Skip to main content

The Eye in Aging

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Unfortunately, we all are aging. It is unfortunate that variations in structure and function of body components occurring with age make interaction with an individual’s environment less robust. This chapter delineates the normal degenerative modifications in structure of the eye and ocular adnexal elements that occur with aging. Where appropriate, resultant changes in function are discussed. These degenerative alterations take place progressively in all aged individuals, although there is variation in timing and degree of phenotypic expression. An understanding of normal aging transformations is important if the clinician is to understand potential pathological processes which may be suspected in older patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Comfort A. The biology of senescence. 3rd ed. New York: Elsevier; 1979. 414 p.

    Google Scholar 

  2. Strehler BL. Time, cells, and aging. New York: Academic; 1962. 270 p.

    Google Scholar 

  3. I D. Theories and general principles of aging. In: Brocklehurst JC, Fillit HM, editors. . Edinburgh: Churchill Livingstone; 1992. p. 26–60.

    Google Scholar 

  4. Dalziel KLBD. Skin aging. In: Brocklehurst JC, Fillit HM, editors. Textbook of geriatric medicine and gerontology. Edinburgh: Churchill Livingstone; 1992. p. 898–921.

    Google Scholar 

  5. Kenney WL, Fowler SR. Methylcholine-activated eccrine sweat gland density and output as a function of age. J Appl Physiol (1985). 1988;65:1082–6.

    Article  CAS  Google Scholar 

  6. Montagna W. Morphology of the aging skin: the cutaneous appendages. In: Montagna W, editor. Aging. Oxford: Pergamon; 1965. p. 1–16.

    Google Scholar 

  7. Kligman AM. Perspectives and problems in cutaneous gerontology. J Investig Dermatol. 1979;73:39–46.

    Article  CAS  PubMed  Google Scholar 

  8. Balin AK, Pratt LA. Physiologic consequences of human skin aging. Cutis. 1989;43:431–6.

    CAS  PubMed  Google Scholar 

  9. Grove GL. Physiologic changes in older skin. Dermatol Clin. 1986;4:425–32.

    Article  CAS  PubMed  Google Scholar 

  10. Hykin PG, Bron AJ. Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea. 1992;11:334–42.

    Article  CAS  PubMed  Google Scholar 

  11. Hwang K, Kim DJ, Kim SK. Does the upper eyelid skin become thinner with age? J Craniofac Surg. 2006;17:474–6.

    Article  PubMed  Google Scholar 

  12. Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol. 1982;79:85–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nordlund JJ. The lives of pigment cells. Dermatol Clin. 1986;4:407–18.

    Article  CAS  PubMed  Google Scholar 

  14. Yamauchi M, Woodley DT, Mechanic GL. Aging and cross-linking of skin collagen. Biochem Biophys Res Commun. 1988;152:898–903.

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka LY, Uitto J. Alterations in the elastic fibers in cutaneous aging and solar elastosis. In: Balin AK, Kligman A, editors. Aging and the skin. New York: Raven; 1989. p. 141–51.

    Google Scholar 

  16. Netland PA, Sugrue SP, Albert DM, Shore JW. Histopathologic features of the floppy eyelid syndrome. Involvement of tarsal elastin. Ophthalmology. 1994;101:174–81.

    Article  CAS  PubMed  Google Scholar 

  17. Fazio MJ, Olsen DR, Kuivaniemi H, et al. Isolation and characterization of human elastin cDNAs, and age-associated variation in elastin gene expression in cultured skin fibroblasts. Lab Investig. 1988;58:270–7.

    CAS  PubMed  Google Scholar 

  18. Imayama S, Braverman IM. A hypothetical explanation for the aging of skin. Chronologic alteration of the three-dimensional arrangement of collagen and elastic fibers in connective tissue. Am J Pathol. 1989;134:1019–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Herzberg AJ, Dinehart SM. Chronologic aging in black skin. Am J Dermatopathol. 1989;11:319–28.

    Article  CAS  PubMed  Google Scholar 

  20. Gilchrest BA, Stoff JS, Soter NA. Chronologic aging alters the response to ultraviolet-induced inflammation in human skin. J Invest Dermatol. 1982;79:11–5.

    Article  CAS  PubMed  Google Scholar 

  21. Braverman IM, Fonferko E. Studies in cutaneous aging: II. The microvasculature. J Invest Dermatol. 1982;78:444–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi N, Kostka G, Garbe JH, et al. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem. 2007;282:11805–16.

    Article  CAS  PubMed  Google Scholar 

  23. Pascucci SE, Lemp MA, Cavanagh HD, et al. An analysis of age-related morphologic changes of human meibomian glands. Invest Ophthalmol Vis Sci. 1988;29(Suppl):213.

    Google Scholar 

  24. Chew CK, Hykin PG, Jansweijer C, Dikstein S, Tiffany JM, Bron AJ. The casual level of meibomian lipids in humans. Curr Eye Res. 1993;12:255–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto A, Serizawa S, Ito M, Sato Y. Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. J Invest Dermatol. 1987;89:507–12.

    Article  CAS  PubMed  Google Scholar 

  26. Tomlinson A, Giesbrecht C. Effect of age on human tear film evaporation in normals. Adv Exp Med Biol. 1994;350:271–4.

    Article  CAS  PubMed  Google Scholar 

  27. Mosher DBFT, Ortonne JP, et al. Disorders of pigmentation. In: Fitzpatrick TBEA, Wolff K, et al., editors. Dermatology in general medicine. New York: McGraw-Hill; 1987. p. 794–876.

    Google Scholar 

  28. Duke-Elder SMP. Atrophies, hypertrophies, degenerations, pigmentations: Senile atrophy. In: Duke-Elder S, editor. System of ophthalmology, vol XIII, the ocular adnexa. St. Louis: CV Mosby; 1974. p. 347–50.

    Google Scholar 

  29. Lloyd T, Garry FL, Manders EK, Marks JG Jr. The effect of age and hair colour on human hairbulb tyrosinase activity. Br J Dermatol. 1987;116:485–9.

    Article  CAS  PubMed  Google Scholar 

  30. Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol. 1986;15:571–85.

    Article  CAS  PubMed  Google Scholar 

  31. Tsuji T, Yorifuji T, Hayashi Y, Hamada T. Light and scanning electron microscopic studies on wrinkles in aged persons’ skin. Br J Dermatol. 1986;114:329–35.

    Article  CAS  PubMed  Google Scholar 

  32. Traboulsi EI, Maumenee IH. Periocular pigmentation in the Peutz-Jeghers syndrome. Am J Ophthalmol. 1986;102:126–7.

    Article  CAS  PubMed  Google Scholar 

  33. Epstein JH. Photocarcinogenesis, skin cancer, and aging. In: Balin AK, Kligman AM, editors. Aging and the skin. New York: Raven; 1989. p. 307–29.

    Google Scholar 

  34. Marks R. Skin disease in old age. Philadelphia: JB Lippincott; 1987.

    Google Scholar 

  35. Czernielewski JM, Masouye I, Pisani A, Ferracin J, Auvolat D, Ortonne JP. Effect of chronic sun exposure on human Langerhans cell densities. Photo-Dermatology. 1988;5:116–20.

    CAS  PubMed  Google Scholar 

  36. Ansel JC, Luger TA, Green I. The effect of in vitro and in vivo UV irradiation on the production of ETAF activity by human and murine keratinocytes. J Invest Dermatol. 1983;81:519–23.

    Article  CAS  PubMed  Google Scholar 

  37. Marquardt R, Wenz FH. Histological studies of goblet cell counts in human conjunctiva (author’s transl). Klin Monatsbl Augenheilkd. 1979;175:692–6.

    CAS  PubMed  Google Scholar 

  38. Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-dependent distribution of Langerhans cells within human conjunctival epithelium. Ophthalmologe. 1995;92:21–5.

    CAS  PubMed  Google Scholar 

  39. Takahashi A, Okisaka S, Akeo K, Taketani P. Aging changes in conjunctiva visualized by fluorescein angiography and histopathology. Nippon Ganka Gakkai Zasshi. 1996;100:296–301.

    CAS  PubMed  Google Scholar 

  40. Sisler HA, Labay GR, Finlay JR. Senile ectropion and entropion: a comparative histopathological study. Ann Ophthalmol. 1976;8:319–22.

    CAS  PubMed  Google Scholar 

  41. Gumus K, Pflugfelder SC. Increasing prevalence and severity of conjunctivochalasis with aging detected by anterior segment optical coherence tomography. Am J Ophthalmol. 2013;155:238–42. e232

    Article  PubMed  Google Scholar 

  42. Spencer WH. Conjunctiva. In: Spencer WH, editor. Ophthalmic pathology: an atlas and textbook. Philadelphia: WB Saunders; 1996. p. 38–155.

    Google Scholar 

  43. Shore JW. Changes in lower eyelid resting position, movement, and tone with age. Am J Ophthalmol. 1985;99:415–23.

    Article  CAS  PubMed  Google Scholar 

  44. Bick MW. Surgical management of orbital tarsal disparity. Arch Ophthalmol. 1966;75:386–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hill JC. Analysis of senile changes in the palpebral fissure. Trans Ophthalmol Soc U K. 1975;95:49–53.

    CAS  PubMed  Google Scholar 

  46. van den Bosch WA, Leenders I, Mulder P. Topographic anatomy of the eyelids, and the effects of sex and age. Br J Ophthalmol. 1999;83:347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stoller SH, Meyer DR. Quantitating the change in upper eyelid position during downgaze. Ophthalmology. 1994;101:1604–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hogan MJZL. Ophthalmic pathology, an atlas and textbook. 2nd ed. Philadelphia: WB Saunders; 1962.

    Google Scholar 

  49. Tyers AG. Aging and the ocular adnexa: a review. J R Soc Med. 1982;75:900–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oh SR, Chokthaweesak W, Annunziata CC, Priel A, Korn BS, Kikkawa DO. Analysis of eyelid fat pad changes with aging. Ophthalmic Plast Reconstr Surg. 2011;27:348–51.

    Article  PubMed  Google Scholar 

  51. Jacobs LC, Liu F, Bleyen I, et al. Intrinsic and extrinsic risk factors for sagging eyelids. JAMA Dermatol. 2014;150:836–43.

    Article  PubMed  Google Scholar 

  52. Stefanyszyn MA, Hidayat AA, Flanagan JC. The histopathology of involutional ectropion. Ophthalmology. 1985;92:120–7.

    Article  CAS  PubMed  Google Scholar 

  53. Manners RM, Weller RO. Histochemical staining of orbicularis oculi muscle in ectropion and entropion. Eye (Lond). 1994;8(Pt 3):332–5.

    Article  Google Scholar 

  54. Duke-Elder SMP. Deformations of the lids: Ectropion. In: Duke-Elder S, editor. System of ophthalmology, vol XIII, the ocular adnexa. St. Louis: CV Mosby; 1974. p. 581–6.

    Google Scholar 

  55. Jones LT, Reeh MJ, Wobig JL. Senile entropion. A new concept for correction. Am J Ophthalmol. 1972;74:327–9.

    Article  CAS  PubMed  Google Scholar 

  56. Schaefer AJ. Variation in the pathophysiology of involutional entropion and its treatment. Ophthalmic Surg. 1983;14:653–5.

    CAS  PubMed  Google Scholar 

  57. Kaye SB, Green JR, Luck J, Lowe KJ. Dependence of ocular protrusion, asymmetry of protrusion and lateral interobital width on age. Acta Ophthalmol. 1992;70:762–5.

    Article  CAS  Google Scholar 

  58. Muller-Hocker J, Schneiderbanger K, Stefani FH, Kadenbach B. Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing–a cytochemical-immunohistochemical study. Mutat Res. 1992;275:115–24.

    Article  CAS  PubMed  Google Scholar 

  59. Maniglia JJ, Maniglia RF, Jorge dos Santos MC, Robert F, Maniglia FF, Maniglia SF. Surgical treatment of the sunken upper eyelid. Arch Facial Plast Surg. 2006;8:269–72.

    Article  PubMed  Google Scholar 

  60. Callahan MABC. Senile (involutional) ptosis. In: Callahan MABC, editor. Beard’s ptosis. Birmingham: Aesculapius; 1990. p. 66–7.

    Google Scholar 

  61. Kuwabara T, Cogan DG, Johnson CC. Structure of the muscles of the upper eyelid. Arch Ophthalmol. 1975;93:1189–97.

    Article  CAS  PubMed  Google Scholar 

  62. Pearl RM. Acquired ptosis: a reexamination of etiology and treatment. Plast Reconstr Surg. 1985;76:56–64.

    Article  CAS  PubMed  Google Scholar 

  63. Jones LT, Quickert MH, Wobig JL. The cure of ptosis by aponeurotic repair. Arch Ophthalmol. 1975;93:629–34.

    Article  CAS  PubMed  Google Scholar 

  64. Collin JR, Beard C, Wood I. Experimental and clinical data on the insertion of the levator palpebrae superioris muscle. Am J Ophthalmol. 1978;85:792–801.

