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Abstract 

 Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, 

fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use 

in a broad range of applications. These materials have electrical properties comparable to those 

of commonly used metals, while providing other benefits such as flexibility in processing and 

modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with 

biomimetic mechanical and chemical properties. In this review, we focus on the uses of these 

electroconductive materials in the context of the central and peripheral nervous system, 

specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also 

highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of 

electroconductive materials (e.g., biodegradable materials). We believe such specialized 

electrically conductive biomaterials will clinically impact the field of tissue regeneration in the 

foreseeable future. 



 

1 Introduction  

Many tissues throughout the body respond to electrical stimulation (including bone, 

muscle, nerve, and skin), and electrical activation is inherent to numerous biological processes 

(e.g., angiogenesis, cell division, cell signaling, nerve sprouting, prenatal development, wound 

healing) [1]. The electrophysiological properties of cells and tissues (ionic currents and voltage 

changes) [2],[3] underpin everything inherent to living organisms from fetal development to 

an ability to sense the environment [4]. Electrical fields are stimuli known to promote the 

regeneration of different types of damaged or injured tissues [5]–[8], motivating the 

development of clinical interventions that utilize electrical stimulation to enhance tissue 

regeneration, including new materials capable of delivering such stimuli. These electrical 

signals are fundamental to the function of the nervous system (e.g., peripheral nerves, spinal 

cord, brain, eye, ear, Figure 1), which transmits information about motor and sensory functions 

throughout the body through axon bundles via a series of electrochemical reactions [9]. 

 

Figure 1: Overview of target tissues of interest and the carbon-based electroconductive 

materials discussed herein. Chemical structures for polypyrrole, polyaniline, polythiophene, 

polythiophene derivative PEDOT, graphene, and fullerenes (both a carbon nanotube and 

buckyball structure) are shown. 



Given that the conductivity of nerve tissue is ~0.08-1.3 S/m [10], materials that have 

a conductivity similar to, or higher than, the conductivity of nerve tissue may transfer electrical 

signals to neurons [11],[12]. Electroactive materials have a broad range of electrical properties 

from very low conductivity to high conductivity, and formally include “conductors” that allow 

for the rapid flow of charge (electrical current) and have conductivities greater than 107 Ω-1 m-

1, “insulators” that are non-conducting with few or no mobile charges and have conductivities 

of less than 10-10 Ω-1 m-1, and “semiconductors” that have electrical conductivities between 

conductors and insulators (between ca. 10-6 Ω-1 m-1 and ca. 10-4 Ω-1 m-1). Electroactive 

materials that have been clinically translated for electrical recording and stimulation are all 

metals or metal alloys, which are highly conducting, but unfortunately present complications 

related to mechanical mismatch between the hard material devices and relatively soft neural 

tissues when implanted for long periods [13]. Additionally, non-biodegradability of typical 

metals (e.g., gold, platinum, iridium) and metal alloys often cause severe chronic inflammatory 

tissue reactions, which can be exacerbated following stimulation, or require the secondary 

surgery for their removal [14]. These drawbacks to metals have motivated the development of 

flexible electronics and soft conductive materials that overcome current barriers for 

applications in soft tissue repair and regeneration [15],[16]. 

Electroconductive conjugated polymers (e.g., derivatives of polypyrrole (ca. 40-200 

S/cm), polyaniline (ca. 5 S/cm), polythiophene (ca. 10-100 S/cm) [12]) and carbon-based 

nanomaterials (derivatives of graphene (ca. 2-9 S/cm) [17], and carbon nanotubes (ca. 400-

6600 S/cm) [18],[19]) have significant potential to act as flexible electronic interfaces for the 

body with tunable bulk and surface properties [20]. Consequently there is a growing body of 

literature devoted to investigations of the potential application of such carbon-based conductive 

materials as non-degradable electrodes implanted for long term application for neural tissues, 

or to aid tissue regeneration efforts by serving as instructive biomaterials to directly and locally 



stimulate cells and tissues or deliver drugs in response to electrical stimuli; moreover, if 

engineered correctly, such materials may be biodegradable or bioerodible and enable regrowth 

of healthy tissues in their place.  

There are prior reviews [12],[17],[20],[21] that describe in detail the synthesis and 

fabrication techniques that are commonly utilized for conductive materials, and below we 

briefly highlight a few examples of the challenges and opportunities that exist for carbon-based 

conductive materials for medical applications, prior to the applications of these conductive 

materials specifically for neural regeneration.  

Conducting polymers have been utilized in groundbreaking investigations to assess 

their potential to electrically stimulate cells (also paving the way for investigations using other 

electroactive materials such as derivatives of graphene and nanotubes), and have been 

successfully implanted as materials constituting components of recording devices in the rat 

neocortex and hippocampus [22],[23]. Exciting progress since this time has led to the 

development of sensors capable of mimicking our natural senses [24], facilitating sight (e.g., 

bionic eyes) [25],[26], hearing (e.g., cochlear implants) [27], smell (e.g., electronic noses) 

[28]–[33], taste (e.g., electronic tongues) [29],[34],[35], and touch [36],[37] for patients with 

impaired senses. However, it is important to note that there are challenges related to solubility 

and processing of some carbon-based conductors to yield biomaterials with biomimetic 

mechanical or topographical properties, and chemical or biochemical properties that are being 

addressed by teams of researchers with multidisciplinary research expertise in academic and 

industrial settings [12]. A comprehensive overview of conjugated polymer synthesis, 

processing, and applications [38] is outside the scope of this review. Instead we highlight a few 

examples of matters that influence the potential of these polymers for biomedical applications 

[12],[39] often employing derivatives of polymers such as polyaniline (PANI), polypyrrole 

(PPy), and polythiophene (PT) (e.g., poly-3,4-ethylenedioxythiophene, PEDOT) as biosensors 



[40], drug delivery devices [41]–[44], electrode coatings [45], and tissue scaffolds for tissue 

engineering [46]–[51]. The structures of such polymers control their solubility, and 

concomitantly synthesis (e.g., electrodeposition [52]–[55], enzymatic polymerization [56], 

photochemical polymerization [40],[56],[57]) and processability (e.g., 3D printing [58],[59]), 

and influences the chemical/optoelectronic properties of the resulting materials, and moreover 

whether the polymers are biodegradable [12],[60],[61]. 

1.1 Polypyrrole (PPy) 

One of the most studied inherently conductive polymers (ICP) for tissue engineering 

applications is polypyrrole because of its high cell biocompatibility, ease of preparation, and 

high conductivity [58]. PPy is often used as a coating for electrodes because of its ability to 

elute drugs or biomolecules in a way that can be controlled using electrical stimulation to 

release the payload [41]–[44]. The pure monomer of PPy (i.e., pyrrole) is water-soluble and 

colorless [40]. PPy polymerization can be initiated via chemical or electrochemical 

polymerization by oxidation of an adsorbed pyrrole monomer; oxidation produces radical-

cationic pyrrole that reacts with the neutral monomer pyrrole to form a polymeric chain termed 

polypyrrole [62],[63]. PPy requires additional modification to overcome issues with water 

solubility and phase separation that make it difficult to use as a standalone biological material 

[59],[64]. To imbue various characteristics for chemical functionality or bioactivity, various 

approaches have been taken. These include the use of pyrrole derivatives [65], doping different 

molecules, and applications of different polymerization conditions [38]. Growth factors, such 

as neurotrophin-3, have previously been used in conjunction with PPy to increase the ability to 

interface with neural tissue [66]. One study showed that neurite outgrowth of spiral ganglion 

neurons was enhanced when neurotrophin-3 was incorporated with PPy, additionally the 

release of growth factor was increased with electrical stimulation further increasing the number 



of neurites per explant [66]. PPy, in combination with electrical stimulation is known to 

enhance neurite outgrowth in vitro [51]. PPy has potential for translation to regenerative tissue 

engineering applications in the nervous system and has been implemented in research for 

regeneration of the peripheral nervous system [67], spinal cord [13],[68], brain [69],[70], eye 

[71], and ear[66]).  

1.2  Polythiophene (PT) and Poly(3,4-ethylene dioxythiophene) (PEDOT) 

Polythiophene is the polymer formed from the polymerization of monomer thiophene 

and is a polyheterocycle, similar to polypyrrole, which means it has one or more atoms other 

than carbon (i.e., sulfur) in at least one of its rings [12]. PEDOT is a commonly used derivative 

of PT that is formed from the polymerization of thiophene derivative 3,4-

ethylenedioxythiophene (EDOT), and has been used for biomedical applications in neural 

probes and drug delivery [12],[54]. Like polypyrrole, PT generates electrical signals as 

electrons transfer between polymer chains and can be polymerized using electrochemical 

polymerization methods [12],[20],[61]. During electropolymerization reactions, extracellular 

matrix components (e.g., collagen, laminin) can be incorporated within PEDOT to enhance cell 

adhesion [20]. There are many other derivatives of thiophene, including 3-hexylthiophene that 

when polymerized yields poly(3-hexylthiophene) commonly known as P3HT [72]. When 

P3HT was combined with poly(lactide-co-glycolide) into aligned nanofibers, rat Schwann cells 

grown on the fibers exhibited enhanced proliferation at day 7 of culture [46],[47]. Topological 

properties as well as functionalization (e.g., ester linkages, anhydride linkages) can alter the 

bulk properties of PTs, enhancing biodegradability compared to the unaltered polymer form 

[60]. This makes PT derivates very interesting candidates for the development of fully 

degradable electroconductive materials.  

Interestingly, PEDOT has been polymerized in vivo at the site of implanted electrodes 



[54],[55], necessitating consideration of monomer toxicity if contemplating use of such 

methodology; EDOT exposed to primary dissociated mouse cortical cultures (MCC) and a 

neuroblastoma-derived cell line (SY5Y) yields limited cell viability (i.e., under 60% viable 

neural cells) at concentrations above 0.1 M EDOT [52]. For concentrations of EDOT less than 

0.01 M, cells maintain at least 75% viability out to 72 hours and studies have shown 

polymerization of EDOT within 10 minutes of electrochemical polymerization, suggesting that 

the cytotoxic effects of the EDOT can be limited by swift monomer polymerization and are 

expected to be negligible [52]. PT and PEDOT are not inherently degradable and remain stable 

in cell culture conditions, and therefore potentially cytotoxic EDOT is not expected to be 

released and accumulate at the implant site, limiting potential for long term toxicity when used 

in vivo [53].   

1.3  Polyaniline (PANI) 

Polyaniline is another inherently conducting polymer, which has shown low toxicity 

and environmental stability [73]. These properties make PANI a promising candidate for 

bioengineering applications [74], often used in combination with another conducting polymer 

or carbon-nanomaterial to tune the properties of the resulting materials [40],[73]. Like many 

conductive polymers discussed in this review, PANI is known to have limited biodegradability, 

and is often used in conjunction with other biomaterials as composites (e.g., PANI-porous 

silicon hybrid nanocomposite [75], PANI-poly(ethylene glycol) (PEG) [76], and PANI-

polycaprolactone (PCL) [77]) for tissue engineering applications [48],[49]. PANI is known to 

lose conductivity at pH levels above 4 (i.e., conductivity decreases from 10 S/cm to 0.1 S/cm 

when the pH increases from below 7 to pH 11), because it reverts back to its neutral state [40]. 

This has motived the exploration of PANI in combination with another conducting polymer or 

carbon-nanomaterial with higher conductivity, or pH functional groups (i.e, sulfo, carboxyl, or 



hydroxyl groups) to stabilize it at higher pH levels [40],[60]. A review by Zare et al. explores 

the synthesis, structure, properties, and biocompatibility of PANI and provides an in-depth 

view on PANI’s use for the broader biomedical space [73]. Like the previously described 

conductive polymers, PANI is synthesized by chemical or electrochemical polymerization via 

oxidation of its monomer aniline (water soluble at 36 g/L at 20 °C) [40]. There have also been 

techniques that involve enzyme-catalyzed (e.g., horseradish peroxidase) or photochemically 

(in conjunction with a metallic ion) initiated polymerization [40],[56],[57]. Unmodified PANI 

has poor cell adhesion and growth, with some low levels of inflammation (e.g., increase 

expression levels of the pro-inflammatory cytokines, TNF-α and IL-6 [78]), but modifications 

can create material formulations that (e.g., PANI-chitosan, PANI-gelatin) show increased 

biocompatibility in vitro and in vivo [12],[20]. PANI in combination with poly(ε-caprolactone) 

and gelatin, in the form of a nanofibrous scaffold, is capable of increasing nerve stem cell 

proliferation and neurite length following 1 hour of 1.5 V direct current (DC) electrical 

stimulation [50]. As such, PANI remains a promising candidate for neural tissue engineering 

applications.  

 

1.4  Fullerenes 

Fullerenes are allotropes of carbon that are either spherical (i.e., three-dimensional 

buckminsterfullerene, commonly known as buckyballs) or tubes (i.e., three-dimensional 

carbon tubes, commonly known as carbon nanotubes (CNTs), and occasionally referred to as 

buckytubes) [79],[80]; these materials are of interest to materials scientists and engineers 

because of their electronic, mechanical, and thermal properties [79],[80]. Carbon nanotubes are 

classified as single-walled carbon nanotubes (SWCNT), a single sheet of graphite rolled into a 

tube with a diameter of one nanometer, or multiwalled carbon nanotubes (MWCNT) which 



encompass multiple graphene tubes surrounding the core of a SWCNT [81]. MWCNTs are 

more often used as they have a lower surface area compared to single walled nanotubes which 

allows for increased dispersal within a polymer matrix [81]; MWCNTs have also been shown 

to be less toxic [82]. Of note, MWCNTs have been utilized for both sciatic nerve and spinal 

cord injury studies in combination with a polymer matrix [82],[83].  

Fullerenes have been employed for a variety of biomedical applications, including 

drug delivery [84] and tissue engineering [85]. These structures are of interest to the 

biomaterials community because they allow for the encapsulation of other molecules, 

prompting exploration into their usefulness for the delivery of therapeutic agents or other 

payloads [84]. Additionally, derivatives of fullerenes have been shown to reduce reactive 

oxygen species levels and inhibit the signaling pathway NF-κB, which is responsible for innate 

and adaptive immunes responses [85]. Akin to other carbon-based conductors, their solubility 

can be tuned to facilitate processing into different materials [82],[86],[87]. A review by Anaya-

Plaza et al. discusses the fabrication and self-assembly of carbon nanotubes and conjugation 

with biomolecules to mitigate their issues with low solubility and to enhance their 

biocompatibility for health concerns [86]. Materials such as carbon nanotubes have a 

propensity to aggregate, thus, organic solvents (e.g., dimethylformamide (DMF) [82]) are often 

used to encourage dispersion. This can make processing materials with fullerenes difficult, but 

there have been protocols designed that use biopolymers (e.g., DNA [87]) to aid in dispersal. 

The other common carbon allotrope, buckminsterfullerene (C60), is a stable cage-like structure 

commonly referred to as buckyball molecule that is resistant to the actions of both acids and 

bases [88]. Although buckyballs are being studied for biological applications (e.g., bactericidal 

activity, anti-inflammatory properties for inflammatory arthritis) and have been tested for 

negative effects at the DNA, tissue and organism levels in models such as Drosophila 

melanogaster [88],[89], we have not seen any studies utilizing buckyballs for neural 



applications.   

1.5  Graphene 

Graphene is the two-dimensional allotrope (i.e., structural arrangement) of carbon that 

can achieve an electron mobility of 20,000 cm2 V−1 s−1 [90]–[92] and is mechanically flexible, 

thus facilitating its inclusion in high performance flexible electronic devices (e.g., field-effect 

transistors) [93]. A variety of methods can be used to generate graphene and its derivatives, 

including mechanical exfoliation, chemical exfoliation, liquid phase exfoliation by reduction 

of graphene oxide (GO), chemical vapor deposition, and others [94]. Graphene has been 

deposited on flexible substates such as poly(ethylene naphthalate) for use in emerging field-

effect transistors (GFETs) research and have been shown to outperform the silicon “gold 

standard” [93]. Graphene-based materials can be moderately hydrophilic (e.g., graphene oxide) 

or hydrophobic (e.g., reduced graphene oxide or fluorinated graphene); those with hydrophobic 

properties can accumulate on cell membrane surfaces causing toxic effects that are much higher 

in comparison to most of the hydrophilic forms [92],[95]. The use of graphene has shown 

increased proliferation of human mesenchymal stem cells, often used in bone tissue 

engineering, and has supported the differentiation of these cells toward osteoblasts, the cells 

that form new bone [96]. There is significant interest in the potential biomedical applications 

of graphene derivatives [92], including incorporation into neural applications [97],[98]. Studies 

in vitro have shown that surfaces functionalized with graphene oxide promote neural 

differentiation [99],[100]. Materials augmented with graphene show great promise and the 

ability to support neural tissue regeneration in vivo needs further exploration.  

1.6 Material Characterization  

A variety of analytical methods have been employed to characterize properties of 

electroconductive materials. Table 1 provides examples of various analytical techniques 



commonly applied to the study of such biomaterials. A comprehensive summary of all 

techniques (including chromatography, mechanics, microscopy, spectrometry, spectroscopy, 

and in silico studies) is beyond the scope of this article, and readers are directed to references 

on underpinning theory and practice [101]–[105]. Electroconductive materials are often 

characterized by techniques to analyse reduction and oxidation processes and electron transfer 

(e.g., using cyclic voltammetry), or to rationally investigate the protonic and electronic 

contributions towards conduction (e.g., via impedance spectroscopy and dielectric 

spectroscopy); there are also scanning probe microscopy techniques developed to analyze 

electrochemical processes (e.g., scanning electrochemical microscopy) [21] that have also been 

used to study cells and tissues [106],[107]. Such analytical techniques offer insights into 

electroconductive materials properties and enables their optimization for specific applications. 

  

Table 1: Examples of analytical techniques applied to electroconductive biomaterials. 

Analytical 

Technique 

Offers 

information 

about: 

Reference 

material. 

Fullerene 

derivatives 

(e.g., carbon 

nanotubes) 

Graphene 

derivatives 

Conductive 

Polymers 

Nuclear 

Magnetic 

Resonance 

Spectroscopy 

(NMR) 

spectroscopy 

Chemical 

environments of 

spin active 

nuclei. 

[104] [108] [108]–[112] [108],[113],[114] 

Electron 

Paramagnetic 

Resonance 

(EPR) or 

Electron Spin 

Resonance 

(ESR) 

Spectroscopy 

The presence 

and/or type of 

free radicals and 

paramagnetic 

centres. 

[104] [115] [110],[116] [117]–[119] 

Chemiluminesc

ence 

Spectroscopy 

Light emitted as a 

result of a 

chemical 

reaction. 

[120] [121] [121]–[123] [124] 

Fluorescence 

Spectroscopy 

Light emission 

from samples 

with excited 

electrons. 

[104] [125] [111],[123] [126] 

Infrared 

Spectroscopy 

Functional group 

determined 

spectral 

[104] [127],[128] [129] [130] 



differences for IR 

transmission, 

absorbance or 

reflection. 

Phosphorescenc

e Spectroscopy 

Light emitted 

relatively slowly 

from a molecule. 

[131] [132] [123] [133] 

Photoacoustic 

Spectroscopy 

Sound waves 

emitted by 

materials that 

absorb radiation. 

[104] [134] [135] [136],[137] 

Photothermal 

Spectroscopy 

Heat evolved on 

absorption of 

radiation. 

[138] [139]–[142] [139],[143] [144] 

Pump-Probe 

Spectroscopy 

Photodynamics. [145] [146] [147] [148],[149] 

Raman 

Spectroscopy 

Vibrational/rotati

onal modes of 

molecules. 

[150] [128],[151] [151]–[153] [154] 

Terahertz Time-

Domain 

Spectroscopy 

(THz-TDS) 

Material 

response at THz 

frequencies. 

[104],[155] [156] [156]–[159] [156],[160]–[163] 

Ultraviolet-

visible (UV-Vis) 

Spectroscopy 

Bond 

conjugation and 

connectivity. 

[104],[164] [165],[166] [111],[167],[1

68] 

[119],[169] 

X-ray 

Photoelectron 

Spectroscopy 

(XPS) 

Chemical 

composition and 

electronic state of 

the elements. 

[170] [128],[171],[1

72] 

[167],[172],[1

73] 

[62],[174],[175] 

Scattering and 

Diffraction 

(XRD, SAXS, 

WAXS) 

Crystallinity and 

microstructure. 

[104],[176],[1

77] 

[178] [178] [119],[174],[179],[

180] 

Thermal 

Characterization 

(TGA,DSC) 

Heat flow within 

materials. 

[181] [128] [167] [182] 

Electrical 

Characterization 

Conductivity, 

reduction/oxidati

on processes, 

electron transfer. 

[21],[183] [184] [185],[186] [187],[188] 

Scanning 

Electron 

Microscopy 

(SEM) 

Particle size 

distributions and 

elemental 

compositions 

when used in 

combination with 

energy dispersive 

X-ray 

spectroscopy 

(EDX/EDS) 

[189] [190] [191] [174] 

 

Transmission 

Electron 

Microscopy 

(TEM) 

Particle size 

distributions and 

elemental 

compositions 

when used in 

combination with 

energy dispersive 

[192],[193] [190] [191],[194] [174] 



X-ray 

spectroscopy 

(EDX/EDS) 

Scanning Probe 

Microscopy 

(Profilometry, 

SPM, STM, 

AFM) 

Surface 

characterization  

electronics, 

mechanics, 

spectroscopy, etc. 

[195] [196] [191],[197],[1

98] 

[119] 

Computational 

Studies 

Simulations of 

material 

structures. 

[199]–[201] [202],[203] [204]–[206] [207] 

 

2 Carbon-Based Conductive Materials for Regeneration of Neural Tissues 

Electroconductive materials offer an exciting foundation to develop biomaterials for 

the repair and regeneration of neural tissues. We discuss herein the use of conductive carbon-

based nanomaterials and polymers for the regeneration of neural tissues. Because of the 

exploratory and early nature of this research, much of the current literature only reports in vitro 

or preliminary in vivo biological outcomes (e.g., in vitro neurite extension, in vivo immune 

reaction) in response to the material itself, rather than regenerative outcomes when applying 

an electric stimulus in conjunction with the material in vivo. Consequently, we clarify where 

the use of electrical stimulation is applied in conjunction with the materials of interest. Herein 

we highlight recent advances towards the translation of electroconductive materials for 

regeneration of neural tissues (peripheral nerve, spinal cord, brain, optical, and auditory), with 

a focus, where possible, on recent in vivo studies and clinical trials. 

2.1 Regeneration of Peripheral Nerve Tissue 

Peripheral nerve injuries frequently result in complete motor function loss and muscle 

paralysis [208],[209]. Among various peripheral nerve injuries, full transections are the most 

difficult to regenerate because of loss of structural integrity and connection. If a transected 

peripheral nerve is left untreated, the proximal stump often forms a neuroma, and neurogenic 

muscle atrophy occurs [210],[211]. Hence, various surgical treatment methods for PNS defects 



have been developed. Direct suturing of the damaged nerve ends can be used for very short 

defect lengths (< a few millimeters), where there is little to no resulting tension on the nerve 

[212]. On the other hand, for treatment of larger nerve defects, autologous nerve grafts or 

autografts have been widely employed as the clinical gold standard [213]; however, autografts 

pose several critical limitations, including donor site morbidity and insufficient functional 

regeneration [212],[214]. Therefore, artificial nerve guidance conduits have been developed as 

alternatives for structural and functional recovery of large gap nerve defects [215]. An ideal 

nerve guidance conduit is proposed to possess several appropriate characteristics that are 

conducive to regeneration, such as permeability, flexibility, neurotropic activity, and electrical 

conductivity [67],[216],[217]. Electrically conductive materials have been recognized as 

potential materials for promoting nerve regeneration, since it is known that electrical 

stimulation can facilitate cell growth and tissue regeneration [218],[219]. In addition, 

conductive materials can directly affect behaviors of individual cells (e.g., neurons, Schwann 

cells) and promote signal communication between cells [220],[221].  

Clear roles of electrically conductive materials in promoting peripheral nerve 

regeneration have not been established; however, several mechanisms have been proposed. For 

example, electrical stimulation (constant current 10 µA) of PPy substrates enhanced the 

adsorption of extracellular matrix proteins (e.g., fibronectin) from the culture medium, which 

encourages cell growth and differentiation [222]. In addition, intracellular Ca2+ levels of 

Schwann cells and neuronal cells have been found to change in response to conductive 

scaffolds (e.g., aniline pentamer-incorporated polyurethane films, and combined CNT and PPy-

incorporated hyaluronic acid hydrogels) [223],[224]. Specifically, Ma and colleagues found 

that Schwann cells cultured on the conductive poly(glycerol sebacate)-co-aniline pentamer film 

exhibited substantial decreases in intracellular calcium levels and the expression of the calcium 

sensing receptor (i.e., a G protein-coupled receptor) [223]. The decreased intracellular Ca2+ 



level in Schwann cells was demonstrated to subsequently induce myelin gene expression and 

neurotrophin secretion by Schwann cells, which are essential for functional nerve regeneration. 

Axon myelination following proliferation and maturation of SCs promotes nerve regeneration 

[225],[226] (Figure 2, A). Cho and colleagues revealed that the expression of voltage-gated 

Ca2+ channel (Cav1.2) of human induced pluripotent stem cell-derived neural progenitor cells 

(hiPSC-NPCs) increased when cultured in carbon nanotube (CNT) and PPy-containing 

hyaluronic acid gels [224]. Overexpression of the Cav1.2 induced Ca2+ influx and increased 

intracellular Ca2+. Furthermore, upregulated expression of the genes (i.e., neuronal class III β-

tubulin (Tuj1) and microtubule-associated protein 2 (MAP2)), related to neurogenesis, was 

observed (Figure 2, B).  



  

Figure 2. Proposed roles of electrically conductive substrates in modulating intracellular 

Ca2+ levels of Schwann cells and neural progenitor cells. (A) Inhibition of the calcium-

sensing receptor-phospholipase C (CaSR-PLC) pathway in cells cultured on a conductive 

film can decrease the intracellular Ca2+ level. Reprinted from [223], Copyright (2016), 

with permission from Elsevier. (B) Upregulation of voltage-gated calcium channel 

expression of hiPSC-NPCs within conductive hydrogels. Reprinted with permission from 

[224]. Copyright 2017 American Chemical Society.  

 

In Table 2, we list several studies describing the use of conductive nerve guidance 



conduits for in vivo peripheral nerve regeneration. We compare the ability of various nerve 

guidance conduits to support functional regeneration of damaged peripheral nerves based on 

sciatic functional index (SFI), which is a widely employed metric to evaluate the functional 

recovery of sciatic nerves from geometric footprints of hind paws [227],[228]. A sciatic 

functional index value of 0 indicates normal sciatic nerve function, whereas a value of -100 

reflects complete impairment [229]. Multiple attempts to create conductive nerve guidance 

conduits have been made using various conductive polymers and electroconductive materials. 

Xu et al. fabricated conductive nerve guidance conduits consisting of PPy and poly(d, l-lactic 

acid) (PDLLA) (Figure 3, A) [67]. Conductivity of the PPy/PDLLA film was 5.65 mS/cm. 

This conductive material enhanced nerve regeneration in a rat sciatic nerve defect, displaying 

performance metrics (SFI value, axon diameter, and myelination) similar to the autologous 

nerve graft positive control after 6 months (Figure 3, B). Wang et al. fabricated reduced 

graphene oxide (rGO)-coated silk fibrin/poly(l-lactic acid-co-caprolactone) nanofibrous 

scaffolds [230]. This scaffold, consisting of porous nanofibers, exhibited good permeability 

and an excellent conductivity of approximately 10 mS/cm. Although research on conductive 

nerve guidance conduits continues to be performed, conductive materials have some inherent 

drawbacks, such as mechanical rigidity and brittleness [231],[232]. Matching mechanical 

moduli of an implanted biomaterial with the mechanics of native nerve tissue is generally 

critical to reduce inflammation and to enhance neural differentiation [233]. Hence, several 

efforts have been made to develop soft and conductive hydrogel-based nerve guides. Recently, 

Park et al. fabricated soft conductive nerve guidance conduits by compounding gelatin 

methacrylate and rGO in the form of hybrid hydrogels (rGO/GelMA) (Figure 3, C) [234]. 

These hydrogels had a relatively high conductivity (approximately 8.7 mS/cm), excellent 

permeability, flexibility, and soft mechanical properties (Young’s modulus: 57 kPa). In 

particular, the maintenance of conductive properties was demonstrated during deformation 



(e.g., bending and successive compression) (Figure 3, D). All analyses values, such as sciatic 

function index, nerve conduction velocity, and muscle recovery, indicated that the conductive 

hydrogel-based nerve guidance conduits showed statistically similar values compared to the 

autograft gold standard after 8 weeks (Figure 3, E). Overall, conductive materials are suitable 

and promising for use as nerve guidance conduits for peripheral nerve regeneration.  

 

Table 2. Conductive nerve guidance conduits. Acronyms of interest include: Polycaprolactone 

(PCL), Poly (DL-lactide) (PDLLA), oligo(poly(ethylene glycol) fumarate) (OPF), carbon 

nanotubes (CNT), multi-walled carbon nanotubes (MWCNT), reduced graphene oxide (rGO), 

polydopamine (PDA), (Poly(L-lactic acid-co-caprolactone)) (PLCL), trifluoroethanol (TFE), 

polylactic acid (PLA), gelatin‐methacrylate (GelMA) 

Conduit 

matrix 

Conductive 

materials 
Conductivity In vivo Outcomes  Reference 

PDLLA PPy 5.65 mS/cm 

SD rats, 

10 mm 

defect, 6 

months 

SFI at 6 months:  

PPy/PDLLA -24, 

PDLLA -37 

[67] 

      

Zein PANI 
0.016-0.030 

S/cm 

SD rats, 

10 mm 

defects, 

4 months 

SFI at 8 weeks: 

PANI/Zein -50 
[235] 

      

OPF 

 

CNT, rGO 

 

5.75 mS/m 

 

- 

 

- 

 
[236] 

PCL 

PDA 

coated 

gold 

4.66 mS/cm 

SD rats, 

15 mm 

defects, 

18 

weeks 

SFI at 18weeks: 

PDA-gold/PCL -8, 

PDA-PCL -11 

[237] 

      

Silk 

fibrin/PLCL 
rGO 10 mS/cm 

SD rats, 

10 mm 

defects, 

12 

weeks 

SFI at 12 weeks: 

rGO-coated silk/PLCL 

-40, silk/PLCL -60 

[230] 

      

TFE rGO - 

SD rats, 

2 mm 

defects, 

12 

weeks 

- [238] 



      

PLA/Gelatin MWCNT 0.32 S/cm 

SD rats, 

10 mm 

defects, 

8 weeks 

SFI at 8 weeks: 

PLA/Gelatin/MWCNT 

-77,  

Negative control -89 

[83] 

      

GelMA rGO 8.7 mS/cm 

SD rats, 

10 mm 

defects, 

8 weeks 

SFI at 8 weeks: 

rGO/GelMA -73, 

GelMA -91 

[234] 

 

 

 

Figure 3. Conductive nerve guidance conduits for peripheral nerve regeneration. (A) 

Optical and scanning electron microscopy images of the polypyrrole (PPy) and poly(D,L‐

lactic acid) (PDLLA) film and conduits. (B) Quantification of the histological analysis of 

the regenerated nerve tissues for various groups (autograft, PDLLA, and PPyPDLLA) 3 

and 6 weeks after implantation [67]. (C) Schematic of reduced graphene oxide (rGO) 

embedded gelatin hydrogel-based nerve guidance conduits and optical images of the 

conduits (gelatin-mathacryalte (GelMA), GO/GelMA, and r(GO/GelMA)). (D) 

Photographs of a r(GO/GelMA) conduit during bending and connection with a cable and 

a LED bulb. (E) Transmission electron microscopy (TEM) analysis of myelination of the 

regenerated distal axon. Figure compiled from [234] © Wiley 2020 and from [67] 

Copyright (2013), with permission from Elsevier. 

 



2.2 Regeneration of Spinal Cord Tissue 

Spinal cord injury (SCI) results in devastating long-term health complications for 

patients, and unfortunately there is currently no available treatment for full recovery. Native 

spinal cord tissue has a high conductivity (1 - 10 S/m), relative to other tissues in the body (e.g., 

native myocardium 0.16 S/m [239], muscle 0.93  ±  0.26 S/m [240]) [13], as well as soft tissue 

mechanical properties, making it a difficult tissue for biomaterials development [13],[241]. 

Recent advances in conductive materials show promise for SCI applications. However, 

conductive biomaterials applications for spinal cord tissue are in earlier stages of research and 

in vivo validation as compared to the other neural tissues discussed in this review. Techniques 

such as functional electrical stimulation (FES) are being utilized in a clinical setting to some 

success for acute SCI. In the injured adult rat central nervous system (CNS), functional 

electrical stimulation has been shown to promote cell regeneration, with an increase of cells 

expressing neural progenitor cell marker nestin without expression of glial fibrillary acidic 

protein associated with astrocytes [242], which could lead to therapies for chronic SCI patients. 

Stimulation also has been implicated in the enhancement of sensory neuron (i.e., rat femoral 

nerve) regeneration into cutaneous and muscle branches [243]. Following sciatic nerve injury, 

immediate electrical stimulation prevented the reduction of sensory afferent nerves in the spinal 

cord dorsal horn normally associated with this type of injury [244]. Implanted conductive 

biomaterials for repair of SCI may help with the transmission of signal from proximal nerve 

fibers and assist in regenerating the damaged spinal tissue to restore function to distal nerves. 

Current work showcases particle suspension delivery to the injury site (PPy [68]), composites 

to bridge a spinal cord defect (e.g., Figure 4 PPy [13], PEDOT-carbon microfiber [245]), 

nanodrug injection to lesion epicenter (carbon nanotubes [246]), as well as initial in vitro testing 

on spinal cord nerve conduits (e.g., Figure 5 carbon nanotubes [82]) and organotypic culture 

on porous cryogels (graphene [247]).   



 

Figure 4: Adapted figure of pyrrole and tannic acid based conducting polymer hydrogel 

(CPH) implantation promoted new endogenous neurogenesis in a hemisection model of 

spinal cord injury (SCI). (A) Graphical representation of a “C”-shape, semitubular CPH 

that was implanted as a bridge to cover the spinal cord hemisection gap. (B) Hemisection 

spinal cord injury model with and without implantation. (C) Quantification graphs 

showing the average cystic cavity area of animals with SCI and different hydrogel 

treatments; *p < 0.05 and **p < 0.01, ***p < 0.001. Immunohistofluorescence images of 

transverse spinal cord sections obtained from animals in the sham (D), SCI (E), and 

hydrogel groups (F) at 6 weeks. Boxed regions in D, E, and F are magnified in D′, D″, E′, 

E″, F′, and F″. Scale bars indicate 200 μm (D–F) and 100 μm (D′–F″). Analysis of the 

spinal cord protein extracts showing the neuron-specific class III β-tubulin (Tuj1, green) 

and astrocyte-specific glial fibrillary acidic protein (GFAP, red), and all nuclei were 

Hoechst (Hoe, blue) stained in the sham, SCI, and conducting hydrogel groups. Figure 

adapted with permission from [13]. Copyright 2018 American Chemical Society.  



  
Figure 5: (A) Schematic demonstration of the spinal cord in the human body. (B) 

Conductive nerve conduits for spinal cord injury treatment. (C) Structure of the 

conductive oligo(poly(ethylene glycol) fumarate)-carbon-nanotube-poly(ethylene glycol)-

acrylate (OPF-CNTpega) hydrogel. (D) Synthesis route to crosslinkable CNTs grafted 

with hydrophilic poly(ethylene glycol) (PEG) chains. Scanning electron microscopy 

images of (E) CNT-COOH tubes and (F) CNTpega tubes. TEM images of (G) CNT-

COOH tubes and (H) CNTpega tubes with schematic demonstration. Figure © The Royal 

Society of Chemistry and the Centre National de la Recherche Scientifique 2018 [82]. 

 

Following induced SCI in in vivo studies, long-term behavioral outcomes are often 

assessed utilizing the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale [248]. This 

21-point scale was developed to improve the sensitivity and reliability of locomotor assessment 

observed during recovery from spinal cord contusion in rats. The test offers robust locomotor 

criteria, such that examiners with varied experience can apply the scale consistently and obtain 

similar scores [248],[249]. When assessing the outcomes for some of the conductive materials 



in vivo, the BBB score is used to showcase the functional changes resulting from biomaterial 

implantation (Table 3). In adult female Long Evans rats, moderate contusion spinal cord injury 

was performed and allowed to progress naturally for 48 hours before application of PPy-iodine 

particle suspension to the injury site, which was then assessed out to 8 weeks [68]. When 

assessed for BBB score, the animals in the vehicle only control group (i.e., lacking PPy-iodine 

particle suspension) received a score of 4.25±1.30 at week 8 and showed limited movement in 

three joints of the hind legs, whereas the rats that received the PPy-iodine particles received a 

score of 12.5±1.85 at week 8 and showed coordinated movement between forelegs and hind 

legs [68]. In adult male mice with a 2 mm hemisection spinal cord injury, implantation of a 

PPy-based hydrogel (Figure 4) showed a similar jump in BBB score for the conductive 

material group at 6 weeks following injury, around a score of 14 for the injury with conductive 

material treatment and around a score of 7 for the injury without treatment [13]. Injection of 

carbon nanotube and synthetic polymer Nafion, showed an increase in neurofilament positive 

fibers into the lesion in transection spinal cord injury, as well as increase motor coordination 

with the rotarod test, in which the animal balances on a rotating rod [246]. Since BBB scoring 

was not used in the rest of the studies, it is difficult to compare the results with other animal 

trials. In adult Wistar rats, 2-3 mm transections of the spinal cord were performed and PEDOT-

carbon microfibers (MF) rolled in alginate sheaths were inserted into the injury site [245]. 

Transected spinal cords with PEDOT-MF showed significate decrease in tissue gap, and an 

increase of tissues growth into the lesion site [245]. In vitro studies in this area have looked at 

both collagen-graphene porous hydrogels, which show an increase in adult rat spinal cord cell 

viability [247], and carbon nanotube conduits, which increase proliferation of PC12 cells in 

culture. These materials have yet to be used in conjunction with electrical stimulation or make 

it into clinical trials for spinal cord injury applications, but the current in vivo results show 

potential for future translation.  



