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ABOUT THIS DOCUMENT  

This document is the final Work Order Report of the ESA (European Space Agency) EO Clinic project 

EOC0019 “Increasing Agro-Climatic Resilience in Nigeria”. This publication was prepared in the framework 

of the EO Clinic (Earth Observation Clinic, see below), in partnership between ESA (European Space Agency), 

the World Bank Group (WBG) and the team of the service provider contracted by ESA: GeoVille GmbH (Aus-

tria). 

This Work Order Report (WOR) describes the context of the WBG activities on increasing agro-climatic resil-

ience in Nigeria, the geoinformation requirements of the activities and finally, the EO products and services 

delivered by the EO Clinic service providers in support of those activities. 

This Work Order Report (WOR) is structured as in the following: 

• Section 1 describes the context of the World Bank Group (WBG) activities on detecting desertifica-

tion trends in Nigeria, as well as the project objectives. 

• Section 2 highlights the applied work logic and methodologies followed. 

• Section 3 describes the services, their specifications and outputs. 

• Section 4 presents an evaluation of the data availability and suitability in support of the EO products 

and services under the perspective of a potential roll-out. 

ABOUT THE EO CLINIC 

The EO Clinic (Earth Observation Clinic) is an ESA (European Space Agency) initiative to create a rapid-re-

sponse mechanism for small-scale and exploratory uses of satellite EO information in support of a wide range 

of International Development projects and activities. The EO Clinic consists of “on-call” technically pre-qual-

ified teams of EO service suppliers and satellite remote sensing experts in ESA member states. These teams 

are ready to demonstrate the utility of satellite data for the development sector, using their wide range of 

geospatial data skills and experience with a large variety of satellite data types. 

The support teams are ready to meet the short delivery timescales often required by the development sector, 

targeting a maximum of 3 months from request to solution. 

The EO Clinic is also an opportunity to explore more innovative EO products related to developing or improv-

ing methodologies for deriving socio-economic and environmental parameters and indicators. 

The EO Clinic was launched in March 2019 and is open to support requests by key development banks and 

agencies during the 2 years project duration. 

In March 2021 the project framework has been extended again for another 2 years. 

AUTHORS 

The present document was prepared and coordinated by Norman Kießlich (Head of International Develop-

ment, GeoVille) with support from the following contributors: Philipp Rastner (Project Manager, GeoVille), 
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Page iii 

ACKNOWLEDGEMENTS 

The following colleagues provided valuable inputs, insights and evaluation feedback on the work performed: 

Maurizio Guadagni (Sr. Agriculture Development Specialist, WBG) and Nagaraja Rao Harshadeep (Lead En-

vironmental Specialist, WBG). 

 

 

For further information 

Please contact Philipp Rastner, Project Manager, GeoVille (rastner@geo-

ville.com) with copy to Zoltan.Bartalis@esa.int if you have questions or com-

ments with respect to content or if you wish to obtain permission for using the 

material in this report. 

Visit the ESA EO Clinic: https://eo4society.esa.int/eo_clinic. 

 

mailto:rastner@geoville.com
mailto:rastner@geoville.com
file:///C:/Users/Zoltan%20Bartalis/Documents/zoltan/projects/Eomd_local_copy/Procurement/ITT/2017_EO_Clinic/12_templates/WOR/Zoltan.Bartalis@esa.int
https://eo4society.esa.int/eo_clinic


  

Page 1 of 20 

1 DEVELOPMENT CONTEXT AND BACKGROUND 

1.1 Increasing agro-climatic resilience in Nigeria 

 

Desertification in Nigeria 

Nigeria encompasses various climatic regimes with tropical rain forests in the South and the Sahelian savanna 

in the North, which is by its nature susceptible to desertification processes. The most prominent climatic pa-

rameters influencing desertification are temperature and precipitation and both of them have already been 

observed to change. Temperature is anticipated to rise and the duration and the intensity of the rainfall to 

decrease (Ahmed et al., 2020; Hoscilo et al., 2015). As such, the climate of West Africa is expected to gradually 

become more arid (Mechiche-Alami and Abdi, 2020; IPCC, 2019). A more arid climate will facilitate deserti-

fication and as such also endanger human activities by threatening agricultural productivity and biodiversity 

(IPCC, 2019; Suleiman et al., 2017). This poses a high risk considering that the African population and with it 

the demand for food is foreseen to grow faster in the future than in other regions of the world (Sedano et al., 

2019).  

