM (squarks and sleptons, known collectively as sfermions). These are harmless
from the point of view of anomalies. We also added gauginos. These are fermions, but they are adjoint
fermions, which don’t generate any anomalies (essentially because the adjoint is a real representation).
In contrast, the Higgsino H̃ is a massless fermion which is a doublet of SU(2) and charged under U(1)Y .
The simplest way to cancel the anomaly is to add a second Higgsino in the conjugate representation. So
we must add a second Higgs field with conjugate quantum numbers. When we consider interactions, we
will see other reasons why we must do this.

We will call the SM Higgs HD and the new Higgs HU . Thus,

HD → (HD, H̃D) + FHD all transforming as (1, 2)−1/2 , (107)

and we also add,
HU → (HU , H̃U ) + FHU all transforming as (1, 2)1/2 , (108)

and in the limit of unbroken supersymmetry,

〈HU 〉 = 〈HD〉 . (109)

In the SM we add a quartic potential for the Higgs field,

λ(H†H)2 . (110)

Here there is quartic potential built in, coming from the D terms. This potential will not necessarily give
mass to the physical Higgs.

We now turn to the Yukawa couplings. In the SM we have Higgs-fermion-fermion Yukawa cou-
plings. Consider the down-quark Yukawa first

yDHDq
T εdc (Higgs − quark− quark) , (111)

as we saw above, with supersymmetry, this must be accompanied by

+yD (q̃H̃T
Dεd

c + d̃cH̃T
Dεq) (squark − Higgsino− quark)

all coming from the superpotential
WD = yDHDqd

c . (112)

Similarly for the lepton Yukawa,

Wl = ylHDle
c → (113)
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Ll = yl(HDl
T εec + l̃H̃T

Dεe
c + ẽcH̃T

Dεl + hc) (114)

Higgs− lepton− lepton

+ slepton−Higgsino− lepton (115)

What about the up Yukawa? We need,

(Higgs)qT εuc (116)

This coupling must come from a superpotential,

(Higgs)quc (117)

In the SM (Higgs)= H†D. But the superpotential is holomorphic, no daggers are allowed.

This is the 4th reason why we needed a second Higgs field with the conjugate charges6,

WU = yUHUqu
c → (118)

LU = yU (HUq
T εuc + q̃H̃T

U εu
c + ũcH̃T

U εq) + hc (119)

You can now see what’s going on. In some sense, holomorphy makes a scalar field “behave like
a fermion”. In a supersymmetric theory, the interactions of scalar fields are controlled by the superpo-
tential, which is holomorphic. For a fermion to get mass you need an LR coupling. So starting from a
L-fermion you need a R-fermion, or another L-fermion with the opposite charge(s). For a scalar φ to
get mass in a non-supersymmetric theory: you don’t need anything else (you can just use φ∗ to write a
charge neutral mass term). Not so in a supersymmetry theory: because you cannot use φ∗, you must have
another scalar with the opposite charge(s), just as for fermions.

To summarize, we have 2 Higgs fields HU and HD. The SM Yukawa couplings come from the
superpotential

W = yUHUqu
c + yDHDqd

c + ylHDle
c . (120)

Note again that there was no freedom here, and no new parameter.

3.2 R-symmetry
Our supersymmetric Lagrangian also has a U(1)R symmetry. Here is one possible choice of charges:
gaugino (−1), sfermions (1), Higgsinos (1), with all other fields, namely the SM fields, neutral. You can
easily check that the Lagrangian is invariant.

To recap, we wrote down the Supersymmetric Standard Model. It contains

– gauge bosons + (spin 1/2) gauginos,
– fermions + (spin 0) sfermions,
– 2 Higgses + 2 (spin 1/2) Higgsinos

The interactions are all dictated by the SM interactions + supersymmetry: The new interactions are

– gauge-boson—scalar—scalar
– gauge-boson—gauge-boson—scalar—scalar
– gaugino-sfermion-fermion
– gauge-boson—Higgsino—Higgsino
– 4-scalar (all gauge invariant contributions)

6All these are actually different aspects of the same problem.
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All the couplings are determined by the SM gauge couplings. In particular, there is a quartic Higgs
coupling which is proportional to the gauge-coupling squared.

Furthermore, there is the Yukawa part, which now contains
Higgsino—fermion—sfermion
with a coupling equal to the SM Yukawa coupling.

The Lagrangian is invariant under a U(1)R symmetry: in each of the interactions, the new super-
partners appear in pairs! This is important both for LHC production and for DM.

There is now no quadratic divergence in the Higgs mass. Each quark contribution is canceled by
the corresponding squark contribution. In particular the top loop is canceled by the L, R stops. Similarly,
the contribution from the Higgs self coupling (from the D term) is canceled by the Higgsinos, and each
gauge boson contribution is canceled by the gaugino contribution.

But we now have, a wino degenerate with the W , a selectron degenerate with the electron, etc.
Supersymmetry must be broken. Somehow the wino, selectron, and all the new particles should get mass.
It would be nice if the supersymmetrized SM broke supersymmetry spontaneously (after all we have lots
of scalars with a complicated potential). But it does not, and so we must add more fields and interactions
that break supersymmetry. These new fields must couple to the SM fields in order to generate masses for
the superpartners.

3.3 The supersymmetrized standard model with supersymmetry-breaking superpartner masses
3.3.1 General structure
The general structure is then

SB —– SSM

Here SSM is the Supersymmetrized SM. SB is a set of new fields and interactions such that supersym-
metry is spontaneously broken. As a result there are mass splittings between the bosons and fermions of
the same SB multiplet.

Finally, —– stands for some coupling(s) between the SSM fields and the SB fields. Since there are
supersymmetry-breaking mass-splittings among the SB fields, this coupling will generate mass splitting
between the SM fields and their superpartners, mediating the supersymmetry breaking to the MSSM.
The mediation mechanism determines the supersymmetry-breaking terms in the MSSM, which in turn
determine the experimental signatures of supersymmetry.

3.3.2 The supersymmetry-breaking terms: what do we expect?
Any term is allowed in the Lagrangian unless a symmetry prevents it. Now that we broke supersymmetry,
supersymmetry breaking terms are allowed. In the matter sector, sfermions get mass. However, the
fermions don’t: they are protected by chiral symmetry. In the gauge sector, gauginos get mass. However,
gauge bosons don’t: they are protected by gauge symmetry. In the Higgs sector, the Higgses get mass.
Higgsinos don’t, they are protected by chiral symmetry. This is a problem. We would like the gauginos
to get mass, so we will have to solve this problem.

In addition, there are trilinear scalar terms that can appear, such as a Higgs—squark—squark
coupling, or a Higgs—slepton—slepton coupling. These are allowed by gauge symmetry, and super-
symmetry is no longer there to forbid them. These terms are called A-terms.

Thus the supersymmetry-breaking part of the SSM Lagrangian is:

Lsoft = −1

2
[m̃3g̃

T εg̃ + m̃2w̃
T εw̃ + m̃1b̃

T εb̃]

− q̃∗m̃2
q q̃ − ũc∗m̃2

uRũ
c − d̃c∗m̃2

dRd̃
c
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− l̃∗m̃2
l l̃ − ẽc∗m̃2

eRẽ
c (121)

− H∗Um
2
HU
HU −H∗Dm2

HD
HU

− HU q̃
∗AU ũc −HD q̃

∗AU d̃c −HD l̃
∗Alẽ

c

− BµHUHD

The last line is a quadratic term for the Higgs scalars. The line before last is the new trilinear scalar
interactions, orA-terms. When the Higgses get VEVs, these too will induce sfermion mass terms (mixing
L and R scalars). Finally, m2

q etc are 3× 3 matrices in generation space. So are the A-terms (AU etc).

The values of the supersymmetry-breaking parameters are determined by the SB theory and mainly
by the mediation. You sometimes hear people criticize supersymmetric extensions of the SM for having
a hundred or so new parameters (the parameters of Lsoft). These are all determined however by the SB
and the mediation scheme. Often, these involve very few new parameters (only one in anomaly mediation
and two in minimal gauge mediation).

Note too that the parameters of Lsoft are the only freedom we have, and where all the interesting
physics lies. These parameters determine the spectrum of squarks, sleptons, gauginos, and therefore the
way supersymmetry manifests itself in Nature.

3.3.3 R-parity
The gaugino masses and A-terms break the U(1)R symmetry of the SSM Lagrangian. There is a discrete
symmetry left however. This remanent symmetry is called R-parity. Under R-parity, the gauginos,
sfermions, and Higgsinos are odd, and all SM fields are even. Thus, when we supersymmetrize the SM
without adding any new interactions, we have a new parity symmetry. It follows that the the lightest
superpartner (LSP) is stable!

3.3.4 The mu-term: a supersymmetric Higgs and Higgsino mass
Before we go on, let’s discuss one remaining problem. We have two massless Higgsinos in the theory.
As we saw above, these do not get mass from supersymmetry breaking. So we must also include a
supersymmetric mass term for them,

W = µHUHD . (122)

3.4 Mediating the breaking
What can mediate supersymmetry breaking? What can the coupling —– be? There are many possibili-
ties. One is gauge interactions. This is the basis of Gauge Mediated Supersymmetry Breaking (GMSB).
Another is gravity. This is the basis of Anomaly Mediated Supersymmetry Breaking (AMSB). Planck-
suppressed interactions, which are also associated with gravity, are at the basis of “gravity mediated
supersymmetry breaking”7. Even Yukawa-like interactions can do the job.

3.4.1 Gauge Mediated Supersymmetry Breaking
Gauge interactions are the ones we know best. Therefore gauge mediation gives full, concrete, and often
fully calculable supersymmetric extensions of the SM.

We can start with a toy example to illustrate how things work. We saw the O‘Raifeartaigh model,

W = φ (φ2
1 − f) +mφ1φ2 . (123)

Recall that this model breaks supersymmetry. The spectrum of the model contains a supermultiplet with
supersymmetry-breaking mass splittings: a fermion of mass m, and scalars of masses-squared m2 + 2f ,
m2 − 2f .

7mSUGRA or the cMSSM are ansatze of gravity mediation with the assumption of flavor-blind soft terms.
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Let’s complicate the model slightly, by considering five fields, φ, φ1±, φ2±, with the superpoten-
tial,

W = φ (φ1+φ1− − f) +mφ1+φ2− +mφ1−φ2+ (124)

now the model has a U(1) symmetry, under which φ has charge zero, and φi± (with i = 1, 2) has
charge ±1. It is easy to see that supersymmetry is still broken. Again we have supermultiplets with
supersymmetry breaking splittings between fermions and bosons. Now let’s promote the U(1) symmetry
to a gauge symmetry, and identify it with hypercharge. Another way to think about this is the following.
Add to the SM the fields φ, φ1±, φ2± of hypercharges 0, ±1, respectively, with the superpotential (124).
Now consider a squark. It is charged under hypercharge, so it couples to these split supermultiplets.
Therefore, a squark mass is generated!

Minimal Gauge Mediation Models are the simplest models of this type. Suppose we have a
supersymmetry-breaking model with chiral supermultiplets Φi and Φ̄i, i = 1, 2, 3 such that the fermions
ψΦi and ψΦ̄i

combine into a Dirac fermion of mass M , and the scalars have masses-squared M2 ± F
(with F < M2). Now identify i as an SU(3) color index. Thus Φ is a 3 of SU(3), Φ̄ is a 3̄ of SU(3).
These fields have supersymmetry-breaking masses. The gluino talks to the Φ’s directly and therefore
gets mass at one loop. The squarks talk to the gluino and therefore get mass at two loops. We have a
gluino mass,

mg̃ = #
α

4π

F

M
+O(F 2/M2) (125)

and a squark mass-squared at two loops:

mq̃ = #
α2

(4π)2

F 2

M2
+O(F 4/M6) (126)

where the numbers are group theory factors. We can infer this form very simply:

– Since the masses arise at one or two loops there is the appropriate loop factor.
– The masses should vanish as F → 0.
– The masses should vanish as M →∞.

Gauge mediation is very elegant:

– The soft masses are determined by the gauge couplings.
– The squark matrices are flavor-blind (∝ 13×3 in flavor space).
– The gluino masses ∼ squark masses.
– The only new parameters are F and M , and the overall scale is F/M . If want soft masses around

the TeV, F/M ∼ 100 TeV.

The new fields Φ are the messengers of supersymmetry breaking. In order to give masses to all the MSSM
fields we need messenger fields charged under SU(3), SU(2), U(1), eg,N5 copies of (3, 1)−1/3+(3̄, 1)1/3

and (1, 2)−1/2 + (1, 2)1/2 (filling up a 5 + 5̄ of SU(5)). This adds another parameter, namely the number
of messengers, N5.

The messenger scale M mainly enters through running. The soft masses are generated at the
messenger scale. To calculate them at the TeV we need to include RGE effects.

The gravitino mass in these models is

m3/2 = Feff/MP (127)

where Feff is the the dominant F term. Therefore,

m3/2 ≥
F

MP
∼ 100 TeV

M

MP
(128)
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and for low messenger scales, the gravitino can be very light (∼eV).

Minimal gauge mediation is just a simple example. Gauge mediation can in principle have a very
different structure. The only defining feature is that the soft masses are generated by the SM gauge
interactions. Generically then,

– Colored superpartners (gluinos, squarks) are heavier than non-colored (EW gauginos, sleptons..)
by a factor

α3

α2
or

α3

α1
(129)

– In particular, gaugino masses scale as
α3 : α2 : α1 (130)

and the bino is the lightest gaugino.
– To leading order, the A terms vanish at M .
– The gravitino is light.

3.4.2 Gravity Mediation
With gauge mediation, we had to do some real work: add new fields, make sure they get supersymmetry-
breaking masses, couple them to the MSSM. But supersymmetry breaking is one place where we can
expect a free lunch. Imagine we have, in addition to the SM, some SB fields, eg, the O’Raifeartaigh
model. Since supersymmetry is a space-time symmetry, the SM fields should know this automatically.
We would expect soft terms to be generated, suppressed by MP . This is known as “gravity mediation”.
We will discuss first the purest form of gravity mediation: anomaly mediation, and then what’s commonly
referred to as gravity mediation.

Anomaly mediation: We assume that supersymmetry is broken by some fields that have no cou-
pling to the SM. These fields are called the “hidden sector”. The gravitino gets mass m3/2. Would
the SSM “know” about supersymmetry breaking? Yes: at the quantum level, it’s not scale-invariant:
all the couplings (gauge, Yukawa) run—they are scale dependent. Therefore they are sensitive to the
supersymmetry-breaking gravitino mass, and all the soft terms are generated. The gaugino masses are
given by,

m1/2 = b
α

4π
m3/2 (131)

where α is the appropriate gauge coupling and b is the beta-function coefficient. Thus for SU(3) b = 3,
for SU(2) b = −1 and for U(1) b = −33/5.

Sfermions get masses proportional to their anomalous dimensions:

m2
0 ∼

1

16π2
(y4 − y2g2 + bg4)m2

3/2 (132)

For the first and second generation sfermions, we can neglect the Yukawas and,

m2
0 ∼

g4

16π2
bm2

3/2 (133)

A terms are generated too, proportional to the beta functions of the appropriate Yukawa.

This is amazing: These contributions to the soft terms are always there. All the soft terms are
determined by just the SM couplings with one new parameter, the gravitino mass. It seems too good to be
true. Indeed, while SU(3) is asymptotically free and b3 > 0, SU(2), U(1) are not, b2, b1 < 0. Therefore
the sleptons are tachyonic. There are various solutions to this problem, but the gaugino masses are fairly
robust,

mw̃ : mb̃ : mg̃ : m3/2 ∼ 1 : 3.3 : 10 : 370 (134)
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In this scenario, the wino is the LSP. Note that the gravitino is roughly a loop factor heavier than the SM
superpartners.

Gravity mediation: mediation by Planck suppressed operators: Let’s return to our basic setup.
The SSM is the supersymmetric standard model. SB contains new fields and interactions that break
supersymmetry (the “hidden sector”). Generically, we expect to have higher-dimension operators, sup-
pressed byMP , that couple the SB fields and the SSM fields. Supersymmetry breaking leads to non-zero
F terms (or D terms) for the SB fields, so the higher-dimension operators coupling the two sectors will
generate supersymmetry-breaking terms in the SSM, with sfermion mass from

|F |2
M2
P

f̃ †f̃ (135)

and gaugino masses from
|F |
MP

λT ελ (136)

You can think of these as mediated by tree-level exchange of Planck-scale fields.

Unlike in the previous two schemes, here we don’t know the order-one coefficients. Consider for
example the doublet-squarks. Their mass terms are,

cij
|F |2
M2
P

q̃†i q̃j (137)

where cij are order-one coefficients. Thus,

(m2
q̃)ij = cijm

2
0 where m0 ≡

|F |
MP

(138)

In “minimal sugra”, or the cMSSM one assumes

cij = δij . (139)

It is not easy to justify this: the Yukawas are presumably generated at this high scale, so there are flavor-
dependent couplings in the theory.

Including the running to low scales,

d

dt
m1/2 ∝

α

4π
m1/2 (140)

we find that starting from a common gaugino mass at the GUT scale, the gaugino masses scale as

α3 : α2 : α1 (141)

just as in gauge mediation. Again the bino is the LSP. The gravitino mass is of order the superpartner
masses in this case.

These are a few possibilities for mediating supersymmetry breaking but by no means an exhaustive
list.

4 The MSSM spectrum
4.1 EWSB and the Higgs mass
In the MSSM we have two Higgses, HU and HD, which can get VEVs,

〈HU 〉 =

(
vU
0

)
〈HD〉 =

(
0
vD

)
(142)
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Let’s start in the supersymmetry limit (with no mu term). The D term must vanish, so the VEVs must be
equal,

D = 0 → vU = vD (143)

The two Higgs fields contain 8 real scalars. Of these, 3 are eaten by W±, Z.

Consider the heavy Z supermultiplet. It contains a heavy gauge boson which has 3 physical
polarizations, and therefore 3 bosonic dof’s and a Dirac fermion (4 dof’s). Therefore, in order to have
the same number of fermion and boson dof’s there must be one more real scalar. This scalar comes
from the Higgs fields. The same holds for the W±. Thus, 3 real scalars “join” the heavy W±, Z
supermultiplets. In the limit of unbroken supersymmetry which we are assuming now, all of these fields
have masses MW or MZ .

Thus, of the 8 real scalars in HU and HD, 2 neutral fields remain. One is the SM physical Higgs,
h. The other must be there because we have supersymmetry, and hmust reside in a chiral supermultiplet.
As we saw above, this multiplet contains a complex scalar field.

Note that so far there is no potential for h. This is not surprising. We haven’t added any Higgs
superpotential so the Higgs could only have a quartic from VD. But along the D-flat direction, the
physical Higgs is massless. Thus its mass must come from supersymmetry breaking !

Fortunately supersymmetry is broken—we have soft terms. The Higgs potential comes from the
following sources:

– The mu term: W = µHUHD,

δV = |µ|2|HU |2 + |µ|2|HD|2 (144)

– The Higgs soft masses:
δV = m̃2

HU
|HU |2 + m̃2

HD
|HD|2 (145)

so we need m2
HU

< 0 and/or m2
HU

< 0

– The Bµ term:
δV = BµHUHD + hc (146)

These are all quadratic terms.
– Then we have quartic terms:

δV =
1

2
g2

2D
IDI +

1

2
g2

1DYDY (147)

where

DI = H†Uτ
IHU −H†Dτ I∗HD (148)

and
DY =

∑

i

Yif̃
†
i f̃i +

1

2
(H†UHu −H†DHD) (149)

Recall we had two parameters, the two Higgs VEVs. We can trade them for:

1.
√
v2
U + v2

D: determined by W mass to be 246 GeV

2. tanβ ≡ vU/vD

Requiring a minimum of the potential determines:

Bµ =
1

2
(m2

HU
+m2

HD
+ 2µ2) sin 2β (150)
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µ2 =
m2
HD
−m2

HU
tan2 β

tan2 β − 1
− M2

Z

2
(151)

Thus, for given m2
HU

, m2
HD

: Bµ and µ are determined, and we have two free parameters, tanβ and
sign(µ).

Expanding around the VEVs we find that the various scalars from HU and HD have the following
masses (squared),

H± : M2
W +M2

A (SUSY :M2
W )

H0 :
1

2
(M2

Z +M2
A) +

1

2

√
(M2

Z +M2
A)2 − 4m2

AM
2
Z cos2 2β

(SUSY :M2
Z)

A0 : M2
A = Bµ(cotβ + tanβ) (SUSY : 0) (152)

and for the physical Higgs,

m2
h =

1

2
(M2

Z +M2
A)− 1

2

√
(M2

Z +M2
A)2 − 4m2

AM
2
Z cos2 2β (153)

This is a PREDICTION:
mh ≤ mZ | cos 2β| ≤MZ (154)

The measurement of the Higgs mass provides the first quantitative test of the Minimal Supersym-
metric Standard Model. It fails. However, the result (153) is a tree-level result. There are large radiative
corrections to this result, mainly from stop loops. In the decoupling limit

m2
h ∼ m2

Z cos2 2β +
3m2

t

4π2v2

[
log

M2
S

m2
t

+
X2
t

M2
S

]
(155)

where

Xt = At − µ cotβ the LR stop mixing

MS =
√
mt̃1

mt̃2
the average stop mass

This can raise Higgs mass to around 130–150 GeV. Thus for a 126 GeV Higgs we need heavy stops
and/or large stop A terms. This is not very attractive. We wanted supersymmetry to solve the fine-tuning
problem, for which we need light stops. So the large Higgs mass typically implies some fine-tuning.

In specific predictive models, like minimal GMSB, in which the stop mixing is small (because
there no A-terms at messenger scale), one needs stops around 8 TeV, and because the other squarks and
gluino masses are close by, all the colored superpartners are hopelessly heavy. Thus, the Higgs mass sets
a much stronger constraint on this framework than direct supersymmetry searches.

There’s another important caveat. So far we did not add in any Higgs potential on top of what the
MSSM “gave us”. Let’s compare this to the SM. In the SM, we add (by hand) a quartic Higgs potential,
with a quartic coupling λ, to get the Higgs mass. Here we didn’t have to: D-terms give a quartic potential.
As a result, there is no new parameter: λ = g. We could add a quartic interaction a la the SM. To do that,
we must add at least one new field, a SM singlet S, with

W = λSHUHD → V = λ2(|HU |2|HD|2 + . . .) (156)

This is called the Next to Minimal SSM (NMSSM).

We can pursue the comparison to the SM at a deeper level. In the SM, we put in EWSB by hand.
We had to put in a negative mass-squared for the Higgs. In the MSSM, EWSB can have a dynamical
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origin. Recall that we needed m̃2
HU

< 0 or m̃2
HD

< 0. This happens (almost) automatically in super-
symmetric theories, since the RGEs drive the Higgs mass-squared negative! The crucial contribution is
due to the large Yukawa coupling of the Higgs to stops.

Now let’s see why this happens. Suppose we start with m̃2
HU

> 0 at the supersymmetry breaking
scale. The running gives

d

dt
m2
HU
∼ − g2

16π2
m2

1/2+
y2
t

16π2
m̃2
t . (157)

The negative Yukawa contribution wins because

1. The top Yukawa is large compared to the SU(2), U(1) gauge couplings.
2. The stop is colored, so the Yukawa contribution is enhanced by a color factor (=3).

Note that there are many scalars in the MSSM, so you could worry about their masses-squared
driven negative by the RGE. However, the Higgs is special: it’s an SU(3) singlet, so there is no large
positive contribution from the gluino. Furthermore, it has an order-1 Yukawa to the colored stop. Thus
only the Higgs develops a VEV.

Let’s summarize our results so far. Putting aside the unpleasant 126 GeV Higgs mass (which can
be accounted for), supersymmetry gives a very beautiful picture. The MSSM (SSM + soft terms) has
only log divergences: the quadratic divergence in the Higgs mass-squared is cancelled by superpartners
at m̃. The tuning is then ∼ M2

Z/m̃
2 and the hierarchy between the EWSB scale and the Planck/GUT

scale is stabilized.

Furthermore: starting with m̃2
HU

> 0 in the UV, the running (from stops) drives it negative, and
electroweak symmetry is broken, with a scale proportional to m̃.

Finally, we remark that with a SB sector that breaks supersymmetry dynamically, the supersym-
metry breaking scale is exponentially suppressed. m̃ can naturally be around the TeV. In this case, the
correct hierarchy between the EWSB scale and the Planck/GUT scale is not only stabilized, but actually
generated.

Returning to the Higgs mass, with mh = 126 GeV the Minimal SSM is stretched: we often
need heavy stops which implies some level of tuning. More practically, discovery becomes more of a
challenge.

Now that we understand supersymmetry breaking and EWSB let’s turn to the superpartner spec-
trum.

4.1.1 Neutralinos and charginos
We have 4 neutral 2-component spinors: two gauginos and two Higgsinos

b̃ , W̃ 0 , H̃0
D , H̃

0
U (158)

with the mass matrix



M1 0 −g1vD/
√

2 g1vU/
√

2

0 M2 g2vD/
√

2 −g2vU/
√

2

−g1vD/
√

2 g2vD/
√

2 0 µ

g1vU/
√

2 −g2vU/
√

2 µ 0


 (159)

Diagonalizing this matrix we find 4 neutralino mass eigenstates: χ̃0 i = 1, . . . , 4.

Similarly, there are two charginos mass eigenstates which are combinations of the charged Hig-
gsino and wino, χ̃±i i = 1, 2.
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4.1.2 Sfermion spectrum
Consider for example the up squarks. There are 6 complex scalars: ũLi and ũRa with i, a = 1, 2, 3
labeling the three generations. The mass (squared) matrix is therefore a 6×6 matrix:

(
m2
LL m2

LR

m2†
LR m2

RR

)
(160)

where each of the blocks is 3×3.

Consider m2
U,LL. It gets contributions from:

1. the SSM Yukawa (supersymmetric)
2. the SUSY breaking mass-squared
3. the D-term (because D ∼ v2

U − v2
D + q̃†Tq + · · · )

Thus,
m2
U,LL = m†umu + m̃2

q +DU13×3 , (161)

and similarly for m2
U,RR.

m2
LR gets contributions from:

1. the A term (supersymmetry breaking)
2. the µ term:

∣∣∣∣
∂W

∂HD

∣∣∣∣
2

→ ∂W

∂HD
= µHU + yUqu

c (162)

so
m2
U,LR = vU (A∗U − yUµ cotβ). (163)

The remaining sfermions (down-squarks, sleptons, sneutrinos) have a similar structure.

4.1.3 Flavor structure
Now let’s consider the sfermion flavor structure, starting with the up squarks as before. Work in the
quark mass basis (up, charm, top): the Lagrangian contains the following:

– gaugino—uLi—ũLj couplings. Here the gaugino can be either a gluino, a wino or a bino. In our
original Lagrangian, these are proportional to δij. We therefore say that the Lagrangian is given
in the interaction basis. Note that since we are in the fermion mass basis, this defines the L up
squark, charm squark and top squark (stop). For example, the L stop is the state that couples to a
gluino and the doublet-top quark.

– gaugino—uRa—ũRb couplings. Again, in our original Lagrangian, these are proportional to δab.
– . . .
– The up squark 6 × 6 mass matrix. This can in principle have an arbitrary structure. In particular,

the various 3× 3 blocks need not be diagonal.

Diagonalizing the squark mass matrix, we get 6 mass eigenstates, ũI , with I = 1, . . . , 6. However, the
gaugino—quark—squark couplings are no longer diagonal. Writing these in terms of the up-squark mass
eigenstates we have in general

KiI g̃uLi − ũI , (164)

These mix the different generations, andKiI are the quark-squark mixing parameters. Each squark (mass
state) is a composition of the different flavor states.

27

INTRODUCTION TO SUPERSYMMETRY

121



Are sfermions degenerate? Is m2
U,LL ∝ 1? That depends on the mediation of supersymmetry.

However, we don’t understand the structure of fermion masses. In fact this structure is very strange,
suggesting a fundamental theory of flavor. If there is such a theory, it will also control the structure of
m2
U,LL and the other sfermion mass-matrices.

4.1.4 R-parity violating couplings
So far, we merely generalized the SM gauge and Yukawa interactions. In the SM, the Yukawa couplings
were the only renormalizable couplings allowed. Now however, there are new renormalizable Yukawa-
like interactions

W = λijkLiLje
c
k + λ′ijkLiQjd

c
k + λ′′ijku

c
id
c
jd
c
k . (165)

These are the only terms we can add, nothing else is gauge invariant. These terms are problematic. The
first two terms break lepton number, the third breaks baryon number. If they are all there we would get
proton decay! Note also that all these new terms break R-parity. If we impose R-parity, these dangerous
terms are forbidden, and proton decay can only arise from higher-dimension operators, much like in the
SM. But this may be overly restrictive. Certain flavor patters of R-parity breaking operators are viable.

5 LHC searches: general considerations
As we saw, supersymmetry is not a single model. In the minimal supersymmetric extension of the
standard model, the MSSM, in which we add no new fields to the SM apart from those required by
supersymmetry, all the interactions are dictated by the SM and supersymmetry (with the exception of
R-parity violating couplings), and the only freedom is in the soft supersymmetry breaking terms, which
are determined by the mechanism for mediating supersymmetry breaking. Still, this allows for a wide
variety of new and distinct signatures. Therefore, while searches for specific models are useful, it’s also
important to adopt a signature-based approach.

Here we will outline the main considerations to keep in mind.

1. Interactions: There are only two sources of model dependence here.

– R-parity violating (RPV) couplings: If R-parity is conserved, superpartners are produced
in pairs, and each superpartner decays to a lighter superpartner plus SM particles. Thus any
decay chain ends with the stable LSP. In the presence of RPV couplings, a single superpartner
can be produced. There are strong bounds on RPV couplings. Still, single superpartner
production via a small RPV coupling may be competitive because of the kinematics. Most
superpartners decay through the usual R-parity conserving couplings (gauge or Yukawa),
with the exception of the LSP, which can only decay through RPV couplings.

– Squark and/or slepton flavor mixing: For general sfermion mass matrices, the gaugino-
sfermion-fermion couplings may mix different flavors. This could affect both production
and decay.

2. Superpartner masses:

– The hierarchy between colored and non-colored superpartners: In most mediation schemes,
colored superpartners are heavier (roughly by factors of a few to 10). Unless there is a huge
hierarchy between colored and non-colored superpartners, the production of squarks and
gluinos dominates at the LHC. As the hierarchy increases, the production of EWK gauginos
(ewkinos) and or sleptons becomes more competitive.

– Flavor structure: superpartners of the same gauge charges may have generation dependent-
masses. Thus for example, the L-handed up squark can have a different mass from the L-
handed charm or top squarks. An arbitrary flavor structure leads to flavor changing processes
which, especially when the 1st and 2nd generations are involved, are stringently constrained.
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However, roughly speaking, the constrained quantities involve the products of the mass split-
tings and the flavor mixings KiI , so models with some degree of mass degeneracy and some
alignment of fermion and sfermion mass matrices are allowed. These would affect both the
production of sfermions and their decay.

The (N)LSP plays a special role in determining the collider signatures of supersymmetry. Both the mass
spectrum and its interactions are relevant here.

– The (N)LSP lifetime: The LSP is stable if R-parity is conserved. In the presence of RPV couplings,
the LSP can decay to SM particles, but its lifetime may be long because the sizes of these couplings
are constrained. Finally, the LSP may have only very weak couplings to the SM, as is the case of
the gravitino. Superpartners produced at the LHC will decay to the lightest superpartner charged
under the SM, which is called the NLSP (next to lightest superpartner), which in turn decays to
the LSP. Clearly, since the latter is only weakly coupled to the SM, the NLSP can be long lived.
Different models span the whole range from propmt NLSP decays to NLSPs which are long-lived
on detector scales.

– The (N)LSP charge. The (N)LSP can be either neutral (eg a neutralino or sneutrino), charged (eg
a slepton), or even colored (eg the gluino). Naturally, the precise identity of the (N)LSP plays an
key role in determining the signatures of supersymmetry at the LHC. The signatures of a spectrum
with a pure bino (N)LSP are very different from the signatures of a spectrum with a pure Higgsino
(N)LSP even though both are neutral.

If the (N)LSP is neutral and long lived, superpartner production is accompanied by missing energy. If
it’s charged and long lived, it behaves like a heavy muon, and dE/dx and time-of-flight measurements
must be used to distinguish it from a muon. If it’s colored and long lived, it will hadronize in the detector,
and subsequently either stop in the detector or traverse the entire detector. If it decays inside the detector,
its charge and lifetime determine the specific signature, ranging from a disappearing track to a displaced
vertex, with or without missing energy. Thus, supersymmetry has motivated a wide variety of ingenious
approaches for searching for new physics. Whether supersymmetry is there or not, this net of searches
will hopefully lead to new discoveries!
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