 

Table 3: Conductive materials for spinal cord regeneration  

Matrix 
Conductive 

materials 
Stimulation Conductivity In vivo Outcomes Reference 

0.9% 

sodium 

chloride 

solution 

polypyrrole

-iodine 

(PPy-I) 

- - 

Adult female 

Long Evans 

rats (220–

240 g), 

contusion 

SCI 

BBB at 8 weeks: 

SCI-PPy-I 

12.5±1.85, SCI-

vehicle 4.25±1.30 

[68], 2017 

       

tannic 

acid 

(TA) 

PPy - 
0.05–0.18 

S/cm 

Adult male 

C57BL/6N 

mice (6–8 

weeks old) 

Hemisection 

SCI 

BBB at 6 weeks: 

Hydrogel 14±2, SCI 

6±2 

[13], 2018 

       

oligo(pol

y(ethyle

ne 

glycol) 

fumarate

) (OPF) 

Carbon 

Nanotubes 

(CNT) 

functionaliz

ed with 

poly(ethyle

ne glycol) 

(PEG) 

- 

OPF-

CNTpega-1 

(4.59 ± 3.58 

× 10−4 S m−1) 

OPF-

CNTpega-5 

of (8.16 ± 

5.66 × 10−4 S 

m−1) 

OPF-

CNTpega-10 

2.04 ± 1.22 × 

10−3 S m−1 

In vitro 

PC12 

As compared to OPF 

control, OPF-

CNTpega increased 

cell proliferation, 

focal adhesion 

density and size  

[82], 2018 

       

Collagen 

cryogel 
Graphene - 

0.1% w/v 

graphene 

2.91 mS/cm, 

0.5% w/v 

graphene 

3.93 mS/cm 

Organotypic 

Culture  

Adult male 

rat (250–300 

g) spinal 

cord cultured 

on cryogels 

Increased cell 

proliferation on 

0.5% w/v graphene 

collagen cryogels as 

compare to 

EDC/NHS 

crosslinked control 

collagen cryogels 

[247], 

2020 

       

Nafion® 

perfluori

nated 

resin 

solution 

(20 

wt. %) 

multi-

walled 

carbon 

nanotubes 

(MWCNTs) 

- - 

Adult male 

Sprague- 

Dawley rats 

(200–250 g, 

1.8 months 

old)  

Transection 

SCI 

CNT/Nafion 

nanocomposite 

decreased lesion 

volume, increased 

neurofilament-

positive fibers and 

corticospinal tract 

fibers in the lesion 

[246], 

2015 

       

Alginate 

Poly(3, 4-

ethylenedio

xythiophene

)-coated 

carbon 

microfibers 

(PEDOT-

- - 

Adult male 

Wistar rats 

(300–390 g, 

14–20 weeks 

old) 

Transection 

SCI 

MFs modified with 

PLL/heparin/bFGF/f

ibronectin produced 

little or absent 

inflammation and 

fibrosis. 

Inflammation, 

[245], 

2016 



MFs) scarring, and neural 

damage were 

prominent around 

non-functionalized 

or PLL-

functionalized MFs 

 

2.3 Regeneration of Brain Tissue 

One of the most well established areas of research on electroconductive materials for 

neural applications is the development of electrodes for brain-machine/human-computer 

interfaces and deep brain stimulation that present a variety of exciting opportunities for long 

term medical and veterinary interventions [250]. Significant attention has been directed 

towards the development of technologies containing carbon-based electronic component for 

long term applications (including electrode coatings [45] and/or biosensors [251]) and there is 

growing interest in short term applications such as theranostics (for conditions such as brain 

cancers and neurodegenerative conditions [252]) or tissue scaffolds to maintain and regenerate 

brain tissue employing electrical stimuli as summarized below. However, it is important to note 

that by comparison with research on neural electrodes, research on electronics for brain tissue 

engineering is relatively nascent in part because it is only recently that it was understood that 

CNS tissue is capable of regeneration [253]–[257], and we will summarize progress towards 

this goal. A consequence of its relatively nascent status is that in contrast to peripheral nerve 

tissue or spinal cord tissue, there are as yet no well-defined general metrics of success for brain 

tissue regeneration, however, the literature indicates progress in developing instructive 

biomaterials in combination with neuronal cell lines or primary cells that employ topographical 

cues or electrical stimuli to influence cell differentiation or increase neurite 

formation/outgrowth to enhance regenerative outcomes. 

Composites of PEDOT and gelatin were observed to support bovine brain capillary 

endothelial cell adhesion and growth which may be important for successful vascularization of 



brain tissue scaffolds [258]. Collazos-Castro et al. demonstrated that electrical stimulation of 

PEDOT-coated carbon microfibers can trigger the release of basic fibroblast growth factor 

(bFGF) from the fibers (Figure 6, A) [259]. Additionally, these aligned microfibers encourage 

the alignment of the cells growing on the fibers (Figure 6, B). In combination with the 

capability of bFGF release, these characteristics promote the differentiation of glial progenitor 

cells into astrocytes denoted by staining with glial fibrillary acidic protein (GFAP) (Figure 6, 

C, D) [259]. This work showcases that stimulation, in combination with an electroconductive 

biomaterial, chemical cue (i.e., growth factor), and physical cue (i.e., microfiber) can have a 

marked effect toward the differentiation of cells in vitro which yields promising results for 

future in vivo studies. 

 

Figure 6: Biological effects of cathodic electrostimulation applied through microfibers 

functionalized with PLL/Heparin/bFGF/Fibronectin. (A) Electrostimulation partially 

released bFGF from the microfiber surface, as detected by fluorescence confocal 

microscopy of microfibers without bFGF (bFGF−), with bFGF but no stimulation 

(bFGF+), and with bFGF and stimulation (bFGF+ Stim), processed for bFGF 

immunochemistry. (B) Cells on electro-stimulated microfibers preserved their viability, 

as indicated by Calcein AM fluorescence at 10 days in vitro (DIV). Notice that the 

stimulated cells showed more complex cytoplasmic processes. (C) Electrical stimulation 

reduced cell proliferation (BrdU staining, red), and increased astrocyte differentiation 



(GFAP staining, green). (D) Quantification of GFAP fluorescence per cell in unstimulated 

(black columns) and electrically stimulated (gray columns) cells. **p < 0.01; *p < 0.05. 

Scale bars: B, 15 μm; C, 20 μm. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) Reprinted from Acta 

Biomaterialia, 35/15, Jorge E. Collazos-Castro, Concepción García-Rama, Alexandra 

Alves-Sampaio, Glial progenitor cell migration promotes CNS axon growth on 

functionalized electroconducting microfibers, 42-56, Copyright (2016), with permission 

from Elsevier. [259] 

 

An interesting study reported that neuroinflammatory responses of microglia on 2D- 

or 3D-graphene-based materials was similar to that of the microglia on tissue culture 

polystyrene, with lipopolysaccharide-induced neuroinflammation on 3D foam substrates lower 

than neuroinflammation on 2D film substrates [260]. An interesting complementary study 

showed that the medium produced by microglia grown on the 3D-graphene foams could 

promote neurosphere formation and facilitate neural stem cell migration from neurospheres 

[261]. Reduced graphene oxide (rGO) coated fibers acted as topographical guidance cues for 

the alignment of cells (astrocytes and neuroblasts) grown thereon when implanted into the 

striatum or subventricular zone of adult rats; interestingly, the activation levels of microglia 

and astrocytes were lower on reduced graphene oxide coated scaffolds as compared to non-

functionalized polycaprolactone, and the reduced graphene oxide coated scaffolds exhibited no 

glial scarring at the scaffold-tissue interface after 7 weeks in vivo which is important as it is 

indicative of improved integration with native tissue and diminished glial scar-related barriers 

(e.g., mechanical barriers) to neuronal regrowth [262],[263]. Injectable hydrogels composed of 

acetylcholine-functionalized graphene oxide and poly(acrylic acid) were supportive of the 

growth of primary cortical neurons and reactive astrocytes in the hippocampal dentate gyrus 

region of injured mouse brains [264]. Interestingly, studies showed that primary neurons 

cultured in 3D scaffolds composed of parylene and graphene extended their axons through the 

pores [265]. Additionally, synaptic networks formed by primary neurons cultured in 3D 



scaffolds composed of polydimethylsiloxane (PDMS) or PDMS/graphene sustained a high rate 

of bursting, which is implicated in synchronous neuronal firing, that was increased by the 

presence of graphene [266]. 

Conductive biomaterials can influence cell differentiation towards more specialised 

roles supporting tissue maturation and tissue repair. Conductive materials (e.g., PANI films 

[267], or composites composed of single-walled carbon nanotubes, nanocellulose fibers and 

alginate [268]) were shown to support the differentiation of the neuroblastoma cell line (SH-

SY5Y cells) into more neural phenotypes. Electrical stimulation of brain-derived neurotrophic 

factor (BDNF) hypersecreting mesenchymal stem cells on graphene-based materials was 

shown to encourage their transdifferentiation to both neuronal and Schwann cell-like 

phenotypes at low voltages (25-50 mV at 50 Hz) or exclusively Schwann cell-like phenotypes 

at higher voltages (100 mV at 50 Hz) [269]. Mats of electrospun polycaprolactone that were 

coated with GO were used to promote the differentiation of neuronal stem cells (NSCs) into 

mature oligodendrocytes [270]. Nanofibrous scaffolds composed of pyrolyzed composites of 

polyacrylonitrile and multiwalled carbon nanotubes were shown to enhance the differentiation 

of mouse neural stem/progenitor cells [271]. Electrical stimulation (5 mV, 0.5 mA, 25 ms 

intermittent stimulation) of neural stem cells on bundles of single walled carbon nanotubes 

promoted their differentiation into mature neurons [272], likewise, electrical stimulation (100 

mV, 1h/day) of NSCs on PLGA/GO membranes promoted NSC proliferation, neuronal 

differentiation, and neurite elongation [273].  

Conductive biomaterials can enhance neuronal repair using neurite outgrowth as a 

biomarker for axonal formation/extension/navigation. Electrical stimulation (20 mV/mm, 100 

Hz, 5 min) of NB-39-Nu human neuroblastoma cells on carbon nanotube-PEDOT-based films 

enhanced the number and length of neurites which may be important for cell connectivity and 

tissue maturation [274]. Films composed of polyethylene terephthalate (PET) and graphene 



were used to create a transient non-contact electric field (as low as 4.5 mV/mm for 32 min), 

which resulted in new and strengthened existing cell-to-cell couplings between SH-SY5Y cells 

[275]. The electrical stimulation (charge-balanced biphasic electrical stimulation at 250 Hz, 

20-60 mV, 8h/day, 5 days) of PC12 cells using PEDOT functionalized with biomimetic features 

(phosphoryl choline to mimic cell membranes, and cell adhesive peptides (e.g., Ile-Lys-Val-

Ala-Val (IKVAV) from laminin) enhanced neurite outgrowth and length [276]. Electrical 

stimulation (100 mV, 1h) of PC12 cells cultured on heparin-doped PPy was shown to enhance 

the number and length of neurites from the PC12 cells [69], as was electrical stimulation (100 

mV/mm, 20 Hz, 2h/day) of PC12 cells cultured on carbon nanotube loaded polycaprolactone 

derivatives [277]. Neurite outgrowth from embryonic hippocampal neurons on mats of 

multiwalled carbon nanotubes could be enhanced by coating the nanotubes with 4-

hydroxynonenal [221]. Electrical stimulation (0.25 mA/cm2 using a biphasic waveform of 100 

μs pulses, 8h/day, 3 days) of primary pre-frontal cortical neurons, isolated from murine gene 

knockout models for schizophrenia, on PPy substrates was observed to enhance neurite 

outgrowth, which is potentially interesting for treating schizophrenia and other 

neurodevelopmental diseases [70]. Electrical stimulation (1 Hz, 10 μA, 30 min/day, 3 days) of 

induced pluripotent stem cell (iPSC) derived neural progenitor cell (NPC) lines (collected from 

patients with Rett syndrome) using 3D graphene scaffolds showed increased cell maturation 

and improvements in cell morphology of the cells after electrical stimulation, which is 

potentially interesting for treating patients with Rett syndrome.[278] Although the majority of 

work aimed at brain tissue regeneration remains in the in vitro stages of study, the literature 

highlighted indicates the growing potential to utilize instructive electroconductive materials in 

combination with biological cues or electrical stimuli to enhance regenerative outcomes in 

CNS tissues. 



2.4 Optical Applications 

Although not as extensively studied as the brain, the last decade of development and 

clinical approval of bionic eye implant prostheses represents a significant step forward in the 

ability to aid patients with sight impairment [279]–[285]. Attention has been directed towards 

the development of technologies containing organic electronic components, including arrays 

of photodetectors [286]–[290], biosensors [291]–[293], devices to deliver ions (e.g., drugs) 

[294]–[296], and smart contact lenses [297]–[300]. Concomitantly there is growing interest in 

maintaining and regenerating nerves in damaged optical tissue via various methods [301]–

[305], particularly because transcorneal electrical stimulation (TES) has been shown to 

enhance the survival of retinal ganglion cells (RGCs) [306], to prolong the survival of 

photoreceptors [307], and to result in retinal neovascular changes [308],[309]. Furthermore, 

organic electronic materials have shown some promise for ocular nerve regeneration; for 

example, electrical stimulation of retinal progenitor cells (RPCs) using PPy coated electrodes 

was observed to direct their differentiation towards neural fates [310]. Moreover, electrical 

stimulation of retinal ganglion cells on aligned nanofibers containing PPy and graphene was 

shown to enhance cell viability and neurite outgrowth (Figure 7) [71]. Although progress has 

been made with respect to relevant cell populations for optical applications, it is still at a very 

nascent stage and depending on the location the conductive biomaterials are employed their 

optical properties may be important (i.e., not impacting retinal function) which we believe will 

be a focus of future studies. 

 

 



 
Figure 7: Confocal micrographs of aged retinal ganglion cells on the 6% (w/w) 

polypyrrole functionalized graphene hybrids with the presence of biocompatible 

poly(lactic-co-glycolic acid) (PPy-G/PLGA) nanofibers (A) without electrical stimulation 

and (B) after electrical stimulation. All cells were cultured for 10 days. Electrical 

stimulation step potential was pulsed between −700 and +700 mV/cm, and was performed 

1 hour every day for 3 days. Image reprinted with permission from [71]. Copyright (2016) 

American Chemical Society. 

 

2.5 Auditory Applications 

Cochlear implants dramatically aid patients with hearing impairment [311]–[314]. 

However, to provide further improvement to current devices, there is growing interest in 

maintaining and regenerating nerves in damaged ears using a variety of approaches, with those 

techniques involving electricity, summarized briefly here [315]–[320]. Electrical stimulation is 

of great interest in auditory applications because of the prevailing idea that neuronal survival 

is dependent on both the presence of hair cells, the sensory receptor cell in the ear, as well as 

on electrical stimulation [315]. Electrical stimulation of spiral ganglion cells (SGCs), neural 

cell bodies that innervate hair cells, has been shown to enhance their survival, and the 

combination of electrical stimulation (chronic stimulation via a cochlear implant electrode) and 

delivery of glial cell line-derived neurotrophic factor (GDNF) significantly improved the 

preservation of SGC density in vivo in guinea pigs [321]. Electrical stimulation has also been 

used to deliver drugs (e.g., neurotropin-3 [NT-3] [66],[322],[323] alone or combined with 



brain-derived neurotrophic factor (BDNF) [324]) from PPy-coated electrodes. Neural explants 

in rats demonstrate efficacy of the drugs released from the modified electrodes in vitro, 

similarly, this efficacy is seen in the release of BDNF from PEDOT-coated electrodes in guinea 

pigs [325]. Despite the potential for using electric fields in a tissue engineering and regenerative 

medicine approach for auditory tissues, forays in this direction include: bundles of carbon 

nanotubes that may act as artificial hairs [326], the incorporation of carbon nanotubes in tissue 

scaffolds [327],[328] for ear cartilage [329], and 3D printed ear cartilage scaffolds with an 

embedded metal inductive coil antenna inside it (Figure 8) enabling readout of inductively-

coupled signals from cochlea-shaped electrodes (notably, so that left and right printed ears can 

hear in stereo) [330]. 

 

 
Figure 8: Electrical characterization of the bionic ear. (A) Image of the experimental 

setup used to characterize the bionic ear. The ear is exposed to a signal from a 



transmitting loop antenna. The output signal is collected via connections to two electrodes 

on the cochlea. Scale bar is 1 cm. (B) Response of the bionic ear to radio frequencies in 

terms of S21, the forward power transmission coefficient. (C) (top) Schematic 

representation of the radio signal reception of two complementary (left and right) bionic 

ears. (bottom) Photograph of complementary bionic ears listening to stereophonic audio 

music (Supporting Information Movie 2). (D) Transmitted (top) and received (bottom) 

audio signals of the right (R) and left (L) bionic ears. Image reprinted with permission 

from [330]. Copyright (2013) American Chemical Society.  

 

3 Emerging materials 

Recently, several electrically conductive organic materials have been discovered and 

explored for potential biomedical applications. In addition to conductive polymers and 

electroconductive carbon-based nanomaterials, which are discussed in this review, there are 

natural compounds (e.g., melanin), and inorganic conductors including metals (e.g., gold 

nanomaterials) and 2D materials (e.g., molybdenum disulfide (MoS2) and black phosphorous) 

that can be used for tissue engineering, which we introduce with a view to highlighting their 

potential for the future. 

Degradable biomaterial scaffolds are desirable for regenerative tissue engineering 

applications as they allow for full regrowth of the native tissue into the injury site previously 

occupied by the biomaterial, minimizing possible complications with chronic implants [331]. 

However, most conducting polymers and carbon-based electroconductive materials are not 

degraded in vivo impeding their use in the development of in vivo devices. Hence, with an 

attempt to develop biodegradable conductive materials, a method of biodegradable 

modification of conductive monomers or conjugates using a degradable linker between 

monomers has been studied [332],[333]. These methods can lead to complete biodegradation 

of conducting polymers. For example, hydrolytic ester links were introduced between aniline 

pentamer units, which were found to be degraded at pH 7.4 [334]. In addition, Lei et al. 

synthesized a novel conductive biodegradable polymer using diketopyrrolopyrrole (DPP) to 



develop field effect transistors, which can be fully degradable degraded under weak acidic 

conditions [335]. The authors conjugated DPP monomer with an imine bond (-C=N-) for 

degradation, and found that the substrate was eventually hydrolyzed under weak acid 

conditions (pH 4.6) (Figure 9, A); and the organic electronic device fabricated with this 

degradable conducting polymer was completely decomposed in 30 days in a pH 4.6 buffer 

solution (Figure 9, B). These hydrolyzable conductive materials remain stable in neutral pH 

and only degrade at low pH, implying that in vivo degradation would be limited to tissues with 

local acidity (e.g., stomach); it is also possible that these materials could degrade upon exposure 

to hydrolytic enzymes such as esterases in vivo. Another group synthesized this DPP polymer 

and found that the conductivities of undoped DPP film and p-doped DPP film were 10-6 S/cm 

for undoped type and 30-70 S/cm, respectively [336]. 

Biologically derived conductive materials, versus conventional fabricated conductive 

materials, may address the issue associated with poor biodegradability because of their ability 

to degrade under some biologically relevant conditions (Figure 9, B). Among biologically 

derived materials, melanins (e.g., eumelanin or pheomelanin) are synthesized via oxidation of 

tyrosine and its derivatives in vivo and exhibits both electroactivity and biodegradability [337], 

with conductivity ranging from 10-8 S/m to 10-3 S/m, depending on the synthetic methodology 

[11]. For practical in vivo applications, it is necessary to ensure the conductivity of the melanin-

based material meets the requirements of the specific application (potentially tuning the 

monomer composition) or preparation of composites for use as conductive biomaterials for 

tissue regeneration applications. 



 

Figure 9. Degradable conducting polymer synthesized with diketopyrrolopyrrole (DPP) 

via imine chemistry. A) Proposed degradation chemistry via hydrolysis under acidic 

condition. B) Disintegration of organic electronic device with synthesized fully 

decomposable polymer at pH 4.6. Reproduced from [335], copyright (2017) National 

Academy of Sciences. 

 

4 Conclusion  

The development of carbon-based conductive and electroactive materials (e.g., 

derivatives of polypyrrole, polythiophene, polyaniline, graphene, fullerenes) has made great 

progress for biomedical applications in the nervous system (i.e., peripheral nerve, spinal cord, 

brain, eye, ear) in the last 20 years. Herein we review the use of carbon-based conductive and 

electroactive biomaterials for tissue engineering and regenerative medicine applications within 

the central/peripheral nervous system, highlighting in vivo studies as a useful benchmark for 



progress towards clinical trials prior to the eventual translation of them from the lab to the 

clinic [12],[20]. 

We believe electroconductive materials can be used to fabricate clinically relevant 

tissue scaffolds mimicking endogenous tissue electrical properties as well as providing 

bioactive cues to aid in regeneration and potentially harnessing their ability to control the 

release of various payloads. We foresee significant opportunities for non-degradable flexible 

carbon-based electronics for long term applications (e.g., neural electrodes) where their 

flexibility minimizes adverse inflammatory reactions resulting from mismatch between the 

mechanical properties of the implanted materials and the nervous tissue; and that biodegradable 

or bioerodible electronics may be particularly useful for applications including drug delivery, 

tissue engineering and regenerative medicine within the nervous system where their inherently 

transient nature is appealing (however, recognize the significant challenge in designing 

biocompatible and cytocompatible materials). Still, new conductive materials (either organic 

or inorganic), offering new or enhanced performances, have been actively synthesized and 

explored as biomaterials.  

Materials that are considered inorganic were not discussed further in this review; 

however, we would like to draw attention to the recently developed inorganic 2D nanomaterial 

MXenes as a promising alternative to carbon-based nanomaterials (e.g., graphene oxide) 

because they can provide several beneficial characteristics for fabrication of electrically 

conductive biomaterials [338]–[340]. MXene exhibits high conductivity (e.g., pure MXene 

film (Ti3C2Tx) 2.4 × 105 S/m), low toxicity, and biodegradability, and, especially, good water 

solubility as MXene has a hydrophilic functional group [341]–[344]. Hence, MXenes are 

expected to offer new opportunities particularly when used in combination with electroactive 

materials discussed herein to create novel biomaterials for neural regeneration clinical 

applications.  



As we demonstrated in this review, carbon-based conductive and electroactive 

materials have been utilized for in vivo nerve tissue studies and electrical stimulation of neural 

cells has been performed in vitro. However, the electrical stimulation for regeneration of nerve 

tissues in vivo utilizing the conductive biomaterials discussed in this review has not been 

explored. As the field further develops, future studies should address the application of 

electrical stimulation in combination with electroconductive materials as alterations to 

stimulation parameters could benefit neural regeneration. To the best of our knowledge there 

are as yet no clinical trials using such materials for neuroregeneration, although there are a 

couple that utilize some of the materials mentioned for other purposes. One clinical trial used 

fullerene-C60 (i.e., buckyballs) as a cosmetic ingredient with antioxidant ability, that was 

applied to the face for 8 weeks as part of an anti-wrinkle formulation and showed no severe 

side effects in the 23 person randomized control trial [345]. Another clinical trial utilizes 

graphene incorporated into latex condoms to study performance and safety [346]. The lack of 

clinical trials using electroconductive materials leaves considerable room to explore in vivo 

and clinical studies related to optical neurons and conductive materials. Even though there was 

only the application of the fullerene material on the skin near the eye for the anti-wrinkle study, 

and the graphene material that would come in contact with skin and mucus membranes, the 

indication of electroconductive materials moving into the non-invasive clinical space is 

promising. 

Organic electroconductive materials (e.g., derivatives of polypyrrole, polythiophene, 

polyaniline, graphene, fullerenes) have made great progress for nervous system applications in 

the brain, eye, ear, spinal cord, and peripheral nerve as they offer great opportunities to 

efficiently mediate electrical signals with such system and lead to unique responses (e.g., 

functional regeneration). Herein we highlight in vivo studies in addition to the limited clinical 

trials available utilizing these electroconductive materials [12],[20], and briefly examined 



emerging electroconductive materials, including biodegradable conductive substances that are 

promising materials for future studies.  

We believe electroconductive materials have been extensively studied to fabricate 

clinically relevant tissue scaffolds, displaying good biocompatibility and biofunctionality, in a 

various manner, such as by mimicking endogenous tissue electrical properties, providing 

bioactive cues to aid in regeneration, controlling biodegradation in vivo, and potentially 

harnessing their ability to control the release of various payloads release. Altogether, such 

specialized electrically conductive biomaterials will clinically impact on the field of tissue 

regeneration. 
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