Based on these insights and knowledge gaps, the World Bank (WB) together with the Government of Nigeria 

are seeking satellite EO support to assess the current level of land degradation and water scarcity in the coun-

try. The aim is, after the outcomes of this EOclinic project, to better understand the extent and severity of land 

degradation and desertification in Nigeria in order to increase the adoption of climate resilient landscape man-

agement. This current situation will be used to select the states in Nigeria where the project from the WB will 

be implemented focusing on three key components: 

• Desertification Control and Landscape Management 

• Community Resilience 

• Institutional Strengthening. 

 

1.2 Objectives 

 

The present ESA EO Clinic is intended to assist the WB in selecting the most vulnerable states in Nigeria 

affected by desertification due to the combined effects of climate change and anthropogenic activities, aiming 

at increasing their agro-climatic resilience. Based on NDVI measurements for the past ~40 years (1982 - 2020) 

retrieved by four types of satellite data (AVHRR, MODIS, Landsat and Sentinel-2) considering coarse to high 

spatial resolution, GeoVille has derived trends of land degradation and desertification for the whole country, 

the states, and different watersheds. Furthermore, GeoVille has scrutinized the ERA-5 re-analysis data to as-

sess trends in temperature and precipitation for the same periods and regions/watersheds to perform a statis-

tical analysis together with the NDVI time series. All produced datasets have been accompanied with confi-

dence intervals to ensure complete transparency and interpretability. On top of that, GeoVille has also pro-

duced outreach material and records for capacity building for key stakeholders in Nigeria. 
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2 PROPOSED WORK LOGIC FOR EO-BASED SOLUTIONS 

Satellite time-series data of a variety of different sensors (AVHRR, MODIS, Landsat and Sentinel-2) have been 

analysed for the whole country, including a 25km buffer zone outside the country borders. The assessment is 

based on NDVI time-series analysis as this is a vegetation-sensitive index that can be derived from all sensors. 

NDVI measurements for each image and sensor have been calibrated to map the vegetation coverage for each 

pixel. As an indicator of the vegetation health, yearly time series have been accumulated by integration of the 

vegetation cover phenology (NDVI vegetation productivity). From this yearly data, linear trends over time can 

already indicate vegetation loss/gain. 

To minimize the influence of climatic variations (e.g., total precipitation), ERA5 reanalysis data was included 

into the assessment. From this, a climatologically corrected trend analysis was performed, which is used to 

derive the vegetation development without the influence of yearly climatic deviations. 

Both, the uncorrected and the corrected trends were then analysed on an aggregated level, based on spatial 

polygons for administrative areas and water basins. 

2.1 Data 

Within this project we made use of four different type of satellite data. For the long-term analysis, we relied 

on the Advanced Very High-Resolution Radiometer (AVHRR) sensor (late seventies) and the Landsat satellite 

program dating back until the 70ies. The AVHRR provides four- to six-band multispectral data from the NOAA 

polar-orbiting satellite series. There is fairly continuous global coverage since June 1979, with morning and 

afternoon acquisitions available. The resolution is 1.1 kilometre at nadir, but the sensor suffered from quality 

issues and was severely affected by a sensor drift which is a serious drawback for cross-calibration between 

the various satellite missions. Another long-term earth observation satellite mission is the Landsat mission. It 

started also in the early 70ies and resulted in 9 satellite missions. In this study we relied a) on Landsat 5 which 

was launched in 1985 and operated until the end of 2011, 20 years longer than its designated lifetime. Unfor-

tunately, it turned out during production that the coverage with only a few scenes per year provided by Landsat 

5 was insufficient for a reliable analysis in the years before 2000 (Figure 1).  

 

Figure 1: Landsat 5 number of valid observations in the timeframe between 1995 and 2000: A maximum number of 5 
Observations in 5 Years is not enough to estimate the yearly NDVI vegetation productivity. Some areas in the South have 
no observations at all. 
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Additionally, we scrutinized b) Landsat 7 data which was launched in 1999 with the new Enhanced Thematic 

Mapper Plus (ETM+) sensor that included a 15 m resolution panchromatic band. In May 2003, the scan line 

corrector of the ETM+ sensor failed and caused striped data gaps. Finally, we made use of c) Landsat 8's Op-

erational Land Imager (OLI) data which improves on past Landsat sensors by providing a 12-bit quantisation 

of data allowing for a better discrimination of otherwise saturated pixels and improved spectral discrimination 

of landcover. 

For the short-term analysis, we made use of MODIS and Sentinel-2 data. The MODIS instrument is operating 

on both the Terra and Aqua spacecraft. It has a viewing swath width of 2,330 km and views the entire surface 

of the Earth every one to two days. Its detectors measure 36 spectral bands between 0.405 and 14.385 µm, and 

it acquires data at three spatial resolutions -- 250m, 500m, and 1,000m. The last satellite mission which we 

used to monitor desertification was the Sentinel-2 mission from ESA. Sentinel-2 covers all continental land 

surfaces (including inland waters) between latitudes 56° south and 84° north. Sentinel-2 carries an optical 

multispectral instrument (MSI) payload that samples 13 spectral bands with three spatial resolutions: four 

bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution.  

