Skip to main content

Implantable Device Fabrication and Packaging

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Neural implants are developed with regard to the general aspects of active implant design, packaging philosophies, and decisions on manufacturing methods. The focus of this chapter “Implantable Device Fabrication and Packaging” is laid on reliability of assembly and packaging concepts rather than on the details of how different devices could be developed best. The basic concepts of packaging are introduced that go back to the 1970s but are still fundamental to modern neural implants. Packaging and encapsulation are complemented by connectors, cables, and electrode arrays to cover the main building blocks of neural implants. Manufacturing methods span the scales from precision mechanics to the micromachining level. They are introduced on a fundamental level to help the reader select and combine system components on the way to robust and reliable implants. Foundations are complemented by recent reviews to guide readers deeper into the different topics and mirror developments against transferability and applicability in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AIMD:

Active implantable medical device

ALD:

Atomic layer deposition

ASIC:

Application-specific integrated circuit

CAD:

Computer-aided design

CAM:

Computer-aided manufacturing

CE:

Conformité Européenne

CT:

Computed tomography scan

DBS:

Deep brain stimulation

ECoG:

Electrocorticography

EDP:

Ethylene pyrocatechol

FDA:

Food and Drug Administration

FEP:

Fluorinated ethylene propylene

FPGA:

Field-programmable gate array

HTCC:

High temperature co-fired ceramics

IC:

Integrated electronic circuit

IDE:

Investigational device exemption

IPG:

Implantable pulse generator

IrOx:

Iridium oxide

LCP:

Liquid-crystal polymer

LTCC:

Low temperature co-fired ceramics

MDR:

Medical Device Regulation

MEMS:

Microelectromechanical systems

MIL-STD:

Military standard

MRI:

Magnetic resonance imaging

OHCI:

Occult hepatitis C viral infection

PDMS:

Polydimethylsiloxane

PEI:

Polyesterimide

PMA:

Premarket approval

PtIr:

Platinum-iridium alloy

RF:

Radio frequency

RIE:

Reactive ion etching

RTV:

Room temperature vulcanizing

SIROF:

Sputtered iridium oxide

SMD:

Surface mount devices

SSED:

Summary of Safety and Effectiveness Data

TRL:

Technology readiness level

UEA:

Utah electrode array

USP:

US Pharmacopeia

WVTR:

Water vapor transmission rate

References

  1. FDA Premarket Approval-PMA. https://www.fda.gov/medical-devices/premarket-submissions/premarket-approval-pma. Accessed 25 Aug 2020

  2. EU-MDR. Medical Device Regulation (MDR): 2017/745/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0745 (2017). Accessed 25 Aug 2020

  3. Chardack, W.M., Gage, A.A., Greatbatch, W.: A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgery. 48, 643–654 (1960)

    Google Scholar 

  4. Larsson, B., Elmqvist, H., Rydén, L., et al.: Lessons from the first patient with an implanted pacemaker: 1958–2001. Pacing Clin. Electrophysiol. 26, 114–124 (2003). https://doi.org/10.1046/j.1460-9592.2003.00162.x

    Article  Google Scholar 

  5. Stieglitz, T.: Integration of microfluidic capabilities into micromachined neural implants. Int. J. Micro-nano Scale Transp. 1, 139–158 (2010). https://doi.org/10.1260/1759-3093.1.2.139

    Article  Google Scholar 

  6. Markewitz, A., Kronski, D., Kammeyer, A., et al.: Determinants of dual chamber pulse generators longevity. Pacing Clin. Electrophysiol. 18, 2116–2120 (1995). https://doi.org/10.1111/j.1540-8159.1995.tb04635.x

    Article  Google Scholar 

  7. Stieglitz, T.: Of man and mice: translational research in Neurotechnology. Neuron. 105, 12–15 (2020). https://doi.org/10.1016/j.neuron.2019.11.030

    Article  Google Scholar 

  8. Erhardt, J.B., Fuhrer, E., Gruschke, O.G., et al.: Should patients with brain implants undergo MRI? J. Neural Eng. 15, 41002 (2018). https://doi.org/10.1088/1741-2552/aab4e4

    Article  Google Scholar 

  9. Eckmiller, R.: Learning retina implants with epiretinal contacts. Ophthalmic Res. 29, 281–289 (1997). https://doi.org/10.1159/000268026

    Article  Google Scholar 

  10. Maynard, E.M.: Visual prostheses. Annu. Rev. Biomed. Eng. 3, 145–168 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.145

    Article  Google Scholar 

  11. Zrenner, E.: Will retinal implants restore vision? Science. 295, 1022–1025 (2002). https://doi.org/10.1126/science.1067996

    Article  Google Scholar 

  12. Ayton, L.N., Barnes, N., Dagnelie, G., et al.: An update on retinal prostheses. Clin. Neurophysiol. 131, 1383–1398 (2020). https://doi.org/10.1016/j.clinph.2019.11.029

    Article  Google Scholar 

  13. Nowik, K., Langwińska-Wośko, E., Skopiński, P., et al.: Bionic eye review – an update. J. Clin. Neurosci. (2020). https://doi.org/10.1016/j.jocn.2020.05.041

  14. Roessler, G., Laube, T., Brockmann, C., et al.: Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest. Ophthalmol. Vis. Sci. 50, 3003–3008 (2009). https://doi.org/10.1167/iovs.08-2752

    Article  Google Scholar 

  15. Stieglitz, T.: Development of a micromachined epiretinal vision prosthesis. J. Neural Eng. 6, 65005 (2009). https://doi.org/10.1088/1741-2560/6/6/065005

    Article  Google Scholar 

  16. Stieglitz, T.: Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16, 723–734 (2010). https://doi.org/10.1007/s00542-009-0988-x

    Article  Google Scholar 

  17. Stieglitz, T., Schuettler, M.: Implant interfaces. In: Inmann, A., Hodgins, D. (eds.) Implantable Sensor Systems for Medical Applications, pp. 39–67. Woodhead Publishing Limited, Cambridge, UK (2013)

    Chapter  Google Scholar 

  18. Schuettler, M., Stieglitz, T.: Assembly and packaging. In: Inmann, A., Hodgins, D. (eds.) Implantable Sensor Systems for Medical Applications, pp. 108–149. Woodhead Publishing Limited, Cambridge, UK (2013)

    Chapter  Google Scholar 

  19. Kim, S., Bhandari, R., Klein, M., et al.: Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices. 11, 453–466 (2009). https://doi.org/10.1007/s10544-008-9251-y

    Article  Google Scholar 

  20. Osenbach, F.W.: Water-induced corrosion of materials used for semiconductor passivation. J. Electrochem. Soc. 140, 3667–3675 (1993)

    Article  Google Scholar 

  21. Thomas, R.W.: Moisture, myths, and microcircuits. IEEE Trans. Parts, Hybrids Packaging. PHP-12, 167–171 (1976)

    Article  Google Scholar 

  22. Vogt, M., Hauptmann, R.: Plasma-deposited passivation layers for moisture and water protection. Surf. Coat. Technol. 74-75, 676–681 (1995). https://doi.org/10.1016/0257-8972(95)08268-9

    Article  Google Scholar 

  23. Donaldson, P.E., Sayer, E.: Silicone-rubber adhesives as encapsulants for microelectronic implants; effect of high electric fields and of tensile stress. Med. Biol. Eng. Comput. 15, 712–715 (1977). https://doi.org/10.1007/bf02457937

    Article  Google Scholar 

  24. Traeger, R.: Nonhermeticity of polymeric lid sealants. IEEE Trans. Parts, Hybrids Packaging. 13, 147–152 (1977)

    Article  Google Scholar 

  25. Ripka, G., Harsanyi, G.: Electrochemical migration in thick-film IC-S. Electrocompon. Sci. Technol. 11, 281–290 (1985)

    Article  Google Scholar 

  26. Lau, J.H. (ed.): Flip Chip Technologies Electronic packaging and interconnection series. McGraw Hill, New York (1996)

    Google Scholar 

  27. Edell, D.A.: Insulating biomaterials. In: Dhillon, G.S., Horch, K.W. (eds.) Neuroprosthetics: Theory and Practice. World Scientific Pub. Co, Singapore/Hackensack (2004)

    Google Scholar 

  28. Donaldson, P.E.K.: The essential role played by adhesion in the technology of neurological prostheses. Int. J. Adhes. Adhes. 16, 105–107 (1996). https://doi.org/10.1016/0143-7496(95)00031-3

    Article  Google Scholar 

  29. Greenhouse, H. (ed.): Hermeticity of Electronic Packages. Noyes Publishers, Park Ridge (2000)

    Google Scholar 

  30. Licari, J.J., Enlow, L.R.: Hybrid Microcircuit Technology Handbook: Materials, Processes, Design, Testing and Production Materials Science and Process Technology Series, 2nd edn. Noyes Publications, Westwood (2010)

    Google Scholar 

  31. Ziaie, B., von Arx, J.A., Dokmeci, M.R., et al.: A hermetic glass-silicon micropackage with high-density on-chip feedthroughs for sensors and actuators. J. Microelectromech. Syst. 5, 166–179 (1996). https://doi.org/10.1109/84.536623

    Article  Google Scholar 

  32. Zhou, D., Greenbaum, E.: Implantable Neural Prostheses 2: Techniques and Engineering Approaches. Biological and Medical Physics, Biomedical Engineering. Springer Science+Business Media LLC, New York (2010)

    Book  Google Scholar 

  33. Schuettler, M., Ordonez, J.S., Silva Santisteban, T., et al.: Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 1585–1588 (2010). https://doi.org/10.1109/IEMBS.2010.5626677

    Article  Google Scholar 

  34. Kohler, F., Gkogkidis, C.A., Bentler, C., et al.: Closed-loop interaction with the cerebral cortex: a review of wireless implant technology. Brain-Computer Interfaces. 4, 146–154 (2017). https://doi.org/10.1080/2326263X.2017.1338011

    Article  Google Scholar 

  35. Guenther, T., Dodds, C.W.D., Lovell, N.H., et al.: Chip-scale hermetic feedthroughs for implantable bionics. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 6717–6720 (2011). https://doi.org/10.1109/IEMBS.2011.6091656

    Article  Google Scholar 

  36. Ordonez, J.S., Schuettler, M., Ortmanns, M., et al.: A 232-channel retinal vision prosthesis with a miniaturized hermetic package. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2796–2799 (2012). https://doi.org/10.1109/EMBC.2012.6346545

    Article  Google Scholar 

  37. Kohler, F., Stieglitz, T., Schuettler, M.: Mechanical reliability of ceramic packages for active implantable medical devices – the IEC hammer test. Int. Symp. Microelectron. 2014, 319–324 (2014). https://doi.org/10.4071/isom-TP52

    Article  Google Scholar 

  38. Schuettler, M., Schatz, A., Ordonez, J.S., et al.: Ensuring minimal humidity levels in hermetic implant housings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2296–2299 (2011). https://doi.org/10.1109/IEMBS.2011.6090578

    Article  Google Scholar 

  39. Loeb, G.E., Peck, R.A., Moore, W.H., et al.: BION™ system for distributed neural prosthetic interfaces. Med. Eng. Phys. 23, 9–18 (2001). https://doi.org/10.1016/s1350-4533(01)00011-x

    Article  Google Scholar 

  40. Cameron, T., Loeb, G.E., Peck, R.A., et al.: Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs. I.E.E.E. Trans. Biomed. Eng. 44, 781–790 (1997). https://doi.org/10.1109/10.623047

    Article  Google Scholar 

  41. Rudmann, L., Langenmair, M., Hahn, B., et al.: Novel desiccant-based very low humidity indicator for condition monitoring in miniaturized hermetic packages of active implants. Sensors Actuators B Chem., 128555 (2020). https://doi.org/10.1016/j.snb.2020.128555

  42. Mackay, R.S.: Implanted transmitters and body fluid permeability. I.E.E.E. Trans. Biomed. Eng. BME-12, 198–199 (1965). https://doi.org/10.1109/TBME.1965.4502381

    Article  Google Scholar 

  43. Ramachandran, A., Junk, M., Koch, K.P., et al.: A study of Parylene C polymer deposition inside microscale gaps. IEEE Trans. Adv. Packag. 30, 712–724 (2007). https://doi.org/10.1109/TADVP.2007.901662

    Article  Google Scholar 

  44. Lovely, D.F., Olive, M.B., Scott, R.N.: Epoxy moulding system for the encapsulation of microelectronic devices suitable for implantation. Med. Biol. Eng. Comput. 24, 206–208 (1986). https://doi.org/10.1007/bf02443939

    Article  Google Scholar 

  45. Hassler, C., Boretius, T., Stieglitz, T.: Polymers for neural implants. J. Polym. Sci. B Polym. Phys. 49, 18–33 (2011). https://doi.org/10.1002/polb.22169

    Article  Google Scholar 

  46. Takmakov, P., Ruda, K., Scott Phillips, K., et al.: Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J. Neural Eng. 12, 26003 (2015). https://doi.org/10.1088/1741-2560/12/2/026003

    Article  Google Scholar 

  47. Donaldson, P.E.K.: Hydrothermal stability of joints, using a silicone rubber adhesive, for a range of adherents of interest to makers of surgically-implanted microelectronic devices. Int. J. Adhes. Adhes. 14, 103–107 (1994)

    Article  Google Scholar 

  48. Loeb, G.E., Bak, M.J., Salcman, M., et al.: Parylene as a chronically stable, reproducible microelectrode insulator. I.E.E.E. Trans. Biomed. Eng. 24, 121–128 (1977). https://doi.org/10.1109/TBME.1977.326115

    Article  Google Scholar 

  49. Rusu, L.-C., Ardelean, L.C., Jitariu, A.-A., et al.: An insight into the structural diversity and clinical applicability of polyurethanes in biomedicine. Polymers (Basel). 12 (2020). https://doi.org/10.3390/polym12051197

  50. Pacheco, K.A.: Allergy to surgical implants. Clin. Rev. Allergy Immunol. 56, 72–85 (2019). https://doi.org/10.1007/s12016-018-8707-y

    Article  Google Scholar 

  51. Skoet, R., Tollund, C., Bloch-Thomsen, P.E.: Epoxy contact dermatitis due to pacemaker compounds. Cardiology. 99, 112 (2003). https://doi.org/10.1159/000069721

    Article  Google Scholar 

  52. DAVIES, J.G., SIDDONS, H.: Experience with implanted pacemakers: technical considerations. Thorax. 20, 128–134 (1965). https://doi.org/10.1136/thx.20.2.128

    Article  Google Scholar 

  53. Fisher, J.D., Furman, S., Parker, B., et al.: Pacemaker failures characterized by continuous direct current leakage. Am. J. Cardiol. 37, 1019–1023 (1976). https://doi.org/10.1016/0002-9149(76)90418-5

    Article  Google Scholar 

  54. Donaldson, P.E.K.: In search of the reliable microelectronic implant. Trends Neurosci. 1, 49–50 (1978). https://doi.org/10.1016/0166-2236(78)90019-X

    Article  Google Scholar 

  55. Kenney, L.P.J., Hermens, H., Francis, D., et al.: Encapsulation materials for implantable FES systems – a case study. In: Sinkjær, T., Popović, D., Struijk, J.J. (eds.) Proceedings. Center for Sensory-Motor Interaction (SMI). Aalborg University, Aalborg (2000)

    Google Scholar 

  56. Love, C.J.: Cardiac Pacemakers and Defibrillators: Medical Handbook-Vademecum, 2nd edn. Landes Bioscience, Georgetown (2006)

    Google Scholar 

  57. Hassler, C., von Metzen, R.P., Ruther, P., et al.: Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res Part B Appl Biomater. 93, 266–274 (2010). https://doi.org/10.1002/jbm.b.31584

    Article  Google Scholar 

  58. Schanze, T., Hesse, L., Lau, C., et al.: An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses. I.E.E.E. Trans. Biomed. Eng. 54, 983–992 (2007). https://doi.org/10.1109/TBME.2007.895866

    Article  Google Scholar 

  59. Finetech Medical Finetech-Brindley – Bladder Control System. https://finetech-medical.co.uk/products/finetech-brindley-bladder-control-system/. Accessed 10 Jul 2020

  60. Donaldson, N., Baviskar, P., Cunningham, J., et al.: The permeability of silicone rubber to metal compounds: relevance to implanted devices. J. Biomed. Mater. Res. A. 100, 588–598 (2012). https://doi.org/10.1002/jbm.a.33257

    Article  Google Scholar 

  61. Ardebili, H., Pecht, M.: Encapsulation Technologies for Electronic Applications. Materials and Processes for Electronic Applications Series. William Andrew, Oxford (2009)

    Google Scholar 

  62. Bouton, C.: Cracking the neural code, treating paralysis and the future of bioelectronic medicine. J. Intern. Med. 282, 37–45 (2017). https://doi.org/10.1111/joim.12610

    Article  Google Scholar 

  63. Govaerts, J., Christiaens, W., Bosman, E., et al.: Fabrication processes for embedding thin chips in flat flexible substrates. IEEE Trans. Adv. Packag. 32, 77–83 (2009). https://doi.org/10.1109/TADVP.2008.2005838

    Article  Google Scholar 

  64. Burghartz, J.: Ultra-Thin Chip Technology and Applications. Springer Science+Business Media LLC, New York (2011)

    Book  Google Scholar 

  65. Abdulagatov, A.I., Yan, Y., Cooper, J.R., et al.: Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interfaces. 3, 4593–4601 (2011). https://doi.org/10.1021/am2009579

    Article  Google Scholar 

  66. Choi, H., Lee, S., Jung, H., et al.: Moisture barrier properties of Al 2 O 3 films deposited by remote plasma atomic layer deposition at low temperatures. Jpn. J. Appl. Phys. 52, 35502 (2013). https://doi.org/10.7567/JJAP.52.035502

    Article  Google Scholar 

  67. Schaubroeck, D., Verplancke, R., Cauwe, M., et al.: Polyimide-ald-polyimide layers as hermetic encapsulant for implants. Presented at the XXXI international conference on surface modification technologies (SMT31), pp. 1–6 (2017)

    Google Scholar 

  68. Jeong, J., Laiwalla, F., Lee, J., et al.: Conformal hermetic sealing of wireless microelectronic implantable Chiplets by multilayered atomic layer deposition (ALD). Adv. Funct. Mater. 1806440 (2018). https://doi.org/10.1002/adfm.201806440

  69. Lee, J., Laiwalla, F., Jeong, J., et al.: Wireless power and data link for ensembles of sub-mm scale implantable sensors near 1GHz. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp 1–4. IEEE, Piscataway, NJ (USA) (2018). https://doi.org/10.1109/BIOCAS.2018.8584725

  70. Neely, R.M., Piech, D.K., Santacruz, S.R., et al.: Recent advances in neural dust: towards a neural interface platform. Curr. Opin. Neurobiol. 50, 64–71 (2018). https://doi.org/10.1016/j.conb.2017.12.010

    Article  Google Scholar 

  71. Minnikanti, S., Diao, G., Pancrazio, J.J., et al.: Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. Acta Biomater. 10, 960–967 (2014). https://doi.org/10.1016/j.actbio.2013.10.031

    Article  Google Scholar 

  72. Donaldson, P.E.: Aspects of silicone rubber as an encapsulant for neurological prostheses. Part 1. Osmosis. Med. Biol. Eng. Comput. 29, 34–39 (1991). https://doi.org/10.1007/BF02446293

    Article  Google Scholar 

  73. Mackay, R.S.: Bio-Medical Telemetry: Sensing and Transmitting Biological Information from Animals and Man, 2nd edn. IEEE Press, New York (1993)

    Google Scholar 

  74. Ko, W.H., Spear, T.M.: Packaging materials and techniques for implantable instruments. IEEE Eng. Med. Biol. Mag. 2, 24–38 (1983). https://doi.org/10.1109/EMB-M.1983.5005879

    Article  Google Scholar 

  75. Donaldson, P.E., Sayer, E.: A vacuum centrifuge for void-free potting of implantable hybrid microcircuits in silicone. Med. Biol. Eng. 13, 595–596 (1975). https://doi.org/10.1007/BF02477144

    Article  Google Scholar 

  76. Koch, J., Schuettler, M., Pasluosta, C., et al.: Electrical connectors for neural implants: design, state of the art and future challenges of an underestimated component. J. Neural Eng. 16, 61002 (2019). https://doi.org/10.1088/1741-2552/ab36df

    Article  Google Scholar 

  77. Mills, J.O., Jalil, A., Stanga, P.E.: Electronic retinal implants and artificial vision: journey and present. Eye (Lond.). 31, 1383–1398 (2017). https://doi.org/10.1038/eye.2017.65

    Article  Google Scholar 

  78. Daly, J.J., Wolpaw, J.R.: Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008). https://doi.org/10.1016/S1474-4422(08)70223-0

    Article  Google Scholar 

  79. Raspopovic, S., Capogrosso, M., Petrini, F.M., et al.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014). https://doi.org/10.1126/scitranslmed.3006820

    Article  Google Scholar 

  80. Petrini, F.M., Bumbasirevic, M., Valle, G., et al.: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019). https://doi.org/10.1038/s41591-019-0567-3

    Article  Google Scholar 

  81. Petrini, F.M., Valle, G., Bumbasirevic, M., et al.: Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11 (2019). https://doi.org/10.1126/scitranslmed.aav8939

  82. Tan, D.W., Schiefer, M.A., Keith, M.W., et al.: A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014). https://doi.org/10.1126/scitranslmed.3008669

    Article  Google Scholar 

  83. Hochberg, L.R., Serruya, M.D., Friehs, G.M., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442, 164–171 (2006). https://doi.org/10.1038/nature04970

    Article  Google Scholar 

  84. Donaldson, P.E.: The Cooper cable: an implantable multiconductor cable for neurological prostheses. Med. Biol. Eng. Comput. 21, 371–374 (1983). https://doi.org/10.1007/BF02478508

    Article  Google Scholar 

  85. Stieglitz, T., Schuettler, M., Rubehn, B., et al.: Evaluation of polyimide as substrate material for electrodes to interface the peripheral nervous system. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp. 529–533. IEEE (2011). https://doi.org/10.1109/NER.2011.5910602

  86. Petrini, F.M., Valle, G., Strauss, I., et al.: Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85, 137–154 (2019). https://doi.org/10.1002/ana.25384

    Article  Google Scholar 

  87. Robinson, J.T., Pohlmeyer, E., Gather, M.C., et al.: Developing next-generation brain sensing technologies – a review. IEEE Sensors J. 19 (2019). https://doi.org/10.1109/jsen.2019.2931159

  88. US FDA CDRH. Summary of safety and probable benefit: medtronic Reclaim™ DBS therapy for OCD (H050003). https://www.accessdata.fda.gov/cdrh_docs/pdf5/H050003b.pdf (2009). Accessed 24 Aug 2020

  89. US FDA CDRH. Summary of safety and effectiveness data: brio neurostimulation system (P140009). https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140009b.pdf (2015). Accessed 24 Aug 2020

  90. NeuroPace I. 2017 RNS® system user manual: DN 1017337

    Google Scholar 

  91. US FDA CDRH. Summary of safety and effectiveness data: Algovita™ Spinal Cord Stimulation (SCS) system (P130028). https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130028b.pdf (2015). Accessed 24 Aug 2020

  92. US FDA CDRH 2015. Summary of safety and effectiveness data: Senza Spinal Cord Stimulation (SCS) system (P130022). https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130022b.pdf (2020)

  93. US FDA CDRH. Summary of safety and effectiveness data: RNS® system (P100026). https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100026b.pdf (2013). Accessed 24 Aug 2020

  94. IEC. IEC 62366–1 2015 medical devices – Part 1: application of usability engineering to medical devices. International Organization for Standardization, Geneva, Switzerland (2015)

    Google Scholar 

  95. US FDA and HHS. Code of federal regulations 21 – food and drugs. Part 820. Food and Drug Administration, Silver Spring, MD (USA) (2019)

    Google Scholar 

  96. U.S. HHS, FDA and CDRH. Applying human factors and usability engineering to medical devices-guidance. Food and Drug Administration, Silver Spring, MD (USA) (2016)

    Google Scholar 

  97. Schüttler, M.: Dreidimensionale Formgebung von planaren Mikroelektroden zur Optimierung der Signalableitung und Stimulation am peripheren Nerven. Dissertation, Zugl.: Saarbrücken, University. Fraunhofer-IRB-Verl., Stuttgart (2002)

    Google Scholar 

  98. Letechipia, J.E., Peckham, P.H., Gazdik, M., et al.: In-line lead connector for use with implanted neuroprosthesis. I.E.E.E. Trans. Biomed. Eng. 38, 707–709 (1991). https://doi.org/10.1109/10.83572

    Article  Google Scholar 

  99. Mond, H.G., Helland, J.R., Fischer, A.: The evolution of the cardiac implantable electronic device connector. Pacing Clin. Electrophysiol. 36, 1434–1446 (2013). https://doi.org/10.1111/pace.12211

    Article  Google Scholar 

  100. Le Pimpec-Barthes, F., Gonzalez-Bermejo, J., Hubsch, J.-P., et al.: Intrathoracic phrenic pacing: a 10-year experience in France. J. Thorac. Cardiovasc. Surg. 142, 378–383 (2011). https://doi.org/10.1016/j.jtcvs.2011.04.033

    Article  Google Scholar 

  101. Bhadra, N., Kilgore, K.L., Peckham, P.H.: Implanted stimulators for restoration of function in spinal cord injury. Med. Eng. Phys. 23, 19–28 (2001). https://doi.org/10.1016/s1350-4533(01)00012-1

    Article  Google Scholar 

  102. Schuettler, M., Stiess, S., King, B.V., et al.: Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J. Neural Eng. 2, S121–S128 (2005). https://doi.org/10.1088/1741-2560/2/1/013

    Article  Google Scholar 

  103. Green, R.A., Ordonez, J.S., Schuettler, M., et al.: Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials. 31, 886–893 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.099

    Article  Google Scholar 

  104. Henle, C., Raab, M., Cordeiro, J.G., et al.: First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed. Microdevices. 13, 59–68 (2011). https://doi.org/10.1007/s10544-010-9471-9

    Article  Google Scholar 

  105. Ordonez, J.S., Pikov, V., Wiggins, H., et al.: Cuff electrodes for very small diameter nerves – prototyping and first recordings in vivo. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 6846–6849 (2014). https://doi.org/10.1109/EMBC.2014.6945201

    Article  Google Scholar 

  106. Henle, C., Hassler, C., Kohler, F., et al.: Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 640–643 (2011). https://doi.org/10.1109/IEMBS.2011.6090142

    Article  Google Scholar 

  107. FDA. AirRay subdural cortical electrodes. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K183437 (2019). Accessed 25 Aug 2020

  108. Navarro, X., Krueger, T.B., Lago, N., et al.: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005). https://doi.org/10.1111/j.1085-9489.2005.10303.x

    Article  Google Scholar 

  109. Wise, K.D., Anderson, D.J., Hetke, J.F., et al.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE. 92, 76–97 (2004). https://doi.org/10.1109/JPROC.2003.820544

    Article  Google Scholar 

  110. Ruther, P., Paul, O.: New approaches for CMOS-based devices for large-scale neural recording. Curr. Opin. Neurobiol. 32, 31–37 (2015). https://doi.org/10.1016/j.conb.2014.10.007

    Article  Google Scholar 

  111. Patil, A.C., Thakor, N.V.: Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54, 23–44 (2016). https://doi.org/10.1007/s11517-015-1430-4

    Article  Google Scholar 

  112. Tang, L.-J., Wang, M.-H., Tian, H.-C., et al.: Progress in research of flexible MEMS microelectrodes for neural Interface. Micromachines (Basel). 8 (2017). https://doi.org/10.3390/mi8090281

  113. Won, S.M., Song, E., Zhao, J., et al.: Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. Weinheim. 30, e1800534 (2018). https://doi.org/10.1002/adma.201800534

    Article  Google Scholar 

  114. Wise, K.D., Angell, J.B., Starr, A.: An integrated-circuit approach to extracellular microelectrodes. I.E.E.E. Trans. Biomed. Eng. 17, 238–247 (1970). https://doi.org/10.1109/tbme.1970.4502738

    Article  Google Scholar 

  115. Bai, Q., Wise, K.D., Anderson, D.J.: A high-yield microassembly structure for three-dimensional microelectrode arrays. I.E.E.E. Trans. Biomed. Eng. 47, 281–289 (2000). https://doi.org/10.1109/10.827288

    Article  Google Scholar 

  116. Najafi, K., Wise, K.D.: An implantable multielectrode array with on-chip signal processing. IEEE J. Solid State Circuits. 21, 1035–1044 (1986). https://doi.org/10.1109/JSSC.1986.1052646

    Article  Google Scholar 

  117. Kisban, S., Herwik, S., Seidl, K., et al.: Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 175–178 (2007). https://doi.org/10.1109/IEMBS.2007.4352251

    Article  Google Scholar 

  118. Torfs, T., Aarts, A.A.A., Erismis, M.A., et al.: Two-dimensional multi-channel neural probes with electronic depth control. IEEE Trans. Biomed. Circuits Syst. 5, 403–412 (2011). https://doi.org/10.1109/TBCAS.2011.2162840

    Article  Google Scholar 

  119. Campbell, P.K., Jones, K.E., Huber, R.J., et al.: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. I.E.E.E. Trans. Biomed. Eng. 38, 758–768 (1991). https://doi.org/10.1109/10.83588

    Article  Google Scholar 

  120. Brandman, D.M., Cash, S.S., Hochberg, L.R.: Review: human intracortical recording and neural decoding for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1687–1696 (2017). https://doi.org/10.1109/TNSRE.2017.2677443

    Article  Google Scholar 

  121. Hochberg, L.R., Bacher, D., Jarosiewicz, B., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485, 372–375 (2012). https://doi.org/10.1038/nature11076

    Article  Google Scholar 

  122. Barrese, J.C., Aceros, J., Donoghue, J.P.: Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J. Neural Eng. 13, 26003 (2016). https://doi.org/10.1088/1741-2560/13/2/026003

    Article  Google Scholar 

  123. Barrese, J.C., Rao, N., Paroo, K., et al.: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10, 66014 (2013). https://doi.org/10.1088/1741-2560/10/6/066014

    Article  Google Scholar 

  124. Ordonez, J., Schuettler, M., Boehler, C., et al.: Thin films and microelectrode arrays for neuroprosthetics. MRS Bull. 37, 590–598 (2012). https://doi.org/10.1557/mrs.2012.117

    Article  Google Scholar 

  125. Rubehn, B., Bosman, C., Oostenveld, R., et al.: A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 36003 (2009). https://doi.org/10.1088/1741-2560/6/3/036003

    Article  Google Scholar 

  126. Čvančara, P., Boretius, T., López-Álvarez, V.M., et al.: Stability of flexible thin-film metallization stimulation electrodes: analysis of explants after first-in-human study and improvement of in vivo performance. J. Neural Eng. 17, 46006 (2020). https://doi.org/10.1088/1741-2552/ab9a9a

    Article  Google Scholar 

  127. Stieglitz, T., Beutel, H., Schuettler, M., et al.: Micromachined, polyimide-based devices for flexible nueral interfaces. Biomed. Microdevices. 2, 283–294 (2000). https://doi.org/10.1023/A:1009955222114

    Article  Google Scholar 

  128. Cheung, K.C., Renaud, P., Tanila, H., et al.: Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens. Bioelectron. 22, 1783–1790 (2007). https://doi.org/10.1016/j.bios.2006.08.035

    Article  Google Scholar 

  129. Bockhorst, T., Pieper, F., Engler, G., et al.: Synchrony surfacing: epicortical recording of correlated action potentials. Eur. J. Neurosci. 48, 3583–3596 (2018). https://doi.org/10.1111/ejn.14167

    Article  Google Scholar 

  130. Bosman, C.A., Schoffelen, J.-M., Brunet, N., et al.: Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron. 75, 875–888 (2012). https://doi.org/10.1016/j.neuron.2012.06.037

    Article  Google Scholar 

  131. Badia, J., Boretius, T., Pascual-Font, A., et al.: Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. I.E.E.E. Trans. Biomed. Eng. 58 (2011). https://doi.org/10.1109/TBME.2011.2153850

  132. La Oliva N de, Navarro, X., Del Valle, J.: Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J. Biomed. Mater. Res. A. 106, 746–757 (2018). https://doi.org/10.1002/jbm.a.36274

    Article  Google Scholar 

  133. Vomero, M., Porto Cruz, M.F., Zucchini, E., et al.: Conformable polyimide-based μECoGs: bringing the electrodes closer to the signal source. Biomaterials. 255, 120178 (2020). https://doi.org/10.1016/j.biomaterials.2020.120178

    Article  Google Scholar 

  134. Nature: Method of the year 2010. Nat. Methods. 8, 1 (2011). https://doi.org/10.1038/nmeth.f.321

    Article  Google Scholar 

  135. Alt, M.T., Fiedler, E., Rudmann, L., et al.: Let there be light – Optoprobes for neural implants. Proc. IEEE. 105, 101–138 (2017). https://doi.org/10.1109/JPROC.2016.2577518

    Article  Google Scholar 

  136. Rudmann, L., Alt, M.T., Ashouri Vajari, D., et al.: Integrated optoelectronic microprobes. Curr. Opin. Neurobiol. 50, 72–82 (2018). https://doi.org/10.1016/j.conb.2018.01.010

    Article  Google Scholar 

  137. Son, Y., Lee, H.J., Kim, J., et al.: In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci. Rep. 5, 15466 (2015). https://doi.org/10.1038/srep15466

    Article  Google Scholar 

  138. Wu, F., Stark, E., Ku, P.-C., et al.: Monolithically integrated μLEDs on silicon neural probes for high-resolution Optogenetic studies in behaving animals. Neuron. 88, 1136–1148 (2015). https://doi.org/10.1016/j.neuron.2015.10.032

    Article  Google Scholar 

  139. Seo, D., Neely, R.M., Shen, K., et al.: Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron. 91, 529–539 (2016). https://doi.org/10.1016/j.neuron.2016.06.034

    Article  Google Scholar 

  140. Luan, L., Wei, X., Zhao, Z., et al.: Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017). https://doi.org/10.1126/sciadv.1601966

    Article  Google Scholar 

  141. Goding, J., Vallejo-Giraldo, C., Syed, O., et al.: Considerations for hydrogel applications to neural bioelectronics. J. Mater. Chem. B. 7, 1625–1636 (2019). https://doi.org/10.1039/c8tb02763c

    Article  Google Scholar 

  142. Kang, S.-K., Murphy, R.K.J., Hwang, S.-W., et al.: Bioresorbable silicon electronic sensors for the brain. Nature. 530, 71–76 (2016). https://doi.org/10.1038/nature16492

    Article  Google Scholar 

  143. EU. Technology readiness levels (TRL); Extract from Part 19 – Commission Decision C (2014)4995. https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf (2014). Accessed 27 Mar 2020

  144. Osawa, Y., Miyazaki, K.: An empirical analysis of the valley of death: large-scale R&D project performance in a Japanese diversified company. Asian J. Technol. Innov. 14, 93–116 (2006). https://doi.org/10.1080/19761597.2006.9668620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stieglitz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stieglitz, T. (2021). Implantable Device Fabrication and Packaging. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_102-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics