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Resumen

Los compuestos moleculares pueden combinar las propiedades intrínsecas de
su naturaleza molecular (tamaño nanoscópico, bajo peso especí�co, gran ver-
satilidad sintética, transparencia, plasticidad, procesabilidad, biocompatibili-
dad,...etc..) con una o más propiedades físicas de interés. De entre todos ellos,
los materiales moleculares magnéticos despiertan un interés creciente debido
en parte a las posibilidades tecnológicas que ofrecen [1]. Eligiendo apropiada-
mente los bloques que forman estos compuestos (moléculas puramente orgáni-
cas o bien con fragmentos inorgánicos) y su conectividad (clústeres, cadenas,
planos o estructuras tridimensionales), se puede ejercer cierto control sobre las
propiedades magnéticas del material para obtener ferromagnetos, antiferro-
magnetos, Single Molecule Magnets, Single Chain Magnets, imanes quirales,
etc. Además se pueden lograr materiales moleculares magnéticos multifun-
cionales que combinan el magnetismo y una o más propiedades físicas de in-
terés práctico (fotomagnetismo, magnetoóptica, magnetoconductividad, etc.).
Al contener los bloques moleculares un número limitado de átomos magnéti-
cos, los materiales moleculares magnéticos también resultan excelentes sistemas
donde estudiar conceptos básicos de física como el canje magnético, el efecto
túnel, la transferencia electrónica, la anisotropía magnética, la coexistencia de
quiralidad nuclear y magnética [2], entre otros fenómenos.

Dentro de los materiales moleculares magnéticos multifuncionales, pueden
encontrarse compuestos moleculares donde coexisten quiralidad nuclear y mag-
nética. La palabra quiralidad proviene del griego χειρ que signi�ca mano, y se
re�ere a la propiedad de los objetos o entes que se dicen no superponibles con
su imagen especular. En el caso de moléculas aisladas o formando cristales,
la de�nición implica, matemáticamente hablando, que su grupo de simetría
no posee operaciones impropias. Esta ruptura de la simetría espacial en com-
puestos que presentan quiralidad nuclear permite la existencia de propiedades
como piezoelectricidad, actividad óptica natural, piroelectricidad o generación
de segundos harmónicos en la emisión de luz. Si además de una estructura
nuclear quiral la estructura magnética es también quiral, en cierta manera, las
simetrías espacial y temporal se rompen simultáneamente (teniendo en cuenta
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que el momento magnético es un vector axial), provocando la aparición de
nuevos fenómenos físicos, tales como el dicroísmo magnetoquiral [3].

Entre las múltiples posibilidades tecnológicas que ofrecen los materiales
magnéticos moleculares, una de las que despiertan mayor interés es la posi-
bilidad de aumentar la capacidad de almacenamiento de datos, reduciendo
hasta niveles moleculares la unidad mínima de información. Los imanes mo-
nomoleculares (Single Molecule Magnets) representan una parte importante
de la investigación en materiales moleculares magnéticos [4]. Son compuestos
moleculares paramagnéticos que, por debajo de su temperatura de bloqueo,
presentan un comportamiento superparamagnético. Su interés radica especial-
mente en sus aplicaciones en el campo de almacenamiento de la información,
y en las oportunidades que ofrecen para estudiar el canje magnético, el efecto
túnel de la magnetización y las interaciones dipolares, entre otros fenómenos.
También es posible con sistemas quirales magnéticos polarizar una corriente
de espín controlando la dirección de los momentos magnéticos externamente,
lo que favorece el desarrollo de la espintrónica [5].

El objetivo general del trabajo desarrollado en esta tesis es doble: por un
lado, el estudio de la estructura nuclear y magnética de materiales molecu-
lares magnéticos donde quiralidad nuclear y magnética coexisten (línea A);
y por otro lado, el estudio y caracterización magnética de imanes orgánicos
monomoleculares (SMMs) organizados en redes (línea B). A continuación, am-
bas líneas son detalladas.

Línea A

En esta tesis se realiza una revisión del concepto de quiralidad magnética,
que puede resultar confuso debido a la variedad de de�niciones existentes.
Asimismo se propone una de�nición global para sistemas quirales magnéticos.
Se quiere veri�car la existencia de quiralidad magnética en compuestos quirales
que presentan orden magnético y donde la simetría favorece la presencia de
quiralidad magnética. En compuestos de este tipo donde quiralidad nuclear y
magnética coexisten en una fase ordenada magnéticamente, todavía no ha sido
observado el dicroismo magnetoquiral ya conocido en sistemas enantiopuros
paramagnéticos, diamagnéticos y ferromagnéticos.

El estudio está centrado en dos compuestos quirales con una estructura
parecida [Mn(CN)6][Mn(S)pnH(H2O)]·2H2O [6] (donde (S)-pn equivale a
(S)-1,2-diaminopropano), y [Cr(CN)6][Mn(R)−pnH(DMF )]·2H2O [7] (donde
DMF signi�ca N,N-dimetilformamida=(CH3)2-N-CHO) y un compuesto racé-
mico de uno de ellos [Cr(CN)6][Mn(rac) − pnH(DMF )]·2H2O. El primer
compuesto, denotado como GN-MnMn, se ordena magnéticamente a 28K y
los dos siguientes, GN-DMF(R) y GN-DMF(rac) respectivamente, se ordenan
a 33K. Estos compuestos son similares al llamado Green Needle y denotado
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como GN, [Cr(CN)6][Mn(S)pnH(H2O)]·2H2O [8], ya estudiado previamente
por este grupo de investigación. Para poder veri�car la existencia de quirali-
dad magnética en las muestras anteriormente citadas, es necesario determinar
su estructura magnética. Por esta razón, se han realizado experimentos de
difracción de neutrones en el Institute Laue Langvenin (ILL), empleando el
difractómetro de cuatro círculos D15 y el difractómetro Laue VIVALDI.

A partir de los datos de difracción de neutrones obtenidos, con la ayuda
de la teoría de representaciones irreducibles y el programa FULLPROF [9],
se han resuelto las estructuras magnéticas de los tres compuestos. Basán-
donos en la de�nición de quiralidad magnética propuesta y desarrollada en el
capítulo 2 de esta tesis, se ha encontrado que en las muestras GN-MnMn y
GN-DMF(R) coexisten quiralidad nuclear y magn�tica. Este hecho convierte
estos compuestos en excelentes candidatos para realizar experimentos de dicro-
ismo magnetoquiral y observar si existe alguna diferencia entre la señal en fase
paramagnética y en fase ordenada. El compuesto GN-DMF(rac) no presenta
quiralidad magnética debido a la simetría de la estructura.

Línea B

Estudios anteriores han observado que algunos cubanos de Co(II) presen-
tan un comportamiento de SMM en torno a 5K [10]. Pequeñas diferencias
en la estructura nuclear del cluster generan variaciones en las interacciones
magnéticas entre iones Co(II), provocando cambios en la barrera energética
o en el estado fundamental, in�uyendo por tanto en su magnetismo. Incluso
pueden encontrarse situaciones en las que existe orden magnético a largo al-
cance por interacciones de canje [11, 12] o dipolares [13]. Nuestro objetivo en
esta parte de la tesis es doble, por un lado queremos caracterizar cómo ligeras
modi�caciones en la simetría del cubano de Co(II) in�uyen en sus propiedades
magnéticas. Por otro lado, se quiere estudiar si estos SMMs cuando están or-
denados en redes, conservan sus características puntuales de clústeres discretos
y cómo el entorno puede in�uir en su magnetismo, pudiendo darse el caso de
la existencia de orden magnético de largo alcance.

Para llevar a cabo estas investigaciones, se han caracterizado magnética-
mente cubanos de Cobalto (II) aislados o dispuestos en redes de diferente
dimensionalidad, sintetizados por miembros del grupo consolidado M4 y que
forman parte de la tesis de la Lcda. Elena Forcén. Entre ellos se dispone
de un compuesto Co4(citr)4[Co(H2O)4]4 (donde citr=citrato) que presenta
tres fases cristalinas interconvertibles en estado sólido, en las que los clusters
se encuentran aislados, formando una estructura nuclear modulada o consti-
tuyendo un polímero lineal. También se han estudiado redes bidimensionales
cuadradas del tipo A4[Co4cit4{Co(OHCH2CH2OH)(H2O)2}2]·nH20 (A=K,
Rb, Cs) [14, 15] y rómbicas Cs4[Co4cit4{Co(H2O)4}2]·11H2O formadas por
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cubanos de Co(II) en su nodos y cobaltos que actúan como nexos entre ellos.
Incrementando la dimensionalidad de la red, se ha estudiado en esta tesis una
red tridimensional de tipo diamante (K4Co4(cit[µ− Co(H2O)4]2·8H2O)n con
cubanos en los nodos que presenta una estructura MOF (Metal Organic Frame-
work), lo que puede dar lugar a interesantes aplicaciones. El estudio magnético
y calorimétrico de estos compuestos se ha realizado en varios equipos comer-
ciales de Quantum Design (PPMS y MPMS). También se ha empleado, gracias
a la colaboración con el Dr. F. Luis del ICMA, un refrigerador de dilución
dotado con un SQUID para los estudios magnéticos a muy baja temperatura.

La caracterización magnética de estos compuestos ha permitido observar la
coexistencia de diferentes procesos de bloqueo y orden magnético en la misma
muestra. Asimismo se ha observado como modi�caciones estructurales in�uyen
en la respuesta magnética.
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Introduction

Magnetism is a really broad branch of physics, and magnetic compounds are
used for a wide variety of technical applications. Reducing the size of the mag-
netic units until a molecular level, we reach the area of molecular magnetism,
where magnetism is combined with some of the intrinsic properties of molecular
solids (nanoscopic size, low density, synthetic versatility, optical transparency,
and so on). An interested reader could easily �nd excellent books devoted
to it (i. e. see references [16, 17]). A smart synthesis chooses the molecular
blocks (only organic molecules or organic molecules combined with inorganic
fragments) and their connectivity (clusters, chains, plains or three-dimensional
structures) to exert some control in the magnetic properties of the material.
Moreover, multifunctional molecular magnetic materials combine magnetism
and one or more physical properties (fotomagnetism, magnetooptic, magneto-
conductivity, etc.). Due to the limited amount of magnetic atoms of molecular
materials, they are excellent systems to study fundamental concepts of physic
as magnetic exchange, tunnel e�ect of magnetization, electronic transfer, mag-
netic anisotropy, coexistence of nuclear and magnetic chirality, etc.

Molecular magnetism has achieved important goals in the past two decades
providing examples of novel phenomena and potential applications. It went un-
der a revolution when the �rst molecular ferromagnet of organic-metalorganic
nature was synthesized in 1985, the salt [FeIII(Cp)∗2]+[TCNE]− that present
spontaneous magnetization and magnetic order below 4.5K [18]. Since then,
other molecular materials of di�erent nature: purely organic, inorganic or me-
talorganic, have been discover to order magnetically at di�erent temperatures.
Through the development of new Prussian Blue Analogues (PBA) [19], a very
important step was reached when molecule-based long-range magnetically or-
dered (LRMO) materials with Curie temperatures above room temperature
(RT) were obtained. One paradigmatic example of the continuous evolution
of molecular magnetism can be found in the organic magnets: the �rst or-
ganic ferromagnet, p − NPNN , appeared in 1991 and has an order temper-
ature of 0.67K [20]. From there, in just �ve years, the ordering temperature
reached 36K at normal pressure and 76K at 20Kbar, which is in the tem-
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perature region of the liquid nitrogen, for the phase β of the organic radical
p − NC − C6F4 − CNSSN [21, 22]. It has been a synergy between a ratio-
nal approach of the exchange interaction and coordination chemistry which
has allowed molecule-based magnets to reach high ordering temperatures. But
there have been others milestones in the development of molecular magnetism,
like the magnetic hysteresis at molecular level, the discover of photoswichtable
magnetic materials, and materials combining conduction and bulk ferromag-
netism [23, 24]. This thesis is devoted to multifunctional molecular materials
where nuclear and magnetic chirality coexist and Single Molecule Magnets
(SMM).

Historically, chirality was mainly studied in biology due to the important
role that it plays in life, i. e. biological molecules use only left-handed amino
acids and only right-handed sugars. But chirality can confer unique properties
to compounds, arising interest progressively into much �elds of chemistry, as
organometallic and coordination compounds, metal nanoparticles and molec-
ular materials [25]. A chiral nuclear structure may confer to the compound
piezoelectricity, Natural Optical Activity (NOA), Pyroelectricity or Second
Harmonic Generation [26], properties that can be relevant in the design of new
molecular devices. Especially, because molecule-based materials are transpar-
ent for the light, their optical properties have attracted much attention. More-
over, if magnetic chirality coexists with nuclear chirality, spatial and temporal
symmetries are simultaneously broken, and a new e�ect called magnetochiral
anisotropy (MChA) will appear. This e�ect was observed in 1997 by Rikken
and Raupach [27] for a paramagnetic enantiopure system. The phenomenon
is enhanced in enantiopure chiral ferromagnets and the bistability of a mag-
netically ordered state open the possibility to employ such materials for data
storage with a detections based in MChD instead of magnetic circular dichro-
ism [28]. Moreover, ferromagnetic chiral media are magneto-electric, so it is
possible electrical reading/writing of the magnetic state of the medium [29]
[30]. Materials of this category are very interesting for their potential applica-
tions, and in addition, they allow to explore new �elds for physics. The �rst
compound where the coexistence of nuclear and magnetic chirality has been de-
mostrated is [Cr(CN)6][Mn(S)pnH(H2O)]·2H2O [8]. It orders magnetically
and the resultant magnetic structure, determined by our working group [31], is
chiral according to the de�nition given in section 2.5. The existence of a soliton
at the magnetic phase transition temperature for this compound was �rst pos-
tulated [32] and then demonstrated [33]. The experiments performed with this
compound reveal the role that magnetic chirality plays in dynamical properties,
the chirality can strongly in�uence the generation, mobility and relaxation of
spin-wave excitations. Very similar to GN are two chiral nuclear compounds
studied in this thesis [Mn(CN)6][Mn(S)pnH(H2O)] · 2H2O [6], denoted as
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GN-MnMn, and [Cr(CN)6][Mn(R)− pnH(DMF )]·H2O [7], denoted as GN-
DMF(R); and a racemic compound [Cr(CN)6][Mn(rac)− pnH(DMF )]·H2O

[6], denoted as GN-DMF(rac). One of the objectives of this thesis is the study
of the coexistence of nuclear and magnetic chirality in the nuclear chiral com-
pounds below their TC . In order to do that, it has been necessary to settle
down a global de�nition for magnetic chirality that clarify this concept and
to determine their magnetic structures. The magnetic structures found from
neutron di�raction data reveals that the magnetic structures of GN-MnMn
and GN-DMF(R) are chiral. The coexistence of nuclear and magnetic chiral-
ity makes this compound excellent system to study the in�uence of magnetic
chirality in several physical properties, as the existence of enhanced magne-
tochiral dichroism. The GN-DMF(rac) has an achiral magnetic structure as it
was expected.

From the �rst single molecule magnet synthesized in 1980, Mn12ac,
[Mn12O12(CH3COO)16(H2O4)] · 4H2O ·CH3COOH [34], which is still one of
the most studied SMM, this �eld has gone under a great development. SMMs
are metalorganic compounds that, below a blocking temperature, show su-
perparamagnetic behavior and exhibit magnetic hysteresis of purely molecular
origin. An isolated high spin ground state and a high magnetic Ising-anisotropy
generate an energy barrier(∆). Below the blocking temperature (TB), the en-
ergy barrier denies the reversal of the magnetization by thermal activation, the
system is said to be blocked and the magnetization decays exponentially with
the time in a classical framework. But SMMs are in the limit between classi-
cal and quantum physics, and they can also relax through quantum tunneling
mechanisms [35] and show quantic coherence phenomenons. SMMs are mate-
rials that have incredible potential applications not only in the �eld of data
storage, but also exists the possibility to integrate them as building blocks
in quantum computers [36], giving rise to the development of the spintronics
[5] [37]. In addition, the �nite number of atoms in SMMs and their uni-
form size the are excellent probes to test quantum theories and to study the
exchange interactions, anisotropy e�ects, long range order by dipolar forces
[13]), spin-glass-like-dynamics or competition between single-particle blocking
and collective blocking. In addition they can be seen as functional building
blocks for high dimensional frameworks, and constitute a new branch for the
bottom-up methods. In this theses, we have studied di�erent compounds with
cubanes of Co(II) isolated or arranged in networks of di�erent dimensionality.
Several Co(II) cubanes have been reported to behave as SMM with a blocking
temperature below 5K.

The objective is to remark how structural di�erences can in�uence in the
energy barrier and observe the competition between individual and collective
phenomena.





Part I

Neutron di�raction study of

chiral compounds





Chapter 1

Introduction and objectives

1.1 Introduction

This part of the thesis refers to the study of chiral molecular magnets. The
term "chiral magnet" is sometimes confusing, because the adjective chiral can
refer to nuclear chirality or magnetic chirality. For this reason, we feel that
these concepts must be clari�ed before going deep in any study. From the
chemistry point of view, the structural chirality may be de�ned as a particular
arrangement of atoms that excludes any improper symmetry element. From
the magnetic point of view, the considered objects are the magnetic moments
instead of the atoms. Some typical examples of magnetic chirality are frus-
trated antiferromagnetic triangular lattices or helicoidal arrangements of spins.
In this last situation, the antisymmetric Dzyaloshinskii-Moriya (DM) interac-
tion can play a very important role.

In the section 1.2, the concept of nuclear chirality is clari�ed and the up-
to-date concept of magnetic chirality is summarized. The DM interaction is
explained and its importance is outlined. In order to remark the importance of
chiral molecular magnets, their main features, properties and some synthesis
strategies are presented in section 1.3. Special attention is devoted to chiral
ciano-based molecular magnets previously studied by our working group that
are related to the compounds studied in this thesis. The objectives of the
thesis can be found at the end of this chapter.
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Figure 1.1: Examples of chirality. If an object is not superimposable with its specular

image, it is said to be chiral

1.2 Chirality

The term chirality is derived from the Greek word χειρ (cheir) for hand, and
it is related to the concept of "handedness".

Chirality is a concept that appears in several branches of science, but it is
always related to the absence of a symmetry operation. For example, we can
use the term chiral referred to a property of elemental particles (i. e. spin),
a physical phenomenon (i. e. electromagnetic wave propagation) or a spatial
symmetry. In each de�nition, the common nexus is that the hamiltonian is
invariant or not under some symmetry operations. We are concerned with
spatial chirality and the next sections are devoted to the concept of nuclear and
magnetic chirality. Human hands are perhaps the most universally recognized
example of spatial chirality. The left hand is a non-superposable mirror image
of the right hand; no matter how the two hands are oriented, it is impossible
for all the major features of both hands to coincide as can be seen in �gure
1.1.
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1.2.1 Non-magnetic chirality

The term chirality, in a nuclear sense, refers to the symmetry restriction of the
absence of improper symmetry operations in a molecule or a crystal. There is
a punctual de�nition, called chemical, which is used referred to molecules and
another de�nition more general, which is applied to whole crystal structures.
This last one takes into account also the way the molecules are distributed in
the crystal structure.

Molecular chirality

In chemistry, chirality usually refers to molecules, being a local concept. Ac-
cording to IUPAC (The International Union of Pure and Applied Chemistry)
[38], chirality is the geometric property of a rigid object (or spatial arrange-
ment of points or atoms) of being non-superposable on its mirror image; such
an object has no symmetry elements of the second kind, i. e, improper elements
(a mirror plane, a center of inversion, a rotore�ection axes).

A molecule non-superposable on its mirror image is called a chiral molecule,
and its two mirror images are called enantiomers or optical isomers. In a
racemic compound the molecules are chiral, but a mix of both chiralities makes
the compound achiral. The word "racemic" is derived from the Latin word
"racemus" for "bunch of grapes"; the term having its origins in the work of
Louis Pasteur who isolated racemic tartaric acid from wine [39]

There are several nomenclatures to refer to a pair of enantiomers. The
more general one designate them as "right-" (R) and "left-handed" (S). Each
chiral center is labeled R or S according to a system that assigns a priority to
the ligands of the chiral center according to the Cahn-Ingold-Prelog priority
rules (CIP) based on atomic numbers [40, 41]. If the center is oriented so that
the lowest-priority of the ligands is pointed away from a viewer, the viewer
see two possibilities: if the priority of the remaining substituents decreases in
clockwise direction, it is labeled R, if it decreases in counterclockwise direction,
it is S. This system labels each chiral center in a molecule (and also has an
extension to chiral molecules not involving chiral centers) and can label, for
example, an (R,R) isomer versus an (R,S), so it is useful for naming molecules
with more than one stereocenter or chiral center.

Pairs of enantiomers can also be named according to their optical activity.
If it rotates the light clockwise (as seen by a viewer towards whom the light
is traveling), the enantiomer is labeled dextrorotatory (+); it mirror imagine
rotates light anticlockwise and is labeled levorotatory (-).
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In biology, there are a great number of chiral molecules and they are desig-
nated L or D relating the spatial con�guration of the molecule atoms to glyc-
eraldehyde, which is chiral itself . Most aminoacids are L and sugars are D.
Proteins are named left-handed or right-handed depending on which aminoacid
they proceed from. Enzymes are also chiral and distinguish between two enan-
tiomers of a chiral substrate.

The (+) or (-) and L or D nomenclatures are confusing if we have more
than one chiral center, the only nomenclature useful in this case is the R or S
classi�cation.

Most commonly, chiral molecules have point chirality, centered around a
single atom, which has di�erent substituent ligands and it is chiral. However
in rare cases, two of the ligands di�er from each other by being mirror im-
ages of each other. When this happens, the mirror image of the molecule is
identical to the original, and the molecule is achiral. This is called pseudochi-
rality. A molecule can have multiple chiral centers without being chiral overall
if there is a symmetry between the two (or more) chiral centers themselves.
Such a molecule is called a meso-compound (see example in �gure 1.2a). It
is also possible for a molecule to be chiral without having actual point chi-
rality. Common examples include 1,1'-bi-2-naphthol (BINOL) (�gure 1.2c),
1,3-dichloro-allene, and BINAP, which have axial chirality; (E)-cyclooctene
(�gure 1.2b) which has planar chirality; and certain calixarenes and fullerenes
which have inherent chirality. As molecules have considerable �exibility, they
can adopt a variety of di�erent conformations. These various conformations
can be chiral, so it is also possible for a molecule to be chiral without having
actual point chirality. When assessing chirality, a time-averaged structure is
considered and for routine compounds, one should refer to the most symmetric
possible conformation.

Nuclear chirality

In order to understand chirality in a physical context, we use the concept of
congruence. Two objects, A and B, are said to be congruent if to each point
of A corresponds a point of B; and the distance between two points of A is
equal to the distance between the corresponding points in B. Consequently,
the angles will be equal in A and B in absolute value. Such correspondence is
an isomerism. The congruence can be direct or opposite (positive or negative),
according to whether the corresponding angles have the same or opposite an-
gles. An object will be said enantiomorphous or enantiomer with respect to
another if they are congruent and the congruence is opposite [42].
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Figure 1.2: a) Schematic drawing of an example for a mesocompound. b)(E)-

cyclooctene, which shows planar chirality. c)1,1'-bi-2-naphthol (BINOL), which

presents axial chirality
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If the congruence is direct, the objects can be bought to coincidence by
symmetry operations whose determinant is equal to +1, called proper opera-
tions, which are translations, rotations and screws axis. If the congruence is
opposite, one object will be said to be enantiomorphous with respect to the
other one and the two objects can be bought to coincidence by symmetry op-
erations whose determinant is equal to -1. This symmetry operations, called
improper operations, are re�ections, inversions, glide planes, rotoinversions and
rotore�ections. Screws, glide planes, rotoinversions and rotore�ections can be
decomposed as a product of symmetry operations.

Crystals can present di�erent symmetry operations. When translations
and symmetry operations involving them are not taking into account, 32 point
groups can be constructed by combining symmetry operations in a three-
dimensional space. These crystal point groups, also called crystal classes, can
be seen in table 1.1. The 32 point groups can be split in 21 non-centrosymmetric
point groups and 11 centrosymmetric point groups. In a centrosymmetric
group for every point (x, y, x) there is an indistinguishable point (-x, -y,-z).

The 21 non-centrosymmetric groups can be divided in 10 polar groups and
11 enantiomorphic groups. Polar groups presents a polar direction which is
not symmetry equivalent to its opposite direction. Enantiomorphic groups
only allow proper symmetry operations.

The compatibility of the crystal structure with rotation or inversion axes
of order 1, 2, 3, 4, 6 impose some restrictions on the geometry of the lattice.
Seven crystal systems can be distinguished: triclinic, monoclinic, orthorhom-
bic, tetragonal, trigonal, hexagonal and cubic. These crystal systems can also
be combined with one of the following lattice centering: primitive centering
(P), body centered (I), face centered (F) and centered on a single face (A, B,
C). There are 14 possible combinations of lattice centering and crystal systems,
which are the 14 Bravais lattices. If we combine the 14 Bravais lattices with
the 32 point groups, we obtained 73 symmorphic groups. In a symmorphic
group, all generating symmetry operations leave one common point �xed. If
we introduce translations, 230 space groups are found.

In the 230 space groups [26], there are 65 enantiomorphic or chiral groups,
which arise from the 11 enantiomorphic point groups where only proper symme-
try operations are allowed and the congruence between their objects is direct.
Thus, a chiral space group contains only pure rotations, pure translations and
screw rotations, which are proper symmetry elements with determinant +1.
Some chiral space groups are also polar. Enantiomorphic crystals can be build
by chiral or achiral molecules or atom groups. In the last cases, the achiral
molecules or atom groups form chiral con�gurations in the structure.
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Table 1.1: Laue Classes, centrosymmetric/non-centrosymmetric crystal classes

(CS/NCS), enantiomorphic or polar group (E/P), and the occurrence (X) or not

of natural optical activity (N), pyroelectricity and piezoelectricity (Pe) and Second

Harmonic Generation (S)

Crystal System Laue Class CS NCS E N Pe S

Triclinic
-1

1 E X X X
-1

Monoclinic 2/m
2 E X X X
m P X X X

2/m

Orthorhombic 2/m 2/m 2/m
222 E X X
mm2 P X X X

2/m 2/m 2/m

Tetragonal

4/m
4 E X X X
-4 P X X

4/m

4/m 2/m 2/m

422 E X X
4mm P X X
-42m P X X

4/m 2/m 2/m

Trigonal

-3
3 E X X X

-3

-3 2/m
32 E X X
3m P X X

-3 2/m

Hexagonal

6/m
6 E X X X
-6 P X

6/m

6/m 2/m 2/m

622 E X X
6mm P X X
-62m P X

6/m 2/m 2/m

Cubic

2/m -3
23 E X X

2/m -3

-4/m -3 2/m
432 E X
-43m P X

-4/m -3 2/m
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1.2.2 Previous de�nitions of magnetic chirality

The concept of magnetic chirality has been widely discussed and several local
de�nitions have been given, but there is not an universal and global de�nition
for magnetic chirality as it varies from one author to another [43�47]. It does
not seem to be very clear, and it is often mixed with the concept of nuclear or
crystallographic chirality. Nuclear and magnetic chirality are separated con-
cepts: a chiral nuclear structure may be magnetically chiral or not, and a chiral
magnetic structure may be chiral nuclear or not. Part of the confusion in the
de�nition of magnetic chirality also arises from the di�erent phenomena related
to it. Most part of the studies about magnetic chirality are done to describe
magnetic phase diagrams, new critical exponents, chiral critical �uctuations,
etc. We are interested in magnetic chirality referred to magnetic structures.

Blume [48] and Malayev [49] were the �rst authors interested in describing
a magnetically chiral structure. Blume tried to explain that the magnetization
density in di�erent regions of the unit cell may not be collinear with the net
magnetization. In this section, we give a brief glimpse of the di�erent de�ni-
tions for magnetic chirality that have been employed more or less frequently,
and remark the need of a global de�nition. In the chapter 2, in the section
2.5, we explain the de�nition we propose and adopt for magnetic chirality.
The magnetic chirality may arise due to the antisymmetric magnetic interac-
tions and/or the single-ion anisotropy through the spin-orbital interactions.
The most important antisymmetric magnetic interaction in this context is the
Dzyaloshinskii-Moriya (DM) interaction that violates the inversion symmetry
in the spin space. DM interaction is explained in this section.

Local de�nitions for magnetic chirality

When the �rst studies of canted or non-collinear magnets appeared, with the
discovery of rare-earth helimagnets such as Ho, Dy and Tb, several studies
where performed to described the geometry of the arrangement of the spins.
Villain [43] tried to describe the behavior of a frustrated lattice, which is a
lattice in which all interactions between pair of spins can not be simultaneously
satis�ed. He focused on sets of four classical, two dimensional spins and stated
two types of ground states that can be seen in �gure 1.3:

• If there is an even number (0, 2 or 4) of antiferromagnetic bonds, all spins
are in the same direction, and the set of four spins is a non-frustrated
plaquette.

• If there is an odd number (1 or 3) of antiferromagnetic bonds, the ground
state is canted, and the plaquette is frustrated. The system has an extra
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a) b) c) 

Figure 1.3: Plaquette where black bonds are ferromagnetic and red bonds are an-

tiferromagnetic. a) Non-frustrated plaquette; b) Frustrated plaquette, spins rotate

clockwise; c) Frustrated spins rotate counterclockwise

degeneracy, characterized by τ , that indicates whether the spins rotate
clockwise (τ = 1) or counter-clockwise (τ = −1) during a clockwise trip
around the plaquette. Both states have the same energy.

Villain gave a local de�nition of chirality based in the sign of τ , which only
involved the atoms in a close trip around the plaquette.

Another example of frustration is the organization of spins in antiferro-
magnetic materials when the spins are located at the vertices of a triangular
lattice. Miyashita and Shiba [44] applied Villain's discovery to the case of a
triangular lattice where frustration led to the non-collinear or canted ordered
state. They introduced a scalar quantity, chirality, de�ned by equation 1.1. In
this equation the summation runs over the three directed bonds surrounding a
plaquette and kp gives ±1 for the two degenerated spin con�gurations depicted
in �gure 1.4. In this case, chirality is a pseudoscalar which is invariant under
global spin rotation but it changes sign under global spin re�ection.

kp =
2

3
√
3

p∑
<ij>

[Si × Sj ]z (1.1)

Kawamura and Miyashita [45] extended this de�nition of chirality to a two-
dimensional Heisenberg antiferromagnet on a triangular lattice, for which they
rede�ned chirality as a vector given in equation 1.2.

kp = S1 × S2 + S2 × S3 + S3 × S1 (1.2)

Similar chiral degeneracy is also found in other types of canted magnets,
such as helimagnets (spiral magnets, see �gure 1.5 ) in which right- and left-
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a) b)

Figure 1.4: Plaquette where bonds are antiferromagnetic. a) (+) chirality b) (-)

chirality

handed helices are energetically degenerated [46][50].

Another kind of chirality can be observed in many antiferromagnetic py-
rochlores [51], where a high degree of geometrical frustration exists. Theoret-
ical studies predict that the magnetic ground state is continuously disordered
and susceptibility measurements show that they often behave as conventional
spin glasses. As a consequence of frustration, non coplanar ordered phases, are
stabilized and the anomalous Hall e�ect (AHE) can appear due to spin chiral-
ity. Three non-coplanar spins S1, S1, and S1 contribute to the AHE with a
term which is proportional to the so-de�ned scalar chirality [52] shown in equa-
tion 1.3. Of course, in disordered con�gurations chirality is locally non-zero,
but its average generally vanishes and this contribution can only be observed
in systems with long range chiral ordering.

χ123 = S1·(S2 × S3) (1.3)

All this de�nitions are local, and we are looking for more general de�nition
of magnetic chirality or chirality of a magnetic structure.

Blume-Malayev equation

Blume [48] and Maleyev [49] formulated that the scattered intensity of a po-
larized neutron beam can be written as in equation 1.4:

I = C(|FN |2+FM⊥·(FM⊥)
∗+P·FM⊥F

∗
N+P·(FM⊥)

∗FN+P·(FM⊥×(FM⊥)
∗)

(1.4)
In equation 1.4, I is the scattered intensity, FN is the nuclear structure factor,
FM⊥ is the component of the magnetic structure factor which is perpendicular
to the scattering vector q and P is the polarization of the neutron beam. In
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a) b)

Figure 1.5: Chiral degeneracy in the ordered state of a XY helimagnet.

the cases we have studied, P is zero as the neutron beam was not polarized.
FM⊥ is also called the magnetic interaction vector and is de�ned as FM⊥(q) =

e × FM(q) × e, where e is a unitary vector in the direction of q. Both the
magnetic structure factor and the interaction vector are in general complex
vectors. The neutron scattering theory is brie�y explained in appendix A.

The term FM⊥ × FM⊥
∗ is the so-called chiral term. Dra. Clara González

adopted in her thesis [31] a de�nition for chirality based on this term. We will
modify this de�nition in section 2.5 to adopt a global de�nition for magnetic
chirality.

The DM interaction.

A general spin Hamiltonian including the Zeeman term and describing the
low-lying states for any pair of interacting magnetic centers A and B, may be
written as follows (i. e. see ref. [53]):

H = JSA·SB + SAD̄SB + d·(SA × SB) + β(SA·gA + SB·gB)H (1.5)

In equation 1.5, there are several terms:

• The �rst term refers to the isotropic exchange interaction, which lines
up the spins of the magnetic atoms. This term is characterized by the
exchange constant J, which gives the strength of the magnetic interaction,
and can be either positive or negative depending on the nature of the
interaction. If the interaction is ferromagnetic J is positive, while for
antiferromagnetic couplings J will take negative values.
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Figure 1.6: a) Example of a ferromagnetic interaction b) Example of DM interaction

• The second term describes both the dipolar and the anisotropic interac-
tion, characterized by the tensor D̄. The dipolar interaction arises from
the in�uence of the magnetic �eld created by one of the magnetic ions
on the magnetic moment due to the other. The anisotropic interaction
results from the combined e�ects of the local spin-orbit coupling and the
interaction between the magnetic center.

• The third term refers to the antisymmetric interaction called the Dzya-
loshinski-Moriya interaction (DM) that will be further explained in this
section.

• The last term refers to the Zeeman term, which describes the splitting of
the spectral lines of an atom in the presence of a strong magnetic �eld.
This e�ect is due to the distortion of the electron orbitals in the presence
of a magnetic �eld.

We are specially interested in the term referred to the DM interaction.
This interaction results from the anisotropic exchange interaction which is a
combined e�ect of the spin-orbit coupling and the exchange interaction. It
was �rst proposed by Dzyaloshinsky [54] using symmetry arguments, and then
analyzed by Moriya [55, 56].

According to the DM term in equation 1.5, the energy due to this term is
minimized when the cross product of spins is as big as possible and its sign is
opposite to d. This can be reached by spins 90o apart and lying in a plane
perpendicular to d. To minimize the DM interaction, spins tend to form non
collinear spin structures. Therefore, as can be seen in �gure 1.6, DM compete
with the isotropic exchange interaction that tends to form collinear magnetic
structures. DM interaction is responsible for weak ferromagnetism, as it favors
a canted spin arrangement instead of a collinear one.

In a crystal, the DM interaction depends on the sites in which the magnetic
atoms are, i.e. it depends on the crystal symmetries. The vector d is deter-
mined by the fact that the energy of the system must remain invariant to the
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symmetry transformations of the crystal. Moriya [55] published the symmetry
rules which control d. Calling AB the line joining two atoms i j, and C its
midpoint, the following rules applied to d:

• d = 0 if a center of inversion was located at C.

• d⊥AB if a mirror plane perpendicular to AB passed through C.

• d⊥ to a mirror plane if the mirror plane included AB.

• d⊥ to a two-fold axis if the two-fold rotation axis was perpendicular to
AB at C.

• d ∥ AB if AB was an n-fold rotation axis for n > 2 .

However, these rules do not include all the cases, and then theoretical
calculations are needed.

As it will be see in section 2.5, no-collinearity is a requisite for magnetic
chirality. The DM interaction could cause a canting in the magnetic moments,
which could produce a magnetic chiral structure (see section 2.5). All the
compounds shown in this thesis have nuclear chirality, and they do not present
an inversion centre between the magnetic atoms, so DM may exist.

1.3 Chiral Molecular Magnets

Historically, the interest in looking for chiral compounds was centered on or-
ganic molecules and drugs, for the important role that chirality plays in life, e.
g., biological molecules use only left-handed amino acids and only right-handed
sugars. Progressively, interest has spread towards new �elds of chemistry like
organometallic and coordination compounds [57�59], metal nanoparticles [60]
and molecular materials [25]. One reason for the increasing interest in chiral
compounds lies on their unique properties. The non-centrosymmetric (polar
or enantiomorphous) nuclear structure of a compound will determine some of
their possible properties, such as [26]:

• Piezoelectric e�ect. Ability to generate an electric potential in response
to applied mechanical stress

• Natural Optical Activity (NOA).Rotation in the polarization of trans-
mitted light due to the spatial symmetry breaking.

• Pyroelectricity. Ability to generate an electric potential when the mate-
rial is cooled or heated.
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• Second Harmonic Generation. Induction of light waves of twice the fre-
quency due to the nonlinear optical susceptibility, just by making the
light pass through a chiral material.

In table 1.1, the occurrence of these phenomenons in non-centrosymmetric
crystal classes can be seen.

Especially, because most of the molecule-based materials are transparent
to the light, in recent years optical properties of them have attracted much
attention. As it has been said before, a compound crystallized in a non-
centrosymmetric group can present NOA. According to the table 1.1, the 11
enantiomorphous group and 4 polar groups show this e�ect. Due to the spatial
symmetry breaking, there is a di�erence between the refractive indexes for left
circularly polarized light and right circularly polarized light (nL and nR). This
di�erence causes a levo- or dextro- rotation in a beam of linearly polarized light
that passes through a medium that exhibits NOA.

Another phenomenon that appears in all the material (chiral or achiral)
under an applied magnetic �eld is the magnetic optical activity (MOA). Due to
the time reversal symmetry breaking, the material presents di�erent absorption
and re�ection coe�cients depending on if the wave vector of the light is parallel
or antiparallel to the magnetic �eld applied. This e�ect was �rst observed by
Faraday [61].

If we break both symmetries (spatial and temporal) simultaneously, a new
e�ect called magnetochiral anisotropy (MChA) will appear even when the
medium interacts with non-polarized light. This e�ect was predicted 20 years
ago [62, 63], but wasn't observed until 1997 by Rikken and Raupach [27]. They
observed that a static magnetic �eld parallel to the propagation direction of
an incident beam could produce a small shift in the value of the absorption
coe�cient of a chiral molecule. The sign of the shift changes for light propagat-
ing parallel or antiparallel to the magnetic �eld direction or by replacing the
chiral molecule by its enantiomer. The e�ect is called magnetochiral dichroism
(MChD) in absorption or transmission and magneto-chiral birefringence in re-
fraction. The MChA can be explained by an additional term k · B, where k

is the wave propagation vector, in the dielectric tensor of chiral media subject
to a magnetic �eld. The essential features of MChA are its dependence on
the relative orientations of k and B, the dependence on the handedness of the
chiral medium (enantioselectivity) and its independence on the polarization
state of light (dextro or levo).

The phenomenon of MChA has been observed in paramagnetic [3, 27, 64]
and diamagnetic [65] enantiopure systems, but it is enhanced in enantiopure
chiral ferromagnets. The MChA in the magnetically ordered phase for the com-
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Figure 1.7: Schematic representation of NOA in an enantiopure medium using circu-

larly polarized light , of MOA in a magnetic medium using circularly polarized light

and of MChA in an enantiopure magnetic medium using unpolarized light.
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pound [N(CH3)(n−C3H7)2(s−C4H9)][MnCr(ox)3], is a factor of 17 bigger
than in the paramagnetic phase [28]. The bistability inherent to the existence
of a magnetically ordered state opens the possibility to employ such materials
for data storage with a detection based in MChD instead of magnetic circu-
lar dichroism. Moreover, as ferromagnetic chiral media are magneto-electric,
it is possible electrical reading/writing of the magnetic state of the medium
[29, 30]. These compounds will certainly bring new physics into sight, like new
universality classes with new critical exponents. Materials of this category are
not only interesting from a scienti�c point of view but the may also open an
area for new applications [28].

We are going to focus our e�orts in studying chiral molecular magnets,
which present not only a chiral nuclear structure, but also a magnetic chiral
structure. The coexistence of both chiralities in a magnetic ordered phase
can make appear interesting properties, as an increased MChD, or open new
horizons.

1.3.1 Synthesis Strategies

Despite a large amount of interest, until now not many molecular candidates
likely to exhibit both chiralities have been synthesized, due to the di�culty to
control the chirality, not only in the molecular structure, but also in the entire
crystal structure. To obtain nuclear chiral compounds, several strategies can
be followed [2]:

• Rely on spontaneous resolution process starting from achiral building
blocks. This approach can hardly be considered a rational strategy. Nev-
ertheless, some families have been synthesized in this way [66, 67].

• Use chiral ligands bearing unpaired electrons (chiral radicals) to build
chiral molecule-based magnets through the metal-radical approach. This
strategy presents the advantage that the synthesis of the enantiopure
organic molecules acting as radicals is well documented. The main prob-
lem of this approach is that is has essentially led to 1D crystallographic
structures [68, 69].

• Use chiral bridging ligands from the chiral pool. Using an available enan-
tiopure molecule facilitates the synthesis and may allow to increase the
dimensionality. This technique has lead to the synthesis of extended 2D
and 3D coordination networks, e. g., (L)-mal ion [70], (L)-tartrate ion
[71]. It has the inconvenience that if homometallic networks are synthe-
sized, the antiferromagnetic exchange interaction is favored.
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• Associate the chiral coligand with achiral connectors to build chiral ex-
tended networks. In order to increase the dimensionality of networks
and have interesting magnetic properties, bridging ligands that transmit
the exchange interaction are desirable. This technique has been used to
synthesized the compounds studied in this thesis, that are described in
the next section.

• Master the con�guration of intrinsically chiral networks by enantioselec-
tive self-assembly. Although this method can not be considered a rational
strategy because the absolute con�guration of the coordinated metal ions
can not be controlled a priori, a clear successful example is the oxalate
family [72�74].

In order to obtain chirality not only in the nuclear structure, but also in the
magnetic structure, some other considerations have to be taken into account
in the synthesis process. If the magnetic structure is collinear the left-handed
and right-handed chiral magnetic structures are degenerate and the magnetic
structure inevitably becomes achiral. Bearing this in mind, it is apparent
that the crystallographic chirality is not always accompanied by the magnetic
chirality. In order to obtain molecular magnets where crystallographic and
magnetic chirality coexists, we need to control the crystallographic chirality
via chemical synthesis, and then manipulate resultant asymmetric exchange
interactions (DM interaction or high Jahn-Teller e�ect). Bearing this in mind,
we have pointed our attention towards CN compounds described in the next
subsection.

1.3.2 CN based chiral compounds

In order to obtain molecular compounds with a chiral nuclear and magnetic
structure that order magnetically, extended multidimensional arrays of param-
agnetic metal ions with chiral bridging ligands have been synthesized. Cyanide-
bridged Prussian-blue systems are well known for their magnetic ordering at
rather high temperatures, because the bridging ligand favors the formation of
2D or 3D networks and transmits well the exchange interaction. A chiral col-
igand in an enantiopure form is the responsible of transferring its chirality to
the metal centre, therefore the crystallographic chirality could be controlled.

The cyanide groups C ≡ N− are used to bridge two metal ions, as this
group has a pair of empty antibonding orbitals. In a Prussian Blue compound,
the M and M' centers are octahedral and connected together by nearly lin-
ear MN ≡ CM ′ cyanide bridges as can be seen in �gure 1.9. The di�erent
atoms at each end of the cyanide ion have di�erent bonding a�nities to metal
ions, helping to construct coordination compounds. The M' atom, which is
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Figure 1.8: Splitting of the energies of the d-orbitals by octahedral crystal �elds.

Figure 1.9: Schematic view of two metal centres connected by a cyanide linkage.

surrounded by the carbon atoms of six cyanide ligands, is in a large ligand
�eld. As a result, all known [M ′(CN)6] units are invariably low spin and have
electrons only in the t2g orbitals [75]. In contrast, the M atom, which is sur-
rounded by nitrogen atoms of cyanide ligands or oxygen from water molecules,
is in a weak ligand �eld and is almost always high-spin. For the M atoms, it
is possible for unpaired electrons to be present only in the t2g orbitals (for d2

or d3 ions), only in the eg orbitals (for d8 and d9 ions), or in both the t2g and
eg orbitals (for d4 through d7 ions). In �gure 1.8 the splitting of the d-orbitals
by octahedral crystal �elds can be seen.

As magnetic exchange is a short-range phenomenon, in a �rst order of ap-
proximation, we can neglect interactions with second nearest neighbors (which
are more than 10Å away) and with more distant magnetic centers. Thus, the
analysis reduces to a consideration of the exchange interactions present be-
tween two metal centers connected by a cyanide linkage. The nature of the
interaction between the two metal center M and M' (ferromagnetic or antifer-
romagnetic) arises from the orthogonality of the orbitals of unpaired electrons:
mutually orthogonal magnetic orbitals will contribute to the ferromagnetic ex-
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change term, whereas non-orthogonal magnetic orbitals will contribute to the
antiferromagnetic term. The net interaction is simply the sum of all the fer-
romagnetic and antiferromagnetic contributions. One of the most important
characteristics of the cyanide compounds is that their magnetic behavior can
be predicted. It is therefore possible to tune the material changing the metal
ion, its oxidation state and therefore the number of unpaired electrons per site.
This is explained by the Goodeneough-Kanamori rules [76]. According to these
rules, the exchange interaction between an M and a M' metal sites through a
linear M −NC −M ′ fragment can present three situations[75]:

1. If the unpaired electrons of M occupy eg orbitals, all the exchange in-
teractions with the t2g magnetic orbitals present on [M ′(CN)6] will be
ferromagnetic. Thus, if a Prussian Blue is prepared by adding a d8 or
d9 M cation to a paramagnetic [M ′(CN)6] anion, a ferromagnet should
result.

2. If all the unpaired electrons of M occupy t2g type orbitals, all the ex-
change interactions with the t2g magnetic orbitals present on [M ′(CN)6]

will be antiferromagnetic. In this case, if the Prussian Blue is prepared
by adding a d2 or d3 cation to a paramagnetic [M ′(CN)6] anion, a ferri-
magnet should result.

3. If the unpaired electrons of M lie in both t2g and eg orbitals, ferromag-
netic and antiferromagnetic interactions with the t2g magnetic orbitals
on [M ′(CN)6] coexist and compete. Here, the overall nature of the
interaction is not so simple to predict. Usually, the antiferromagnetic
interactions dominate and the solid orders ferrimagnetically.

The compounds belonging to this family are extensively used as pigments and
as electrochromic and electrocatalyst materials, and they have shown the ca-
pability to exhibit photo-induced properties.

All these characteristics of cyanide-bridged Prussian-blue systems, make
them excellent candidates for a smart design of nuclear and magnetic chiral
compounds. To assure the presence of magnetic chirality in these compounds,
the group of Prof. K. Inoue from the Hiroshima University has developed
two synthetic strategies. The simplest one is to make use of a geometric ap-
proach using a chiral crystallographic skeleton, like a spiral, where paramag-
netic blocks with high magnetic anisotropy, are joined. This skeleton would
by itself allow antisymmetric magnetic interactions of DM type. This strategy
has been used in the 3D networks [Cr(CN)6][Mn(S)−pn]{(S)−pnH}0.6K0.4

(Yellow Needle, YN) [77] and [Cr(CN)6][Mn(NH2 − (ala)]3 · H2O (Simi-
lar to Yellow Needle, SYN) [78], where (S)-pn=(S)-1,2-diaminopropane and
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Figure 1.10: A) View of the YN structure along the c axis. Some atoms are omitted

for clarity. Color scheme: Cr: brown, Mn: red, C: gray, N: blue B) View of the

bonding and coordination octahedra of YN. Figure taken from [31]

ala=alanine. The nuclear and magnetic structure for the YN compound can
be seen in �gures 1.10 and 1.11.

Other possibility used is based on DM interactions along a crystallographic
axis in a non-centrosymmetric material, without the need of a chiral skeleton.
This second strategy has been followed to form 2D networks as
[Cr(CN)6][Mn(S)− pnH] (denoted as Green Needle, GN, for its shape and
colour) [8] and [W (CN)8]4[Cu(S)− pnH2O]4[Cu(S)− pn]2 · 2.5H2O (WCu)
[79]. The two chiral compounds studied in this thesis are the result of two
modi�cations in the GN synthesis, [Mn(CN)6][Mn(S)pnH(H2O)]·2H2O (GN-
MnMn) [6] and [Cr(CN)6][Mn(R)−pnH(DMF )]·2H2O (GN-DMF) [7], where
DMF stands for N,N-dimethylformamide=(CH3)2N−CHO. For example, the
WCu compound crystallizes in the space group P21, being the 21 axis parallel
to the b axis. It is logical to think that the canting of the spins is due to DM
vectors induced along the b axis.

Both strategies can give rise to materials very di�erent in nature, since
in the �rst one, magnetic chirality arises from the crystallographic geometry,
whereas in the second, magnetic chirality is due to the lack of an inversion
centre in the material. The nuclear and magnetic structure of some of this
compounds (GN, YN and SYN) have been presented and discussed in Dra.
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Figure 1.11: A) View along the c axis of YN magnetic structure with Cr atoms in

blue and Mn atoms in pink. B) Another view of the structure, with the c axis in

vertical to easily see the helixes both types of atoms are displaying. Figure taken

from [31]

Clara Gonzalez's thesis [31]. Due to the likeness between GN and the com-
pounds studied in this thesis, a brief summary about the GN nuclear and
magnetic structure and properties is provided in the next subsection.

GN

The GN compound has been widely studied [8, 32, 33, 80�83]. It was synthe-
sized in 2003 by Inoue and coworkers [8]. In �gure 1.12, an ORTEP drawing
of the asymmetric unit of the compound can be seen. Four cyanide groups in
the [Cr(CN)6]3− ion are linked to MnII ions to form a bimetallic network,
which is arranged almost perpendicular to the c axis. The compound crystal-
lizes in the space group P212121 and shows two sublattices, one of CrIII and
another of MnII . It presents three di�erent phases which are interconvertible
(a scheme can be seen in �gure 1.13). Each phase is magnetic at low temper-
ature, with critical temperatures of Tc=38K, 39K and 73K for the Phases I,
II and III, respectively. All the critical temperatures are remarkably high for
a metal-organic molecular magnet. The three phases can be transformed into
one another, di�ering mainly in the position of the chiral carbon and also in
the water content. Magnetization measurements reveal a ferrimagnetic order-
ing. Chirality in the magnetic structure was at �rst suggested by the enhanced
magnetic circular dichroism near TC . AC susceptibility measurements show an
unusual behavior between 34K and 38K, as can be seen in �gure 1.14 [84].

In Dra. Clara Gonzalez thesis [31], the three phases were studied by single
crystal neutron di�raction experiments performed in VIVALDI and D10 at
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Figure 1.12: ORTEP drawing of the asymmetric unit of the GN compound. Hydrogen

atoms are omitted for simplicity.

Figure 1.13: Scheme of the transformation of the phases in GN compound. The lattice

parameters and the interlayer distance between Cr and Mn are shown. Figure taken

from [31]
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Figure 1.14: Ac susceptibility measurements of GN at frequencies between 1 Hz and

1 kHz and zero applied dc �eld. Figure taken from [84]

the ILL. The nuclear phases were re�ned, and the magnetic structures were
determined.