    Article  CAS  PubMed  Google Scholar 

  65. Lee H, Park M, Lee J, Lee ES, Baek S. Histopathologic findings of the orbicularis oculi in upper eyelid aging: total or minimal excision of orbicularis oculi in upper blepharoplasty. Arch Facial Plast Surg. 2012;14:253–7.

    Article  PubMed  Google Scholar 

  66. Pottier F, El-Shazly NZ, El-Shazly AE. Aging of orbicularis oculi: anatomophysiologic consideration in upper blepharoplasty. Arch Facial Plast Surg. 2008;10:346–9.

    Article  PubMed  Google Scholar 

  67. Guyuron B, Harvey D. Periorbital and orbital aging: senile enophthalmos as a cause of upper eyelid ptosis. Plast Reconstr Surg. 2016;138:31e–7e.

    Article  CAS  PubMed  Google Scholar 

  68. Wouters RJ, van den Bosch WA, Mulder PG, Lemij HG. Upper eyelid motility in blepharoptosis and in the aging eyelid. Invest Ophthalmol Vis Sci. 2001;42:620–5.

    CAS  PubMed  Google Scholar 

  69. Sanke RF. Relationship of senile ptosis to age. Ann Ophthalmol. 1984;16:928–31.

    CAS  PubMed  Google Scholar 

  70. Henderson JW, Prough WA. Influence of age and sex on flow of tears. Arch Ophthalmol. 1950;43:224–31.

    Article  CAS  Google Scholar 

  71. Seal DV. The effect of ageing and disease on tear constituents. Trans Ophthalmol Soc U K. 1985;104(Pt 4):355–62.

    PubMed  Google Scholar 

  72. Mathers WD, Lane JA, Zimmerman MB. Tear film changes associated with normal aging. Cornea. 1996;15:229–34.

    Article  CAS  PubMed  Google Scholar 

  73. Hirase K, Shimizu A, Yokoi N, Nishida K, Kinoshita S. Age-related alteration of tear dynamics in normal volunteers. Nippon Ganka Gakkai Zasshi. 1994;98:575–8.

    CAS  PubMed  Google Scholar 

  74. Damato BE, Allan D, Murray SB, Lee WR. Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease. Br J Ophthalmol. 1984;68:674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmology. 1995;102:678–86.

    Article  CAS  PubMed  Google Scholar 

  76. Duke-Elder SMP. Atrophies of the lacrimal gland: senile atrophy. In: Duke-Elder S, editor. System of ophthalmology, vol XIII, the ocular adnexa. St. Louis: CV Mosby; 1974. p. 625–6.

    Google Scholar 

  77. Obata H. Anatomy and histopathology of the human lacrimal gland. Cornea. 2006;25:S82–9.

    Article  PubMed  Google Scholar 

  78. Waterhouse JP, Chisholm DM, Winter RB, Patel M, Yale RS. Replacement of functional parenchymal cells by fat and connective tissue in human submandibular salivary glands: an age-related change. J Oral Pathol. 1973;2:16–27.

    Article  CAS  PubMed  Google Scholar 

  79. Roen JL, Stasior OG, Jakobiec FA. Aging changes in the human lacrimal gland: role of the ducts. CLAO J. 1985;11:237–42.

    CAS  PubMed  Google Scholar 

  80. Stasior OG, Roen JL. Thoughts on the ductules of the aging human lacrimal gland. Adv Exp Med Biol. 1994;350:49–52.

    Article  CAS  PubMed  Google Scholar 

  81. Marquardt R, Wenz FH. Studies relating to tear film stability (author’s transl). Klin Monatsbl Augenheilkd. 1980;176:879–84.

    Article  CAS  PubMed  Google Scholar 

  82. Nasu M, Matsubara O, Yamamoto H. Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases. J Pathol. 1984;143:11–5.

    Article  CAS  PubMed  Google Scholar 

  83. Sahlin S, Chen E. Evaluation of the lacrimal drainage function by the drop test. Am J Ophthalmol. 1996;122:701–8.

    Article  CAS  PubMed  Google Scholar 

  84. Hill JC. Treatment of epiphora owing to flaccid eyelids. Arch Ophthalmol. 1979;97:323–4.

    Article  CAS  PubMed  Google Scholar 

  85. Groessl SA, Sires BS, Lemke BN. An anatomical basis for primary acquired nasolacrimal duct obstruction. Arch Ophthalmol. 1997;115:71–4.

    Article  CAS  PubMed  Google Scholar 

  86. Linberg JV, McCormick SA. Primary acquired nasolacrimal duct obstruction. A clinicopathologic report and biopsy technique. Ophthalmology. 1986;93:1055–63.

    Article  CAS  PubMed  Google Scholar 

  87. Hymes C. The postnatal growth of the cornea and palpebral fissure and the protection of the eyeball in early life. J Comp Neurol. 1929;48:415–8.

    Article  Google Scholar 

  88. Weale RA. The aging eye. London: HK Lewis; 1963.

    Google Scholar 

  89. Hansen FK. A clinical study of the normal human central corneal thickness. Acta Ophthalmol. 1971;49:82–9.

    CAS  Google Scholar 

  90. Dubbelman M, Sicam VA, Van der Heijde GL. The shape of the anterior and posterior surface of the aging human cornea. Vis Res. 2006;46:993–1001.

    Article  CAS  PubMed  Google Scholar 

  91. Siu A, Herse P. The effect of age on human corneal thickness. Statistical implications of power analysis. Acta Ophthalmol. 1993;71:51–6.

    Article  CAS  Google Scholar 

  92. Jonsson M, Markstrom K, Behndig A. Slit-scan tomography evaluation of the anterior chamber and corneal configurations at different ages. Acta Ophthalmol Scand. 2006;84:116–20.

    Article  PubMed  Google Scholar 

  93. Kotulak JC, Brungardt T. Age-related changes in the cornea. J Am Optom Assoc. 1980;51:761–5.

    CAS  PubMed  Google Scholar 

  94. Hayashi K, Hayashi H, Hayashi F. Topographic analysis of the changes in corneal shape due to aging. Cornea. 1995;14:527–32.

    Article  CAS  PubMed  Google Scholar 

  95. Anstice J. Astigmatism--its components and their changes with age. Am J Optom Arch Am Acad Optom. 1971;48:1001–6.

    Article  CAS  PubMed  Google Scholar 

  96. Topuz H, Ozdemir M, Cinal A, Gumusalan Y. Age-related differences in normal corneal topography. Ophthalmic Surg Lasers Imaging. 2004;35:298–303.

    Article  PubMed  Google Scholar 

  97. Ueno Y, Hiraoka T, Beheregaray S, Miyazaki M, Ito M, Oshika T. Age-related changes in anterior, posterior, and total corneal astigmatism. J Refract Surg. 2014;30:192–7.

    Article  PubMed  Google Scholar 

  98. Ho JD, Liou SW, Tsai RJ, Tsai CY. Effects of aging on anterior and posterior corneal astigmatism. Cornea. 2010;29:632–7.

    Article  PubMed  Google Scholar 

  99. Brodie SE. Aging and disorders of the eye. In: Brocklehurst’s Texbook of Geriatric Medicine and Gerontology (7th ed). Fillet HM, Rockwood K, Woodhouse K, editors. Philadelphia: Saunders-Elsevier; 2010. p. 810–821.

    Google Scholar 

  100. Hazlett LD. Corneal and ocular surface histochemistry. Prog Histochem Cytochem. 1993;25:1–60.

    Article  CAS  PubMed  Google Scholar 

  101. Duke-Elder S. Corneal degenerations, dystrophies, and pigmentations-age changes. In: LA Duke-Elder S, editor. System of ophthalmology, vol VIII, diseases of the outer eye. St. Louis: CV Mosby; 1965. p. 867–80.

    Google Scholar 

  102. Fuchs A. Pathological dimples (‘dellen’) of the cornea. Am J Ophthalmol. 1929;12:877.

    Article  Google Scholar 

  103. Chang SW, Hu FR. Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea. 1993;12:493–9.

    Article  CAS  PubMed  Google Scholar 

  104. Nzekwe EU, Maurice DM. The effect of age on the penetration of fluorescein into the human eye. J Ocul Pharmacol. 1994;10:521–3.

    Article  CAS  PubMed  Google Scholar 

  105. Trinkaus-Randall V, Tong M, Thomas P, Cornell-Bell A. Confocal imaging of the alpha 6 and beta 4 integrin subunits in the human cornea with aging. Invest Ophthalmol Vis Sci. 1993;34:3103–9.

    CAS  PubMed  Google Scholar 

  106. Laibson PR. Microcystic corneal dystrophy. Trans Am Ophthalmol Soc. 1976;74:488–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Waring GO, Rodrigues MM, Laibson PR. Corneal dystrophies. I. Dystrophies of the epithelium, Bowman’s layer, and stroma. Surv Ophthalmol. 1987;31:262–6.

    Article  PubMed  Google Scholar 

  108. TJ L. Cornea. In: Wright KW, editor. Textbook of ophthalmology. Baltimore: Williams & Wilkins; 1997. p. 691–760.

    Google Scholar 

  109. Werblin TP, Hirst LW, Stark WJ, Maumenee IH. Prevalence of map-dot-fingerprint changes in the cornea. Br J Ophthalmol. 1981;65:401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Laibson PR, Krachmer JH. Familial occurrence of dot (microcystic), map, fingerprint dystrophy of the cornea. Investig Ophthalmol. 1975;14:397–9.

    CAS  Google Scholar 

  111. Cleutjens JPHM, Kasper M, et al. Absence of type IV collagen in the center of the corneal epithelial membrane. Histochem J. 1990;22:688–94.

    Article  CAS  PubMed  Google Scholar 

  112. Gass JD. The Iron lines of the superficial cornea. Arch Ophthalmol. 1964;71:348–58.

    Article  CAS  PubMed  Google Scholar 

  113. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol. 1982;218:14–20.

    Article  CAS  PubMed  Google Scholar 

  114. Millodot M. The influence of age on the sensitivity of the cornea. Invest Ophthalmol Vis Sci. 1977;16:240–2.

    CAS  PubMed  Google Scholar 

  115. Lawrenson JG, Ruskell GL. Investigation of limbal touch sensitivity using a Cochet-bonnet aesthesiometer. Br J Ophthalmol. 1993;77:339–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bron AJ, Tripathi RC. Anterior corneal mosaic. Further observations. Br J Ophthalmol. 1969;53:760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tripathi RC, Bron AJ. Secondary anterior crocodile shagreen of Vogt. Br J Ophthalmol. 1975;59:59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sugar HS, Kobernick S. The white limbal girdle of Vogt. Am J Ophthalmol. 1960;50:101–5.

    Article  CAS  PubMed  Google Scholar 

  120. Franceschetti A, Forgacs J. Histological aspects of limbic girdle degeneration (Vogt’s white limbus girdle) and its analogy with primary band-shaped degeneration of the cornea. Ophthalmologica. 1959;138:393–8.

    Article  CAS  PubMed  Google Scholar 

  121. Germundsson J, Karanis G, Fagerholm P, Lagali N. Age-related thinning of Bowman’s layer in the human cornea in vivo. Invest Ophthalmol Vis Sci. 2013;54:6143–9.

    Article  PubMed  Google Scholar 

  122. Duke-Elder S. Simple refractive errors-the variation of regular astigmatism with age. In: Duke-Elder S, editor. System of ophthalmology, vol V, ophthalmic optics and refraction. St. Louis: CV Mosby; 1970. p. 278–83.

    Google Scholar 

  123. Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM. Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta. 1992;1138:222–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kanai A, Kaufman HE. Electron microscopic studies of corneal stroma: aging changes of collagen fibers. Ann Ophthalmol. 1973;5:285–7. passim

    CAS  PubMed  Google Scholar 

  125. Sherrard ES, Novakovic P, Speedwell L. Age-related changes of the corneal endothelium and stroma as seen in vivo by specular microscopy. Eye (Lond). 1987;1(Pt 2):197–203.

    Article  Google Scholar 

  126. Paufique LER. The granular cornea. Bull Soc Ophtalmol Fr. 1950;522

    Google Scholar 

  127. Burch PR, Murray JJ, Jackson D. The age-prevalence of arcus senilis, greying of hair, and baldness. Etiological considerations. J Gerontol. 1971;26:364–72.

    Article  CAS  PubMed  Google Scholar 

  128. Bulpitt CJ, Shipley MJ, Broughton PM, et al. The assessment of biological age: a report from the Department of Environment Study. Aging (Milano). 1994;6:181–91.

    CAS  Google Scholar 

  129. Chambless LE, Fuchs FD, Linn S, et al. The association of corneal arcus with coronary heart disease and cardiovascular disease mortality in the lipid research clinics mortality follow-up study. Am J Public Health. 1990;80:1200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nishimoto JH, Townsend JC, Selvin GJ, De Land PN. Corneal arcus as an indicator of hypercholesterolemia. J Am Optom Assoc. 1990;61:44–9.