For an analysis of climatologically independent trends (residual trend analysis) we used the ERA5 land dataset 

(1979 onwards). ERA5 land is a climate reanalyses product, which combines past observations (as it has 

evolved during recent decades) with models to generate consistent time series of multiple climate variables on 

3D grids at sub-daily intervals. ERA5 land provides hourly gridded estimates for a large number of atmos-

pheric (in our case temperature, total precipitation and radiation), ocean-wave and land-surface quantities.  

 

Table 1: Overview of all satellite- and climatological data and its download sources used within this project. 

Dataset Primary download source Secondary download source 

Landsat 5, 7, 8 USGS Earth Explorer 

https://earthexplorer.usgs.gov/ 

Amazon Web Services (AWS, 
Landsat 8 only) 

Sentinel - 2 EODC data collection 

https://eodc.eu/data/ 

Amazon Web Services 

MODIS, AVHRR USGS Earth Explorer 

https://earthexplorer.usgs.gov/ 

N/A 

ERA5 land ECMWF 

https://www.ecmwf.int/ 

Copernicus Climate Data Store 

N/A 

 

 

Table 2: Tabular overview of the investigated time periods and its satellite sources used for the assessment of deserti-
fication trends in Nigeria. 

Time Period Nominal res-
olution 

Sensor(s) and datasets Corrected for climatic 
variables 

1982 - 2020 1000m AVHRR YES 

1985 - 2020 30m LANDSAT 5,7,8  YES 

2000 - 2020 500m MODIS YES 

2016 - 2020 10m SENTINEL-2 LIMITED1 

1 Correction has been applied to Sentinel-2 data as well. However, due to the limited time-series of only a few years, the reconstruction 

and elimination of climatological effects from the data is less accurate. 
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2.2 Methodology 

Terminology 

In this context, the term “vegetation productivity” refers to a certain degree of vegetation coverage over one 

year. For example, a pixel with value 0.5 can be fully covered by vegetation over 6 months or can show 50% 

coverage throughout the whole year. The full term NDVI vegetation productivity shall indicate that the vege-

tation coverage for each observation has been retrieved by mapping the coverage to measured NDVI values, 

as described above. 

 

Sensor calibration and reliability 

During the vegetation and desertification development assessment in Nigeria, a particular focus has been 

given to the inclusion of multiple sensor (AVHRR, MODIS, Landsat 5,7,8 and Sentinel 2) data. The main factor 

of comparability between those sensors is the calibration of the retrieved NDVI data to the vegetation coverage 

of a specific pixel. Since every sensor has slightly different center wavelengths and bandwidths (see table 3 

below) and different algorithms used for reflectance calibration, a supervised approach with manual sample 

polygons has been chosen. 

Table 3: Tabular overview wavelengths and bandwidths for the different satellite data 

 Central wavelength (nm) 

 AVHRR1 MODIS2 Landsat 51 Landsat 71 Landsat 81 Sentinel-23 

Red (VIS) 580 – 680 620–670 630 – 690 630 – 690 640 – 670 664.6 ± 31 

NIR 725 - 1100 841–876 760 - 900 770 – 900 850 – 880 832.8 ± 106 
 

1 Source: usgs.gov 
2 Source: modis.gsfc.nasa.gov 
3 Source: sentinels.copernicus.eu 

 

As a model curve between measured NDVI and vegetation coverage, a sigmoid function has been chosen in-

stead of an often-used linear relationship (see figure 2 below and GPG, as well as references therein). This 

allows for a direct mapping of arbitrary input values (in this case the NDVI of each pixel) to values between 0 

and 1, with the possibility to introduce a measure of uncertainty. Furthermore, this approach allows for cali-

bration of different sensors, including confidence intervals for the calibration coefficients. 

 

Figure 2: Parameterized sigmoid function: The parameters c1 and c2 control the position (c2) and smoothness of the 
curve (c1). C2 is comparable to a classical threshold value which switches between 0 and 1 whereas c1 controls the zone 
of uncertainty, i.e. increasing values of c1 will lead to a harder transition (smooth transition: red dashed line, harder 

transition: blue dashed line). 
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To achieve a good calibration over the whole country, areas that either show complete vegetation coverage 

(southern region) or no vegetation at all (northern territory) have been selected manually, and for each pixel 

and sensor, the corresponding maximum NDVI was extracted.  

Figure 3 below shows the selected polygons that have been used for sensor calibration. Depending on the cloud 

coverage and data quality across all sensors, spots have been chosen that allowed for a clear estimation of the 

vegetation coverage within the polygon area. For this reason, some spots lie outside the country to include the 

whole spectrum of vegetation responses. The calibration was then performed on the same polygons for all 

sensors using logistic regression. 

 

Figure 3: Polygons (yellow outline) used for the sensor calibration for all satellite data. 

 

The following table 4 shows, after the successful calibration operations, the retrieved calibration coefficients 

for each sensor. A comparison between the errors of the C2 coefficient with its corresponding mean value re-

veals that the transition zone (i.e. the classical threshold value) can be calibrated very accurately. However, a 

rather large sensor-specific transition zone (given by the parameter C1) corresponds to areas only partly cov-

ered by vegetation. Depending on the type and quality of the sensor data, the mapping of these intermediate 

values is accompanied by a certain level of uncertainty, meaning that in these areas, the NDVI can only be 

mapped approximately to a certain vegetation coverage value. 

 

Table 4: Retrieved calibration coefficients for each sensor. 

SENSOR C1 C1 ERROR C2 C2 ERROR 

S2 57.3 0.3 0.2527 1E-4 

MODIS 101.8 0.5 0.39480 6E-5 

AVHRR 86.9 0.4 0.24293 6E-5 

LS5 85.4 0.4 0.18525 8E-5 

LS7 105.0 0.5 0.26902 6E-5 

LS8 52.2 0.2 0.2989 1E-4 
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NDVI Vegetation productivity time series calculation 

After calibration and vegetation coverage mapping for each sensor and observation, the calculation of the 

yearly NDVI vegetation productivity is carried out by the following steps: 

 

1. Calculation of the NDVI  

The NDVI is calculated for each single scene and the sensor dependent calibration curve is applied. This 

gives an estimation of the vegetation coverage for each image. 

 

2. Vegetation modelling and integration 

Vegetation curves are modelled with a 3rd degree fourier series (see ,e.g., Jakubauskas et al., 2001, and 

Jönsson and Eklundh, 2004 for similar approaches). From this model curve, the mean squared deviation 

of the time series is calculated. 

The NDVI vegetation productivity P is then calculated through integration by using the trapezoidal rule: 

 

 

3. Error propagation 

Errors for the NDVI productivity values are retrieved by gaussian error propagation: 

 

and 

 

With x being the mean squared deviation from the model curve and x0 and  being the errors from te 

calibration coefficients. 
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3 DELIVERED EO-BASED PRODUCTS AND SERVICES 

3.1 Raster maps 

During production, the whole archives of available data for the listed sensor has been explored and evaluated 

for usability and quality.  

The originally proposed timespan for the low-resolution time-series of AVHRR from 1982 onwards could be 

extended to also include 1981 through partly extrapolated data. All the maps of this sensor have been processed 

with a resolution of 5 km as opposed to 1 km since the used dataset (NOAA CDR AVHRR: Surface Reflectance, 

Version 5) only offers a resolution of 0.05° (see Vermote, E. & NOAA CDR Program, 2018). This dataset was 

chosen because it offers, as stated in the reference, “more accurate approaches for BRDF correction (Bidirec-

tional Reflectance Distribution Function), calibration, compositing, and QA. Version 5 also corrects the data 

for known errors in time, latitude, and longitude variables, as well as improves the global and variable 

attribute definitions”. 

All maps including Landsat/Sentinel-2 data have been produced in 250m resolution as our investigations have 

shown that the statistical trend analysis is not negatively affected by the aggregation to a coarser resolution 

(See figure 4 below). 

 

 

Figure 4: Comparison of the Landsat based NDVI vegetation productivity histograms in the district Niger for the pro-
duction year 2015: 30m high resolution aggregates (a) show virtually the same distribution as the lower resolution 
version (b, 250m). 

 

On the other hand, this aggregation allows for a reduction of the errors in single pixel measurements through 

averaging and simplifies a direct comparison with the MODIS data. 

In addition to the proposed raster maps, NDVI vegetation productivity change maps for each sensor will be 

included in the data delivery. These maps shall give an insight into the spatial distribution of the vegetation 

development on an annual basis. 

Also, the data delivery includes binary desert classifications derived from the productivity status maps with a 

threshold below 10% (almost no vegetation) and a threshold below 30% (sparsely vegetated areas included). 

A description of how to derive binary classifications and probabilities using different thresholds is included in 

this document. 

In addition to the raster maps, the MODIS based NDVI vegetation productivity has been compiled into a video 

which gives a visual impression on the vegetation development and desertification. 

The following table 5 lists all the raster products that have been produced. 
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Table 5: Product overview of all raster maps produced within this project. 

Product Sensor Time frame Resolution 

    

Annual productivity time series, 
including confidence layers  

AVHRR 1981 – 2021 5000m 

MODIS 2000 – 2021 250m 

Landsat 5, 7, 8 2000 - 2021 250m 

Sentinel-2 2015 – 2021 250m 

Desert, binary classification map, 
including confidence layers 

AVHRR 1981 – 2021 5000m 

MODIS 2000 – 2021 250m 

Landsat 5, 7, 8 2000 - 2021 250m 

Sentinel-2 2015 – 2021 250m 

Sparse vegetation, binary classifi-
cation map, 
including confidence layers 

AVHRR 1981 – 2021 5000m 

MODIS 2000 – 2021 250m 

Landsat 5, 7, 8 2000 - 2021 250m 

Sentinel-2 2015 – 2021 250m 

Productivity change maps, 
including confidence layers 

AVHRR 1981 – 2021 5000m 

MODIS 2000 – 2021 250m 

Landsat 5, 7, 8 2000 - 2021 250m 

Sentinel-2 2015 – 2021 250m 

 

3.2 Vector maps 

Trend analysis was performed on a district level and on water basin polygons. The trend values are stored as 

data frames and included into the vector products. All polygons include values for the NDVI vegetation 

productivity trends (uncorrected) as well as for the extracted residual trends (corrected for climatic influ-

ences). 

The following sensors and timeframes (table 6) have been processed: 

Table 6: Product overview of all vector maps produced within this project. 

Product Sensor Time frame Base resolution 

    

District level analysis 

AVHRR 1985 – 2018 5000m 

AVHRR 2000 – 2017 5000m 

Landsat 5, 7, 8 2000 – 2020 250m 

MODIS 2000 – 2017 250m 

MODIS 2000 – 2020 250m 
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Sentinel - 2 2016 – 2020  250m 

Water basin analysis MODIS 2000 - 2020 250m 

 

3.2.1 Specifications 
All products are delivered in WGS84 (EPSG:4326) projection and cover the same extent, which spans over the 

whole national territory with an additional buffer of 25km. 

All raster maps are delivered as LZW compressed tiff files with the resolution indicated above.  

Vector maps are delivered as ESRI Shapefiles. 

3.2.2 Usage, Limitations and Constraints 
NDVI vegetation productivity maps can be used as common bases for all derived spatial and temporal anal-

yses. They serve as a vegetation status product and include confidence intervals on a pixel level. 

The change maps included in the delivery are an example of such a derived product, giving estimates for both 

the productivity change and the propagated confidence level on an annual basis. A limitation of such yearly 

change maps is the lower confidence due to error aggregation (for the change, the uncertainties of both years 

accumulate according to gaussian error propagation). This means, that only an indication of the vegetation 

development can be given on a pixel level. 

Binary maps are also derived from the NDVI vegetation productivity and are includes as two different thresh-

old levels. The first one (threshold below 10%) is mostly depicting areas with almost no vegetation, i.e. deserts 

and shall focus on pure desert areas. The second one also includes areas of sparse vegetation (threshold below 

30%) and also focuses on the delineation and development of areas with low vegetation cover, i.e. the transi-

tion zones between desert and vegetated landscapes. 

3.2.3 NDVI annual vegetation productivity 
Raster maps are available for all sensors and all possible years. The maps give a per-pixel, uncorrected value 

for the RAW productivity together with confidence intervals. 

An example of the MODIS based calculation as well as a qualitative sensor comparison is shown in the Figure 

5 below. 

 

Figure 5: MODIS based raw NDVI vegetation productivity values from 2002 onwards. 
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A special focus of the production has been given to the calibration and harmonization of the different sensors 

to retrieve a comparable result across the different data sources. The Images below (Figure 6) shall give an 

impression of the achieved results and compare values for the production year 2018. Visually, only small dif-

ferences can be spotted, for example in the south (red circles) where the two high resolution sensors indicate 

less vegetation coverage than AVHRR and MODIS. Differences are mostly seen in the transition zones between 

vegetated and unvegetated areas. This is in line with the uncertainty of the calibration curves which show the 

highest error propagation around the 50% mark of the vegetation mapping. 

Numerical analysis has shown that the trends derived across different sensors are very sensitive to small de-

viation and can only deliver an indication on the trend development. It is therefore advised to use these maps 

as proxies for further detailed analysis based on high resolution data and possibly also backed by ground truth 

data. 

 

 

Figure 6: Sensor comparison for the year 2018. Clearly visible is that the high-resolution sensors depict less vege-
tation coverage than the rough ones (red circles). 

3.2.4 Yearly productivity change and binary desert map 
 

For the calculation of the change of two consecutive years, the difference of two consecutive images is calcu-

lated on a pixel level. Error propagates according to 

 

An example of the productivity change from 2018 to 2019 is given in Figure 7. 
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Figure 7: MODIS Productivity change (left) and change confidence (right), Year 2018/19. Values have been scaled by a 
factor of 10000, i.e., 10000 equals 1%. 

 

This analysis shows that the change values for 1 year are usually below 8% (value 800) with a mean confidence 

of about 10%. Exact values of change and change confidence are given on a pixel level and can be extracted for 

each sensor and year from the delivered products. Overall, in many cases no clear conclusion on the vegetation 

development can be made on a pixel level and on a yearly basis, i.e., the confidence interval often spreads 

across slight gain and loss. These uncertainties are a result of the natural uncertainty of the vegetation coverage 

mapping and the uncertainties coming from the sensor itself, e.g., sensor noise, atmospheric interference etc.  

 

3.2.5 Binary vegetation maps 
 

This product contains binary maps of areas that fall below a certain threshold of vegetation coverage. Included 

are maps for a threshold below 10% (desert areas or water bodies) and 30% (including also sparsely vegetated 

areas). 

Along with the binary map, also the probability is given, which is retrieved by integration of the normal distri-

bution of each point, i.e.: 

 

Where th denotes the binary threshold (i.e., 10% or 30%), P the NDVI vegetation productivity value and Delta 

P the confidence for each pixel. Erf denotes the Gaussian error function. 

Below, in Figure 8 an example of a 30% desert map is shown. 
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Figure 8: Binary classification (left) and classification confidence (right, values scaled by 10000), Year 2018. 

 

3.2.6 Aggregated Analysis and residual trend 
 

Residual trend 

The NDVI productivity is calculated only based on the satellite measurement regardless of climatic influences 

such as precipitation or radiation. However, depending on the type of analysis, it might be necessary to correct 

for these influences, e.g., a vegetated area might show less coverage in a year with lower total precipitation, 

resulting in a lower NDVI productivity value. However, in this case, no actual change of the landcover has 

taken place. 

One possibility to correct for these influences is a residual trend analysis (see, e.g., GPG). This method assumes 

that climatic variables can at least partly describe fluctuations of productivity. To correct for these influences, 

a model between measured NDVI productivity and climatic values is calculated, and the effect of the model is 

subtracted from the observed values. Subsequently, only the trend on the remaining deviations, i.e., the trend 

on the residual values is analysed. 

 

 

Figure 9: Illustration of the residual trend method. a: Precipitation is fitted against NDVI productivity and the residu-
als are calculated. b: The residuals are analysed for a trend in time. 

In this case, the climatic variables precipitation, insolation (radiation) and surface temperature have been 

extracted from the ERA5 land reanalysis data for each observation year. As a model, a multilinear regres-

sion has been performed. Below, in Figure 10 an example of the relationship between these variables and the 

observed NDVI productivity is given. 
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Figure 10: Influence of precipitation, insolation (radiation), and surface temperature on the NDVI productivity. Shown 
are all pixel values from the MODIS observation above 10 degrees latitude. 
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This observation shows a slight relationship from precipitation and radiation, but no visible dependance on 

the temperature values. This is in line with the observation from Hashimoto et al. (2019) which indicates that 

the vegetation in Nigeria is mostly dependent on these two variables, as can be seen in the figure below. 

 

Figure 11: Main limiting factors of vegetation development according to Hashimoto et al. (2019). 

 

Statistical analysis 

For a statistical analysis based on spatial polygons (such as administrative districts), all NDVI productivity 

values of a certain polygon have been extracted and analyzed for a linear trend in time. This analysis has been 

performed on both the uncorrected NDVI productivity values and on the residuals of the climatic modelling. 
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4 EVALUATION AND FOLLOW-UP ACTIVITIES 

4.1 Key findings 

 

Trend analysis (districts & hydro basins) 

The following images show trend analyses of district as well as water basin levels. As explained above, the 

analysis shall be focused on MODIS time series as this is considered the most reliable sensor. Trend analysis 

has been performed between 2000 and 2021. 

 

  

 

Figure 12: MODIS based residual trend analysis (climate-related vegetation response eliminated to the best possible 

extent, i.e., most likely anthropogenic vegetation response), per district (left) and per basin (right)  

 

  

Figure 13: MODIS based uncorrected NDVI vegetation productivity trend analysis (including all factors, i.e., climate 

and human activities), per district (left) and per basin (right). 
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AVHRR 

Even though AVHRR is considered less reliable due to orbital drift effects and overall noisy and observations 

of lower quality, it is the only single sensor observation data that covers the time span from the above presented 

MODIS trends. Below a qualitative comparison on district level is given. The colour scheme shall be seen as 

qualitative comparison only, as the AVHRR data is not reliable over time and shows a negative trend in most 

districts due to inconsistent time series. 

 

  

 

Figure 14: Left: AVHRR based residual trend (climate-related vegetation response eliminated to the best possible ex-

tent, i.e., most likely anthropogenic vegetation response), right: AVHRR based  raw NDVI vegetation productivity 

trend (including all factors, i.e., climate and human activities) 

 

Analysis 

From the MODIS residual trend analysis, it can be seen that the north-west districts Sokoto, Kebbi and 

Niger show the strongest and most consistent negative trend. This indicates a vegetation loss in these dis-

tricts. Absolute values for these districts are a loss of 0.3% (Sokoto), 0.5% (Kebbi) and 0.3% (Niger) in the time 

between 2000 and 2020. Below, plots are shown (Figure 15) to give a more detailed look onto these districts. 

 

 

Sokoto 

 

Kebbi 

 

Niger 

Figure 15: Statistical trends and its uncertainties for the most affected states in Nigeria. 

 

Even though a clear negative overall trend is visible, it has to be mentioned that the spread of the observations 

is relatively high in each year, with a relatively clear increase in the last observation year which should be 

further analysed with the help of local studies and in-situ data. Sokoto and Kebbi show an additional unu-

sual high value in 2011 which could indicate a climatic event, e.g., unusually increased precipitation which 

could not be fully eliminated with multilinear correction approach. 
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The comparison with AVHRR, even though considered less reliable, also gives an indication that the north-

western part of the country shows the highest vegetation degradation. 

No strong positive trends could be seen in the analysis for the areas close to the desert transition zone. Stag-

nation or a very slight increase of vegetation can be observed in the districts Katsina, Kano, Jigava. In these 

regions, the raw NDVI vegetation productivity trends suggest a positive development, however, the climatic 

corrected data is pointing more towards the interpretation that these effects are caused by the positive climatic 

influence.  

As an overview, all of the trend values (corrected and uncorrected) that have been retrieved by the MODIS 

analysis are summarized in table 7 below. 

 

Table 7: MODIS based NDVI vegetation productivity trends and residual trends. Negative values indicate a loss of 
vegetation. 

District NDVI productivity trend Residual trend 

Abia -0,007 ± 0,027 -0,022 ± 0,026 

Adamawa -0,179 ± 0,016 -0,244 ± 0,010 

Akwa Ibom -0,136 ± 0,019 0,081 ± 0,018 

Anambra -0,122 ± 0,043 -0,177 ± 0,037 

Bauchi -0,137 ± 0,013 -0,251 ± 0,008 

Bayelsa -0,094 ± 0,028 0,227 ± 0,026 

Benue 0,229 ± 0,011 0,088 ± 0,008 

Borno 0,228 ± 0,008 0,071 ± 0,005 

Cross River 0,103 ± 0,012 0,185 ± 0,011 

Delta -0,296 ± 0,023 0,020 ± 0,022 

Ebonyi 0,384 ± 0,020 0,266 ± 0,018 

Edo 0,068 ± 0,013 0,201 ± 0,011 

Ekiti 0,062 ± 0,014 0,099 ± 0,013 

Enugu 0,303 ± 0,020 0,239 ± 0,020 

Federal Capital Territory -0,210 ± 0,026 -0,125 ± 0,025 

Gombe -0,240 ± 0,017 -0,255 ± 0,015 

Imo -0,022 ± 0,018 -0,030 ± 0,018 

Jigawa 0,253 ± 0,013 -0,021 ± 0,011 

Kaduna -0,065 ± 0,014 -0,216 ± 0,010 

Kano 0,126 ± 0,013 0,017 ± 0,010 

Katsina 0,248 ± 0,013 -0,014 ± 0,007 

Kebbi -0,167 ± 0,016 -0,508 ± 0,012 

Kogi 0,399 ± 0,013 0,490 ± 0,011 

Kwara 0,138 ± 0,010 0,110 ± 0,008 

Lagos -0,516 ± 0,097 -0,055 ± 0,089 

Nassarawa -0,081 ± 0,012 -0,097 ± 0,011 

Niger -0,319 ± 0,008 -0,334 ± 0,008 
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Ogun 0,065 ± 0,017 0,204 ± 0,015 

Ondo 0,037 ± 0,013 0,089 ± 0,013 

Osun 0,067 ± 0,016 0,091 ± 0,015 

Oyo 0,257 ± 0,011 0,277 ± 0,011 

Plateau -0,007 ± 0,013 -0,092 ± 0,011 

Rivers -0,579 ± 0,041 0,073 ± 0,039 

Sokoto 0,076 ± 0,014 -0,314 ± 0,011 

Taraba 0,006 ± 0,014 -0,015 ± 0,009 

Water body 0,427 ± 0,076 0,104 ± 0,074 

Yobe -0,005 ± 0,009 -0,162 ± 0,007 

Zamfara 0,083 ± 0,015 -0,193 ± 0,010 

 

Sensor reliability 

One of the key findings of this assessment was the possibility for a direct sensor comparison and reliability 

ranking. 

For a long-term analysis, we rank the reliability of the sensors in the following way: 

1. MODIS: Available since 2000 with a resolution of 250 (NDVI bands). The sensor operated on the 

Terra and Aqua satellites is very stable in terms of reflectance values with a high observation fre-

quency. For this assessment, this is the only single-sensor study that covers the whole-time range 

with moderate resolution. 

2. AVHRR: The sensor offers data since 1982 in coarse resolution. It is by far the sensor with the long-

est time-range (flown on multiple NOAA satellites). However, data before around 2000 is of lower 

quality because of stability problems (i.e., orbital drift leading to increasing solar zenith angles and 

thus a change in the reflectance behaviour of the underlying surface) in the early years of operation 

(Figure 16). Also, due to the low resolution and less statistics, errors and noise in the pixel data are 

carried to the aggregated analyses (e.g., trend analysis of a certain area) which makes them less 

trustworthy. AVHR sensor drift has been already discussed in multiple publications, see for example 

Kaufmann (2000), Ignatov (2004) or Ji (2017). 

 

Figure 16: AVHRR based mean vegetation coverage in the district Niger. The data before 1997 shows a higher variability 
than the data from around 2000 onwards. This behaviour is attributed to sensor drift which lowers the reliability of the 
long-time analysis. 
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3. Sentinel-2: High resolution of 10m and a high observation frequency in combination with stable 

operation makes the data retrieved from this sensor very valuable. Unfortunately, the data is only 

available from mid-2015 onwards and therefor a Sentinel-2 long-term analysis is not possible. 

4. Landsat 5/7/8: Landsat 5 should in principle be available since 1984. However, not all the data 

from this time has been archived and the data analysis during the project development has shown 

that only a few Landsat 5 images are available in the AOI. Therefore, NDVI productivity calculation 

could only be performed from 2000 onwards using Landsat 7 and Landsat 8 data. On 31 May 2003, 

the Scan Line Corrector (SLC) in the ETM+ of Landsat 7 instrument failed, resulting in stripe arte-

facts in each image. Moreover, even though the calibration has been performed separately on each 

sensor, small differences remain which can introduce a bias in the trend analysis. 

 

4.2 Outlook and further studies 

 

The extension of the service to other regions around the Great Green Wall, is in general possible and GeoVille 

is prepared to initiate such a service. From a methodological point of view, we don’t see larger issues by trans-

ferring the mapping approaches to other areas, as long as the investigation relies on MODIS data (no calibra-

tion issues and constituent over time) and focuses on the time frame from 2000-2020.  

If the vegetation trend analysis would like to be extended in time and at a higher spatial resolution, more in 

depth-analysis are needed. We don’t suggest extending the time period by relaying on AVHRR data. This is 

first due its rough resolution and secondly due to cross-calibration issues within the AVHRR data itself. Geo-

Ville rather would suggest extending the analysis towards a higher resolution using Sentinel-2 and Landsat 8 

data. Sophisticated methods exist to calibrate the different data together (as already shown in this study), but 

nevertheless a higher number of in-situ-calibration data would be needed for both, calibration, and validation 

to receive robust results. If such data are available or can be collected, for example in the form of sample 

polygons in areas with a known vegetation cover that is constant over the investigation period, also a sensor 

calibration on a yearly basis would be possible to counter-act remaining differences in the data. 

Furthermore, it might be of interest to carry out visual, high-resolution analysis in selected regions to support 

the findings and observations. For this, a few scenes with a very high resolution could be used to visually 

estimate the mean vegetation coverage on several sample points which could then be used for validation pur-

poses. 

The team is furthermore available to advise on and provide proven solutions aimed at supporting decision 

making in the context of mitigation actions during the implementation phase. 
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