Phases I and II consist of planes containing CrIII and MnII octahedra
linked by CN groups, where the MnII ion is also attached to a water molecule.
In contrast, in Phase III there are no water molecules, and the MnII ion is
linked to six CN groups, one of which is also linked to the diaminopropane
moiety. As a consequence of the loss of water, the distances between magnetic
atoms in the same plane and from one plane to the neighboring plane, which
are similar for Phases I and II, they are much smaller for Phase III. Among
the three phases, Phase I presents a more similar structure to GN-MnMn and
GN-DMF. For this reason, some of its features are described in this section.

As the distortion of the environments of magnetic atoms may be important
in order to compare the magnetism of GN with the magnetic behavior of Gn-
MnMn and GN-DMF, the distances and angles for CrIII and MnII octahedra
can be found in table 1.2. Another factor that could be important, is the
distance between magnetic atoms in the same plane and from one plane to the
neighboring one. For Phase I, the distances are listed in table 1.3.

A propagation vector equal to zero was found for the three phases and the
magnetic structures agree with the previous magnetic measurements performed
in single crystals. The structures for the three magnetic phases all correspond
to two sublattices, one of chromium and the other one of manganese disposed
ferrimagnetically with respect to each other. For Phases I and II the magnetic
structure can be described by the Irreducible Representation Γ4, which allows
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Table 1.2: Bond lengths and angles for CrIII and MnII octahedra at 43K. Data

obtained in D10.

A-X-B dA−XÅ dB−XÅ ÂXB

C1-Cr-C6 2.126(8) 2.023(8) 177.8(5)
C2-Cr-C5 2.006(7) 2.084(7) 177.0(4)
C3-Cr-C4 2.009(7) 2.033(7) 173.2(4)
N1-Mn-N5 2.125(7) 2.186(7) 178.1(3)
N2-Mn-N6 2.163(7) 2.224(7) 177.2(3)
N7-Mn-O1 2.327(7) 2.239(7) 177.8(4)

A-X-B ÂMnB A-Mn-B ÂMnB

C4-Cr-C5 90.69 O1-Mn-N2 86.13
C4-Cr-C1 87.08 O1-Mn-N5 95.85
C4-Cr-C2 86.48 O1-Mn-N6 92.56
C4-Cr-C6 90.80 O1-Mn-N1 82.23
C3-Cr-C6 95.34 N7-Mn-N3 93.38
C3-Cr-C5 90.83 N7-Mn-N5 86.29
C3-Cr-C1 86.76 N7-Mn-N6 88.02
C3-Cr-C2 91.88 N7-Mn-N1 95.64
C6-Cr-C5 92.23 N1-Mn-N2 90.02
C5-Cr-C1 88.50 N3-Mn-N5 90.11
C1-Cr-C2 90.37 N5-Mn-N6 87.54
C2-Cr-C3 91.88 N6-Mn-N1 92.28

Table 1.3: Shortest distances between magnetic atoms in the same layer (intra) and

from di�erent layers (inter). Data obtained in D10 at 43K.

Atoms d Å
Cr-Mn(Intra) 5.268(2)
Cr-Cr(Inter) 8.041(2)
Mn-Mn(Inter) 8.279(3)
Cr-Mn(Inter) 7.285(2)

a ferromagnetic component along the a axis, whereas for magnetic Phase III
it is Γ2, which allows a ferromagnetic component along the b axis. In table
1.4 the values of the moments found for each magnetic phase are given. The
magnetic structure for Phase I is shown in �gure 1.15.

The magnetic moments for MnII and CrIII are nearly along the easy axis
a and they are almost contained in the basal plane of their octahedra. The
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magnetic moment of the MnII is directed almost in the bisectrix between the
bonding directions in the basal planes. The magnetic moment of the CrIII

cation is directed almost in the bonding direction C1-Cr-C6, being C1-Cr the
largest distance between the Cr and their ligand atoms (2.13Å). The net mag-
netic moment along the a axis of di�erent layers is directed towards the same
sense of the a axis.

The magnetic moments of Cr and Mn atoms are not collinear, they are
tilted as can be seen in �gure 1.15. This may be due to several factors. Among
them the DM interaction, as there is not a symmetry element rules it out.
But it could be also explained because of the tilting of the octahedra and the
anisotropy of the ions.

Table 1.4: Magnetic moments for Cr and Mn along each axis and the total magnetic

moment for the GN compound.

Cation Mx µB My µB Mz µB M µB

CrIII 2.6(5) -1.7(9) -1.5(8) 3.4(7)
MnII 4.8(5) -1.5(9) -0.8(8) 5(1)

According to the de�nition of magnetic chirality adopted in Dra. Clara
Gonzalez thesis, the compound was found to be magnetically chiral. Our
more general de�nition explained in 2.5, has corroborated that GN is the �rst
molecular magnet where nuclear chirality and magnetic chirality coexist

Several studies about the GN reveal a dynamical anomaly between 37K and
35K [8, 33, 82, 83]. A transition from a commensurate to an incommensurate
magnetic phase has been postulated at the magnetic order temperature, which
implies the formation of a chiral spin soliton in the lattice [32]. With the aim to
observe if the neutron di�raction experiments could corroborate the existence
of this reorientation phase, we performed neutron di�raction experiments in
D15 at the ILL. We scanned the reciprocal space near the critical temperature
region searching for any anomaly. In appendix B more details about this
experiment can be found. Due to the estimated relation between the DM
interaction and the symmetric exchange: |D⃗| ∼ 0.01J , the length per turn of
the spin helix is on the order of 100 lattice parameters. Unfortunately, the
resolution needed to separate the main Bragg peaks and satellite peaks in a
magnetic structure with a period of ∼ 100 · 15Å is out of the experimental
possibilities for actual neutron di�ractometers.
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Figure 1.15: Magnetic structure of GN-Phase 1. Views along the a, b and c axes.

MnII atoms are in blue and CrIII atoms are in pink

1.4 Objectives

The general objective of this part of the thesis is to study the coexistence of
nuclear and magnetic chirality in new molecular magnets. In particular, we
are interested in GN, GN-MnMn and GN-DMF compounds and how structural
modi�cations can in�uence the magnetic structure, and hence, the magnetic
chirality. The main structural di�erence between GN and GN-MnMn is the
substitution of the CrIII cation for the MnIII . We expect that this modi�-
cation has some in�uence in the anisotropy and hence in the DM interaction.
The substitution of H2O by a DMF molecule as a ligand of MnII is the main
structural di�erence between GN and GN-DMF. This modi�cation increases
the distance between layers due to the higher volume occupied by the DMF
molecule. The separation between layers is expected to have an in�uence in
the magnetic order. The GN-MnMn and GN-DMF compounds are studied in
chapters 2 and 3 respectively. Moreover, the racemic form of GN-DMF has
been also studied in chapter 3 in order to check if the nuclear chirality may
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in�uence the magnetic chirality.

As it has been said in the previous section, some doubts about the existence
of a magnetic reorientation phase for the GN were risen from dynamical fea-
tures. We have also studied the critical temperature region in GN and scaned
the reciprocal space searching for an evidence of a magnetic structure with a
propagation vector di�erent from zero. The results can be found in appendix
B.

In order to perform the magnetic analysis, neutron di�raction experiments
have been performed in D15 and VIVALDI at the ILL. From the data acquired
the nuclear structures have been re�ned and, with the help or IR theory, the
magnetic structures have been determined. Moreover, due to the lack of a
general de�nition for magnetic chirality, we propose a global de�nition for
chirality and studied in which cases a magnetic structure can present magnetic
chirality.





Chapter 2

Neutron study of the

[MnIII(CN)6][MnII(S)-pnH(H2O)]·2H2O

compound

2.1 Introduction

With the objective of �nding nuclear and magnetic chirality in molecular mag-
nets, several compounds belonging to the family of the cyanide-bridged molec-
ular magnets have been studied. This chapter is devoted to the compound
[MnIII(CN)6][MnII(S)-pnH(H2O)]·2H2O, where (S)-pn=(S)-1,2-diaminopropane,
which, for convenience, is denoted as GN-MnMn. This compound is a good
candidate to present coexistence of nuclear and magnetic chirality for its simil-
itude with GN compound. It allows us to study the di�erence between both,
GN and GN-MnMn, which lies in the replacement of a CrIII ion for a MnIII

ion of di�erent magnetocrystalline anisotropy. In order to re�ne the nuclear
structure and to solve the magnetic one, single-crystal neutron di�raction ex-
periments have been performed in the Laue di�ractometer VIVALDI, at the
ILL.

The chapter is organized as follows: in section 2.2, the synthesis, the struc-
ture solved by X-ray measurements and the magnetization measurements are
summarized. Then, in section 2.3, a description of the experiment conducted
on the instrument VIVALDI is given. In section 2.4 the results for the nuclear
and magnetic structure are shown. Once the magnetic structure is known, in
section 2.5, we discuss the existence of magnetic chirality and explain the def-
inition we have adopted for magnetic chirality. Finally, the main conclusions
are presented in section 2.6.
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2.2 Synthesis, X-ray structure and magnetic charac-

terization

The complex [Mn(CN)6][Mn(S)-pnH(H2O)]·2H2O was synthesized by Prof. M.
Ohba and coworkers [6] at the Kyushu University (Japan). Enantiomers of
GN-MnMn were obtained as dark-red crystals by the reaction ofMnCl2·4H2O,
L · 2HCl (where L=S- or R-1,2-diaminopropane), KOH, and K3[Mn(CN)6]

in the 1:3:5:1 molar ratio. To avoid the oxidation and decomposition of
[Mn(CN)6]

3−, all the operations for the synthesis were carried out in a de-
oxygenated aqueous solution with cooling and light shielding. Crystals up to
1mm3 in volume were obtained by slow evaporation. The room-temperature
crystal data from X-ray structural analysis can be obtained at www.ccdc.cam.a-

c.uk/.

The unit cell is orthorhombic and the space group is P212121. The lattice
parameters at 243K are a = 7.5145(5), b = 14.261(1) and c = 14.844(1). The
Mn2+ ions are linked to four Mn3+ ions by four of the six cyanide groups
in the [Mn(CN)6]

3− ion, forming a bimetallic network, which is arranged
almost perpendicular to the c axis. The Mn2+ ions are also linked to one
water molecule and to the amino-acid ligand, which induces the chirality and
completes the octahedron. Elemental analysis on samples under vacuum for
a few hours at room temperature in order to remove the remaining surface
water molecules reveals a number of water which depends on the measurement
conditions, but it is at least 1.7 in any cases. This uncertainty in the number
of water molecules can be solved with neutron data measurements and was one
reasons that motivates our study.

This structure is the same as that of [Cr(CN)6][Mn(HL)− (H2O)] ·H2O

(GN) except for the number of lattice water molecules [8] and the substitution
of CrIII by MnIII . In �gure 2.1, an ORTEP drawing of the asymmetric unit
of the compound can be seen.

Magnetic behavior of polycrystalline samples have been characterized and
published along with the synthesis [6]. At room temperature, the susceptibility
value is consistent with the spin-only value expected for magnetically isolated
MnII (S=5/2) and low spin MnIII (S=2/2) ions. A Curie-Weiss plot in the
temperature range of 300 -100K gives a Weiss constant of -56 K, which suggests
an antiferromagnetic interaction between the adjacent MnII and MnIII ions
through cyanide bridges. Magnetization measurements versus temperature at
weak �eld and plots of the derivative of magnetization with respect to temper-
ature shows a magnetic phase transition temperature of 21.2K, as can be seen
in �gure 2.2.
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Figure 2.1: ORTEP drawing of the asymmetric unit of the compound

[MnIII(CN)6][MnII(S)pnH(H2O)]·2H2O. Taken from [6].
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Figure 2.2: Weak �eld magnetization of GN-MnMn under an applied �eld of 5G.

Adapted from [6].
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Figure 2.3: Magnetic hysteresis loop for GN-MnMn at 2 K. Solid line expresses Bril-
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A magnetic hysteresis loop is given in �gure 2.3. The saturation magne-
tization value per unit formula at 50 kG is around 3.1µB, which corresponds
to the value of S=3/2 expected for antiferromagneticallym coupled MnII and
MnIII with an average g value of 2.12 and 2.14, respectively. Coercive �elds
has been determined to be 120 G.

Susceptibility measurements in the presence of an AC magnetic �eld of 3
G show an increase in the in-phase signal and out-of phase signal below 21.2K,
as can be seen in �gure 2.4. The in-phase signal (χ′) presents a peak at 20.8K
with a shoulder around 19.6 K which depends of the frequency. The out-phase
signal have a frequency-dependent peak at 19.1 K with a shoulder around 20
K at low frequency. The curve shape drastically changes with the increase of
frequency. Also a small magnetic anomaly was observed around 8 K in the
out-phase signal.

The existence of the second peak in the AC signals and the ZFCM and RM
curves can indicate a two-step magnetic phase change. Such behavior has not
been observed in the GN, suggesting that they would originate from domain
dynamics and spin reorientation which correlates with the magnetic anisotropy
of MnIII ion and chiral structure.
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Figure 2.4: Temperature dependence of the AC magnetic susceptibility of GN-MnMn

under applied �eld of AC 3G.

2.3 Neutron Measurements

As it has been previously said, neutron techniques are used to determine the
nuclear and magnetic structure of the compounds studied in this thesis. As the
scattering length of neutrons is not linearly dependent with Z as happens for
photons, neutrons are a very useful tool to determine atomic positions of light
elements as hydrogen. This allows us to re�ne accurately the nuclear structure
and to �nd the positions of hydrogen atoms and water molecules that may
a�ect the magnetic interactions. In fact, the exact number of water molecules
presents in GN-MnMn could not have been determined as it depends of the
measurement conditions. Neutrons interact not only with atomic nucleus via
strong interactions, but also with the magnetic moments of the atoms via
dipolar magnetic interactions. For this reason, they can be used to solve the
magnetic structure of the compounds (see appendix A for more information
about neutron di�raction theory).

Due to the small size of crystals for the GN-MnMn compound, neutron
di�ractions measurements have been performed only in VIVALDI (see section
A.4.2), which can obtain data in a short time for samples up to 1mm3. Several
patterns have been recorded at 290K and 25K in order to re�ne the nuclear
structure, and some more at 2K to determine the magnetic structure. The
experimental procedures followed, the data collection and reduction procedures
are described in the next subsection.
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2.3.1 VIVALDI. Experimental procedure

A rectangular crystal of 0.8x0.4x0.3mm3 was attached with vacuum grease to a
cylindrical Vanadium pin of 1mm diameter. A standard He-�ow ILL "Orange"
cryostat, which allows us to reach temperatures between 1.5K and 325K, was
used. The �nal aperture of the neutron incoming beam was chosen to be
3mm in diameter, in order to minimize the ratio of background scattering with
respect to the scattering from the crystal.

Patterns were recorder at three temperatures. In order to re�ne the nuclear
structure at room temperature and to �nd accurately the number of water
molecules, data were collected at 295K. The nuclear structure above TC can be
determine from data at 25K, and the magnetic structure has been determined
at 2K.

After aligning the crystal and checking the crystal di�raction quality, we
cooled down to collect 10 patterns at 25K, at ϕ intervals of 20o, where ϕ stands
for the angle of rotation of the crystal around the vertical axis perpendicular to
the incident neutron beam. Each pattern was collected for 2 hours. These 10
patterns at 25K allowed us to re�ne the nuclear structure above Tc. To solve the
magnetic structure, the crystal was cooled down the transition temperature.
At 2K, 8 patterns were collected for 2 hours each at ϕ intervals of 20o. Finally,
to re�ne the nuclear structure at 290K, seven patterns were recorded, each
of them with a exposure time of three hours. The exposition time had to be
increased to improve the number of re�ections observed at high temperature
due to the thermal motion of the atoms.

All the Laue patterns were indexed, as explained in appendix A, using
the programm LAUEGEN of the Daesbury Laboratory Laue Suite [85], and
the re�ections were integrated using a two-dimensional version of the σ(I)/I

algorithm [86] implemented in the ARGONNE_BOXES program. We didn't
correct for absorption due to the small size sample and extinction was consid-
ered as negligible. The integrated re�ections were normalized to a common
incident wavelength, using a curve derived by comparing equivalent re�ections
and multiple observations, via the programm LAUENORM [87]. The inte-
grated and normalized re�ections were used for nuclear structure re�nement
and magnetic structure determination with SHELX [88] and Fullprof [9] pro-
grams.

All relevant experiment details (temperature, exposure times, number of
re�ections wavelength range,etc...) are summarized in table 2.1.

In �gure 2.5 the same pattern collected at 2K and 25K for ϕ = −5o is
shown. The crystallinity of the sample was enough to observe clearly the
weaker di�raction spots after two hours of exposure, and the patterns show
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Table 2.1: Experimental details for GN-MnMn

GN-MnMn VIVALDI
Chemical Formula [MnIII(CN)6][MnII(S)pnH(H2O)]·2H2O
Lattice, Space Orthorhombic, P212121

a, b, c Å 7.662 14.633 15.003
Z 4

Temperature 290K 25K 2K
No of patterns 7 10 8

λrange Å 0.92-2.10 0.92-2.10 0.92-2.10
dmin Å 0.84 0.62 0.62

Measured re�ections 7814 18286 14106
Unique Re�ections 1330 2875 2914
(sinθ/λ)max

−1 0.6054 0.8067 0.8235
Resolution Å 0.83 0.62 0.61

θmax 33.8 47.9 49.25
RLaue1 0.218 0.228 0.219
RLaue2 0.204 0.209 0.200
RLaue3 0.157 0.158 0.171
Rσ 0.083 0.104 0.137

0<h<9 0<h<11 0<h<11
hkl range 0<l<17 0<l<22 0<l<22

0<k<17 0<k<24 0<k<24

no evidence of twining. The pattern at 2K is indexed, as is shown in the top
of �gure, with the same lattice parameters as the pattern at 25K, without the
presence of any extra peaks or magnetic satellites. This evidences that the
magnetic phase has a propagation vector equal to zero.

For the patterns collected at 290K, the exposure time was increased to
three hours, due to the thermal motion, which decreases the intensity of the
re�ections. For this data set, the curve normalization obtained at 25K was
used, which allows us to increase the number of accepted re�ections to about
600 more. Still, the number of re�ections at high temperature, is lower than
that at low temperature, which is not due to the number of patterns, because
at 2K only one more pattern was recorder, but to a necessary increased in the
dmin (the minimum distance that can observed, see section A.4.2). In �gure
2.6 the normalization curve for 25K is shown. It is easy to see the good quality
of the re�nement, as the normalization curve is smooth and the number of
points where the observed and calculated values coincide on this scale is high,
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Figure 2.5: Laue patterns for GN-MnMn at T=2K (top) and 25K (bottom) at ϕ =

−5o. On the top, the pattern at 2K has been indexed with the same lattice parameters

as in the paramagnetic phase
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and those which do not coincide have close values.

Figure 2.6: Empirical wavelenght normalisation curve for 25K data in VIVALDI. The

experimental and theoretical values are shown: E is the extrapolated point on the

graph, X the observed point for the curve �tting, + the calculated point from the

�tted curve and * are points where the observed and calculated values coincide

2.4 Results

2.4.1 Nuclear phase

The nuclear structure has been re�ned at 290K and 25K from data collected
in VIVALDI. The structure solved at 290K by X-ray measurement [6] was
used as starting point for the nuclear re�nement. The hydrogen positions
were not determined by X-ray and hydrogen atoms were placed in calculated
positions. Also, the number of water molecules were not determined. With
neutrons, all the atoms have been positioned and thermal parameters re�ned
anisotropically by full-matrix least-squares technique based on F 2 using the
programm SHELXL97 [88]. Experimental and re�ned data from the structural
re�nements are summarized in table 2.1, and the fractional coordinates and
thermal parameters are listed in Appendix C (table C.1 and table C.2).
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Figure 2.7: View of the nuclear structure of the compound

[Mn(CN)6][Mn(S)pnH(H2O)]·2H2O re�ned at 25K along the a axis (left) and

the c axis (right)

The agreement factors obtained at 290K with SHELX are R=0.0707 for
1103 re�ections whose intensity is bigger than 4σ and 0.1009 for all data.
At 25K, the agreement factors are R=0.0979 for re�ections whose intensity
is bigger than 4σ, and 0.1294 for all data. The same factors at 2K for the
re�ections at θ > 30o are R=0.1076 for re�ections whose intensity is bigger
than 4σ, and 0.1461 for all data. Due to the high-quality of the sample, there
is only one restriction in the re�nements: the distance between H and O atoms
of the water molecule at 290K.

The re�ned nuclear structure of the compound consists in two bimetallic
planes containing MnIII and MnII atoms in a octahedral environments and
linked by cyanide groups. The MnII atom is also linked to a water molecule.
There is one water molecule of crystallization per unit formula, and four per
unit cell. The two dimensional networks are arranged almost perpendicularly
to the c axis. The nuclear structure re�ned at 25K can be seen in �gure 2.7

At 290K, the reported structure contains and uncertain number of water
molecules [6]. Our data analysis shows unambiguously that there is one water
molecule per unit formula and four per unit cell. However, the magnitude of
the thermal parameters for the water molecule (see table C.2) are indicative
of some disorder. We tried to split the atomic positions of the water O and H
atoms, but localizations with minimal energy could not be found. The thermal
ellipsoids do not present irregular shapes such as cigar or plate shapes. We
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conclude that disorder is a dynamical disorder because the water molecule
has enough space available for motion. There exist several hydrogen bonds
between the water molecule and the network (see table 2.2) that justify the
water molecule orientation. At high temperature, the dynamical disorder of
the water molecule breaks the hydrogen bond O2 · · ·H2B · · ·N3, due to the
increase in distance between atoms and the misalignment.

At 25K, the thermal parameters of the atoms of the water molecule pre-
cludes disorder. All atoms have been re�ned with anisotropic thermal param-
eters except MnIII , whose thermal parameter was too low. The hydrogen
bonds are also shown in table 2.2.

Table 2.2: Hydrogen bonds for GN-MnMn at 290K, and 25K. The water molecule is

constituted by H2A, O2 and H2B atoms. The hydrogen bond O2 · · ·H2B · · ·N3 at

290K is broken.

A · · ·H · · ·B T dA···HÅ dH···BÅ ÂHB

N7 · · ·H1 · · ·O2 295K 1.013(18) 2.13(2) 165.9(15)
25K 1.047(8) 2.130(9) 162.8(7)

N8 · · ·H10 · · ·O1 295K 1.03(3) 1.95(2) 170.4(14)
25K 1.054(10) 1.902(11) 172.1(8)

N8 · · ·H11 · · ·O2 295K 1.03(3) 1.88(3) 170.4(19)
25K 1.063(10) 1.813(11) 174.2(10)

O1 · · ·H12 · · ·N3 295K 0.93(2) 1.790(16) 173.2(17)
25K 1.003(11) 1.816(10) 175.4(9)

O1 · · ·H13 · · ·N4 295K 0.96(2) 1.858(18) 169.8(17)
25K 1.001(10) 1.844(9) 168.2(9)

O2 · · ·H2A · · ·N3 295K 0.89(3) 2.37(2) 152(3)
25K 0.971(12) 2.299(12) 150.4(11)

O2 · · ·H2B · · ·N3 290K 0.918(2) 3.31(4) 127.3(9)
25K 0.960(13) 2.141(12) 166.1(9)

The MnIII and MnII are in an octahedral environment. The distortion of
their octahedra may be relevant for the magnetic behavior of the compound,
so it can be seen in table 2.4. The distance and angles are similar to what
has been found in another compounds. We can calculate the distortion of each
octahedra by using the equation 2.1. The values obtained are shown in table
2.4.

∆d =
1

6
·

6∑
i=1

di − d̄
2

d̄2
(2.1)
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Table 2.3: Bond lengths and angles for MnIII and MnII at 25K.

A-Mn-B dA−MnÅ dB−MnÅ ÂMnB

C1-MnIII -C6 2.021(7) 2.014(7) 178.4(4)
C2-MnIII -C5 2.013(7) 2.024(7) 178.2(4)
C3-MnIII -C4 2.018(7) 2.043(7) 177.1(4)
N1-MnII -N5 2.238(7) 2.241(7) 177.1(3)
N2-MnII -N6 2.234(7) 2.250(7) 177.2(3)
N7-MnII -O1 2.347(7) 2.291(7) 177.8(4)

A-Mn-B ÂMnB A-Mn-B ÂMnB

C4-MnIII -C5 88.87(4) O1-MnII -N2 94.78(4)
C4-MnIII -C6 87.87(4) O1-MnII -N5 91.76(4)
C4-MnIII -C2 92.93(4) O1-MnII -N6 82.53(4)
C4-MnIII -C1 93.66(4) O1-MnII -N1 85.31(4)
C3-MnIII -C6 89.48(4) N7-MnII -N2 87.16(4)
C3-MnIII -C5 89.97(4) N7-MnII -N5 89.45(4)
C3-MnIII -C1 88.98(4) N7-MnII -N6 95.54(4)
C3-MnIII -C2 88.23(4) N7-MnII -N1 93.49(4)
C6-MnIII -C5 88.90(4) N1-MnII -N2 92.21(4)
C5-MnIII -C1 90.55(4) N2-MnII -N5 87.73(4)
C1-MnIII -C2 89.47(4) N5-MnII -N6 91.64(4)
C2-MnIII -C6 91.04(4) N6-MnII -N1 88.28(4)

Table 2.4: Distortion calculated of the octahedral environment for GN and GN-MnMn

magnetic atoms at 43K for GN and 25K for GN-MnMn.

Cation ∆d

GN CrIII 4.6·10−4

GN MnII 8.4·10−4

GN-MnMn MnIII 2.5·10−5

GN-MnMn MnII 3.2·10−4

If the octahedral environment of CrIII in GN andMnIII in GN-MnMn are
compared, we found that the distortion of the CrIII octahedra is one order of
magnitude higher. The C-M III -C angles for no opposite C atoms, are in the
range 95.3o-86.5o for the GN and 93.7-87.9o for the GN-MnMn. The C-M III -
C angles for opposite C atoms are in the range 173.2o-178.1o for the GN and
177.1o-178.4 for the GN-MnMn. The explanation of this di�erence can not
be related to the Jahn-Teller e�ect. In the case of octahedral coordination,
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the Jahn-Teller e�ect is more pronounced when an odd number of electrons
occupies the eg orbitals, as in complexes with the con�gurations d9, low-spin d7

or high-spin d4 complexes, all of which have doubly degenerate ground states
[76]. In such compounds, the eg orbitals involved in the degeneracy point
directly at the ligands, so distortion can result in a large energetic stabilization.
Strictly speaking, the e�ect also occurs when there is a degeneracy due to the
electrons in the t2g orbitals (i.e. con�gurations as d1 or d2, both of which
are triply degenerate). However, the e�ect is less noticeable in the last cases,
because the t2g orbitals do not point directly at the ligands. The CrIII has a
d3 electronic con�guration and Jahn-Teller e�ect is not present. The MnIII

has a d4 electronic con�guration in a low-spin con�guration in this compound,
so the expected Jahn-Teller e�ect is small [89]. As the ligands of CrIII and
MnIII are the same in both compounds, this di�erence may be attributed to
some e�ect related with the cation substitution.

In addition to distortions in the octahedral environment, the distances
between magnetic atoms in the same plane or from di�erent planes are very
relevant, because they can in�uence on the magnetic ordering. They can be
seen at table 2.5 for the nuclear structure of Gn-MnMn re�ned at 25K. If we
compare them with the distances found for the GN compound at 43K shown
in table 1.3, we �nd that the intralayer MnIII -MnII distance in GN-MnMn
(5.25Å) is similar to the equivalent Cr-Mn (5.27Å) distance in GN compound.
The interlayer distances between magnetic atoms are also similar tin both
compounds.

Table 2.5: Shortest distances between magnetic atoms in the same layer (intra) and

from di�erents layers (inter).

Atoms d (Å)
MnIII -MnII(Intra) 5.2528(5)
MnIII -MnIII (Inter) 8.098(1)
MnII -MnII(Inter) 8.359(1)
MnIII -MnII(Inter) 7.358(1)

2.4.2 Magnetic phase

This subsection is devoted to the analysis of the magnetic structure of GN-
MnMn. Due to the small size of crystals of GN-MnMn obtained (∼1mm3), we
have performed our experiments in VIVALDI, where samples up to ∼1mm3

can be measured. However, VIVALDI is not the best neutron di�ractometer to
solve magnetic structures, specially if the propagation vector is equal to zero
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(see chapter A.4.2). This limitation is inherent to VIVALDI. Due to its geom-
etry and λ range, VIVALDI does not allow to observe re�ections at very low
angle because they are very close of the beam. In addition to this geometrical
limitation, the re�ections that we can detect at low angle, present the problem
of the chromatic overlap. As the magnetic contribution to the re�ections in-
tensity decreases with high θ, solving magnetic structures in VIVALDI is not
immediate. In spite of this di�culty, we have solved the magnetic structure
with a procedure described in the next paragraphs.

In order to solve the magnetic structure is advisable to re�ne accurately
the nuclear structure. To re�ne the nuclear structure at 2K, we have sorted
our data two groups: high θ re�ections (θ>30o) and low θ re�ections (θ<20o),
and use the hight θ re�ections for the nuclear re�nement . Such distinction is
due to the fact that the magnetic form factor decreases for high q, therefore,
the magnetic contribution to the di�racted intensity becomes negligible at
high values of θ. The choice of the θ limits has been done according to our
own experience in neutron di�raction and after comparing the intensity of
re�ections at 25K and 2K. We have considered that the magnetic contribution
to the di�racted intensity is negligible for re�ections above θ>30o. With these
considerations and starting from the nuclear structure at 25K, we have used the
re�ections at θ>30o to re�ne the atomic positions and thermal parameters of all
atoms in SHELX (see tables C.1 and C.2 in appendix C). The agreement factor
for the nuclear re�nement at 2K is R=0.1076 for re�ections whose intensity is
bigger than 4σ.

Once that the nuclear structure at 2K has been re�ned using the high θ

re�ections, we can determine the magnetic structure. The re�nement of the
magnetic data was guided by the irreducible representation (IR) theory (for
more information, see section A.5). According to this, the �rst step is the iden-
ti�cation of the propagation vector k. For this compound, we have determined
that k = 0 because the patterns at 2K have been indexed with the same cell
parameters as the paramagnetic phase. The second step is the determination
of the little group of vector k = 0 and its IRs with the help of BASIREPs code.
This method is based in the procedure of ZAK provided within the program
KAREP [90] and has been adapted by Juan Rodriguez-Carvajal and included
in the FULLPROF suite. For the GN-MnMn, four di�erent one-dimensional
IRs were obtained, called Γ1, Γ2, Γ3 and Γ4 in the notation of Kovalev. Each of
them is included three times in the reducible magnetic representation Γ. The
basis vectors for these irreducible representations are listed in table 2.6

As SHELX can not re�ned magnetic structures, we have used the FULL-
PROF programm to determine which IR describes the magnetic symmetry of
Gn-MnMn and to re�ne the magnetic moments of the atoms. For this purpose,
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Table 2.6: Irreducible Representations for GN-MnMn and their basis vectors. m1,

m2, m3 and m3 represent the magnetic atoms of each magnetic specie.

Atom Position Γ1 Γ2 Γ3 Γ4

m1 (x,y,z) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m2 (-x+1/2,-y,z+1/2) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m3 (-x,y+1/2,-z+1/2) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m4 ( x+1/2,-y+1/2,-z) (u, v, w) (u, v, w) (u, v, w) (u, v, w)

we have used the re�ections measured at θ<30o, and it has been possible to
determine and re�ne the magnetic structure. The two magnetic sites, MnIII

and MnII , order in the same IR Γ4, that is the same IR that we found for the
Phase I of GN. The magnetic moments for MnII and MnIII along each axis
and the total magnetic moment obtained are shown in table 2.7. The magnetic
agreement factor for the re�ections at θ<20o is RMag=7.24.

The magnetic structure consist in two sublattices, one of MnII and one
of MnIII as it is shown in the �gure 2.8. According to the Goodeneough-
Kanamori rules [76] explained in section 1.3.2, the two sublattices order an-
tiferromagnetically one respect to the other. It is due to the fact that the
unpaired electrons of MnII lie in t2g and eg orbitals, so the MnII -MnIII in-
teraction is antiferromagnetic. The IR Γ4 allows a ferromagnetic component
parallel to the a axis, which is the easy axis. As v and w are of the same order
and due to the symmetry imposed by Γ4, the magnetic structure can be seen as
spins along the a axis describing a spiral and turning around 90o as can be seen
in �gure 2.9. As in the GN compound, the magnetic moments of Cr and Mn
atoms are not collinear, which may be caused by the DM interaction, because
there is not a symmetry element that can discard it, or by the anisotropy of
the ions. The net magnetic moments along the a axis of di�erent layers are
directed in the same sense.

Table 2.7: Magnetic moments for MnII and MnIII atoms placed in (x, y, z)

Atom u v w mµB

MnII -4.5(2) -1.1(5) -0.8(9) 4.7(3)
MnIII 2.2(2) 1.0(3) 0.7(8) 2.5(3)

In order to discuss the validity of the magnetic moments found, we revise
the magnetochemistry of both magnetic ions, MnIII (d4) and MnII (d5) in
an octahedral environment. In an octahedral symmetry the d-orbitals split in
the energy levels as shown in �gure 1.8. MnII in a low ligand �eld octahedral
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Figure 2.8: Magnetic structure of GN-MnMn. Views along the a, b and c axes. MnII

atoms are in blue and MnIII atoms are in pink

Figure 2.9: Orientation of each sublattice magnetic moments. a) Octahedral environ-

ment of MnIII : C1 (deep blue), C2 (red), C3 (light blue), C4 (yellow), C5 (green)

and C6 (white). b) Octahedral environment of MnII : N1 (deep blue), N2 (red), N7

(light blue), O1 (yellow), N5 (green) and N6 (white).



2.4. Results 53

environment presents a ground term 6A1 (t32ge
2
g) which is a high spin state

with S=5/2. If the ligand �eld is strong enough, the splitting of the d-orbitals
causes a transition to a ground term 2T2 (t52g) where the MnII has spin S=1/2,
and the state is denoted as low spin. The ground term for the MnIII in a low
ligand �eld octahedral environment is 5E (t32ge

1
g), where the cation has a spin

equal to S=4/2, which is a high spin state. For a strong enough ligand �eld, the
ground term becomes 3T1 (t42g) where the spin is S=2/2). In general, in the case
of Prussian Blue Analogues whose general formula is MxA[B(CN)6]z · nH2O,
the A ions (MnII) are low-spin species due to the large ligand �eld splitting
induced by the cyanide ligands; and the B ions (MnIII) generally remain as
high-spin species because the N-coordinated cyanide are weak �eld ligands.
In this compound, MnII is surrounded by nitrogen and oxygen atoms and
the ligand �eld is low enough to have a ground state 6A1 and a spin S=5/2.
MnIII is surrounded by carbon atoms and the ligand �eld is high enough for
the MnIII , to present a low spin con�guration with S=2/2.

The magnetic moments we have obtained, are close to the spin-only value
for high-spin MnII and low-spin MnIII , 5µB and 2µB, respectively and ac-
cording to S = g ·S ·µB, with a Lande factor equal to g=2. For theMnIII some
contribution of the angular moment in expected, as it is not totally quenched,
which could explain the higher value. No orbital contribution to the magnetic
moment is expected for MnII ion, as the ground state presents L=0. Similar
values have been found in another cyanide compounds with MnII and MnIII

ions [91]

As in the GN compound, the magnetic moments of both atoms lay close to
the basal planes of the octahedra. The magnetic moment of theMnII forms an
angle of 14o with the a axis, close to the bisectrix between bonding directions
in the plane. As it could be expected, due to the small modi�cation in the
environment of this atom, its magnetic moments are very similar in GN and
in GN-MnMn. If we focus our attention to MnIII we see that the magnetic
moment is directed towards the bisectrix between the bonding directions in the
basal plane. In the GN, there is a CrIII instead aMnIII atom in this position,
and its magnetic moment is directed almost to C1, through the largest bond.
This di�erent behavior could be explained if we look to the distortion of the
octahedra for CrIII and MnIII . As it can be seen in table 2.4, the distortion
for the CrIII is one order of magnitude higher than for the MnIII , and the
distance C1-Cr is 0.08Å higher than the medium Cr-C distance. The magnetic
moment of CrIII tends to be along this bonding direction. For the MnIII , the
environment is more regular and there is not an elongated bonding direction,
the magnetic moment tends to be in the bisectrix of the bonding direction. This
result was unexpected, because a small Jahn-Teller e�ect could be predicted
for MnIII so we hoped a high distorted environment for the MnIII . We can



54 Chapter 2. Neutron study of [Mn(CN)6][Mn(S)-pnH(H2O)]·2H2O

not explain easily the existence of this elongated bond in the GN compound.

Another di�erence between GN and GN-MnMn compounds is the mag-
netic order temperature, 38K for the Phase I of GN and 22K for GN-MnMn.
Although the interlayer distance is shorter in the GN-MnMn compound, the
magnetic moment of MnIII is lower than the magnetic moment of CrIII (2/2
and 3/2) and the octahedral environment of MnIII is less distorted than the
environment of CrIII . As in both compounds the exchange pathways are the
same, trough the C≡N bonds, these di�erences play a crucial role in the mag-
netism and in the ordering temperature.

2.5 New de�nition for magnetic chirality

As it has been said previously (see Chapter 1.2), there are several local de�ni-
tions about magnetic chirality. We are interested in �nding a de�nition that
cares not only about punctual chirality, but also global chirality. Previously,
our work-group has used the de�nition explained in Dra. Gonzalez's thesis
[31], that was based in the Blume [48] and Maleyev's [49] formula to express
the intensity scattered by a magnetic sample that includes a new term called
chiral term.

In this work we propose a more general de�nition, we considerer that a
system is to be de�ned magnetically chiral when the cross product FM × F∗

M

is di�erent to zero:
CM = FM × F∗

M ̸= 0 (2.2)

The complex vector FM (q) is the magnetic structure factor. The mathe-
matic de�nition can be seen in equation 2.3 where the summation runs over all
the j-atoms in the L-cell, q is a vector of the reciprocal lattice, and fLj , qLj

and RLj are the magnetic form factor (which also depends on q), the magnetic
moment and the position of the j-atom in the L-cell.

FM (q) ∼
∑
Lj

fLjmLj exp(i2πq ·RLj ) (2.3)

In the most general case where a set of propagation vectorsK are necessary
to describe correctly a magnetic structure, the magnetic moment mLj of a j-
atom placed in the L-cell can be written as a Fourier series on the form shown
in equation 2.4, where the Fourier vectors SK

j can be complex vectors.

mLj =
∑
{K}

SK
j exp(−i2πK ·RL) (2.4)
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If K is at the interior of Brillouin Zone then the vector sum must be ex-
tended to the pair K and −K taking into account that SK

j = (SK
j )∗. Taking

into account this considerations, the most general form of the magnetic struc-
ture factor is shown in equation 2.5, where the lattice delta function is de�ned
by ∆K(q) =

∑
G δ(q − K − G) and G is a node of the reciprocal lattice.

This general expression for the structure factor allows to apply the de�nition
of magnetic chirality can for any magnetic structure.

FM (q) ∼
∑
Lj

fLjmLj exp(i2πq ·RLj ) =

=
∑
j

fj exp(i2πq · rj)
∑
{K}

SK
j

∑
L

exp(−i2π(q−K) ·RL) ≈

≈
∑
j

fj exp(i2πq · rj)
∑
{K}

SK
j

∑
G

δ(q−K−G) =

=
∑
j

fj exp(i2πq · rj)
∑
{K}

SK
j ∆K(q) (2.5)

Once we have adopted a de�nition for chirality, it is advisable to know
which structures can present magnetic chirality. Some considerations about
this subject are given in this subsection and, at the end, the de�nition is
applied to the magnetic structure of Gn-MnMn compound to check whether is
magnetic chiral or not.

2.5.1 Chirality in centrosymmetric space groups

If the space group is centro-symmetric, for obvious symmetry reasons,the vec-
tor FM (q) is real and, within the proposed de�nition, magnetic chirality will
not be allowed. If we are looking for a magnetic chiral structure, we should
focus on non centrosymmetric space groups.

2.5.2 Chirality in no-centrosymetric space-groups

Although chirality can only be present in non-centrosymetric space groups,
not all the magnetic structures based in a non centro-symmetric groups will
be chiral, each structure should be analized. Several particular cases are listed
next.

Collinear magnetic structures

In the case of any collinear magnetic structure (ferro, antiferro, ferri, squared),
including those with a modulated amplitude, all the Fourier coe�cients de-
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scribing the magnetic structure are real and parallel. As all the Fourier coef-
�cients are real and parallel, FM (q) and F∗

M (q) are parallel and only di�er in
a phase, so their cross product is zero and the condition stated for magnetic
chirality is not satis�ed.

For example, in a helical arrangement of atoms with the magnetic moments
aligned along the helix axis, the FM (q) vector will be parallel to F∗

M (q), and
their vectorial product will be zero. This case has not to be confused with a
helical arrangement of spins, which is not a collinear magnetic structure and
is a particular example of a chiral magnetic structure.

Chirality can only be present in structures with non-centrosymmetric space
groups and a non-collinear spin alignment.

No-collinear structures

There are di�erent types of non-collinear structures and several cases can
be distinguished depending on the nature of the Fourier coe�cients and the
propagation vector.

Real Fourier coe�cients not parallel

A canted magnetic structure could be described by real Fourier coe�cients
not parallel to each other: SK

j = (uj , vj , wj), with SK
j = (SK

j )∗

Applying our de�nition for chirality, the cross product of the magnetic
structure factor and its conjugate, can be written as in equation 2.6. It can
be seen that the cross product is not vanished and therefore magnetic chirality
is present. In this particular case the magnetic chirality arises from the cross
product of non-parallel magnetic moments at di�erent sites.

FM × F∗
M ∼ [

∑
i

fi exp(i2πq · ri)
∑
{K}

SK
i ∆K(q)]×

× [
∑
j

fj exp(i2πq · rj)
∑
{K′}

SK′
i ∆K′(q)]∗

∼
∑
i<j

fifj sin 2πq·(ri − rj)∆K(q) + ∆−K(q)SK
i × SK

j (2.6)

Complex Fourier coe�cients and not parallel SK
j = (SK

j )∗

The calculation of the cross product of the magnetic structure factor is
shown in equation 2.7, which is similar to the expression 2.6 but now including
the terms S−K

i × SK
i because they do not vanish.
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FM × F∗
M ∼ [

∑
i

fi exp(i2πq · ri)
∑
{K}

SK
i ∆K(q)]×

× [
∑
j

fj exp(i2πq · rj)
∑
{K′}

SK′
i ∆K′(q)]∗

∼
∑
i<j

fifj sin 2πq·(ri − rj)|∆K(q)|2S−K
i × SK

j +

+
∑
i

f2
i |∆K(q)|2 − |∆−K(q)|2S−K

i × SK
j ̸= 0 (2.7)

We can distinguish several cases. For example, for a propagation vector
K = 0 or similar to (1/2, 0, 0) the last term in 2.7 is equal to zero. In the case
of one magnetic atom per unit cell the last term is the only one that remains.

Figure 2.10: Some magnetic strcutures.

2.5.3 Magnetic Chirality in GN-MnMn

In order to determine whether the compound GN-MnMn is magnetically chiral
or not, the equation 2.2 has been applied. In the GN-MnMn unit cell are eight
magnetic atoms, fourMnII and fourMnIII atoms, all of them must be present
in the calculation of the magnetic structure factor. In table 2.7 the moments
and positions for all the magnetic atoms in a unit cell can be seen.

The magnetic structure factor can be separate into two contibutions, one
from the MnII sublattice and one from the MnIII . Therefore, the cross prod-
uct between FM and F∗

M can be separated into four terms, one for the MnII
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lattice, one for the MnIII lattice and two cross terms which relates both sub-
lattices, as can be seen in equation . All these terms are functions of the
scattering vector q = (hkl).

FM × (FM )∗ = {FMnII
M + FMnIII

M } × {FMnII
M + FMnIII

M }∗ =
= {FMnII

M × (FMnII
M )∗}+ {FMnIII

M × (FMnIII
M )∗}+

+ {FMnII
M × (FMnIII

M )∗}+ {FMnIII
M × (FMnII

M )∗}
(2.8)

The terms corresponding to the two sublattices are di�erent from zero, as
they are canted magnetic structures. The cross terms are also di�erent from
zero, but anyway, simulations have demonstrated the chiral term is di�erent
from zero except for q = (hkl) = 0. We can therefore conclude that FM ×
(FM )∗ ̸= 0 for GN-MnMn and the magnetic structure is chiral.

2.6 Conclusions

The nuclear structure of GN-MnMn have been re�ned using the neutron di�rac-
tion data collected in VIVALDI. Neutron di�raction has enabled us to obtain
the hydrogen positions in paramagnetic phase and to determine the anisotropic
thermal displacement tensor for all atoms, something that could not be made
using conventional X-ray di�raction. The formula of the compound was deter-
mined by elemental analysis as [Mn(CN)6][Mn(S)pnH(H2O)]·2H2O and the
number of water molecules depends on the measurement conditions. While
the number of water molecules found was at least 1.7 for elemental analysis,
neutron di�raction data established one water molecule per unit formula, the
volatile one has been lost due to experimental conditions.

In addition, the magnetic structure has been determined and a propagation
vector equal to k = 0 has been found. The magnetic phase shows two inter-
penetrating magnetic sublattices, one of MnII and another of MnIII which
interact antiferromagnetically. The magnetic moments of both atoms try to
remain in the local basal planes of their octahedra, following the bisectrix be-
tween bonding directions. Due to the lack of a centre of symmetry between
interacting sites in this compound, competing Dzyaloshinskii-Moriya interac-
tions may play a role, allowing a certain lack of collinearity in the magnetic
moments below Tc.

In spite of an expected weak Jahn-Teller e�ect for the MnIII it has been
found a more regular environment than for the CrIII , which has a high in�u-
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ence in the direction of the magnetic moments and may have in�uenced to the
ordering temperature.

As we are interested in nuclear and magnetic chirality and one of the ob-
jectives of our research is to �nd the coexistence of both chiralities, a new
de�nition has been adopted and discussed for magnetic chirality. This is not
a local de�nition, this is a general de�nition which considerer the magnetic
structure as a whole, and consider that magnetic chiral compounds obey that
CM = FM ×F∗

M ̸= 0). With this de�nition, the magnetic phase of GN-MnMn
is magnetically chiral. Therefore, we have found nuclear and magnetic chirality
in a molecular magnet.





Chapter 3

Neutron study of the

[Cr(CN)6][Mn(R/rac)− pnH(DMF )] · 2H2O

compounds

3.1 Introduction

As it has been said in the introductory chapter, several chiral compounds of
the same family are studied in this part of the thesis. Our objective is to
con�rm the coexistence of nuclear and magnetic chirality in them and study
how modi�cations in the nuclear structure can a�ect to the magnetic structure.

This chapter is devoted to the chiral compound similar to GN
[Cr(CN)6][Mn(R)-pnH(DMF )] · 2H2O, and its racemic compound
[Cr(CN)6][Mn(rac)-pnH(DMF)]·2H2O, where DMF stands for N,N-dimethyl-
formamide and (R/rac)-pn is (R/rac)-1,2-diaminopropane. Due to the simili-
tude between the chiral compound and GN, these compounds are denoted as
GN-DMF(R) and GN-DMF(rac).

The nuclear structure of [Cr(CN)6][Mn(R)-pnH(DMF)]·2H2O determined
by X-ray measurements at 290K is very similar to GN, the main di�erence is
the substitution of the H2O molecule linked to the MnII atom in the GN com-
pound by a DMF molecule. This substitution implies an increasing in the in-
terlayer distance and modi�es the corrugation of the layers. The GN-DMF(R)
compound is a candidate to present coexistence of nuclear and magnetic chi-
rality due to its resemblance to GN. It also represents a good opportunity to
observe how a ligand substitution or the interlayer distance can in�uence in
the magnetism.
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The GN-DMF(rac) compound crystallizes in a centrosymmetric space group,
so nuclear chirality is absent. If we compare the GN-DMF(R) and GN-DMF(rac)
compounds, we can see how the ligand (R)-pn transfers the nuclear chirality
to GN-DMF(R) crystal. The knowledge of the magnetic structures of both
compounds can allow us to see if the magnetic chirality is also related to the
chirality of the ligand.

In order to re�ne the nuclear structures and to solve the magnetic ones,
single-crystal neutron di�raction experiments have been performed at the ILL,
in the di�ractometers VIVALDI and D15 (see A.3.2 and A.4.2 in appendix A
for more information).

The synthesis, the structure previously solved by X-ray measurements and
the magnetization measurements of GN-DMF(R) and GN-DMF(rac) are de-
scribed in 3.2. Then, the neutron di�raction experiments carried on are ex-
plained in section 3.3 and results for the nuclear and magnetic structure are
presented in 3.4. Our de�nition of chirality is applied to the samples at section
3.5 and some conclusions can be found at 3.6.

3.2 Synthesis, X-ray structure and magnetic charac-

terization

The GN-DMF(R) and GN-DMF(rac) compounds were synthesized by Prof.
Inoue Katsuya and coworkers at the University of Hiroshima (Japan) [7].
Both compounds are synthesized by the same reaction but an enantiomeric or
racemic precursor is employed. Green block-like crystals were obtained by slow
di�usion ofMnCl2·4H2O (5.1 mmol), (rac)-1,2-diaminopropane-dihydrochloride
((rac)-pn·2HCl, 6.8 mmol), and KOH (6.8 mmol) in a H2O/N,N-dimethylformamide
mixture (1:1) into K3[Cr(CN)6] (1.5 mmol) in a H2O/EtOH (1:1) mixture for
several weeks. The synthesis were carried out under argon atmosphere, because
manganese ion is air sensitive in the KOH solution.

The unit cell for both compounds is orthorhombic, with cell parameters
and space groups a=7.662(2)Å, b=14.581(4)Å, c=19.747(6)Å and P212121 for
GN-DMF(R); and a=14.5459(8)Å, b=7.6509(8)Å, c=19.723(2) Å and Pnma
for GN-DMF(rac). In the unit cell of the GN-DMF(rac) compound there has
been a changed of the a and b axis respect to the de�nition of the unit cell in
GN-DMF(R). As in other compounds studied in this thesis, each [Cr(CN)6]3−

ion utilizes four cyanide moieties in order to form bridges to four adjacent
MnII ions within the ab plane, building bimetallic sheets piled up along the c
axis. In addition to MnII and [Cr(CN)6]3− ions, an asymmetric unit contains
a single molecule of (R/rac)-pnH, a DMF molecule and two water molecules.
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The octahedron around the MnII ion is completed by coordination of the
primary amino group of (R/rac)-pnH and the DMF molecules as can be seen
in �gure 3.1 for GN-DMF(R). The two water molecules occupy gaps between
the sheets. The shortest and the second shortest inter-sheet metal separations
are observed between the homo-metallic atoms, in contrast with GN, where the
shortest inter-sheet metal separations are observed between MnII and CrIII

atoms. This di�erence may in�uence on the magnetism.

Figure 3.1: ORTEP drawing of [Cr(CN)6][Mn(R)− pnH(DMF )] · 2H2O, hydrogen

atoms are omitted for simplicity. Adapted from [7]

The crystal structures were solved by X-ray measurements on single crystals
at room temperature and can be obtained at www.ccdc.cam.a-c.uk/ with the
codes CCDC 223745 and CCDC 239941 [7]. All non-hydrogen atoms were
re�ned anisotropically. Hydrogen atoms were placed in calculated positions
but not re�ned, except for the water hydrogen atoms in both compounds which
could not been placed. In addition, the hydrogen atoms of the terminal amino
group of pn in GN-DMF(rac) were not placed due to some disorder of the
nitrogen atom (see the thermal ellipsoid of N9 in �gure 3.2). Among others,
the impossibility of placing and re�ning the hydrogen atoms positions by X-
ray measurements is one of the reasons that motivated our neutron di�raction
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studies.

Figure 3.2: ORTEP drawing of [Cr(CN)6][Mn(rac)−pnH(DMF )] ·2H2O, hydrogen

atoms are omitted for simplicity.

The magnetic characterization of the compounds has been performed in
polycrystalline samples [7] and in oriented single crystals [92]. The magnetic
behavior of polycrystalline samples of the chiral compound shows a χmolT

value of 4.92 cm3K/mol (6.28 µB) at room temperature, which decreases
while cooling down to a minimum value of 3.53 cm3K/mol (5.31 µB) at 82 K.
Upon further cooling, the χmolT value increases to a maximum value of 36.19
cm3K/mol (17.02 µB) at 27 K and decreases below 27 K. The susceptibil-
ity obeys a Curie-Weiss law from 300-120K with a Weiss temperature θ=73.5
K, which is an indicator of the antiferromagnetic interaction between nearest
neighbor CrIII and MnII ions through cyanide bridges. The behavior for the
racemic sample is very similar.

To con�rm the long reach magnetic order around 30K, low �eld measure-
ments in single crystal have been performed. As can be seen in �gure 3.3 for
the chiral sample and �gure 3.4 for the racemic one, both, the zero �eld-cooled
magnetization (ZFCM) and the �eld-cooled magnetization (FCM) curves dis-
play abrupt increases in the magnetization below 40 K, which reach a max-
imum at TN=28.8 K. The magnetic behavior of the two samples below this
temperature is di�erent.

In �gures 3.5 and 3.6, the magnetization versus magnetic �eld curves at
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Figure 3.3: Magnetization versus temperature for GN-DMF(R). Taken from [92].

Figure 3.4: Magnetization versus temperature for GN-DMF(rac). Taken from [92].

2K can be seen for the two compounds; the saturation magnetization value per
unit formula at 5T is around 2 µB, which corresponds to the value of S=2/2
expected for antiferromagnetically coupled MnII (S=5/2) and CrIII (S=3/2).
For the chiral sample, spins are canted and in the bc plane and presents a spin-
�ip transition. While the chiral sample is a a metamagnet with TN of 28.5 K,
the racemic one is a ferrimagnet with TN of 28 K.

3.3 Neutron scattering experiments

Neutron scattering techniques are used in this thesis as a powerful tool to
determine the nuclear and magnetic structure of the studied compounds. As
it is said in appendix A, they allow us to re�ne nuclear structures including
the atomic position of light elements, which are more di�cult to place with
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Figure 3.5: Magnetization versus �eld for GN-DMF(R). The low �eld region can be

seen in the insert

Figure 3.6: Magnetization versus �eld for GN-DMF(rac). Histeresis cycles are shown

in the insert

photons. In addition, as neutrons interact with the magnetic moments of the
atoms via the dipolar magnetic interaction and nuclear and magnetic interac-
tion are of the same order of magnitude, neutron di�raction also allow us to
determine magnetic structures. As for the compounds described in previous
chapters, neutron di�raction have been used to re�ne the nuclear structure and
to determine the magnetic structure of the compounds GN-DMF(R/rac). The
di�raction experiments have been done at the instruments D15 and VIVALDI,
placed at the ILL (see A.3.2 and A.4.2 in appendix A). VIVALDI o�ers an
almost complete sight of the reciprocal space in a short time, which can be
very useful for detecting propagation vectors di�erent from zero, but it is not
the best instrument to determine magnetic structures. On the contrary, D15
only allows to collect re�ections one by one, which consumes a lot of time in
measuring a great number of re�ections, but it does not have the problem of
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chromatic overlap of VIVALDI and can be very useful to determine magnetic
structures.

The instrument D15 was operated in four-circle con�guration with a wave-
length of 1.17Å and re�ections were measured through ω scans. The set-up
was completed by a displex that allowed us to set temperatures between 2K
and 300K for the GN-DMF(R) compound and between 10K and 200K for
the GN-DMF(rac) sample. The crystals were glued in aluminium pins with
kwik�ll, a two-part polymer glue suitable for measurements down 200K. The
experimental procedure for a typical experiment in D15 in described in section
A.3.2. In order to summarize it, some lines are given here. The �rst step in an
experiment is to orientate the crystal and obtain an orientation matrix. The
orientation matrix allow us to link the real and reciprocal spaces. For orien-
tating the crystals, we simulated the intensities of some lines at low θ using
the X-ray structure with FULLPROF, and localized the most intense re�ec-
tions in the real space. Their positions in the angles of the instrument were
noted and use to build the orientation matrix. After that, some re�ections
at a temperature above TN were measured to re�ne the nuclear structure. In
order to determine the magnetic structure, we cooled down the crystal down
TN . As D15 does not allow us to observe all the reciprocal space, we can not
determine a priori the propagation vector. The typical procedure implies to
look for satellite peaks in some selected directions and to check if the mag-
netic intensity overlaps with the nuclear intensity. For this reason, several
q-scans were performer below TN in smart directions scanning the reciprocal
space to discard a propagation vector di�erent from zero. Once the propaga-
tion vector was known, the crystals were cooled down, at 2K or 10K for the
GN-DMF(R) and GN-DMF(rac) compounds respectively, to collect magnetic
re�ections which allow us to determine the magnetic structure. For D15 data,
all the re�ections were integrated and corrected by the Lorentz factor using the
programm COLLD15, which is a modi�cation of COLL5 [93]. The absorption
correction was performed with the help of the programm DATAP [94].

In order to complete the neutron measurements performed in D15, monocrys-
tals of the same batches as the crystals used in D15 experiments have been
measured in VIVALDI. The crystals were wrapped in aluminium and attached
with vacuum grease to a 1mm of diameter Vanadium pin. A standard He-�ow
ILL "Orange" cryostat was used to reach temperatures from 1.5K to 325K.
In order to minimize the ratio of background scattering with respect to the
scattering from the crystals, the �nal aperture of the neutron incoming beam
was chosen to be 3mm in diameter. As it is said in appendix A, and with the
same procedure that we followed with the sample Gn-MnMn, all the Laue pat-
terns were indexed using the programm LAUEGEN [85]. The re�ections were
integrated following a two-dimensional version of the σ(I)/I algorithm [86]



68 Chapter 3. Neutron study of [Cr(CN)6][Mn(R/rac)− pnH(DMF )] · 2H2O

implemented in the ARGONNE_BOXES program and corrected by absorp-
tion with the help of the programm LADIABS. The wavelength normalization
was obtained using a curve derived by comparing equivalent re�ections and
multiple observations, via the programm LAUENORM [87].

Nuclear structure re�nement and magnetic structure determination were
done with SHELX [88] and Fullprof [9] programs. The experimental procedures
to collect and analyze data are described in this section.

3.3.1 GN-DMF(R)

In this subsection, details of the neutron di�raction experiments performed for
GN-DMF(R) in D15 and VIVALDI are given.

D15. Experimental procedure for GN-DMF(R)

For the measurements in D15 experiment, a 4x2x1mm3 crystal was employed.
The long dimension was identi�ed with the a axis, which is the shortest cell
parameter, and placed vertical in the pin, therefore along the ϕ axes of the
Eulerian cradle. The slits used to optimize the ratio background/signal were
8mmx8mm at the font and 8mmx6mm at the detector.

After aligning the crystal, it was cooled down to 35K, where 779 lines were
acquired to re�ne the nuclear structure. To determine the magnetic propaga-
tion vector, the crystal was cooled down to 2K and a total of 27 qscans were
performed. No evidence of a propagation di�erent from zero was found. In
order to check if the propagation vector was zero and to �nd out the mag-
netic structure, 39 lines at low angle were measured at 35K and 2K. Several
of these lines have a magnetic contribution to their intensity at 2K, which is
another sign of a propagation vector equal to zero. The re�ections with the
most signi�cant magnetic intensity contribution were measured as a function
of the temperature near the transition region, which can be used to determine
the critical exponent β of the transition. All relevant experiment details (tem-
perature, number of re�ections, wavelength,etc...) are summarized in (table
3.1). In Figure as 3.7 a typical ω-scan can be observed.

VIVALDI. Experimental procedure for GN-DMF(R)

The dimensions of the crystal used in this experiment were 1.65x3.0x0.8 mm3.
The crystal was aligned, its di�raction quality was checked and presence of
twining was discarded before cooling down or acquiring any data. To re�ne the
nuclear structure at room temperature 8 Laue patterns at 290K were recorded
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Figure 3.7: ω-scan measured for the line(-1 2 1) measured at 35K.

Table 3.1: Experimental details for GN-DMF(R) in D15.

GN-DMF D15
Compound [Cr(CN)6][Mn(R)− pnH(DMF )] · 2H2O

Space Group P212121
Z 4

Temperature 35K 2K 290K (X-ray)
7.677(11) 7.710(16) 7.662(2)

a, b, c (Å) 14.55(2) 14.72(3) 14.581(4)
19.72(2) 19.91(3) 19.747(6)

Measured re�ections 720 39
Unique Re�ections 600 39
(sinθ/λ)max (Å−1) 0.4215 0.1074
Resolution (Å) 1.19 4.66

θmax 29.55 7.22
RInt 0.016 �
Rσ 0.0267 �

-6<h<2 -1<h<0
hkl range -11<k<12 -3<k<2

-14<l<16 -3<l<4
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and 10 Laue patterns were collected at 35K to re�ne the nuclear structure at
a temperature near TC . In order to determine the magnetic structure, the
crystal was cooled down the transition temperature and 10 Laue patterns were
recorded at 2K. For each data set at each temperature, there is a ϕ interval of
20o between patterns. The times of exposure were selected to be high enough to
record clearly the weaker di�raction spots at each temperature. The exposure
time of the patterns taken at 290K was set as one hour, while the exposition
time at 33K and 2K was set as 45 minutes. This increasing is due to the
thermal motion, which makes the intensity of the re�ections decrease.

All relevant experiment details (temperature, exposure times, number of
re�ections, wavelength range,etc...) are summarized in table 3.2. As can be
seen in the table, the number of re�ections extracted from the Laue patterns at
high temperature is lower than at low temperature, due to the thermal motion
which also has an in�uence in the increasing in dmin during the data analysis.

Table 3.2: Experimental details for GN-DMF(R) experiment in VIVALDI

GN-DMF(R) VIVALDI
Compound [MnIII(CN)6][MnII(R)− pnH(DMF )]·2H2O

Space P212121
a, b, c (Å) (X-ray at RT) 7.662 14.581 19.747

Z 4
Temperature 290K 33K 2K
No of patterns 8 10 10

Exposure time (min) 60 45 45
λrange (Å) 0.84-2.10 0.82-2.10 0.82-2.10
dmin (Å) 0.84 0.70 0.70

Measured re�ections 11923 22324 21825
Unique Re�ections 1640 1643 2686
(sinθ/λ)max(

−1) 0.59 0.71 0.71
Resolution (Å) 0.84 0.70 0.70

θmax 29.99 36.85 36.85
RLaue1 0.200 0.200 0.200
RLaue2 0.190 0.190 0.189
RLaue3 0.134 0.131 0.133
Rσ 0.155 0.153 0.142

0<h<9 0<h<10 0<h<10
hkl range 0<l<17 0<l<22 0<l<20

0<k<23 0<k<27 0<k<27
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3.3.2 GN-DMF(rac)

In this subsection, details of the neutron di�raction experiments performed for
GN-DMF(rac) in D15 and VIVALDI are given.

D15. Experimental procedure for GN-DMF(rac).

The crystal used in the experiment was a needle-shape crystal of dimensions
2x6x1.5mm3. The b axis, identi�ed with the shortest dimension of the crystal,
was placed vertical in the pin, parallel to the ϕ axes of the Eulerian cradle.
The slits used to optimize the ratio background/signal were 8mmx8mm at the
font and 8mmx6mm at the detector.

After orienting the crystal, it was cooled down. At 35K, 1126 lines were
measured to re�ne the nuclear structure at this temperature. Cooling down
at 10K, a total of 45 qscans were performed to look for a propagation vector
di�erent from zero. Once that a propagation vector di�erent from zero was
discarded, 174 lines at low angle were measured at 35K and 10K and their
intensities were compared so we obtained the magnetic contribution to their
intensity. This magnetic contribution has been used to �nd out the magnetic
structure. Finally, 348 lines more were measured at 10K with the aim to re�ne
the nuclear structure at low temperature.

All relevant experiment details (temperature, number of re�ections, etc)
are summarized in table 3.3.

VIVALDI. Experimental procedure for GN-DMF(rac).

For this experiment, we used a crystal of dimensions 2.0x0.7x0.6mm3. The
crystal was aligned until it was completely bath by the neutron beam, its
di�raction quality was checked and the presence of twining was discarded before
cooling down or acquiring any data. To re�ne the nuclear structure art 290K,
we collected ten Laue patterns at 290K at ϕ intervals of 20o. The collection
time was set to ninety minutes, which was enough to obtain clear spots in the
pattern.

All relevant experiment details (temperature, number of re�ections wave-
length range,etc...) are summarized in table 3.4.



72 Chapter 3. Neutron study of [Cr(CN)6][Mn(R/rac)− pnH(DMF )] · 2H2O

Table 3.3: Experimental details for GN-DMF(rac) in D15.

GN-DMF(rac) D15
Compound [Cr(CN)6][Mn(rac)− pnH(DMF )]·2H2O

Space Group Pnma

Z 4
Temperature 35K 2K 290K (X-ray)

14.83(10) 14.78(9) 14.5459(8)
a, b, c (Å) 7.76(3) 7.77(2) 7.6509(8)

20.16(7) 20.11(7) 19.723(2)
Measured re�ections 1126 522
Unique Re�ections 749 125
(sinθ/λ)max (Å−1) 0.4182 0.2205
Resolution (Å) 1.20 2.27

θmax 29.29 14.95
RInt 0.1596 0.0888
Rσ 0.0847 0.606

-6<h<12 -6<h<6
hkl range 0<k<6 0<k<3

-8<l<16 -8<l<8

3.4 Results

In this section, the results obtained after analyzing the neutron data acquired
are presented. The chemical instability of the crystals has been a source of
problems to re�ne the nuclear structures and to �nd the magnetic ones. Perfect
crystals of GN-DMF(R) and GN-DMF(rac) of a emerald green color start to
degrade after a few hours exposed to the air, and they turn into a porous
greenish yellow crystal. The e�ect could a�ect negatively to our data quality.
The initial stages of decomposition of samples and loss of crystallinity can
a�ect specially at high-angle re�ections. In spite of this problem, we managed
to succeed.

We have performed neutron di�raction experiments in D15 and VIVALDI
and each technique of measure has its own advantages and disadvantages,
which can are summarized in table 3.5. VIVALDI allow us to record an im-
portant part of the reciprocal space in a short time, but due to the chromatic
overlap it can not be used to re�ne the cell parameters and can present some
problems to determine magnetic structures. On the contrary, D15 measure a
single re�ection in each ω-scan so it can take a long time to acquire enough
re�ections to re�ne a nuclear structure, but allow us to re�ne the cell parame-
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Table 3.4: Experimental details for GN-DMF(rac) experiment in VIVALDI.

GN-DMF(rac) VIVALDI
Compound [Cr(CN)6][Mn(rac)− pnH(DMF )]·2H2O
Space Group Pnma

a, b, c (Å) (X-ray at RT) 14.5459(8) 7.6509(8) 19.723(2)
Z 4

Temperature 290K
No of patterns 10
λrange (Å) 0.84-2.10
dmin (Å) 0.90

Measured re�ections 13224
Unique Re�ections 1416
(sinθ/λ)max (Å−1) 0.5821

Resolution Å 0.86
θmax 24.43
RLaue1 0.288
RLaue2 0.243
RLaue3 0.149
Rσ 0.1148

0<h<16
hkl range 0<l<8

0<k<22

ters and solve magnetic structures. Comparing the tables that summarizes the
relevant details for each experiment, we can see how the resolution of VIVALDI
for nuclear structures is higher than the resolution of D15 for our compounds.

Table 3.5: schematic summarize of the characteristic of the instrument used in the

nuetron experiments for GN-DMF(R) and GN-DMF(rac).

D15 VIVALDI
monochromatic technique chromatic technique
no limitations at low angle low angle limitations
high time of acquisition wide sight of reciprocal space in a short time

When we performed the experiments our intention was to re�ne the cell
parameters and solve the magnetism using D15 data, which does not have the
geometrical limitations or chromatic overlap of VIVALDI at low q. The data
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of VIVALDI were supposed to be used to improve the re�nement of the atomic
positions and thermal parameters due to the high number of re�ections that it
can record. Solving the nuclear structures of these compounds and determining
the nuclear structures has been a challenge.

3.4.1 GN-DMF(R)

In this subsection, the results of re�ning the nuclear structure and solving the
magnetic structure of the compound GN-DMF(R) with the acquired neutron
di�raction data are exposed.

Nuclear phase.

To re�ne the nuclear structure in the paramagnetic phase, we performed di�rac-
tion experiments at 35K at D15 and at 290K and 33K at VIVALDI.

The 720 re�ections acquired in D15 at 35K have been used to re�ne the
nuclear structure using as starting point the X-ray solved structure [7]. In the
previously reported structure, the hydrogen positions could not be determined
and they were placed in calculated positions. To re�ne the structure, it has
been necessary to set several conditions, the hydrogens of the groups CH2,
CH3 and NH3 have been re�ned as a rigid group and the distance between
oxygen atoms and hydrogens in the water molecules is constrained. Due to the
shortage of the re�ections, it has not been possible to re�ne the thermal param-
eters anisotropically. As a result of the re�nement, all the atomic coordinates
have determined and all the thermal parameters re�ned isotropically by full-
matrix least-squares technique based on F2 using the programm SHELXL97
[88]. Experimental data details are summarized in table 3.1, and the fractional
coordinates and isotropic thermal parameters are listed in Appendix D (table
E.1). The agreement factor obtained with SHELX is R=0.1267 for re�ections
whose intensity is bigger than 4σ, and 0.1357 for all data.

With the objective to improve the re�nement of the nuclear structure and
to de�ne the thermal parameters as anisotropic, the re�ned nuclear structure
obtained with D15 data has been set as a starting point to re�ne the nuclear
structure with VIVALDI data. It has been necessary to keep the constrain in
the distance between the oxygen and hydrogen atoms of the water molecules
and to restrain the shape of some thermal ellipsoids. Unfortunately, we have
found that the thermal ellipsoids are unusually high and they have an unnatural
cigar shape as can be seen in �gure 3.8. In an e�ort to reduce the size of the
thermal ellipsoids for the hydrogen atoms we tried to split the atomic positions,
but the re�nement was not improved. According to several recommendations
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to solve troublesome crystal structures [95], we checked the space group, the
unit cell and the atom types and discarded any error. The R value for the
adjustment is R=0.0984 for re�ections whose intensity is bigger than 4σ and
0.1075 for all data. the fractional coordinates and isotropic thermal parameters
are listed in Appendix D (table E.1).

The fuzzy structure and the unnatural size and shape of the thermal ellip-
soids could be explained by two phenomena. An early stage of a degradation
process and the loss os crystallinity may be the responsible of this anomalous
ellipsoids. A visual inspection con�rms that the crystals start to degrade after
some time exposed to the air, they change their color from an emerald green
to a greenish yellow and become porous. In addition, a lack of crystallinity
has been observed in other Prussian Blue Analogues [75], specially if there are
synthesized using a organic solvent as in the GN-DMF(R) compound. The
other explanation is related to the disorder and the possibility of a interchange
between the positions of the pnH and the DMF ligands. Due to the likeness
between the (R)-pnH and DMF ligands, some disorder may be present and,
in some small percentage, they positions may be interchanged. This last hy-
pothesis is supported, for example, by the fact that eliminating the hydrogens
H7A-H7B of the structure, one unexpected Q-peak appears in the re�nement,
which may be related to the interchange and the position of H10 (see �gure
3.8). Improvements have not been observe after trying to solve a disorder
situation with di�erent occupancies for (R)-pnH and DMF ligands.

Solving the structure at 290K with VIVALDI data presents the same prob-
lems and challenges as for 33K, with and R=0.0939 for re�ections whose in-
tensity is bigger than 4σ and 0.1175 for all data. The positions and thermal
parameters for the re�nements of the nuclear structure can be seen in Appendix
D (table E.1).

In spite of these problems, we accept the main features of the nuclear struc-
ture of the compound, which can be seen in �gure 3.9. It consist of bimetallic
planes containing CrIII and MnII atoms in a octahedral environments and
linked by cyanide groups, where the MnII is also linked to a DMF molecule
and a (R/rac)-pnH group. There are two water molecule per f.u. of crystal-
lization. The two dimensional networks are arranged almost perpendicularly
to the c axis. Due to the precarious nuclear structure determination, we are
not focusing in hydrogen bonds.

If we compare the nuclear structure of GN and GN-DMF(R) we can ob-
serve that, the substitution of the H2O ligand of MnII for a DMF changes the
piling of the layers, as can be seen in �gure 3.10. In this �gure, it can be seen
as the upper layer in the unit cell of GN-DMF(R) is displaced b/2 along the b
axis. This displacement may be due a stereo e�ect related to the higher volume
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Figure 3.8: Structural unit of [Cr(CN)6][Mn(R) − pnH(DMF )] · 2H2O re�ned at

33K. The orange atom stands for the phantom peak obtained.

of DMF ligand. As a consequence, the interlayer distances are increased (see
table 3.6) and the valleys of di�erent layers are not in-phase. In addition, the
shortest interlayer distances are di�erent, while in GN the shortest distance
between atoms is heterometallic (Mn-Cr 7.285(2)Å), in GN-DMF(R) the short-
est distance is homometallic (Mn1-Mn2 8.776(2)Å). All this modi�cations in
the nuclear structure may have some in�uence in the magnetic behavior of the
compound. The intralayer distance Mn-Cr is the same within an experimental
error for GN and GN-DMF(R) (5.319(11)Å at 35K for GN-DMF(R)).

Table 3.6: Interlayer distances between equal atoms and the shortest and largest

heterometallic distances in GN-DMF(R) at 35K and GN at 43K.

Atoms d (Å) GN-DMF(R) d (Å) GN
Mn1-Mn2 8.776(2) 8.279(3)
Mn3-Mn4 12.466(3) 8.279(3)
Cr1-Cr2 10.551(3) 8.041(3)
Cr3-Cr4 10.551(3) 8.592(2)
Mn1-Cr2 9.246(2) 7.285(2)
Mn4-Cr1 11.683(3) 9.043(2)
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Figure 3.9: Nuclear structure of GN-DMF(R) re�ne with VIVALDI data at 33K.

The CrIII and MnII are in an octahedral environment. The distances
and angles of these octahedra can be seen in table 3.7 and are similar to what
has been found in another compounds. The distortion of CrIII and MnII

octahedra in GN and GN-DMF(R) can be seen in table 3.8.

If we compare the octahedral environment of CrIII and MnII in GN and
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Figure 3.10: a)Interlayer separation in GN-DMF(R). b)Interlayer separation in GN

GN-DMF(R), we found that the distortion has the same order of magnitude
for MnII in both compounds, but for CrIII the distortion is one order of
magnitude higher in the GN compound. The C-CrIII -C angles for no opposite
C atoms, are in the range 95.3o-86.5o for the GN and 91.0-89.2o for the GN-
DMF(R). The C-CrIII -C angles for opposite C atoms are in the range 173.2o-
178.1o for the GN and 179.3o-179.9 for the GN-DMF(R). The higher distortion
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in the CrIII in the GN compound, can be relevant in order to compare the
magnetic behavior of both compounds. Another important feature that we
want to remark is the angles in the MnII octahedra. Although the distortion
of the MnII octahedra is similar in GN and GN-DMF(R) compounds, there is
a remarkable di�erence in the N7-MnII -O1 angle, whose value is 177.8o in GN
and 172.7o in GN-DMF(R). The increase of the deviation of the theoretical
180o value for the GN-DMF(R) compound is due to the higher volume of the
DMF molecule, the DMF ligand is tilted and the value of the angle is di�erent
from 180o in order to avoid the spatial proximity of another DMF molecule.

Table 3.7: Bond lengths and angles for CrIII and MnII at 25K.

A-Mn-B dA−X(Å) dB−X(Å) ÂXB

C1-Cr-C6 2.07(1) 2.08(1) 179.9(7)
C2-Cr-C5 2.06(1) 2.05(1) 179.3(7)
C3-Cr-C4 2.06(1) 2.08(1) 179.3(7)
N1-Mn-N5 2.22(1) 2.21(1) 176.4(5)
N2-Mn-N6 2.16(1) 2.26(1) 176.3(6)
N7-Mn-O1 2.34(1) 2.19(1) 172.7(5)

A-Cr-B ÂCrB A-Mn-B ÂMnB

C4-Cr-C5 90.0(5) O1-Mn-N2 94.6(4)
C4-Cr-C6 89.0(5) O1-Mn-N5 90.1(4)
C4-Cr-C2 90.0(5) O1-Mn-N6 89.1(4)
C4-Cr-C1 91.0(5) O1-Mn-N1 92.7(4)
C3-Cr-C6 90.8(6) N7-Mn-N2 92.6(4)
C3-Cr-C5 90.7(6) N7-Mn-N5 90.8(4)
C3-Cr-C1 89.2(6) N7-Mn-N6 83.7(4)
C3-Cr-C2 89.3(6) N7-Mn-N1 86.1(4)
C6-Cr-C5 89.3(5) N1-Mn-N2 89.7(4)
C5-Cr-C1 90.6(5) N2-Mn-N5 92.3(4)
C1-Cr-C2 90.1(5) N5-Mn-N6 87.8(4)
C2-Cr-C6 90.0(5) N6-Mn-N1 90.1(4)

Magnetic phase

The next paragraphs are devoted to the analysis of the magnetic structure of
GN-DMF(R). We have two data set to determine the magnetic structure. As
it has been said before, during the analysis of GN-MnMn, VIVALDI is not
the best neutron di�ractometer to solve magnetic structures, specially if the
propagation vector is equal to zero due to the overlap of re�ections at low angle
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Table 3.8: Distortion calculated of the octahedral environment for GN and GN-

DMF(R) magnetic atoms at 43K for GN and 33K for GN-DMF(R).

Cation ∆d

GN Cr 4.6·10−4

GN Mn 8.4·10−4

GN-DMF(R) Cr 2.8·10−5

GN-DMF(R) Mn 6.7·10−4

(see A.4.2). In spite of this inconvenience, we were forced to measured in it due
to the small size of the available crystals at the time the �rst neutron di�raction
experiments were performed. In addition, it allow us to re�ne the nuclear
structure at 2K. To analyze VIVALDI data, we had the same consideration as
for GN-MnMn.

The proceeding followed to determine the magnetic structure in described
in the next paragraphs. To obtain the nuclear structure at 2K we used in
SHELX the high angle re�ections (θ>30o) to re�ne the atomic positions and
thermal parameters found at 33K (see tables E.1 and E.2 in appendix D). The
agreement factor for the nuclear re�nement at 2K is R=0.1052 for re�ections
whose intensity is bigger than 4σ. Once that the nuclear structure at 2K has
been re�ned, we can determine the magnetic structure. The re�nement of
the magnetic data was guided by the irreducible representation (IR) theory
(for more information, see section A.5). The �rst step it to determine the
propagation vector. For this compound we have concluded that k = 0 at 2K,
because the patterns collected in VIVALDI at 2K have been indexed with the
cell parameters of the paramagnetic phase. In �gure 3.11 a pattern collected
at 25K for ϕ = −45o is shown together with the same pattern at 2K indexed
with the nuclear cell parameters. In addition, twenty-seven q-scans at 2K were
done in D15. The directions of the q-scans were selected to look for propagation
vectors as (1/2,0,0), (0, 1/2, 0)... No extra peaks that evidence the existence
of a propagation vector di�erent from zero have been found (for example, see
�gure 3.12). This absence of satellite peaks, together with the fact that we
observe magnetic intensity superimpose to nuclear intensity in our re�ections
at 2K, corroborated that k = 0.

Once that the propagation vector has been identi�ed, we have determined
the little group of vector k = 0 and its IRs with the help of BASIREPs code.
There exists two magnetic sites corresponding to the Cr and the Mn sublattices.
The little group of vector k = 0 and its IRs are the same that for the GN and
GN-MnMn compounds. Four di�erent one-dimensional IRs were obtained for
each magnetic specie, called Γ1, Γ2, Γ3 and Γ4 in the notation of Kovalev.



3.4. Results 81

Figure 3.11: Laue patterns for Gn-MnMn at T=25K and 2K at ϕ = 45o for GN-

DMF(R). On the bottom, the pattern at 2K has been indexed with the same lattice

parameters as in the paramagnetic phase.

Each of them is included three times in the reducible magnetic representation
Γ. The basis vectors for these irreducible representations are listed in table
3.9.

In order to decide which representation correspond to magnetic structure
of the GN-DMF(R), we compare the calculated values for each IR and the ex-
perimental values of the magnetic contribution to the intensity of the measured
lines. In order to simplify the process, we can discard some IRs by symmetry
arguments. The theoretical magnetic intensity depends on the perpendicular
component to the scattering vector of the magnetic structure factor, which can
be calculated for each sublattice as can be seen in equation 3.1.
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Figure 3.12: q-scan performed at 2K in the direction h00 for the compound GN-

DMF(R)

Table 3.9: Irreducible Representations for GN-DMF(R) and their basis vectors. m1,

m2, m3 and m3 represent the magnetic atoms of each magnetic specie.

Atom Position Γ1 Γ2 Γ3 Γ4

m1 (x,y,z) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m2 (-x+1/2,-y,z+1/2) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m3 (-x,y+1/2,-z+1/2) (u, v, w) (u, v, w) (u, v, w) (u, v, w)
m4 ( x+1/2,-y+1/2,-z) (u, v, w) (u, v, w) (u, v, w) (u, v, w)

FM (q) =
∑
i

mi exp (i2πq · ri) =

+ m1 exp [i2πq · (x, y, z)]
+ m2 exp [i2πq · (−x+ 1/2,−y, z + 1/2)]

+ m3 exp [i2πq · (−x, y + 1/2,−z + 1/2)]

+ m4 exp [i2πq · (x+ 1/2,−y + 1/2,−z)] (3.1)

The line q = (−1, 0, 0) has no nuclear contribution to the di�racted inten-
sity due to the re�ection conditions of the group P212121( (h,0,0) with h=2n).
Hence, the experimental intensity of 1748±32 counts at 2K is due to a mag-
netic contribution. The magnetic structure factor of one magnetic sublattice
for this line can be seen in equation 3.2.
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FM (−1, 0, 0) = 2i sin(2πx)(m1 +m2 −m3 −m4) (3.2)

The value of FM of each sublattice for the line q = (−1, 0, 0) is (0,0,4w)
for Γ1, (0,0,0) for Γ2, (4u,0,0) for Γ3 and (0,4v,0) for Γ4. As this line has
an experimental magnetic intensity that depends on the perpendicular com-
ponent to the scattering vector of FM , the IRs Γ2 and Γ3 can be discarded.
The FULLPROF programm has been used to �t the experimental magnetic
intensities of Γ1 and Γ4, determine which IR describes the magnetic structure
of GN-DMF(R) and to re�ne the magnetic moments of the atoms.

To re�ne the magnetic structure, the data collected in D15 can o�er a more
accurately results due to the characteristic of both instruments, but in order to
check the validity of our results, we have re�ned the magnetic structure with
both data sets. For D15, the short number of re�ections acquired at 2K does
not allow to re�ne the nuclear structure at this temperature. In order to obtain
the magnetic contribution to the intensity, the atomic positions and thermal
parameters at 2K and 35K have been considered as equal and the intensities
measured at 35K and 2K have been compared. This assumption is supported
if we compare the the structural data obtained with VIVALDI at 2K and 33K.
Another option could have been to use the nuclear structure re�ned with VI-
VALDI at 2K to simulate the intensity of the lines, but the lack of a scale
between re�ections in both instruments, make us to discard this procedure.
The re�ections with a signi�cant magnetic contribution and some re�ections
measured accurately at low angle, independently of their magnetic contribu-
tion, have been used in FULLPROF to determine the magnetic structure. In
addition, the re�ections acquired in VIVALDI at low θ have been examined
carefully and the ones measured accurately (low dispersion in the value and
low standard deviation), have been selected to perform a parallel re�nement.

The magnetic structure corresponds to the irreducible representation Γ1

and the values obtained for the magnetic moment can be seen in table ?? for
a magnetic agreement factor R=4.68 R=10.85 for VIVALDI and D14 respec-
tively. The magnetic moment for the CrIII cation along the a axis could not
be determined, there is a contribution that can not be estimated with our data.

If we compare the magnetic structure obtained with VIVALDI and D15
data, we found that although the magnetic structure is the same, there is a
small di�erence in the magnetic moments. The magnetic moments for MnII

and CrIII obtained in VIVALDI are 4.6(2) and 2.1(3)µB respectively, while
the same moments obtained from D15 data are 5.6(3) and 2.7(1)µB. We need
to compare these experimental values with the theoretical values given by the
magnetochemistry of each cation. As it has been said for the GN-MnMn
compound in 2.4.2 MnII (d5) in a low ligand �eld octahedral environment
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Table 3.10: Magnetic moments for Mn and Cr along each axis and the total magnetic

moment for GN-DMF(R) determined with VIVALDI and D15 data at 2K.

Instrument Cation Mx µB My µB Mz µB M µB

VIVALDI
MnII 1.3(6) 3.70(9) -2.5(3) 4.6(2)
CrIII -0.5(9) 2.08(15) 0.2(2) 2.1(3)

Cation Mx µB My µB Mz µB M µB

D15
MnII 1.2(5) 5.19(12) -1.7(9) 5.6(3)
CrIII � 2.64(12) 0.2(3) 2.7(1)

present a ground term 6A1 (t32ge
2
g) which is a high spin state with S=5/2. If

the ligand �eld is strong enough, a transition to a ground term 2T2 (t52g) occurs
and the MnII has a spin S=1/2. In this compound, MnII is surrounded by
nitrogen and oxygen atoms and the ligand �eld is low enough to have a ground
state 6A1 and a spin S=5/2. The CrIII (d3) has a ground state 4A2 (t32g) and
a spin state S=3/2.

The theoretical spin-only magnetic moments for MnII and CrIII are 5µB

and 3µB, according to S = g · S · µB with a Lande factor equal to g=2. For
the CrIII cation, the spin-orbit coupling is small and only a slightly decreased
in the value of the magnetic moment can be expected. No orbital contribution
to the magnetic moment is expected for MnII ion, as the ground state present
L=0 [89]. The di�erence between the theoretical and the experimental values
may be due to a problem with the scale, specially in D15. The net magnetic
moment is higher for the results obtained from D15, which may be due to an
underestimation of the nuclear intensity at 2K (therefore, a overestimation of
the magnetic contribution) implicity when we assume that the thermal param-
eters at 2K are equal than the thermal parameters at 35K. The theoretical
ratio between magnetic moments is 1.67, and the experimental is 2.2 and 2.0
for VIVALDI and D15 respectively. Although a problem with the scaling pro-
cess make the di�erence between experimental and theoretical value higher for
D15 results, the ratio is nearer from the theoretical value. The major contri-
bution to the deviation in the magnetic moments comes from the Cr magnetic
moment along the a axis, which has not been determined with D15 data due
to a low resolution in this direction. As there is not magnetic moment of Cr
missed, we supposed that this contribution must be negligible.

AS D15 is better prepared to solve magnetic structures than VIVALDI, we
have in better consideration the D15 results for the magnetic moments.

As it is logic, the magnetic structures obtained with the data acquired in
VIVALDI and D15 are the same. It consists in two sublattices, one of MnII
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and one of CrIII that order antiferromagnetically one respect to the other, as
it is showed in the �gure 3.13. This coupling is predicted by the Goodeneough-
Kanamori rules [76] explained in the Chapter 1.3.2. It is due to the fact that
the unpaired electrons of MnII lie in t2g and eg orbitals, so the MnII -CrIII

interaction is antiferromagnetic. The magnetic moments are nearly along the
b axis and the magnetic moments of Cr and Mn atoms are not collinear, which
may be caused by the DM interaction, because there is not a symmetry element
that can discard it, or by the anisotropy of the ions. The net magnetic moments
along the b axis of di�erent layers are directed in the opposite sense.

Figure 3.13: Magnetic structure of GN-DMF(R). Views along the a, b and c axes.

MnII atoms are in blue and CrIII atoms are in pink

There exists several di�erences between the magnetic structure of GN-
DMF(R) and GN. If we focus ourselves in just one bimetallic layer, in the GN
compound the magnetic moment ofMn and Cr try to be in the basal planes of
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their octahedra, being the Cr magnetic moment directed to the elongated bond
C6-Cr-C1 and the Mn magnetic moment directed to the bisectrix between
bonds. On the contrary, in GN-DMF(R) the magnetic moment of Mn cation
in directed to the middle point of the face of the octahedra shared by the
oxygen atom and two nitrogen atoms, out of the basal plane and directed
along the bisectrix between all the bonding directions, not only in the plane.
The explanation for the di�erences in the magnetic moments between both
compounds could be in the distortion of the Mn and Cr octahedra. For the
Mn in GN-DMF(R), steric hindrance due to the high volume of DMF may
distort the angle N7-Mn-O1 until 172o, inclining the DMF ligand towards the
plane in order to avoid a DMF ligand from another layer. As a conscience of
this distortion, the magnetic moment of Mn is out of the basal plane, directed
to middle point of the face of the octahedra shared by the oxygen atom avoiding
the ligands directions. The Cr magnetic moment in GN-DMF(R) tries to be in
the basal plane of the octahedra and it is directed towards the bisectrix between
the bonding directions. The di�erent behavior of the Cr can be explained if
we look to the distortion of the octahedra. As it can be seen in table 3.6,
the distortion for the Cr is one order of magnitude higher in the GN, and the
distance C1-Cr is 0.08Å longer than the medium Cr-C distance. The magnetic
moment of Cr tends to be along this bonding direction in GN. For the Cr in
GN-DMF(R), the environment is more regular and there is not an elongated
bonding direction, the magnetic moment tends to be in the bisectrix of the
bonding direction.

Another di�erence between GN and GN-DMF(R) is the direction of mag-
netic moments from neighbor layers. In GN the magnetic moments of ho-
mometallic atoms are directed towards the same sense of the easy axis, while
in GN-DMF(R) they are directed in a opposite sense. This may be explained
for the displacement of the layers b/2 along the b axis. As a consequence of
this displacement, the shortest interlayer distance is homometallic, whereas
the shortest interlayer distance in GN is heteromettalic (see table 3.6). The
homometallic interaction between layers could explain the antiferromagnetic
character, while the heterometallic interaction may be responsible for a ferro-
magnetic alignment.

In addition to these di�erences, GN and GN-DMF(R) compounds present
di�erent magnetic order temperature, 38K for the Phase I of GN and 28.8K for
GN-DMF(R). As in both compounds the intralayer exchange pathways are the
same, through the C≡N bonds, the explanation may be in the interlayer dis-
tance, which is shorter in the GN compound, and the octahedral environment
of Cr, which is more distorted in GN compound.

In addition to the data acquired at low temperature and high temperature,
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several re�ections with a signi�cant magnetic intensity contribution have been
measured at di�erent temperatures: (012), (0-12), (014), (0-14), (021), (0-21),
(023), (0-23), (-100), (-102), (-10-2), (-113), (-1-13), (-113). A graphic with
the most signi�cant of them can be seen in �gure 3.14. As it well know, as the
critical temperature is approached from below, the sublattice magnetization
drops to zero following a power law. From the data represented in �gure 3.14
it is possible to estimate the critical exponent β of the transition according to
the equation 3.3, where IM is the intensity in the magnetic phase and IN is
the nuclear intensity.

ln(IM − IN ) = 2β ln(1− T

TN
) (3.3)

As the magnetic di�racted intensity in neutron di�raction is proportional
to the component of the magnetic structure factor perpendicular to q, the
lines that can be used for a more accurate estimation of β are perpendicular
to the magnetization. The magnetic moments in GN-DMF(R) almost lie on
the plane yz so the line (-1,0,0) has been used to �nd a value for β=0.315(5).
Due to the roughness of this method to estimate β, we may not adventure if
it correspond to three dimensional Ising, XY or Heisenberg model (see [96] for
a wide compilation of results for critical exponents).
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Figure 3.14: Intensity of several lines for GN-DMF(R).
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3.4.2 GN-DMF(rac)

As it has been said before, neutron di�raction experiments have been per-
formed in the GN-DMF(rac) compound with the aim of re�ning the nuclear
structure and obtain the magnetic structure. In the next pages, the nuclear
and magnetic structures of GN-DMF(rac) found are described.

Nuclear phase

The nuclear structure of the GN-DMF(rac) compound in the paramagnetic
phase has been re�ned at 290K and 35K using VIVALDI and D15 data respec-
tively.

A nuclear structure solved by X-ray at 290K has been previously reported
[7]. In this reported structure, the positions of the hydrogen atoms could not
be determined. With the data acquired in VIVALDI at 290K and using the
reported structure as a starting point, we have re�ned the nuclear structure
with the help of SHELX. Thanks to our re�nement all the atoms have been
placed and their thermal parameters have been set as anisotropic. To obtain
the this result, it has been necessary to set some restrictions for the water
molecules. The agreement factor for the analysis is R=0.1231 for re�ections
whose intensity is bigger than 4σ and 0.1937 for all.

The 749 re�ections acquired in D15 at 35K have allowed us to re�ne the
nuclear structure at a temperature near Tc. The nuclear structure solved by
VIVALDI at 290K has been used as a starting point. In this re�nement, the
thermal parameters of Mn and Cr atoms are set as isotropic, because they are
too small. The constraints in the water molecules are maintained and some
restrains are applied to the thermal parameters of some hydrogens. The R-
factor obtained in this adjust is R=0.1514 for re�ections whose intensity is
bigger than 4σ and 0.1681 for all data.

The fractional coordinates and thermal parameters for the re�ned nuclear
structures at 290K and 35K are listed in Appendix E.

The thermal ellipsoids determined for GN-DMF(rac) at 290K and 35K are
unusually high and they have a cigar shape, as can be seen in �gure 3.15,
where an asymmetric unit is showed. In an e�ort to reduce the size of the
thermal ellipsoids for the hydrogen we tried to split the atomic positions, but
the re�nements were not improved. As for the GN-DMF(R) compound, there
are two possible explanations for the anomalous size and shape of the thermal
ellipsoids of this compound. One of them may be the loss os crystallinity due
to the early stages of a degradation process. This hypothesis is supported by a
visual inspection of the crystals after some time exposed to the air, they change
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their color from an emerald green to a greenish yellow and become porous.
Lack of crystallinity has been observed in other Prussian Blue Analogues [75]
specially if there are synthesized using a organic solvent as in GN-DMF(R)
and GN-DMF(rac) case. The other explanation is related to the disorder and
the possibility of a interchange between the positions of the pnH and the DMF
ligands.

Figure 3.15: Asymmetric unit for the GN-DMF(rac).

In spite of the relative high values of R-factor for the adjustments and for
the purpose of this thesis, the main features of the nuclear structure of this
compound are accepted. It consist of bimetallic planes containing CrIII and
MnII atoms in octahedral environments and linked by cyanide. The MnII

ions are also linked to a DMF molecule and pnH group which may be (R)-pnH
or (S)-pnH. The two dimensional networks are arranged almost perpendicular
to the c axis and there are two water molecules of crystallization per unit
formula. The structure can be seen in �gure 3.16.

If we compare the nuclear structure of GN-DMF(rac) and GN-DMF, we
can observe that the main di�erence resides in the chiral carbon. The corruga-
tion of the layers and the shortest distance between magnetic atoms remains
almost equal. The distances between magnetic atoms in the same plane or
from di�erent planes, which may be relevant for the magnetism, are shown at
table 3.11. The distances obtained using the VIVALDI data at 290K are larger
than the distances obtained at 35K with D15 data.
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Figure 3.16: Nuclear structure for the GN-DMF(rac) compound..

Table 3.11: Shortest distances between magnetic atoms in the same layer (intra) and

from di�erent layers (inter) for the nuclear structure of GN-DMF(rac) determined

with D15 data at 35K, VIVALDI data 290K and X-ray at 290K.

Atoms d(Å) 35K d(Å) 290K d(Å) 290K(X-ray)
Mn-Cr(Intra) 5.46(4) 5.359(9) 5.358(2)
Mn-Cr(Inter) 9.44(3) 9.31(2) 9.278(1)
Cr-Cr(Inter) 10.78(3) 10.58(1) 10.578(1)
Mn-Mn(Inter) 8.94(3) 8.83(2) 8.796(1)

The CrIII and MnII are in an octahedral environment. In order to com-
pare the magnetic structure of this compound with the magnetic structure
of GN-DMF(R), the distortion of their octahedra may be relevant, so it can
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be seen in table 3.13. If we compare the distorstion of the octahedra in GN-
DMF(R) (see table 3.8) and GN-DMF(rac), we found that the distortions are
of the same order of magnitude. The distance and angles inside the octahedra
can be seen in table 3.13 and within the experimental error they are equal to
the distance and angles found in the octahedra of GN-DMF(R), except for the
angle N4-Mn-O whose value is 174.6(8)o in the GN-DMF(rac) and the equiv-
alent angle in GN-DMF(R) is 172.7(5). The deviation of this angle from the
theoretical 180o value is due to a stereo e�ect due to the volume of the DMF
molecule.

Table 3.12: Distortion calculated of the octahedral environment for GN-DMF(rac)

magnetic atoms at 35K.

Cation ∆d

GN-DMF(rac) CrIII 8.6·10−5

GN-DMF(rac) MnII 7.4·10−4

Table 3.13: Bond lengths and angles for CrIII and MnII in GN-DMF(rac) at 35K.

A-Mn-B dA−X(Å) dB−X(Å) ÂXB

C1-CrIII -C2 2.09(2) 2.07(2) 179(1)
C3-CrIII -C4 2.07(3) 2.12(2) 178(1)
N1-MnII -N2 2.20(2) 2.27(2) 175.6(9)
N4-MnII -O1 2.36(2) 2.22(2) 174.6(8)

A-Cr-B ÂCrB A-Mn-B ÂMnB

C3-CrIII -C1 89.7(9) O1-MnII -N1 94.2(6)
C3-CrIII -C2 91.3(9) O1-MnII -N2 89.6(6)
C4-CrIII -C1 89.1(9) N4-MnII -N1 89.6(6)
C4-CrIII -C2 89.9(9) N4-MnII -N2 86.5(6)
C1-CrIII -C1 89.1(8) N1-MnII -N1 91.3(6)
C2-CrIII -C2 89.3(8) N2-MnII -N2 91.3(6)
C1-CrIII -C2 90.8(8) N1-MnII -N2 86.8(6)

Magnetic phase

In order to determine the magnetic phase of the GN-DMF(rac) compound we
have the D15 data acquired at 10K. It would be advisable to re�ne the nuclear
structure at this temperature before starting the magnetic analysis, but the
shortage of re�ections at this temperature make us discard this option. Instead,
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as a �rst order of approximation, the atomic position and thermal parameters
at 10K have been assumed to be equal than a 35K.

As usual, the �rst step is to determine the magnetic structure is to �nd the
propagation vector. With this objective, several lines at low q were measured
at 10K and 35K and their intensities at both temperatures compared. The
increase in the intensity at low temperature was observed, which indicates that
the magnetic cell and the unit cell are the same, and hence the propagation
vector is equal to zero. In order to con�rm this hypothesis, we scanned the
reciprocal space along strategic directions in a search for magnetic satellite
peaks with (h,k,l) no integers. A total of forty-�ve q-scans at 10K have been
performed and no evidence of a propagation vector di�erent from zero has been
found. We accept that the propagation vector for the GN-DMF(rac) is (k = 0.
An example of a q-scan at di�erent temperatures is shown in �gure 3.17. In
this case, we measured along the direction (h,0,0) and found a magnetic peak
at (1,0,0).
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Figure 3.17: Qscan performed in the direction h00 at 50K (⋆), 35K (◦) and 10K (•)

As in the study of the previous compounds, the IR theory has been used to
determine the magnetic structure. The IRs have been determined by BASIREPS
code and the magnetic moments have been calculated by using FULLPROF.
The space group of GN-DMF(rac) is Pnma and there are two magnetic sublat-
tices in which the magnetic atoms are in special positions (x, 0.25, z). Eight
di�erent one-dimensional IRs were obtained for this space group, and the re-
ducible magnetic representation can be written as Γ = Γ1 + 2Γ2 + 2Γ3 +Γ4 +

Γ5 + 2Γ6 + 2Γ7 + Γ8. The basis vectors for these irreducible representations
are listed in table 3.4.2.
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Table 3.14: Irreducible Representations for GN-DMF(rac) and their basis vectors.

m1, m2, m3 and m4 represent the magnetic atoms of each magnetic specie.

Atom Position Γ1 Γ2 Γ3 Γ4

m1 (x,0.25,z) (0,v,0) (u,0,w) (u,0,w) (0,v,0)
m2 (-x+1/2,-0.25,z+1/2) (0,-v,0) (-u,0,w) (-u,0,w) (0,-v,0)
m3 (-x,0.75,-z) (0,v,0) (-u,0,-w) (u,0,w) (0,-v,0)
m4 (x+1/2,0.25,-z+1/2) (0,-v,0) (u,0,-w) (-u,0,w) (0,v,0)
Atom Position Γ5 Γ6 Γ7 Γ8

m1 (x,0.25,z) (0,v,0) (u,0,w) (u,0,w) (0,v,0)
m2 (-x+1/2,-0.25,z+1/2) (0,v,0) (u,0,-w) (u,0,-w) (0,v,0)
m3 (-x,0.75,-z) (0,v,0) (-u,0,-w) (u,0,w) (0,-v,0)
m4 (x+1/2,0.25,-z+1/2) (0,v,0) (-u,0,w) (u,0,-w) (0,-v,0)

In order to decide which representation correspond to magnetic structure
of the GN-DMF(rac), several attempts of �tting have been performed using
FULLPROF. In the �ttings, the theoretical magnetic intensity and the exper-
imental magnetic intensity are compares. The theoretical magnetic intensity
depends on the perpendicular component to the scattering vector of the mag-
netic structure factor, which can be calculated for each sublattice as can be
seen in equation 3.4.

FM (q) =
∑
i

mi exp (i2πq · ri) =

+ m1 exp [i2πq · (x, 0.25, z)]
+ m2 exp [i2πq · (−x+ 1/2,−0.25, z + 1/2)]

+ m3 exp [i2πq · (−x, 0.75,−z)]

+ m4 exp [i2πq · (x+ 1/2, 0.25,−z + 1/2)] (3.4)

The line q = (0, 1, 0) has no nuclear contribution to the di�racted intensity
due to the re�ection conditions of the group ( (0,k,0) with k=2n). Hence,
the experimental intensity of 2176±37 counts measured at 10K for this lines
corresponds to the magnetic contribution. The magnetic structure factor of
one magnetic sublattice for the line (0,1,0) can be seen in equation 3.5.

FM (0, 1, 0) ∝ [m1 −m2 −m3 +m4] (3.5)

The expression FM (0, 1, 0) becomes zero for all the IRs except for Γ2 and
Γ6, for which its value is (4u,0,0) and (0,0,4w). For this reason, the only IRs
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that can correspond to our magnetic structure are Γ2 and Γ6. Two �ttings
of the magnetic structure imposing the symmetry of Γ2 or Γ6 clarify that Γ2

describes the magnetic symmetry for both magnetic species as can be seen in
table 3.15. The magnetic moments found with an agreement factor of R=11.2
are shown in table 3.16.

Table 3.15: Experimental and calculated magnetic contribution to the intensity of

several lines for the compound GN-DMF(rac).

( h, k, l) I35K − I2K IΓ2 IΓ6

( -1, 0, 0) 0±25 4 0
( 1, 0, -2) 292±28 282 278
( 0, 1, 0) 2120±43 2444 1353
( -2, 0, 1) 366±55 277 1122
( -1, 1, 1) 54±49 78 499
( 0, 1, 2) 1796±48 1756 700
( -1, 0, 3) 74±42 73 6
( 1, 1, 2) 69±50 69 10
( -2, 0, -3) 704±59 645 403
( -1, 1, -3) 472±52 498 557
( -1, 0, 4) 766±55 750 302
( -3, 0, -2) 59±55 14 228
( 0, 0, -5) 187±50 193 0
( -1, 2, -2) 270±73 244 404
( -3, 0, -4) 368±62 258 407
( -2, 2, -1) 1383±71 1236 877
( -1, 0, 6) 573±69 603 232
( -4, 1, -2) 300±56 334 682
( -3, 1, 5) 458±72 407 111
( 0, 0, -7) 578±66 634 0

Table 3.16: Magnetic moments for Mn and Cr along each axis and the total magnetic

moment for GN-DMF(rac).

Cation Mx µB My µB Mz µB M µB

Mn -3.69(4) 0 -1.5(4) 4.0(4)
Cr 1.97(5) 0 -0.3(1) 1.99(15)

The magnetic moments forMnII and CrIII obtained are 4.0(4) and 1.99(15)µB

respectively. As for the chiral compound GN-DMF(R), the theoretical values
given by the magnetochemistry of each cation are 5µB and 3µB, according to
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S = g · S · µB and with a Lande factor equal to g=2. The di�erence between
the experimental values and the theoretical ones could be attributed to the
fact that the data were acquired at 10K, so the saturation regimen may not
be reached.

The magnetic structure can be described as two sublattices, one of Mn

and one of Cr, that order antiferromagnetically one respect to the other. The
reason for the antiferromagnetic ordering has been already explained in the
Chapter 1 and it is predicted by the Goodeneough-Kanamori rules [76]. The
IR Γ2 does not allow a magnetic component along the b axis and hence the
magnetic moments lie in the plane ac, which the major contribution along the
a axis. The net magnetic moments along the a axis of di�erent layers are
directed in an opposite sense. The magnetic structure can be seen in �gure
3.18. The magnetic moments are not collinear, which could be due to the
anisotropy of the ions of the DM interaction. A inspection of the symmetry
elements of the group Pnmma reveals and inversion center in the middle point
of the lines that join m1 − m3 and m2 − m4. According to the symmetry
rules published by Moriya [55], this symmetry element discards the existence
of a DM interaction between these atoms, but not between the other magnetic
atoms.

P212121 is a subgroup of Pnma and the symmetry operations of the space
group Pnma of the GN-DMF(rac) compound are all the symmetry operations
of the space group P212121 for the GN-DMF(R) compound plus the inversion.
Attending to the symmetry of the magnetic structures, the magnetic structure
of GN-DMF(R) is described by the IR Γ1 of the space group P212121 (see
table 3.9) while the magnetic structure of GN-DMF(rac) is described by the
IR Γ2 of the space group Pnma (see table ). Both IRs becomes the same one
if we suppose a magnetic moment with no component along the b axis for Γ1.
For this reason, the magnetic structure of GN-DMF(rac) is equivalent to the
magnetic structure of GN-DMF(R) except for the component along the b axis.
As for the GN-DMF(R), the magnetic moment of the Cr atom in GN-DMF(rac)
is almost in the basal plane along the bisectrix between basal plane bonds, and
the magnetic moment of the Mn atom is directed towards the center of a face of
the octahedra. This behavior may be explained by the same arguments given
for GN-DMF(R). Comparing the direction of magnetic moments from di�erent
layers in GN-DMF(rac), an antiferromagnetic alignment can be seen as for the
GN-DMF(R) compound. Due to the similitude between GN-DMF(R) and GN-
DMF(rac) and their exchange pathways, we considerer that the explanation
for this alinement may be the same for both compound, already described in
3.4.1.

Several re�ections with a signi�cant magnetic intensity contribution have
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Figure 3.18: Magnetic structure GN-DMF(rac)

been measured at di�erent temperatures: (221), (22-1), (-102), (223), (-10-4),
as can be seen in �gure 3.19. As the magnetic moments in the GN-DMF(rac)
compound are in the plane xz, the best lines to estimate the critical exponent β
are the lines (0,k,0), but unfortunately none of these lines has been measured.
A �tting with the data of the line (223), gives a value of β = 0.32(3). Within
the experimental error, this value could correspond to a three dimensional
Ising, XY or Heisenberg model (see [96] for a wide compilation of results for
critical exponents).

3.5 Chiral term calculation

The chiral compound GN-DMF(R) compound crystallizes in the space group
P212121, which is chiral, so the compound presents nuclear chirality. The
possibility of being magnetically chiral depends on the cross product FM ×
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Figure 3.19: Intensity of several lines as T was decreased.

(FM )∗ as it has been explained in section 2.5. In the unit cell there are eight
magnetic atoms, four MnII and four CrIII , which must be present in the
calculation of the magnetic structure factor. As for the GN-MnMn compound,
the chiral product can be decomposed in a term due to the MnII cations,
a term related to the CrIII sublattice and two mixed terms as can be seen
in equation ??. The terms corresponding to the two sublattices are di�erent
from zero, as they are canted magnetic structures, and the cross terms are
also di�erent from zero. We can conclude that nuclear and magnetic chirality
coexist in the GN-DMF(R).

FM × F∗
M = {FCr

M + FMn
M } × {(FCr

M )∗ + (FMn
M )∗} =

= {FMn
M × (FMn

M )∗}+ {FCr
M × (FCr

M )∗}
+ {FCr

M × (FMn
M )∗}+ {FMn

M × (FCr
M )∗} (3.6)

The racemic compound GN-DMF(rac) crystallizes in an centrosymmetric
space group, so it is not nuclear chiral. In section 2.5.1, it has been said that
magnetic chirality can no exist in centrosymmetric space groups, so the GN-
DMF(rac) must be nuclear and magnetic achiral. Although the inversion is
a symmetry operation of the space group Pnma, and the magnetic sites m1-
m3 and m2-m4 are related by an inversion center, there are two sublattices
that are not related by symmetry operations and whose magnetic moments
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are not collinear. The no collinearity of this sublattices may create rise doubts
about the magnetic achiral structure of this compound. The no chirality of
the magnetic structure can be corroborate by an inspection of the magnetic
structure factor for each sublattice, which can be written as in equation by
taking into account that r1 = −r3, m1 = −m3, r2 = −r4, m2 = −m4. The
structure factor and its conjugate are equal except by a phase, so the chiral
term is zero and the magnetic structure is achiral, as it has been postulated.

FM (q) = 2i(m1 sin(2πq · r1) +m2 sin(2πq · r2)) (3.7)

3.6 Conclusions

In this chapter, the nuclear structures of the compounds GN-DMF(R) and
GN-DMF(rac) have been re�ned using neutron di�raction. In addition, we
have determined the atomic positions of the hydrogen atoms, which were not
determined previously [7].In the re�nement performed with neutron data, all
the thermal parameters of the atoms have been set as anisotropic, except for
Mn and Cr in GN-DMF(rac) at 35K. Is spite of acceptable agreement factors
for the re�nements, we have found an anomalous size and shape of the thermal
ellipsoids. This anomaly may be attributed to a lack of crystallinity or some
structural disorder. If we compare the nuclear structure of GN-DMF(R) and
GN-DMF(rac) with the nuclear structure of GN compound, we can see how
the substitution of a H2O ligand in GN by a DMF molecule modi�es the
corrugation of the layers and the shortest interlayer distances.

In addition to the re�nement of the nuclear structure, the neutron data
acquired have allowed us to solve the magnetic structures for both compounds.
A propagation vector equal to zero k = 0 has been determined for GN-DMF(R)
at 2K and GN-DMF(rac) at 10K, so the nuclear and the magnetic cells are the
same.

For the chiral compound, the magnetic phase can be described with the IR
Γ1 of the space group P212121. Below the critical temperature, the compound
presents two interpenetrating magnetic sublattices, one of MnII and another
one of CrIII which interact antiferromagnetically. The magnetic moments of
the Cr atoms try to remain in the basal plane, while the magnetic moments
of Mn are out of the plane. The magnetic moments try to follow the direction
of the bisectrix between bonds. The lack of a center of symmetry between
the magnetic atoms allows the existence of a DM interaction, which may be
the responsible of the non-collinearity of magnetic moments. The interaction
between layers in GN-DMF(R) compound is antiferromagnetic in contrast with
GN and GN-MnMn where it is ferromagnetic. This could be justi�ed by the
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di�erence in the interaction pathways between layers. Considering our the
de�nition for a magnetically chiral compound CM = FM × (FM )∗ ̸= 0), the
magnetic phase of GN-DMF(R) is magnetically chiral, therefore, nuclear and
magnetic chirality coexist in this compound.

The symmetry of magnetic phase of the racemic compound GN-DMF(rac)
can be described with the IR Γ2 of the space group Pnma. As for the chi-
ral compound, the magnetic structure of GN-DMF(rac) can be described as
two interpenetrating and antiferromagnetic layers, one of MnII and another
one of CrIII . The inversion center between pairs of magnetic atoms in the
GN-DMF(rac) is the main di�erence between the GN-DMF(R) and the GN-
DMF(rac). As a consequence of the inversion center, the component of the
magnetic moments along the b axis is set equal to zero and magnetic chirality
no longer occurs.





General conclusions for Part I

• Global de�nition for magnetic chirality. In a context where the
concept of magnetic chirality is sometimes confused with nuclear chirality
or de�ned as a local concept, we have proposed a global de�nition for
magnetic chirality in section 2.5. According to our criterium, a magnetic
structure is chiral if the cross product FM × (FM )∗ is di�erent from zero.
Magnetic chirality is only possible in non collinear structures where the
magnetic sites are not related by an inversion center.

• E�ect of substituting CrIII atom in GN for MnIII atom in GN-

MnMn. The substitution of the CrIII atom in GN for MnIII atom
in GN-MnMn has a negligible e�ect in nuclear structure, except by the
environment of the substituted atom, and has no e�ect in the symmetry
of the magnetic structure. Both magnetic structures can be described
with the same IR, Γ4 of the group P212121, and can be seen as a conical
quadrangular structure along the a axis. The only di�erence resides in
the orientation of the magnetic moment of the M III atom in the basal
plane, whereas CrIII is directed toward an elongated bond, MnIII is
directed toward the bisectrix between bonds. The substitution of CrIII

atom in GN for MnIII atom in GN-MnMn has lead to a of the critical
temperature of the sample.

• E�ect of substituting a H20 ligand in GN for a DMF ligand

in GN-DMF(R). The substitution of the H2O for a DMF as modi�ed
the stacking of the layers and increased the interlayer separation. This
structural changes modi�es the symmetry of the magnetic structure that
corresponds to Γ1 of the P212121 group. While the magnetic structure
for GN compound can be seen as a conical quadrangular structure along
the a axis. the IR Γ1 does not allow a ferromagnetic component along any
axis and correspond to an antiferromagnetic structure. As a consequence
of the changes in the interlayer separation and piling up, the interaction
pathways between layers are di�erent and magnetic order between layers
changes from ferromagnetic in GN compound to antiferromagnetic in
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GN-DMF(R) compound. In addition to this di�erences between GN and
GN-DMF(R), the octahedral environment of Cr and Mn are modi�ed
and it has in�uence in the orientation of their magnetic atoms.

• In�uence of a chiral ligand in the magnetic chirality. While in the
GN-DMF(R) compound all the chiral ligands are the same enantiomer,
in the GN-DMF(rac) there is equal number of the two enantiomers as
ligands for unit cell. As a consequence, the space group is centrosym-
metric and the nuclear structure is not longer chiral. The inversion point
that relates pairs of magnetic sites modi�es the symmetry of the mag-
netic structure, which can be describe by the IR Γ2 of the group Pnma.
The existence of the inversion points neglects the possibility of having a
chiral magnetic structure.

• Magnetic Chirality in bimetallic ciano-compounds. All the com-
pound studied in this thesis with a chiral nuclear structure have been
determined to present also magnetic chirality. As a consequence, this
synthesis strategy seems to be adequate to obtain chiral magnets.



Part II

SMM compounds





Chapter 4

Introduction to SMMs.

Concepts and objetives

4.1 Introduction

The second part of this thesis is devoted to the study of the magnetic properties
of Single Molecule Magnets (SMMs) and the in�uence that the environment can
have on them. Our objective is double, we want to verify how small structural
di�erences can a�ect the energy barrier of a SMM and observe the possible
e�ects of arranging SMMs in 2D or 3D structures. This arranging can lead
to the loss of the SMM properties or conduct to a new phenomenology as the
coexistence of magnetic order and blocking. For this purpose, in a complemen-
tary thesis, Elena Forcén is synthesizing and characterizing structurally new
Co(II) cubane compounds, where cubanes are isolated or forming extended
crystallographic arrays. The study of the physics of these complex systems
has provided a necessary feedback helping new compounds with new arrays.
Consequently with the complementary of the synthetic and crystallographic
work, we will provide here only the necessary crystallographic information to
support the analysis of the magnetic data.

In this introductory chapter to the second section of the thesis, a brief
explication of the SMM properties is given in 4.2 with the aim to facilitate the
understanding of our result. Also, we summarize some studies where SMM
are networked or in the vicinity of SMM that can generate a bias �eld that
modify their energy levels in 4.3. As our clusters are Co(II)-cubanes, a glimpse
of the exceptional magnetic properties of the ion Co(II) is given in 4.4 before
a revision of the literature of similar clusters in 4.5. To end this chapter, the
objectives and the techniques used are described.
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4.2 Single Molecule Magnets (SMMs)

If we try to give a compact de�nition for SMM, we could say, in a general way,
that they are a class of metalorganic compounds that, below a blocking tem-
perature, show superparamagnetic behavior and exhibit magnetic hysteresis of
purely molecular origin. Using a rigorous de�nition for a magnet, the name
itself is not correct, because to have a magnet it is necessary to have an in�nite
number of coupled centers. It should be, therefore, clear that the denomina-
tion of magnet in the SMM name is just evocative of the common property
of hysteresis that these compounds have with real magnets and should not be
extended to other properties. These molecular materials are characterized by
an isolated high spin ground state and a high magnetic Ising-anisotropy, which
generates a non negligible energy barrier (∆) that held up the reversal of the
magnetization by thermal activation for temperatures below the blocking tem-
perature (TB). Below this temperature, the system is said to be blocked and
the magnetization decays exponentially with the time. However, the richness
of their physical behavior in not limited to this phenomenon. Their size and
number of atoms can vary from just one to the limits of nanoparticles, so their
properties can be studied in the frame of quantum or classical physics. There-
fore they represent an excellent scenario to connect the classical and quantum
world and to test the validity of fundamental quantum mechanics theories. In
addition, the SMMs can be seen as functional building blocks that can be used
for constructing high dimensional frameworks, constituting a new branch for
the bottom-up methods.

In the vast pool of existent options, we will focus on single molecule mag-
nets formed by a small number of atoms, which are also excellent candidates to
study the nature of the exchange interaction, the anisotropy, the dipolar order
and other basic concepts of physics. The limited amount of magnetic atoms
allows, in the most cases, to write a complete hamiltonian and solve it analyt-
ically, obtaining the value of magnetic interaction parameters or anisotropic
parameters among others.

The �rst single molecule magnet discovered was synthesized in 1980 [34]:
Mn12ac, [Mn12O12(CH3COO)16(H2O4)] · 4H2O · CH3COOH, and it is still
one of the most studied SMM and a typical paradigm. One of the milestones
in the study of this compound was in 1993 [97] when the relaxation time of
the magnetization was observed to follow an exponential law with the temper-
ature below the blocking temperature. The relaxation of the magnetization to
its thermal equilibrium can be written as in equation 4.1 for an ensemble of
identical particles, where τ is the "spin-lattice" relaxation time. τ depends ex-
ponentially on the ratio between the energy barrier and the temperature, with
a pre-factor τ0 that is the characteristic time for the system. This dependence
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Figure 4.1: a). Schematic drawing of the ∆ created by a high anisotropy. b) Modi�-

cations in the energy levels due to an external magnetic �eld.

is shown in equation 4.2 and is known as a Arrhenius law.

M(t) = M0 · (1− exp(−t/τ) (4.1)

τ = τ0 exp(∆/kT ) (4.2)

An alternative to calculate the energy barrier and the relaxation time is
based on an average magnetic relaxation time τav, that can be estimated with
the relation given by equation 4.3. This equation is often used to analyze mag-
netic dynamics of spin glasses and other complex magnetic system [98]. This
relation is specially useful when two superposed frequency-dependent signals
coexist or the blocking phenomenon can be hardly observed and it is not easy
to determine the peak position in the out-of-phase signal.

τav = lim
(ω→0)

[χ”/ωχ′] (4.3)

The origin of the energy barrier in a cluster lies in a high spin ground state
in addition to an Ising magnetic anisotropy. Its magnitude is given by the
di�erence between energies of the lowest lying level and the top lying level as
can be seen in �gure 4.1a. It can be calculated as ∆ = |D|S2 if the spin of
the cluster is an integer, or ∆ = |D|(S2 − 1/4) if the spin is a half integer,
where D re�ects the axial anisotropy, selecting a preferred orientation of the
magnetization along z (easy-axis anisotropy). If the D parameter is negative,
major projections of the spin |mS >= ±S lie lowest. A positive D term
corresponds to easy-plane anisotropy with preferred orientation of the spins in
the xy plane.

In absence of an external �eld and at very low temperature, if D is negative,
the state levels |ms >= +S and |ms >= −S are degenerate, lie lowest and
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are the unique levels populated. Magnetization is zero. If a magnetic �eld
parallel to the anisotropy axis is applied, a sense of magnetization is favored
as can be seen in �gure 4.1b. If the external �eld is high enough, only one
level (|ms >= +S or |ms >= −S) is populated and the magnetization reaches
its saturation value. When the �eld is removed the system must go back to
thermal equilibrium, so it "relaxes". Classically, this process is possible by the
coupling of the spin system to the environment, i.e. spin-phonon interaction.
In this situation, spins absorb energy from phonons to reach the higher level
energy and then loss energy by exciting vibrational modes of the lattice, until
equilibrium exists.

As the energy barrier depends directly on the anisotropy and the net mag-
netic moment of the system, a smart rational design for SMMs will look for
clusters with high magnetic anisotropy and a high spin ground state to in-
crease the energy barrier and hence the blocking temperature of a SMM. With
this objective, e�orts to achieve a smart design have been performed in several
directions: clusters containing larger numbers of metal centers to increase the
spin, the use of metals with a large anisotropy to increase D, or by using a
directed synthesis approach toward speci�c cluster geometries. For example,
in homometallic compounds, a good strategy is to use brigding angles close
to 90o. Other consideration that have to be taken into account, is the fact
that the exchange coupling should be as large as possible, so the resultant spin
ground state that characterize the cluster is isolated from the excited states.
A synthesis strategy based on increasing the D value or the spin cluster and
to hope for the best for the other parameter has been followed for a long time.
However, recent studies show that S and D are correlated [99, 100]. For the
same compound, increasing S will generally result in enhancing the energy
barrier, but not as S2 as it could be expected. The magnitude of the barrier
is mainly determined by D, therefore, increasing the anisotropy of the cluster
and the single-ion anisotropy of each magnetic site given by the local tensor
Di, results a more promising strategy than increasing the number of metal ions
and their spins. In this scenario, atoms with spin-orbit coupling are promising
candidates to increase the energy barrier in cluster. For an ion with a ground
state S, orbital contributions may be mixed into the ground state through spin-
orbit coupling H = λ·L·S, so the |mS > components of a given S state are
split in zero �eld, leading to a preferred orientation of the magnetization with
respect to the anisotropic axis of the molecule. The magnitude of this splitting
and therefore of the anisotropy is proportional to λ2, the spin-orbit coupling
constant. Transition metal ions which a large spin-orbit coupling show larger
anisotropies and Co(II) complexes results very interesting due to the spin-orbit
coupling which can generate an important zero-�eld-splitting (ZFS). This phe-
nomenon causes a single-ion anisotropy and as the main contribution to the
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cluster magnetic anisotropy is the sum of the single-ion anisotropies of the
metal ion constituents, it enhances the energy barrier. Often, ZFS contributes
to magnetic anisotropy of the cluster more than dipolar or exchange interac-
tions. The size of D parameter depends upon the metal ions present and its
coordination environment.

A tendency to increase the nuclearity (and hence the maximum spin value)
has lead to clusters up to 84 atoms [101], whose size is approximating the
magnetic nanoparticles. However, a large number of metal centers do not
guarantee a large total molecular spin. One approach is to have a cluster
topology that provides ferromagnetic interactions such as a metal-oxo cubane
structure that can promote ferromagnetic interactions via superexchange. The
metal-oxo cubane structure is described in next section. The control of the
magnetic properties of polynuclear complexes is in an early stage of develop-
ment. The highest energy barrier described until the present is 86.4K with a
blocking temperature of 4.5K for a [Mn6] cluster [102]

4.2.1 Relaxation pathways

The magnetic moment reversal implies overcoming an energy barrier, which
classically is a very slow process at temperatures much cooler than the block-
ing temperature. But SMMs are in the limit between classical and quantum
physics, and beyond the thermally activated relaxation, they can also relax
through quantum tunneling mechanisms [35]. The SMMs are the best super-
paramagnets to study these complex relaxation processes, because distribution
of sizes and anisotropy axis that can di�cult the study with nanoparticles are
absent.

At very low temperature only the degenerate |ms >= ±S levels are pop-
ulated. If only exits an axial anisotropy, the two states |ms >= +S and
|ms >= −S are degenerate and orthogonal to each other, and there is no pos-
sibility of tunneling. However, with a suitable perturbation, the eigenstates of
the full Hamiltonian are are linear combination of states with di�erent sign of
ms and the wavefunction is therefore partially delocalized on both wells. In
these conditions, tunneling may be observed. As a consequence of the mix of
states, the degenerate levels with di�erent sign of ms are split in an energy
quantity ∆T , the so-called tunnel splitting; one of the two levels is of lower en-
ergy than the degenerate levels, while the other is of higher energy. There exist
di�erent perturbations that allow the existence of quantum tunneling: dipolar
forces between molecules, hyper�ne �elds or an anisotropy in the perpendicu-
lar plane, E, called transverse anisotropy or rhombic anisotropy. A convenient
form for the perturbational hamiltonian that takes into account the anisotropy
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in the perpendicular plane can be seen in equation 4.4

H = E(S2
x + S2

y) (4.4)

Equation 4.4 directly couples states di�ering in mS by 2 in a �rst order
of approximation. Therefore, states |ms >= +S and |ms >= −S are mixed
in a higher order in perturbational theory and their ∆T will be low. As the
possibility of tunneling is related to the relative energies of the tunnel split-
ting and of the barrier, the smaller the ratio between the two the smaller the
possibility of observing tunneling, it is very important the contribution to the
higher levels in the tunneling.

If the spin of the cluster is a half integer, the transverse term of the
anisotropy does not admix the ground states and the tunnel splitting is zero.
These states remain degenerate as predicted by the Kramers theorem, accord-
ing to which the minimum possible degeneracy of the states of odd-integer spin
systems is two. Therefore, in principle, no tunneling is possible for a system
with half-integer spin in rigorously zero �eld.

Tunneling can occur also between di�erent pairs of degenerate excited
states, and it is called phonon-assisted or thermally activated tunneling mech-
anism. Phonons are absorbed in order to populate excited states involved in
the tunneling process. As the tunneling frequency is expected to increase on
decreasing the value of ms this mechanism is very important when these levels
are populated. Molecules may not need to go over the maximum of the barrier
even at relatively high temperatures, but may �nd a shortcut and tunnel.

The former quantum phenomenons occur in absence of a external magnetic
�eld. If a magnetic �eld is applied parallel to the anisotropy axis, it modi�es
the energy levels as can be seen in �gure 4.1b, so it removes the degeneracy
between pairs of levels with the samems. However, the modi�cation in the level
structure, implies that for some values of the magnetic �elds, levels at di�erent
sides of the energy barrier will meet, so the conditions for resonant tunneling
are restored. If the �eld is applied parallel to the hard axis, it generates an
oscillating phenomenon that modulates the tunnel splitting making it even
zero for certain values [103]. This phenomena generates the typical stepped
hysteresis cycle for SMM as can be seen in �gure 4.2. The steps are observed
at the �elds at which pairs of levels become degenerate. They correspond to
relative minima in the relaxation times, because at these �elds two mechanisms
are operative: thermally activated and quantum tunneling.
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Figure 4.2: Magnetic hysteresis loop for a single crystal of Mn12ac with the �eld

parallel to the tetragonal axis at 2.1 K. [104]

4.2.2 Applications

SMMs are materials that have important potential applications in several �elds.
Below the blocking temperature, a SMM behaves like a magnet, in the sense
that if magnetized by an applied �eld it retains the magnetization a time,
rising to magnetic hysteresis. The ground state doublet is separate by the
energy barrier, therefore stabilizing two e�ective spin states at low tempera-
tures. After these discovers, it was suggested that the SMMs may be used as
information storage units, being each molecule a bit with two binary states
switched by an external magnetic �eld . This goal is still out of reach, but
some progresses are being done. In order to have the possibility to used the
SMM as information storage units, it is necessary to increase the relaxation
time to signi�cant values at accessible temperatures which implies to increase
the energy barrier until very high limits. This future technological application
helped to rise the interest in this �eld. In a more broad horizon, SMM are not
limited to data storage at incredible high limits. Other potential technological
application of SMM, is the possibility to integrate them as building blocks in
quantum computers [36] [105]. The physical laws governing these small devices
are in the frame of quantum physics and classical Boolean logic may not be
valid at this scale or there may exist other logics more appropriate at this case.
This will imply a deep revolution, not only in the materials, but also in their
functionalities and applications, as the �nal objective is to store information in
a molecule, process information in a molecule and communicate the result to a
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(supra-)molecular device. In a classical device, a bit can be only 0 or 1, but in
a qubit, it can be coded as any linear superposition of the two states associated
with the logical 1 and 0. Linear superpositions are very important during the
dynamics, allowing quantum algorithms that performs computational tasks at
inaccessible rates for classical computers. For the case of SMM, the physical
magnitude to be manipulated is the spin state of the molecule, giving rise to
the development of the spintronics [5] [37].

In addition, the �nite number of atoms in SMMs made them excellent
model systems to study the exchange interactions at the molecular scale,
anisotropy e�ects. Due to the possibility to achieve an uniform size and
distribution of SMM in a crystal, there are also excellent probes to study
long range order (as produced purely by dipolar forces [13]), spin-glass-like-
dynamics or competition between single-particle blocking and collective block-
ing. Its unique properties in the frame of quantum physics made them unvalu-
able sceneries where new quantum theories can be tested.

4.3 Networked SMMs

If one of the �nal objectives of the work with SMM is to use them as devices for
data storage, it is necessary to organize the molecules so they can be addressed.
Some attempts have been done to organize them in Langmuir-Blodgett �lms
[106] or on polymeric thin �lms [107], to network them by polymers [108], or
to transfer SMMs onto various substrate materials [109], as the �rst attempts
performed on gold surfaces [110]. An alternative approximation may be the
self-assembly of SMM, especially in regular 2D arrays of SMM [111]. Some
of the compounds presented in this thesis are self-organized in bidimensional
or tridimensional covalent networks, which makes the organization of SMMs
trivial.

Several studies in nanoparticles have been performed to study long range
order, spin-glass-like-dynamics or competition between single-particle blocking
and collective blocking [112], but due to the usual distribution of particle size
and interparticle distance as well as the random localization of the particles,
make this task very di�cult. Therefore, SMM arranged on a regular lattice
represent a more convenient scenery. Di�erent collective behaviors can be ob-
served when there is an aggregate of SMMs or networked SMMs, and they can
provide an understanding of collective phenomena occurring in an interacting
SMM system or among nanosized magnets.

The �rst evidence for the in�uence of the environment in the behaviour of
SMMs was given by W. Wernsdorfer et al. on dimers of Mn4 [113] where anti-
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ferromagnetic interactions through H bonds appear, the interactions between
SMMs modify their energy levels leading to an exchange bias of the quantum
resonances and may allow the control of their quantum properties. Therefore,
organizing SMMs into supramolecular architectures became a very interesting
�eld. In addition, linking SMMs in networks can give rise to new magnetic
materials whose properties lie in the boundary between classic and quantum
e�ects.

We would like to remark, that linking clusters in networks may present
a wide variety of di�erent behaviors, where relaxation process and magnetic
order phenomenons can appear together. We are focusing ourselves in clusters
that have shown a SMM behavior as isolated entities and have been bridged
through di�erent ligands to form nets. But also clusters di�erent from SMM
can be part of networks and show magnetic order and relaxation process of
di�erent nature [114].

Several regimens in temperature and �eld frequency are expected in a net-
work of SMM [115]. If we attend to the �eld frequency regimen, the super-
paramagnetic behavior of SMM is revealed in presence of AC magnetic �elds,
therefore, this characteristic can be neglected in DC �elds, where long mag-
netic order may appear. As the frequency of an AC �eld is increased, the
nature of the SMM manifests more signi�cantly until no conventional order
can appear and SMM behaves as individual clusters. However, in the inter-
mediate situation, there is a magnetic aggregation of SMM whose may shown
a glassy response. Attending to the temperature regime, the blocking phe-
nomenon tends to freeze the cluster spins in random directions, in contrast to
interclusters interactions which favor magnetic order. If long magnetic order
is presented by a compound, its origin can be purely from dipolar interaction,
as it was seen for �rst time in a crystal of Mn6 cluster [13], from magnetic
superexchange interaction origin or a mix of both phenomenons [116].

Due to the di�erent considerations that have to be taken for temperature
and �eld regimens, there are a wide variety of di�erent behaviors at the moment
and no prediction exists to anticipate the magnetic response of a compound.

In our compounds studied in Chapters 6 and 7, SMMs are linked cova-
lently through bridges with one Co(II) ion, so we expected that superexchange
pathways exist and the dipolar interaction is negligible. Focusing our atten-
tion in SMMs linked covalently, the most part of them are based on Mn (see
for example refs. [117�120]) and among them, a family of related compounds
based on a Mn4 SMM [121] that has been studied while it forms a 1D chain of
SMM showing canted antiferromagnetic coupling[122], 2D networks exhibiting
canted antiferromagnetic coupling [123] and a 3D structure with ferrimagnetic
order at 4.1K [11, 12] and where no sign of SMM behavior is found, represents a
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very complete study. In the 2D structures, di�erences in the orientation of the
[Mn4] unit, lead to di�erent properties, from SMM behavior to a ordered mag-
netic phase at 4.2K without sign of magnetic relaxation, going through a state
where canted ferromagnetic order below 2.1K coexist with a slow relaxation of
the magnetization process.

In contrast to Mn compounds, the number of Co(II) SMM networked is
signi�cantly lower, for example ref. [124], where a relaxation phenomenon for
a pentanuclear Co(II) cluster is found around 5K with a characteristic time
two orders of magnitude higher than the expected, and although no peak in χ”

appears below it, the existence of a divergence in the ZFC-FC magnetization
around 3K is used to postulate a magnetic order. If we restrict our attention
to networks of Co(II)-cubanes, only a few examples have been synthesized.
Modifying the synthesis of the Co(II) citrate cubane reported in 2003 [125],
a 3D network of cubane units linked by octahedral Co(II) centers crystallizes
[126], where the SMM character of the cubane is present around 5K and ferro-
magnetic interactions between clusters appears at lower temperature. For this
compound, a long magnetic order is suspected although not observed in the
temperature range explored. In another 3D framework build up from Co(II)
and dicyanamide bridges, the SMM behavior typical of Co(II)-cubanes has
been lost and neither SMM blocking neither magnetic order are observed in
the 3D structure [127] down to 2K. During all this chapter, we are overlooking
a supramolecular structure of Co(II) cubanes arranged in a 3D network [128],
but whose structure contents some features that makes us be cautious about
it.

Our working group is doing some progress in arranging Co-cubanes in dif-
ferent dimensionality networks with di�erent cations, morphologies and Co(II)
content. A 1D chain of cobalt(II) citrate cubanes with peripherical octahedral
Co(II) centers which can be transformed into a 2D network by dehydration has
been synthesized [129], but its magnetism can not be studied due to the impos-
sibility to asses the purity of the phase. A series of 2D networks of cobalt(II)
citrate cubanes with peripherical octahedral Co(II) centers were obtained and
magnetically characterized, the results are partially published [14, 15] and the
fully magnetic characterization can be found in chapter 6. A 3D structure
studied in chapter 7 keeps on with the work increasing the dimensionality of
the network.

The study of these compounds, might provide clues on how to modulate
the SMM properties.
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4.4 The Co(II) ion and it magnetochemistry

As it has been said in 4.2, a tendency to increase D dominates the e�orts to
achieve a smart design for SMM. Co(II) represents an excellent candidate for
SMM due to its high spin-orbit coupling and anisotropy, but the di�culty to
treat analytically problems where Co(II) ions appear, has made Co(II) not
very used for SMMs. Several Co(II)-cluster of di�erent nuclearity and geome-
try show SMM behavior, as Co(II)-cubanes (see next section), Co4 molecular
squares [130], Co5 square pyramids and higher nuclearity clusters. There ex-
ist also SMMs where di�erent oxidation states are mixed and di�erent atoms
combined, even rare earths (for a more extended discussion, see the review of
ref. [10]). There are even mononuclear compounds of Co(II)-organic radicals
systems that exhibit slow magnetic relaxation [131]. In this section a brief
revision about Co(II) magnetic behavior and its possibilities is exposed.

The Co(II) ion is a d7 which can present a wide variety of magnetic be-
haviors and interesting magnetic phenomenon. Among all the opportunities
and advantages that can be found in Co(II) complexes: variable coordination
number (4-6), di�erent lengths in coordination bonds, stability in air, di�erent
colors... we are interested in Co(II) due to the high spin that it presents in
weak ligand �elds (S=3/2), its spin-orbit coupling and its magneto-crystalline
anisotropy. The Co(II) complexes can show large values of D that increases
the energy barrier for the relaxation. In these compounds is very common a
situation where the anisotropy is of the same order of magnitude or even larger
than the exchange coupling [53].

Solving the Hamiltonian of a magnetic system leads to know its energy lev-
els and to analyze theoretically its magnetic and spectroscopic properties. The
origin of the magnetic exchange interaction between neighboring spins can be
direct exchange between orbitals of interacting paramagnetic ions or superex-
change through a diamagnetic bridge and the overall type of exchange inter-
action (ferro- or antiferromagnetic) depends on the orbital overlap integrals,
the interatomic distances and the bond angles. The exchange is modeled using
e�ective exchange parameters J. Magnetic susceptibility, heat capacity, EPR,
and INS [132] are some experimental methods used to determine J, where the
�rst two methods are adequate as long as one is dealing with relatively simple
clusters. For more complex systems, having more than one or two J parame-
ters, INS is the best technique, since it allows a direct, spectroscopic access to
the energy levels and therefore the exchange interactions.

In Co(II) clusters, solving the hamiltonian of the system can become an
not easy task due to the spin-orbit coupling terms. Recently, a very complete
review about exchange coupling in molecular magnets with unquenched orbital
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angular momenta performs a complete analysis of the di�erent problems and
approaches to this problem [133]. For a long time, the exchange interactions
in these clusters have been modeled using the Heisenberg-Dirac-Van Vleck
(HDVV) Hamiltonian, which is magnetically isotropic and expressed in terms
of spin operators and therefore it is only applicable to clusters whose magnetic
centers have isolated ground spin states. But the magnetic coupling in clusters
with unquenched magnetic orbital momentum cannot be described in terms
of spin operators only (with some exceptions), and orbital operators must be
included in the Hamiltonian. The e�ect of the unquenched orbital angular
momentum causes a strong magnetic anisotropy and anisotropic interactions
between ions that can be of the same magnitude as the isotropic ones. If a
general orbitally-dependent hamiltonian is build, it usually contains a pure or-
bital part, a mixed spin-orbital part and a third part which is of the same form
as HDVV Hamiltonian. The description of the interactions in these clusters
requires a great number of parameters, making necessary magnetic and spec-
troscopic characterizations to adjust them. Due to the di�culty of elaborating
accurate models for systems with unquenched orbital momentum and the ex-
istence of friendly-use computing programs to solve it (as MAGPACK [134]),
the HDVV model is frequently used for cases where it is incorrect. As a result,
the parameters obtained from �tting the experimental data to the theoretical
model are arti�cial. For this reason, several models and approximations have
been used in the study of theses clusters.

The �rst approximation for compounds with Co(II) appears in 1971 by
Lines [135] and it is only valid for highly symmetric environments. For a
free Co(II) ion, the lowest levels are 4F (L=3 and S=3/2) and 4P ((L=1 and
S=3/2) and the energy di�erence between them is 15000K, so we can take into
consideration only the 4F level. In the presence of an octahedral crystalline
�eld, which is a very common feature, the 4F is splitted in 4A2g, 4T2g and
4T1g being this last one, the unique level populated for our purposes. If the
octahedral �eld is perfect, the spin-orbit coupling splits the 4T1g state in six
Krammer's doublets. The population of this levels depends of the tempera-
ture, so the magnetic moment can be temperature dependent and not follow
a Curie-behavior. Lines de�ned a pseudo-spin-1/2 hamiltonian to describe
interactions between Co(II) in a prefect octahedral environment and the ex-
change interactions were simulated as HDVV hamiltonian for the lowest lying
Krammers doublet. The result was a �ctitious g factor that depends on the
temperature and includes the e�ect of the spin-orbit and the excited levels.

However, in real complexes, the Co(II) environment is usually distorted and
the local geometry at each Co(II) plays a very important role in the magnetic
properties. Distortions in octahedral �eld remove the degeneracy of the 4T1g,
i.e., a tetragonal distortion gives as a result a ground level 4A2g and a excited



4.4. The Co(II) ion and it magnetochemistry 117

level 4Eg, and the spin-orbit coupling split this new levels. In the former
example, the result is a Kramer's doublet which is the only populated at low
temperature (∼30K) with S = ±1/2 and an excited doublet with S = ±3/2

. The separation between this two doublet can be considered as ZFS of the
quartet state, so the orbital momentum has been incorporated in D. The theory
has been improved and applied for systems were the Co(II) ions are not in a
perfect octahedral environment and a small distortion is included, for example,
in a dimer [136]

Figure 4.3: Splitting of the energy levels for a Co(II) ion due to:(a) electron-electron

interaction; (b) octahedral �eld; (c) axial distortion; (d) spin-orbit coupling

A orbitally-dependent hamiltonian can be derived in principe for all elec-
tronic con�gurations and crystal �eld terms following a microscopic approach
and starting from the Anderson's description of the kinetic exchange as is
illustrated in the review of 2011 [133], but for the Co(II) the problem has
been only approached in octahedral environments with slight distortions. The
hamiltonian resulting can be treated with the use of the irreducible tensor op-
erator technique as it has been done for a Co(II) dimer [137�139]. For this
case, a e�ective pseudo-spin-1/2 Hamiltonian for not strongly distorted sys-
tems was solved and analytical expressions for the components J, the g-tensor
and the temperature independent magnetism derived. The main problem of
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this approach is the increasing matrix sizes in polynuclear complexes, specially
if we realize that each parameter has di�erent values for it components (x, y,
z)because of the anisotropy of the system.

Another approach was proposed by Lloret et al in 2008 [140] based on a
perturbational theory and the Lines theory. This approach is valid in the limit
where the strength of the magnetic interaction is lower than the spin-orbit
coupling. An empirical expression is deduced for the magnetic susceptibility of
magnetically isolated mononuclear high-spin cobalt(II) complexes with an axial
distortion for an octahedral environment. As in Lines' model, the exchange
interaction only operates between the ground Krammer's doublet, but now
the g factor depends on the temperature and on the exchange interaction
parameter J. This causes a drastic reduction in the matrix sizes, but involves
a great number of parameters.

In this scienti�c context there is not an uniform criterium to study Co(II)
cluster and authors use Hamiltonians that can include or not spin-orbit cou-
pling, distortions, exchange interactions or Zeeman interactions. The Lines'
model is a good approach, but it is only applicable to highly symmetrical oc-
tahedral Co(II) and modi�cations only include slight distortions of this con�g-
uration. Overparametrization can become a problem if a very complex hamil-
tonian is used to describe the magnetic system and magnetic measurements
are the only experimental data. The Co(II) ions that form part of the cubanes
studied are mainly in a C3 distorted environment, so none of the previous
methods can be applied. Our working group has decided to elaborate a model
specially adequate to the symmetry of Co(II) ions in our cluster. Dr. Javier
Luzón is performing ab initio calculations that clarify the nature and intensity
of the magnetic interactions and zero-�eld-splitting in the compounds studied
in this thesis. The research is still in progress and no results are shown in this
thesis.

4.5 Cubanes

As it has been said, there is an enormous quantity of di�erent SMMs: from
SMMs that only have a pair of magnetic atoms to SMMs that are like nanopar-
ticles, SMMs based on d-row elements or rare-earth ions, mixed-valence, highly
anisotropic or regular, ... They have di�erent properties depending of the mag-
netic ions present and their environment and geometry. It would be almost
impossible to review and summarize all of this compounds and it is out of
the scope of this chapter, so we are limiting ourselves to a brief revision of
Co(II)-cubanes because the building blocks used in our compounds are Co(II)-
cubanes.
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Cubanes are regular cube type structures (abbreviated as M4X4), more or
less distorted, where alternate vertex are occupied by metal atoms or the X
units. The X sites can be occupied by several atoms, as S in the Fe4S4 cubane
well know in biology [141]. Our interest lies in the M4O4 units which show
interesting magnetic exchange properties and some of them are reported to
behave as SMMs.

An ideal cube has twelve equal bond lengths and twenty-four bond angles
of 90o, but this perfect structure can not synthesized in practice, because
three bonds at 90o are hardly ever found for an oxygen atom. A more realistic
approach considers aM4O4 unit as two interpenetratingM4 and O4 tetrahedra,
the whole possessing Td symmetry. In a very interesting review of 2007 [142],
a total of 70 cubane structures are compared. In these cubanes the average
M-O-M angles are greater than 90o (mean value of 97.2o), and the O-M-O
angles are less than 90o. The M-M distances provide a method to analyze
the distortion of the M4 tetrahedron and to characterize it: a distortion by
extension along a S4 axis, will increase four M-M distances and two others
will remain the same; two sets of three equal M-M distances are a sign of a
distortion along a C3 axis; and a distortion which maintains three C2 axes will
give three pairs of M-M distances. The D2 symmetry may be further distorted
to a C2 system. These distortions are represented in �gure 4.4. The larger the
standard deviation of the M-M distances, the greater is the distortion.

If we restrict ourselves to study cubanes that behave as SMM, we are still
covering a very broad �eld. The di�erent magnetic properties of the metal ions
in�uence in the magnetic behavior of the samples and made almost impossible
to generalize or to �nd general statements. There are cubanes with Ni(II),
Co(II), Co(III), Mn(II), Mn(III)... and mixed valence complexes. We are in-
tentionally excluding more complicated structures with face-sharing cubanes
or defected cubanes. In addition, the use of derivatives or di�erent ligands can
modify signi�cantly the e�ective energy barrier for magnetization reversal by
changing the ground spin state or anisotropy of the cluster. A well documented
example is a family of hexanuclear MnIII SMM where a structural distortion
of the molecule induces a switch from antiferromagnetic to ferromagnetic in-
teraction between atoms in the cluster [143]. As a result, the ground spin state
is modi�ed and hence the energy barrier.

InM4O4 compounds, the interaction between the metal ions can be through
two pathways. The �rst and the main pathway, is the anion-cation-anion
through the two oxygen that bridge each pair of metals atoms in the cubane.
The other is due to the common face of the cubane that two Co(II) ions
share, as the distance between them is 3.1Å and the covalent radius of Co(II)
is 1.5Å, it may be a direct overlap of orbitals. It is commonly accept for
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Figure 4.4: Schematic structure of a regular cubane and its possible distortions. For

the D2 distortion only one C2 axis is shown. Adapted from ref. [142]

Ni(II) cubanes that there is a critical angle Ni-O-Ni near 98o-99o, below which
the interaction between metals is ferromagnetic and and above this angle, it
will have antiferromagnetic behavior [144, 145]. The M-O-O-M dihedral angle
has been also related to the sign of the exchange interaction, dihedral angles
lower than 170◦ being associated with ferromagnetic interactions for Ni atoms.
The distance between two metal centers also has in�uence in the strength of
the interaction. Of course, any distortion can change these angles by several
degrees and modify the exchange pathways. Another consideration to take
into account is that the more distorted the system is, the more di�cult is
to establish a priori a relationship between the interaction and the M-O-M
angles, because it may be necessary to use two or even three J parameters
of interaction. In addition, other pathways additional to the cubane core or
magnetic atoms in the neighborhood may interfere in the interaction between
the cubane metal centers.

The e�ect of the structural geometry in exchange pathways is more di�-
cult to predict in Co(II)-cubanes due to the unquenched orbital momentum,
the expected �rst order spin-orbit coupling and the wide variety of magnetic
behavior that it can present. For this reason, nowadays there is not possible to
establish a magnetoestructural correlation to predict the magnetic behavior.
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4.5.1 Co(II)cubanes

In contrast with the wide literature about Manganese or Nickel cubanes, not
many Co(II)-cubanes have been reported. Among them, some have not been
classi�ed as SMMs due to the absence of a signal in AC measurements that
reveals this behavior [127, 142, 146, 147], others shown a dependence of the AC
signal with the frequency but the blocking temperature has not been reached
[128, 148]. The blocking phenomenon and the relaxation processes in cluster
are very complexes and the environment of the Co(II) ions has a lot of in�uence
in the relaxation process. For example, a loss of solvent can cause distortions in
the cluster geometry and structural changes that a�ect both the barrier height
and the tunneling probability [125]. Also variations in the ligands coordinated
to cobalt can dramatically in�uence the magnetic behavior [149], we can reduce
our �eld of interest to the citrate Co(II)-cubanes reported to date. The citrate
cubane has a general formula [M(II)4(cit)4]8−.

To the present, two zero-dimensional discrete cobalt citrate cubane
([Co(II)4citrate4]

8−) with C(NH2)
+
3 as counterion [150, 151] or two

[Co(II)(H2O)5]2+ groups bonded to external oxygen atoms of the citrate lig-
ands and N(CH3)

+
4 and Na+ as counterions (3:1 ratio) [125] have proved to

be SMMs. Our working group has also prepared an interconvertible 1D to 2D
compound based on [Co(II)4citrate4]

8− cubanes [129], but due to the com-
plexity of the polymers and a unique reversible crosslinking reaction between
them in the solid phase at room temperature the magnetic characterization
has not been done by the moment. In table 4.1 citrate Co(II)-cubanes isolated
that have a relaxation process and for which the energy barrier had been cal-
culated are shown. In all of these compounds, the blocking phenomenon can
be observed around 5K in the AC signal.

Table 4.1: Energy barriers for Co(II)-cubanes, characteristic time and inter-

action between adjacent metals. [(NMe4)3NaCo4(cit)4[Co(H2O)5]2]·7H2O and

[(NMe4)4Co4(cit)4[Co(H2O)5]2]·6H2O are dehydrated samples, no results have been

found for hydrated compounds.

Formula I ∆E (K) τ0 (s)
[(NMe4)3NaCo4(cit)4[Co(H2O)5]2]·7H2O [125] F 26 8.2·10−19

[(NMe4)4Co4(cit)4[Co(H2O)5]2]·6H2O [125] F 32 2.1·10−19

[C(NH2)3]8[Co4(cit)4]·8H2O [150�152] AF 20.5 1·10−7

Although a ground state with a ground level with a spin-cluster di�erent
from zero is necessary for the existence of an energy barrier, a cluster with a
spin total ST equal to zero [150] has been reported to behave as a SMM [151].
This is as a consequence of the in�uence of upper energy levels near the ground
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state [152].

The coexistence of several relaxation mechanism and modi�cations on the
tunneling probability due to interactions with the environment also di�cult a
clear interpretation of the magnetic data and physical phenomenons.

4.6 Objectives

In this part of the thesis, several compounds based on Co(II) citrate cubanes
are magnetically characterized. In chapter 5, a interconvertible crystalline com-
pound with clusters of Co8 with a Co4 core is presented. The two phases that
could be isolated and magnetically studied present a di�erent symmetry that
may cause changes in the SMM behaviour of the phases. The dimensionality
is increased from isolated cubanes to two dimensional networks in chapter 6.
In this chapter, the compounds have cubanes linked to form two dimensional
networks with di�erent topology and cations, that causes slight variations on
the cubane. In chapter 7, a 3D structure similar to diamond where Co-cubanes
are used as building blocks is investigated.

The objective of this part of the thesis is double. One objective if to verify
how small structural di�erences can a�ect the energy barrier of a SMM. For this
purpose, we can compare the two phases of the 0D compound, the loss or gain of
water modi�es the symmetry of the clusters. Also the di�erences in the angles
and distances between the cubanes of the two dimensional networks and the
existence of di�erent topologies are expected to be relevant in the relaxation
process of the cubanes. The other objective is to observe the evolution of
the magnetic behavior of the cubanes from isolated clusters to the situation
when they are arranged in nets of di�erent dimension, where magnetic order
can appear. The coexistence of magnetic order and blocking is a exciting
possibility.

4.7 Techniques

The characterization of the samples presented in the second part of this the-
sis has involved magnetic and heat capacity measurement. These experiments
have been carried out in two commercial set-ups: MPMS and PPMS from
Quantum Design [153], which are part of the Research Support Services of
the University of Zaragoza [154]; and a magnetometer SQUID in a dilution
refrigerator from the group of F. Luis. The MPMS equipment has provided
us information between 300K and 1.8K about the magnetization and AC be-
havior at frequencies from 0.1Hz to 1000Hz and has been the �rst sonde used
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to characterize the samples. The PPMS has been used to wide the frequency
range in AC measurements from 0.01 Hz to 10KHz and calibrate the data ob-
tained with the dilution. It has also been used for heat capacity measurements
between 1.4K and 120K to characterize possible magnetic transitions. The di-
lution allow us to increase the temperature range for the AC characterization
down to 90mK and frequencies up to 13333Hz.

To perform magnetic measurements in the MPMS and the PPMS, around
10 or 20 milligrams of polycrystalline sample were mixed with some vacuum
grease to prevent torquing. The mixture was deposited in a gelatine capsule
stuck in a straw. Diamagnetic corrections were made using Pascal's constants
and the diamagnetic contribution of the sample gelatine capsule can be con-
sidered as negligible if it is compared with the magnetic signal of the samples.
The diamagnetic contribution of the straw is considered negligible as it is as
large as the space region seen by the SQUID sensor and its contribution can
be due only to inhomogeneities.

A special case is the compound Co4(citr)4[Co(H2O)4]4, which is called Co8
for simplicity and it is studied in chapter 5. It has three di�erent phases, two
of them interconvertible at room temperature by losing or absorbing water
molecules through the surface of the crystals. It exits the possibility to go
through a phase transition in a few minutes in the frame of the lab by absorb-
ing water from the environment or losing it by heating a few degrees, creating
vacuum, drying with a �ow of nitrogen ... it was necessary to isolated each
phase and sealed it. The gelatine capsules does not prevent the sample from
losing water due to the purging operations in the equipments, so PIREX cap-
sules were used instead. Phase 1 is stable at laboratory conditions, so around
20 milligrams of polycrystalline sample were deposited in a PIREX test tube of
3mm of diameter. The tube was sealed by applying heat at the 3cm from the
sample extreme with a gas welding torch for less than one second, forming a
PIREX capsule that sealed the sample. For isolating phase 2, some milligrams
stayed in a dryer camera for two days and were introduced in a PIREX test
tube. The capsule with the sample was sealed by heat as quickly as possible
in order to avoid contamination. The PIREX capsules were introduced in a
straw as usually in a commercial SQUID magnetometer. The contribution of
the homemade PIREX capsules was measured separately. From 300 to 200
shows a diamagnetic contribution and paramagnetism appear below 80K. As
can be seen in graphic 4.5, the signal of the Pirex capsule can be neglected due
to the higher values for the samples.

Several tries to measure monocrystals of Co8 were also done. The volume
of samples was lees than 1 mm3. Each time, one monocrystal of Phase 1
(stable at normal conditions) was covered to prevent water exchange and glued
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Figure 4.5: χ versus T plot measured at 500Oe for phase 1 (21.9mg), phase 2 (19.2mg)

and a PIREX capsule

on a plastic strip. Araldite, Superglue or transparent nail polish were used as
coverture and glue. The crystal was manually oriented with the long dimension
parallel to the strip and the strip was rotated to measured magnetization along
the di�erent axis. The magnetic contribution of a drop of Araldite, Superglue
or transparent nail polish was measured separately as can be seen in �gure
4.6. Superglue is the only material that only has a diamagnetic contribution
and the magnetic signal of a monocrystal is at least �ve times stronger than
the drop used in the test experiment. In addition, the drop used �nally to
cover the crystal was less than a third part of the drop used in the test, so
the superglue contribution can be neglected. For this reason, it was used as
coverture.

The possibility to observe a structural transition in situ motivates another
experimental set up. Around 20mg of polycrystalline sample were introduced
in a gelatine capsule stuck in a straw, the sample chamber purged as usual and
the powder was cool down to 10K suddenly. After that, the capsule was holed,
the sample was heated at 300K and the sample space was purged again before
cooling down. To be sure of the loss of water, the same process was done but
increasing the temperature before purging at 350K for 90 minutes and at 260K
for 3 hours.

To measured in the dilution, some milligrams of powder with vacuum grease
were put in a plastic tube. The dilution equipment present the disadvantage
of not being calibrate, so it was necessary to do it externally using the PPMS.
Comparing the AC signals obtained from both instruments, and applying a
multiplicative and additive factor to the signal from the dilution, it is possible
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Figure 4.6: χ versus H plot measured at 1.8K for di�erent covertures

to relate the dilution data to the desired units.

The heat capacity of the sample (K4{Co4(citr)4[µ−Co(H2O)4]2}·8H2O)n,
denoted as Co4/3D, was measured in the PPMS. For this purpose, a small
amount of powder was several times pressed in a hydraulic press until a pill of
dimensions 3x3mm2 and 0.74mg was obtained. It was glued to a sample holder
with some grease and the contribution of the sample holder and the grease was
subtracted.





Chapter 5

Interconvertible Co(II)-cubanes

5.1 Introduction

This chapter is devoted to the magnetic characterization of isolated Co8 clus-
ters based on Co(II)-citrate-cubane very similar to the ones that are arranged
in layers presented in chapter 6 or the three dimensional structure studied in
chapter 7. The objective is to understand the magnetic behavior of the iso-
lated cluster and how distortions and symmetry can in�uence its magnetism.
For this purpose, polycrystalline samples of several phases of a compound were
magnetically characterized. The cubane presents di�erent symmetry in each
phase. The synthesis and structure of the phases is described in section 5.2
and the magnetic properties presented in section 5.3. A discussion about the
results and some conclusions can be found at the end of the chapter.

5.2 Synthesis and structure

Starting from a water solution of citric acid and cobalt carbonate, pink single
crystals of clusters Co4(citr)4[Co(H2O)4]4 (which is called Co8 for simplicity)
are obtained after a chemical process. Three interconvertible phases can be
isolated due to two reversible solid-state reactions. Each phase is reached after
a dehydration or hydration process, where crystallization water molecules are
lost or absorbed through the surface of small monocrystals. In each phase
cubane cores with four adjacent Co(II) ions are found, but they present di�er-
ent topologies.
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Phase 1. Modulated structure.

This phase has space group C2/c, a=23.1494(9)Å, b=9.6555(2)Å,
c=23.5036(8)Å, β=111.017o(4) and V=4904.0(3)Å3. Phase 1 is the stable one
at room temperature and normal conditions of humidity. It can be describe
as a sub-periodic crystalline material with a modulated structure produced
by a hopping of peripheral Co(II) ions between neighboring molecules as the
ones existing in Phase 2. The re�ned modulated vector is (0 0.372 0) and
the modulation a�ects to the direction of the hoping, but the clusters present
in the structure are all of the same species an can be found in �gure 5.1a.
There are four clusters per unit cell. A two-fold axis parallel to b cell axis
goes through the cubane, orthogonal to two faces, but the outer Co(II) centers
broke a possible C2 symmetry for the cluster. Inside the cubane, there are
two pairs of M-M distances and other two di�erent distances. We can not
considered the cubane as an isolated cluster, because there are three Co(II)
that are called peripheral, but whose distances to the Co(II)-cubanes are of
the same magnitude that the intra-cubane distances and they are linked by
two oxo-bridges, as can been in tables 5.1 and 5.2. The interaction with the
outer Co(II) ions is expected to be of the same magnitude as the intra cubane
interaction. Ab initio calculations show that the easy axis of anisotropy for the
Co(II) centers of the cubanes are directed towards the center of the cubane.
Looking in this direction, the metal atoms present a C3 environment, as can
be seen in �gure 5.2a, where the oxygen atoms of the cubane are represented
in red and the oxygens from the citrate in green. The peripheral Co(II) atoms
are in slightly distorted octahedral environments.

Table 5.1: Characteristic distances and angles for the cubane in Phase 1

Distance Angle
Co1-Co2 3.1736(1) Co2-O-Co2' 100.02o(1)
Co1-Co2' 3.1307(1) Co1-O-Co1' 100.77o(1)
Co2-Co2' 3.2325(1) Co1-O-Co2 98.74o(1) / 96.66o(1)
Co1-Co1' 3.2383(2) Co1-O-Co2' 97.82o(1) / 96.33o(1)

Table 5.2: Characteristic distances and angles for the outer Co(II) atoms to the

cubane in Phase 1

Distance Angle
Co1-Co3 3.2958(2) Co1-O-Co3 101.68o(1) / 102.34o(1)
Co2-Co4 3.2880(1) Co2-O-Co4 100.48o(1) / 103.24o(1)
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Figure 5.1: a) Cluster for Phase 1, the outer Co(II) and O atoms are lighter. b)

Cluster for Phase 2, the outer Co(II) and O atoms are lighter. c) Unit cell for phase

2, hydrogens are omitted for the shake of clarity.

Phase 2.

If a loss of water is produced as consequence of heating, drying with a nitro-
gen �ux or creating vaccum, the modulation disappears and a new phase can
be isolated. The structure has the same space group that the hydrated phase
but the cell parameters change as a result of the lost water: a=22.8070(17)Å,
b=9.6745(4)Å, c=23.3079(14)Å, β=111.643o(8), Z=4, V=4780.23Å3. This
phase has four high symmetric Co8 clusters as the ones shown in �gure 5.1b
per unit cell, which can be seen as a cubane and four more Co(II), forming an
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octanuclear cluster with a cubane core. The cubane is distorted and a two-fold
axis, parallel to b cell axis, is orthogonal to two faces. The distances and angles
between Co(II) centers in the cubane are detailed in table 5.3. There are two
pairs of M-M distances and other two di�erent distances. As for phase 1, we
can not considered the cubane as an isolated cluster, because distances from
peripheral Co(II) ions to the Co(II)-cubanes are of the same magnitude that
the intra-cubane distances and they are linked by two oxo-bridges, as can be
seen in table 5.3. The interaction with the outer Co(II) ions is expected to be
of the same magnitude as the intra cubane interaction. Ab initio calculations
show that the easy axis of anisotropy for the Co(II) centers of the cubanes are
directed towards the center of the cubane, and they present a C3 environment,
as for phase 1. The peripheral Co(II) atoms are in slightly distorted octahedral
environments.

Figure 5.2: a) C3 environment for the Co(II) centers in the cubane. Oxygen atoms

of the cubane are represented in red and the oxygens from the citrate in green. b) C2

symmetry for the cubane

For Phase 1, the cluster is distorted as a consequence of the hoping of one
Co(II) peripherical and the symmetry decreases. Although the cubane core
keeps the C2 symmetry, the angles and distances are di�erent from Phase 2.
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Table 5.3: Characteristic distances and angles for the cubane in Phase 2

Distance Angle
Co1-Co2 3.1910(7) Co2-O-Co2' 100.4o(1)
Co1-Co2' 3.1337(7) Co1-O-Co1' 99.5o(1)
Co2-Co2' 3.2340(8) Co1-O-Co2 99.2o(1) / 97.3o(1)
Co1-Co1' 3.2210(6) Co1-O-Co2' 97.3o(1) / 95.6o(1)

Table 5.4: Characteristic distances and angles for the outer Co(II) atoms to the

cubane in Phase 2

Distance Angle
Co1-Co3 3.2833(6) Co1-O-Co3 100.0o(1) / 102.3o(1)
Co2-Co4 3.2829(8) Co2-O-Co4 100.4o(1) / 102.1o(1)

Phase 3.

A third phase can be reached if we keep on dehydrating the compound but,
unfortunately, the structure can not be isolated and measured. A polymeriza-
tion process takes place and its nature is under study.

5.3 Magnetic properties

The two phases were magnetically characterized as described in section 4.7.
These samples were manipulated with special care due to a potential phase
transition in the frame of the lab. To asses the purity of the phases, polycrys-
talline samples were isolated and sealed in PIREX capsules.

For both samples, the magnetization at a �eld of 500Oe has been mea-
sured from room temperature to 1.8K, as can be seen in �gure 5.3. The χM ·T
(χM is the magnetic susceptibility per mol) at 300K is 22.75emu·mol−1·K
for both compounds. This value is consistent with eight independent Co(II)
ions with an e�ective magnetic moment of 4.77µB, given by to S=3/2 and
g≥2.4 as it was expected [53]. The value of g di�erent from 2 is due to the
existence of a unquenched orbital moment. The χM ·T value remains constant
for both samples until 200K. Below 200K, the signal for Phase 1 increases
slightly to 22.9emu·mol−1·K and then star to decreases at 120K reaching
6.6emu·mol−1·K at 1.8K; for Phase 2, the decrease begins at higher tem-
perature (around 200K) but it is smoother until reaching 8.8emu·mol−1·K at
1.8K. The only di�erence between both signals is quantitative.
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The slight increase for phase 1 near 150K is predicted for a Co(II) ion [53].
The decreases of χM ·T at low temperature may be due to an antiferromagnetic
interaction between the Co(II) ions and/or the depopulation of the higher
energy Kramers doublet.
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Figure 5.3: χM ·T versus T plot for phases 1 (full circles) and 2 (open circles). The

inset shows in detail the low temperature region.
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Figure 5.4: Magnetization in Bohr magnetons per unit formula versus the ratio H/T

for phases 1 (full �gures) and 2 (open �gures) at two temperatures

No maximum of the magnetic susceptibility is observed in the χM versus T
graphics and a Curie-Weiss adjust to a eight independent Co(II) ions give as pa-
rameters: g=2.758(2), θ=4.7(3)K (ferromagnetic interaction) and g=2.850(1),
θ=-0.3(2)K for phase 1 and phase 2 respectively. Due to the depopulation for



5.3. Magnetic properties 133

Co(II) ions that allow us to considerer them with an e�ective spin of S=1/2
below 30K, and the deviation from the Curie law expected for Co(II) ions [53],
the meaning for the θ is questionable at low temperatures.

The dependency of the magnetization with the �eld has also been measured
at 1.8K and 5K. As can be seen in graphic 5.4 the curves for both phases do
not match, the signal for phase 1 is smaller as it happens at low temperature
in �gure 5.3. There is factor of 1.12 between the signal of the two phases.
The magnetic curves at 1.8K and 5K do not scale if they are normalized by
the temperature, indicating the existence of an antiferromagnetic interaction
which may exist inter-clusters. At 1.8K and 5T, the magnetization has not
reach saturation and it has a value of 11.65 and 13.03 µB for phase 1 and
phase 2 respectively. In this temperature region, we can use an e�ective spin
ST and g value for the molecule although is an oversimpli�ed picture, and the
ST classi�cation is applicable only in the case of isotropic exchange. A ST

equal to 8 · 1
2 = 4 will give us a g∼2.7 for 1.8K and 5T, which is a much lower

than the value around 4.6 expected for Co(II) ions in powder at this range of
temperature [155]. If we approach the problem of estimating ST in the inverse
sense, a typical g value of 4.6, gives a ST ≥2.8. In any case, a ground state
di�erent from zero for the cluster is found, so a SMM behavior is possible.

To con�rm the possibility of a SMM behavior in this compound, the AC
susceptibility has been measured at di�erent frequencies in the low tempera-
ture range. As can be seen in �gure 5.5, the slow relaxation of the magnetic
moments becomes apparent below 7.5 for both phases, giving to a blocking
process, which is observable only for frequencies up to 10Hz for phase 2. One
of the most intriguing features of the graphics that can be appreciated in the
�rst look, is the crescent in-phase and out-phase signals below the characteris-
tic blocking peak. The structural analysis of the phases discards the existence
of isolated Co(II) ions to which the signal may be attributed of any other
magnetic aggregate that can contribute paramagnetically to the signal. The
increment in the signal can be only due to the existence of another relaxation
process or a magnetic order below the blocking temperature. The possibility
of another relaxation process may be due to the modi�cations that neighbor
clusters may induced in the energy levels of a cluster, which can a�ect the
tunneling relaxation process making necessary a thermal assistance to observe
the process. Dipolar interactions between clusters can also be responsible of a
magnetic order as in other compounds [13], which may also justify the incre-
ment in the AC signals below the blocking phenomenon. However, these are
only hypothesis, and measurements at lower temperatures would be necessary
to clarify this behavior that have also been observed in other clusters.
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Figure 5.5: χAC measurements at di�erent frequencies for Phase 1 (Up) and Phase

2 (Middle). At the bottom, both phases are compared for some frequencies, Phase 1

(open squares) and Phase 2 (full circles)
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The AC signals for both phases are compared in the bottom of �gure 5.5.
It can be seen that the sample of Phase 2 was slightly contaminated and have
a small contribution of Phase 1, that explains the small shoulder in the out
of phase susceptibility for Phase 2 at the same temperature that the blocking
phenomenon for Phase 1. The magnetic blocking occurs at higher temperatures
and is visible at lower frequencies for Phase 1 than for Phase 2, which is easily
understood if we considerate that the hoping of one of the peripheral Co(II)
ions modi�es the symmetry of the cluster, increasing the anisotropy and hence
the energy barrier. This fact also has to be signi�cant in the di�erence between
the energy barriers and relaxation times of both phases.

As the blocking phenomenon results relevant for phase 2 only at high fre-
quencies and there exists another contribution that keeps on increasing when
lowering the temperature, not enough peak position in χ” can be determine
accurately. It is not possible to adjust to an Arrhenious plot and obtain the
energy barrier and characteristic time with precision by using method. We
have determined the relaxation parameters with the equation 4.3. The plot-
ting of τav versus 1/T can be seen in �gure 5.6, where the di�erent behavior
of both phases becomes more relevant. Attending to the out of phase signal,
Phase 2 is only blocked for frequencies 500Hz and 1000Hz, while Phase 1 is
blocked from 1 Hz. As the sample of Phase 2 is contaminated, the plotting of
τav shows the blocking of Phase 1 for low frequencies and the blocking of the
phase 2 is only visible for 500 and 1000 Hz. In the graphics, the blocking of
the amount if Phase 1 in the sample of Phase 2, is marked as a and b stands
for the point where the Phase 2 is blocked.

The relaxation parameters for Phase 1 have been determined for the lowest
frequency whose [χ”/χ′] quotient is not noise (1 Hz), while for Phase 2, it has
been necessary to employ data at 500 Hz. Table 5.5 contains the results. As
it was expected, the higher anisotropy for the cluster of Phase 1 in�uences the
energy barrier, making it four times the energy barrier for Phase 2.

Table 5.5: ∆E and τ0 for Phase 1 and Phase 2.

∆E (K) τ0 (s)
Phase 1 39.8(11) 0.26(8)·10−7

Phase 2 9.2(3) 34(2)·10−7

No evidence of hysteresis of irreversibility has been found in these com-
pounds. The velocity of the relaxation process due to quantum tunneling
process makes no possible to observe hysteresis in most clusters, specially in
Co(II) clusters.
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where scale() is the current axis scale function.

Parameter Value Error
------------------------------------------------------------
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Figure 5.6: τav versus 1/T plotting for several frecuencies. Phase 1 (open squares)

and Phase 2 (full circles)

In an e�ort to characterize the magnetic behavior of pure phases, we mea-
sure the magnetism of single crystals of Phase 1, which is stable at normal
conditions. In a crystal, the water interchange process is expected to be slower
than in powder, due to the lower super�cie/volume ratio. We covered a crystal
Superglue and measure its magnetization. Unfortunately, when we sample was
recovered, the crystal was chapped, so we can not assure the phase. In addi-
tion, the AC signal was too weak to be measured. This measurements have
not been taken into account.

We wanted to check if the vacuum created in the purging process of the
MPMS is enough to remove water molecules and cause a phase transition from
Phase 1 to Phase 2 in situ. Comparing the magnetic behavior of the sample
after several purges and heating process, it can be seen as the blocking process
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occurs at di�erent frequencies and temperatures. The impossibility to assure
the phase measured each time makes these data discarded.

Several e�orts were made to isolate the phases and even to observe a struc-
tural transition in situ in the magnetometer by heating a sample, vacuuming
and quenching it, but no conclusive results were obtained. The best results ob-
tained are presented in this thesis and correspond to samples sealed in PIREX
capsules, which has not been enough to prevent a small contamination of phase
2. In spite of this handicap, the magnetic behavior for both phases has been
determined.

5.4 Discussion and Conclusions

In this chapter, two phases of a single-crystal interconvertible compound formed
by octanuclear Co(II) clusters have been magnetically characterized. A SMM
behavior has been found in both phases.

Unfortunately, the compound is very sensitive to the environment, as it
gains or losses water molecules in few minutes in normal conditions. Several
tries of growing monocrystals which may slow down the water interchange pro-
cess due to the lower super�cie/volume ratio have produced tiny crystals whose
AC signal is too weak to be measured in the SQUID. The lack of an AC signal
makes no possible to identify the phase. Several e�orts were made to isolate
the phases and even to observe a structural transition in situ in the magne-
tometer by heating a sample, purging the sample chamber and quenching the
sample, but no conclusive results were obtained. The best results obtained
are presented in this thesis and correspond to samples sealed in PIREX cap-
sules, which has not been enough to prevent a small contamination of phase
2. In spite of this handicap, the magnetic behavior for both phases has been
determined.

The magnetization for both phases is equivalent at high temperature, show-
ing a small di�erence below 100K, revealing a decreases in the magnetization
more relevant for phase 1. No magnetic order is found. We have not been able
to �t or perform theoretical simulation for the magnetization curves at low
temperature, but a cluster ground state ST=0 can be discarded, which is one
condition for a SMM. The SMM behavior expected for the samples manifest
itself in the blocking phenomenons observed in the AC measurement, which oc-
curs around 5K, in good agreement with the blocking found in another cubanes
with similar distances and Co-O-Co angles.

As it could have been predicted, the hoping peripheral Co(II) ion breaks
the symmetry of the cluster, increasing the energy barrier and the blocking
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temperature. For phase 1, the energy barrier is four times than for phase 2.
This result remarks the importance of the D parameter in the energy barrier,
being in good agreement with the synthetic approach which tends to increase
the anisotropy instead the spin cluster to obtain higher energy barriers.

The compound studied present a third phase if Phase 2 loses more water,
but the structure has not been determined and we couldn't isolated the phase
to characterize it magnetically.



Chapter 6

Two dimensional arrays of

Co(II)-cubanes

6.1 Introduction

In this chapter, two dimensional networks of linked Co(II)-citrate-cubane clus-
ter through Co(II) ions bridges are characterized magnetically. The linked
citrate cubanes are similar to isolated citrate cubanes that have been proved
to behave as SMM [125, 150, 151]. Therefore, we are interested in checking if
the SMM behavior is conserved when the cubanes are arrange in layers, and
moreover, if there is a possibility to observe the transition for an individual
blocking behavior to a spin-glass phase or a magnetically ordered phase where
the clusters interact.

For this purpose, our working group has synthesized �ve di�erent two di-
mensional compounds where Co(II) citrate cubane units are bridged by single
Co(II) centers. Three of them are anionic structurally square 2D polymers and
have been obtained with di�erent cations, K, Rb and Cs; we called them as
cationCo4/Square: KCo4/S, RbCo4/S and CsCo4/S; another one is a square
lattice with extra Co(II)ions named CsCo4+1 and the last one present a rhom-
bic lattice, CsCo4/R. The di�erences in the cluster geometry and net topology
may also give us information about the in�uence that the environment can
have on the magnetic behavior of the cubanes.

The synthesis and structure of the compounds are described in section 6.2
and the magnetic properties explained in section 6.3. A discussion about the
results and some conclusions can be found at 6.4.
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6.2 Synthesis and structure

All the compounds presented in this chapter are synthesized following a very
similar procedure, and small modi�cations cause di�erent topologies into the
nets or distortions on the cubane. As it has been said before, we will provide
here only the necessary crystallographic information to support the analysis of
the magnetic data.

6.2.1 Two dimensional square polymers

Our working group has already reported two square grid compounds for Rb and
Cs as counterions [14]. The linkage of [Co8citrate4]8− through Co(H2O)2ETG
(ETG= ethylene glicol= ethane-1,2-diol) bridges gives two dimensional square
networks with cubanes in the nodes of formula [Co4(citr)4Co(H2O)2ETG2]

4−
n .

The nets are piled up perpendicularly to the c axis and the compounds crystal-
lize in the tetragonal system, acentric space group P(-4)21c. Counterions K+,
Rb+ and Cs+, water molecules and ETG molecules connect the layers trough
electrostatic interactions.

The complete formulae are (C28H36Co6O36K4)n·9.5·nX(H2O)·Y n(C2H6O2),
(C28H36Co6O36Rb4)n · 9.5 · n(H2O) · 2n(C2H6O2) and
(C28H36Co6O36Cs4)n · 4.5 · n(H2O) · 2.5n(C2H6O2), but they are abbreviated
as KCo4/S, RbCo4/S and CsCo4/S. The cell parameters for the compounds
can be found at table 6.1

Table 6.1: Cell parameters for KCo4/S, RbCo4/S and CsCo4/S

Compound a b c
KCo4/S 12.6136(3)Å 12.6136(3)Å 19.1005(13)Å
RbCo4/S 12.5307(2)Å 12.5307(2)Å 19.6730(5)Å
CsCo4/S 12.5873(2)Å 12.5873(2)Å 19.6730(5)Å

The building block of the polymers is a cobalt citrate cubane formed by
four Co(II) centers and four hydroxy oxygen atoms from an equal number of
quadruply deprotonated citrates. Neighboring cubanes are bridged by a six-
coordinated Co(II) centers coordinated by two carboxylate oxygen atoms. The
charge of each polymer unit, which is formed by one cubane and two Co(II)
bridges is balanced by the alkali metal cations. The four bridging Co(II),
called nexus, are linked through two arms formed by Co-O-C-C-C-O-Co and
Co-O-C-O-Co to the cubane, as can be seen in �gure 6.1, so they can interact
with the cluster but the interaction strength is expected to be weaker than
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the intra-cubane interaction. Therefore, in a simpli�ed approximation, we can
considered only the cubane as a cluster.

Figure 6.1: Symmetry for the cubane. A C2 and a S4 axis parallel to the c cell axis

goes through the cubane. The cubane, the Co(II) nexus and the bridges between

them are remarked.

Figure 6.2: Network structure for the KCo4/S compound. a) View along the c axis

for a single layer, the upper links along the b axis are remarked and along the a axis

are remarked and lighter; only one layer is shown. b) view along the a axis. a) view

along the b axis
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The cubanes are linked along the a and b crystallographic axis as can be
seen in �gure 6.2a, where the links are established for the uppers faces of the
cubanes in one direction and the bottom faces for the perpendicular direction.
The layers are stacked in a way that the projection of the cubanes of a upper
layer �ts on the holes of a bottom layer, so along the c axis, the large spaces
between nodes in one layer are blocked by cubanes from the neighboring layers
and channels do no exist. Layers are piled up in such a way that the cubanes
seem to be teeth of a zipper, and the distance between them is gave by c/2.

For the three compounds with K+, Rb+ and Cs+ as counterions, the cubane
is distorted and a four-fold rotoinversion axis with the inversion center at the
center of the cube and parallel to c cell axis goes orthogonally to two faces. As
a result, the cubane presents a S4 symmetry that increases four M-M distances
while the other two remain shorter and equal. The main distances and angles
can be seen in table 6.2. The distances and angles inside the cubane are
di�erent for the three compounds, showing the in�uence of the counterion
used in the synthesis. The environment of cubane Co(II) ions is a distorted C3

while nexus Co(II) are in an distorted octahedral �eld.

Table 6.2: Characteristic distances and angles for cubanes in KCo4/S, RbCo4/S and

CsCo4/S.

Distance Angle

KCo4/S
Co1-Co1' 3.139(2) Co1-O-Co1' 96.1o(2)/97.5o(2)
Co1-Co1" 3.240(2) Co1-O-Co1" 100.8o(3)

RbCo4/S
Co1-Co1' 3.148(1) Co1-O-Co1' 96.3o(2)/97.2o(2)
Co1-Co1" 3.196(1) Co1-O-Co1" 99.1o(2)

CsCo4/S
Co1-Co1' 3.155(1) Co1-O-Co1' 96.0o(2)/97.6o(2)
Co1-Co1" 3.190(1) Co1-O-Co1" 98.7o(2)

6.2.2 Two dimensional rhombic polymer

A small modi�cation in the synthesis described in 6.2.1, replacing the ETG
by water, carries a very important modi�cation in the structure of compound
with Cs as counterion. The water molecules occupy positions in the nexus
Co(II) coordination sphere, modifying the linkage between the citrate cubanes.
The result is a two dimensional rhombic network with cubanes in its nodes of
formula [Co4(citr)4Co(H2O)42]

4−
n . The nets are piled up perpendicular to the

b axis and the compounds crystallize in the monoclinic space group C2/c with
counterions Cs+ and water molecules connecting the layers trough electrostatic
interactions.
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Figure 6.3: Symmetry for the cubane. A C2 parallel to the b cell axis goes through the

cubane. The cubane, the Co(II) nexus and the bridges between them are remarked.

Figure 6.4: Network structure for the CsCo4/R compound. a) View along the b axis

for two layers, the upper layer is remarked and the bottom layer is lighter. b) view

along the a axis. a) view along the c axis.
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The complete formula is Cs4{[Co(C6H4O7)]4µ(Co(H2O)4)2] · 16H2O, and
it has been abbreviated as CsCo4/R. The cell parameters for this compound
are a=22.1255(10)Å, b= 24.3019(13)Å, c=12.6289(5)Å, β=97.308o(4). As can
be seen in �gure 6.4, the layers are piled up along the b axis in such a way
that there is no longer a crenellated e�ect as in square net compounds; tunnels
exist in the space between cubanes, that may open the possibility to use this
compound as a Metal Organic Framework (MOF).

In the square grid compounds, each cubane Co(II) ion present the same
ligands, but in the CsCo4/R compound, there exist two di�erent cubane Co(II)
places depending on if they are linked to the bridges that connect cubanes or
not. In the �gure 6.3 can be seen clearly as only Co2 and Co2′ atoms are part of
the bridges between cubanes. This connectivity array makes the symmetry of
cubanes in CsCo4/Rlower than the symmetry of cubanes in the square lattice
compounds, and only a C2 axis parallel to the b axis goes through the cubanes.
The main distances and angles for the cubane can be seen in table 6.3. The
cubane Co(II) ions are in a C3 environment and two di�erent places could be
distinguished; the nexus Co(II) ions are in a octahedral environment.

Table 6.3: Characteristic distances and angles for the cubane in CsCo4/R.

Distance Angle
Co1-Co2 3.209(1) Co2-O-Co2' 99.4o(2)
Co1-Co2' 3.119(1) Co1-O-Co1' 100.5o(2)
Co2-Co2' 3.217(1) Co1-O-Co2 98.7(2) / 99.0(2)
Co1-Co1' 3.2361(9) Co1-O-Co2' 95.8(2) / 96.0o(2)

6.2.3 Two dimensional square polymer with extra Co(II) ions

The high reactivity of the citrate cubane favors the crystallization of another
compound by adding a Co(II) excess in the synthetic process of CsCo4/S. An
extra Co(II) ion coordinated to six oxygen atoms, [Co(H2O)6]

2+ cation, oc-
cupy the holes between cubanes, as can be seen in �gure 6.5, giving crystals
of unit formula: Cs2[Co(H2O)6][Co6(C6H4O7)4(H2O)8] · 12H2On [15]. The
space group is the same as for square compounds P(-4)21c and the cell param-
eters are very similar a=12.5738(1)Å, b=12.5738(1)Å, c=19.5895(3)Å. The
unit building block is one cubane, two Co(II) nexus and two extra Co(II) ions
per unit cell. The connectivity between cubanes, symmetry of the cubanes and
environment for the Co(II) ions are identical that for the previous square poly-
mers, with the addition of the extra Co(II) ions in a octahedral environment.
The angles and distances in the cubane are shown in table 6.4.
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Figure 6.5: Network structure for the CsCo4+1 compound. View along the c axis for

one layer, the cubanes and the Co(II) ions are remarked.

Table 6.4: Characteristic distances and angles for cubanes in CsCo4+1.

Distance Angle
Co1-Co1' 3.1360(8)(2) Co1-O-Co1' 95.8o(1)/97.3o(1)
Co1-Co1" 3.2258(7)) Co1-O-Co1" 99.7o(1)

6.3 Magnetic Properties

For the square and rhombic grid samples, the magnetization at di�erent mag-
netic �elds between 50000T and 500Oe has been measured from room tem-
perature to 1.8K, as can be seen in �gure 6.6 for squared compounds and 6.7
for the rhombic compound. The χM ·T at 300K is around 18emu·mol−1·K,
which agrees with the value expected for six independent Co(II) ions with an
e�ective magnetic moment near to 4.77µB, given by S=3/2 y g≥2.4 as it was
expected due to the existence of a unquenched orbital moment [53].

The χM ·T value remains constant for all samples until 200K and around
150K there is a small increase. For the square grid compounds, the magnetic
behavior becomes �eld-dependent around 60K, due to the energy levels modi-
�cation and depopulation. At low �elds, the signal increases whereas at high
�elds a sharper decreasing is observed. This question is frequently obviated,
and may lead to errors if the magnetic �eld at which the measurements have
been done is not speci�ed. A peak appears at 5K at �elds of 500 and 1000Oe,
and below it, the signal keeps on increasing. For higher �elds, the signal de-
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Figure 6.6: χM ·T versus T plot for squared grid compounds. The upper �gure cor-

respond to the KCo4/S, in the middle there is shown for the RbCo4/S and in the

bottom for CsCo4/S. The inset shows in detail the low temperature region.
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creases sharply and for 50000Oe the peak disappears, as can be seen in �gure
6.6. Comparing the compounds where Rb is used as counterion versus the ones
with K or Cs, a clear di�erence can be seen: at low �elds the RbCo4/S signal
can be twice the signal for the other compounds, indicating the existence of a
stronger ferromagnetic interaction between the Co(II) ions.

If we focus our attention in the CsCo4/R compound, whose magnetization
versus temperature can be seen in graphic 6.7, the di�erences with the other
compounds become evident at 100K. For 500Oe and 1000Oe �elds, the curve
presents a peak at 75K which disappear at higher �elds and does not exist
for other compounds. Although a similar behavior has not been observed for
Co(II) SMM, this can be associated to the more di�erent environment for the
Co(II) ions in this compound [53]. Another peak can be seen at 5K for a
1000Oe �eld, analogous to the ones observed for the square grid compounds .
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Figure 6.7: χM ·T versus T plot for the rhombic grid compound CsCo4/R. The inset

shows in detail the low temperature region.

The magnetization at 500Oe for all the two dimensional compounds is com-
pared in �gure 6.8. The behavior of CsCo4+1 is analogous to the behavior of
the other compounds. It shows a peak at 500Oe and a value at high tem-
perature correspondent to seven independent Co(II) with S=3/2 and g=2.4.
For all the compounds, the adjust to a Curie-Weiss law gives a g=2.5 and θ

values near to zero for KCo4/S, CsCo4/S, CsCo4/R, but θ = 3.5 ± 0.3 and
θ = 11.5 ± 0.5 for RbCo4/S and CsCo4+1. Due to deviation from the Curie
law expected for Co(II) ions [53], the meaning for the θ is questionable at low
temperatures.
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Figure 6.8: χM ·T versus T plot for the the bidimensional networked compounds

measured at 500Oe

0 10000 20000 30000 40000 50000
0

2

4

6

8

10

12

14

16

 CsCo4/R 1.8K
 CsCo4/R 6K
 CsCo4+1 1.8K
 CsCo4+1 6K

 KCo4/S 1.8K
 KCo4/S 6K
 RbCo4/S 1.8K
 RbCo4/S 6K
 CsCo4/S 1.8K
 CsCo4/S 6K

 
 

M
 (

B
)

H (Oe)

Figure 6.9: Magnetization in Bohr magnetons per unit formula versus the ratio

H/T for the bidimensional compounds KCo4/S, RbCo4/S, CsCo4/S, CsCo4/Rand

CsCo4+1

Magnetization versus �eld for all the compound have been measured at
6K and at 1.8K and results are shown in graphic 6.9. The signal of RbCo4/S
reaches higher values of magnetization at low �elds than the other samples with
the same number of Co(II) per unit cell, which may be indicative of a stronger
ferromagnetic interaction between cubane Co(II) ions in this compound. Al-
though saturation has not been reached at the highest �eld at 1.8K for any
of the compounds, it is not very far away and we can make several considera-
tions. For the square and rhombic grid compounds, a value of 13µB per unit
formula is reached, and the CsCo4+1compound present a maximum value of
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15.5µB. Scaling the curves with the ratio �eld/temperature, they don't match
for di�erent temperatures, probably due to the presence of interactions between
cubanes or nexus and cubanes, being the curve at 6K above the curve at 1.8K,
which suggest that the interactions are antiferromagnetic. The separation be-
tween curves start around 3000OeK−1 for KCo4/S, 3600OeK−1 for RbCo4/S,
4000OeK−1 for CsCo4/S and CsCo4/R, and 6000OeK−1 for CsCo4+1.

In an oversimpli�ed way we can take a ST for the cubane and keep the
nexus with an isolated spin value of 1/2 and an experimental g value of g=4.6
[155]. Using this approximation, each nexus contributes with 2.3 µB to the
magnetization of saturation. That would give us an ST around 2 for all the
compounds, which would be consistent with ferromagnetic coupling between
the Co(II) ions in the cubane and make a SMM behavior possible. Several tries
to �t the experimental curves with oversimpli�ed models have not produce
satisfactory results, so waiting for a complete knowledge of the energy levels
for these compounds is mandatory before analyzing the magnetic properties.

Until now, the static magnetic behavior of the compounds has been ex-
plained, but what really is going to determine if our compounds behaves as
SMM is the AC behavior. For this reason, the AC signal was measured at
di�erent frequencies down to 1.8K for all the compounds, obtaining the re-
sults shown in graphic 6.10 for KCo4/S, CsCo4/R and CsCo4+1. As can be
observed, the signal becomes frequency-dependent below 7K and two signal ap-
pears superimposed: a continuously crescent signal and a blocking phenomenon
around 5K, which is clearer observed for the CsCo4/R compound.

In order to clarify the origin of the crescent signal motivated very low-
temperature measurements in a dilution refrigerator have been done for RbCo4/S
(see graphic 6.11), which present the most di�erent behavior, and CsCo4/S (see
graphic 6.12).

A frequency-dependent shoulder is observed in the in-phase and out-phase
signals around 4K. As this anomaly is present in other compounds which
present isolated Co-cubanes, it can be associated with the superparamagnetic
blocking of the total cubane spin ST . Another anomaly around 400mK is
present for which χ” ̸=0, indicating the existence of non-equilibrium e�ects.
The magnetic behavior of the compounds is slightly di�erent at low tempera-
ture.
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Figure 6.10: χAC measurements at di�erent frequencies for KCo4/S, CsCo4+1 and

CsCo4/R.
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For the RbCo4/S compound and frequencies below 33Hz, χ” ≈0, so we
can considered there is an equilibrium situation and the maximum in χ′ near
0.2K can be attributed to a phase transition to a ordered magnetic phase. For
higher frequencies, the dominant phenomenon is a blocking process as it can
be deduced for the existence of a frequency-dependent peak.

0

10

20

30

40

50

60

70

 

0.1
0.25 0.5 0.75

1
2.5 5

0

2

4

6

8

10

12

14

A
C
'  

 (e
m

u 
oe

-1
 m

ol
-1
)

A
C
"  

 (e
m

u 
oe

-1
 m

ol
-1
)

 

T (K)

3 4 5

3.0

4.5

6.0

7.5

9.0

10.5
 33 Hz
 133 Hz
 333 Hz
 633 Hz
 1333 Hz
 5333 Hz
 10000 Hz

 

 

3 4 5
0.0

0.5

1.0

1.5

2.0

 

 

Figure 6.11: χAC measurements at di�erent frequencies for RbCo4/S
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For the CsCo4/S compound a superimposition of a frequency-independent
peak and a frequency-dependent peak is observed. The peaks are attributed
to a blocking process and a phase transition to an ordered magnetic phase that
occur at near the same temperature.
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Figure 6.12: χAC measurements at di�erent frequencies for CsCo4/S

From the graphics, a critical temperature (Tc) of 0.20K and 0.25K for
RbCo4/S and CsCo4/S compounds is determined. The superimposition of
signals makes di�cult to determine the blocking temperature for each fre-
quency very di�cult. For this reason, in order to obtain the energy barriers
and the characteristic time of the compounds, the τav is represented versus
the reciprocal temperature in �gure 6.13. Above 3K, τav indicates thermally
activated behavior with activation energies ∆E = 13(2)K for the RbCo4/S
and ∆E = 14(1)K for the CsCo4/S. This is attributed to the relaxation of
the Co4 cluster, which causes the anomaly around 4K and whose activation
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energy is similar to the barriers determined for isolated Co-cubanes clusters
(see table 4.1). Below 3K, τav becomes independent of the temperature due
to the domination of quantum tunneling processes in the relaxation. However,
below 0.5K, τav increases again and become temperature-dependent, indicat-
ing the existence of a thermally activated process with lower activation energy
∆E = 0.46(1)K for the RbCo4/S and ∆E = 0.55(1)K for the CsCo4/S. To
explain this behavior, several hypothesis are plausible. One explanation is the
existence of another blocking process due to the freezing of the individual spins
of the Co(II) nexus, which can be blocked due to their high anisotropy. An-
other explanation could reside in the magnetic interaction between the Co(II)
nexus and the cubanes. This interaction will modify the energy levels of the
cubanes, removing the energy degeneracy and neglecting the quantum tunnel-
ing in the cubane as an isolated entity. In this later situation, the quantum
tunneling could be assisted by thermal activation and occur in three steps.
First, the nexus Co(II) are reversed by a thermal �uctuation of energy equal
to the magnetic coupling between the nexus and the cubane. Second, the
cubane is allowed to relax via tunneling to an excited state of the same energy.
Finally the group relax by �ipping the Co(II) nexus spin. This mechanism is
more e�cient than a direct tunneling between the ground states of the cou-
pled system which would imply the simultaneous tunneling of the cubane and
the nexus. The e�ect of a magnetic bias in the quantum tunneling has been
observed before in exchange-coupling dimers [113] and near the long-range
magnetic order of polyoxometalate-based SMMs [156].

In graphic 6.13 the maximum and minimum experimental times are also
shown. If our measuring technique has a characteristic time lower than the re-
laxation time (high frequency measurements), we could not seen the relaxation
process as the system would be blocked. On the contrary, if our measuring time
is higher than the relaxation time (low frequency measurements), we allow the
system to relax and reach the equilibrium. For this reason, at low frequencies
for the RbCo4/S the system is almost in equilibrium and the magnetic AC
susceptibility can be compared the static susceptibility, which give us a clue of
the nature of the interaction, ferromagnetic in this case. This fact has to be
taken into account when an experiment is design, to prevent misunderstanding
of the relaxation behavior.

In a similar way, we determined the energy barrier and characteristic relax-
ation times for the other two dimensional networked compounds as can be seen
in table 6.5. The values obtained are similar to the ones for other cubanes.
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Figure 6.13: Average magnetic relaxation time (τav) versus the reciprocal temperature

for the RbCo4/S and CsCo4/S compounds. Critical temperatures (Tc) are 0.2K

and 0.25K. Dashed lines indicate the maximum and minimum experimental times

measured and correspond to frequencies of 33 and 13333Hz respectively. The red lines

correspond to the best Arrhenius �t from which activation energies are determined.

The inset shows the high temperature region.

6.4 Discussion and Conclusions

In this chapter, bidimensional networks of linked Co(II)-citrate-cubane cluster
through Co(II) ions bridges have been magnetically characterized. The objec-
tives �xed at the beginning of this study were to �nd out if the SMM behavior
of the cubanes is conserved when the cubanes are arrange in layers, and to
explore the possibility of a transition from an individual blocking behavior to
and hypothetic magnetically ordered phase where the clusters interact.

Magnetization measurements lead us to think that the ground state of the
cubane is di�erent to zero with a global spin ST = 2 for all the compounds, so a
SMM behavior is possible. In all cases, a blocking phenomenon appears around
4K, which matches with the blocking temperature of other similar cubanes
[125, 150�152]. The energy barrier for the reversal of the magnetization for
each compound can be seen in table 6.5, where it is easy to see that the barriers
for cubanes are of the same order of magnitude and the relaxation times are
around 10−7s, which is expected for SMM.

The small di�erences in ∆E for the square net compounds have been at-
tributed to the slight di�erences in the angles and distances into the cubane.
The high number of angles and variables into each cubane, makes not pos-
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Table 6.5: Energy barriers and τ0 for KCo4/S, RbCo4/S, CsCo4/S, CsCo4/R and

CsCo4+1.

High T Low T
∆E (K) τ0 (s) ∆E (K) τ0 (s)

KCo4/S 8(1) 2.0(4)·10−7 - -
RbCo4/S 13(2) 1.9(8)·10−7 0.459(5) 1.13(1)·10−5

CsCo4/S 14(1) 2.1(3)·10−7 0.554(7) 2.62(4)·10−5

CsCo4/R 30(2) 0.4(3)·10−7 - -
CsCo4+1 23(1) 0.3(1)·10−7 - -

sible to give an advice about the most suitable M-O-M angle to favor and
increase the ferromagnetic exchange. In table 6.6 all the angles and distances
intracubane are shown as a reminder. The addition of a extra Co(II) ion in
the space between cubanes has an e�ect on the energy barrier, doubling it.
This fact can be explained if we remind that the cubanes are not isolated, they
are part of a net and other magnetic centers can interact with them. Adding
another magnetic center modi�es the molecular magnetic �eld around each
cubane and in�uence in the relaxation process.

The di�erences in the net topology between CsCo4/S and CsCo4/R cause
a distortion in the cubane that may explain the increase in the energy barrier
from 14K to 30K, which is in good agreement with the increase expected when
the symmetry is broken and the axial symmetry is increased.

Table 6.6: Characteristic distances and angles for cubanes of KCo4/S, RbCo4/S,

CsCo4/S, CsCo4/R and CsCo4+1.

Distance Angle

KCo4/S
Co1-Co1' 3.139(2) Co1-O-Co1' 96.1o(2)/97.5o(2)
Co1-Co1" 3.240(2) Co1-O-Co1" 100.8o(3)

RbCo4/S
Co1-Co1' 3.148(1) Co1-O-Co1' 96.3o(2)/97.2o(2)
Co1-Co1" 3.196(1) Co1-O-Co1" 99.1o(2)

CsCo4/S
Co1-Co1' 3.155(1) Co1-O-Co1' 96.0o(2)/97.6o(2)
Co1-Co1" 3.190(1) Co1-O-Co1" 98.7o(2)

CsCo4+1
Co1-Co1' 3.1360(8) Co1-O-Co1' 95.8o(1)/97.3o(1)
Co1-Co1" 3.2258(7) Co1-O-Co1" 99.7o(1)

CsCo4/R

Co1-Co2 3.209(1) Co2-O-Co2' 99.4o(2)
Co1-Co' 3.119(1) Co1-O-Co1' 100.5o(2)
Co1-Co1' 3.2361(9) Co1-O-Co2' 95.8(2)/96.0o(2)
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Although the temperature region below 1.8K has been explored only for
RbCo4/S and CsCo4/S, an equivalent behavior is expected for all of the two
dimensional arrays of Co(II) cubanes due to the similarities between them. At
very low temperatures, another relaxation process occurs around 0.5K with a
lower activation energy, and magnetic order appears at 0.2K for RbCo4/S and
0.25 for CsCo4/S. The relaxation process can be identi�ed as a freezing of the
individual Co(II) centers. This Co(II) ions have enough anisotropy to block
themselves. Another plausible explanation is that the exchange coupling be-
tween the Co(II) nexus and the neighboring cubanes produces a magnetic bias
in the energy levels of the cubane that blocks the quantum tunneling between
the ground states. In this case, it is necessary to activate it thermically. The
di�erence in the low temperature blocking in RbCo4/S and CsCo4/S can be a
consequence of the intersticial disorder, which is higher in the RbCo4/S and
will favor the relaxation. It is not so easy to �nd a solid explanation for the
di�erence of 0.05K between the Tc of both compounds, because the CsCo4/S
has a higher Tc but the interlayer space is 0.2 Å longer. A small di�erence in
the alignment of the easy axis of the Co(II) nexus and the cubane Co(II) ions
may be the cause.

The coexistence of two relaxation processes with di�erent energy barriers
and time scales can open the door to study a wide variety of magnetic collective
phenomenons ranging from the complete or partial blocking of each of the
magnetic entities to a fully magnetic ordered state. Results will depend on the
experimental characteristic time. A possible application may be the study of
conceptual models such as the random �eld Ising model (RFIM) [157]. This
theoretical model can be described with a two-term hamiltonian that includes
an Ising term −

∑
JijSi·Sj , where the sums extend to the �rst neighbors, and

another term −
∑

hi·Si that represents the coupling of the spins Si with a
magnetic �eld hi that can adopt di�erent random values from site to site:
hihj = δijh

2
0 and hi = 0. The therefore impossible task of creating a random

magnetic �eld distribution can be done by blocking the tunneling of the cubane
cores, so they stay frozen randomly below 2K. In this situation, the cubanes
generates a random internal magnetic �eld on the remaining Co(II) centers.

In summary, di�erent cations and topologies have induced modi�cations in
the magnetic behavior of two magnetic entities and the energy barriers and
characteristic time of two blocking process. This may allow the possibility to
tune the magnetic characteristic of SMM isolated or arranged in layers, even by
placing small molecules in the channels between cubanes formed in CsCo4/R
whose potential as MOF in under study.



Chapter 7

Three dimensional network of

Co(II)-cubanes

7.1 Introduction

In previous chapters, the magnetism for isolated Co8 clusters and cubanes ar-
ranged in two dimensional layers has been studied. In this chapter a three
dimensional structure of diamond type with cubane units in its nodes ab-
breviated as Co4/3D is described structurally and magnetically. Once again,
the building block is a citrate cubane very similar to already reported SMM
[125, 150, 151].

In chapter 6 �ve di�erent two dimensional compounds where Co(II) citrate
cubane units are bridged by single Co(II) centers were studied. Now, we have
increase the dimensionality of the net with the objective of studying the in�u-
ence of the net in the magnetic behavior. The cubanes are expected to keep
their SMM properties and possible collective behaviors may appear.

The synthesis and the structure of the compound is described in section
7.2 and their magnetic and calorimetric properties in section 7.3. A discussion
about the results and some conclusions can be found at the end of the chapter.

7.2 Synthesis and structure

In a synthesis very similar to the one of KCo4/S, where the ETG is substi-
tuted by another diol, we obtain a high symmetry three dimensional net based
on cubanes with bridging Co(II) centers of formula [{Co4(C6H4O7)4}{µ −
Co(H2O)2}2]4+. Since the polymeric nets are anionic, there are K+ acting as
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counterions located inside the channels present in the compound. It crystallizes
in the space group I41/a, with a unit cell equal to a=20.7872(3), b=20.7872(3),
c=11.3290(2). The complete formula is
(K4{Co4(citr)4[µ − Co(H2O)4]2} · 8H2O)n. For the shake of simplicity, this
compound is denoted as Co4/3D.

The building block of Co4/3D is a cobalt citrate cubane formed by four
Co(II) centers and four hydroxy oxygen atoms from an equal number of quadru-
ply deprotonated citrates. Neighboring cubanes are bridged by a six-coordinated
Co(II) centers coordinated by two carboxylate oxygen atoms. The Co(II) nexus
are linked to the cubane Co(II) through two arms Co-O-C-O-Co and Co-O-

C-C-C-O-Co, as can be seen in �gure 7.1. The Co(II) nexus can interact
with the cluster but the interaction strength is expected to be weaker than
the intra-cubane interaction. Therefore, in a simpli�ed approximation, we can
considered only the cubane as a cluster. The main structural di�erence be-
tween this compound and the two dimensional network compounds rises from
the spacial distribution of the Co(II) nexus around the cubane. For Co4/3D
we have a cubane in the centre of a tetrahedron whose vertexes are occupied by
four Co(II) units, while the linking Co(II) center in the 2D networks were dis-
posed in the same plane. This connection between the building blocks results
in a polymer with diamond-like pattern.

Figure 7.1: Symmetry for the cubane. A S4 parallel to the c cell axis goes through the

cubane. The cubane, the Co(II) nexus and the bridges between them are remarked.
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The cubane present S4 symmetry with the axis parallel to the c axis, as
cubanes in the square grid compounds, which makes four distances Co-Co
equals and a pair di�erent. The distances and angles between Co(II) ions is
shown in table 7.1. The cubane Co(II) ions are in a C3 environment while the
nexus Co(II) ions are in a octahedral environment.

In the solid state a crystal of Co4/3D is formed by tree interpenetrating
diamond-like nets, where each network is formed by cubanes linked by Co(II)
arms in a octahedral environment, each cubane is bonded to four Co(II) units.
The three nets are interpenetrated, achieving a more e�cient occupancy of
the space, decreasing the distance between cubanes and linking Co(II) centers
belonging to di�erent nets: the distance between cubanes and Co(II) nexus of
the same net is 10.4Å, while the distance between a cubane and the nearest
Co(II) center is 7.8Å. In �gure 7.2 the three nets are schematically represented.

Table 7.1: Characteristic distances and angles for cubane in Co4/3D.

Distance Å Angle (o)
Co1-Co1' 3.1225(3) Co1-O-Co1' 95.88(5)/96.36(5)
Co1-Co1" 3.2147(3) Co1-O-Co1" 100.34(5)
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Figure 7.2: View form the a, b, and c axis of a schematic representation for the three

interpenetrating nets: blue, red and green. The position occupied by cubanes are

marked by a square.
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7.3 Magnetic and calorimetric properties

The magnetization versus temperature at 500 Oe has been measured from room
temperature to 1.8K, obtaining the curve of χM ·T represented in �gure 7.3. At
300K, the curve has a value of 17emu·mol−1·K, which is consistent with the
results expected for a six independent Co(II) ions per unit cell with S=3/2 and
g=2.4. From 300K, the signal decreases slowly down to 65K where it reaches
a value of 16emu·mol−1·K. Cooling down further, a smooth �eld-dependent
anomaly around 15K can be peeked up before a peak at 2.4K with a value of
114emu·mol−1·K. A �t to a Curie-Weiss function between 200 and 300K gives
a g=2.469(2) and θ=-6.9(3)K (corresponding to an antiferromagnetic interac-
tion) for six Co(II) atoms with S=3/2. A ZFC-FC cycle at 50Oe was performed
at low temperature, between 20K and 1.8K, �nding the irreversibility shown
in graphic 7.4.

To con�rm the existence of a magnetic order, heat capacity measurements
were performed from 0.4K to 151K. As it was expected, a sharp peak appears
at low temperature indicating the existence of a magnetic order transition at
2.7K (see inset in graphic 7.4).
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Figure 7.3: χM ·T versus T plot for the Co4/3D compound measured at 500 Oe.

The heat capacity has been measured at zero �eld and at 1T. In �gure 7.5,
the results at both �elds are shown, remarking in red the presence of points
where the system where out of equilibrium. The heat capacity is a dynamical
technique, where a heat pulse is applied to the sample and the relaxation time
is the physical magnitude measured and related to the heat capacity of the
sample. In the out of equilibrium points, the adjust to an exponential decay is
arti�cial and a dynamical process of unknown nature takes place in the sample.
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In order to minimize its e�ects, we thermalized the sample for several minutes
at each temperature and reduced the amplitude of the heat pulse to a 1% of
the temperature.
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Figure 7.5: Heat Capacity versus temperature at zero �eld and 10000 Oe. In red the

out of equilibrium points are marked.

The �rst step to analyze the heat capacity data is to isolate the magnetic
contribution to the heat capacity. This task can become a di�cult challenge for
molecular compounds, where even the Debye-model needs to be extended [158].
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Due to the complexity of the system, an empirical �t to a cubic polynomial and
a Schottky function for the blocking of the cluster (which has an energy barrier
of 44K) has been performed. This allow us to subtract all the contributions
but the magnetic one (Cm), as in other networked SMM compounds [123]. The
total magnetic contribution to the heat capacity can be seen in �gure 7.6. To
properly obtain the total magnetic entropy, the Cm/T curve was extrapolated
at higher and lower temperatures than the experimental ones. We have used
a cubic polynomial for the low temperature region and a exponential decay
for the high temperature tail. After integrating the area under the curve, a
magnetic entropy equal to ∆S = 1.24R has been found, which is comparable
with the sum of two contributions R ln 2 = 0.69R. This has been attributed
to the two linking Co(II) per molecule. From this result, we can conclude that
sublattice of linking Co(II) is ordered at 2.7K, but the magnetic contribution
of the cubane is absent from the heat capacity. This behavior of the cubanes
could be explain by a zero ground state, so the cubanes would not be ordered.
In this case, SMM behavior would be still possible due to accessible excited
levels with non-zero ST [151, 152]. The magnetization values at 1.8K makes
us to discarded this option and attributed to the cubane a ground state with
ST ̸=0. The position of the cubanes in the structure and the links between
them and the nexus Co(II) ions make them not likely to not participate in the
magnetic order. The most plausible explanation is that the cubane is not in
equilibrium: the technique employed is dynamical, the experimental time is
lower than the relaxation time, and cubanes remain blocked.
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The quality of the data in the critical region (considering it as |T−Tc|
Tc

< 0.1)
discourages us of calculating the critical exponent for the transition. However,
due to the high anisotropy of the Co(II) atoms, we can expect a 3D Ising sys-
tems. To obtain the sign of the interaction between the magnetic species, a
study of the spin-wave region is necessary. For a 3D lattice, the spin-wave con-
tribution of a ferromagnet depends on T 3/2, while the dependency is T 3 for an
antiferromagnet, as it happens for the lattice phonons. Data at temperatures
below Tc have been well �tted with a T 3 relation, so the magnetic interaction
is antiferromagnetic.
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Figure 7.7: χAC measurements at di�erent frequencies for Co4/3D. In the top, χ′ ver-

sus T and a logarithmic inset that re�ects the existence of two peaks, one frequency-

dependent and one at 2.9K. At the bottom, χ” versus T and an inset with an Arrhe-

nious �t.
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The magnetic order is also revealed in AC measurements as can be seen
in �gure 7.7. As a consequence of the phase transition, a frequency indepen-
dent peak appears around 2.9K. Also the SMM nature of the compound is
con�rmed. A blocking phenomenon appears around 4K, which agrees with
the behavior of other isolated Co(II) cubanes [125, 152]. A non-Arrhenius
dependence of the relaxation time and the frequency has been found as can
be seen in the inset of the χ” graphic in �gure 7.7. At low frequencies, as
the blocking temperature is approaching to Tc, the blocking process occurs at
higher temperature than the temperature predicted, diverging from the Ar-
rhenius law at frequencies below 100Hz. A �t between 100Hz and 1000Hz
gives an energy barrier of ∆E = 44.04(18)K and a characteristic time of
τ0 = 1.62(6) · 10−8s−1. Using a de�nition of τav as in previous chapters, may
be a little arti�cial. This approximation is valid at low frequencies, but for this
compound, at lower frequencies the blocking process occurs at temperatures
near the critical temperature, which gives �ctitious results. For this reason, we
have discarded arti�cial results as an energy barrier of 78(11)K and 65(2)K for
0.01 and 0.1Hz and characteristic times around 10−10s. For higher frequencies
the energy barrier is near 53K and the characteristic time around 3 · 10−9s−1,
which are higher than the calculates by the previous �t. The in�uence of the
magnetic transition in the energy barrier is very relevant in this compound
due to the proximity of both phenomenons in temperature. The relaxation
time and the energy barrier tend to increase inde�nitely at low frequencies due
to the magnetic interaction between cubanes and Co(II) ions. The boundary
between dynamical and static regimens becomes confuse and the in�uence of
magnetic interactions is relevant at low frequencies.

The presence of hysteresis below 2.7K also con�rms the existence of mag-
netic order. The coercitive �elds at 1.8K and 2.1K are 1340Oe and 870Oe and
the remanent magnetization 3.20 and 2.10 µB respectively, as can be seen in
�gure 7.8. In graphic 7.9 the �rst magnetization curve at several temperatures
is shown. Below the critical temperature and for �elds lower than 100Oe, the
signal presents a sigmoidal curve which reaches a magnetization equal to the
remanent magnetization (3.20 µB at 1.8K)

In the compounds described in chapter 6, a simpli�ed model has been
use. A total spin ST for the cubane has been de�ned and the linking Co(II)
have been treated as an isolated spin value of 1/2 and an experimental g
value of g=4.6 [155]. With this model, each liking Co(II) ion contributes with
2.3µB to the magnetization of saturation. For the two dimensional compounds,
ST has been estimated around 2, and the contribution of the cubane to the
magnetization of saturation near 8.4µB. Attending to the structure of the
cubanes and the magnetic measurements, it seems a reasonable approxima-
tion to considerer a similar behavior of the cubane in Co4/3D. With these
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Figure 7.8: Magnetization in Bohr magnetons per unit formula versus T for Co4/3Din
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Figure 7.9: Magnetization in Bohr magnetons per unit formula versus T for Co4/3D.

The inset show the low �eld region.

considerations, the magnetization of saturation for Co4/3D matches with a
model where the cubanes and nexus Co(II) ions orders antiferromganetically:
8.4µB − 2·2.3µB = 3.8µB.

Around 21000Oe an in�exion point appears in the magnetization curve, and
approaching Tc from below, it becomes less prominent and disappears above Tc.
In other samples, the in�exion point has been attributed to a mixing between
low lying levels near a ground state with S=0 in the cluster [152], but in this
case we attribute it to a reordering of spins with the �eld. Several tries to �t the



7.4. Discussion and Conclusions 167

experimental curves with oversimpli�ed models have not produce satisfactory
results, so waiting for a complete knowledge of the energy levels for these
compounds is necessary for a complete analysis of the magnetic properties.

7.4 Discussion and Conclusions

This compounds represented the �rst Co(II) SMMs arranged in networks where
a clear evidence of the SMMs behavior and the magnetic order has been found.
A blocking phenomenon around 5K, which agrees with the expected behavior
of an isolate Co(II)-cubane [125, 152], and a magnetic order at 2.7K coexist in
the sample.

The magnetization at 500Oe presents two anomalies. One around 15K
that has been attributed to the energy levels of Co(II) and its depopulation.
Another anomaly has been observed at lower temperature, and it corresponds
to a magnetic order phase transition. The analysis of the heat capacity data
reveals two species with a doublet ground state ordering antiferromagnetically,
which have been identi�ed as the linking Co(II) ions with a ground state S =

±1/2. Due the dynamic character of the measurement technique and the
con�ict between the experimental characteristic time and the relaxation time
of a SMM, the magnetic contribution of cubane to the phase transition has not
been observed. This does not mean that the cubane does not participate in
the magnetic order, it is di�cult to imagine a system where the Co(II) nexus
order magnetically and the cubane not. Neutron di�raction measurements
are in process in order to determine the magnetic structure of the compound.
Another plausible explanation for this behavior would be a ground state ST = 0

for the cubane, which has been discarded by the magnetization measurements.

We have made the assumption that the ground state of the cubane in
Co4/3Dis the same that the state of the cubanes in the two dimensional com-
pounds studied in chapter 6. This simpli�cation leads us to a magnetic model
with two sublattices, one of cubanes and one of linking Co(II) ions, that orders
antiferromagnetically. Neutron di�raction measurements would be an excellent
chance to determine the magnetic structure.

As a consequence of the coexistence of magnetic order and SMM behavior,
the relaxation time and the energy barrier become frequency dependent at low
frequencies. At this frequencies, the blocking phenomenon occurs at tempera-
tures near Tc, and the e�ects of the large order interaction becomes relevant,
increasing the energy necessary to reversal the magnetization. The bound-
ary between the DC behavior and AC behavior is confused in this regimen of
frequencies.
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As the crystalline structure presents channels and can absorb di�erent
molecules, this compound represents an excellent opportunity to modify Tc

by changing the molecules in the channels and observe how it can in�uence on
the SMM behavior.



General conclusions for Part II

• In�uence of the symmetry in SMM properties. In chapter 5, two
di�erent phases of the same compound have been magnetically character-
ized, both of them contain Co8 clusters. In Phase 1 clusters are distorted
and we can consider that magnetic clusters are formed by seven Co(II),
four in the cubane and three outer, and not include the Co(II) ion linked
by a citrate bridge. In Phase 2, the cluster is highly symmetrical (C2)
and the interaction between the eight Co(II) and their nearest neighbors
is expected to be of the same magnitude. Although the magnetic core
has one Co(II) ions less for Phase 1, the break of the symmetry makes
the energy barrier for Phase 1 four times the energy barrier for Phase 2.
This remarks the importance of focusing our e�orts to synthesized high
energy barrier SMM into increasing D more than S.

• In�uence of topology and crystalline structure in SMM prop-

erties. The two dimensional net compounds have been obtained with
di�erent topologies (square net, rhombic net and square net with an
excess of Co(II)). The synthesis with di�erent cations produces small
modi�cations in the angles and distances into the cubanes which have a
slight in�uence in the energy barrier of the cubanes. Also the di�erent
topology, symmetry of the cubane and the presence of more magnetic
ions near the cubanes modify its value.

• Magnetic bias of quantum tunneling. For RbCo4/S and CsCo4/S,
the magnetic interaction between cubanes and nexus Co(II) ions modify
the energy levels of the cubanes, which may block the quantum tunneling
relaxation and make necessary a thermal assistance.

• Coexistence of magnetic order and SMM behavior. In two di-
mensional and three dimensional compounds, we have been found that
SMM blocking and magnetic order can coexist in the same sample at
di�erent temperatures.

• In�uence of increasing the dimensionality of the net. Increasing
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the dimensionally of the net from two to three has increased the order
temperature in a 100 factor.

• Dynamic and static regimen for SMM. In the study of the com-
pound Co4/3D, it has been clearly manifest that SMM are entities whose
behavior depends on the experimental time of the technique used to mea-
sured. A special care should be taken when analyzing data from dynam-
ical techniques.



Conclusiones generales

El trabajo desarrollado a lo largo de esta tesis ha permitido obtener diversas
conclusiones y resultados que podrían contribuir a esclarecer la naturaleza y
propiedades de compuestos moleculares magnéticos, en concreto, de imanes
quirales e imanes monomoleculares dispuestos en redes. Las conclusiones
obtenidas para cada línea de investigación se encuentran detalladas a con-
tinuación.

Línea A

• Nueva de�nción global para quiralidad magnética. Los concep-
tos de quiralidad nuclear y magnética son habitualmente mezclados y
confundidos. Existen varias de�niciones de quiralidad magnética, todas
ellas locales. En este contexto, en esta tesis se ha propuesto una nueva
de�nición de quiralidad magnética como un concepto global. De acuerdo
con el criterio establecido en el capítulo 2, una estructura magnética es
quiral si el producto vectorial FM × (FM )∗ es distinto de cero para un
vector cualquiera de la red recíproca. Desarrollando esta de�nición, se
ha encontrado que la quiralidad magnética solo puede encontrarse en es-
tructuras magnéticas no collineares que cristalicen en grupos de espacio
no centrosimétricos.

• Efecto de substituir el átomo CrIII en el compuesto GN por

MnIII en el compuesto GN-MnMn. La substitución del átomo CrIII

del compuesto GN por un átomoMnIII en el compuesto GN-MnMn tiene
un efecto negligible en la estructura nuclear salvo en el entorno del átomo
en cuestión. La substitución tampoco afecta a la simetría de las estruc-
turas magnéticas. En ambos casos, la estructura magnética es descrita
con la Representación Irreducible (IR) Γ4 del grupo de espacio P212121,
y puede ser vista como una estructura conica cuadrangular a lo largo del
eje a. La mayor diferencia entre los compuestos es su temperatura de or-
den magnético, la substitución de CrIII por MnIII provoca un descenso
de la temperatura de orden de 38K a 28K. La substitución del átomo no
tiene efecto sobre la quiralidad, ambos compuestos presentan estructuras
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nucleares y magnéticas quirales.
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• Efecto de substituir una molécula H20 en el compuesto GN por

DMF en el compuesto GN-DMF(R) como ligando del MnII. La
substitución de una molécula H20 por una molécula DMF modi�ca el
apilamiento de las capas y aumenta la separación entre capas. Estos
cambios estructurales in�uyen en el magnetismo y modi�can la simetría
de la estructura magnética. Mientras que la estructura magnética de GN
es descrita por la IR Γ4 del grupo de espacio P212121, para el compuesto
GN-DMF(R) es Γ1 la IR que describe la estructura magnética. Esta IR
corresponde a una estructura antiferromagnética. Como consecuencia de
la modi�cación introducida en la disposición de las capas, los caminos
de interacción magnética entre capas son distintos en ambas muestras,
lo que conduce a una cambio de interacción entre ellas, de una inte-
racción ferromagnética en el caso del compuesto GN a una interacción
antiferromagnética en el caso del GN-DMF(R). El incremento de la dis-
tancia entre capas in�uye en la temperatura de orden, que pasa de ser
38K en el GN a 33K en el GN-DMF(R). La substitución del ligando y
la modi�cación tanto del apilamiento entre capas como de la interacción
entre ellas no ha afectado a la quiralidad de las estructuras, en ambos
compuestos quiralidad nuclear y magnética coexisten.

• In�uencia del ligando quiral en la quiralidad magnética. La
quiralidad nuclear en los compuestos estudiados viene dada por la pre-
sencia del mismo enantiómero del ligando quiral del átomoMnII en todo
el cristal. En el compuesto GN-DMF(rac) los dos enantiómeros del ligan-
do quiral se encuentran presentes en la misma proporción y dispuestos
de forma que el grupo espacial es centrosimétrico. Como consecuencia,
la estructura nuclear de este compuesto no es quiral. El centro de in-
versión que relaciona pares de sitios magnéticos modi�ca la simetría de
la estructura magnética, que puede ser descrita en este caso por la IR
Γ2 del grupo de espacio Pnma. La cristalización en un grupo espacial
centrosimétrico impide la existencia de una estructura magnética quiral,
como se ha demostrado en general al establecer la nueva de�nición, y en
particular para este compuesto.

• Quiralidad magnética en ciano-compuestos bimetálicos. Todos
los compuestos con una estructura nuclear quiral estudiados en esta tesis
presentan también una estructura magnética quiral. La estrategia de
síntesis empleada ha demostrado ser una ruta e�ciente para la obtención
de imanes quirales.
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Línea B

El estudio de los SMMs dispuestos en redes de diferente dimensionalidad den-
tro de la línea B de investigación de esta tesis ha llevado a las conclusiones
detalladas a continuación.

• In�uencia de la simetría en la propiedades de los SMMs. En el
capítulo 6, se han caracterizado magnéticamente dos fases diferentes del
mismo compuesto. La estructura de ambas fases contiene clústeres de
Co8. En la fase 2 los clústeres presentan simetría S4, mientras que en
la fase I esta simetría se rompe y los clústeres están distorsionados. La
ruptura de la simetría en la fase 1 incrementa la barrera energética de
inversión de la magnetización en cuatro veces si la comparamos con la
barrera de la fase 2. Este hecho puede servir para orientar la síntesis y el
diseño de SMM con mayores barreras energéticas hacia rutas que tiendan
a incrementar D además de S. Este compuesto es el primero donde se ha
observado que una reacción reversible de estado sólido permite seleccionar
la estructura de los clústeres, y por tanto su barrera energética, en un
mismo monocristal.

• In�uencia de la topología y estructura en las propiedades de un

SMM. Los compuestos bidimensionales estudiados presentan diferentes
topologías (red cuadrada, red romboédrica y red cuadrada con un exceso
de iones Co(II)). Además, dentro de los compuestos que cristalizan en
una red cuadrada, el uso de di�erentes cationes en la síntesis provoca
pequeñas variaciones en los ángulos y las distancias de los cubanos. Se
ha comprobado que tanto los cambios en la topología o la presencia de
otros iones Co(II), como los pequeños cambios estructurales dentro del
cubano, in�uyen en la barrera energética de los cubanos.

• Polarización magnética del efecto túnel. Se ha observado que en
los compuestos denotados como RbCo4/S y CsCo4/S, la interacción mag-
nética entre cubanos y iones Co(II) nexos puede modi�car los niveles de
energía del cubano, lo que in�uiría en en el proceso de relajación túnel
llegando a bloquearlo y haciendo necesaria una activación térmica para
superar la barrera energética. En estos compuestos se ha constatado la
presencia de dos fenómenos de bloqueo, uno próximo a 5K y otro cercano
a una posible transición de orden magnético en torno a 0.25K.

• Coexistencia de orden magnético y comportamiento SMM. En
los compuestos bidimensionales y tridimensionales con clústeres de Co(II)
caracterizados en esta tesis, se ha encontrado que los fenómenos de blo-
queo SMM y orden magnético pueden coexistir en una misma muestra a
diferentes temperaturas.
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• In�uencia de aumentar la dimensionalidad de la red. Al aumentar
la dimensionalidad de la red de cubanos de Co(II) de 2 a 3 dimensiones, se
ha observado que la temperature de orden magnético se ha incrementado
en un factor 100.

• Régimen estático y dinámico en un SMM. Durante el estudio del
compuesto Co4/3D, se ha puesto de mani�esto que los SMM son enti-
dades cuyo comportamiento magnético depende fuertemente del tiempo
experimental de la técnica empleada en su caracterización. Este he-
cho remarca la importancia de una correcta interpretación de los datos
obtenidos mediante técnicas dinámicas.





Appendix A

Experimental techniques.

Neutron Di�raction

During the development of the work presented in this thesis, several experi-
mental techniques have been used. This chapter is devoted to the neutron
di�raction, a powerful tool that has been widely employed to determine the
nuclear and magnetic structure of the chiral compounds studied in this �rst
part. The neutron experiments have been performed in the Institute Laue
Langvenin (ILL) placed in Grenoble, France. The instruments chosen to per-
formed the single-crystal di�raction studies have been D15, a four-circle single-
crystal di�ractometer, and VIVALDI, a Laue di�ractometer.

In this appendix, the basic properties of the neutron and the fundamen-
tals of neutron di�raction theory are explained, focusing on the methods and
con�gurations employed in the thesis.

A.1 Neutron properties

Neutrons are one of the most important probes for investigating condensed
matter due to their unique properties when they interact with matter. Neu-
trons are subatomic hadron particles discovered in 1932 by James Chadwick
[159]. A neutron is composed of one up and two down quarks with charges of
2/3 and −1/3 respectively, so the net charge is zero, but its internal structure
leads to an electric charge distribution which gives it a magnetic moment and
an electric polarizability. While bound neutrons in stable nuclei are stable,
free neutrons are unstable; and they undergo beta decay with a mean lifetime
of just under 15 minutes (885.7±0.8 s). In research reactors, free neutrons are
produced by nuclear �ssion to be used in di�erent experiments.
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The value of the neutron scattering as one of the most valuable experimen-
tal tools for the study of condensed matter lies on the fact that the interaction
between neutrons and matter is via the strong interaction with the nuclei and
the magnetic dipolar interaction with the unpaired electrons. The strong inter-
action is a very intense but short-range interaction, which implies that the neu-
tron must be very close to the nucleus to feel the interaction, and the magnetic
dipolar interaction arises from the fact that the neutron has a dipolar mag-
netic moment, even though it has no charge. Neutrons and X-ray di�raction
methods have became very useful in physics, chemistry, biology and materials
science and both techniques are highly complementary. The most relevant and
unique character of slow neutrons can be summarized as follows [160]:

1. Neutrons interact with nuclei and not with the electrons, as photons
do. As a consequence, the response of neutrons from light atoms (e.g
hydrogen) is much higher than for x-rays; neutrons can distinguish atoms
of comparable atomic number; and neutrons can di�erentiate between
isotopes.

2. For the same wavelength as hard x-rays, the neutron energy is much
lower and comparable to the energy of elementary excitations in ma-
tter. Therefore, neutrons allow not only to determine the static average
chemical structure, but also the investigation of the dynamic properties of
atomic arrangements which are related to the properties of the materials.

3. The neutron has no net charge, which has important consequences:

• The neutron produces a very small disturbance of the sample's pro-
perties

• It is not a�ected by the coulomb interaction neither other charge-
dependent interactions, so the neutron has a large penetration depth
that allows to study bulk properties of materials. This property
also bene�ts the investigation of materials under extreme condi-
tions (very low or high temperatures, high pressures, magnetic and
electric �elds...)because neutrons can penetrate through the envi-
ronment settings

• There is almost no radiation damage to the objects under study
(e.g. living biological objects)

4. The neutron posses a magnetic moment, it has a spin s = 1/2. This
property makes the neutron to interact with the magnetic moments of
the atoms via the magnetic dipolar interaction, so it can be used as a
probe for the determination of the static (arrangement of electron spins
and density distribution of unpaired electrons) and dynamical magnetic
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properties of matter (magnetics excitations and time-dependent spin cor-
relations).

However, not everything in neutrons is an advantage. One of most sig-
ni�cant is derived from the fact that they interact with nuclei via the strong
interaction, so they see the matter as if it was avoid. For this reason, the
sample size must be bigger than with x-rays. The neutron �uxes in reactors
are still not comparable with those of the X-ray sources, therefore sometimes
we are limited by the �ux.

There are several neutron techniques that exploit the properties of neutron
as a probe to understand the matter, we are focusing in neutron di�raction
and, in particular, in four-circle geometry di�raction and Laue di�raction.

A.2 Neutron di�raction theory [161]

Let us consider a beam of thermal neutrons, all described the same wavevector
g, spin state |σ⟩ and energy E striking in a target. The target is in general a
collection of atoms (crystal, amorphous solid, liquid or gas), called scattering

system and in a state |λ⟩ with a energy Eλ. After the scattering process, the
neutron leaves the target with g′, |σ′⟩ and E' whereas the target is in a new
state |λ′⟩ with a energy E′

λ. According to the energy conservation law, the
equation A.1 must be satis�ed.

E + Eλ = E′ + E′
λ (A.1)

The basis quantity to describe a scattering process is the partial di�erential
cross section ∂2σ/∂Ω∂E, de�ned as the number os neutrons scattered per
second into a small solid angle ∂Ω with �nal energy between E' and E′ + ∂E′

divided by Φ∂Ω∂E, where Φ is the �ux of incident neutrons. Using as an
approximation the Fermi's rule, that supposes that the change of the incident
neutron wave by the scattering centre is almost negligible and can be treated
as an approximation, the following expression for the partial di�erential cross
section can be obtained:

(
∂2σ

∂Ω∂E′

)σ,σ′

λ,λ′
=

k′

k

( m0

2π~2
)2

∣∣∣∣⟨σ′λ′
∣∣∣∣∫ V (R)eiGRd3R

∣∣∣∣σλ⟩∣∣∣∣2 δ(E′ −E + hω)

(A.2)

where V (R) is the interaction potential between the neutron and the target
and G = g′ − g and hω = E′

λ − Eλ are the scattering vector (momentum
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transfer) and energy transfer respectively. The delta function introduces the
principle of energy conservation. In an experiment, equation A.2 must be
summed over all possible �nal states of the target for a �xed initial state and
be averaged over all the possible initial states. The same must be done for the
initial and �nal spin states of the neutron.

Various types of measurements can be made of the neutrons after they
have interacted with the scattering system. We will consider only di�raction
experiments. In a good approximation, the energy change of the target can
be neglected and the scattering is considered an elastic process where there
is no energy exchange and the di�racted neutrons have the same energy than
the incident neutrons (hω = 0 and k = k′). We won't take into account the
polarization of the neutrons, just the number of neutrons scattered in a given
direction. In di�raction experiments, the relevant quantity is the di�erential

cross-section ∂σ/∂Ω de�ned as the number of neutrons scattered per second
in a small solid angle ∂Ω divided by Φ∂Ω:

∂σ

∂Ω
=

∫ (
∂2σ

∂Ω∂E′

)
dE′ =

( m0

2π~2
)2

∣∣∣∣⟨σ′λ′
∣∣∣∣∫ V (R)eiGRd3R

∣∣∣∣σλ⟩∣∣∣∣2 = |f(Ω)|2

(A.3)

As our samples are able to exhibit magnetic ordering, neutrons will interact
no only with the nuclei, but also with the atomic magnetic moments, so we will
have a nuclear di�raction component and a magnetic di�raction contribution.

A.2.1 Nuclear di�raction

If we ignore the spin of the neutron (the state is speci�ed entirely by its mo-
mentum), we can obtain an expression for the nuclear scattering. Neutrons
interact with the nuclei of the atoms via the strong nuclear force. This kind
of interaction is very strong but its range is much shorter than the neutron
wavelength. To describe the interaction, we use the Fermi pseudo-potential:

Vj(rj) =
2π~2

m
bjδ(rj) (A.4)

where bj is the scattering length for the j-nucleus, and rj is the distance
between the jth nucleus and the neutron. The scattering length gives the
strength of the interaction potential between the neutron and the nucleus in the
system; it is a complex number that depends on the isotope, the nuclear spin
and the neutron energy. The total potential which describes the interaction
between the scattering system and the neutron is the sum of the potential for
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each j -nucleus and the neutron. Developing the expression of the di�erential
cross section (equation A.3) we can obtain:

∂σ

∂Ω
= |f(Ω)|2 =

∑
i,j

b∗jbie
iG(̇ri−Rj) (A.5)

As isotopes have di�erent b and it depends on the orientation of the nuclear
spin which is usually arbitrary, the scattering length varies from one nucleus
to another of the same element. This property causes the existence of coherent
and incoherent scattering, where the coherent scattering depends on the cor-
relation between the positions of the same nucleus at di�erent times and the
correlation between the positions of di�erent nuclei at di�erent times, giving
interference e�ects. The incoherent scattering depends only on the correlation
between the positions of the same nucleus at di�erent times and does not give
interference e�ects. In our experiments, we are interested in the coherent scat-
tering, which will produce intensity peaks called Bragg peaks and whose whose
intensity is proportional to:

(
∂σ

∂Ω

)
coh

= N
(2π)2

υ0

∑
q

δ(G− q)|FN (q)|2 (A.6)

where q represents a reciprocal lattice vector, υ0 is the unit cell volume
and FN (G) is the nuclear structure factor:

FN (q) =
∑
d

b̄de
−iG·rde−W (A.7)

In the previous equation, b̄d is the average coherent scattering length (we
are taking into account only the coherent scattering), the summation runs over
the atoms in the unit cell and the exponential e−W is the Debye-Waller factor,
which takes into account that the atomic positions are not �xed, the thermal
vibrations of the atoms around their equilibrium positions leads to a reduction
of the peak intensity. According to equation A.6, the di�raction condition for
a Bragg peak is q = G = g′ − g, that is, when a reciprocal lattice vector
coincides with the scattering vector. This condition is the same as Bragg's law
for X-ray scattering and can be expressed in the more usual form of Bragg's
law:

nλ = 2dhkl sin θ (A.8)

where n is an integer, 2θ is the angle between the incident and the di�racted
neutron beam and dhkl is the distance between the (hkl) planes of the crystal.
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A.2.2 Magnetic di�raction

This interaction is due to the coupling between the neutron spin σ and the
magnetic �eld H generated by the unpaired electrons of the target atoms. The
interaction potential of this coupling can be written as:

V (r) = gnµnσ ·H (A.9)

where gn is the gyromagnetic ratio of the neutron and µn the nuclear Bohr
magneton. If we considerer only the magnetic contribution to the neutron
di�raction, the expression equivalents to A.6 and A.7 are:

(
∂σ

∂Ω

)
= N

(2π)2

υ0

∑
G

∑
k

δ(q− k+ g)
∣∣⟨σ |σ · FM⊥(G)|σ′⟩∣∣2 (A.10)

FM (q) =
∑
d

fd(G)eiq·rde−W (A.11)

where k is the propagation vector described in section A.5, FM⊥ is the
magnetic structure factor perpendicular to the scattering vector and fi(G) is
the magnetic form factor. Magnetic scattering peaks will appear in the case
G = g − g′ = k ± q; when k is zero, the magnetic cell and the nuclear
cells coincide, and the magnetic peaks overleaps with the nuclear ones (in
the case the nuclear appears, as in some cases some nuclear re�ections can
be systematically absent, so the magnetic peak would appear there, at the
place where the nuclear peak should be). If the propagation vector is di�erent
from zero, each nuclear Bragg peak at q will be �anked by magnetic satellites
coupled in pairs. The magnetic form factor, which is the Fourier transform
(FT) of the magnetic interacting potential, decreases as q increases, as can be
seen for the case of Cr+3 ion in �gure A.1, so the magnetic contribution to the
intensity will be more relevant at small angles.

A.2.3 Nuclear and magnetic di�raction

In the experimental conditions speci�ed previously, the di�racted intensity is
proportional the sum of the square of the nuclear structure factor and the
square of the magnetic structure factor:

I(G) ∝ |FN (G)δ(q−G)|2 + |FM⊥(G)δ(q− k+G)|2 (A.12)
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Figure A.1: The magnetic scattering per Cr3+ ion corresponding to the magnetic

structure factor measured for the (h 0 l) re�ections of Cr2O3 plotted versus sin(θ/λ)

[162]. Unlike the independence of the nuclear structure factor on sin(θ/λ), the mag-

netic structure factor shows a strong dependence. The full curve is the Cr3+ free-ion

form factor calculated from the radial wavefunctions given by [163].

The nuclear factor (b) does not depend on q (or θ), in contrast with the
magnetic structure factor. This is due to the fact that the form factor is the
FT of the interacting potential. For the nuclear interaction, as nuclei are well
localized, the interacting potential is dependent on a delta function, whose FT
is a constant function. However, for the magnetic interaction, the interacting
potential is a probability distribution because of the spreading of the nuclear
magnetic dipolar moment, and its FT will be θ dependent.

A.2.4 Intensity corrections

In neutron di�raction experiments, the intensity is proportional to the square
of the modulus of the structure factor (nuclear and magnetic) but some correc-
tions needs to be taken to write an exactly the relationship between them. For
the two single-crystal di�raction methods that we have use, the total integrated
intensity of one re�ection is related to the structure amplitude by:

Ihkl =
λ3V/V 2

c

1/ω
LATE|F (K|2 (A.13)

for a rotating single crystal in a monochromatic beam, and

Ihkl =
λ3V/V 2

c

1/ω
ATE|F (K|2 (A.14)
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for a �xed single crystal in a polychromatic beam (Laue technique); where V is
the crystal volume, Vc is the unit-cell volume, ω̄ is the angular scanning velocity,
L the Lorentz factor which is related to the time-of-re�ection opportunity, A
the absorbtion factor, T the correction for inelastic phonon or thermal-di�use
scattering and E the correction for extinction and multiple di�raction. In an
ideal experiment, corrections due to thermal di�use scattering, absorbtion and
extinction would not be necessary, but few experiments are ideal.

Lorentz factor.

The lorentz factor is a correction introduced to take into account the geom-
etry of the experimental method, because di�erent Bragg peaks are measured
with di�erent sample speeds. For a constant velocity of rotation of the crystal,
di�erent reciprocal-lattice points pass through the Ewald sphere at di�erent
speeds, and therefore have di�erent time of re�ection opportunity. For four-
circle di�ractometers, the correction can be expressed as [164]:

L =
1

sin(2θ)
(A.15)

Absorbtion factor.

For neutrons at the wavelengths that we use, the absorption coe�cient µ
is the sum of two terms: true absorption due to nuclear capture processes,
and apparent absorption due to scattering, both coherent and incoherent. For
single-crystal experiments, we treat the absorption due to coherent scattering
separately as extinction and multiple di�raction and we include typically in
the absorbtion correction the e�ects of nuclear capture processes σabs and
incoherent scattering σinc.

The nuclear capture depends on λ while the incoherent apparent absorp-
tion is independent of wavelength for most elements. A notable exception is
hydrogen, for which the dependence of σinc on wavelength is roughly linear
[165]:

σinc = 19.2(5)λ+ 20.6(9) (A.16)

and is usually the dominant contribution for hydrogenous materials. The val-
ues of the σabs and σinc cross-sections required to calculate the absorbtion
correction write as

σ = σabsλ/1.798 + σinc (A.17)

are listed in several tables [166]. Using this values, we can calculate the ab-
sorbtion coe�cient taking into account all the atoms present:

µ =
STotal

V
=

∑
i Z ×Ni[σabs(i)

λ
1.798 + σin(i)]

V
(A.18)
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where V is the cell volume, Ni is the number of atoms of the i -th element
in the formula, Z is the number of formula units in the unit cell. For di�raction
from a crystal bathed entirely in the beam, the absorbtion for the whole crystal
is obtained as:

I = I0
1

V

∫
V
e−µt dV = AI0 (A.19)

Where I0 is the incident intensity and the integral is over each in�nitesimile
volume element with t being the total path length of the incident and di�racted
beams within the crystal for that volume element. Analytical integration is
feasible for crystals of very regular shape such as spheres and cylinders. For
faceted crystals numerical integration is the usual technique [167]. These equa-
tions and methods also apply to the Laue technique, but it is necessary to take
into account that the beam is polychromatic.

Extinction factor.

If the thickness of the sample is small, it can be assumed that the same
incident intensity will arrive to all the atoms and the di�racted intensity will
be proportional to the thickness of the sample. However, the incident neutron
beam loses intensity as it advances through the sample due to the intensity
already scattered. This e�ect is called extinction, and can be classi�ed in
primary or secondary extinction depending on the size and orientation of the
domains in the sample. Correction for extinction is made usually following the
formulae of Becker and Coppens [168], including the crystal form via the mean
absorption-weighted path length which is calculated in a similar manner to the
transmission factor.

T =
1

V A

∫
V
te−µt dV (A.20)

Thermal di�use factor.

The elastic Bragg re�ections are observed superimposed on incoherent sca-
ttering, which is essentially removed by the background substraction, and in-
elastic phonon scattering, also called thermal di�use scattering (TDS), whose
peaks are the same positions as the Bragg re�ections. For most structural stud-
ies, TDS is ignored since omitting it only a�ects to the thermal displacement
parameters in a �rst order of approximation.

A.2.5 Ewald sphere

The Ewald's sphere is a geometric construction used in electron, neutron,
and X-ray crystallography which demonstrates the relationship between the
wavevector of the incident (g) and di�racted (g′) beams, the di�raction angle
for a given re�ection and the reciprocal lattice of the crystal (q) [169]. It can
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Figure A.2: Ewald's construction in reciprocal space. g is the incident wave-vector,

g′ the di�racted wave-vector in elastic scattering and q a reciprocal lattice vector

be used for express geometrically the condition for a Bragg re�ection from a
crystal.

The construction can be seen in �gure A.2, where the reciprocal lattice has
been drawn and one node has been picked as the origin of the reciprocal space
O. The wavevector (g) of the incident wave, in direction and magnitude is
represented with its end at O and starting at P. The Ewald sphere, or sphere
of re�ection, is a sphere of radius 1/λ passing through the origin O of the
reciprocal lattice and with its center in P. The di�racted beam's wavevector
having its origin in P must end on the sphere, to ensure |g| = |g′|, and also
must satisfy g − g′ = q in order to produce a Bragg peak. Thus, there will
be a di�racted beam if the Ewald sphere goes through the origin and another
reciprocal-lattice node.

When the wavelength is large, there are seldom more than two nodes, O and
H, of the reciprocal lattice simultaneously on the Ewald sphere. When there are
three or more, we speak of multiple di�raction, multiple scattering or n-beam
di�raction. This situation becomes increasingly frequent as the wavelength
decreases. When the wavelength changes, the radius of the Ewald sphere
changes. If the incident beam is a white beam (as the experiments we have
performed using the Laue method), with a wavelength range λmin < λ < λmax,
there will be a nest of Ewald spheres of radA 1

λmin
> r > 1

λmax
.

In order to explore the reciprocal space, the Ewald sphere is rotated around
the origin O (in practice one rotates the crystal); as the reciprocal lattice nodes
pass through the Ewald sphere, the corresponding re�ections are successively
excited.
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Figure A.3: The Busing and Levy Eulerian angles.

A.3 Four-Circle Geometry on a monochromatic beam

The Laue method is excellent for measuring large number of Bragg re�ections,
but is not very e�cient at measuring a small selection of re�ections to follow a
phase transition, for example, and does not allow determination of the absolute
values of the linear cell parameters. If a large single-crystal is available, we can
use monochromatic di�raction for the latter two tasks. We now describe the
monochromatic di�raction technique and the instrument that we used following
this technique.

A.3.1 Four-Circle geometry

A characteristic of the four-circle di�ractometers is the use of Eulerian cradles
for orientating the sample crystals, with the detector moving in a horizontal
plane. Using a di�ractometer in a four-circle geometry, the sample can be
moved in the three Eulerian angles ϕ, ω and χ, hence it can describe three
circles; the four circle is given by the movement of the detector around the
γ = 2θ angle. In the �gure A.3, a scheme of the movements appears.

The instrument axis is vertical, and perpendicular to that we �nd the
horizontal equatorial plane, in which the incident beam lies. The incident
beam impinges on the sample which is situated at the centre of the goniometer.
The detector rotates in the horizontal plane making a rotation of 2θ with the
incident-beam direction. The angle 2θ for a particular re�ection is determined
by Bragg's law. The χ axis is positioned to make an angle ω with the incident
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beam. The ϕ angle is supported by the χ ring which enables ϕ to be set at an
angle χ from the vertical axis (we are using the Busing and Levy notation for
the angles χ and ϕ [170]). The sample is attached to the ϕ shaft so that it can
be turned about this axis by an angle ϕ.

Rotating the di�ractometer and the detector we should get at least two
re�ections of the sample and then with these re�ections we can obtain the
product of matrices UB, which links the re�ections hkl with the positions of
the di�ractometer (the di�erent angles 2θ, ω, ϕ, χ ). U is called the orientation
matrix, which depends on the way the crystal has been mounted, and it relates
a vector expressed in the crystal cartesian system, to the vector in terms of
the laboratory system axes when all the instrument angles are set to 0; B is
the matrix which relates a vector expressed in terms of the reciprocal lattice
vectors to the description in the crystal cartesian axes, so their product relates
a vector expresses in terms of the reciprocal lattice vectors to its coordinates
in the laboratory system axes.

If we call v1 the description of a vector in terms of the laboratory sys-
tem when all instrument angles are set to zero, and we are in the di�raction
condition then:

v1 = U · B · h (A.21)

where h is the column vector in the reciprocal lattice system containing
the Miller indices hkl, and consequently

|v1| = |(v11, v12, v13)| = q (A.22)

Thus the Bragg condition can be written as sinθ=λq/2. Di�raction from
the planes with indices hkl can occur when the tip of h lies on any point of
the circle of observation, which is the intersection of the sphere with radius q
with the Ewald sphere of radius 1/λ. Hence the instrument angles (ϕ, χ ,ω)
can be adjusted so that the di�racted beam occurs anywhere in the cone with
semi-angle 2θ about the incident beam.

These di�ractometers can be used to �nd:

• Average atomic positions

• Local atomic distributions

• Magnetic structures and magnetic moment distributions.

Structural data of this kind are required for a large number of systems, ranging
from organic molecules to high temperature superconductors. Often, these
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Figure A.4: Schematic drawing of the neutron di�ractometer D15

studies are made as a function of temperature, pressure and magnetic �elds
which may lead to important modi�cations of the crystal structure.

A.3.2 D15

D15 is a single-crystal thermal neutron di�ractometer placed at the ILL that
was dismantled at the end of the 2009. The instrument could be operated
in either four-circle or normal-beam mode and allowed to choose between a
monodimensional or a bidimensional detector. Three wavelengths were avail-
able: 0.85Å, 1.17Å, and 1.54Å with corresponding �ux at the sample of 1.8·106,
7.8·106, and 3.0·106n/(s · cm2) respectively.

For the normal-beam geometry D15 has its own orange cryostat super-
conducting magnets that reach 6T and 10T. A low temperature insert can be
used in the orange cryostat and the 6T magnet allowing to cool down to 50mK.
Pressure cells (up to 3 GPa), uniaxial stress apparatus, and furnaces from ILL
can also be installed. In four circle con�guration, several displex are available
and temperatures of 1.5K can be set.

D15 is specialized in determination of crystallographic and magnetic struc-
tures, but its characteristic make D15 suitable for a wide range of physical
problems, also in studies of phase transitions, determinations of magnetic �eld
temperature or pressure temperature phase diagrams, which are the compul-
sory starting points of any investigation of the magnetic properties of solids.

A schematic drawing of the instrument can be seen in �gure A.4

All the experiment carried out during this thesis in D15 didn't need large
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sample environments so they have been performed using the four circle con-
�guration and the monodimensional 3He detector, which presents a low back-
ground and higher e�ciency. The direction of the di�racted beam is described
by γ = 2θ. The re�ections have been measured one at a time by ω : 2θ step
scans.

A.3.3 Typical experiment

In D15 the user has the possibility to choose the wavelength, the geometrical
con�guration of the instrument and the environmental apparatus he wish to
use. Once everything is settle down, the experiment start by choosing a good
crystal, mounting it on a pin and insert it in the instrument. The �rst step is to
center the crystal in the beam, so it is fully impregnated, preventing misaligned
with respect to translation by moving ϕ back and forth 180o. Once the crystal
is centered it is necessary to orientate it and �nd the orientation matrix UB.
For this, we need to know the unit cell of the compound to simulate a list
of re�ections in function of the 2θ values for the wavelength chosen. Ideally,
crystal faces should be indexed in terms of the unit cell directions in order to
facilitate the orientation of the crystal in the beam. Introducing the wavelength
and the unit cell dimensions on the control computer, setting γ = 2θ and ω = θ

for the re�ections we want to �nd and running ϕ scans at �xed χ values, we
should �nd some re�ections. As it has been said, some knowledge of the crystal
faces and experience will help to �nd the correct value for χ easily. At least
three of four re�ections are necessary to calculate a primitive UB ; then, it's
necessary to center 10 or 20 re�ections to improve the UB matrix by least-
square matching of the observed re�ections centroids against the calculated
values. The unit cell is also re�ned simultaneously (the wavelength is supposed
to have re�ned before the experiment).

Once we have measured some re�ections, we can adjust the slits at the
neutron source and the counter in order to maximize the reception of the re-
�ections without counting direct beam. Before beginning the data collection,
it is important to choose the appropriated scan parameters: number of points
per scan, counts per monitor for each point, angle covered... Each experiment
has a limited amount of time and it should be optimized, collecting the re�ec-
tions necessary to solve the problem of interest with the best statistic. During
the experiment, it is advisable to measure a standard re�ection every 50-100
re�ections in order to monitor any possible deterioration in crystal orientation,
crystal quality, detector stability or any other aspect of the experiment. As a
standard re�ection, it is better to choose a strong re�ection, because it can be
collected in a shorter time.
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In the experiments we have performed, a number of re�ections at a tem-
perature above the transition have been measured in order to determine the
nuclear structure. After cooling down, the reciprocal space has been explored
performing q-scans in a search for satellite magnetic peaks that will indicate
a propagation vector di�erent from zero. Once the propagation vector has
been determined, re�ections measured at low angle without considering the
extinction rules of the paramagnetic space group will help with the magnetic
structure determination.

Several re�ections with a magnetic contribution have been followed as a
function of the temperature to observe the magnetic transition.

The orientation matrix has been built with the help of the programm
RACER, that can be used as well to integrate single-crystal re�ections us-
ing area multidetectors [171], the re�ections have been integrated with the
program COLLD15 [93] and corrected from absorption with DATAP [94].

A.4 Laue di�raction theory

The Laue method was born in the nineteenth century, as a consequence of
important discussions amongst Laue, Ewald, Sommer�eld, Wien, Bragg etc.
The starting point was the doctoral thesis of Ewald, who proposed a resonator
model of crystals where resonators were placed at lattice points. To validate
his model, a wavelength similar to the spacing between the resonators should
be employed, and Laue suggested that X-rays might suit. Friedrich and Paul
Knipping, using a beam of X-rays through a copper sulfate crystal, record the
�rst Laue image on a photographic plate. Laue developed a law that connects
the scattering angles and the size and orientation of the unit-cell spacings in
the crystal, for which he was awarded the Nobel Prize in Physics in 1914.

The Laue method was the �rst of many methods developed for the study
of crystals by x-ray di�raction. Many of the early determinations of cell di-
mensions, crystals symmetry and studies of crystal structures were done by
Laue method. However, it present several limitations arising for the quasi
white beam that is used: it was di�cult to know exactly the wavelengths and
intensity of the part of the incident radiation that caused the observed Laue
spot. For this reason, the Laue method was pushed into the background and
was reduced to an aid in determining crystal orientation and crystal perfection
as some more powerful methods were developed. Recently, it has been reborn
thanks to the use of image plate detectors and advanced computing algorithms.
It present a great advantage for crystals of small size, because, due to the fact
that all orders of re�ection from a plane (hkl) cooperate to produce a single
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Figure A.5: The Laue model of di�raction by a row of atoms

spot, it reduced the exposure time considerably.

A.4.1 The conventional Laue method [172]

For explaining the existence of the spots in the patterns, Laue realized that he
needed to formulate the di�raction equation three times, one for each period-
icity of the space lattice. The Laue equations in vectorial form can be seen in
equation A.23, where a1, a2 , and a3 are the monoatomic crystal translations,
and h1 ,h2 and h3 are the Laue numbers that give the orders of the interference
and s0 and s are the directions of the incident beam and the di�racted beam
respectively. Each of these equations represents the di�raction produced by a
single row of atoms with an interatomic interval such as a1 as it is shown in
�gure A.5

a1(s− s0) = h1λ a2(s− s0) = h2λ a3(s− s0) = h3λ (A.23)

Each spot is explained as a partial re�ection of the incident beam in sets
of parallel planes on which atoms are arranged in the crystal.

Basically, in a Laue experiment, a pencil of radiation limited by a collimator
reaches the crystal and the di�racted radiation is register on a photographic
�lm, or nowadays on image plates. Usually, the crystal remains in a �xed
orientation.
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General geometry

One of the characteristic of the Laue photographs (which introduces serious
limitations) is that many of the Laue spots are the superposed records of several
orders of re�ections. This can be easily seen if we have a look to the Bragg's
equation A.24, where dhkl is the distance between planes (hkl) whose integers
h, k and l contain no common factor, and n is the order of the re�ections from
this plane. It can be expressed saying that θ is invariant for equal values of
λ/n, so the wavelength range can cover several orders of re�ections for any
stack of planes (hkl). This fact implies a limitation, but doesn't make Laue
technique useless because wavelengths near the short-wavelength limit cannot
be accompanied by submultiple wavelengths, which makes Laue spots produced
by short wavelength contain only �rst-order contributions.

nλ = 2dhklsinθ (A.24)

A small value of lambda implies a small value of θ, so the single-component
Laue spots are near the center of the Laue photograph.

On Laue photographs, the spots appear localized along ellipses running
through the center of the photograph. The spots occurring at the same ellipse
are re�ections of planes that lie in the same zone, that is, that contain a com-
mon rational crystallographic direction. Every rational crystal plane contains
many rational axes, so every Laue spot is located at the intersection of several
conic sections.

When a crystal is oriented so the beam is along a symmetry element of
the Friedel class of the crystal, the Laue pattern displays the projection of the
symmetry along this direction.

Interpretation of the re�ections

Each spot on a Laue photograph correspond to a crystal plane described by
indices (hkl). In order to identify which plane correspond to each spot, the
plane is represented in the gnomonic projection. The gnomonic projection is
widely used in crystallography and gives the projection of a point contained
in a reference sphere, on a plane normal to the line of sight, when the eye is
placed at the center of the sphere. This projection has the advantage that
there is a close relation between it and the reciprocal lattice.

The transformation from the Laue location of a Laue spot to the gnomonic
projection of the plane that produces can be seen derived in �gure A.6. If the
distance from the crystal to the detection plane (placed normal to the beam) is
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Figure A.6: Relation of the position of a Laue spot to the corresponding gnomonic

projection point,where θ represents the direction of the re�ection plane respect to the

incident beam direction, r is the distance between the transmitted direct beam and

the di�racted beam, and p is the point where the normal from the re�ecting plane

reaches the vertical line.

taken as the unity, the distance r between the direct beam and the di�racted
beam can be written as in equation A.25

r = tan(2θ) =⇒ θ = tan−1r (A.25)

The normal to the re�ecting plane reaches the detection plane at a dis-
tance p from the transmitted direct beam given by equation A.26. With this
expression we can connect the locations of each spot in a Laue pattern with
the gnomonic projection of the plane whose re�ections produces it.

p = tan(90− θ) = cot(θ) = (cot
1

2
(tan−1(r))) (A.26)

In a more general form, if the distance between the detection plane and
the crystal is M instead of unity then the relation between r and p is given by
equation A.27.
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p = (cot
1

2
(tan−1(r/M))) (A.27)

Once the spots on the Laue pattern are linked with the gnomonic projec-
tion, they can be related to the reciprocal lattice, using the representation
properties.

In the reciprocal lattice, the points corresponding to the various orders
of re�ections of a stack of planes constitute a row of points placed in a line
perpendicular to the stack of planes and equally equally spaced (1/dhkl). In
the gnomonic projection, a point representing a plane lies on the normal to
the plane, and its position depends on θ (see �gure A.6). Therefore a stack of
planes hkl, 2h 2k 2l, 3h 3k 3l......nh nk nl are represented by the same point
in the gnomonic projection. In other words, the gnomonic projection does not
have record of the order of a re�ection and may correspond to several orders
at once, exactly as it happens with a spot in a Laue pattern.

If the orientation of the crystal with respect to the beam is arbitrary, the
interpretation of the gnomonic projection is not straightforward. However, is
a rational axis is parallel to the beam , and hence, perpendicular to the image
to the projection plane, the relation is very simple. For example, if the crystal
axis [0 0 1] is oriented parallel to the beam, and then the reciprocal-lattice
planes (00l)∗ are normal to the beam, in the projection plane a net whose
points are the re�ections corresponding to the planes (hkl)∗ appears in the
projection plane. The points on the nodes of the net in the same line are
equally separated and their separation depends on a/c in one direction, and
b/c in the other direction.

The observed gnomonic projection can of course be readily transformed via
modern computers to put any observed symmetry axis along the beam.

Polychromatic radiation

The wavelength range should be such that the range is large compared to the
beam divergence and the crystal mosaic. Synchrotrons for instance, have a
△λ/λ of approximately 1% while in thermal-neutron Laue di�raction
△λ/λ ≈ 100%. The beam should have continuous λ over a wide range, because
a �xed crystal requires a continuous variation of either λ or 1/d for di�raction.
Using the Ewald sphere construction, we can see all the re�ections that lie in
a circumference of radius ki = 2π/λ, having a wide range of λ allow us access
to a major number of re�ections. There are an upper and lower limit to the
re�ections we can observed, delimited by the spheres whose radius are 1/λmin

and 1/λmax. The spheres touch each other at the origin of the reciprocal lattice,
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Figure A.7: Ewald sphere construction for the Laue technique. This construction

shows that the reciprocal-lattice points whose re�ections can be recorded are those

lying between the Ewald spheres of radious 1/λmax and 1/λmin, and these spheres

touch each other at the origin of the reciprocal lattice. The circle of radius 1/dmin

corresponds to the limit of observability for a particular sample.

as shown in �gure A.7. As it has been said before, several order of re�ection
form a plane produce the same Laue spot; when the crystal is illuminated with a
polychromatic beam many orders of each Bragg re�ection can simultaneously
appear in the Laue pattern, overlapping occurs exactly at the same angle,
i.e. Bragg's law is simultaneously satis�ed by the re�ections (d,λ), (d/2,λ/2),
(d/3,λ/3), etc. all multiple re�ections are second-order re�ections.

Determination of the reciprocal lattice

In order to determine the reciprocal lattice, several hints can be very helpful.
Certain regions of a Laue photograph and its correspondent gnomonic projec-
tions have spots with likely only �rs-order component. This can happen by
two ways.

As you can see in the Ewald construction in �gure A.8 the reciprocal-lattice
points having simple indices (•) are on rays radiating from the origin, which
have short intervals between points. The re�ections due to these reciprocal-
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Figure A.8: Geometry used in explaining the blank areas in a Laue photograph that

occur in the immediate vicinity of very intense spots with simple indices. (•) are

reciprocal lattice points having simple indices; (◦) are reciprocal lattice points having
complicated indices

lattice points within the limiting sphere contribute to the same Laue spot,
so usually it is very intense. Due to its simple indices such a spot is at the
intersection of several zone ellipses also having simple indices, and the ellipses
are usually prominent too. The neighboring spot positions on the ellipses
are locations of missing or very weak spots. This is due to the fact that
these neighboring points are on rays (◦) with such a large interval between
points that none, or only one point per ray, falls within the sphere of minimum
wavelength. These points can therefore give rise to spots representing �rst-
order re�ections only. Spots of �rst-order component can be recorded also by
purely geometrical reasons. As can be seen in �gure A.9 there is a region on
the outer edge on the gnomonic projection between the radA r1 and r2 where
the spots can only come from lattice points in the outer edge of the �rst level.
These points are �rst-order re�ections. It is easy derive the values for the
di�erent radA. As it has said before, if a crystallographic axis is parallel to the
beam, in the projection plane there is a net whose dimensions are related to
the reciprocal lattice cell dimensions. Focusing in the re�ections of the �rst
level, it possible to identify the net and index all the re�ections.

Symmetry determination

Space group symmetry is normally approached through a study of absent re-
�ections. Using the Laue method, the determination os di�raction symmetry
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Figure A.9: Regions of Laue spots with limited orders of re�ection

is limited to the determination of the Friedel symmetry and the lattice type.

The dimensions of the unit cell can not be obtain accurately from Laue
method. This is due to the dependence of a linear dimension to d in Bragg
equation (see equation A.28); which is a function of the λ causing the re�ection
which is in general unknown. However, the ratio between dimensions of the
cell is accurately determinable.

λ = 2dsin(θ) =
2sin(θ)

|t∗hkl|
⇒ |t∗hkl| =

2sin(θ)

λ

t∗hkl = ha∗ + kb∗ + lc∗ (A.28)

As t∗hkl is not well determined, a
∗, b∗ and c∗ (or a, b, c) cannot be either.

We can however determine unit-cell angles and the ratios between the unit-cell
lengths.

One of the important features of the Laue method, is that patterns show
the symmetry along the direction of the incident beam. This advantage allows
to recognize elements of symmetry by inspecting the pattern. To determine
the Friedel point group patterns along di�erent directions must be taken.

In Laue method, not all the 32 crystallographic point groups can be de-
termined. This is because re�ections hkl and h̄k̄l̄ are identical in magnitude
although they di�er in phase. As only he magnitude of a re�ection can be
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Figure A.10: The 10 crystallographic point groups in a plane

measured, and both re�ections contribute to the same spot, the di�raction
e�ect is as had a center of symmetry. We can just distinguish the crystal sym-
metries of the 11 centrosymmetrical crystallographic point groups, called also
Friedel's class. The Friedel law requires the intensity function to have a center
of symmetry at the origin of the reciprocal lattice, and only a Laue photograph
can not show the centrosymmetry of the whole di�raction space. A Laue pho-
tograph give information about the Friedel symmetry of the direction of the
beam; the only �nite symmetries that can be displayed in two dimensions can
be seen in �gure A.10, so several projections are needed to obtain the three-
dimensional Friedel symmetry. Taking several photographs along appropriate
directions allows to determine the symmetry of the crystal. If a cylindrical �lm
with is axis perpendicular to the incident beam is used instead of a �at plane,
the amount of directly observable information is reduced, owing to the lower
symmetry of the cylinder as compared with the �at plane. however, it presents
the advantage that all the information about the crystal is collected at once
and on one �lm. Information is obtained not only for the symmetry along the
direction parallel to the beam, but also for that along any other direction of
the crystal inside the Ewald sphere that correspond to λmin. To retrieve such
information is necessary a proper analysis of the projection. Of course the
larger volume of reciprocal space is only of use if the sample scatters to high
angle.
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About the observable Laue spots and their multiplicity distribution

As it has been said before, the reciprocal space that can be explored is lying
between the Ewald spheres of radA 1/λmax and 1/λmin. The spheres touch
each other at the origin of the reciprocal lattice, as shown in �gure A.7.

Using a polychromatic beam implies that many orders of each Bragg re-
�ection can simultaneously appear in the Laue pattern, overlapping occurs
exactly at the same angle, i.e. Bragg's law is simultaneously satis�ed by the
re�ections (d,λ), (d/2,λ/2), (d/3,λ/3), etc. 50% of all multiple re�ections are
second-order re�ections. If we consider an unrestricted angular acceptance of
the detector, 72.8% of all Bragg re�ections occur on single rays for the case
of an in�nite range of incident wavelengths. By choosing appropriate λmin

and λmax values, the percentage can be increased to greater than 83% [173].
By reducing the di�erence between λmin and λmax, the number of single re-
�ections will increase, but in total we will lose re�ections as the portion of
reciprocal space we can access is lower (a decrease in the wavelength range
results proportional to the decrease in the total number of observable spots).
The proportion of single re�ections also depends on the unit-cell dimensions,
on the crystal orientation and also on the sample resolution limit d∗max, with
the proportion of single or double rays being generally lower at low resolution
than at high resolution.

To treat the energy overlap deconvolution techniques have been developed
[174], using the wavelength-normalization curve and Laue spots measured at
di�erent wavelengths [175], [176], however this deconvolution has not been ap-
plied to our data and we have just consider the single re�ections. Another
important factor is the spatial overlap between re�ections, which occurs when
the angular separation of adjacent di�racted beams is very small [177]. The
maximum density of spots occurs at θc = sin−1(λmind

∗
max/2), having the ma-

jority of spots in this θ region short λ.

Both e�ects, that of energy overlap and that of spatial overlap do make
the Laue method complex, and for large unit cell sizes the number of spatial
overlaps can considerably exceed the number of energy overlaps.

To reduce the spatial overlap, the angular acceptance of the detector can
play a very important roll. It is important to have a big angular detector
acceptance as the majority of the lost re�ections due to the angular acceptance
limitations are single re�ections.

In principle, by increasing the distance between the crystal and the detec-
tor, the proportion of spacial overlaps should be substantially reduced, but
of course the installations would be much bigger, the VIVALDI detector for
instance would be much more expensive, and this may not even be technically
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feasible.

Also by decreasing λmin we can reduce the number of spatial overlaps, but
then, the total number of observable reciprocal lattice points will be reduced.

We need to take all these factors into account when measuring on a Laue
di�ractometer.

A.4.2 VIVALDI

The Laue technique has passed through ups and downs throughout history, but
nowadays its applicability at synchrotron sources to static and also to time-
resolved structure determination is well established. The employment of this
technique with neutrons in chemical crystallography and molecular materials
is however still new. Further development of Laue instrumentation to use
detectors that can cover almost 2π sr of solid angle, has enabled the study of
structures on a shorter time scale, larger unit cells (organic compounds usually
have large cell parameters), charge-density analysis, hydrogen bonding studies
etc. The use of small crystals is feasible, with a typical volume of 1mm3. As
it is a fast technique and it can cover a big solid angle it is suited to survey
reciprocal space to help to study for example of incommensurate structures. We
will not consider here the technique of time-of-�ight Laue di�raction, as used
on spallation neutron sources, although it does share some of the di�culties
of the technique, such as normalisation to a common wavelength. Time-of-
�ight Laue di�raction does however allow resolution of the di�erent orders of
re�ections.

At the ILL, four neutron di�ractometers have been created specially for
the Laue technique. First, it was LADI [178], which has been improved several
times and is used on a cold neutron beam for protein crystallography, extending
the size and complexity of systems that can be studied ∼ 150 on cell edge while
lowering the sample volumes required ∼ 0.1− 0.2mm3. Then VIVALDI [179],
which is placed at the end of the thermal-neutron guide H22, which has been
used for the Laue di�raction experiments performed in this theses. In the
last, ORIENT-EXPRESS [180] and CYCLOPS [181] have been implemented.
LADI AND VIVALDI use cylindrical detectors, while ORIENT-EXPRESS
uses a plane �lm as a detector and CYCLOPS uses eight �lms that forms and
octagon. The construction of more Laue di�raction instruments, as KOALA
on the OPAL reactor at ANSTO in Australia, is an evidence of the nowadays
peak of this technique.

VIVALDI stands for Very Intense Vertical-Axis Laue DI�ractometer, and
is a Laue di�ractometer placed at the ILL that has been in operation since
late 2001 [179], although many improvements have been performed until reach
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the actual high e�ciency. It is based on a cylindrical image-plate detector (see
�gure A.11 placed at the end of the thermal-neutron guide H22, that will accept
a variety of standard and adapted sample environments for fast single-crystal
experiments in physics, chemistry and materials science. The detector consist
of neutron-sensitive image plates upon which the di�raction pattern from a
stationary crystal is recorded. After each exposure, the stored pattern is read
out in phonographic mode by fast rotation detector coupled with translation of
a simulating laser and photomultiplier detector along the length of the cylinder.
Image plates o�er high spatial resolution. good homogeneity, a large and linear
dynamical range and no deadtime. VIVALDI's image plates are base on the
same storage phosphor (BaFBr doped with Eu2+ions) commonly used for X-
ray image plates, with Gd2O3 added; the Gd nuclei act as neutron scintillators
by creating a cascade of X-rays and conversion electrons. A detector like this, is
cheap compared to electronic detector and can be constructed to subtend very
large angles at the sample. By using the single-crystal Laue technique with a
large solid-angle detector and a thermal neutron beam, the two-dimensional
projection of a large volume of reciprocal space of small-unit-cell materials can
be seen in a single exposure. Complete structural data can thus be obtained
in a time shorter by one to two orders of magnitude than for a monochromatic
experiment, with only a modest loss in precision. The dramatically shortened
data-acquisition time allows structural and magnetic phase transitions, which
often result in complex incommensurable structure, to be observed and followed
in detail as a function of temperature or pressure.

On VIVALDI, the crystal lies in the axis of the detector and its irradiated by
the white beam from a thermal neutron guide. It presents the advantage that
its detector cylinder axis is vertical, so it can accept cryostat for 1.5K to 600K
which can be combined with standard dilution inserts (down to 50mK)and
high-pressure cells up to 49mm in diameter. The sample/cryostat support
is a robust high-precision rotation unit, which sits above the detector on a
translation platform to allow the positioning of the crystal on the detector
axis and to compensate for contration/dilatation of the sample stick as the
temperature is varied.

Since its implementation, VIVALDI has proved to be a very multifunctional
di�ractometer [182] which relevant contribution in a lot of di�erent �elds as in
localization of hydrogens atoms or precise characterization of water molecules
in molecular structures, rapid crystallography though phase transitions, mag-
netism, high pressure experiments....
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Figure A.11: The neutron Laue di�ractometer, VIVALDI. The sample, located in

the middle of the image-plate detector, is bathed in the un-monochromatic incident

thermal-neutron beam. At the left, there is a general view; a schematic of the di�rac-

tometer showing the main components can be seen in the middle; and in the left, a

schematic of the detector with typical Laue pattern superimposed can be seen. The

crystal size is exaggerated.

A.4.3 Typical experiment

In VIVALDI, we can mount our samples in di�erent ways. If our crystal
has a strong cohesion, it can be glued directly on a Vanadium pin, but if
we need to avoid stress due to the change of temperature that can break the
crystal, it is advisable to wrap it with some aluminium foil. In case of crystals
sensitive to air or that need some special atmosphere, VIVALDI also admit
sealed glass tubes. Knowing the geometry of the crystal once it is mounted,
will be necessary to perform the absorption correction.

Once our crystal is ready, it must be aligned. We must ensure that the
sample stick is centered with respect to rotation of the cryostat, that the
initial and �nal apertures that de�nes the beam path are aligned with the
axis of rotation of the cryostat, and that sample height makes it to be in the
center of the beam. To perform the centering, several low exposure images at
di�erent position of x, y and z of the crystal need to be taken; in the center
position of the crystal, the intensity of Laue spots will be maximum. It is very
important that the beam irradiates all the sample. A pin-hole of 2, 3, or 4 mm
in diameter limits the �nal aperture to minimize the background scattering
form air and from the aluminium cryostat.

The Laue experiment is itself very simple, entailing collection of four to ten
successive di�raction patterns, distinguished by a rotation of typically 20o o
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30o of the crystal about the detector axis. taking several patterns, allow us to
collect reasonably complete di�raction data. In a usual phase transition study,
complete experiments are performed at one or two temperatures, and a series
of single patterns at one setting of the crystal is recorded at small temperature
intervals through the transition. It can be very useful to subtract patterns at
equal orientation and di�erent temperature in order to unveil weak properties
of the transition.

However, this apparently facility in the set up, is does not imply an easy
and quickly experiment. In VIVALDI, the di�culty arises when one treats the
data. Several programs have been developed to analyze the VIVALDI data and
there is a extensive explanation about how to proceed in Dra. Clara González
thesis [31]. Here, only a brief glimpse about the process is o�ered.

Laue patterns processing

After recording the Laue patterns and writing them in an appropriate for-
mat with the help of the program REORDER, the �rst step is basically to
index the pattern. This task is done with the help of the programm LAUE-
GEN [183][184][85]. LAUEGEN is an X-Windows-based programm with an
intuitive interface distributed as part of the Daresbury Laboratory Laue Soft-

ware Suite. It displays Laue simulations and Laue patterns; �nds and re�nes
crystal orientations; and determines the spots size and the soft limits in λ and
d.

To index a pattern, it is important to have a good starting point: the unit
cell previously determined and a good approximation to the cell parameters at
that temperature. As it has been said before, spots at the intersection between
zones have probably lower indices, and some spots with high intensity can
satisfy this property; for this reason, these spot are selected and use to index the
pattern. With the selected spots and the cell parameters, LAUEGEN propose
several solutions, among them we choose the best one (or retry the process if
neither of them satisfy us) whose simulated Laue pattern will be likely to the
experimental pattern. Once the solution is found, by comparing the position
of the predicted spots and the measured spots we can re�ne PhiX, PhiY and
PhiZ,the angles of the orientation matrix that relates the reciprocal lattice to
the Cartesian laboratory framework of reference; c_f, the beam ratio; x_c
and y_c, the crystal alignment; and the relative values of the cell parameters.
The re�nement is considered successful when the RMS ∼ 0.1 for the most
spots possible and taking into account a reasonable number of spots far from
the central beam, i.e. with high hkl indices. Once the cell has been re�nes,
we can do the re�nement of the soft limits: limits of the wavelength range
minimum space between planes. The program can calculated them, but seeing
the predicted pattern with the limits automatically predicted, they can be
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improve if some spots are not predicted or some predicted spots are missed.
Finally, by inspection, we can assign a medium value for the spot size.

Spots Integration

The program ARGONNE_BOXES has been used to integrate the spots
indexed in the previous step using a two-dimensional version of the σ(i)/I

algorithm [86]. In this programm, the user must specify which regions have
to be considered and some parameters to discriminate peaks from background
and to model the peak geometry using a elliptical geometry. The programm
LAUEGEN allows us to visualize the peaks integrated by ARGONNE_BOXES
and check if the most part of them have been integrated properly: no over-
lapping between peaks, models according to the peak geometries, background
substrated... An example of a pattern integrated can be seen in �gure A.12.

Absorbtion Correction

The absorbtion correction can be performed using di�erent programs. We
are used the programm LADIABS, which corrects intensities for the absorption
in the crystal and in the cylindrical Al cryostat shields. Each re�ection is
corrected for absorption of incident and di�racted beams in the crystal and
through the Al shield. The correction is estimated by Gaussian integration
over a 3D grid of points within the crystal. The absorbtion coe�cient has
been calculated as in A.18. LADIABS also generates an output that allows
to visualize the crystal inside the detector, which can be very useful to check
that the description of the crystal is adequate by comparing its projection on
the detector with the form of the spots.

Wavelength normalization

The process of wavelength normalization must be done in di�erent runs
for di�erent temperatures, and is performed with the help of the program
LAUENORM [87], of the Daresbury Laboratory Suite. LAUENORM will de-
termine an empirical normalization curve by comparison of repeated obser-
vations and symmetry equivalents at di�erent wavelengths and then, it will
rescale each re�ection for the variation of the incident intensity with wave-
lengths. The user must employ his skills to optimize the lambda range and
to obtain the best normalization curve with the most possible re�ections ac-
cepted. To appreciate the goodness of the �tting and the quality of the data
after all the treatment, we used the Laue merging R factors. They give the
agreement factor for the weighted mean intensities; R1 uses the mean intensity
from all measurements for the re�ection, R2 the mean intensity from all the
measurements of the same sign and R3 the mean intensity from small mea-
surements of the same sign and with λ within 0.1 Å. They should be as small
as possible (at least 0.2)
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Figure A.12: Integrated Laue patterns for Gn-MnMn at T=25K and ϕ = −45o. On

the bottom, a detail is shown.
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RLaue =

∑
|I − IMEAN |∑

I
(A.29)

A.5 Magnetic Structure Determination. Irreducible

Representation Theory

Determination of magnetic structures is a challenge that can be solved only
by neutron di�raction techniques. Some information about magnetic structure
of magnetic materials can be obtained from other techniques, but only neu-
tron di�raction is a direct method of determining the magnetic structure of a
crystal. By magnetic structures, we refer to the mutual alignment of the mag-
netic moments of the atoms in a crystal and their overall alignment relative to
crystallographic axes.

The magnetic structure of a crystal develops from a particular crystal struc-
ture and the Landau's [185][186] theory establishes that the development of
the free energy at the second order must be invariant under the action of the
symmetry operators of the crystal's space group in its paramagnetic state.
Therefore, the set of magnetic structures which can develop in a certain crys-
tal and their symmetry depend signi�cantly upon the crystal structure and
symmetry, which can be described by space groups. A preliminary analysis of
crystal symmetry allows to obtain the the magnetic structures available, the
true one can be selected by best �t of the calculated observed pattern to the
observed pattern. To determine the magnetic structures, we have used the
irreducible representation (IR) theory analysis; therefore, for the understand-
ing of the next chapters, important notions on its basis will be given in this
section, starting from the concept of the propagation vector.

Magnetic moments in a crystal interact due to the unpaired electrons of
the atoms. The exchange energy depends on the mutual orientation of the
moments, and for the whole crystal it can be written as:

H = −
∑
jj′

Jjj′mjmj′ (A.30)

where Jjj′ is the exchange integral between the atoms j and j', mj and mj′ are
the magnetic moments of the atoms j and j' and the summation is extended
over all the pairs of atoms. The interaction depends on the distance and falls
o� quickly when the distance increases. At low temperature, the interaction
between magnetic moments can lead to a magnetic order.

For the sake of simplicity, we will considerer only one magnetic atom in the
lattice interacting via Heisenberg interaction with the �rst neighbor magnetic
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atoms. The magnetic moments can be written as a FT of some coe�cients
called Fourier coe�cients (Sk

j ), which can be real or complex vectors and are
the FT of the magnetic moments.

ml =

∫
Sk
j e

−ık·rjd3k (A.31)

where k is the propagation vector which will be described in the next section,
rj is the position vector of the atom j. The Fourier coe�cients, which can
be written as linear combinations of some basis vectors Ψk

ν as can be seen in
equation A.32.

Sk
l =

∑
ν

Cj
νΨ

k,j
ν (A.32)

Cj
ν represent the coe�cients of the linear development of the Fourier coe�-

cients.

If we generalize equation A.30 for several atoms per lattice, the resulting
Hamiltonian is:

H = −
∑
l,l′

∑
j,j′

∑
α,β

Jll′jj′αβmjlαmj′l′β = −
∑
j,j′

∑
α,β

Jjj′αβ(k)S
k
jα(S

k
j′β)

∗ (A.33)

where l and l' refer to the crystal cells, j and j' refer to the magnetic atoms,
α and β represent the axes x, y or z. Jjj′αβ(k) is

∑
l Jjj′ll′αβe

−ık·(rl−rl′ ), and
rl and rl′ are the origin vectors of the cells l and l' respectively.

Expressing the Fourier coe�cients as a function of their basis vectors, the
hamiltonian becomes diagonal as can be seen in equation A.34. Thus, to
describe a magnetic structure, we will need to know �rst k (if it can be de�ned),
and after that the Fourier coe�cients, which depend on the basis vectors Ψk

ν .
These vectors can be found with the help of the irreducible representation
theory analysis.

H = −
∑
k

∑
ν,ν′

Ck
νν′Ψ

k
ν (Ψ

k
ν )

∗ (A.34)

A.5.1 Propagation vector

As it has been said before, at low temperature, the interaction between mag-
netic moments can lead to a magnetic order. In this magnetic order, the
periodicity can be the same as for the unit cell, an integral multiple of it or the
periodicity can be not an integral [187]. The relationship between the unit cell
and the magnetic cell is given by the propagation vector k, for example, with a
propagation vector equal to zero k = 0, the magnetic cell and the nuclear cell
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are the same; and with a propagation vector equal to k = (0, 0, 1/2) the mag-
netic cell doubles the nuclear cell in the c direction. The propagation vector
also gives us the relations between the orientations of the magnetic moments
of the equivalent magnetic atoms in di�erent nuclear cells as it is expressed in
equation A.35

mlj = −
∑
k

Sk
j e

−ik·rl (A.35)

where mlj is the magnetic moment of the atom j situated in the cell l.
As the magnetic moment of an atom is a real vector, and e−ik·rl is a complex
quantity except for certain values of k, to any vector k is associated a vector
−k with Sk

j = (Sk
j )

∗ such as:

mlj = Sk
j e

−ik·rl + S−k
j eik·rl = 2

∣∣∣mk
j

∣∣∣ucos(k · rl + ϕ) (A.36)

where u is a unitary vector.

Attending to the propagation vector, we classify the magnetic structures
in:

Incommensurate There is not a simple relation between the magnetic and
nuclear cell. For incommensurate magnetic structures, we can not de�ne
a propagation vector with accuracy and it is no possible to de�ne a mag-
netic cell, although the magnetic structure can be determined. There is a
special case, when there is only a magnetic ion per unit cell; in such case,
the propagation vector can not be de�ned but the magnetic structure can
be solved. From the neutron di�raction point of view, a commensurate
structure with a long period will behave as an incommensurate one. Two
types of incommensurate structures are:

• Sine wave modulated structures. The magnetic moments order ac-
cording tomlj = ujcos(k·rl+φj). A sine wave modulated structure
implies that all the moments have di�erent lengths. Such structures
are often observed at higher temperature, near TN , where the dif-
ferences in the length of the ordered moments is due to thermal
disorder. At lower temperatures, the moments tend to have the
same length by a squaring of the modulation and a occurrence of
new harmonics of k

• Helical structures. The magnetic moments are ordered as an helix
according to mlj = ujcos(k · rl + φj) + vjsin(k · rl + φj), where
uj and vj are two vectors orthogonal of the same length. Magnetic
structures like these may be found for propagation vector parallel
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to a 3, 4, or 6 fold symmetry axis with moments rotating in an easy
plane perpendicular to this axis. A helical structure can remain
stable down to the lowest temperature.

Commensurate The magnetic unit cell is a multiple of the nuclear unit cell.
The propagation vector is k = (p, q, r) with p, q, r ∈ Q (rational num-
bers). If the propagation vector is equal to zero, the nuclear and magnetic
cell are identical; which is the case of a ferromagnetic structure if there
is only one magnetic atom per unit cell, but it may be antiferromagnetic
or triangular when there are several magnetic atoms. A commensurate
structure can be a:

• Single k structure. Only k and −k appears in its description.

• Multi k structure. k and its harmonics τ/2... appear in its de-
scription. Several propagation vectors are needed to describe the
magnetic structure.

To describe the commensurate magnetic structures, the expression A.35
needs to be develop. If we have a single k structure, the expression becomes:

mlj = Sk
j [cos(k · rl)− isin(k · rl)] (A.37)

If the Fourier coe�cient is real and the imaginary part is zero in equation A.37,
the modules of the magnetic moments does not change, it just changes its sign,
appearing ferromagnetic, antiferromagnetic or ferrimagnetic structures.

If the Fourier coe�cient is real but the imaginary part is di�erent from
zero, it is necessary to include k and −k in the description in the way:

mlj = Sk
j e

−ik·rl + S−k
j eik·rl = 2Sk

j [cos(k · rl)] (A.38)

which describes sinusoidal structures.

A complex Fourier coe�cient is used to describes helicoidal magnetic struc-
tures such as circular magnetic structures or elliptical magnetic structures. As
the propagation vector must obey Sk

j = (Sk
j )

∗, the expression for the magnetic
moments will be:

mlj = Sk
j e

−ik·rl + S−k
j eik·rl = 2Re[Sk

j ]cos(k · rl)− 2Im[Sk
j ]sin(k · rl) (A.39)

If the real part Re[Sk
j ] and the imaginary part Im[Sk

j ] of the Fourier coef-
�cients have the same modulus, the structure appears to be a circular helix,
but it will be a helical helix if they have a di�erent modulus.
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Figure A.13: Some di�erent types of magnetic structures
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Determining the propagation vector

As it has been said in equation A.10, magnetic scattering peaks appear when
G = g − g′ = k ± q. Ifk is zero, the magnetic cell and the nuclear cells
coincide, and the magnetic peaks appears where the nuclear re�ections are
or should be if they are systematically absent. If the propagation vector is
di�erent from zero, each nuclear Bragg peak at q will be �anked by magnetic
satellites coupled in pairs at q ± k. The Laue di�raction technique allow us
to visualize magnetic satellites if existing, just by inspecting and comparing
patterns below and above TC . Therefore, we can determine the propagation
vector if the structure is commensurate. For four-circle geometry di�raction
technique, it is necessary to explore the reciprocal space by performing several
scans and to look for the satellite peaks in direction suspected to present them.

A.5.2 Theory of Irreducible Representations.

To determine the magnetic structure of the compound studied in this thesis, we
have used the irreducible representations (IR) analysis. This method is based
on expanding the spin density of the crystal in terms of basis functions of the
irreducible representations of its space group, so the magnetic structure can
be described by the mixing coe�cients of the basis functions. The idea arises
from Landau's [185][186] symmetry theory of phase transitions. The state of
a magnetic crystal is described by the average density of the spin distribution
s(x, y, z). In a phase transition of the second kind, the spin density, which is
the magnitude and orientation of the spins in a crystal, varies continuously, but
its symmetry changes abruptly, and at the transition point the symmetries of
the paramagnetic and magnetic phase are equal. We need to take into account
that additional symmetry operations like the time-inversion operation, may be
needed to describe a magnetic structure.

In order to classify magnetic structures in a ordered system with a logic
structure, several attempts have been done. A natural development is to use
the Fedorov's groups, the 230 space groups, and include the atomic magnetic
moments. The space group of a crystal is the group os symmetry operations
that leave the crystal invariant; to describe magnetic structures is necessary
to include an additional operator: R, the spin inversion, which change the
direction of a spin to the opposite. The groups constructed by combining
the 230 Fedorov's space groups and the spin-inversion operator, are called
the 1651 Shubnikov groups. In 1968 Bertaut [188] demonstrated that all the
Shubnikov groups can be generated from the knowledge of the ensemble of
one-dimensional real representations, therefore, they can only describe mag-
netic structures whose representation is not one dimensional and real. Bertaut
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established the IR analysis to solve the problem of magnetic structure classi�-
cation, demonstrating that with the help of this method all possible magnetic
couplings in the frame of the 230 crystallographic space groups could be enu-
merated. He demonstrated that his method was a quite general method, in
contrast to the magnetic or Shubnikov groups description, the IR theory anal-
ysis can deal with one-dimensional real or complex representations, and even
two- or three-dimensional representations. It us based on the transformation of
spins in a given lattice site under the symmetry operations of a crystallographic
group G or a subgroups GK of the crystal in which the magnetic structure is
imbedded. In order to explain the IR analysis, some basic mathematical con-
cepts such as group, representation, irreducible representation, basis vectors...
need to be introduced.

A group G is a set of distinct elements G={g1, g2,...,gn} endowed with
a law of composition such that the product of two elements of the group is
also an element of the group, the element identity exists, each element has an
inverse, and the associative property is satis�ed. The number of elements of
the group n(G) de�nes the order of the group G.

A representation Γ of the group G is just a mathematical mapping that to
each element gi of G is associated an element Γ(gi), which in our case implies
that a representation will match an element with a matrix. The order of the
matrices of Γ is called the dimension of the representation. These matrices do
not have to be diagonal, but by making a proper basis change we can obtain
diagonal matrices in blocks. Once the matrices are diagonal in blocks we say
that the representation is an IR. The representation Γ will be written as a
direct sum of di�erent irreducible representations.

We call G0 the set of symmetry operators of the space group G, that con-
sider only the rotational part. Therefore, from the 230 space groups, there are
just 32 possible G0 groups, which are the 32 point groups.

To perform a IR analysis, the �rst thing to do is to relate the symmetry of
the propagation vector to that of the lattice. Some of the g0n symmetry oper-
ations of the group G0 will leave k invariant, i.e. k′ = g0nk with k′ = k+T,
where T is a reciprocal lattice vector. Those elements that leave the polar
vector k invariant, form the group of operations Gk, which de�nes a group
compatible with the periodicity of the magnetic structure. From now, we will
call Γ the magnetic representation of Gk, and g the elements that form the
group Gk.

To determine the magnetic structure we need to obtain the irreducible
representations (Γν) of the representation Γ, we need to �nd the basis vectors
which converts the matrices of the di�erent g elements in diagonal matrices in
blocks.
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The number of IRs Γν coincides with the number of classes of the group,
where the class of a group is de�ned as follows: if A, B and C are elements
of the group, when A−1 ·B ·A = C is satis�ed, we will say that B and C are
part of the same class. By doing this for all the elements of the we will obtain
all the group classes.

The dimension of each IR is calculated using the relation n(Gk) =
∑c

ν=1 l
2
ν ,

where n(Gk) is the order of the group Gk (i.e. the number of elements of the
group), c is the number of classes of the group Gk (i.e. the number of IR of
the group) and lν is the order of the IR ν.

Once Γν is found, the magnetic representation Γ, can be written as Γ =

=
∑

ν nνΓν , where nν is the number of times the IR Γν appears in Γ.

We need to take into account that the symmetry operators act not only on
the atom positions, but also on the magnetic moments. The e�ect of the ele-
ments in Gk on the atom positions can be given by an operation which changes
the position of an atom at ri in the 0 lattice with another atom at position ri
of the lattice p, i.e. g(i0) → (jp). The e�ect of the symmetry operation is to
interchange the columns of a matrix which labels the atoms. This operation is
the permutation, which is associated with a matrix whose order is the number
of magnetic atoms. By applying the di�erent group elements gi of Gk to the
magnetic ions, we will construct the Γgi

perm matrices, which take into account
the e�ect of the symmetry element gi on a column vector whose dimension is
the number of magnetic atoms. We will call χgi

perm the character of the matrix
Γgi
perm, where the character is just the sum of the diagonal elements of the ma-

trix. If we have only two magnetic ions, a permutation matrix ΓE
perm will show

how the identity element E transform the coordinates of the atoms 1, and 2.
As the identity leaves the coordinates unchanged, ΓE

perm will be the identity
matrix whose order is the number of atoms.

To take into account the way in which the symmetry operators act on the
magnetic moments, we will construct the Γgi

Ṽ
matrices, which are formed by

multiplying the matrix associated with the element gi with its corresponding
determinant, i.e. Γgi

Ṽ
= δ(gi)R(gi) (where δ(gi) is the determinant of the matrix

R(gi) associated with the element gi of the group Gk). The traces of the Γgi
Ṽ

matrices will be denoted χgi
Ṽ
. The determinant δ(gi) is included to take into

account the fact that the magnetic moment is an axial vector, not a polar one,
which is irrelevant in the case of compounds exhibiting nuclear chirality, as all
the symmetry elements are proper elements, therefore elements of determinant
+1.

As we pointed out before, the magnetic representation Γ must describe the
result of the symmetry operations gi on the magnetic moment (which is an axial
vector) and on the atom positions. As the e�ects are independent, the repre-
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sentation for each element can be obtained by the direct product of the Γgi
perm

and Γgi
Ṽ
matrices, i.e. Γ(gi) = Γgi

perm × Γgi
Ṽ
, and therefore, χ(gi) = χgi

perm × χgi
Ṽ
,

where χ(gi) is the character of the matrix of the representation Γ associated
with the group element gi, χ

gi
perm is the character of the matrix Γgi

perm, and χgi
Ṽ

the character associated with the matrix Γgi
Ṽ
.

With this knowledge we can now calculate nν , i.e. the number of times the
IR Γν appears in Γ, with the help of the Great Orthogonality theorem, which
can be seen in equation A.40

nν =
1

n(Gτ)

∑
gϵGk

χΓ(g)χ
∗
Γν
(g) (A.40)

where χΓ(g) is the character of the matrix associated with the element
g of the magnetic representation Γ, and χΓν is the character of the matrix
associated with the element g for the IR ν. The sum acts over all elements g
in Gk.

We have already seen how to obtain χΓ(g) (i.e. by doing χgi
perm × χgi

Ṽ
), but

to obtain χΓν we need to construct �rst the character table of the group, which
is a table containing the characters of all the irreducible representations for all
the classes of the group.

With the information given up to now, we are able to split the magnetic
representation into IRs. After that, we need to obtain the basis functions Ψk

ν

for each IR ν of the group Gk.

As it was shown in equation A.31 the magnetic moments are given by the
FT of the Fourier coe�cients, which can be written as a linear combination of
the basis vectors Ψk

ν (see equation A.32). These basis vectors left the Hamil-
tonian of the system (equation A.34) diagonal in blocks.

To obtain the basis vectors, we will use the projection operator, which is
de�ned as:

P ν =
∑
gϵGk

[Γτ(g)
ν ]∗Γτ(g) (A.41)

We need to construct this operator for each IR ν, and then P ν will be
applied to a 3N vector, where N is the number of magnetic atoms. By doing
this we will obtain the basis vectors Ψk

ν for each IR ν. In fact the number
of basis vectors for each IR ν coincides with the number of times the IR Γν

appears in the magnetic representation Γ.

Landau stated that in order to keep the magnetic energy invariant under
all the symmetry operations of Gk, the magnetic structures must be built from
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basis vectors belonging only to one IR of Gk. Bertaut [188] said that this was
the case only for second-order phase transitions.

What we do is to make a symmetry analysis to obtain the IRs, and to
identify which of them describe the real system, for what we use the neutron
data. Obviously, the magnetic structure obtained must be consistent with
results of magnetization measurements.

A.5.3 Magnetic Groups

In this thesis, the magnetic structures have been determined by the theory of
IR. However, sometimes is not possible to employ this analysis. The potential
of the theory is limited by the time-inversion operator that appears in the
magnetic symmetry description.

Time-Inversion operator

In order to describe a magnetic structure, sometimes it is necessary to include
additional operations like time-inversion. Essentially, there are two ways of
expressing the time-reversal operator:

• Linear time-inversion operator R.

Rmj = −mj = −
∑
k

Sk
j e

−ık·l (A.42)

• Anti-linear time-inversion operatorΘ. This one was introduced byWigner
[189]

Θmj = −mj = −
∑
k

(Sk
j )

∗e+ık·j (A.43)

The linear time-inversion operator will change k into −k, but does not conju-
gate the Fourier components Sk

j .

Bertaut [190] used the anti-linear operator and gave an example in which
the introduction of this operator reduced the number of possible magnetic
structures.

The need to add this operator was explained by Landau and Lifshits [191].
They showed that it reversed the direction of the electric currents and therefore
it reversed the sign of the magnetic moments (axial vectors). Both linear and
anti-linear operators keep invariant the magnetic energy, but the linear one has
not proved to bring new information [192].
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Figure A.14: Flow chart of magnetic structure determination.eps
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Attending to the need to include a time-reversal operator in the magnetic
symmetry description, three di�erent situation can be distinguished. If we de-
note by M the magnetic group which is composed of all the elements belonging
to the space group gϵG and also of all elements Θg, i.e. the g elements which
are time reversed. This leads to three di�erent situations.

1. There is no symmetry operation in the space group that reverses the
vector k (i.e. −k does not belong to the star k, where the star of k

is the set of non-equivalent vectors k′ obtained applying the rotational
part of the symmetry elements of the space group to k). Therefore,
Mk = GΘ

k = Gk, and the magnetic group is called a Fedorov group.

2. −k is equivalent to k, which means that either k = 0 or k = −k+T

where T is a reciprocal lattice vector. This leads to the so-called grey

groups, where Mk = GΘ
k = Gk +ΘGk

3. If −k belongs to the star k but is not equivalent to k, the group is
called a black and white group, where there exists in G an element g0
which reverses k and associated with Θ constitutes the reversing element
a0, and the relations a0 = Θg0 = g0Θ and Mk = GΘ

k = Gk + a0Gk are
satis�ed.

The usual group theory cannot be applied when we introduce the anti-
linear inversion operator, and we are obliged to employ the co-representation
theory analysis [189] instead of the IR theory analysis. However, to study the
Fedorov and grey groups, the conventional IRs theory analysis is enough to
solve the magnetic structure. In all cases the co-representation theory can be
applied, as it is similar to a generalization of the IRs method, but it is more
complex, therefore it will not be used for Fedorov and grey groups.

As the compounds presented in this thesis present a propagation vector
k = 0, they belong to grey groups and the IRs theory is enough to understand
their magnetic behavior, the magnetic structure solution has been done using
this approach instead of the co-representations theory.



Appendix B

[Cr(CN)6][Mn(S)− pnH ]

As it has been said in the chapter 1, some doubts about the existence of a
magnetic reorientation phase for the GN were risen by dynamical features. In
order to search for a possible propagation vector di�erent from zero near the
critical temperature, we scanned the reciprocal space at di�erent temperatures
in D15 for Phase I.

To perform the experiment, a crystal of 1x5x0.7mm33 was wrapped in
silver �lm and glued in a aluminium pin with kwick�lm. The a axis of the
crystal was placed vertical in the pin, parallel to the ϕ axes of the Eulerian
cradle. The slits used to optimize the ratio background/signal were 8mmx8mm
at the font and 8mmx8mm at the detector. Before cooling down, some lines
were measured to check the quality of the crystal ant to obtain an orientation
matrix. This orientation matrix was also obtained at 45K and 12K and the
cell parameters re�ned at these temperatures.

A total of eleven q-scans in strategic directions were collected at di�erent
temperatures. As can be seen in the �gures of this appendix, no extra peeks
appeared and a propagation vector di�erent from zero has not been observed.
Due to the dependency of the are reorientation matrix and cell parameters
with temperature, some peaks are displaced with temperature.
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Figure B.1: Q-scan performed for GN compound in D15 at di�erent temperatures:

12K (black), 20K (red), 30 K (green), 32K (dark blue), 34K (pink), 36K (yellow),

37K (purple), 38K (orange), 39K (magenta), 40K (grey).
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Figure B.2: Q-scan performed for GN compound in D15 at di�erent temperatures:

12K (black), 20K (red), 30 K (green), 32K (dark blue), 34K (pink), 36K (yellow),

37K (purple), 38K (orange), 39K (magenta), 40K (grey).





Appendix C

[Mn(CN)6][Mn(S)− pnH(H2O)] · 2H2O
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Table C.1: Atomic positions

X Y Z Uiso

Mn1 290K 0.4979(14) 0.2567(5) 0.2615(5) 0.0155(17)
25K 0.4970(9) 0.2566(4) 0.2623(4) 0.0028(9)
2K 0.4968(10) 0.2555(4) 0.2627(5) 0.0019(10)

Mn2 290K -0.0076(11) 0.5070(5) 0.1938(6) 0.0170(15)
25K -0.0098(9) 0.5078(4) 0.1955(4) 0.0048(10)
2K -0.0084(9) 0.5064(4) 0.1964(5) 0.0027(11)

O1 290K 0.0513(10) 0.4905(6) 0.0469(5) 0.0314(16)
25K 0.0538(6) 0.4904(3) 0.0473(3) 0.0073(7)
2K 0.0541(6) 0.4900(3) 0.0477(3) 0.0061(8)

N1 290K 0.1986(6) 0.4016(3) 0.2161(3) 0.0344(10)
25K 0.1969(4) 0.40215(19) 0.21784(16) 0.0087(5)
2K 0.1974(4) 0.4021(2) 0.21779(18) 0.0080(5)

N2 290K 0.7787(6) 0.4029(3) 0.1936(3) 0.0328(10)
25K 0.7784(4) 0.40282(18) 0.19628(16) 0.0085(5)
2K 0.7771(4) 0.4029(2) 0.19655(18) 0.0071(5)

N3 290K 0.5278(11) 0.3543(4) 0.4496(3) 0.0727(19)
25K 0.5353(4) 0.34827(19) 0.45554(17) 0.0112(5)
2K 0.5355(4) 0.3482(2) 0.45510(19) 0.0094(6)

N4 290K 0.4792(8) 0.1528(3) 0.0762(3) 0.0480(13)
25K 0.4743(4) 0.15103(19) 0.07492(17) 0.0106(5)
2K 0.4744(4) 0.1512(2) 0.07458(18) 0.0091(6)

N5 290K 0.2166(6) 0.1150(3) 0.3344(3) 0.0315(10)
25K 0.2152(4) 0.11239(18) 0.33444(16) 0.0069(5)
2K 0.2151(4) 0.1125(2) 0.33427(17) 0.0073(5)

N6 290K 0.7995(6) 0.1154(3) 0.3131(3) 0.0325(10)
25K 0.7970(4) 0.11344(18) 0.31257(17) 0.0081(5)
2K 0.7965(4) 0.1134(2) 0.31287(18) 0.0071(5)

N7 290K -0.0674(7) 0.5240(3) 0.3449(3) 0.0319(10)
25K -0.0634(4) 0.52711(18) 0.34838(15) 0.0078(5)
2K -0.0634(4) 0.5270(2) 0.34827(17) 0.0064(5)

N8 290K 0.4435(10) 0.5131(5) 0.0456(4) 0.0511(14)
25K 0.4380(4) 0.50224(19) 0.05198(17) 0.0094(5)
2K 0.4391(4) 0.5020(2) 0.05226(19) 0.0078(6)

C1 290K 0.3088(8) 0.3476(4) 0.2308(3) 0.0235(12)
25K 0.3059(5) 0.3467(3) 0.2324(2) 0.0057(6)
2K 0.3054(6) 0.3464(3) 0.2327(2) 0.0061(7)

C2 290K 0.6780(8) 0.3477(4) 0.2169(4) 0.0246(13)
25K 0.6754(5) 0.3470(3) 0.2185(2) 0.0064(6)
2K 0.6750(6) 0.3469(3) 0.2187(2) 0.0072(7)

C3 290K 0.5170(11) 0.3175(4) 0.3815(3) 0.0360(14)
25K 0.5169(5) 0.3143(2) 0.3840(2) 0.0069(6)
2K 0.5169(6) 0.3142(3) 0.3840(2) 0.0063(7)

C4 290K 0.4854(9) 0.1929(3) 0.1427(3) 0.0294(12)
25K 0.4822(5) 0.1923(2) 0.1417(2) 0.0057(6)
2K 0.4835(6) 0.1927(3) 0.1418(2) 0.0058(7)

C5 290K 0.3205(7) 0.1688(4) 0.3095(3) 0.0239(12)
25K 0.3183(5) 0.1673(2) 0.3102(2) 0.0060(6)
2K 0.3189(5) 0.1676(3) 0.3099(2) 0.0048(6)

C6 290K 0.6907(7) 0.1690(4) 0.2963(3) 0.0210(11)
25K 0.6863(5) 0.1674(3) 0.2958(2) 0.0065(6)
2K 0.6870(6) 0.1680(3) 0.2956(2) 0.0067(7)

C7 290K 0.4655(9) 0.4149(4) -0.0939(3) 0.0306(14)
25K 0.4601(5) 0.4084(3) -0.0937(2) 0.0066(7)
2K 0.4601(5) 0.4080(3) -0.0935(2) 0.0057(7)

C8 290K 0.4951(13) 0.3122(4) -0.1175(4) 0.0412(15)

Continued on next page
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continued from previous page

X Y Z Uiso

25K 0.4959(5) 0.3085(2) -0.1216(2) 0.0080(6)
2K 0.4961(6) 0.3088(3) -0.1210(2) 0.0075(7)

C9 290K 0.5089(13) 0.4258(7) 0.0040(4) 0.040(2)
25K 0.5072(5) 0.4158(3) 0.0071(2) 0.0073(8)
2K 0.5082(6) 0.4162(4) 0.0072(2) 0.0055(9)

O2 290K 0.488(3) 0.6727(11) -0.0731(10) 0.134(8)
25K 0.5627(7) 0.6582(3) -0.0452(3) 0.0114(8)
2K 0.5617(7) 0.6585(3) -0.0461(3) 0.0092(9)

H1 290K -0.060(3) 0.4567(11) 0.3658(8) 0.069(5)
25K -0.0537(13) 0.4599(5) 0.3718(6) 0.0221(18)
2K -0.0527(15) 0.4602(6) 0.3714(7) 0.024(2)

H2 290K -0.200(2) 0.5422(10) 0.3499(8) 0.055(3)
25K -0.1955(12) 0.5422(6) 0.3525(5) 0.0218(17)
2K -0.1931(14) 0.5423(8) 0.3527(7) 0.025(2)

H3 290K 0.3248(19) 0.4312(9) -0.1048(8) 0.045(3)
25K 0.3202(11) 0.4234(6) -0.1026(5) 0.0197(16)
2K 0.3199(12) 0.4237(7) -0.1023(5) 0.0166(17)

H4 290K 0.631(2) 0.2932(14) -0.0948(16) 0.087(6)
25K 0.6308(13) 0.2877(7) -0.1030(7) 0.030(2)
2K 0.6304(14) 0.2859(8) -0.1036(8) 0.0263(15)

H5 290K 0.412(3) 0.2696(12) -0.0831(15) 0.074(5)
25K 0.4022(14) 0.2613(6) -0.0889(7) 0.029(2)
2K 0.4035(15) 0.2609(7) -0.0894(8) 0.0263(15)

H6 290K 0.479(3) 0.3001(10) -0.1866(9) 0.089(6)
25K 0.4803(14) 0.2998(6) -0.1934(5) 0.0253(18)
2K 0.4815(15) 0.2984(6) -0.1938(6) 0.0241(19)

H7 290K 0.455(3) 0.3695(13) 0.0436(9) 0.080(5)
25K 0.4484(13) 0.3577(6) 0.0437(5) 0.0217(17)
2K 0.4478(14) 0.3574(7) 0.0448(6) 0.0219(19)

H8 290K 0.661(3) 0.4284(16) 0.0133(9) 0.083(6)
25K 0.6516(13) 0.4138(7) 0.0180(6) 0.0260(19)
2K 0.6524(13) 0.4148(7) 0.0171(6) 0.0205(19)

H9 290K 0.494(3) 0.5214(13) 0.1084(15) 0.096(6)
25K 0.4811(14) 0.5058(6) 0.1156(6) 0.029(2)
2K 0.4787(15) 0.5051(7) 0.1171(6) 0.028(2)

H10 290K 0.308(3) 0.5104(13) 0.0518(11) 0.081(5)
25K 0.3005(13) 0.5042(6) 0.0517(6) 0.0232(18)
2K 0.3002(13) 0.5025(7) 0.0534(7) 0.0215(19)

H11 290K 0.470(3) 0.572(2) 0.0080(14) 0.089(9)
25K 0.4834(14) 0.5624(6) 0.0198(7) 0.024(2)
2K 0.4861(16) 0.5619(8) 0.0193(8) 0.023(2)

H12 290K 0.015(2) 0.5420(10) 0.0132(10) 0.045(4)
25K 0.0156(13) 0.5468(6) 0.0147(6) 0.0217(17)
2K 0.0139(14) 0.5454(8) 0.0139(6) 0.019(2)

H13 290K 0.021(2) 0.4375(15) 0.0108(10) 0.053(5)
25K 0.0167(14) 0.4366(6) 0.0107(6) 0.0217(17)
2K 0.0175(15) 0.4376(8) 0.0093(7) 0.021(2)

H1W 290K 0.521(5) 0.7268(15) -0.049(2) 0.150(14)
25K 0.5096(15) 0.7180(7) -0.0381(9) 0.038(2)
2K 0.5088(16) 0.7166(8) -0.0375(9) 0.033(2)

H2W 290K 0.390(5) 0.689(3) -0.104(3) 0.18(2)
25K 0.6868(15) 0.6669(7) -0.0429(7) 0.031(2)
2K 0.6864(18) 0.6662(9) -0.0404(8) 0.034(2)
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Table C.2: Anisotropic thermal parameters

U11 U22 U33 U23 U13 U12

Mn1 290K 0.015(4) 0.011(4) 0.020(3) -0.003(3) -0.001(3) 0.002(3)
25K � � � � � �
2K � � � � � �

Mn2 290K 0.013(4) 0.013(4) 0.025(4) 0.000(3) 0.002(3) 0.002(4)
25K 0.008(3) 0.003(3) 0.003(2) 0.0002(16) -0.0032(19) 0.002(2)
2K � � � � � �

O1 290K 0.045(4) 0.033(5) 0.016(3) -0.005(3) -0.002(3) -0.003(3)
25K 0.012(2) 0.006(2) 0.0044(14) -0.0009(13) -0.0029(15) 0.0009(14)
2K 0.00774 0.00475 0.00587 -0.00090 -0.00288 -0.00139

N1 290K 0.023(3) 0.027(2) 0.053(2) 0.009(2) -0.006(2) 0.0118(18)
25K 0.0034(13) 0.0089(13) 0.0139(10) 0.0002(9) -0.0021(9) 0.0038(9)
2K 0.00585 0.00731 0.01071 0.00163 -0.00133 0.00229

N2 290K 0.029(3) 0.028(3) 0.041(2) 0.0020(19) 0.0004(19) -0.0119(18)
25K 0.0096(14) 0.0064(13) 0.0095(9) 0.0007(8) 0.0000(9) -0.0043(9)
2K 0.00607 0.00601 0.00907 0.00116 0.00032 -0.00249

N3 290K 0.114(6) 0.063(3) 0.040(2) -0.025(2) -0.010(3) 0.012(4)
25K 0.0133(16) 0.0104(13) 0.0100(10) -0.0038(9) -0.0033(9) 0.0007(10)
2K 0.01019 0.00779 0.01008 -0.00402 -0.00277 0.00003

N4 290K 0.064(4) 0.053(3) 0.0267(18) -0.016(2) -0.003(2) 0.007(3)
25K 0.0139(16) 0.0095(12) 0.0083(10) -0.0039(9) 0.0006(9) 0.0011(9)
2K 0.01001 0.00942 0.00785 -0.00368 -0.00118 0.00044

N5 290K 0.023(2) 0.033(3) 0.038(2) 0.0022(19) 0.0028(18) -0.0108(18)
25K 0.0036(13) 0.0076(13) 0.0094(10) 0.0010(8) 0.0006(9) -0.0026(8)
2K 0.00631 0.00741 0.00828 0.00025 0.00163 -0.00378

N6 290K 0.028(3) 0.025(3) 0.044(2) 0.0088(18) 0.002(2) 0.0070(18)
25K 0.0058(13) 0.0067(13) 0.0118(10) 0.0023(8) -0.0010(9) 0.0041(8)
2K 0.00502 0.00630 0.01013 0.00101 -0.00092 0.00244

N7 290K 0.032(3) 0.039(3) 0.025(2) 0.001(2) -0.0022(18) -0.0062(19)
25K 0.0071(14) 0.0087(13) 0.0077(9) 0.0014(9) 0.0001(9) -0.0025(8)
2K 0.00695 0.00798 0.00442 -0.00070 0.00073 0.00015

N8 290K 0.054(4) 0.061(4) 0.039(3) -0.016(3) 0.010(3) -0.002(3)
25K 0.0075(15) 0.0137(14) 0.0071(10) -0.0030(8) 0.0012(10) 0.0011(9)
2K 0.00503 0.01236 0.00615 -0.00318 0.00141 -0.00053

C1 290K 0.024(3) 0.022(3) 0.025(2) 0.002(2) -0.001(2) 0.003(2)
25K 0.0014(17) 0.0080(17) 0.0077(12) 0.0034(11) -0.0025(11) 0.0007(11)
2K � � � � � �

C2 290K 0.022(3) 0.015(3) 0.036(3) 0.001(2) -0.001(2) -0.004(2)
25K 0.0036(19) 0.0048(17) 0.0107(13) 0.0024(11) 0.0006(11) -0.0019(11)
2K � � � � � �

C3 290K 0.058(4) 0.027(3) 0.023(3) -0.006(2) -0.005(3) 0.010(3)
25K 0.0058(18) 0.0103(17) 0.0046(12) -0.0001(11) 0.0010(11) 0.0013(12)
2K 0.00280 0.00954 0.00661 -0.00142 0.00191 0.00029

C4 290K 0.027(3) 0.030(3) 0.030(3) 0.001(2) -0.001(2) 0.004(3)
25K 0.0103(19) 0.0021(15) 0.0048(12) 0.0001(10) -0.0012(11) 0.0008(11)
2K 0.00764 0.00460 0.00503 -0.00021 0.00052 0.00222

C5 290K 0.016(3) 0.025(3) 0.030(2) 0.000(2) 0.000(2) -0.003(2)
25K 0.0044(18) 0.0047(17) 0.0090(13) -0.0009(11) 0.0011(11) -0.0034(11)
2K � � � � � �

C6 290K 0.018(3) 0.013(3) 0.032(3) 0.001(2) -0.002(2) 0.003(2)
25K 0.0042(19) 0.0076(18) 0.0077(13) 0.0006(11) 0.0011(12) 0.0023(11)
2K � � � � � �

C7 290K 0.029(4) 0.044(3) 0.020(2) -0.001(2) 0.005(2) 0.002(3)
25K 0.007(2) 0.0063(17) 0.0061(12) 0.0012(11) 0.0009(11) 0.0012(12)
2K 0.00679 0.00572 0.00460 0.00209 0.00153 0.00052

C8 290K 0.053(5) 0.032(3) 0.039(3) 0.003(3) -0.006(4) 0.010(4)
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U11 U22 U33 U23 U13 U12

25K 0.0055(18) 0.0087(17) 0.0097(13) 0.0021(11) 0.0005(12) 0.0010(13)
2K 0.00701 0.00798 0.00739 -0.00171 0.00012 0.00068

C9 290K 0.048(6) 0.049(6) 0.024(3) 0.005(3) 0.001(4) 0.005(3)
25K 0.010(2) 0.009(2) 0.0032(13) 0.0001(11) 0.0009(12) 0.0037(12)
2K 0.00468 0.00786 0.00405 -0.00099 0.00036 0.00224

O2 290K 0.20(2) 0.074(10) 0.125(12) -0.047(9) 0.092(15) -0.047(13)
25K 0.010(3) 0.009(2) 0.0154(17) -0.0022(15) -0.0035(16) -0.0023(16)
2K 0.00839 0.00532 0.01380 -0.00096 0.00241 -0.00104

H1 290K 0.137(17) 0.039(8) 0.033(6) 0.000(6) -0.013(8) 0.002(8)
25K 0.034(5) 0.007(4) 0.025(3) 0.003(3) -0.004(3) -0.004(3)
2K 0.03351 0.00793 0.03040 0.00257 0.00384 0.00016

H2 290K 0.038(9) 0.080(10) 0.047(7) -0.013(7) -0.005(7) 0.000(7)
25K 0.015(5) 0.027(5) 0.024(3) -0.004(3) 0.000(3) 0.009(3)
2K 0.01292 0.03205 0.03056 -0.00807 -0.00285 0.00813

H3 290K 0.037(9) 0.047(8) 0.051(6) 0.008(6) -0.009(6) 0.003(6)
25K 0.011(4) 0.025(5) 0.022(3) -0.002(3) -0.001(3) -0.001(3)
2K 0.01227 0.02279 0.01485 -0.00190 0.00204 0.00762

H4 290K 0.039(10) 0.083(13) 0.140(16) -0.008(12) -0.027(10) 0.016(8)
25K 0.019(5) 0.034(6) 0.036(5) 0.003(4) -0.013(4) 0.011(4)
2K 0.02356 0.01565 0.03976 0.00708 -0.00178 0.00278

H5 290K 0.076(12) 0.038(9) 0.107(12) 0.001(9) 0.033(10) 0.009(8)
25K 0.027(5) 0.016(5) 0.043(5) 0.005(4) 0.012(4) -0.008(3)
2K 0.02356 0.01565 0.03976 0.00708 -0.00178 0.00278

H6 290K 0.169(19) 0.056(9) 0.043(7) -0.013(6) 0.005(10) 0.004(13)
25K 0.037(6) 0.021(4) 0.018(3) -0.005(3) -0.002(3) -0.004(4)
2K 0.02996 0.02421 0.01808 -0.00574 -0.00311 0.00586

H7 290K 0.093(14) 0.105(14) 0.041(7) 0.016(8) 0.007(8) 0.008(11)
25K 0.030(5) 0.019(4) 0.016(3) 0.006(3) 0.007(3) -0.001(3)
2K 0.03186 0.01802 0.01570 0.00353 0.00647 -0.00247

H8 290K 0.050(13) 0.153(19) 0.046(7) -0.003(9) -0.011(7) 0.016(10)
25K 0.027(6) 0.031(5) 0.020(3) 0.002(3) -0.003(3) 0.007(4)
2K 0.01436 0.02613 0.02088 0.00359 -0.00395 0.00978

H9 290K 0.102(15) 0.105(13) 0.080(12) -0.049(10) 0.006(11) -0.015(14)
25K 0.035(6) 0.038(6) 0.013(3) 0.003(3) -0.006(3) 0.004(4)
2K 0.03476 0.03517 0.01283 -0.00242 -0.01217 0.00469

H10 290K 0.063(11) 0.103(14) 0.078(12) -0.022(9) 0.037(10) 0.006(11)
25K 0.018(5) 0.019(4) 0.032(4) -0.006(3) 0.002(4) 0.007(3)
2K 0.01446 0.01888 0.03102 0.00239 0.00511 0.00249

H11 290K 0.071(16) 0.11(2) 0.082(14) -0.020(11) 0.045(12) -0.035(13)
25K 0.026(6) 0.016(5) 0.031(4) -0.001(4) 0.006(4) -0.002(3)
2K 0.02251 0.02518 0.02214 0.00019 0.00526 -0.00298

H12 290K 0.074(11) 0.017(7) 0.042(6) 0.015(5) 0.005(7) 0.001(7)
25K 0.030(4) 0.014(3) 0.022(3) -0.005(2) -0.003(2) 0.002(2)
2K 0.02193 0.01850 0.01545 -0.00122 0.00082 0.00433

H13 290K 0.060(11) 0.055(11) 0.045(7) -0.027(7) 0.001(7) -0.007(8)
25K 0.030(4) 0.014(3) 0.022(3) -0.005(2) -0.003(2) 0.002(2)
2K 0.01795 0.01474 0.03121 -0.01267 -0.00267 -0.00864

H1W 290K 0.24(4) 0.049(12) 0.17(2) -0.033(15) 0.00(3) -0.052(19)
25K 0.023(6) 0.027(5) 0.065(7) -0.004(5) 0.006(5) 0.008(4)
2K 0.02226 0.02176 0.05559 0.00584 0.00650 0.00288

H2W 290K 0.18(4) 0.13(3) 0.23(4) -0.01(2) -0.10(3) 0.09(2)
25K 0.021(6) 0.029(6) 0.044(5) -0.002(4) 0.007(4) -0.006(4)
2K 0.02876 0.03596 0.03680 -0.00907 -0.00674 -0.00585
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Table D.1: Atomic positions

X Y Z Uiso

Mn1 290K 1.0000(13) 0.2584(4) 0.7006(4) 0.0218(16)
33K 0.9978(14) 0.2580(6) 0.6997(5) 0.005(2)
35K 1.003(6) 0.259(3) 0.6998(18) 0.000(10)
2K 0.9928(17) 0.2581(7) 0.6999(7) 0.009(2)

Cr1 290K 1.4948(18) 0.5046(5) 0.7647(5) 0.0259(18)
33K 1.4985(19) 0.5056(6) 0.7631(6) 0.008(2)
35K 1.507(9) 0.505(3) 0.7652(19) 0.005(12)
2K 1.4988(2) 0.5057(1) 0.76294(9) 0.011(2)

N1 290K 1.2046(6) 0.3617(3) 0.7163(3) 0.0429(14)
33K 1.2033(6) 0.3639(4) 0.7138(4) 0.0177(15)
35K 1.204(3) 0.363(2) 0.7137(12) 0.015(7)
2K 1.2031(2) 0.36396(10) 0.71349(9) 0.021(2)

N2 290K 1.2049(6) 0.1491(3) 0.6915(3) 0.0373(13)
33K 1.2037(7) 0.1488(4) 0.6898(4) 0.0219(15)
35K 1.196(3) 0.1476(16) 0.6923(12) 0.001(6)
2K 1.2038(3) 0.14888(10) 0.68966(9) 0.023(2)

N3 290K 0.7975(6) 0.1493(3) 0.6920(3) 0.0469(15)
33K 0.7996(7) 0.1482(4) 0.6917(3) 0.0159(14)
35K 0.798(3) 0.1493(18) 0.6907(14) 0.026(8)
2K 0.7997(2) 0.14842(10) 0.69156(9) 0.023(2)

N4 290K 0.7978(6) 0.3618(3) 0.7184(3) 0.0410(14)
33K 0.8000(6) 0.3620(4) 0.7165(4) 0.0157(14)
35K 0.796(3) 0.3610(17) 0.7159(11) 0.003(7)
2K 0.8000(2) 0.36221(10) 0.71653(9) 0.019(2)

N5 290K 1.4753(18) 0.4108(5) 0.9110(4) 0.118(4)
33K 1.494(3) 0.4070(5) 0.9088(4) 0.108(6)
35K 1.533(4) 0.4087(17) 0.9103(13) 0.055(9)
2K 1.4943(2) 0.40718(10) 0.90869(9) 0.118(10)

N6 290K 1.4867(15) 0.5944(4) 0.6157(3) 0.088(2)
33K 1.4999(13) 0.5976(4) 0.6141(3) 0.0387(17)
35K 1.506(3) 0.5954(12) 0.6142(10) 0.020(6)
2K 1.5002(2) 0.59770(10) 0.61398(9) 0.045(2)

C1 290K 1.3095(7) 0.4137(4) 0.7334(3) 0.0276(17)
33K 1.3088(9) 0.4133(5) 0.7314(5) 0.015(2)
35K 1.301(4) 0.413(2) 0.7292(16) 0.003(9)
2K 1.3088(2) 0.41353(10) 0.73130(9) 0.022(1)

C2 290K 1.3070(7) 0.0961(4) 0.7053(4) 0.0297(17)
33K 1.3101(9) 0.0964(5) 0.7055(5) 0.015(2)
35K 1.302(4) 0.104(2) 0.7062(15)
2K 1.3101(2) 0.09661(10) 0.70519(9) 0.021(2)

C3 290K 0.6869(7) 0.0984(5) 0.7070(4) 0.0327(18)
33K 0.6896(9) 0.0967(6) 0.7065(4) 0.0131(19)
35K 0.677(4) 0.090(2) 0.7045(16) 0.009(9)
2K 0.6895(2) 0.09664(10) 0.70644(9) 0.015(2)

C4 290K 0.6907(9) 0.4135(4) 0.7343(4) 0.038(2)
33K 0.6900(9) 0.4147(5) 0.7330(5) 0.0130(19)
35K 0.680(4) 0.414(2) 0.7355(15)
2K 0.6899(3) 0.41482(10) 0.73283(9) 0.013(2)

C5 290K 1.4951(13) 0.4458(4) 0.8585(3) 0.0525(16)
33K 1.4977(16) 0.4439(5) 0.8569(4) 0.031(2)
35K 1.482(4) 0.4431(18) 0.8557(13) 0.014(8)
2K 1.4980(3) 0.44404(10) 0.85673(9) 0.031(2)

C6 290K 1.5019(13) 0.5634(4) 0.6688(3) 0.0482(15)
33K 1.5059(13) 0.5660(4) 0.6678(3) 0.0211(16)
35K 1.508(5) 0.5658(19) 0.6690(14) 0.023(8)
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X Y Z Uiso

2K 1.5063(2) 0.56614(10) 0.66770(9) 0.024(2)

O1 290K 0.9953(13) 0.2752(4) 0.5917(3) 0.0440(15)
33K 0.9962(11) 0.2742(5) 0.5899(3) 0.0131(15)
35K 1.098(4) 0.2775(18) 0.5916(12) 0.000(8)
2K 0.9962(2) 0.27424(10) 0.58968(9) 0.018(2)

N7 290K 1.0219(16) 0.2286(4) 0.8162(3) 0.071(2)
33K 1.0290(9) 0.2293(4) 0.8160(3) 0.0207(14)
35K 1.017(2) 0.2282(10) 0.8158(8) 0.016(5)
2K 1.0290(2) 0.22959(10) 0.81585(9) 0.023(2)

H7C 290K 1.137(4) 0.239(2) 0.8269(16) 0.133(13)
33K 1.146(4) 0.2441(16) 0.8241(12) 0.056(6)
35K 1.1497 0.2447 0.8329 0.019
2K 1.14652 0.24428 0.82389 0.062(8)

H7D 290K 0.940(6) 0.2689(18) 0.8413(12) 0.20(3)
33K 0.956(3) 0.2752(13) 0.8403(11) 0.057(7)
35K 0.9280 0.2764 0.8413 0.019
2K 0.95631 0.27531 0.83982 0.083(16)

C7 290K 1.001(2) 0.1328(8) 0.8381(5) 0.066(3)
33K 0.9852(13) 0.1367(5) 0.8393(4) 0.0243(18)
35K 0.975(4) 0.1377(3) 0.8398(8) 0.027(5)
2K 0.9854(3) 0.13685(10) 0.83919(9) 0.032(3)

H7A 290K 1.055(5) 0.1018(19) 0.8152(16) 0.110(12)
33K 1.057(5) 0.0902(14) 0.8071(11) 0.071(8)
35K 1.0367 0.0886 0.8047 0.033
2K 1.05823 0.09040 0.80701 0.073(10)

H7B 290K 0.858(3) 0.115(2) 0.8236(13) 0.118(8)
33K 0.853(3) 0.1251(19) 0.8274(14) 0.079(9)
35K 0.8339 0.1288 0.8353 0.033
2K 0.85386 0.12495 0.82722 0.088(13)

C10 290K 0.9993(15) 0.2105(5) 0.5504(3) 0.0560(17)
33K 0.9955(17) 0.2070(5) 0.5520(4) 0.034(2)
35K 0.990(4) 0.2097(19) 0.5542(12) 0.008(7)
2K 0.9956(3) 0.20711(10) 0.55175(9) 0.041(3)

H10 290K 1.002(5) 0.1433(14) 0.5700(11) 0.136(10)
33K 0.985(8) 0.1361(16) 0.5724(12) 0.14(2)
35K 0.964(10) 0.141(5) 0.577(3) 0.06(2)
2K 0.98466 0.13639 0.57225 0.110(14)

N9 290K 1.0068(10) 0.2187(5) 0.4845(3) 0.0690(16)
33K 1.0055(8) 0.2098(3) 0.4842(3) 0.0201(12)
35K 0.997(2) 0.2092(11) 0.4843(7) 0.006(5)
2K 1.0060(3) 0.21000(10) 0.48405(9) 0.025(2)

C8 290K 1.0363(11) 0.1151(6) 0.9138(5) 0.058(2)
33K 1.0280(9) 0.1114(5) 0.9113(4) 0.0163(18)
35K 1.027(3) 0.1091(16) 0.9114(12) 0.000(7)
2K 1.0279(2) 0.11144(10) 0.91118(9) 0.020(3)

H8 290K 1.161(4) 0.1345(17) 0.9245(13) 0.115(8)
33K 1.163(2) 0.1330(16) 0.9213(10) 0.044(6)
35K 1.164(4) 0.129(5) 0.914(4) 0.06(2)
2K 1.16284 0.13318 0.92127 0.049(7)

N8 290K 0.9031(19) 0.1584(8) 0.9554(5) 0.111(4)
33K 0.921(2) 0.1623(8) 0.9576(6) 0.103(6)
35K 0.917(4) 0.1585(19) 0.9617(13) 0.069(11)
2K 0.9198(3) 0.16206(10) 0.95729(9) 0.109(9)

H8A 290K 0.905(4) 0.2284(16) 0.9610(10) 0.134(10)
33K 0.890(6) 0.223(2) 0.9587(12) 0.107(10)
35K 0.9212 0.2326 0.9512 0.103
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X Y Z Uiso

2K 0.88914 0.22327 0.95877 0.109(13)

H8B 290K 0.918(5) 0.1369(19) 1.0075(12) 0.145(12)
33K 0.934(7) 0.139(2) 1.0060(12) 0.134(15)
35K 0.9666 0.1454 1.0130 0.103
2K 0.93118 0.13807 1.00596 0.102(15)

H8C 290K 0.784(3) 0.1342(15) 0.9403(13) 0.084(7)
33K 0.764(4) 0.1324(17) 0.9357(14) 0.060(7)
35K 0.7814 0.1341 0.9579 0.103
2K 0.76642 0.13271 0.93560 0.070(10)

C9 290K 1.008(4) 0.0112(9) 0.9230(9) 0.134(6)
33K 1.001(2) 0.0084(6) 0.9238(5) 0.043(3)
35K 0.988(3) 0.0088(18) 0.9242(10) 0.037(9)
2K 1.00070 0.00857 0.92366 0.054(5)

H9A 290K 1.016(6) -0.0067(14) 0.9750(17) 0.145(10)
33K 1.028(4) -0.0073(13) 0.9787(12) 0.071(8)
35K 1.0138 -0.0075 0.9776 0.056
2K 1.02878 -0.00712 0.97842 0.079(12)

H9B 290K 1.130(7) -0.022(3) 0.891(2) 0.21(2)
33K 1.107(4) -0.026(2) 0.8944(16) 0.095(12)
35K 1.0716 -0.0339 0.8917 0.056
2K 1.10725 -0.02623 0.89420 0.119(18)

H9C 290K 0.905(5) -0.013(2) 0.919(2) 0.158(16)
33K 0.908(5) -0.012(2) 0.9109(18) 0.120(14)
35K 0.8501 -0.0051 0.9125 0.056
2K 0.90890 -0.01267 0.91064 0.114(16)

C11 290K 0.999(4) 0.1392(13) 0.4405(9) 0.148(6)
33K 1.006(4) 0.1283(9) 0.4444(8) 0.095(6)
35K 0.030(3) 0.1297(17) 0.4422(10) 0.033(10)
2K 1.0057(2) 0.12832(10) 0.44435(9) 0.113(9)

H11A 290K 1.087(6) 0.138(3) 0.4027(13) 0.185(19)
33K 1.120(6) 0.131(3) 0.4103(19) 0.116(15)
35K 1.1342 0.1458 0.4057 0.050
2K 1.11956 0.13093 0.40952 0.119(12)

H11B 290K 0.867(5) 0.152(3) 0.413(2) 0.206(19)
33K 0.895(4) 0.117(3) 0.4123(19) 0.100(12)
35K 0.9106 0.1109 0.4148 0.050
2K 0.89557 0.11757 0.41254 0.116(12)

H11C 290K 1.016(8) 0.0752(19) 0.472(2) 0.199(19)
33K 1.020(9) 0.068(3) 0.4754(14) 0.139(17)
35K 1.0717 0.0719 0.4743 0.050
2K 1.01893 0.06813 0.47525 0.128(12)

C12 290K 0.989(3) 0.3056(12) 0.4519(7) 0.107(4)
33K 1.000(4) 0.2925(7) 0.4496(6) 0.082(6)
35K 1.034(2) 0.2897(15) 0.4483(9) 0.017(8)
2K 0.9998(2) 0.29265(10) 0.44947(9) 0.088(8)

H12A 290K 1.088(5) 0.317(3) 0.4106(18) 0.174(12)
33K 1.088(7) 0.296(3) 0.4102(17) 0.147(19)
35K 1.1435 0.2772 0.4136 0.026
2K 1.09032 0.29625 0.41058 0.114(16)

H12B 290K 0.930(7) 0.357(3) 0.480(2) 0.174(13)
33K 1.003(9) 0.350(2) 0.4868(15) 0.17(2)
35K 1.0690 0.3445 0.4841 0.026
2K 1.00534 0.34991 0.48651 0.135(16)

H12C 290K 0.881(6) 0.293(3) 0.433(2) 0.164(13)
33K 0.869(4) 0.292(3) 0.426(2) 0.102(13)
35K 0.9182 0.3105 0.4191 0.026
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X Y Z Uiso

2K 0.86855 0.29062 0.42661 0.094(13)

O2W 290K 0.999(3) 0.4610(14) 0.8786(14) 0.234(18)
33K 0.992(2) 0.4649(9) 0.8738(8) 0.072(6)
35K 1.015(5) 0.468(3) 0.877(2) 0.071(13)
2K 0.9926(3) 0.46505(10) 0.87382(9) 0.059(6)

H2WA 290K 0.933(6) 0.490(3) 0.8480(15) 0.41(7)
33K 0.904(4) 0.489(3) 0.851(2) 0.110(16)
35K 0.942(9) 0.498(6) 0.851(4) 0.09(2)
2K 0.90426 0.48941 0.85154 0.18(5)

H2WB 290K 1.106(5) 0.483(4) 0.867(3) 0.32(4)
33K 1.098(5) 0.478(3) 0.859(2) 0.138(19)
35K 1.127(6) 0.480(7) 0.866(5) 0.10(2)
2K 1.09958 0.47706 0.85878 0.13(3)

O3W 290K 0.975(7) 0.3440(12) 0.9826(10) 0.29(3)
33K 1.030(7) 0.3485(15) 0.9800(9) 0.23(3)
35K 1.032(6) 0.346(3) 0.9769(14) 0.058(14)
2K 1.0242(3) 0.34811(10) 0.98007(9) 0.23(3)

H3WA 290K 0.984(5) 0.3644(19) 1.0242(9) 0.131(12)
33K 1.020(4) 0.3684(15) 1.0214(11) 0.074(8)
35K 1.002(9) 0.365(4) 1.0188(16) 0.026(13)
2K 1.01996 0.36859 1.02140 0.095(16)

H3WB 290K 0.956(6) 0.400(2) 0.9651(19) 0.37(6)
33K 0.982(6) 0.386(3) 0.9493(18) 0.132(17)
35K 1.040(7) 0.381(4) 0.951(3) 0.036(17)
2K 0.98094 0.38671 0.94934 0.095(2)
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Table D.2: Anisotropic thermal parameters

U11 U22 U33 U23 U13 U12

N1 290K 0.029(3) 0.045(3) 0.053(4) -0.006(2) -0.005(2) -0.019(2)

N2 290K 0.032(2) 0.041(3) 0.037(3) 0.001(2) 0.003(2) 0.017(2)

N3 290K 0.035(2) 0.033(3) 0.072(4) 0.014(3) 0.005(2) -0.010(2)

N4 290K 0.032(3) 0.022(3) 0.068(4) -0.007(2) 0.007(2) 0.002(2)

N5 290K 0.230(11) 0.078(4) 0.045(4) 0.019(3) 0.013(6) -0.013(6)

N6 290K 0.140(6) 0.067(3) 0.056(4) 0.016(3) 0.002(5) -0.008(5)

C1 290K 0.018(3) 0.022(3) 0.041(4) -0.001(3) 0.005(2) 0.004(2)

C2 290K 0.027(3) 0.016(2) 0.045(4) 0.019(2) 0.000(2) 0.014(2)

C3 290K 0.016(3) 0.037(3) 0.043(4) -0.012(3) -0.005(2) 0.004(2)

C4 290K 0.031(3) 0.026(3) 0.057(5) -0.010(3) 0.004(2) 0.013(2)

C5 290K 0.079(4) 0.047(3) 0.031(3) 0.004(2) -0.014(5) -0.010(4)

C6 290K 0.067(3) 0.042(3) 0.034(3) 0.009(2) 0.022(4) 0.018(4)

O1 290K 0.056(3) 0.040(3) 0.034(3) 0.000(2) -0.004(5) 0.004(4)

N7 290K 0.126(6) 0.050(3) 0.036(3) 0.002(2) -0.007(5) 0.001(5)

H7C 290K 0.13(2) 0.15(3) 0.10(2) 0.039(19) 0.02(2) -0.09(2)

H7D 290K 0.44(7) 0.098(16) 0.052(12) 0.030(10) 0.09(2) 0.14(2)

C7 290K 0.080(7) 0.073(7) 0.045(5) 0.022(4) -0.021(6) -0.030(7)

H7A 290K 0.15(3) 0.078(16) 0.09(2) 0.051(13) 0.000(16) -0.00013)

H7B 290K 0.072(11) 0.16(2) 0.111(16) 0.026(15) -0.033(11) -0.050(12)

C10 290K 0.076(4) 0.059(4) 0.031(4) -0.012(3) 0.013(5) -0.004(5)

H10 290K 0.25(3) 0.063(11) 0.093(15) -0.024(10) 0.03(2) 0.052(18)

N9 290K 0.055(3) 0.105(5) 0.045(3) -0.021(3) -0.012(3) 0.001(4)

C8 290K 0.055(5) 0.064(4) 0.054(5) 0.013(3) -0.003(4) 0.008(4)

H8 290K 0.13(2) 0.111(19) 0.097(19) 0.017(15) 0.018(17) -0.019(15)

N8 290K 0.195(11) 0.081(7) 0.057(6) 0.024(5) 0.053(6) 0.079(7)

H8A 290K 0.28(3) 0.059(12) 0.057(13) 0.029(9) 0.042(15) 0.028(15)

H8B 290K 0.26(3) 0.106(17) 0.067(15) 0.048(12) 0.092(16) 0.054(17)

H8C 290K 0.101(14) 0.069(12) 0.081(17) 0.009(11) 0.003(12) 0.014(10)

C9 290K 0.24(2) 0.064(7) 0.088(10) -0.022(7) -0.020(16) 0.040(13)

H9A 290K 0.25(3) 0.062(12) 0.114(18) 0.006(12) 0.00(2) -0.022)

H9B 290K 0.29(5) 0.14(3) 0.17(4) 0.01(2) 0.03(3) 0.12(3)

H9C 290K 0.18(3) 0.105(19) 0.18(3) 0.052(19) -0.01(2) -0.10(2)

C11 290K 0.209(17) 0.152(13) 0.081(11) -0.067(10) -0.047(15) 0.034(16)

H11A 290K 0.31(5) 0.19(3) 0.038(15) -0.071(18) 0.03(2) 0.03(2)

H11B 290K 0.17(3) 0.23(4) 0.20(3) -0.12(3) -0.08(2) -0.01(2)

H11C 290K 0.33(5) 0.069(15) 0.19(2) -0.055(17) 0.08(3) -0.00(2)

C12 290K 0.150(11) 0.126(10) 0.044(6) 0.030(6) 0.006(10) 0.005(12)

H12A 290K 0.19(2) 0.22(3) 0.098(19) 0.03(2) 0.02(2) 0.00(2)

H12B 290K 0.24(3) 0.12(2) 0.14(2) 0.013(19) 0.04(2) 0.06(2)

H12C 290K 0.19(2) 0.18(2) 0.11(2) 0.02(2) -0.02(2) 0.02(2)

O2W 290K 0.19(2) 0.128(16) 0.37(5) -0.06(2) -0.16(3) 0.102(17)

H2WA 290K 0.82(16) 0.35(7) 0.053(19) 0.12(3) -0.09(4) -0.36(9)

H2WB 290K 0.28(5) 0.17(3) 0.48(9) 0.01(4) 0.28(6) -0.09(3)

O3W 290K 0.58(7) 0.058(10) 0.24(3) 0.038(16) -0.21(49 -0.04(2)

H3WA 290K 0.20(2) 0.13(2) 0.046(12) -0.016(12) 0.021(18) 0.08(2)

H3WB 290K 0.39(7) 0.54(10) 0.18(3) 0.26(5) -0.19(4) -0.36(2)
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Table E.1: Atomic positions

X Y Z Uiso

Mn1 290K 1.0000(13) 0.2584(4) 0.7006(4) 0.0218(16)
33K 0.9978(14) 0.2580(6) 0.6997(5) 0.005(2)
35K 1.003(6) 0.259(3) 0.6998(18) 0.000(10)
2K 0.9928(17) 0.2581(7) 0.6999(7) 0.009(2)

Cr1 290K 1.4948(18) 0.5046(5) 0.7647(5) 0.0259(18)
33K 1.4985(19) 0.5056(6) 0.7631(6) 0.008(2)
35K 1.507(9) 0.505(3) 0.7652(19) 0.005(12)
2K 1.4988(2) 0.5057(1) 0.76294(9) 0.011(2)

N1 290K 1.2046(6) 0.3617(3) 0.7163(3) 0.0429(14)
33K 1.2033(6) 0.3639(4) 0.7138(4) 0.0177(15)
35K 1.204(3) 0.363(2) 0.7137(12) 0.015(7)
2K 1.2031(2) 0.36396(10) 0.71349(9) 0.021(2)

N2 290K 1.2049(6) 0.1491(3) 0.6915(3) 0.0373(13)
33K 1.2037(7) 0.1488(4) 0.6898(4) 0.0219(15)
35K 1.196(3) 0.1476(16) 0.6923(12) 0.001(6)
2K 1.2038(3) 0.14888(10) 0.68966(9) 0.023(2)

N3 290K 0.7975(6) 0.1493(3) 0.6920(3) 0.0469(15)
33K 0.7996(7) 0.1482(4) 0.6917(3) 0.0159(14)
35K 0.798(3) 0.1493(18) 0.6907(14) 0.026(8)
2K 0.7997(2) 0.14842(10) 0.69156(9) 0.023(2)

N4 290K 0.7978(6) 0.3618(3) 0.7184(3) 0.0410(14)
33K 0.8000(6) 0.3620(4) 0.7165(4) 0.0157(14)
35K 0.796(3) 0.3610(17) 0.7159(11) 0.003(7)
2K 0.8000(2) 0.36221(10) 0.71653(9) 0.019(2)

N5 290K 1.4753(18) 0.4108(5) 0.9110(4) 0.118(4)
33K 1.494(3) 0.4070(5) 0.9088(4) 0.108(6)
35K 1.533(4) 0.4087(17) 0.9103(13) 0.055(9)
2K 1.4943(2) 0.40718(10) 0.90869(9) 0.118(10)

N6 290K 1.4867(15) 0.5944(4) 0.6157(3) 0.088(2)
33K 1.4999(13) 0.5976(4) 0.6141(3) 0.0387(17)
35K 1.506(3) 0.5954(12) 0.6142(10) 0.020(6)
2K 1.5002(2) 0.59770(10) 0.61398(9) 0.045(2)

C1 290K 1.3095(7) 0.4137(4) 0.7334(3) 0.0276(17)
33K 1.3088(9) 0.4133(5) 0.7314(5) 0.015(2)
35K 1.301(4) 0.413(2) 0.7292(16) 0.003(9)
2K 1.3088(2) 0.41353(10) 0.73130(9) 0.022(1)

C2 290K 1.3070(7) 0.0961(4) 0.7053(4) 0.0297(17)
33K 1.3101(9) 0.0964(5) 0.7055(5) 0.015(2)
35K 1.302(4) 0.104(2) 0.7062(15)
2K 1.3101(2) 0.09661(10) 0.70519(9) 0.021(2)

C3 290K 0.6869(7) 0.0984(5) 0.7070(4) 0.0327(18)
33K 0.6896(9) 0.0967(6) 0.7065(4) 0.0131(19)
35K 0.677(4) 0.090(2) 0.7045(16) 0.009(9)
2K 0.6895(2) 0.09664(10) 0.70644(9) 0.015(2)

C4 290K 0.6907(9) 0.4135(4) 0.7343(4) 0.038(2)
33K 0.6900(9) 0.4147(5) 0.7330(5) 0.0130(19)
35K 0.680(4) 0.414(2) 0.7355(15)
2K 0.6899(3) 0.41482(10) 0.73283(9) 0.013(2)

C5 290K 1.4951(13) 0.4458(4) 0.8585(3) 0.0525(16)
33K 1.4977(16) 0.4439(5) 0.8569(4) 0.031(2)
35K 1.482(4) 0.4431(18) 0.8557(13) 0.014(8)
2K 1.4980(3) 0.44404(10) 0.85673(9) 0.031(2)

C6 290K 1.5019(13) 0.5634(4) 0.6688(3) 0.0482(15)
33K 1.5059(13) 0.5660(4) 0.6678(3) 0.0211(16)
35K 1.508(5) 0.5658(19) 0.6690(14) 0.023(8)
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X Y Z Uiso

2K 1.5063(2) 0.56614(10) 0.66770(9) 0.024(2)

O1 290K 0.9953(13) 0.2752(4) 0.5917(3) 0.0440(15)
33K 0.9962(11) 0.2742(5) 0.5899(3) 0.0131(15)
35K 1.098(4) 0.2775(18) 0.5916(12) 0.000(8)
2K 0.9962(2) 0.27424(10) 0.58968(9) 0.018(2)

N7 290K 1.0219(16) 0.2286(4) 0.8162(3) 0.071(2)
33K 1.0290(9) 0.2293(4) 0.8160(3) 0.0207(14)
35K 1.017(2) 0.2282(10) 0.8158(8) 0.016(5)
2K 1.0290(2) 0.22959(10) 0.81585(9) 0.023(2)

H7C 290K 1.137(4) 0.239(2) 0.8269(16) 0.133(13)
33K 1.146(4) 0.2441(16) 0.8241(12) 0.056(6)
35K 1.1497 0.2447 0.8329 0.019
2K 1.14652 0.24428 0.82389 0.062(8)

H7D 290K 0.940(6) 0.2689(18) 0.8413(12) 0.20(3)
33K 0.956(3) 0.2752(13) 0.8403(11) 0.057(7)
35K 0.9280 0.2764 0.8413 0.019
2K 0.95631 0.27531 0.83982 0.083(16)

C7 290K 1.001(2) 0.1328(8) 0.8381(5) 0.066(3)
33K 0.9852(13) 0.1367(5) 0.8393(4) 0.0243(18)
35K 0.975(4) 0.1377(3) 0.8398(8) 0.027(5)
2K 0.9854(3) 0.13685(10) 0.83919(9) 0.032(3)

H7A 290K 1.055(5) 0.1018(19) 0.8152(16) 0.110(12)
33K 1.057(5) 0.0902(14) 0.8071(11) 0.071(8)
35K 1.0367 0.0886 0.8047 0.033
2K 1.05823 0.09040 0.80701 0.073(10)

H7B 290K 0.858(3) 0.115(2) 0.8236(13) 0.118(8)
33K 0.853(3) 0.1251(19) 0.8274(14) 0.079(9)
35K 0.8339 0.1288 0.8353 0.033
2K 0.85386 0.12495 0.82722 0.088(13)

C10 290K 0.9993(15) 0.2105(5) 0.5504(3) 0.0560(17)
33K 0.9955(17) 0.2070(5) 0.5520(4) 0.034(2)
35K 0.990(4) 0.2097(19) 0.5542(12) 0.008(7)
2K 0.9956(3) 0.20711(10) 0.55175(9) 0.041(3)

H10 290K 1.002(5) 0.1433(14) 0.5700(11) 0.136(10)
33K 0.985(8) 0.1361(16) 0.5724(12) 0.14(2)
35K 0.964(10) 0.141(5) 0.577(3) 0.06(2)
2K 0.98466 0.13639 0.57225 0.110(14)

N9 290K 1.0068(10) 0.2187(5) 0.4845(3) 0.0690(16)
33K 1.0055(8) 0.2098(3) 0.4842(3) 0.0201(12)
35K 0.997(2) 0.2092(11) 0.4843(7) 0.006(5)
2K 1.0060(3) 0.21000(10) 0.48405(9) 0.025(2)

C8 290K 1.0363(11) 0.1151(6) 0.9138(5) 0.058(2)
33K 1.0280(9) 0.1114(5) 0.9113(4) 0.0163(18)
35K 1.027(3) 0.1091(16) 0.9114(12) 0.000(7)
2K 1.0279(2) 0.11144(10) 0.91118(9) 0.020(3)

H8 290K 1.161(4) 0.1345(17) 0.9245(13) 0.115(8)
33K 1.163(2) 0.1330(16) 0.9213(10) 0.044(6)
35K 1.164(4) 0.129(5) 0.914(4) 0.06(2)
2K 1.16284 0.13318 0.92127 0.049(7)

N8 290K 0.9031(19) 0.1584(8) 0.9554(5) 0.111(4)
33K 0.921(2) 0.1623(8) 0.9576(6) 0.103(6)
35K 0.917(4) 0.1585(19) 0.9617(13) 0.069(11)
2K 0.9198(3) 0.16206(10) 0.95729(9) 0.109(9)

H8A 290K 0.905(4) 0.2284(16) 0.9610(10) 0.134(10)
33K 0.890(6) 0.223(2) 0.9587(12) 0.107(10)
35K 0.9212 0.2326 0.9512 0.103
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X Y Z Uiso

2K 0.88914 0.22327 0.95877 0.109(13)

H8B 290K 0.918(5) 0.1369(19) 1.0075(12) 0.145(12)
33K 0.934(7) 0.139(2) 1.0060(12) 0.134(15)
35K 0.9666 0.1454 1.0130 0.103
2K 0.93118 0.13807 1.00596 0.102(15)

H8C 290K 0.784(3) 0.1342(15) 0.9403(13) 0.084(7)
33K 0.764(4) 0.1324(17) 0.9357(14) 0.060(7)
35K 0.7814 0.1341 0.9579 0.103
2K 0.76642 0.13271 0.93560 0.070(10)

C9 290K 1.008(4) 0.0112(9) 0.9230(9) 0.134(6)
33K 1.001(2) 0.0084(6) 0.9238(5) 0.043(3)
35K 0.988(3) 0.0088(18) 0.9242(10) 0.037(9)
2K 1.00070 0.00857 0.92366 0.054(5)

H9A 290K 1.016(6) -0.0067(14) 0.9750(17) 0.145(10)
33K 1.028(4) -0.0073(13) 0.9787(12) 0.071(8)
35K 1.0138 -0.0075 0.9776 0.056
2K 1.02878 -0.00712 0.97842 0.079(12)

H9B 290K 1.130(7) -0.022(3) 0.891(2) 0.21(2)
33K 1.107(4) -0.026(2) 0.8944(16) 0.095(12)
35K 1.0716 -0.0339 0.8917 0.056
2K 1.10725 -0.02623 0.89420 0.119(18)

H9C 290K 0.905(5) -0.013(2) 0.919(2) 0.158(16)
33K 0.908(5) -0.012(2) 0.9109(18) 0.120(14)
35K 0.8501 -0.0051 0.9125 0.056
2K 0.90890 -0.01267 0.91064 0.114(16)

C11 290K 0.999(4) 0.1392(13) 0.4405(9) 0.148(6)
33K 1.006(4) 0.1283(9) 0.4444(8) 0.095(6)
35K 0.030(3) 0.1297(17) 0.4422(10) 0.033(10)
2K 1.0057(2) 0.12832(10) 0.44435(9) 0.113(9)

H11A 290K 1.087(6) 0.138(3) 0.4027(13) 0.185(19)
33K 1.120(6) 0.131(3) 0.4103(19) 0.116(15)
35K 1.1342 0.1458 0.4057 0.050
2K 1.11956 0.13093 0.40952 0.119(12)

H11B 290K 0.867(5) 0.152(3) 0.413(2) 0.206(19)
33K 0.895(4) 0.117(3) 0.4123(19) 0.100(12)
35K 0.9106 0.1109 0.4148 0.050
2K 0.89557 0.11757 0.41254 0.116(12)

H11C 290K 1.016(8) 0.0752(19) 0.472(2) 0.199(19)
33K 1.020(9) 0.068(3) 0.4754(14) 0.139(17)
35K 1.0717 0.0719 0.4743 0.050
2K 1.01893 0.06813 0.47525 0.128(12)

C12 290K 0.989(3) 0.3056(12) 0.4519(7) 0.107(4)
33K 1.000(4) 0.2925(7) 0.4496(6) 0.082(6)
35K 1.034(2) 0.2897(15) 0.4483(9) 0.017(8)
2K 0.9998(2) 0.29265(10) 0.44947(9) 0.088(8)

H12A 290K 1.088(5) 0.317(3) 0.4106(18) 0.174(12)
33K 1.088(7) 0.296(3) 0.4102(17) 0.147(19)
35K 1.1435 0.2772 0.4136 0.026
2K 1.09032 0.29625 0.41058 0.114(16)

H12B 290K 0.930(7) 0.357(3) 0.480(2) 0.174(13)
33K 1.003(9) 0.350(2) 0.4868(15) 0.17(2)
35K 1.0690 0.3445 0.4841 0.026
2K 1.00534 0.34991 0.48651 0.135(16)

H12C 290K 0.881(6) 0.293(3) 0.433(2) 0.164(13)
33K 0.869(4) 0.292(3) 0.426(2) 0.102(13)
35K 0.9182 0.3105 0.4191 0.026
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2K 0.86855 0.29062 0.42661 0.094(13)

O2W 290K 0.999(3) 0.4610(14) 0.8786(14) 0.234(18)
33K 0.992(2) 0.4649(9) 0.8738(8) 0.072(6)
35K 1.015(5) 0.468(3) 0.877(2) 0.071(13)
2K 0.9926(3) 0.46505(10) 0.87382(9) 0.059(6)

H2WA 290K 0.933(6) 0.490(3) 0.8480(15) 0.41(7)
33K 0.904(4) 0.489(3) 0.851(2) 0.110(16)
35K 0.942(9) 0.498(6) 0.851(4) 0.09(2)
2K 0.90426 0.48941 0.85154 0.18(5)

H2WB 290K 1.106(5) 0.483(4) 0.867(3) 0.32(4)
33K 1.098(5) 0.478(3) 0.859(2) 0.138(19)
35K 1.127(6) 0.480(7) 0.866(5) 0.10(2)
2K 1.09958 0.47706 0.85878 0.13(3)

O3W 290K 0.975(7) 0.3440(12) 0.9826(10) 0.29(3)
33K 1.030(7) 0.3485(15) 0.9800(9) 0.23(3)
35K 1.032(6) 0.346(3) 0.9769(14) 0.058(14)
2K 1.0242(3) 0.34811(10) 0.98007(9) 0.23(3)

H3WA 290K 0.984(5) 0.3644(19) 1.0242(9) 0.131(12)
33K 1.020(4) 0.3684(15) 1.0214(11) 0.074(8)
35K 1.002(9) 0.365(4) 1.0188(16) 0.026(13)
2K 1.01996 0.36859 1.02140 0.095(16)

H3WB 290K 0.956(6) 0.400(2) 0.9651(19) 0.37(6)
33K 0.982(6) 0.386(3) 0.9493(18) 0.132(17)
35K 1.040(7) 0.381(4) 0.951(3) 0.036(17)
2K 0.98094 0.38671 0.94934 0.095(2)
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Table E.2: Anisotropic thermal parameters

U11 U22 U33 U23 U13 U12

N1 290K 0.029(3) 0.045(3) 0.053(4) -0.006(2) -0.005(2) -0.019(2)

N2 290K 0.032(2) 0.041(3) 0.037(3) 0.001(2) 0.003(2) 0.017(2)

N3 290K 0.035(2) 0.033(3) 0.072(4) 0.014(3) 0.005(2) -0.010(2)

N4 290K 0.032(3) 0.022(3) 0.068(4) -0.007(2) 0.007(2) 0.002(2)

N5 290K 0.230(11) 0.078(4) 0.045(4) 0.019(3) 0.013(6) -0.013(6)

N6 290K 0.140(6) 0.067(3) 0.056(4) 0.016(3) 0.002(5) -0.008(5)

C1 290K 0.018(3) 0.022(3) 0.041(4) -0.001(3) 0.005(2) 0.004(2)

C2 290K 0.027(3) 0.016(2) 0.045(4) 0.019(2) 0.000(2) 0.014(2)

C3 290K 0.016(3) 0.037(3) 0.043(4) -0.012(3) -0.005(2) 0.004(2)

C4 290K 0.031(3) 0.026(3) 0.057(5) -0.010(3) 0.004(2) 0.013(2)

C5 290K 0.079(4) 0.047(3) 0.031(3) 0.004(2) -0.014(5) -0.010(4)

C6 290K 0.067(3) 0.042(3) 0.034(3) 0.009(2) 0.022(4) 0.018(4)

O1 290K 0.056(3) 0.040(3) 0.034(3) 0.000(2) -0.004(5) 0.004(4)

N7 290K 0.126(6) 0.050(3) 0.036(3) 0.002(2) -0.007(5) 0.001(5)

H7C 290K 0.13(2) 0.15(3) 0.10(2) 0.039(19) 0.02(2) -0.09(2)

H7D 290K 0.44(7) 0.098(16) 0.052(12) 0.030(10) 0.09(2) 0.14(2)

C7 290K 0.080(7) 0.073(7) 0.045(5) 0.022(4) -0.021(6) -0.030(7)

H7A 290K 0.15(3) 0.078(16) 0.09(2) 0.051(13) 0.000(16) -0.00013)

H7B 290K 0.072(11) 0.16(2) 0.111(16) 0.026(15) -0.033(11) -0.050(12)

C10 290K 0.076(4) 0.059(4) 0.031(4) -0.012(3) 0.013(5) -0.004(5)

H10 290K 0.25(3) 0.063(11) 0.093(15) -0.024(10) 0.03(2) 0.052(18)

N9 290K 0.055(3) 0.105(5) 0.045(3) -0.021(3) -0.012(3) 0.001(4)

C8 290K 0.055(5) 0.064(4) 0.054(5) 0.013(3) -0.003(4) 0.008(4)

H8 290K 0.13(2) 0.111(19) 0.097(19) 0.017(15) 0.018(17) -0.019(15)

N8 290K 0.195(11) 0.081(7) 0.057(6) 0.024(5) 0.053(6) 0.079(7)

H8A 290K 0.28(3) 0.059(12) 0.057(13) 0.029(9) 0.042(15) 0.028(15)

H8B 290K 0.26(3) 0.106(17) 0.067(15) 0.048(12) 0.092(16) 0.054(17)

H8C 290K 0.101(14) 0.069(12) 0.081(17) 0.009(11) 0.003(12) 0.014(10)

C9 290K 0.24(2) 0.064(7) 0.088(10) -0.022(7) -0.020(16) 0.040(13)

H9A 290K 0.25(3) 0.062(12) 0.114(18) 0.006(12) 0.00(2) -0.022)

H9B 290K 0.29(5) 0.14(3) 0.17(4) 0.01(2) 0.03(3) 0.12(3)

H9C 290K 0.18(3) 0.105(19) 0.18(3) 0.052(19) -0.01(2) -0.10(2)

C11 290K 0.209(17) 0.152(13) 0.081(11) -0.067(10) -0.047(15) 0.034(16)

H11A 290K 0.31(5) 0.19(3) 0.038(15) -0.071(18) 0.03(2) 0.03(2)

H11B 290K 0.17(3) 0.23(4) 0.20(3) -0.12(3) -0.08(2) -0.01(2)

H11C 290K 0.33(5) 0.069(15) 0.19(2) -0.055(17) 0.08(3) -0.00(2)

C12 290K 0.150(11) 0.126(10) 0.044(6) 0.030(6) 0.006(10) 0.005(12)

H12A 290K 0.19(2) 0.22(3) 0.098(19) 0.03(2) 0.02(2) 0.00(2)

H12B 290K 0.24(3) 0.12(2) 0.14(2) 0.013(19) 0.04(2) 0.06(2)

H12C 290K 0.19(2) 0.18(2) 0.11(2) 0.02(2) -0.02(2) 0.02(2)

O2W 290K 0.19(2) 0.128(16) 0.37(5) -0.06(2) -0.16(3) 0.102(17)

H2WA 290K 0.82(16) 0.35(7) 0.053(19) 0.12(3) -0.09(4) -0.36(9)

H2WB 290K 0.28(5) 0.17(3) 0.48(9) 0.01(4) 0.28(6) -0.09(3)

O3W 290K 0.58(7) 0.058(10) 0.24(3) 0.038(16) -0.21(49 -0.04(2)

H3WA 290K 0.20(2) 0.13(2) 0.046(12) -0.016(12) 0.021(18) 0.08(2)

H3WB 290K 0.39(7) 0.54(10) 0.18(3) 0.26(5) -0.19(4) -0.36(2)
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