Skip to main content

Advertisement

Log in

DNA Metabarcoding Reveals Cryptic Diversity in Forest Soils on the Isolated Brazilian Trindade Island, South Atlantic

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Located 1140 km from the South American coastline in the South Atlantic Ocean and with an age of 4 million years, Trindade Island is the most recent volcanic component of Brazilian territory. Its original native vegetation has been severely damaged by human influence, in particular through the introduction of exotic grazing animals such as goats. However, since the complete eradication of goats and other feral animals in the late 1990s, the island’s vegetation has been recovering, and even some endemic species that had been considered extinct have been rediscovered. In this study, we set out to characterize the contemporary cryptic diversity in soils of the recovering native forest of Trindade Island using metabarcoding by high throughput sequencing (HTS). The sequence diversity obtained was dominated by microorganisms, including three domains (Bacteria, Archaea, and Eukarya) and five kingdoms (Fungi, Metazoa, Protozoa, Chromista, and Viridiplantae). Bacteria were represented by 20 phyla and 116 taxa, with Archaea by only one taxon. Fungi were represented by seven phyla and 250 taxa, Viridiplantae by five phyla and six taxa, Protozoa by five phyla and six taxa, Metazoa by three phyla and four taxa and Chromista by two phyla and two taxa. Even after the considerable anthropogenic impacts and devastation of the island’s natural forest, our sequence data reveal the presence of a rich and complex diversity of microorganisms, invertebrates, and plants and provide important baseline biodiversity information that will contribute to ecological restoration efforts on the island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data will be made available once the paper is accepted and prior to its publication if required by the journal.

References

  1. Almeida FFM de (2002) Ilha de Trindade – registro de vulcanismo cenozoico no Atlântico Sul. In: Schobbenhaus C, Campos DA, Queiroz ET, Winge M, Berbet-Born MLC (ed) Sítios geológicos e paleontológicos do Brasil, 1st edn. Comissão Brasileira de Sítios Geológicos e Paleobiológicos, Brasília, pp 369–377.

  2. Pires GLC, Bongiolo EM (2016) The nephelinitic–Phonolitic volcanism of the Trindade Island (South Atlantic Ocean): review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites. J South Am Earth Sci 72:49–62. https://doi.org/10.1016/j.jsames.2016.07.008

    Article  CAS  Google Scholar 

  3. Pires GLC, Bongiolo EM, Geraldes MC, Renac C, Santos AC, Jourdan F, Neumann R (2016) New 40Ar/39Ar ages and revised 40K/40Ar data from nephelinitic–phonolitic volcanic successions of the Trindade Island (South Atlantic Ocean). J Volcanol Geotherm Res 327:531–538. https://doi.org/10.1016/j.jvolgeores.2016.09.020

    Article  CAS  Google Scholar 

  4. Duarte RH, Horta GCMM (2012) Barth e a ilha da Trindade, 1957–1959. História, Ciências, Saúde – Manguinhos, Rio de Janeiro. https://doi.org/10.1590/S0104-59702012000300010

  5. Serafini TZ, França GBD, Andriguetto-filho JM (2010) Ilhas oceânicas brasileiras: biodiversidade conhecida e sua relação com o histórico de uso e ocupação humana. J Integr Coast Zone Manag 10:281–301. https://doi.org/10.5894/rgci178

    Article  Google Scholar 

  6. Alves RJV (1998) Ilha da Trindade e Arquipélago Martin Vaz - Um Ensaio Geobotânico. Serviço de Documentação. Marinha do Brasil, Rio de Janeiro

  7. Faria ALA, Salino A, Carvalho-Silva M, Stech M, Amorim ET, Câmara PEAS (2021) Cyathea Sm (Cyatheaceae) on Trindade Island (Brazil) an integrative approach. Phytotaxa 487:26–40. https://doi.org/10.11646/phytotaxa.487.1.2

    Article  Google Scholar 

  8. Wace NM, Dickson JH (1965) Part II. The terrestrial botany of the Tristan da Cunha Islands Phil. Trans R Soc Lond B 249:273–360. https://doi.org/10.1098/rstb.1965.0014

    Article  Google Scholar 

  9. Alves RJV (2006) Terrestrial vascular floras of Brazil’s oceanic archipelagos. In: Alves RJV, Castro JW de A (ed) Ilhas oceânicas brasileiras: da pesquisa ao manejo, 1st edn. MMA Secretaria de Biodiversidade e Florestas, Brasília, pp 83–104

  10. Dantas TS, Câmara PEAS, Carvalho-Silva M (2017) Peperomia (Piperaceae) from Trindade Island: a new species on morphological and Molecular Data. Syst Bot 42:747–753. https://doi.org/10.1600/036364417X696366

    Article  Google Scholar 

  11. Faria ALA, Carvalho-Silva M, Costa DPD, Câmara PEAS (2012) As briófitas da Ilha da Trindade, Atlântico Sul, Brasil. Acta Bot Brasilica 26:785–795. https://doi.org/10.1590/S0102-33062012000400008

    Article  Google Scholar 

  12. Leal JHN, Bouchet P (1991) Distribution patterns and dispersal of prosobranch gastropods along a seamount chain in the Atlantic Ocean. J Mar Biolog Assoc UK 71:11–25. https://doi.org/10.1017/S0025315400037358

    Article  Google Scholar 

  13. Rangel CA, Gasparini JL, Guimarães RZP (2004) A new species of combtooth-blenny Scartella Jordan, 1886 (Teleostei: Blenniidae) from Trindade Island, Brazil. Aqua 8:89–96

    Google Scholar 

  14. Pinheiro HT, Gasparini JL (2009) Peixes recifais do complexo insular oceânico Trindade-Martin Vaz: novas ocorrências, atividades de pesca, mortandade natural e conservação. In: Mohr, LV, Castro JWA, Costa PMS, Alves RJV (ed) Ilhas oceânicas brasileiras: da pesquisa ao manejo, 1st edn. MMA Secretaria de Biodiversidade e Florestas, Brasília, pp 135–153

  15. Dias RA, Agne CE, Gianuca D, Gianuca A, Barcellos-Silveira A, Bugoni L (2010) New records, distribution and status of six seabird species in Brazil. Iheringia Ser Zool 100:379–390. https://doi.org/10.1590/S0073-47212010000400013

    Article  Google Scholar 

  16. Almeida A, Moreira L, Bruno S, Thomé MA, Bolten A, Bjorndal K (2011) Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endanger Species Res 14:193–201. https://doi.org/10.3354/esr00357

    Article  Google Scholar 

  17. Martins LSG, Alves RJV (2007) Regeneração Natural do Morro Vermelho, Ilha da Trindade. Rev bras biociênc 5:39–41

    Google Scholar 

  18. Alves RJV, Silva NG, Aguirre-Muñoz A (2011) Return of endemic plant populations on Trindade Island, Brazil, with comments on the fauna. In: Veitch CR, Clout MN, Towns DR (eds) Island invasive: eradication and management, 1st edn. IUCN, Gland, pp 259–263

    Google Scholar 

  19. Silva NG, Alves RJV (2011) The eradication of feral goats and its impact in plant biodiversity – a milestone in the history of Trindade Island, Brazil. Rodriguesia 62:717–719. https://doi.org/10.1590/2175-7860201162315

    Article  Google Scholar 

  20. Gama R, Faria ALA, Câmara PEAS, Stech M (2016) Identity and origin of Campylopus (Leucobryaceae, Bryopsida) species from Trindade Island (Brazil). Cryptogam Bryol 37:241–250. https://doi.org/10.7872/cryb/v37.iss3.2016.241

    Article  Google Scholar 

  21. Alves RJV, Lorscheitter ML, de Moraes RC, da Silva NG (2018) Airborne palynomorphs on Trindade Island, South Atlantic Ocean, Brazil. Rev Bras Bot 41:435–446. https://doi.org/10.1007/s40415-018-0460-1

    Article  Google Scholar 

  22. Fraser CI, Connell L, Lee CK, Cary SC (2018) Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol 41:417–421. https://doi.org/10.1007/s00300-017-2198-9

    Article  Google Scholar 

  23. Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B (2018) Genus richness of microalgae and cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 41:909–923. https://doi.org/10.1007/s00300-018-2252-2

    Article  Google Scholar 

  24. Barnes MA, Turner CR (2015) The ecology of environmental DNA and implications for conservation genetics. Conserv Genet 17:1–17. https://doi.org/10.1007/s10592-015-0775-4

    Article  CAS  Google Scholar 

  25. Rosa LH, da Silva TH, Ogaki MB et al (2020) DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island. Antarctica Sci Rep 10:21986. https://doi.org/10.1038/s41598-020-78934-7

    Article  CAS  PubMed  Google Scholar 

  26. Câmara PEAS, Carvalho-Silva M, Pinto OHB et al (2020) Diversity and ecology of Chlorophyta (Viridiplantae) assemblages in protected and non-protected sites in Deception Island (Antarctica, South Shetland Islands) Assessed Using an NGS Approach. Microb Ecol 81(2):323–334. https://doi.org/10.1007/s00248-020-01584-9

    Article  CAS  PubMed  Google Scholar 

  27. Carvalho-Silva M, Rosa L, Pinto O, Da Silva T, Henriques D, Convey P, Câmara P (2021) Exploring the plant environmental DNA diversity in soil from two sites on Deception Island (Antarctica, South Shetland Islands) using metabarcoding. Antarct Sci 33:469–478. https://doi.org/10.1017/S0954102021000274

    Article  Google Scholar 

  28. Schaefer CEGR, Oliveira FS (2015) Brazil in the South Atlantic: the Fernando de Noronha and Trindade Archipelagos. In: Vieira B, Salgado A, Santos L (eds) Landscapes and Landforms of Brazil (World Geomorphological Landscapes), 1st edn. Springer, Dordrecht, pp 65–77

    Chapter  Google Scholar 

  29. Santos AC, Mohriak WU, Geraldes MC, Santos WH, Ponte-Neto CF, Stanton N (2018) Compiled potential field data and seismic surveys across the Eastern Brazilian continental margin integrated with new magnetometric profiles and stratigraphic configuration for Trindade Island, South Atlantic, Brazil. Int Geol Rev 61:1728–1744. https://doi.org/10.1080/00206814.2018.1542634

    Article  Google Scholar 

  30. Almeida FFM de (1961) Geologia e Petrologia da Ilha da Trindade. Monograph, Departamento Nacional de Prospecção Mineral (DNPM)

  31. Almeida FFM de (2006) Ilhas oceânicas brasileiras e sua relação com a tectônica atlântica. Terræ Didatica 2:3–18

    Article  Google Scholar 

  32. Santos RN, Marques LS (2007) Investigation of 238U–230Th–226Ra and 232Th–228Ra–228Th radioactive disequilibria in volcanic rocks from Trindade and Martin Vaz Islands (Brazil; Southern Atlantic Ocean). J Volcanol Geotherm Res 161:215–233. https://doi.org/10.1016/j.jvolgeores.2006.11.010

    Article  CAS  Google Scholar 

  33. Bongiolo EM, Pires GLC, Geraldes MC, Santos AC, Neumann R (2015) Geochemical modeling and Nd–Sr data links nephelinite–phonolite successions and xenoliths of Trindade Island (South Atlantic Ocean, Brazil). J Volcanol Geotherm Res 306:58–73. https://doi.org/10.1016/j.jvolgeores.2015.10.002

    Article  CAS  Google Scholar 

  34. Cordani UG (1970) Idade do vulcanismo no oceano Atlântico Sul. Boletim IGA 1:09–75

    Article  Google Scholar 

  35. Clemente EP (2006) Ambientes terrestres da ilha da Trindade, Atlântico Sul: caracterização do solo e do meio físico como subsídio para criação de uma unidade de conservação. Dissertation, Universidade Federal de Viçosa

  36. Firme Sá MM (2010) Caracterização ambiental, classificação e mapeamento dos solos da Ilha da Trindade. Thesis, Universidade Federal de Viçosa, Atlântico Sul

    Google Scholar 

  37. Mateus ACC, Varajão AFDC, Oliveira FS, Petit S, Schaefer CEGR (2020) Non-allophanic Andosols of Trindade Island, south Atlantic: a new soil order in Brazil. Rev Bras Cienc Solo 44. https://doi.org/10.36783/18069657rbcs20200007

  38. Clemente EP, Schaefer CEGR, Oliveira FS, Albuquerque-Filho MR, Alves RV, Firme Sá MM, Melo VF, Correa GR (2009) Topossequência de solos na Ilha da Trindade, Atlântico Sul. Rev Bras Cienc Solo 33:1357–1371. https://doi.org/10.1590/S0100-06832009000500028

    Article  CAS  Google Scholar 

  39. Machado MR, Oliveira FS, Schaefer CEGR, Almeida EPC (2017) Endemismo Pedológico e os Solos da Ilha da Trindade – Atlântico Sul, Brasil. Rev Depto Geogr 11:238–248. https://doi.org/10.11606/rdg.v0ispe.132762

  40. Clemente EP, Oliveira FS, Machado MR, Schaefer CEGR (2018) Fracionamento da Matéria Orgânica e Micromorfologia dos Solos da Ilha da Trindade, Atlântico Sul. Rev Depto Geogr 36:48–62. https://doi.org/10.11606/rdg.v36i0.147796

    Article  Google Scholar 

  41. Pedroso D, Panisset JS, Abda LBB (2017) Climatologia da Ilha da Trindade. In: PROTRINDADE Programa de Pesquisas Científicas na Ilha da Trindade – 10 anos, 1st edn. SECIRM, Brasília, pp 27–32

  42. Teixeira PC, Donagemma GK., Fontana A., Teixeira WG (2017) Manual de Métodos de Análise de Solo. EMBRAPA, Brasília

  43. Yeomans JC, Bremner JM (1988) A rapid and precise method of routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. https://doi.org/10.1080/00103628809368027

    Article  CAS  Google Scholar 

  44. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5(1):e8613. https://doi.org/10.1371/journal.pone.0008613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. RT Richardson C Lin DB Sponsler JO Quijia K Goodell RM Johnson 2015 Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem Appl Plant 3https://doi.org/10.3732/apps.1400066

  46. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  47. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast Q, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  49. Bolyen E, Rideout JR, Dillon MR (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bokulich NA, Kaehler BD, Rideout JR (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  52. C Quast E Pruesse P Yilmaz J Gerken T Schweer P Yarza J Peplies et al 2013 The SILVA ribosomal RNA gene database project: improved data processing and web-based tools Nucleic Acids Res 41https://doi.org/10.1093/nar/gks1219

  53. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  54. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ et al (2016) MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957. https://doi.org/10.1371/journal.pcbi.1004957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) UNITE QIIME release for fungi. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786385 a

  56. Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786386 b

  57. Garrity GM (2012) Bergey's manual of systematic bacteriology: volume one: the archaea and the deeply branching and phototrophic bacteria. Springer, New York

  58. Yilmaz P, Parfrey LW, Yarza P et al (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res 42:643–648. https://doi.org/10.1093/nar/gkt1209

    Article  CAS  Google Scholar 

  59. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46. https://doi.org/10.1080/07352689.2011.615705

    Article  Google Scholar 

  60. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266. https://doi.org/10.1017/S0006323198005167

    Article  CAS  PubMed  Google Scholar 

  61. Kirk PM, Cannon PF, Minter DW, Stalpers J (2011) Dictionary of the fungi. CAB International, Wallingford

    Google Scholar 

  62. Tedersoo L, Abarenkov K, Nilsson RH (2011) Tidying up international nucleotide sequence databases: ecological, geographical and sequence quality annotation of ITS sequences of mycorrhizal fungi. PLoS ONE 6:e24940. https://doi.org/10.1371/journal.pone.0024940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Santos RD, Lemos RC, Santos HG, Ker JC, Anjos, L.H.C.; Shimizu SH (2015) Manual de descrição e coleta de solos no campo. 6. ed. Sociedade Brasileira de Ciência do Solo, Viçosa

  64. Starke R, Siles JA, Fernandes MLP (2021) The structure and function of soil archaea across biomes. J Proteomics 237:104147. https://doi.org/10.1016/j.jprot.2021.104147

    Article  CAS  PubMed  Google Scholar 

  65. Huber H, Stetter KO (2006) Thermoplasmatales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (ed) The Prokaryotes. Springer, New York

  66. Distaso MA, Bargiela R, Brailsford FL (2020) High representation of archaea across all depths in toxic and low-pH sediment layers underlying an acidic stream. Front Microbiol 11:2871. https://doi.org/10.3389/fmicb.2020.576520

    Article  Google Scholar 

  67. Delgado-Baquerizo M, Oliverio AM, Brewer TE et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325. https://doi.org/10.1126/science.aap9516

    Article  CAS  PubMed  Google Scholar 

  68. Hu D, Guihong C, Beile G (2018) A phylogenomic and molecular markers, based analysis of the class acidimicrobiia. Front Microbiol 9:987. https://doi.org/10.3389/fmicb.2018.00987

    Article  PubMed  PubMed Central  Google Scholar 

  69. Muñoz-Gómez SA, Hess S, Burguer G (2019) An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. Elife 8:e42535. https://doi.org/10.7554/eLife.42535.001

    Article  PubMed  PubMed Central  Google Scholar 

  70. Falagán C, Johnson DB (2014) Acidibacter ferrireducens gen. nov, sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18:1067–1073. https://doi.org/10.1007/s00792-014-0684-3

    Article  CAS  PubMed  Google Scholar 

  71. Dedysh SN, Pelin Y (2018) Refining the taxonomic structure of the phylum Acidobacteria. Int J Syst Evol Microbiol 68:3796–3806. https://doi.org/10.1099/ijsem.0.003062

    Article  CAS  PubMed  Google Scholar 

  72. Stchigel AM, Guarro J, Mac Cormack W (2003) Apiosordaria Antarctica and Thielavia antarctica, two new ascomycetes from Antarctica. Mycologia 95:1218e1226. https://doi.org/10.1080/15572536.2004.11833030

  73. Rosa LH, Zani CL, Cantrell CL, Duke SO, Van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica. Springer Nature, Switzerland, pp 1–17

  74. Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DS (2013) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105:237–252. https://doi.org/10.3852/12-207

    Article  CAS  PubMed  Google Scholar 

  75. Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov, in bat hibernacula of eastern North America. Fungal Biol 117:638–649. https://doi.org/10.1016/j.funbio.2013.07.001

    Article  PubMed  Google Scholar 

  76. Mercantini R, Marsellan R, Cervellati C (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52. https://doi.org/10.1007/BF00436926

    Article  CAS  PubMed  Google Scholar 

  77. Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Divers 49:13–22. https://doi.org/10.1007/s13225-010-0079-4

    Article  Google Scholar 

  78. Lorch JM, Meteyer CU, Behr JM et al (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378. https://doi.org/10.1038/nature10590

    Article  CAS  PubMed  Google Scholar 

  79. Sugita T, (2011) Trichosporon Behrend (1890). In: Kurtzman C, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier Science, Amsterdam, pp 2015–2061

    Chapter  Google Scholar 

  80. Liu XZ, Wang QM, Groenewald M et al (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147. https://doi.org/10.1016/j.simyco.2015.12.001

    Article  PubMed  Google Scholar 

  81. Wagner L, Stielow B, Hoffmann K et al (2013) A com-prehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Pers Mol Phylogeny Evol Fungi 30:77–93. https://doi.org/10.3767/003158513X666268

    Article  CAS  Google Scholar 

  82. Tamayo-Vélez A, Osorio NW (2018) Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of Colombia. Commun Soil Sci Plant 49:139–147. https://doi.org/10.1080/00103624.2017.1417420

    Article  CAS  Google Scholar 

  83. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierellashow differ-ent degradation potentials for the phenylurea herbicide diuron. Biodegradation 24:765–774. https://doi.org/10.1007/s10532-013-9624-7

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen TT, Park SW, Pangging M, Lee HB (2019) Molecular and morphological confirmation of three undescribed species of Mortierella from Korea. Mycobiology 47:31–39. https://doi.org/10.1080/12298093.2018.1551854

    Article  PubMed  PubMed Central  Google Scholar 

  85. Blanchette RA (2000) A review of microbiological deterioration found in archaeological wood from different environments. Int Biodeterior Biodegradation 46:189–204. https://doi.org/10.1016/S0964-8305(00)00077-9

    Article  Google Scholar 

  86. Thormann MN, Currah RS, Bayley SE (2001) Micro fungi isolated from Sphagnum fuscum from a Southern Boreal Bog in Alberta, Canada. Bryologist 104:548–559. https://doi.org/10.1639/0007-2745(2001)104[0548:MIFSFF]2.0.CO;2

    Article  Google Scholar 

  87. Varnaité R, Paskevicius A, Raudoniené V (2008) Cellulose degradation in rye straw by micromy-cetes and their complexes. Ekologija 54:29–31. https://doi.org/10.2478/V10055-008-0006-0

    Article  Google Scholar 

  88. Hopkins SP (1997) The biology of springtails (insects: collembolan). OUP Oxford, New York

    Google Scholar 

  89. Kubiena WL (1953) The soils of Europe. Murby, London

    Google Scholar 

  90. Lagerlöf J, Andren O (1991) Abundance and activity of Collembola, Protura and Diplura (Insecta, Apterygota) in four cropping systems. Pedobiologia (Jena) 35:337–350

    Google Scholar 

  91. Bellinger PF, Christiansen KA, Janssens F (2021) Checklist of the Collembola of the World, http://www.collembola.org (Online)

  92. Holdgate MW (1960) The fauna of the mid-Atlantic islands. Proc Royal Soc B 152:550–567

    Google Scholar 

  93. Holdgate MW (1965) Part III. The fauna of the Tristan da Cunha Islands. Philos Trans Royal Soc A 249:361–402

    Google Scholar 

  94. Hänel C, Chown SL, Gaston KJ (2005) Gough Island: a natural history. SUN Press, Stellenbosch

    Google Scholar 

  95. Chown SL, Lee JE, Shaw JD (2008) Conservation of Southern Ocean islands: invertebrates as exemplars. J Insect Conserv 12:277–291. https://doi.org/10.1007/s10841-008-9151-8

    Article  Google Scholar 

  96. Bostrom S, Holachov O (2013) Description of one new species of Heterocephalobellus Rashid, Geraert & Sharma, 1985 (Rhabditida: Cephalobidae) from Kelso Dunes, Mojave National Preserve, California, USA and Usno, Argentina. J Nematode Morphol Syst 16:161–166

    Google Scholar 

  97. Santos T, Venekey V (2018) Meiofauna and free-living nematodes in volcanic sands of a remote South Atlantic, oceanic island (Trindade, Brazil). J Mar Biolog Assoc UK 98:1919–1934. https://doi.org/10.1017/S0025315417001710

    Article  Google Scholar 

  98. Froehlich EM, Carbayo F (2011) Catálogo dos “Turbellaria” (Platyhelminthes) do Estado de São Paulo. Biota Neotrop 11:503–514. https://doi.org/10.1590/S1676-06032011000500019

    Article  Google Scholar 

  99. Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  100. Leça EE, Cunha MGGS, Santiago FM et al (2010) Bacillariophyceae. In: Forzza RC, Baumgratz JFA, Bicudo CEM et al (eds) Catálogo de Plantas e Fungos do Brasil, 1st edn. Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 262–310

    Google Scholar 

  101. Ekelund F, Patterson DJ (1997) Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch Protistenkd 148:461–478. https://doi.org/10.1016/S0003-9365(97)80022-X

    Article  Google Scholar 

  102. Karpov SA, Bass D, Mylnikov AP, Cavalier-Smit T (2006) Molecular phylogeny of Cercomonadidae and kinetid patterns of Cercomonas and Eocercomonas gen. nov. (Cercomonadida, Cercozoa). Protist 157:125–158. https://doi.org/10.1016/j.protis.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  103. Lee WJ (2020) First records of nine free living heterotrophic flagellates from South Korea. J Species Res 9:448–454. https://doi.org/10.12651/JSR.2020.9.4.448

    Article  Google Scholar 

  104. Garstecki T, Brown S, De Jonckheere JF (2005) Description of Vahlkampfia signyensis n. sp. (Heterolobosea), based on morphological, ultrastructural and molecular characteristics. Eur J Protistol 41:119–127. https://doi.org/10.1016/j.ejop.2005.01.003

    Article  Google Scholar 

  105. Tyml T, Skulinová K, Kavan J, Ditrich O, Kostka M, Dyková I (2016) Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. Eur J Protistol 56:119–133. https://doi.org/10.1016/j.ejop.2016.08.003

    Article  PubMed  Google Scholar 

  106. Wylezich C, Mylnikov AP, Weitere M, Arnd H (2007) Distribution and phylogenetic relationships of freshwater thaumatomonads with a description of the new species Thaumatomonas coloniensis n. sp. J Eukaryot Microbiol 54:347–357. https://doi.org/10.1111/j.1550-7408.2007.00274.x

    Article  CAS  PubMed  Google Scholar 

  107. Anderson OR (2014) Microbial communities associated with tree bark foliose lichens: a perspective on their microecology. J Eukaryot Microbiol 61:364–370. https://doi.org/10.1111/jeu.12116

    Article  PubMed  Google Scholar 

  108. Jacques EL, Gregório BS (2020) Begoniaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro, http://floradobrasil.jbrj.gov.br/ (Online)

  109. Morim MP, Barros MJF (2015) Vachellia in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, http://floradobrasil.jbrj.gov.br/ (Online)

  110. Terra V (2020) Vachellia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro, http://floradobrasil.jbrj.gov.br/ (Online)

Download references

Acknowledgements

We thank congresswoman Jô Moraes and the Biological Sciences Institute at the University of Brasilia. We thank the Brazilian Navy and POIT staff.

Funding

This study received financial support from CNPq, CAPES, and FAPEMIG. Peter Convey is supported by NERC core funding to the BAS “Biodiversity, Evolution, and Adaptation” Team.

Author information

Authors and Affiliations

Authors

Contributions

PEASC and LHR designed the study and secured funds; FLVB and FACL performed the bioinformatic analyses; FSO and LPC did fieldwork and collecting; PEASC, LHR, and DKH performed lab work; CCB worked with the bacteria data; LHR worked the fungi data; MCS and PEASC worked on the plant data; PEASC and PC worked on the remaining groups. FSO and LPC worked on the soil data; PEASC, LHR, and PC wrote the manuscript, and all authors revised it.

Corresponding author

Correspondence to Paulo E. A. S. Câmara.

Ethics declarations

Ethics Approval

Not needed.

Consent to Participate

All authors consent to its participation and publication.

Consent for Publication

All authors consent to its participation and publication.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Câmara, P.E.A.S., Bones, F.L.V., Lopes, F.A.C. et al. DNA Metabarcoding Reveals Cryptic Diversity in Forest Soils on the Isolated Brazilian Trindade Island, South Atlantic. Microb Ecol 85, 1056–1071 (2023). https://doi.org/10.1007/s00248-022-02018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02018-4

Keywords

Navigation