    CAS  PubMed  Google Scholar 

  131. Cogan DG, Kuwabara T. Arcus senilis; its pathology and histochemistry. AMA Arch Ophthalmol. 1959;61:553–60.

    Article  CAS  PubMed  Google Scholar 

  132. Streiff EB. Gerontology and geriatrics of the eye. Surv Ophthalmol. 1967;12:311–23.

    CAS  PubMed  Google Scholar 

  133. Krachmer JH, Dubord PJ, Rodrigues MM, Mannis MJ. Corneal posterior crocodile shagreen and polymorphic amyloid degeneration. Arch Ophthalmol. 1983;101:54–9.

    Article  CAS  PubMed  Google Scholar 

  134. Rodrigues MM, Waring GO, Hackett J, Donohoo P. Cornea. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 153–65.

    Google Scholar 

  135. Murphy C, Alvarado J, Juster R. Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci. 1984;25:1402–15.

    CAS  PubMed  Google Scholar 

  136. Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol. 1982;100:1942–7.

    Article  CAS  PubMed  Google Scholar 

  137. Galgauskas S, Norvydaite D, Krasauskaite D, Stech S, Asoklis RS. Age-related changes in corneal thickness and endothelial characteristics. Clin Interv Aging. 2013;8:1445–50.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Niederer RL, Perumal D, Sherwin T, McGhee CN. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91:1165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Inaba K, Tanishima T, Hirosawa K. Electron microscopic observations of Descemet’s membrane of peripheral cornea. Jpn J Ophthalmol. 1986;30:1–13.

    CAS  PubMed  Google Scholar 

  140. Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci. 1984;25:312–22.

    CAS  PubMed  Google Scholar 

  141. Hollingsworth J, Perez-Gomez I, Mutalib HA, Efron N. A population study of the normal cornea using an in vivo, slit-scanning confocal microscope. Optom Vis Sci. 2001;78:706–11.

    Article  CAS  PubMed  Google Scholar 

  142. Hoffer KJ, Kraff MC. Normal endothelial cell count range. Ophthalmology. 1980;87:861–6.

    Article  CAS  PubMed  Google Scholar 

  143. Garsd A, Ford GE, Waring GO 3rd, Rosenblatt LS. Sample size for estimating the quantiles of endothelial cell-area distribution. Biometrics. 1983;39:385–94.

    Article  CAS  PubMed  Google Scholar 

  144. Laule ACM, Hoffman CE, Hanna C. Endothelial cell population change of human cornea during life. Arch Ophthalmol. 1978;96:2031–5.

    Article  CAS  PubMed  Google Scholar 

  145. Mimura T, Joyce NC. Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci. 2006;47:1387–96.

    Article  PubMed  Google Scholar 

  146. Le L. The ageing corneal epithelium. A specular microscopic study. Geriatr Ophthalmol. 1985;1:42.

    Google Scholar 

  147. Laing RA, Sanstrom MM, Berrospi AR, Leibowitz HM. Changes in the corneal endothelium as a function of age. Exp Eye Res. 1976;22:587–94.

    Article  CAS  PubMed  Google Scholar 

  148. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci. 1997;38:779–82.

    CAS  PubMed  Google Scholar 

  149. Roszkowska AM, Colosi P, D’Angelo P, Ferreri G. Age-related modifications of the corneal endothelium in adults. Int Ophthalmol. 2004;25:163–6.

    Article  PubMed  Google Scholar 

  150. Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology. 1994;101:1014–22. discussion 1022-1013

    Article  CAS  PubMed  Google Scholar 

  151. Bell KD, Campbell RJ, Bourne WM. Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty: study with light and electron microscopy. Cornea. 2000;19:40–6.

    Article  CAS  PubMed  Google Scholar 

  152. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17:2941–53.

    Article  CAS  PubMed  Google Scholar 

  153. Wehrli P, Viard I, Bullani R, Tschopp J, French LE. Death receptors in cutaneous biology and disease. J Invest Dermatol. 2000;115:141–8.

    Article  CAS  PubMed  Google Scholar 

  154. Zornig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta. 2001;1551:F1–37.

    CAS  PubMed  Google Scholar 

  155. Zhu W, Hong J, Zheng T, Le Q, Xu J, Sun X. Age-related changes of human conjunctiva on in vivo confocal microscopy. Br J Ophthalmol. 2010;94:1448–53.

    Article  PubMed  Google Scholar 

  156. Giebel J, Woenckhaus C, Fabian M, Tost F. Age-related differential expression of apoptosis-related genes in conjunctival epithelial cells. Acta Ophthalmol Scand. 2005;83:471–6.

    Article  CAS  PubMed  Google Scholar 

  157. Wilmer WH. Diseases of the eye in old age. Bull N Y Acad Med. 1929;5:76–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Berens C. Aging process in eye and adnexa. Arch Ophthalmol. 1943;29:171–209.

    Article  Google Scholar 

  159. Hogan MJ, Alvarado J. Pterygium and pinguecula: electron microscopic study. Arch Ophthalmol. 1967;78:174–86.

    Article  CAS  PubMed  Google Scholar 

  160. Stewart Duke-Elder. Conjunctival diseases. Degenerative and pigmentary changes-age changes. In: Stewart Duke-Elder (ed), System of ophthalmology, vol VIII, diseases of the outer eye: St. Louis: CV Mosby; 1965:569–585.

    Google Scholar 

  161. Norn MS. Prevalence of pinguecula in Greenland and in Copenhagen, and its relation to pterygium and spheroid degeneration. Acta Ophthalmol. 1979;57:96–105.

    Article  CAS  Google Scholar 

  162. Norn MS. Spheroid degeneration, pinguecula, and pterygium among Arabs in the Red Sea territory, Jordan. Acta Ophthalmol. 1982;60:949–54.

    Article  CAS  Google Scholar 

  163. Norn M. Spheroid degeneration, keratopathy, pinguecula, and pterygium in Japan (Kyoto). Acta Ophthalmol. 1984;62:54–60.

    Article  CAS  Google Scholar 

  164. Austin P, Jakobiec FA, Iwamoto T. Elastodysplasia and elastodystrophy as the pathologic bases of ocular pterygia and pinguecula. Ophthalmology. 1983;90:96–109.

    Article  CAS  PubMed  Google Scholar 

  165. Wong WW. A hypothesis on the pathogenesis of pterygiums. Ann Ophthalmol. 1978;10:303–8.

    CAS  PubMed  Google Scholar 

  166. Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Emmett EA. Corneal changes associated with chronic UV irradiation. Arch Ophthalmol. 1989;107:1481–4.

    Article  CAS  PubMed  Google Scholar 

  167. Hill JC, Maske R. Pathogenesis of pterygium. Eye (Lond). 1989;3(Pt 2):218–26.

    Article  Google Scholar 

  168. Duke-Elder S. Senile changes in the iris. In: Duke-Elder S, editor. System of ophthalmology, vol IX, diseases of the uveal tract. St. Louis: CV Mosby; 1966. p. 665–76.

    Google Scholar 

  169. Perlman EM, Murphy MA. Age-related iris stromal atrophy. Arch Ophthalmol. 2003;121:1654–5.

    Article  PubMed  Google Scholar 

  170. Kornzweig AL. Pathology of eye in old age. III. Changes attributed to the aging process. Trans Am Acad Ophthalmol Otolaryngol. 1951;55:261–76.

    CAS  PubMed  Google Scholar 

  171. Ronkina TI, Khorasanian-Tade AA, Vasin VI, Ioffe DI, Kulesheva LF. [Posterior pathways of intraocular fluid outflow from the aspect of age and in open-angle glaucoma]. Oftalmol Zh 1987;303–306.

    Google Scholar 

  172. Shimizu T. Electron microscopic studies of age changes in the human iris. Part I. the anterior border layer of non-glaucomatous eyes (author’s transl). Nippon Ganka Gakkai Zasshi. 1980;84:1352–9.

    CAS  PubMed  Google Scholar 

  173. Sugita A, Tanaka T, Yoshioka H. Age-related changes of iris stromal melanocytes in human eyes. Jpn J Ophthalmol. 1986;30:174–9.

    CAS  PubMed  Google Scholar 

  174. Larsson SOG. Studies in the causes of senile miosis and rigidity of the pupil. Acta Ophthalmol Scand. 1944;21:1–5.

    Article  Google Scholar 

  175. Yamanouchi M. An electron microscopic study of the human iris vessels with special reference to the vascular changes on aging, using PAM-stain technique. Nippon Ganka Gakkai Zasshi. 1969;73:767–84.

    CAS  PubMed  Google Scholar 

  176. Van Nerom PR, Rosenthal AR, Jacobson DR, Pieper I, Schwartz H, Greider BW. Iris angiography and aqueous photofluorometry in normal subjects. Arch Ophthalmol. 1981;99:489–93.

    Article  PubMed  Google Scholar 

  177. Satoh K, Takaku Y, Ootsuki K, Mizuno K. Effects of aging on fluorescein iris and angle photography in normal subjects. Nippon Ganka Gakkai Zasshi. 1992;96:657–63.

    CAS  PubMed  Google Scholar 

  178. Onodera T, Gimbel HV, DeBroff BM. Aqueous flare and cell number in healthy eyes of Caucasians. Jpn J Ophthalmol. 1993;37:445–51.

    CAS  PubMed  Google Scholar 

  179. Becker B, Podos SM. Krukenberg’s spindles and primary open-angle glaucoma. Arch Ophthalmol. 1966;76:635–9.

    Article  CAS  PubMed  Google Scholar 

  180. Wobmann PR, Fine BS. The clump cells of Koganei. A light and electron microscopic study. Am J Ophthalmol. 1972;73:90–101.

    Article  CAS  PubMed  Google Scholar 

  181. Rodrigues MM, Hackett J, Donohoo P. Iris. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982.

    Google Scholar 

  182. Khalil AK, Kubota T, Tawara A, Inomata H. Ultrastructural age-related changes on the posterior iris surface. A possible relationship to the pathogenesis of exfoliation. Arch Ophthalmol. 1996;114:721–5.

    Article  CAS  PubMed  Google Scholar 

  183. Loewenfeld IE. Pupillary changes related to age. In: Thompson HS, Frisen L, et al., editors. Topics in neuro-ophthalmology. Baltimore: Williams & Wilkins; 1979. p. 124–50.

    Google Scholar 

  184. Manor RS, Yassur Y, Siegal R, Ben-Sira I. The pupil cycle time test: age variations in normal subjects. Br J Ophthalmol. 1981;65:750–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Winn B, Whitaker D, Elliott DB, Phillips NJ. Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci. 1994;35:1132–7.

    CAS  PubMed  Google Scholar 

  186. Pozzessere G, Valle E, Rossi P, et al. Pupillometric evaluation and analysis of light reflex in healthy subjects as a tool to study autonomic nervous system changes with aging. Aging (Milano). 1996;8:55–60.

    CAS  Google Scholar 

  187. Kasthurirangan S, Glasser A. Age related changes in the characteristics of the near pupil response. Vis Res. 2006;46:1393–403.

    Article  PubMed  Google Scholar 

  188. Miller NR. The pupil: embryology, anatomy, innervation, and reflex movements of the iris. In: Miller NR, editor. Walsh and Hoyt’s clinical neuro-ophthalmology. Baltimore: Williams & Wilkins; 1985. p. 400–41.

    Google Scholar 

  189. Witmer R. Altersveranderungen von Iris und Ziliarkorper. Bibl Ophthalmol. 1966;69:131–7.

    CAS  PubMed  Google Scholar 

  190. Meyer ME, Ogle KN, Hollenhorst RW, Moyer NJ. Derivative curve in evaluation of pupillary reflex response to light. Exp Eye Res. 1969;8:355–63.

    Article  CAS  PubMed  Google Scholar 

  191. Schafer WD, Weale RA. The influence of age and retinal illumination on the pupillary near reflex. Vis Res. 1970;10:179–91.

    Article  CAS  PubMed  Google Scholar 

  192. Pfeifer MA, Weinberg CR, Cook D, Best JD, Reenan A, Halter JB. Differential changes of autonomic nervous system function with age in man. Am J Med. 1983;75:249–58.

    Article  CAS  PubMed  Google Scholar 

  193. Korczyn AD, Laor N, Nemet P. Sympathetic pupillary tone in old age. Arch Ophthalmol. 1976;94:1905–6.

    Article  CAS  PubMed  Google Scholar 

  194. Buckley C, Curtin DM, Docherty J, Eustace P. Ageing and alpha 1 adrenoceptors in the iris. Eye (Lond). 1987;1(Pt 2):211–6.

    Article  Google Scholar 

  195. Hv H. Über die Akkommodation des Auges. Graefes Arch Ophthalmol. 1855;1(Pt 2):1–74.

    Google Scholar 

  196. Rones B. Senile changes and degenerations of the human eye. Am J Ophthalmol. 1938;21:239–55.

    Article  Google Scholar 

  197. Stieve R. Über den bau des menschlichen ciliarmuskels, seine physiologischen veränderungen während des lebens und sein bedeutung für die akkommodation. Z Mikrosk Anat Forsch. 1949;55:3–88.

    Google Scholar 

  198. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992;62:209–21.

    Article  CAS  PubMed  Google Scholar 

  199. Nishida S, Mizutani S. Quantitative and morphometric studies of age-related changes in human ciliary muscle. Jpn J Ophthalmol. 1992;36:380–7.

    CAS  PubMed  Google Scholar 

  200. Herbert H. On the cement substance of the intraocular muscles and chronic Glaucoma. Br J Ophthalmol. 1929;13:337–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Blum M, Tetz MR, Faller U, Volcker HE. Age-related changes of the ciliary sulcus: implications for implanting sulcus-fixated lenses. J Cataract Refract Surg. 1997;23:91–6.

    Article  PubMed  Google Scholar 

  202. BW S. Ciliary body. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 303–30.

    Google Scholar 

  203. Okun E. Gross and microscopic pathology in autopsy eyes. IV. Pars plana cysts. Am J Ophthalmol. 1961;51:1221–8.

    Article  CAS  PubMed  Google Scholar 

  204. Zimmerman LE, Fine BS. Production of hyaluronic acid by cysts and tumors of the ciliary body. Arch Ophthalmol. 1964;72:365–79.

    Article  CAS  PubMed  Google Scholar 

  205. WR G. Retina. In: Spencer WH, editor. Ophthalmic pathology: an atlas and textbook. Philadelphia: WB Saunders; 1996. p. 899.

    Google Scholar 

  206. Ruiz RS. Giant cyst of the pars plana. Am J Ophthalmol. 1971;72:481–2.

    Article  CAS  PubMed  Google Scholar 

  207. Johnson BL, Storey JD. Proteinaceous cysts of the ciliary epithelium. I. Their clear nature and immunoelectrophoretic analysis in a case of multiple myeloma. Arch Ophthalmol. 1970;84:166–70.

    Article  CAS  PubMed  Google Scholar 

  208. Gartner J. Aging changes of the ciliary epithelium border layers and their significance for intraocular pressure. Am J Ophthalmol. 1971;72:1079–93.

    Article  CAS  PubMed  Google Scholar 

  209. Okuyama M, Okisaka S, Kadota Y. Histological analysis of aging ciliary body. Nippon Ganka Gakkai Zasshi. 1993;97:1265–73.

    CAS  PubMed  Google Scholar 

  210. Diestelhorst M, Krieglstein GK. Physiologic aging in aqueous humor minute volume of the human eye. Ophthalmologe. 1994;91:575–7.

    CAS  PubMed  Google Scholar 

  211. Gaasterland D, Kupfer C, Milton R, Ross K, McCain L, MacLellan H. Studies of aqueous humour dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res. 1978;26:651–6.

    Article  CAS  PubMed  Google Scholar 

  212. Green KGD, Milton R, Bowman K. Influence of aging on aqueous humor production. In: Hockwin O, editor. Gerontological aspects of eye research. Basel: S Karger; 1978. p. 14–20.

    Google Scholar 

  213. Brubaker RF, Nagataki S, Townsend DJ, Burns RR, Higgins RG, Wentworth W. The effect of age on aqueous humor formation in man. Ophthalmology. 1981;88:283–8.

    Article  CAS  PubMed  Google Scholar 

  214. Inada K, Murata T, Baba H, Murata Y, Ozaki M. Increase of aqueous humor proteins with aging. Jpn J Ophthalmol. 1988;32:126–31.

    CAS  PubMed  Google Scholar 

  215. Oshika T, Kato S, Hayashi K, Sawa M. Increasing of aqueous flare intensity with aging in normal human eyes. Nippon Ganka Gakkai Zasshi. 1989;93:358–62.

    CAS  PubMed  Google Scholar 

  216. Zheng Y, Rao YQ, Li JK, Huang Y, Zhao P, Li J. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol. 2018;11:196–200.

    PubMed  PubMed Central  Google Scholar 

  217. Weale R. Presbyopia toward the end of the 20th century. Surv Ophthalmol. 1989;34:15–30.

    Article  CAS  PubMed  Google Scholar 

  218. Weale RA. Aspects of presbyopia. In: Weale RA, editor. The senescence of human vision. Oxford: Oxford University Press; 1992. p. 77–85.

    Google Scholar 

  219. VdZ E. Die bedeutung der altersveränderungen am corpus ciliare des menschlichen auges für die presbyopie und die kammerwasserzirkulation. Verh Anat Ges. 1975;69:665–71.

    Google Scholar 

  220. Swegmark G. Studies with impedance cyclography on human ocular accommodation at different ages. Acta Ophthalmol. 1969;47:1186–206.

    Article  CAS  Google Scholar 

  221. Fisher RF. The ciliary body in accommodation. Trans Ophthalmol Soc UK. 1986;105:208–19.

    PubMed  Google Scholar 

  222. TE Lutjen-Drecoll E, Kaufman PL. Functional morphology of rhesus monkey ciliary muscle during ageing. Invest Ophthalmol Vis Sci. 1987;28:65.

    Google Scholar 

  223. Heron G, Charman WN. Accommodation as a function of age and the linearity of the response dynamics. Vis Res. 2004;44:3119–30.

    Article  CAS  PubMed  Google Scholar 

  224. Tripathi RCTB. Functional anatomy of the anterior chamber angle. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 197–284.

    Google Scholar 

  225. McMenamin PG, Lee WR, Aitken DA. Age-related changes in the human outflow apparatus. Ophthalmology. 1986;93:194–209.

    Article  CAS  PubMed  Google Scholar 

  226. Leighton DA, Tomlinson A. Changes in axial length and other dimensions of the eyeball with increasing age. Acta Ophthalmol. 1972;50:815–26.

    Article  CAS  Google Scholar 

  227. Valu LFJ. Altersveranderungen des trabekel-systems. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1968;175:322–36.

    Article  CAS  PubMed  Google Scholar 

  228. Lutjen-Drecoll E, Rittig M, Rauterberg J, Jander R, Mollenhauer J. Immunomicroscopical study of type VI collagen in the trabecular meshwork of normal and glaucomatous eyes. Exp Eye Res. 1989;48:139–47.

    Article  CAS  PubMed  Google Scholar 

  229. LE Rohen JW. Uber die altersveranderungen des trabekelwerkes im menschlichen auge. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1968;175:285–307.

    Article  CAS  PubMed  Google Scholar 

  230. Millard CB, Tripathi BJ, Tripathi RC. Age-related changes in protein profiles of the normal human trabecular meshwork. Exp Eye Res. 1987;45:623–31.

    Article  CAS  PubMed  Google Scholar 

  231. Marshall GE, Konstas AG, Lee WR. Immunogold localization of type IV collagen and laminin in the aging human outflow system. Exp Eye Res. 1990;51:691–9.

    Article  CAS  PubMed  Google Scholar 

  232. Gong H, Freddo TF, Johnson M. Age-related changes of sulfated proteoglycans in the normal human trabecular meshwork. Exp Eye Res. 1992;55:691–709.

    Article  CAS  PubMed  Google Scholar 

  233. Teng CC, Paton RT, Katzin HM. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. Am J Ophthalmol. 1955;40:619–31.

    Article  CAS  PubMed  Google Scholar 

  234. Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21:714–27.

    CAS  PubMed  Google Scholar 

  235. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91:564–79.

    Article  CAS  PubMed  Google Scholar 

  236. Grierson IWQ, McMenamin PG, Lee WR. The effects of age and anti-glaucoma drugs on the meshwork cell population. Res Clin Forums. 1982;4:69–76.

    Google Scholar 

  237. Miyazaki M, Segawa K, Urakawa Y. Age-related changes in the trabecular meshwork of the normal human eye. Jpn J Ophthalmol. 1987;31:558–69.

    CAS  PubMed  Google Scholar 

  238. Lutjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW. Quantitative analysis of ‘plaque material’ in the inner- and outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp Eye Res. 1986;42:443–55.

    Article  CAS  PubMed  Google Scholar 

  239. Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res. 2005;24:612–37.

    Article  CAS  PubMed  Google Scholar 

  240. McMenamin PG, Lee WR. Age related changes in extracellular materials in the inner wall of Schlemm’s canal. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;212:159–72.

    Article  CAS  PubMed  Google Scholar 

  241. Babizhayev MA, Brodskaya MW. Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma. Mech Ageing Dev. 1989;47:145–57.

    Article  CAS  PubMed  Google Scholar 

  242. Grierson I, Howes RC, Wang Q. Age-related changes in the canal of Schlemm. Exp Eye Res. 1984;39:505–12.

    Article  CAS  PubMed  Google Scholar 

  243. Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P. Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol. 2005;40:745–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Boldea RC, Roy S, Mermoud A. Ageing of Schlemm’s canal in nonglaucomatous subjects. Int Ophthalmol. 2001;24:67–77.

    Article  CAS  PubMed  Google Scholar 

  245. Kaufman PL. Aging and aqueous humor dynamics. In: De Vincentis M, editor. The fundamental aging processes of the eye. Florence: Baccini & Chiappi; 1987. p. 41–6.

    Google Scholar 

  246. Croft MA, Oyen MJ, Gange SJ, Fisher MR, Kaufman PL. Aging effects on accommodation and outflow facility responses to pilocarpine in humans. Arch Ophthalmol. 1996;114:586–92.

    Article  CAS  PubMed  Google Scholar 

  247. Hiller R, Sperduto RD, Krueger DE. Race, iris pigmentation, and intraocular pressure. Am J Epidemiol. 1982;115:674–83.

    Article  CAS  PubMed  Google Scholar 

  248. Klein BE, Klein R. Intraocular pressure and cardiovascular risk variables. Arch Ophthalmol. 1981;99:837–9.

    Article  CAS  PubMed  Google Scholar 

  249. Shiose Y, Kawase Y. A new approach to stratified normal intraocular pressure in a general population. Am J Ophthalmol. 1986;101:714–21.

    Article  CAS  PubMed  Google Scholar 

  250. Carel RS, Korczyn AD, Rock M, Goya I. Association between ocular pressure and certain health parameters. Ophthalmology. 1984;91:311–4.

    Article  CAS  PubMed  Google Scholar 

  251. Pereira PC, Ramalho JS, Faro CJ, Mota MC. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Ophthalmic Res. 1994;26:149–57.

    Article  CAS  PubMed  Google Scholar 

  252. Duke-Elder S. Diseases of the lens: normal age changes. In: Duke-Elder S, editor. System of ophthalmology, vol XI, diseases of the lens and vitreous; glaucoma and hypotony. St. Louis: CV Mosby; 1969. p. 10–6.

    Google Scholar 

  253. Worgul BV. Lens. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 355–89.

    Google Scholar 

  254. Lowe RF, Clark BA. Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma. Br J Ophthalmol. 1973;57:464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Weekers RDY, Luyckx-Bacus J, Collignon J. Morphological changes of the lens with age and cataract. Ciba Found Symp. 1973;19:25–40.

    Google Scholar 

  256. Kashima K, Trus BL, Unser M, Edwards PA, Datiles MB. Aging studies on normal lens using the Scheimpflug slit-lamp camera. Invest Ophthalmol Vis Sci. 1993;34:263–9.

    CAS  PubMed  Google Scholar 

  257. Alio JL, Schimchak P, Negri HP, Montes-Mico R. Crystalline lens optical dysfunction through aging. Ophthalmology. 2005;112:2022–9.

    Article  PubMed  Google Scholar 

  258. Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vis Res. 2005;45:117–32.

    Article  CAS  PubMed  Google Scholar 

  259. Brown N. The change in lens curvature with age. Exp Eye Res. 1974;19:175–83.

    Article  CAS  PubMed  Google Scholar 

  260. J François. Les cataractes congénitales. Bull Soc Fr Ophtalmol 1959;72:38–52.

    Google Scholar 

  261. Lowe RF. Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol. 1970;54:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lim KJ, Hyung SM, Youn DH. Ocular dimensions with aging in normal eyes. Korean J Ophthalmol. 1992;6:19–31.

    Article  CAS  PubMed  Google Scholar 

  263. Koretz JF, Cook CA, Kuszak JR. The zones of discontinuity in the human lens: development and distribution with age. Vis Res. 1994;34:2955–62.

    Article  CAS  PubMed  Google Scholar 

  264. Harding CV, Reddan JR, Unakar NJ, Bagchi M. The control of cell division in the ocular lens. Int Rev Cytol. 1971;31:215–300.

    Article  CAS  PubMed  Google Scholar 

  265. Weinsieder A, Briggs R, Reddan J, Rothstein H, Wilson D, Harding CV. Induction of mitosis in ocular tissue by chemotoxic agents. Exp Eye Res. 1975;20:33–44.

    Article  CAS  PubMed  Google Scholar 

  266. Muggleton-Harris AL. Cellular changes occurring with age in the lens cells of the frog (Rana pipiens) in reference to the developmental capacity of the transplanted nuclei. Exp Gerontol. 1970;5:227–32.

    Article  CAS  PubMed  Google Scholar 

  267. Kuwabara T. The maturation of the lens cell: a morphologic study. Exp Eye Res. 1975;20:427–43.

    Article  CAS  PubMed  Google Scholar 

  268. Hara T, Hara T. Observations on lens epithelial cells and their removal in anterior capsule specimens. Arch Ophthalmol. 1988;106:1683–7.

    Article  CAS  PubMed  Google Scholar 

  269. Tripathi RC, Tripathi BJ. Lens morphology, aging, and cataract. J Gerontol. 1983;38:258–70.

    Article  CAS  PubMed  Google Scholar 

  270. Lipman RD, Taylor A. The in vitro replicative potential and cellular morphology of human lens epithelial cells derived from different aged donors. Curr Eye Res. 1987;6:1453–7.

    Article  CAS  PubMed  Google Scholar 

  271. Charakidas A, Kalogeraki A, Tsilimbaris M, Koukoulomatis P, Brouzas D, Delides G. Lens epithelial apoptosis and cell proliferation in human age-related cortical cataract. Eur J Ophthalmol. 2005;15:213–20.

    Article  CAS  PubMed  Google Scholar 

  272. Salzmann M. The lens. In: Brown EVL, editor. Anatomy and histology of the human eyeball. Chicago: University of Chicago Press; 1912.

    Google Scholar 

  273. Oberman AE. Scanning electron microscopy of the lens and zonular fibers. Am J Ophthalmol. 1971;72:604–7.

    Article  CAS  PubMed  Google Scholar 

  274. Krag S, Olsen T, Andreassen TT. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci. 1997;38:357–63.

    CAS  PubMed  Google Scholar 

  275. Fisher RF. The elastic constants of the human lens. J Physiol. 1971;212:147–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Weale RA. The effects of the ageing lens on vision. Ciba Found Symp. 1973;19:5–24.

    Google Scholar 

  277. Fisher RF. The influence of age on some ocular basement membranes. Eye (Lond). 1987;1(Pt 2):184–9.

    Article  Google Scholar 

  278. Nordmann JMG, Mack G. Nucleus of the human lens. III. Its separation, its hardness. Ophthalmic Res. 1974;6:216–22.

    Article  Google Scholar 

  279. Kuszak JR. The ultrastructure of epithelial and fiber cells in the crystalline lens. Int Rev Cytol. 1995;163:305–50.

    Article  CAS  PubMed  Google Scholar 

  280. Kuszak JR, Ennesser CA, Umlas J, Macsai-Kaplan MS, Weinstein RS. The ultrastructure of fiber cells in primate lenses: a model for studying membrane senescence. J Ultrastruct Mol Struct Res. 1988;100:60–74.

    Article  CAS  PubMed  Google Scholar 

  281. Costello MJ, McIntosh TJ, Robertson JD. Distribution of gap junctions and square array junctions in the mammalian lens. Invest Ophthalmol Vis Sci. 1989;30:975–89.

    CAS  PubMed  Google Scholar 

  282. Kuszak JR, Bertram BA, Macsai MS, Rae JL. Sutures of the crystalline lens: a review. Scan Electron Microsc. 1984:1369–78.

    Google Scholar 

  283. Chylack LT Jr, Leske MC, McCarthy D, Khu P, Kashiwagi T, Sperduto R. Lens opacities classification system II (LOCS II). Arch Ophthalmol. 1989;107:991–7.

    Article  PubMed  Google Scholar 

  284. CD P. Examination and functional evaluation of crystalline lens. In: Tasman W, Jaeger E, editors. Duane’s clinical ophthalmology. Philadelphia: JB Lippincott; 1980. p. 1–23.

    Google Scholar 

  285. Kuszak JR, Sivak JG, Weerheim JA. Lens optical quality is a direct function of lens sutural architecture. Invest Ophthalmol Vis Sci. 1991;32:2119–29.

    CAS  PubMed  Google Scholar 

  286. McFall-Ngai MJ, Ding LL, Takemoto LJ, Horwitz J. Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res. 1985;41:745–58.

    Article  CAS  PubMed  Google Scholar 

  287. Takemoto L, Gopalakrishnan S. Alpha-a crystallin: quantitation of C-terminal modification during lens aging. Curr Eye Res. 1994;13:879–83.

    Article  CAS  PubMed  Google Scholar 

  288. Srivastava OP, Srivastava K, Silney C. Levels of crystallin fragments and identification of their origin in water soluble high molecular weight (HMW) proteins of human lenses. Curr Eye Res. 1996;15:511–20.

    Article  CAS  PubMed  Google Scholar 

  289. Kamei A, Iwase H, Masuda K. Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during aging. Biochem Biophys Res Commun. 1997;231:373–8.

    Article  CAS  PubMed  Google Scholar 

  290. Araki N, Ueno N, Chakrabarti B, Morino Y, Horiuchi S. Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem. 1992;267:10211–4.

    Article  CAS  PubMed  Google Scholar 

  291. Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996;9:69–77.

    Article  CAS  PubMed  Google Scholar 

  292. Cerami A. Hypothesis. Glucose as a mediator of aging. J Am Geriatr Soc. 1985;33:626–34.

    Article  CAS  PubMed  Google Scholar 

  293. Smeets MH, Vrensen GF, Otto K, Puppels GJ, Greve J. Local variations in protein structure in the human eye lens: a Raman microspectroscopic study. Biochim Biophys Acta. 1993;1164:236–42.

    Article  CAS  PubMed  Google Scholar 

  294. Swaminathan S, Pattabiraman TN. Further studies on elastase and trypsin inhibitory activities in mammalian lenses. Biochem Med Metab Biol. 1986;36:313–6.

    Article  CAS  PubMed  Google Scholar 

  295. Srivastava OP, Ortwerth BJ. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens. Exp Eye Res. 1989;48:25–36.

    Article  CAS  PubMed  Google Scholar 

  296. Delamere NA, Dean WL. Distribution of lens sodium-potassium-adenosine triphosphatase. Invest Ophthalmol Vis Sci. 1993;34:2159–63.

    CAS  PubMed  Google Scholar 

  297. Nordmann J, Klethi J. Na-K-ATPase activity in the normal aging crystalline lens and in senile cataract. Arch Ophtalmol (Paris). 1976;36:523–8.

    CAS  Google Scholar 

  298. Kamei A. Variation in the glycosidase activity of human lens during aging and with advance of senile cataract. Biol Pharm Bull. 1995;18:1450–3.

    Article  CAS  PubMed  Google Scholar 

  299. Kamei A. Properties of partially purified esterase in human crystalline lens and variation in its enzyme activity during aging and with advance of senile cataract. Biol Pharm Bull. 1996;19:1223–6.

    Article  CAS  PubMed  Google Scholar 

  300. Garlick RL, Mazer JS, Chylack LT Jr, Tung WH, Bunn HF. Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus. J Clin Invest. 1984;74:1742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Patrick JS, Thorpe SR, Baynes JW. Nonenzymatic glycosylation of protein does not increase with age in normal human lenses. J Gerontol. 1990;45:B18–23.

    Article  CAS  PubMed  Google Scholar 

  302. Dunn JA, Patrick JS, Thorpe SR, Baynes JW. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry. 1989;28:9464–8.

    Article  CAS  PubMed  Google Scholar 

  303. Kamei A. Glycation and insolubility of human lens protein. Chem Pharm Bull (Tokyo). 1992;40:2787–91.

    Article  CAS  Google Scholar 

  304. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997;324(Pt 2):565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Ohrloff C, Hockwin O. Lens metabolism and aging: enzyme activities and enzyme alterations in lenses of different species during the process of aging. J Gerontol. 1983;38:271–7.

    Article  CAS  PubMed  Google Scholar 

  306. Sharma KK, Ortwerth BJ. Aminopeptidase III activity in normal and cataractous lenses. Curr Eye Res. 1986;5:373–80.

    Article  CAS  PubMed  Google Scholar 

  307. Borchman D, Paterson CA, Delamere NA. Ca2+-ATPase activity in the human lens. Curr Eye Res. 1989;8:1049–54.

    Article  CAS  PubMed  Google Scholar 

  308. Garner WH, Spector A. Racemization in human lens: evidence of rapid insolubilization of specific polypeptides in cataract formation. Proc Natl Acad Sci U S A. 1978;75:3618–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Groenen PJ, van den Ijssel PR, Voorter CE, Bloemendal H, de Jong WW. Site-specific racemization in aging alpha A-crystallin. FEBS Lett. 1990;269:109–12.

    Article  CAS  PubMed  Google Scholar 

  310. van den Oetelaar PJ, Hoenders HJ. Racemization of aspartyl residues in proteins from normal and cataractous human lenses: an aging process without involvement in cataract formation. Exp Eye Res. 1989;48:209–14.

    Article  PubMed  Google Scholar 

  311. Fujii N, Ishibashi Y, Satoh K, Fujino M, Harada K. Simultaneous racemization and isomerization at specific aspartic acid residues in alpha B-crystallin from the aged human lens. Biochim Biophys Acta. 1994;1204:157–63.

    Article  CAS  PubMed  Google Scholar 

  312. Fujii N. D-amino acid in elderly tissues. Biol Pharm Bull. 2005;28:1585–9.

    Article  CAS  PubMed  Google Scholar 

  313. Harding JJ. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem J. 1970;117:957–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Kamei A. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Biol Pharm Bull. 1993;16:870–5.

    Article  CAS  PubMed  Google Scholar 

  315. Rathbun WB, Bovis MG, Holleschau AM. Glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities in the rhesus monkey lens as a function of age. Curr Eye Res. 1986;5:195–9.

    Article  CAS  PubMed  Google Scholar 

  316. Truscott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005;80:709–25.

    Article  CAS  PubMed  Google Scholar 

  317. Davies KJ. Protein oxidation and proteolytic degradation. General aspects and relationship to cataract formation. Adv Exp Med Biol. 1990;264:503–11.

    Article  CAS  PubMed  Google Scholar 

  318. Pau H, Graf P, Sies H. Glutathione levels in human lens: regional distribution in different forms of cataract. Exp Eye Res. 1990;50:17–20.

    Article  CAS  PubMed  Google Scholar 

  319. Duindam JJ, Vrensen GF, Otto C, Greve J. Aging affects the conformation of cholesterol in the human eye lens. Ophthalmic Res. 1996;28(Suppl 1):86–91.

    Article  CAS  PubMed  Google Scholar 

  320. Zigman S, Paxhia T, Marinetti G, Girsch S. Lipids of human lens fiber cell membranes. Curr Eye Res. 1984;3:887–96.

    Article  CAS  PubMed  Google Scholar 

  321. Grami VMY, Tand D, Yappert MC, Borchman D. The influence of age and diabetes on the binding capacity of alpha-crystallin to human lens lipids. ARVO. 2004;Abstract #3963

    Google Scholar 

  322. Cobb BA, Petrash JM. alpha-Crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry. 2002;41:483–90.

    Article  CAS  PubMed  Google Scholar 

  323. Vrensen GF. Aging of the human eye lens--a morphological point of view. Comp Biochem Physiol A Physiol. 1995;111:519–32.

    Article  CAS  PubMed  Google Scholar 

  324. Siebinga I, Vrensen GF, De Mul FF, Greve J. Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy. Exp Eye Res. 1991;53:233–9.

    Article  CAS  PubMed  Google Scholar 

  325. Weale RA. The senescence of human vision. Oxford: Oxford University Press; 1992.

    Google Scholar 

  326. Duncan G, Hightower KR, Gandolfi SA, Tomlinson J, Maraini G. Human lens membrane cation permeability increases with age. Invest Ophthalmol Vis Sci. 1989;30:1855–9.

    CAS  PubMed  Google Scholar 

  327. Sample PA, Esterson FD, Weinreb RN, Boynton RM. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthalmol Vis Sci. 1988;29:1306–11.

    CAS  PubMed  Google Scholar 

  328. Said FS, Weale RA. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia. 1959;3:213–31.

    Article  CAS  PubMed  Google Scholar 

  329. Weale RA. Age and the transmittance of the human crystalline lens. J Physiol. 1988;395:577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Van Heyningen R. The glucoside of 3-hydroxykinurenine and other fluorescent compounds in the human lens. In: Elliot KFD, editor. The human lens in relation to cataract. Amsterdam: Elsevier; 1973. p. 151–68.

    Google Scholar 

  331. Dillon J. UV-B as a pro-aging and pro-cataract factor. Doc Ophthalmol. 1994;88:339–44.

    Article  PubMed  Google Scholar 

  332. Harding J. Cataract: biochemistry, epidemiology, and pharmacology. London: Chapman & Hall; 1991.

    Google Scholar 

  333. Mellerio J. Yellowing of the human lens: nuclear and cortical contributions. Vis Res. 1987;27:1581–7.

    Article  CAS  PubMed  Google Scholar 

  334. Pokorny J, Smith VC, Lutze M. Aging of the human lens. Appl Opt. 1987;26:1437–40.

    Article  CAS  PubMed  Google Scholar 

  335. Dillon J, Atherton SJ. Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol. 1990;51:465–8.

    Article  CAS  PubMed  Google Scholar 

  336. Rao CM, Balasubramanian D, Chakrabarti B. Monitoring light-induced changes in isolated, intact eye lenses. Photochem Photobiol. 1987;46:511–5.

    Article  CAS  PubMed  Google Scholar 

  337. Millodot M, Newton IA. A possible change of refractive index with age and its relevance to chromatic aberration. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;201:159–67.

    Article  CAS  PubMed  Google Scholar 

  338. Weale RA. Physical changes due to age and cataract. In: Duncan G, editor. Mechanisms of cataract formation in the human lens. London: Academic; 1981. p. 47–70.

    Google Scholar 

  339. Yappert MC, Lal S, Borchman D. Age dependence and distribution of green and blue fluorophores in human lens homogenates. Invest Ophthalmol Vis Sci. 1992;33:3555–60.

    CAS  PubMed  Google Scholar 

  340. Ranjan M, Beedu SR. Spectroscopic and biochemical correlations during the course of human lens aging. BMC Ophthalmol. 2006;6:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Zigman S. Eye lens color: formation and function. Science. 1971;171:807–9.

    Article  CAS  PubMed  Google Scholar 

  342. Sun MZS. Isolation and identification of tryptophan photoproducts from aqueous solutions of tryptophan exposed to near UV light. Photochem Photobiol. 1979;29:893–7.

    Article  CAS  Google Scholar 

  343. Zigman S, Groff J, Yulo T. Enhancement of the non-tryptophan fluorescence of human lens proteins after near-UV light exposure. Photochem Photobiol. 1977;26:505–9.

    Article  CAS  PubMed  Google Scholar 

  344. Zigman S, Yulo T, Griess GA. Inactivation of catalase by near ultraviolet light and tryptophan photoproducts. Mol Cell Biochem. 1976;11:149–54.

    Article  CAS  PubMed  Google Scholar 

  345. Bhuyan KCBD. Cataract induction in rabbits by feeding of aminotriazole. Am J Ophthalmol. 1973;69:147–53.

    Article  Google Scholar 

  346. Lerman S. Human lens fluorescence aging index. Lens Res. 1988;5:23–31.

    Google Scholar 

  347. Navarro R, Mendez-Morales JA, Santamaria J. Optical quality of the eye lens surfaces from roughness and diffusion measurements. J Opt Soc Am A. 1986;3:228–34.

    Article  CAS  PubMed  Google Scholar 

  348. Ben-Sira I, Weinberger D, Bodenheimer J, Yassur Y. Clinical method for measurement of light backscattering from the in vivo human lens. Invest Ophthalmol Vis Sci. 1980;19:435–7.

    CAS  PubMed  Google Scholar 

  349. Bettelheim FA, Ali S. Light scattering of normal human lens. III. Relationship between forward and back scatter of whole excised lenses. Exp Eye Res. 1985;41:1–9.

    Article  CAS  PubMed  Google Scholar 

  350. Thurston GM, Hayden DL, Burrows P, et al. Quasielastic light scattering study of the living human lens as a function of age. Curr Eye Res. 1997;16:197–207.

    Article  CAS  PubMed  Google Scholar 

  351. Benedek GB, Chylack LT Jr, Libondi T, Magnante P, Pennett M. Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasielastic light scattering. Curr Eye Res. 1987;6:1421–32.

    Article  CAS  PubMed  Google Scholar 

  352. Benedek GB. Cataract as a protein condensation disease: the proctor lecture. Invest Ophthalmol Vis Sci. 1997;38:1911–21.

    CAS  PubMed  Google Scholar 

  353. Wooten BR, Geri GA. Psychophysical determination of intraocular light scatter as a function of wavelength. Vis Res. 1987;27:1291–8.

    Article  CAS  PubMed  Google Scholar 

  354. Rohen JWRF. Der konstruktive Bau des zonulaapparates beim menschen und cessen funktionelle bedeutung. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1969;178:1–19.

    Article  CAS  PubMed  Google Scholar 

  355. Eagle RCSW. Lens. In: Spencer WH, editor. Ophthalmic pathology: an atlas and textbook. Philadelphia: WB Saunders; 1996. p. 372–435.

    Google Scholar 

  356. Roll PRM, Hofmann H. Der verlauf der zonulafasern. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;195:41–7.

    Article  CAS  PubMed  Google Scholar 

  357. Gärtner J. Elektronenmikroskopische untersuchungen über altersveränderungen an der zonula zinnii des menschlichen auges. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1970;180:217–30.

    Article  PubMed  Google Scholar 

  358. Streeten BW, Licari PA, Marucci AA, Dougherty RM. Immunohistochemical comparison of ocular zonules and the microfibrils of elastic tissue. Invest Ophthalmol Vis Sci. 1981;21:130–5.

    CAS  PubMed  Google Scholar 

  359. Streeten BW, Gibson SA. Identification of extractable proteins from the bovine ocular zonule: major zonular antigens of 32kD and 250kD. Curr Eye Res. 1988;7:139–46.

    Article  CAS  PubMed  Google Scholar 

  360. Buschmann W, Linnert D, Hofmann W, Gross A. The tensile strength of human zonule and its alteration with age (author’s transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;206:183–90.

    Article  CAS  PubMed  Google Scholar 

  361. Nishikawa S, Okisaka S. The tension of zonule and aging changes of ciliary bodies. Nippon Ganka Gakkai Zasshi. 1992;96:721–30.

    CAS  PubMed  Google Scholar 

  362. Farnsworth PN, Shyne SE. Anterior zonular shifts with age. Exp Eye Res. 1979;28:291–7.

    Article  CAS  PubMed  Google Scholar 

  363. Streeten BW. Zonular apparatus. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 331–53.

    Google Scholar 

  364. Sakabe I, Lim SJ, Apple DJ. Anatomical evaluation of the anterior capsular zonular free zone in the human crystalline lens (age range, 50 approximately 100 years). Nippon Ganka Gakkai Zasshi. 1995;99:1119–22.

    CAS  PubMed  Google Scholar 

  365. Marshall J. The ageing retina: physiology or pathology. Eye (Lond). 1987;1(Pt 2):282–95.

    Article  Google Scholar 

  366. Weale RA. Retinal senescence. In: Weale RA, editor. The senescence of human vision. Oxford: Oxford University Press; 1992. p. 112–68.

    Google Scholar 

  367. Cavallotti C, Artico M, Pescosolido N, Leali FM, Feher J. Age-related changes in the human retina. Can J Ophthalmol. 2004;39:61–8.

    Article  PubMed  Google Scholar 

  368. Weale RA. Senile changes in visual acuity. Trans Ophthalmol Soc U K. 1975;95:36–8.

    CAS  PubMed  Google Scholar 

  369. Kline DW. Ageing and the spatiotemporal discrimination performance of the visual system. Eye (Lond). 1987;1(Pt 2):323–9.

    Article  Google Scholar 

  370. Skalka HW. Effect of age on Arden grating acuity. Br J Ophthalmol. 1980;64:21–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Jaffe GJ, Alvarado JA, Juster RP. Age-related changes of the normal visual field. Arch Ophthalmol. 1986;104:1021–5.

    Article  CAS  PubMed  Google Scholar 

  372. Domey RG, Mc FR, Chadwick E. Dark adaptation as a function of age and time. II A derivation. J Gerontol. 1960;15:267–79.

    Article  CAS  PubMed  Google Scholar 

  373. Weale RA. Contrast sensitivity. In: Woo GC, editor. Low vision: principles and applications: proceedings of the international symposium on low vision, University of Waterloo, June 25–27, 1986. New York: Springer; 1987. p. 45–55.

    Google Scholar 

  374. Spear PD. Neural bases of visual deficits during aging. Vis Res. 1993;33:2589–609.

    Article  CAS  PubMed  Google Scholar 

  375. Morrison JD, McGrath C. Assessment of the optical contributions to the age-related deterioration in vision. Q J Exp Physiol. 1985;70:249–69.

    Article  CAS  PubMed  Google Scholar 

  376. Birch DG, Anderson JL. Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol. 1992;110:1571–6.

    Article  CAS  PubMed  Google Scholar 

  377. Trick GL, Nesher R, Cooper DG, Shields SM. The human pattern ERG: alteration of response properties with aging. Optom Vis Sci. 1992;69:122–8.

    Article  CAS  PubMed  Google Scholar 

  378. Jackson GR, McGwin G Jr, Phillips JM, Klein R, Owsley C. Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram. Invest Ophthalmol Vis Sci. 2004;45:3271–8.

    Article  PubMed  Google Scholar 

  379. Tzekov RT, Gerth C, Werner JS. Senescence of human multifocal electroretinogram components: a localized approach. Graefes Arch Clin Exp Ophthalmol. 2004;242:549–60.

    Article  PubMed  PubMed Central  Google Scholar 

  380. Gerth C, Sutter EE, Werner JS. mfERG response dynamics of the aging retina. Invest Ophthalmol Vis Sci. 2003;44:4443–50.

    Article  PubMed  Google Scholar 

  381. Tam WK, Chan H, Brown B, Leung KW, Woo V, Yap M. Aging and mfERG topography. Eye (Lond). 2006;20:18–24.

    Article  Google Scholar 

  382. Curcio CAHA. Organization and development of the primate photoreceptor mosaic. Progr Retin Eye Res. 1991;10:89–110.

    Article  Google Scholar 

  383. Marshall J, Grindle J, Ansell PL, Borwein B. Convolution in human rods: an ageing process. Br J Ophthalmol. 1979;63:181–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691–9.

    CAS  PubMed  Google Scholar 

  385. Gartner S, Henkind P. Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br J Ophthalmol. 1981;65:23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Curcio CAKA, Kalina RE. Reorganization of the human photoreceptor mosaic following age-related rod loss. Invest Ophthalmol Vis Sci. 1990;31:38.

    Google Scholar 

  387. Gao H, Hollyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1992;33:1–17.

    CAS  PubMed  Google Scholar 

  388. Feeney-Burns L, Burns RP, Gao CL. Age-related macular changes in humans over 90 years old. Am J Ophthalmol. 1990;109:265–78.

    Article  CAS  PubMed  Google Scholar 

  389. Keunen JE, van Norren D, van Meel GJ. Density of foveal cone pigments at older age. Invest Ophthalmol Vis Sci. 1987;28:985–91.

    CAS  PubMed  Google Scholar 

  390. van Kuijk FJ, Lewis JW, Buck P, Parker KR, Kliger DS. Spectrophotometric quantitation of rhodopsin in the human retina. Invest Ophthalmol Vis Sci. 1991;32:1962–7.

    PubMed  Google Scholar 

  391. Ruddock KH. Evidence for macular pigmentation from colour matching data. Vis Res. 1963;61:417–29.

    Article  CAS  PubMed  Google Scholar 

  392. Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci. 1988;29:843–9.

    CAS  PubMed  Google Scholar 

  393. Werner JS, Donnelly SK, Kliegl R. Aging and human macular pigment density. Appended with translations from the work of max Schultze and Ewald Hering. Vis Res. 1987;27:257–68.

    Article  CAS  PubMed  Google Scholar 

  394. Kilbride PE, Alexander KR, Fishman M, Fishman GA. Human macular pigment assessed by imaging fundus reflectometry. Vis Res. 1989;29:663–74.

    Article  CAS  PubMed  Google Scholar 

  395. Berendschot TT, van Norren D. On the age dependency of the macular pigment optical density. Exp Eye Res. 2005;81:602–9.

    Article  CAS  PubMed  Google Scholar 

  396. Weale RA. Senescence and color vision. J Gerontol. 1986;41:635–40.

    Article  CAS  PubMed  Google Scholar 

  397. Tate DJ Jr, Oliver PD, Miceli MV, Stern R, Shuster S, Newsome DA. Age-dependent change in the hyaluronic acid content of the human chorioretinal complex. Arch Ophthalmol. 1993;111:963–7.

    Article  CAS  PubMed  Google Scholar 

  398. Hogan RN, Kingsbury DT, Baringer JR, Prusiner SB. Retinal degeneration in experimental Creutzfeldt-Jakob disease. Lab Investig. 1983;49:708–15.

    CAS  PubMed  Google Scholar 

  399. Iwasaki M, Inomata H. Lipofuscin granules in human photoreceptor cells. Invest Ophthalmol Vis Sci. 1988;29:671–9.

    CAS  PubMed  Google Scholar 

  400. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36:718–29.

    CAS  PubMed  Google Scholar 

  401. Barreau E, Brossas JY, Courtois Y, Treton JA. Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci. 1996;37:384–91.

    CAS  PubMed  Google Scholar 

  402. Sigelman JOV. Retina. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 441–506.

    Google Scholar 

  403. Heegaard S. Structure of the human vitreoretinal border region. Ophthalmologica. 1994;208:82–91.

    Article  CAS  PubMed  Google Scholar 

  404. Curcio CA, Drucker DN. Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol. 1993;33:248–57.

    Article  CAS  PubMed  Google Scholar 

  405. Drucker DNCC. Retinal ganglion cells are lost with aging but not in Alzheimer’s disease. Invest Ophthalmol Vis Sci. 1990;31:356.

    Google Scholar 

  406. Dolman CL, McCormick AQ, Drance SM. Aging of the optic nerve. Arch Ophthalmol. 1980;98:2053–8.

    Article  CAS  PubMed  Google Scholar 

  407. Vrabec F. Age changes of the human optic nerve head. A neurohistologic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977;202:231–6.

    Article  CAS  PubMed  Google Scholar 

  408. Ramirez JM, Ramirez AI, Salazar JJ, de Hoz R, Trivino A. Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp Eye Res. 2001;73:601–15.

    Article  CAS  PubMed  Google Scholar 

  409. Madigan MC, Penfold PL, Provis JM, Balind TK, Billson FA. Intermediate filament expression in human retinal macroglia. Histopathologic changes associated with age-related macular degeneration. Retina. 1994;14:65–74.

    Article  CAS  PubMed  Google Scholar 

  410. Vernadakis A. Changes in astrocytes with aging. In: Federoff S, Vernadakis A, editors. Astrocytes biochemistry, physiology, and pharmacology of astrocytes. Orlando: Academic; 1986. p. 377–407.

    Google Scholar 

  411. Bird AC. Bruch’s membrane change with age. Br J Ophthalmol. 1992;76:166–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Feeney-Burns L, Ellersieck MR. Age-related changes in the ultrastructure of Bruch’s membrane. Am J Ophthalmol. 1985;100:686–97.

    Article  CAS  PubMed  Google Scholar 

  413. Thompson RB, Reffatto V, Bundy JG, et al. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci U S A. 2015;112:1565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Davis WL, Jones RG, Hagler HK. An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. 1981;29:601–8.

    Article  CAS  Google Scholar 

  415. Huang JD, Curcio CA, Johnson M. Morphometric analysis of lipoprotein-like particle accumulation in aging human macular Bruch’s membrane. Invest Ophthalmol Vis Sci. 2008;49:2721–7.

    Article  PubMed  Google Scholar 

  416. Killingsworth MC. Age-related components of Bruch’s membrane in the human eye. Graefes Arch Clin Exp Ophthalmol. 1987;225:406–12.

    Article  CAS  PubMed  Google Scholar 

  417. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35:2857–64.

    CAS  PubMed  Google Scholar 

  418. Newsome DA, Huh W, Green WR. Bruch’s membrane age-related changes vary by region. Curr Eye Res. 1987;6:1211–21.

    Article  CAS  PubMed  Google Scholar 

  419. Hogan MJ, Alvarado J. Studies on the human macula. IV. Aging changes in Bruch’s membrane. Arch Ophthalmol. 1967;77:410–20.

    Article  CAS  PubMed  Google Scholar 

  420. Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J. The influence of path length and matrix components on ageing characteristics of transport between the choroid and the outer retina. Invest Ophthalmol Vis Sci. 2004;45:1493–8.

    Article  PubMed  Google Scholar 

  421. Bonilha VL. Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol. 2008;2:413–24.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Ugarte M, Hussain AA, Marshall J. An experimental study of the elastic properties of the human Bruch’s membrane-choroid complex: relevance to ageing. Br J Ophthalmol. 2006;90:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol. 1980;90:783–91.

    Article  CAS  PubMed  Google Scholar 

  424. Farkas TG, Sylvester V, Archer D. The ultrastructure of drusen. Am J Ophthalmol. 1971;71:1196–205.

    Article  CAS  PubMed  Google Scholar 

  425. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC. Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol. 1994;112:402–6.

    Article  CAS  PubMed  Google Scholar 

  426. Sarks SH. Aging and degeneration of the macular region: a clinicopathological study. Br J Ophthalmol. 1976;60:324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Loffler KU, Lee WR. Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol. 1986;224:493–501.

    Article  CAS  PubMed  Google Scholar 

  428. Fine BSYM. Ocular histology: a text and atlas. 2nd ed. Hagerstown: Harper & Row; 1979.

    Google Scholar 

  429. Marshall J. Cellular debris--a key to the aging macula. Br J Ophthalmol. 1989;73:161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Yamamoto T, Yamashita H. Scanning electron microscopic observation of Bruch’s membrane with the osmium tetroxide treatment. Br J Ophthalmol. 1989;73:162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Feeney-Burns L, Gao CL, Tidwell M. Lysosomal enzyme cytochemistry of human RPE, Bruch’s membrane and drusen. Invest Ophthalmol Vis Sci. 1987;28:1138–47.

    CAS  PubMed  Google Scholar 

  432. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol. 1996;121:181–9.

    Article  CAS  PubMed  Google Scholar 

  433. Tarau IS, Berlin A, Curcio CA, Ach T. The cytoskeleton of the retinal pigment epithelium: from Normal aging to age-related macular degeneration. Int J Mol Sci. 2019;20

    Google Scholar 

  434. Friedman E, Ts’o MO. The retinal pigment epithelium. II. Histologic changes associated with age. Arch Ophthalmol. 1968;79:315–20.

    Article  CAS  PubMed  Google Scholar 

  435. Watzke RC, Soldevilla JD, Trune DR. Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Curr Eye Res. 1993;12:133–42.

    Article  CAS  PubMed  Google Scholar 

  436. Katz ML, Robison WG Jr. Age-related changes in the retinal pigment epithelium of pigmented rats. Exp Eye Res. 1984;38:137–51.

    Article  CAS  PubMed  Google Scholar 

  437. Lai YL, Rana MW. A study of photoreceptor-retinal pigment epithelium complex: age-related changes in monkeys. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine. 1986;181:371–81.

    Article  CAS  Google Scholar 

  438. Weisse I. Changes in the aging rat retina. Ophthalmic Res. 1995;27(Suppl 1):154–63.

    Article  PubMed  Google Scholar 

  439. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci. 1984;25:195–200.

    CAS  PubMed  Google Scholar 

  440. Schmidt SY, Peisch RD. Melanin concentration in normal human retinal pigment epithelium. Regional variation and age-related reduction. Invest Ophthalmol Vis Sci. 1986;27:1063–7.

    CAS  PubMed  Google Scholar 

  441. Sarna T. Properties and function of the ocular melanin--a photobiophysical view. J Photochem Photobiol B. 1992;12:215–58.

    Article  CAS  PubMed  Google Scholar 

  442. Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci. 1986;27:145–52.

    CAS  PubMed  Google Scholar 

  443. Wing GL, Blanchard GC, Weiter JJ. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1978;17:601–7.

    CAS  PubMed  Google Scholar 

  444. Rozanowski B, Cuenco J, Davies S, et al. The phototoxicity of aged human retinal melanosomes. Photochem Photobiol. 2008;84:650–7.

    Article  CAS  PubMed  Google Scholar 

  445. Sohal RS, Wolfe LS. Lipofuscin: characteristics and significance. Prog Brain Res. 1986;70:171–83.

    Article  CAS  PubMed  Google Scholar 

  446. Bazan HE, Bazan NG, Feeney-Burns L, Berman ER. Lipids in human lipofuscin-enriched subcellular fractions of two age populations. Comparison with rod outer segments and neural retina. Invest Ophthalmol Vis Sci. 1990;31:1433–43.

    CAS  PubMed  Google Scholar 

  447. Boulton M, Docchio F, Dayhaw-Barker P, Ramponi R, Cubeddu R. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vis Res. 1990;30:1291–303.

    Article  CAS  PubMed  Google Scholar 

  448. Weiter J. Phototoxic changes in the retina. In: Miller D, editor. Clinical light damage to the eye. New York: Springer; 1987.

    Google Scholar 

  449. Weiter JJ, Delori F, Dorey CK. Central sparing in annular macular degeneration. Am J Ophthalmol. 1988;106:286–92.

    Article  CAS  PubMed  Google Scholar 

  450. Dillon J, Zheng L, Merriam JC, Gaillard ER. Transmission of light to the aging human retina: possible implications for age related macular degeneration. Exp Eye Res. 2004;79:753–9.

    Article  CAS  PubMed  Google Scholar 

  451. Katz ML, Drea CM, Eldred GE, Hess HH, Robison WG Jr. Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium. Exp Eye Res. 1986;43:561–73.

    Article  CAS  PubMed  Google Scholar 

  452. Young RW. Pathophysiology of age-related macular degeneration. Surv Ophthalmol. 1987;31:291–306.

    Article  CAS  PubMed  Google Scholar 

  453. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595–606.

    Article  CAS  PubMed  Google Scholar 

  454. Katz ML, Eldred GE, Robison WG Jr. Lipofuscin autofluorescence: evidence for vitamin a involvement in the retina. Mech Ageing Dev. 1987;39:81–90.

    Article  CAS  PubMed  Google Scholar 

  455. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004;122:598–614.

    Article  PubMed  Google Scholar 

  456. Cogan DG. Development and senescence of the human retinal vasculature. Trans Ophthalmol Soc U K. 1963;83:465–89.

    CAS  PubMed  Google Scholar 

  457. Kuwabara T, Cogan DG. Retinal vascular patterns. VII Acellular change. Invest Ophthalmol. 1965;4:1049–64.

    CAS  PubMed  Google Scholar 

  458. Kohno T, Ishibashi T, Inomata H. Electron microscopic studies of pipestem sheathed vessel in human retina. Jpn J Ophthalmol. 1983;27:228–35.

    CAS  PubMed  Google Scholar 

  459. Lee WR, Blass GE, Shaw DC. Age-related retinal vasculopathy. Eye (Lond). 1987;1(Pt 2):296–303.

    Article  Google Scholar 

  460. Lerche W. Die capillardichte in der menschlichen retina unter berucksichtigung altersbedingter veranderungen. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1967;172:57–68.

    Article  CAS  PubMed  Google Scholar 

  461. Stanton AV, Mullaney P, Mee F, O’Brien ET, O’Malley K. A method of quantifying retinal microvascular alterations associated with blood pressure and age. J Hypertens. 1995;13:41–8.

    Article  CAS  PubMed  Google Scholar 

  462. Laatikainen L, Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci. 1977;16:1154–7.

    CAS  PubMed  Google Scholar 

  463. Yap M, Gilchrist J, Weatherill J. Psychophysical measurement of the foveal avascular zone. Ophthalmic Physiol Opt. 1987;7:405–10.

    Article  CAS  PubMed  Google Scholar 

  464. Groh MJ, Michelson G, Langhans MJ, Harazny J. Influence of age on retinal and optic nerve head blood circulation. Ophthalmology. 1996;103:529–34.

    Article  CAS  PubMed  Google Scholar 

  465. Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ. Blood flow in the normal human retina. Invest Ophthalmol Vis Sci. 1989;30:58–65.

    CAS  PubMed  Google Scholar 

  466. Yoshida A, Feke GT, Ogasawara H, Goger DG, McMeel JW. Retinal hemodynamics in middle-aged normal subjects. Ophthalmic Res. 1996;28:343–50.

    Article  CAS  PubMed  Google Scholar 

  467. Rizzo J, Feke GT, Goger DG, Weiter JJ. Measurement of optic nerve blood velocity as a function of age in normal subjects. Invest Ophthalmol Vis Sci. 1991;32:3263–72.

    PubMed  Google Scholar 

  468. Grunwald JE, Piltz J, Patel N, Bose S, Riva CE. Effect of aging on retinal macular microcirculation: a blue field simulation study. Invest Ophthalmol Vis Sci. 1993;34:3609–13.

    CAS  PubMed  Google Scholar 

  469. O’Malley PF, Allen RA. Peripheral cystoid degeneration of the retina. Incidence and distribution in 1,000 autopsy eyes. Arch Ophthalmol. 1967;77:769–76.

    Article  PubMed  Google Scholar 

  470. Byer NE. Clinical study of senile retinoschisis. Arch Ophthalmol. 1968;79:36–44.

    Article  CAS  PubMed  Google Scholar 

  471. Zimmerman LE, Spencer WH. The pathologic anatomy of retinoschisis with a report of two cases diagnosed clinically as malignant melanoma. Arch Ophthalmol. 1960;63:10–9.

    Article  CAS  PubMed  Google Scholar 

  472. O’Malley P, Allen RA, Straatsma BR, O’Malley CC. Paving-stone degeneration of the retina. Arch Ophthalmol. 1965;73:169–82.

    Article  PubMed  Google Scholar 

  473. Weiter JJ, Ernest JT. Anatomy of the choroidal vasculature. Am J Ophthalmol. 1974;78:583–90.

    Article  CAS  PubMed  Google Scholar 

  474. Rutnin U, Schepens CL. Fundus appearance in normal eyes. 3. Peripheral degenerations. Am J Ophthalmol. 1967;64:1040–62.

    Article  CAS  PubMed  Google Scholar 

  475. Foos RY, Allen RA. Retinal tears and lesser lesions of the peripheral retina in autopsy eyes. Am J Ophthalmol. 1967;64(Suppl):643–55.

    Google Scholar 

  476. Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984;97:760–6.

    Article  CAS  PubMed  Google Scholar 

  477. Mikelberg FS, Drance SM, Schulzer M, Yidegiligne HM, Weis MM. The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology. 1989;96:1325–8.

    Article  CAS  PubMed  Google Scholar 

  478. Repka MX, Quigley HA. The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology. 1989;96:26–32.

    Article  CAS  PubMed  Google Scholar 

  479. Robert Y, Gschwind R, Bruckner R. Fluctuations of light absorption of healthy papillae repeatedly photographed over a long period of time. Ophthalmic Res. 1985;17:154–61.

    Article  CAS  PubMed  Google Scholar 

  480. Tsai CS, Ritch R, Shin DH, Wan JY, Chi T. Age-related decline of disc rim area in visually normal subjects. Ophthalmology. 1992;99:29–35.

    Article  CAS  PubMed  Google Scholar 

  481. Malis V, Cuvala J, Barani H. Planimetric characteristics of the optic papilla in relation to age. Cesk Slov Oftalmol. 1995;51:19–23.

    CAS  PubMed  Google Scholar 

  482. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–903.

    CAS  PubMed  Google Scholar 

  483. Sawaguchi S, Yue BY, Fukuchi T, Iwata K, Kaiya T. Age-related changes of sulfated proteoglycans in the human lamina cribrosa. Curr Eye Res. 1993;12:685–92.

    Article  CAS  PubMed  Google Scholar 

  484. Boehm AG, Koeller AU, Pillunat LE. The effect of age on optic nerve head blood flow. Invest Ophthalmol Vis Sci. 2005;46:1291–5.

    Article  PubMed  Google Scholar 

  485. Boehm AG, Pillunat LE, Koeller U, et al. Regional distribution of optic nerve head blood flow. Graefes Arch Clin Exp Ophthalmol. 1999;237:484–8.

    Article  CAS  PubMed  Google Scholar 

  486. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH. Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol. 1989;107:476–84.

    Article  CAS  PubMed  Google Scholar 

  487. Rao NSW. Optic nerve. In: Spencer WH, editor. Ophthalmic pathology: an atlas and textbook. Philadelphia: WB Saunders; 1996. p. 513–622.

    Google Scholar 

  488. Avendano J, Rodrigues MM, Hackett JJ, Gaskins R. Corpora amylacea of the optic nerve and retina: a form of neuronal degeneration. Invest Ophthalmol Vis Sci. 1980;19:550–5.

    CAS  PubMed  Google Scholar 

  489. Leber T. Uber der entsehung der netz hautablosung. Berl Dtsch Ophthalmol Bes. 1882;14:18.

    Google Scholar 

  490. Harocopos GJ, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45:77–85.

    Article  PubMed  Google Scholar 

  491. G E. Clinical anatomy of the vitreous. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 391–424.

    Google Scholar 

  492. Eisner G. Autoptische spaltlampenuntersuchung des glaskorpers. ii. die spaltlampenmikroskopisch sichtbaren glaskorperstrukturen. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1971;182:8–22.

    Article  CAS  PubMed  Google Scholar 

  493. Sebag J. Fibrous structure of the human vitreous body. Bull Mem Soc Fr Ophtalmol. 1985;96:395–7.

    CAS  PubMed  Google Scholar 

  494. Grignolo A. Fibrous components of the vitreous body. AMA Arch Ophthalmol. 1952;47:760–74.

    Article  CAS  PubMed  Google Scholar 

  495. Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989;30:1867–71.

    CAS  PubMed  Google Scholar 

  496. Balazs EA, Denlinger JL. Aging changes in the vitreous. In: Dismukes K, Sekuler R, editors. Aging and human visual functions. New York: Alan R Liss; 1982. p. 45–57.

    Google Scholar 

  497. EA Balazs. Molecular morphology of the vitreous body. In: GK Smelser (ed), The structure of the eye: New York; Academic; 1961:293–310.

    Google Scholar 

  498. Balazs EA, Denlinger JL. The vitreous. In: Davson H, editor. The eye. New York: Academic; 1984. p. 273–98.

    Google Scholar 

  499. Ueno N. Changes in vitreous structure caused by oxygen free radicals. Nippon Ganka Gakkai Zasshi. 1995;99:1342–60.

    CAS  PubMed  Google Scholar 

  500. Deguine V, Labat-Robert J, Ferrari P, Pouliquen Y, Menasche M, Robert L. Aging of the vitreous body. Role of glycation and free radicals. Pathol Biol (Paris). 1997;45:321–30.

    CAS  Google Scholar 

  501. O’Malley P. The pattern of vitreous syneresis. A study of 800 autopsy eyes. In: Irvin AR, O’Malley C, editors. Advances in vitreous surgery. Springfield: Charles C Thomas; 1976. p. 17–33.

    Google Scholar 

  502. Tolentino FISC, Freeman HM. Vitreoretinal disorders: diagnosis and management. Philadelphia: WB Saunders; 1987.

    Google Scholar 

  503. Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:2898–900.

    Article  PubMed  Google Scholar 

  504. Schepens CLTF, McMeel JW. Diagnostic and prognostic factors as found in preoperative examination. In: Pischel DK, editor. Retinal detachment a manual prepared for the use of graduates in medicine. Rochester: American Academy of Ophthalmology and Otolaryngology; 1965. p. 51–85.

    Google Scholar 

  505. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45:1041–6.

    Article  PubMed  Google Scholar 

  506. Schepens CL. Clinical aspects of pathologic changes in the vitreous body. Am J Ophthalmol. 1954;38:8–21.

    Article  CAS  PubMed  Google Scholar 

  507. Eisner G. Biomicroscopy of the peripheral fundus. an atlas and textbook. New York: Springer; 1973.

    Google Scholar 

  508. Sebag J. Ageing of the vitreous. Eye (Lond). 1987;1(Pt 2):254–62.

    Article  Google Scholar 

  509. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89:1502–12.

    Article  CAS  PubMed  Google Scholar 

  510. Larsson L, Osterlin S. Posterior vitreous detachment. A combined clinical and physiochemical study. Graefes Arch Clin Exp Ophthalmol. 1985;223:92–5.

    Article  CAS  PubMed  Google Scholar 

  511. Wang J, McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. Invest Ophthalmol Vis Sci. 2003;44:1793–800.

    Article  PubMed  Google Scholar 

  512. Foos RY. Posterior vitreous detachment. Trans Am Acad Ophthalmol Otolaryngol. 1972;76:480–97.

    CAS  PubMed  Google Scholar 

  513. Gartner J. Electron microscopic observations on the cilio-zonular border area of the human eye with particular reference to the aging changes. Z Anat Entwicklungsgesch. 1970;131:263–73.

    Article  CAS  PubMed  Google Scholar 

  514. Matsumoto B, Blanks JC, Ryan SJ. Topographic variations in the rabbit and primate internal limiting membrane. Invest Ophthalmol Vis Sci. 1984;25:71–82.

    CAS  PubMed  Google Scholar 

  515. Balazs EA, Toth LZ, Eckl EA, Mitchell AP. Studies on the structure of the vitreous body. Xii. Cytological and histochemical studies on the cortical tissue layer. Exp Eye Res. 1964;3:57–71.

    Article  CAS  PubMed  Google Scholar 

  516. Freeman MI, Jacobson B, Balazs EA. The chemical composition of vitreous hyalocyte granules. Exp Eye Res. 1979;29:479–84.

    Article  CAS  PubMed  Google Scholar 

  517. Bloom GD, Balazs EA. An electron microscopic study of hyalocytes. Exp Eye Res. 1965;4:249–55.

    Article  CAS  PubMed  Google Scholar 

  518. EA B. Functional anatomy of the vitreous. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia: Harper & Row; 1982. p. 425–40.

    Google Scholar 

  519. Freeman MI, Jacobson B, Toth LZ, Balazs EA. Lysosomal enzymes associated with vitreous hyalocyte granules. 1. Intracellular distribution patterns of enzymes. Exp Eye Res. 1968;7:113–20.

    Article  CAS  PubMed  Google Scholar 

  520. Jacobson B. Biosynthesis of hyaluronic acid in the vitreous. V. Studies on a particulate hyalocyte glycosyl transferase. Exp Eye Res. 1978;27:247–58.

    Article  CAS  PubMed  Google Scholar 

  521. Hamburg A. Some investigations on the cells of the vitreous body. Ophthalmologica. 1959;138:81–107.

    Article  CAS  PubMed  Google Scholar 

  522. Gloor BP. Cellular proliferation on the vitreous surface after photocoagulation. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1969;178:99–113.

    Article  CAS  PubMed  Google Scholar 

  523. Gartner J. Physical structures of the vitreous. Trans Ophthalmol Soc U K. 1975;95:364–8.

    CAS  PubMed  Google Scholar 

  524. Schnider SL, Kohn RR. Effects of age and diabetes mellitus on the solubility of collagen from human skin, tracheal cartilage and dura mater. Exp Gerontol. 1982;17:185–94.

    Article  CAS  PubMed  Google Scholar 

  525. Hamlin CR, Kohn RR. Evidence for progressive, age-related structural changes in post-mature human collagen. Biochim Biophys Acta. 1971;236:458–67.

    Article  CAS  PubMed  Google Scholar 

  526. Akiba J, Ueno N, Chakrabarti B. Age-related changes in the molecular properties of vitreous collagen. Curr Eye Res. 1993;12:951–4.

    Article  CAS  PubMed  Google Scholar 

  527. Davison PF, Seery CM. An analysis of two fibril systems in the mammalian vitreous. Curr Eye Res. 1993;12:107–14.

    Article  CAS  PubMed  Google Scholar 

  528. Eyre DR, Apon S, Wu JJ, Ericsson LH, Walsh KA. Collagen type IX: evidence for covalent linkages to type II collagen in cartilage. FEBS Lett. 1987;220:337–41.

    Article  CAS  PubMed  Google Scholar 

  529. Vasios G, Nishimura I, Konomi H, van der Rest M, Ninomiya Y, Olsen BR. Cartilage type IX collagen-proteoglycan contains a large amino-terminal globular domain encoded by multiple exons. J Biol Chem. 1988;263:2324–9.

    Article  CAS  PubMed  Google Scholar 

  530. Los LI, van der Worp RJ, van Luyn MJ, Hooymans JM. Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci. 2003;44:2828–33.

    Article  PubMed  Google Scholar 

  531. Ponsioen TL, Deemter M, Bank RA, et al. Mature enzymatic collagen cross-links, hydroxylysylpyridinoline and lysylpyridinoline, in the aging human vitreous. Invest Ophthalmol Vis Sci. 2009;50:1041–6.

    Article  PubMed  Google Scholar 

  532. Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci. 2000;41:3299–304.

    CAS  PubMed  Google Scholar 

  533. Berman ER, Michaelson IC. The chemical composition of the human vitreous body as related to age and myopia. Exp Eye Res. 1964;3:9–15.

    Article  CAS  PubMed  Google Scholar 

  534. Oksala A. Ultrasonic findings in the vitreous body at various ages. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;207:275–80.

    Article  CAS  PubMed  Google Scholar 

  535. Falbe-Hansen I, Ehlers N, Degn JK. Development of the human foetal vitreous body. I. Biochemical changes. Acta Ophthalmol. 1969;47:39–43.

    Article  CAS  Google Scholar 

  536. Duke-Elder S. Degenerations of the sclera. In: Duke-Elder S, editor. System of ophthalmology. St. Louis: CV Mosby; 1969. p. 1051–4.

    Google Scholar 

  537. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci. 2005;46:409–14.

    Article  PubMed  Google Scholar 

  538. Keeley FW, Morin JD, Vesely S. Characterization of collagen from normal human sclera. Exp Eye Res. 1984;39:533–42.

    Article  CAS  PubMed  Google Scholar 

  539. Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater. 2012;16:181–91.

    Article  PubMed  Google Scholar 

  540. Fazio MA, Grytz R, Morris JS, et al. Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol. 2014;13:551–63.

    Article  PubMed  Google Scholar 

  541. Coudrillier B, Pijanka J, Jefferys J, et al. Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. J Biomech Eng. 2015;137:041006.

    Article  PubMed  Google Scholar 

  542. Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78:609–23.

    Article  CAS  PubMed  Google Scholar 

  543. Russell R, Sweda JR, Porcheron A, Mauger E. Sclera color changes with age and is a cue for perceiving age, health, and beauty. Psychol Aging. 2014;29:626–35.

    Article  PubMed  Google Scholar 

  544. Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM. The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest Ophthalmol Vis Sci. 2001;42:1592–9.

    CAS  PubMed  Google Scholar 

  545. Foster CS, de la Maza Maite S. The sclera. New York: Springer; 1994.

    Book  Google Scholar 

  546. Muir H. Proteoglycans as organizers of the intercellular matrix. Biochem Soc Trans. 1983;11:613–22.

    Article  CAS  PubMed  Google Scholar 

  547. De Luca A, Santra M, Baldi A, Giordano A, Iozzo RV. Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J Biol Chem. 1996;271:18961–5.

    Article  PubMed  Google Scholar 

  548. Hildebrand A, Romaris M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J. 1994;302(Pt 2):527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  549. Schonherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H. Interaction of biglycan with type I collagen. J Biol Chem. 1995;270:2776–83.

    Article  CAS  PubMed  Google Scholar 

  550. Rada JA, Achen VR, Penugonda S, Schmidt RW, Mount BA. Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci. 2000;41:1639–48.

    CAS  PubMed  Google Scholar 

  551. Dunlevy JR, Rada JA. Interaction of lumican with aggrecan in the aging human sclera. Invest Ophthalmol Vis Sci. 2004;45:3849–56.

    Article  PubMed  Google Scholar 

  552. Boubriak OA, Urban JP, Bron AJ. Differential effects of aging on transport properties of anterior and posterior human sclera. Exp Eye Res. 2003;76:701–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nick Hogan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sundstrom, J.M., Weber, S.R., Zhou, M., Hogan, R.N. (2021). The Eye in Aging. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_305-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_305-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics